¢ HIBERNATE

Hibernate Reference Documentation

Version: 3.0.5

Table of Contents

1=, =0 2SRRI viii

1. QUICKStart With TOMICALuiiiiii s a s annsssnsnsnnnnnnnnnnnsnnnnns 1

1.1. Getting started With HIDEIMNELEcooiiiiiieice e 1

1.2, FIrSt PErSISIENT ClESSiveiiiiiiiiie ettt e e e e e s e e e nnne s 3

RS AV = o o T g Te 1 = o PRSPPI 4

1.4, PlayiNg WITN CBLSccoiiuiiiieiiiiiiee ettt e e e e e s e e e e e e e s anbn e e e e s nnnneees 5

LT T o PP PEPPRRPP 7

2. INtroduction tO HIDEIMN@LE ... r e e e e e e r e e e e e e e st raaeeeeas 8

P = o SRR 8

2.2. Part 1 - Thefirst Hibernate AppliCationcccoeoiiiiiiiiiiiiee e 8

N T I = = o = USSP 8

2.2.2. Themapping fIlEuueeiiie e 9

2.2.3. Hibernate CoNfigUIationcooiiuiiiiiiiiiee e 11

224.Builldingwith Ant ... 12

2.2.5. StArtUP @A NEIPENS .. 13

2.2.6. Loading and Storing ODJECESeeiiiieiiiiiee e 15

2.3. Part 2 - Mapping aSSOCIALONSuuviiiieeeiiiiciiiieeeee e e s s eeiee e e e e e e e s s st ereeaesssssatraaeeeaaaeeaaans 17

2.3.1. Mapping the PErson ClIassccoiuiiiiiiiiiee e 17

2.3.2. A unidirectional Set-based assOCIatioNcceeveiiiiiieiiiiiie e 17

2.3.3. WOrking the @SSOCIELIONeveieiiiiiieeiiieie ettt 19

2.3.4. COllECtioN Of VAIUESoiiiiiiiiiiieeiie ettt e e e et eeeens 20

2.3.5. Bi-directional @SSOCIalioNSeeiieeiiiiiiiiiiiieeee s e seiiireee e e e e s s s snrrrre e e e e e s s seneraaeeraens 21

2.3.6. Working bi-directional [INKSooooiiiiiiie e 21

P ¥ 0110 0T TR 22

G I AN e 11 = B = SRR 23

TN B O Y= V= PRSPPI 23

I L4 s = (o R s =S PP 25

G TG N 1/ I 1 1= = 1 o o 25

B4 JCA SUPPOIT ettt ettt et ettt e e e e e e ettt e e e e s e e h bbb e et e e e e e e e bbb nreeaaaeeaaan 26

R @] 1 1T 1] =1 o] o SRR 27

4.1. ProgrammatiC CONFIQUIALIONcccuiiiiiiiiee ettt e e e e e e s e e s 27

4.2. ObtaiNiNG @ SESSIONFACIONYciuieeiieiitiiee ettt e ettt e et e e s e e e e anne e e e e anbreeeean 27

4.3. IDBC COMNECLIONSveeieiiiiieeeiiteeeeasttee e e ettt e e e sstteeeeasssaeaeeenteeeesanseeeeeansnneeeeannaeeeeeansneeeaans 28

4.4. Optional configuration PrOPEITIESeeveiiiiieeeeiiiie ettt e e e e s sbreeeean 29

S O I I L - <ot £ SR OPPRPPOTRR 34

4.4.2. OUter JOIN FEIChINGvvviiiiiie e e e e e e e nreees 35

4.4.3. BiNArY SITEAIMSvveiiiiiiiiie ettt ettt e e e e e e s e e e e anr e e e e e nnrneeeeans 35

4.4.4. Second-level and QUENY CaCheuueiiiii e 35

4.4.5. Query Language SUDSHTULIONoccuriiiiiiiiiie e 36

4.4.6. HIDEIMNELE SLALISHICS ...eieiievieeeeiiiiieeeeiiiie e st s e e e e e et e e e s e e e e annbe e e e e nnrneeeeans 36

S oo o oo [PP P PP OPPPPPTPTPPPN 36

4.6. Implementing a NaMINGSLTEIEOYceevvveiiiiiiiiiieiiieieeeeeeeee e e ee e e e e e e e e e e e e e e e e ee e eeerereeereeeees 37

4.7. XML configuration fIl@cciiiei it 37

4.8. J2EE Application Server iNTErationcc.eeeeeiiirieeiiiiie e siieee e e e ssnre e s e e e snneee e 38

4.8.1. Transaction strategy CONfIQUIaLIONcccoiiiuvriieiieeee e s e e e e e s e e 39

4.8.2. INDI-DOUNT SESSIONFECIONYevieiiiiiieeiiiiie ettt e e 40

4.8.3. Automatic JTA and Session biNGiNGooccuiiieiiee e 40

4.8.4. IMX AEPIOYIMENT ...ttt e e e e e e e nnbeeeeeans 40
Hibernate 3.0.5 ii

HIBERNATE - Relational Persistence for |diomatic Java

B, PErSISEENT ClASSESeeiiiiiiiii et e ettt e e e e e e et e e e e e e e s e st e e e e e aeaeeesaanntaaneeeeaeeeaanseaneeeeeas 42
5.1. A SimpPle POJO EXAMPIEccoiiiiiiieiie ettt e e e e s e e e e e e e e et eeeeaaeeeans 42
5.1.1. Declare accessors and mutators for persistent fieldsccoceeviiiiieiiiiee e 43
5.1.2. Implement a no-argument CONSITUCEOTcccooeeiiiiiiii e, 43
5.1.3. Provide an identifier property (Optional)cveeeeiiiieieiniiiieeeieeee e 43
5.1.4. Prefer non-final classes (OPtIONal)ooiceeiiiiiiee e 44

5.2. Implementing iNNEITANCEccuvviiiiiii e e e e s e et raaa e e e 44
5.3. Implementing equalS() aNd NaSNCOAE()vvveeiiiiiieeeiiiee e 44
5.4. DYNAMIC MOAEISuiiiiiiiiie it e e e e e e e e e e e e s s st bbbt e e e e e e e e s ssntbbeeeeaaaeeaans 45
6. BASIC O/R M @PPING -.tetieiiiiiieeiiiiie ettt ettt e e ettt e e ettt e e e et e e e e e b et e e e bbb e e e e anb et e e e annr e e e e eanbrneeean 48
6.1. Mapping deClarationcoooeeiiiii i, 48
L300 0t R B T ot Y = TP P PP PPPPIPP 49
6.1.2. NiDENEIE-MEBPPING -..eveeeeeeeeeiiiieiii e e e et e e e e e e e e ettt e e e e e e e e s enneeeeeeeaeeesaanennneeeeens 49
G0 e o PP PRP PR 50

S 70 0 T PRSPPI 52
B.1.4. 1. GENEIALON ... 53

6.1.4.2. HI/IO @QOItNMooiiiiiie e 54

6.1.4.3. UUID algorithm ... 54

6.1.4.4. Identity columnS and SEQUENCESccoiiiiuuiiiiiieeeeeesesiirier e e e e s s ssrnaneeeeaee e e 54

6.1.4.5. ASSIgNE IAENtITIENSooiiiiiiie e 55

6.1.4.6. Primary keys assigned by triggers ..o 55

6.1.5. COMPOSITE-TTeieieeeite ettt e e et e e e e e e e e e e e e e 55

T G0 1= 0= o PRSPPSO 56
6.1.7. VErSION (OPLIONAL) ...eiiiiiiiee ittt e e 56
6.1.8. timestamp (OPtioNal)cooeeeiiiii 57

B. .0, PIOP Y oo 57
6.1.10. MANY-TO-0NEeieieeeiee et r e e e s e e e e e e e s s s s e e e e e e e s e snrnreneeeeas 59
B.1.11. ONETO-0NE ... 60
200 It 2 o = (1 = T o PRSP 62
6.1.13. component, dynamiC-COMPONENLcccvurerereeeeeiiiiiireeeeee e e e s senrrrereeeeeesesnrrreeeeeeas 62
6. 1. 14, PTOPEITIES ...eeeeiieieee ettt ettt ettt e e e ettt e e ettt e e e e bbbt e e e b e e e e e e e e e e e e e nnes 63
B.1.15. SUDCIBSS ...ooiiieiiiiieiei e e e e e eaaens 64
6.1.16. JOINEA-SUDCIASSvvviieiiie i e e e s e e e e e s et raeeeaeas 65
6.1.17. UNION-SUDCIBSSuuviiiiiieeeieeiiiiiie e s ettt e e e e e et e e e e e e s s s ae e e e e e e e s aanenaeeeeeens 66
G0 00 = o T o PRSP 66
ST 0 T T PSPPSR 67
6.1.20. column and formula @ @MENEScooiiiiiiiiie e 68

G 2t B T 400 TP PPPPPRP 68

T 2 1 PR SORR 69

B.2. HIDEINALE TYPES ...ttt e e e e e e e e e e e e s e st e e e e e e e e e sentbaaaeeaaaeeaans 69
6.2.1. ENItIES @NA VBIUESeeeiiieeeiiiiiiiie ettt e e e e e e e st r e e e e e e e aenenaeeeneeas 70
6.2.2. BASIC VAIUBLYPESvvveieieie ettt ettt e e et e e e e e e s st e e e e e e e e s e ntaaaeeeaaas 70
6.2.3. CUSIOM VBIUB TYPES ...ttt ettt e e e e 71

6.3. SQL quoted identifiers ... 72
6.4. Metadata AltErNELIVEScccei ittt e e r e e e e e s s s e e e e e e e s aentrbareeaaaeeaaans 72
6.4.1. USING XDOCIE MAIKUD .oeeieieiiiiii ettt e e e e e e e e e e e e meneeeeeeens 72
6.4.2. USiNGg JDK 5.0 ANNOLBLIONSvvviiiiieeeiiiiiiiei e e e e e ettt e e e e e e s s sinraae e e e e e e s s e nnnnraeeeaeas 74

7. COHECTION MEPPING ..ttt ettt e e et e e e e ss e e e e e st e e e e anb e e e e e anre e e e aanbrneeeans 76
7.1, PersiStent COHIECHIONSc.vviiieiiiiiie ettt et e e e st e e s ssa e e e e sntaeeeeans 76
7.2. COlECHION MEPPINGS ..o ieieetee ettt e ettt e e et e e e et e e e e e aba e e e s annne e e e e anbreeeeans 76
7.2.1. Collection foreign KeYScoooeeieiiee e 77
7.2.2. COECtION ElOMENES ...eiiiiieee ittt e e e e e e e e e e e s s e enrbrnaeeeaas 78

Hibernate 3.0.5

HIBERNATE - Relational Persistence for |diomatic Java

7.2.3. INdeXEU COHECLIONSeeiiieeeiiiiiiiee ettt e e e e e e e e e e e reeeeeens 78
7.2.4. Callections of values and many-to-many assOCiationsccccvvvveeeeeeeesieiiivveeenenns 79
7.2.5. ONE-t0-ManYy 8SSOCIBLIONSceeeiiuiriieeiiieiee et e e st e e s aibe e e e st e e s anne e e e e anreeeeenees 80

7.3. Advanced collection MaPPINGSccoeeeeeii i, 81
G IS0 5 (= ol | = 1 o g1 PRSP 81
7.3.2. Bidirectional @SSOCIAIONSuueiiiieeeiiiiiiieiee e e e et e e e e e e e e e e e e e e e e nenaeeeeeens 82
7.3.3. TENAIY @SSOCIBLIONS ...eeiiieeeiiiiiiiieeiee e e s s eett et e e e e s e s et e e s e e e e s s sanba e e eeaeessaannrrneeeaeas 83
7.3.4.USING 8N <IADBG™ ..ottt e s 84

7.4. COllECiON EXAMPIESuvveiiie e it e e e e e e e e e e e e e s s st eeeeeeeesssatbraeeeaaaeeaans 84
8. ASSOCIALION MEPPINGSeieeiieiiiiie ettt e et e e e e e e e e bb e e e e bbb e e e e abb et e e e annbe e e e aanbnneeean 87
S 300 I 1 1o L o1 o o USRS 87
8.2. UNidirectional aSSOCIALIONSuveiiiieeeiiiiiiiiieie e e e e s s e e e e e e e e s s st reee e e s s s nasrrareeaaaeeaans 87
8.2.1. MANY O ONE ... 87
B.2.2. ONETO ONE ... 87
8.2.3. ONETO MANY .ottt r e e s e et e e e e s s s e et e e e e s e e nrnrneeeeeas 88

8.3. Unidirectional associationswith jointablesccoooiiiiiiiiie e 89
8.3.1. ONETO MANY ettt e e e e e e et r et e e e e s e s e et e e e e s s annrbreeeeeeas 89

o TG I 1 70|V (0 o1 89
B.3.3. ONETO ONE ..ottt e e e e e et e e e e s e b e e e e e e e s e e eaeaas 90
8.3.4. MANY L0 MENY ... e e s e e e e e e s s s s e e e e e e s s e e eeeeas 90

8.4. BidireCtional @SSOCIBLIONSueieeiiiiiiee it e e ettt ee e et e e st e e e st e e e s sbae e e e s snbbeeeeenneeeeeeans 90
8.4.1. oneto Many / MaNY 10 ONEocoiiuiiieiiiiiee ettt e e e et e e e e e e e 91
B2, ONETO ONE ... 91

8.5. Bidirectional associations With JOINTaDIEScccuviiiiiiiiiii e 92
8.5.1.onetomany / Many tO ONEcooeeeeeeei i 92
B.5.2. 0NETO ONE ..ottt e e e et e e e e s e e e e e e s e eeeeas 92
8.5.3. MANY O MENY ... e e s s s e e e e e s s eas 93

I @dolaqloTolal= 0 AN\Y =To] o] o o RN 95
O.1. DEPENTENT ODJECESveeiiuiieieeieite e ettt ettt e ettt e st e e e st e e e e e anst e e e e annn e e e e e anbeeeeean 95
9.2. Collections of dependent ODJECEScoiiiiiiiiiiieice e 96
9.3. CompPONENtS @S MaP INTICESceiiiiiiiiee ittt sbeeeeean 97
9.4. Components as composite identifiersccccco 97
9.5. DYN@MIC COMPONENTSeeiiieeeiiiiiiiieeteeeeeese sttt e e e ee e e s s aaatbbeeeeaaeessasasntsaeeeaaeeessasnssrnneeaaaeesaans 99
10. INNErITANCE MAPPING -...eeeieeiiitie ettt a et e e e e e st e e e e s e e e e e s b e e e e e asne e e e s annreeeesanrneeeeans 100
10.1. THE THIrEE SEFALEUIES .ooee e ittt e et e e e e e e e e e e e e e e e e e e s s barereeaeeeeenanneees 100
10.1.1. Table per class hierarChyc.ooiiiiiiiiii e 100
10.1.2. TahIE PEr SUDCIASSuuuuiii s nnnnnnnnnnnnns 100
10.1.3. Table per subclass, using @ diSCHIMINGLOTccoouveieiiiiiie e 101
10.1.4. Mixing table per class hierarchy with table per subclasscccccceveeiviiiiciiiiennn. 101
10.1.5. Table per CONCIELE CIaSSuvviiiiiiei i 102
10.1.6. Table per concrete class, using implicit polymorphismcccccvviieeiiiiineenee 102
10.1.7. Mixing implicit polymorphism with other inheritance mappingscccccvveeee.... 103

0 T 0Tl 7 o) SRR 104
11, WOrKing With ODJECESeeiiiiii s na s s nnsnnnnnnnnnnnnnnn 106
11.1. HIDErNae ODJECE STALESciiuvriieeiiiiiee e sttt e s e e s nnbaeeeeans 106
11.2. MaKing ODJECIS PEISISIENTeeeieieee ettt e e e e e e e e e e e e e ee e e e e e e e e annnneees 106
11.3. L0ading @n ODJECEcovieeiicieee e 107
@ 111 o oo PO PP PP PPPPPPRPPPPPPRPN 108
11.4.1. EXECULING QUENES .eiiiee ettt e e e e e ettt e e e e e e e e et ta e e e e e e e e e s sanbar e e e e e e e s s e nnrrranneeeas 108
11411 ErAiNG FESUITSeveeeeeiiiiie ettt ettt e e e 108

11.4.1.2. Queriesthat return tUPIESuuuiii e anannees 109

12.4.0.3. SCAlAr FESUILS ..vveeeeiee et a e e e e e e e e e e e e nnenees 109

Hibernate 3.0.5

HIBERNATE - Relational Persistence for |diomatic Java

11.4.1.4. BiNd PAr8MELENSooeiiiiiiieeeeeiiee et e s 109

N ST = o 1= 1o o PSPPI 110

11.4.1.6. SCrollabl@iterationc..uvieiiieeeiiiieeeee e e e 110

11.4.1.7. Externalizing Named QUENTESccciiiiiiienna e nnnnannnnnns 111

11.4.2. FIItEriNg COECIIONSceiiiuiiiiieiiiiiee ettt 111
I G T O] = ¢ = W 111 = R SP 111
11.4.4. QUENESTN NAIVE SQL ...uuuiiiiiiii s aaaaaaassasassaasasnnes 112

11.5. Modifying persistent ODJECEScveiiiiiiiiie e 112
11.6. Modifying detaChed ObJECLSccccoiiiiiiiiiiiiice e e e e e aenes 112
I IAANG [(o g 0> (o = (=0 L= = 1 o o RSP 113
11.8. Deleting persiStent ODJECEScccciiiiiiiiiiiiii s s nsnnnsnnnnnnnnnnns 114
11.9. Replicating object between two different datastoresccccceevviveeeiiiiiie e 114
11.20. FluShiNg the SESSION ...t e et e e e e e e e e e e e e e e e nnnnees 115
1121, TranSitiVE PEISISLENCEccuvvirieiieeeeiicitiiie e e e e e e s s sttt e e e e e e e s e s stb e e e e e e e e s s s snnbaaareeaeessannnneees 116
11,12, USING MELAOBLA ...ttt ettt e e e e s st e e e e e e e e e e anrneeeeans 117
12. TransactioNS AN CONCUITENCY ..oeeiieiiiiiiiieieeeee e e e e ettt e e e e e e e e s et e e e e e e e s e stab b b e e eeaeesssanssraeneeeas 118
12.1. Session and tranSaCtiON SCOPESvvveeeiiurrreeeaireteesaiereeeaassseeesassbeeeesansereeesanbreeesanreneeeans 118
2t T R [T o /o RSP 118
12.2.2. Application traNSACIONSueiiiiiei it e e e e e s e e e e eeeeas 119
12.1.3. Considering ODJECE IAENTILYocuvveeeeiiiiie e 120
12.1.4. COMIMON ISSUES ...uvveteeeiuiieeesaasteeeeessteeeessntseeeeaasseeeessnsbeeeesantaeessansseeeesanneeeeeenees 120
12.2. Database transaCtion demarCalioneiveeeeiiiiiiiiiiiee e er e e e e e e e e e eeees 121
12.2.1. Non-managed ENVIFONMENTceiiiiiiiiiieeeeeees ettt e e e e e e s e sarrr e e e e e e e s e e snrrraaeeeeas 121
12.2.2. USING JT A ottt e et e e e st e e et e e e e e bbr e e e e s nnbe e e e e nnes 122
12.2.3. EXCEPtioN Nandlingcccoioiiiiiiiiiii e nnnnnnnnnnns 123
12.3. Optimistic CONCUITENCY CONIOIccoiiiiiiiiei e e e e e 124
12.3.1. Application VErsion CNECKINGcooiriiieiiiiiieeiiee e 124
12.3.2. Long session and automatiCc VErSIONINGeeeeeeeiiiciuriieieeeeeeeesciiineeeeeeeeseesinsvsneeeeens 124
12.3.3. Detached objects and automatiC VEISIONINGcccoovreeeriiirieeiiiieeeesiireeessieeee e 125
12.3.4. Customizing automatiC VErSIONINGcvvveeieeeeiiiiiiiieieeeeeeeeesiiirreeeeeeeseesinssseeeeeeas 126

12.4. PESSIMISHIC LOCKINGvviiiiiiiiiie ettt et e e e 126
13. INTErCEPLOrS AN EVENTSuiiiiiiiiiiii s an s a s a s asasanannsnsnnnsannnnnnnnnnnnnnn 128
G T O g 0= o (0 £ 128
132, EVENE SYSIOIM L. e e e e e e e 129
13.3. Hibernate deClaratiVe SECUNILYccoiicuiiiieiiee et e e e e e anenes 130
14, BALCN PrOCESSINGeeieiitiiieeiiitee e e ettt e e e sttt e e et e e ettt e e e ekt e e e e s b e e e e e s be e e e e ansb e e e e s annbneeenannneeeeans 131
T T ot g W 1S o £ PP EERPPR 131
14.2. BACH UPALESeeieiiiiiee ettt a e e s e e e e nnbaeeeean 131
14.3. BUIK UPJAE/AEIELE ...ttt e e s ee e e s e e e e snsaeeeeans 132
15. HQL: TheHibernate QUErY LAnNQUAGEceieeeeiiiciiiieieee e e s e eeitteree e e e e e s s siatareeeae e e e e ssnnsraeeeeens 134
15,1, CaSE SENSIIVITY .uvvieeiiiiiiie ettt e e e et e e e et e e e e bt e e e e anseeeeeansreaeeennraeeeeans 134
15.2. TRETIOM CLAUSEeeie ittt e et e s st e e s e b e e e e nnbaeeeean 134
15.3. ASSOCIBLIONS BN JOINSeeiiiiiiiieiitiie ettt e ettt e e e e et e e s abe e e e e e abb e e s anbneeeaans 134
15.4. THE SEIECE ClAUSEeiiiieii ittt e e e e e e e s e e e e e e e e e e nneeees 135
15.5. AQQregate fFUNCLIONScooiiriiieiiiiie ettt et e et e e s st e e s abb e e e e s nnbaeeeeans 136
15.6. POlYMOIPhIC QUETTES ...t e ettt e e e e e e et e e e e e e e e e enntn e e e e e e e e e annnneees 137
15.7. TREWREIE CLAUSEcoieiiiie ettt e e e e e 137
15.8. EXPIESSIONS ...ceuiteeee ettt ettt e e et e e e et e e ekt e e e e n e e e e e R b e e e e r e e e e e e e e aa 139
15.9. The OFder DY ClAUSEcccoieee e e e e e e e e e e s e eaaerees 141
15.10. TREQrOUP DY ClALISEeiieiiiiiie ettt e e e nnbae e e 141
15,10, SUBQUENTES .ottt ettt e et e e e sttt e e e e st e e e e e st e e e e aneeeeeeannneeeeennsaeeeeans 142
15.12. HOQL EXAIMPIES ...eeeeiiiiiiiie ettt et e ettt e e et e e e s abe e e e e e nbb e e e e e nnbaeeeean 143

Hibernate 3.0.5

HIBERNATE - Relational Persistence for |diomatic Java

15.13. Bulk UPDATE & DELETE StatEMENLScccouviieeiiiiiieeiiiiieeesiiieeeesieeeeessiteneeesnnneeeeans 144
T W oS I o< T PERPRR 145
16. Criteria QUENTES ..uuiiiiiiiiee et i ettt ee e e e e e sttt e e e e e s s st e e eteeeessantebaeeeeaaeesaasstaaneeaaeessaanssseneeeens 147
16.1. Creating @ CriteriaiNStaNCecccieiiiiiiiiiii s nnnnnsnnnsnnnnnnnnnnns 147
16.2. Narrowing the reSUIT SEEeviiiiiiiiee e 147
16.3. Ordering the TESUILSeeeiiiiieeee annnneees 148
16.4. ASSOCIBLIONScueveieeeiiteee ettt ettt e e ettt e e e ettt e e e sttt e e e e abb e e e e bbbt e e s anbbe e e e e anbbeeeeeanbneeeean 148
16.5. DynamiC assoCiation FEICHINGvvreeiiiiiiee et e e 149
16.6. EXAMPIE QUETTES ..vveeieieee ittt e e e e e e et e e e e e e e e s snnbere e e e e e e e s ananerees 149
16.7. Projections, aggregation and GroUPINGcccoouueeeeriirreeeraireeessniisreessiereessssneeessssneeesans 150
16.8. Detached queries and SUBQUETNTESiiiiiii e nannnnnnnnnnnnnns 151
16.9. Queries by natural TAeNtIfIErcceeiiiiiiiie e 151
I N Y= S RS URRRSTRR 153
17.1. Creating anative SQL QUENYciiieee it e e e e ettt e e e e e e e s et e e e e e e e s e snnbaae e e e e e e e s ennnneees 153
17.2. Alias and Property FEFEIENCESccuueiiiiiiiiee ettt e e anbeee e e 153
17.3. NamMed SQL QUENES ...ttt e e e e e e e e e e e s e st e re e e e e e e e s annnerees 154
17.3.1. Using return-property to explicitly specify column/aliasnames.............c.ccceeeeneee. 154
17.3.2. Using stored procedureS for QUENYINGccccececieiumunnnninnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnnnns 155
17.3.2.1. Ruleg/limitations for using stored proceduresccccceevvvcviveereeeeeeeeenenne 155

17.4. Custom SQL for create, update and deleteoooeiiiiiiiiie e 156
17.5. Custom SQL fOr [0a80iNGvvvieiiieeii e 157
LS 111] oo o F= = O PP PP PP PUPRPPTRPPRPN 158
18.1. HIDEINALE FIILEIS ..eeieeiiiiiiee et e e s st e e e s s e e e e nnraeeeean 158
RS Y N IV =T o] o] T TSP PPPPP PP PPPRPPTOPPRPN 160
19.1. Working With XIML dataluuuuiiiiii s nnnnnnnnnnes 160
19.1.1. Specifying XML and class mapping togetherceeeveeeeiiiiciiieeeee e, 160
19.1.2. Specifying only an XML MEPPING ..covvvreeiiiirieeiiiie e 160

19.2. XML Mapping MELAAIAcceeiiieeiiiiiiiiieiiee e e e e e e s s e e e e e e e s s e e e e e e e e s e nanenees 161
19.3. Manipulating XIML GaLaeeeeiiiiiiieeiiiiie ettt e e e e e e e 162
20. IMProving PErfOIMANCE ...t e e e e e e e st e e e e e e e e s e e bbb e e e e eeeeeesananseees 164
20.1. FELCNING SIFALEOIESoieteeee ettt e e e st e e s e e e e e b e e e e s anbaeeeeans 164
20.1.1. Working with lazy assoCiationscccccceeeeeeie i, 164
20.1.2. TUNING fELC SIFAtEJIES ... e a e e 165
20.1.3. Single-ended assOCialiON PIrOXIEScvveeeeiirreeeriiieeeeaatrreeessrreeesanreeeessneeeeeans 166
20.1.4. Initializing collectionsS and PrOXIi€Scccuvrieiieeee et e e e 167
20.1.5. USiNg batCh TEECNINGeoiiiiiiiieie e 168
20.1.6. Using subselect fetching ... 169
20.1.7. Using lazy property FECNINGc.uvviiiiiiiie e 169
20.2. The SecoNd LeVEl CaCheceeeieeeeieee et e e e e e e 170
P I O o 1Y 0= o o 4o SRR 170
20.2.2. Strategy: 1820 ONIYeeiiieiiiee et 170
20.2.3. Strategy: FEAUMWIITE ...veeeie et e e e e e e e r e e e e e s e eanneees 171
20.2.4. Strategy: NONSINCE FERA/WIITEo.vviieiiiiiee e 171
20.2.5. Strategy: transactional ..., 171
20.3. Managing the CaChEScooiuiiiiiie e 172
20.4. TRE QUENY CACNEeieiiiie ettt ettt e e e e e e et e e e e e e e e e annnaneeeaaaeeeans 173
20.5. Understanding Collection performanceeoeeeiiiiiciiiieiie e 173
20.5.1. TAXONOIMY ..oeeeieiiiiiireee e e e e e et e e e e e e e s s s e e e e e e e e s s s s s e e e e e e e s s aannbrnreeeaeeessannnnnnes 173
20.5.2. Lists, maps, idbags and sets are the most efficient collectionsto update 174
20.5.3. Bags and lists are the most efficient inverse collectionscccccvvveevieee e, 175
20.5.4. ONESNOL AEIELE ... e e e 175

20.6. MONItOrNG PEITOINMMANCE ...coiiuiiiiieiiiiiiee ettt e e s e e abbe e e e anraeeeeans 175

Hibernate 3.0.5

HIBERNATE - Relational Persistence for |diomatic Java

20.6.1. MONItOring 8 SESSIONFECIONYc.uvvieiiiiiieeeiitee et e e e s e e 175

20.6.2. IMELTICS ..neeeiee ettt ettt ettt e e sttt e e ettt e e e s st et e e e s nbe e e e e enbe e e e e nntaeeeeans 176

P2 T oo <] 1o [ESETR 178
21.1. Automatic SCheEMAa geNErationcccoeeeeeie i 178
21.1.1. Customizing the SChEMAooiiiiiie e 178

21.1.2. RUNNING tRETOOIeeiiiieieeee e e e e 180

P G T = (0] o =SSR 180

2014, USING AT oottt et e et e e e e e e e e e s b e e e e e e e e 181

21.1.5. Incremental SChEMAUPUALESeeviieeiiiiiiiiieiee et e e e e eaaeees 181

21.1.6. Using Ant for incremental SChemaupdatescccvvveiiiiiiieiiniieee e 182

22. Example: Parent/Child ... 183
22.1. A NOte aDOUL COIECLIONS ...t a e s et e e e e e e e e as 183
22.2. Bidirectional ONE-tO-IMaNYueiiiiieeeiiiiiiieiie e e e e e e e e s e et e e e e e e s e s snneeeeeaaaeeeaans 183

22.3. CasCaiNg [IfECYCIEueeeiii e e e e e e 184

22.4. Castades and UNSAVEO-VAIUEoviiieeiiiiiieiie ettt e et e e e e e e e e eeaeeeeaaeeeeens 185

22.5. CONCIUSION ...eeiieiiiiiie ettt e et e e e sttt e e e st e e e esb e e e s antseeeeaansaeeeeannbeeeesansneenaans 186

23. Example: Weblog APPHICALIONcoueiiiiiiiiiee ettt e e 187
23.1. PErSISLENT ClASSES ...eeieiiuiiieeeiiiiieeesiieee e e st e e e st e e e s snseeaeeenteeeessnsseeeeaasseeeeeanseeeesansaeeeaans 187

23.2. HIDEMNGE MBPPINGS ..vvveieeeeiiiiiitiiete e e e e s e sttt e e e e e e s s sttt e e e e e e e s s anatbreeeeaaessaasnsntnreeaaaeesaans 188

23.3. HIDEMMNELE COUEeeeieiiiieeeeiiee ettt e e e e e e s e et e e e e e e e e e e annneeeeeeaaeeeans 189

24, EXample; VarioUS MapPinNgSouueieiieeeiiiiiiiiiei e e e e e s esitiee e e s e e e e s s ssiatsaes e e e e e e s sasaantaaeeeaeeessannnneees 193
24.1. EMPIOYEI/EMPIOYERttt ettt e s e e s e e e e e e e e e 193

24.2. AULNOI/WWOTK .ottt ettt e e et e e e et e e e e snte e e e aanneeeeeannbeaeeeansneeeeans 194
PZRC RN OIS (0]0.41= ¢ L@ 0 =1 = To o ot PP PPSSRR 196
24.4. Miscellaneous example MapPiNgScoooeeeee e 198
24.4.1. "Typed" 0Ne-t0-0NE aSSOCIALIONceeeeiiiiiiiieiieeee e e s eettre e e e e e e e e st e e e e e e e e e eanneees 198

24.4.2. CompPOoSItE KEY EXAMPIE ...ttt 198

24.4.3. Content based diSCrimMINGLIONcooiiiiiiiiiiiie e 200

24.4.4. ASSOCIations ON AltErNAE KEYSovveiiiiiiie ittt 201

P = T o Vo A o= PRSPPSO 203

Hibernate 3.0.5

Vii

Preface

Working with object-oriented software and a relational database can be cumbersome and time consuming in
today's enterprise environments. Hibernate is an object/rel ational mapping tool for Java environments. The term
object/relational mapping (ORM) refers to the technique of mapping a data representation from an object model
to arelational data model with a SQL-based schema.

Hibernate not only takes care of the mapping from Java classes to database tables (and from Java data types to
SQL data types), but also provides data query and retrieval facilities and can significantly reduce development
time otherwise spent with manual data handling in SQL and JDBC.

Hibernates goal is to relieve the developer from 95 percent of common data persistence related programming
tasks. Hibernate may not be the best solution for data-centric applications that only use stored-procedures to
implement the business logic in the database, it is most useful with object-oriented domain models and business
logic in the Java-based middle-tier. However, Hibernate can certainly help you to remove or encapsulate
vendor-specific SQL code and will help with the common task of result set translation from a tabular represent-
ation to agraph of objects.

If you are new to Hibernate and Object/Relational Mapping or even Java, please follow these steps:

1. Read Chapter 1, Quickstart with Tomcat for a 30 minute quickstart, using Tomcat.
2. Read Chapter 2, Introduction to Hibernate for alonger tutorial with more step-by-step instructions.
3. Read Chapter 3, Architecture to understand the environments where Hibernate can be used.

4. Havealook at the eg/ directory in the Hibernate distribution, it contains a simple standal one application.
Copy your JDBC driver to thel i b/ directory and edit et c/ hi ber nat e. proper ti es, Specifying correct val-
ues for your database. From a command prompt in the distribution directory, type ant eg (using Ant), or
under Windows, typebui I d eg.

5. Use this reference documentation as your primary source of information. Consider reading Hibernate in
Action (http://www.manning.com/bauer) if you need more help with application design or if you prefer a
step-by-step tutorial. Also visit http://caveatemptor.hibernate.org and download the example application
for Hibernate in Action.

6. FAQsare answered on the Hibernate website.
7. Third party demos, examples, and tutorials are linked on the Hibernate website.

8. The Community Area on the Hibernate website is a good resource for design patterns and various integra-
tion solutions (Tomcat, JBoss AS, Struts, EJB, etc.).

If you have questions, use the user forum linked on the Hibernate website. We also provide a JIRA issue track-
ings system for bug reports and feature requests. If you are interested in the development of Hibernate, join the
developer mailing list. If you are interested in trandlating this documentation into your language, contact us on
the developer mailing list.

Commercia development support, production support, and training for Hibernate is available through JBoss
Inc. (see http://www.hibernate.org/SupportTraining/). Hibernate is a Professional Open Source project and a
critical component of the JBoss Enterprise Middleware System (JEMS) suite of products.

Hibernate 3.0.5 Viii

Chapter 1. Quickstart with Tomcat

1.1. Getting started with Hibernate

This tutorial explains a setup of Hibernate 3.0 with the Apache Tomcat servlet container (we used version 4.1,
the differences to 5.0 should be minimal) for a web-based application. Hibernate works well in a managed en-
vironment with all major J2EE application servers, or even in standalone Java applications. The database sys-
tem used in this tutorial is PostgreSQL 7.4, support for other database is only a matter of changing the Hibern-
ate SQL dialect configuration and connection properties.

First, we have to copy al required libraries to the Tomcat installation. We use a separate web context
(webapps/ qui ckst art) for this tutorial, so we've to consider both the global library search path (TOVCAT/ com
non/ 1 i b) and the classloader at the context level in webapps/ qui ckstart/WeB-INF/1ib (for JAR files) and
webapps/ qui ckst art/ WEB- | NF/ cl asses. We refer to both classloader levels as the global classpath and the
context classpath.

Now, copy the libraries to the two classpaths:

1. Copy the JIDBC driver for the database to the global classpath. This is required for the DBCP connection
pool software which comes bundled with Tomcat. Hibernate uses JDBC connections to execute SQL on
the database, so you either have to provide pooled JDBC connections or configure Hibernate to use one of
the directly supported pools (C3P0, Proxool). For this tutorial, copy the pg74j dbc3. j ar library (for Post-
greSQL 7.4 and JDK 1.4) to the global classloaders path. If you'd like to use a different database, smply
copy its appropriate JDBC driver.

2. Never copy anything else into the global classloader path in Tomcat, or you will get problems with various
tools, including Log4j, commons-logging and others. Always use the context classpath for each web ap-
plication, that is, copy libraries to WeB- I NF/ 1'i b and your own classes and configuration/property files to
VEEB- | NF/ cl asses. Both directories are in the context level classpath by default.

3. Hibernate is packaged as a JAR library. The hibernate3.jar file should be copied in the context
classpath together with other classes of the application. Hibernate requires some 3rd party libraries at
runtime, these come bundled with the Hibernate distribution inthel i b/ directory; see Table 1.1, “ Hibern-
ate 3rd party libraries”. Copy the required 3rd party libraries to the context classpath.

Table1.1. Hibernate 3rd party libraries

Library Description
antlr (required) Hibernate uses ANTLR to produce query parsers, this library is aso
needed at runtime.
domdj (required) Hibernate uses dom4j to parse XML configuration and XML mapping
metadata files.
CGLIB, asm (required) Hibernate uses the code generation library to enhance classes at runtime

(in combination with Javareflection).

Commons Collections, Commons Hibernate uses various utility libraries from the Apache Jakarta Com-
Logging (required) mons proj ect.

EHCache (required) Hibernate can use various cache providers for the second-level cache.

Hibernate 3.0.5 1

Quickstart with Tomcat

Library

Log4j (optional)

Required or not?

Description

EHCache is the default cache provider if not changed in the configura-
tion.

Hibernate uses the Commons Logging API, which in turn can use Log4j
as the underlying logging mechanism. If the Log4j library is available in
the context library directory, Commons Logging will use Log4j and the
| og4j . properties configuration in the context classpath. An example
properties file for Logd4j is bundled with the Hibernate distribution. So,
copy logdj.jar and the configuration file (from src/) to your context
classpath if you want to see whats going on behind the scenes.

Have a look at the file Ii b/ READMVE. t xt in the Hibernate distribution.
This is an up-to-date list of 3rd party libraries distributed with Hibern-
ate. You will find all required and optional libraries listed there (note
that "buildtime required” here means for Hibernate's build, not your ap-
plication).

We now set up the database connection pooling and sharing in both Tomcat and Hibernate. This means Tomcat
will provide pooled JDBC connections (using its builtin DBCP pooling feature), Hibernate requests theses con-

nections through JNDI. Alternatively,

you can let Hibernate manage the connection pool. Tomcat binds its con-

nection pool to JNDI; we add a resource declaration to Tomcats main configuration file, TOVCAT/

conf/server.xm

<Cont ext pat h="/qui ckstart" docBase="quickstart">
<Resour ce nane="j dbc/ qui ckstart" scope="Shareabl e" type="javax. sql . Dat aSource"/ >
<Resour cePar ans nane="j dbc/ qui ckstart">

<par anet er >

<nane>f act or y</ nanme>
<val ue>or g. apache. commons. dbcp. Basi cDat aSour ceFact or y</ val ue>

</ par anet er >

<l-- DBCP database connection settings -->

<par anet er >
<nane>ur | </ nanme>

<val ue>j dbc: post gresql : / /| ocal host/ qui ckst art </ val ue>

</ par anet er >
<par anet er >

<name>dri ver O assNane</ nanme><val ue>or g. post gresql . Dri ver </ val ue>

</ par anet er >
<par anet er >

<nane>user nane</ name>
<val ue>qui ckst art </ val ue>

</ par anet er >
<par anet er >

<nanme>passwor d</ name>
<val ue>secr et </ val ue>

</ par anet er >

<l -- DBCP connection pooling options -->

<par anet er >

<nane>maxWai t </ nane>
<val ue>3000</ val ue>

</ par anet er >
<par anet er >

<nane>nex| dl e</ nane>

<val ue>100</ val ue>
</ par anet er >
<par anet er >

<nane>maxAct i ve</ nane>

<val ue>10</ val ue>
</ par anet er >

Hibernate 3.0.5

Quickstart with Tomcat

</ Resour cePar ans>
</ Cont ext >

The context we configure in this example is named qui ckst art, its base is the TOMCAT/ webapp/ qui ckstart dir-
ectory. To access any servlets, call the path http: / /1 ocal host : 8080/ qui ckstart in your browser (of course,
adding the name of the servlet as mapped in your web. xm). You may also go ahead and create a simple servlet
now that has an empty process() method.

Tomcat provides connections now through JNDI at j ava: conp/ env/ j dbc/ qui ckst art . If you have trouble get-
ting the connection pool running, refer to the Tomcat documentation. If you get JDBC driver exception mes-
sages, try to setup JDBC connection pool without Hibernate first. Tomcat & JDBC tutorials are available on the
Web.

Your next step is to configure Hibernate. Hibernate has to know how it should obtain JDBC connections. We
use Hibernate's XML -based configuration. The other approach, using a properties file, is aimost equivalent but
misses a few features the XML syntax allows. The XML configuration file is placed in the context classpath
(WEB- I NF/ cl asses), ashi bernat e. cf g. xni :

<?xm version='"1.0" encodi ng='utf-8" ?>
<! DOCTYPE hi ber nat e- confi gurati on PUBLIC
"-//Hi bernate/ H bernate Configuration DTD//EN'
"http://hibernate. sourceforge. net/hi bernate-configuration-3.0.dtd">

<hi ber nat e- confi gurati on>
<sessi on-factory>

<property nane="connecti on. dat asour ce">j ava: conp/ env/j dbc/ qui ckst art </ property>
<property nane="show_sql ">f al se</ property>
<property nanme="di al ect">or g. hi ber nat e. di al ect. Post greSQ.Di al ect </ property>

<l-- Mapping files -->
<mappi ng resource="Cat.hbm xm "/ >

</ sessi on-factory>

</ hi ber nat e-confi gurati on>

We turn logging of SQL commands off and tell Hibernate what database SQL dialect is used and where to get
the JDBC connections (by declaring the INDI address of the Tomcat bound pool). The dialect is a required set-
ting, databases differ in their interpretation of the SQL "standard”. Hibernate will take care of the differences
and comes bundled with dialects for all major commercial and open source databases.

A Sessi onFact ory is Hibernate's concept of a single datastore, multiple databases can be used by creating mul-
tiple XML configuration files and creating multiple Confi gurati on and Sessi onFact ory objects in your ap-
plication.

The last element of the hi bernate. cf g. xni declares cat . hbm xrmi as the name of a Hibernate XML mapping
file for the persistent class cat . This file contains the metadata for the mapping of the POJO class cat to a dat-
base table (or tables). We'll come back to that file soon. Let's write the POJO class first and then declare the
mapping metadata for it.

1.2. First persistent class

Hibernate works best with the Plain Old Java Objects (POJOs, sometimes called Plain Ordinary Java Objects)
programming model for persistent classes. A POJO is much like a JavaBean, with properties of the class ac-
cessible via getter and setter methods, shielding the internal representation from the publicly visible interface

Hibernate 3.0.5 3

Quickstart with Tomcat

(Hibernate can also access fields directly, if needed):

package org. hi bernnate. exanpl es. qui ckstart;
public class Cat {

private String id

private String namne;

private char sex;

private float weight;

public Cat() {

}

public String getld() {
return id,

}

private void setld(String id) {
this.id =id;
}

public String getName() {
return nane;
}

public void setName(String nanme) {
thi s. nane = nane;
}

public char getSex() {
return sex;
}

public void set Sex(char sex) ({
this.sex = sex;

}

public float getWight() {
return wei ght;
}

public void set\Wight(float weight) {
this.weight = weight;
}

Hibernate is not restricted in its usage of property types, al Java JDK types and primitives (like St ri ng, char
and Dat e) can be mapped, including classes from the Java collections framework. Y ou can map them as values,
collections of values, or associations to other entities. Thei d is a special property that represents the database
identifer (primary key) of that class, it is highly recommended for entities like a cat . Hibernate can use identifi-
ersonly internally, but we would lose some of the flexibility in our application architecture.

No special interface has to be implemented for persistent classes nor do you have to subclass from a specia
root persistent class. Hibernate also doesn't require any build time processing, such as byte-code manipulation,
it relies solely on Java reflection and runtime class enhancement (through CGLIB). So, without any depend-
ency of the POJO class on Hibernate, we can map it to a database table.

1.3. Mapping the cat

The cat . hbm xmi mapping file contains the metadata required for the object/relational mapping. The metadata
includes declaration of persistent classes and the mapping of properties (to columns and foreign key relation-

Hibernate 3.0.5 4

Quickstart with Tomcat

ships to other entities) to database tables.

<?xm version="1.0"?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-//H bernat e/ H bernat e Mappi ng DID 3. 0/ / EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-3. 0. dtd">

<hi ber nat e- mappi ng>

<cl ass nane="org. hi ber nat e. exanpl es. qui ckstart. Cat" tabl e="CAT">

<I-- A 32 hex character is our surrogate key. It's automatically
generated by Hibernate with the UU D pattern. -->
<id name="id" type="string" unsaved-val ue="null" >
<col um nane="CAT_ID' sql -type="char(32)" not-null="true"/>
<generator class="uuid. hex"/>
</id>
<l-- A cat has to have a name, but it shouldn' be too long. -->
<property name="nane">
<col um nane="NAME" | ength="16" not-null="true"/>

</ property>

<property name="sex"/>

<property name="wei ght"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Every persistent class should have an identifer attribute (actually, only classes representing entities, not depend-
ent value-typed classes, which are mapped as components of an entity). This property is used to distinguish per-
sistent objects: Two cats are equal if cat A. get 1 d() . equal s(cat B. get 1d()) istrue, this concept is called data-
base identity. Hibernate comes bundled with various identifer generators for different scenarios (including nat-
ive generators for database sequences, hi/lo identifier tables, and application assigned identifiers). We use the
UUID generator (only recommended for testing, as integer surrogate keys generated by the database should be
prefered) and also specify the column CAT_| D of the table caT for the Hibernate generated identifier value (as a
primary key of the table).

All other properties of cat are mapped to the same table. In the case of the nane property, we mapped it with an
explicit database column declaration. This is especially useful when the database schema is automatically gen-
erated (as SQL DDL statements) from the mapping declaration with Hibernate's SchemaExport tool. All other
properties are mapped using Hibernate's default settings, which is what you need most of the time. The table
CAT in the database looks like this:

Col um | Type | Modifiers
________ g s
cat_id | character(32) | not nul
nanme | character varying(16) | not nul
sex | character(1)

wei ght | real
I ndexes: cat_pkey primary key btree (cat_id)

Y ou should now create this table in your database manually, and later read Chapter 21, Toolset Guide if you

want to automate this step with the hbrnddl tool. This tool can create a full SQL DDL, including table defini-
tion, custom column type constraints, unique constraints and indexes.

1.4. Playing with cats

We're now ready to start Hibernate's Sessi on. It is the persistence manager, we use it to store and retrieve Cat s

Hibernate 3.0.5 5

Quickstart with Tomcat

to and from the database. But first, we've to get a Session (Hibernate's unit-of-work) from the
Sessi onFactory:

Sessi onFactory sessionFactory =
new Configuration().configure().buil dSessionFactory();

The call to confi gure() loadsthe hi ber nat e. cf g. xm configuration file and initializes the Confi gurati on in-
stance. You can set other properties (and even change the mapping metadata) by accessing the Confi gurati on
before you build the Sessi onFact ory (it is immutable). Where do we create the Sessi onFact ory and how can
we accessit in our application?

A SessionFactory is usually only build once, e.g. a startup with a load-on-startup servlet. This a'so means
you should not keep it in an instance variable in your servlets, but in some other location. Furthermore, we need
some kind of Singleton, so we can access the Sessi onFact ory easily in application code. The approach shown
next solves both problems: startup configuration and easy accessto a Sessi onFactory.

We implement aHi ber nateUti | helper class:

i mport org. hi bernate. *;
i mport org. hi bernate.cfg.*;

public class Hi bernateUtil ({
private static Log | og = LogFactory. get Log(H bernateUtil.cl ass);
private static final SessionFactory sessionFactory;

static {

try {
/'l Create the SessionFactory

sessi onFactory = new Configuration().configure().buil dSessionFactory();
} catch (Throwabl e ex) {

/1 Make sure you | og the exception, as it mght be swal |l owed

log.error("Initial SessionFactory creation failed.", ex);

throw new ExceptionlnlnitializerError(ex);

}

public static final ThreadLocal session = new ThreadLocal ();

public static Session currentSession() {
Session s = (Session) session.get();
/1 Open a new Session, if this Thread has none yet
if (s == null) {
s = sessionFactory. openSessi on();
session. set(s);

}

return s;

}

public static void closeSession() {
Session s = (Session) session.get();
if (s !'=null)
s.close();
session.set(null);

This class does not only take care of the Sessi onFact ory with its static initializer, but also has a Thr eadLocal
variable which holds the sessi on for the current thread. Make sure you understand the Java concept of a
thread-local variable before you try to use this helper. A more complex and powerful Hi ber nateUti | class can
be found in caveat Enpt or , http://caveatemptor.hibernate.org/

A Sessi onFact ory isthreadsafe, many threads can access it concurrently and request Sessi onS. A Sessi on isa

Hibernate 3.0.5 6

Quickstart with Tomcat

non-threadsafe object that represents a single unit-of-work with the database. Sessi ons are opened from a Ses-
si onFactory and are closed when all work is completed. An example in your servlet's process() method
might look like this (sans exception handling):

Session session = Hi bernateUtil.currentSession();
Transaction tx = session. begi nTransaction();

Cat princess = new Cat();
princess. set Name("Pri ncess");
princess. setSex('F');
princess. set Wi ght (7. 4f);

sessi on. save(princess);

tx.commt();
H bernateltil.cl oseSession();

In a Sessi on, every database operation occurs inside a transaction that isolates the database operations (even
read-only operations). We use Hibernates Tr ansact i on API to abstract from the underlying transaction strategy
(in our case, JDBC transactions). This allows our code to be deployed with container-managed transactions
(using JTA) without any changes.

Note that you may call Hi bernateUti | . current Sessi on(); asmany timesasyou like, you will always get the
current Sessi on of thisthread. Y ou have to make sure the Sessi on is closed after your unit-of-work completes,
either in your servlet code or in a servlet filter before the HTTP response is send. The nice side effect of the
second option is easy lazy initialization: the Sessi on is still open when the view is rendered, so Hibernate can
load unitialized objects while you navigate the current object graph.

Hibernate has various methods that can be used to retrieve objects from the database. The most flexible way is
using the Hibernate Query Language (HQL), which is an easy to learn and powerful object-oriented extension

to SQL:
Transaction tx = session. begi nTransaction();

Query query = session.createQuery("select ¢ fromCat as c¢c where c.sex = :sex");
query. set Character("sex", 'F');
for (Iterator it = query.iterate(); it.hasNext();) {

Cat cat = (Cat) it.next();

out.println("Female Cat: " + cat.getNane());

}

tx.commt();

Hibernate also offers an object-oriented query by criteria API that can be used to formulate type-safe queries.
Hibernate of course uses Prepar edSt at enent S and parameter binding for all SQL communication with the
database. You may also use Hibernate's direct SQL query feature or get a plain JDBC connection from a Ses-
si on inrare cases.

1.5. Finally

We only scratched the surface of Hibernate in this small tutorial. Please note that we don't include any servlet
specific code in our examples. Y ou have to create a servlet yourself and insert the Hibernate code as you see fit.

Keep in mind that Hibernate, as a data access layer, istightly integrated into your application. Usually, all other
layers depent on the persistence mechanism. Make sure you understand the implications of this design.

For a more complex application example, see http://caveatemptor.hibernate.org/ and have alook at other tutori-
aslinked on http://www.hibernate.org/Documentation

Hibernate 3.0.5 7

Chapter 2. Introduction to Hibernate

2.1. Preface

This chapter is an introductory tutorial for new users of Hibernate. We start with a simple command line applic-
ation using an in-memory database and develop it in easy to understand steps.

This tutorial is intended for new users of Hibernate but requires Java and SQL knowledge. It is based on a tu-
torial by Michael Gloegl, the third-party libraries we name are for JDK 1.4 and 5.0. Y ou might need others for
JOK 1.3.

2.2. Part 1 - The first Hibernate Application

First, we'll create a simple console-based Hibernate application. We use an in-memory database (HSQL DB),
so we do not have to install any database server.

Let's assume we need a small database application that can store events we want to attend, and information
about the hosts of these events.

The first thing we do, is set up our development directory and put al the Java libraries we need into it. Down-
load the Hibernate distribution from the Hibernate website. Extract the package and place all required libraries
foundin/lib intointothe/ i b directory of your new development working directory. It should look like this:

+lib
antlr.jar
cglib-full.jar
asm j ar
asmattrs.jars
commons-col | ections. jar
conmons- | oggi ng. j ar
ehcache. j ar
hi bernat e3.j ar

jta.jar
dondj . j ar
| og4j .jar

This is the minimum set of required libraries (note that we also copied hibernate3.jar, the main archive) for Hi-
bernate. See the README. t xt fileintheli b/ directory of the Hibernate distribution for more information about
required and optional third-party libraries. (Actually, Log4j is not required but preferred by many developers.)

Next we create a class that represents the event we want to store in database.

2.2.1. The first class

Our first persistent class is a simple JavaBean class with some properties:

i mport java.util.Date;

public class Event {
private Long id;

private String title;
private Date date;

Hibernate 3.0.5 8

Introduction to Hibernate

Event () {}

public Long getld() {
return id;
}

private void setld(Long id) {
this.id =id;
}

public Date getDate() ({
return date;
}

public void setDate(Date date) ({
this.date = date;
}

public String getTitle() {
return title;
}

public void setTitle(String title) {
this.title = title;
}

Y ou can see that this class uses standard JavaBean naming conventions for property getter and setter methods,
as well as private visibility for the fields. Thisis a recommended design - but not required. Hibernate can aso
access fields directly, the benefit of accessor methods is robustness for refactoring.

Thei d property holds a unique identifier value for a particular event. All persistent entity classes (there are less
important dependent classes as well) will need such an identifier property if we want to use the full feature set
of Hibernate. In fact, most applications (esp. web applications) need to distinguish objects by identifier, so you
should consider this a feature rather than a limitation. However, we usually don't manipulate the identity of an
object, hence the setter method should be private. Only Hibernate will assign identifiers when an object is
saved. You can see that Hibernate can access public, private, and protected accessor methods, as well as
(public, private, protected) fields directly. The choice is up to you and you can match it to fit your application
design.

The no-argument constructor is a requirement for all persistent classes; Hibernate has to create objects for you,
using Java Reflection. The constructor can be private, however, package visibility is required for runtime proxy
generation and efficient data retrieval without bytecode instrumentation.

Place this Java source file in a directory called sr ¢ in the development folder. The directory should now look
like this:

+lib

<Hi bernate and third-party libraries>
+src

Event . j ava

In the next step, we tell Hibernate about this persistent class.

2.2.2. The mapping file

Hibernate needs to know how to load and store objects of the persistent class. Thisis where the Hibernate map-
ping file comes into play. The mapping file tells Hibernate what table in the database it has to access, and what
columnsin that table it should use.

Hibernate 3.0.5 9

Introduction to Hibernate

The basic structure of amapping file looks like this:

<?xm version="1.0"?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DTD 3. 0//EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-3. 0. dtd">

<hi ber nat e- mappi ng>

[...]

</ hi ber nat e- mappi ng>

Note that the Hibernate DTD is very sophisticated. You can use it for auto-completion of XML mapping ele-
ments and attributes in your editor or IDE. You aso should open up the DTD file in your text editor - it's the
easiest way to get an overview of all elements and attributes and to see the defaults, as well as some comments.
Note that Hibernate will not load the DTD file from the web, but first look it up from the classpath of the ap-
plication. The DTD fileisincluded in hi ber nat 3. j ar aswell asinthesrc/ directory of the Hibernate distri-
bution.

We will omit the DTD declaration in future examples to shorten the code. It is of course not optional.

Between the two hi ber nat e- mappi ng tags, include a cl ass element. All persistent entity classes (again, there
might be dependent classes later on, which are not first-class entities) need such a mapping, to a table in the
SQL database:

<hi ber nat e- mappi ng>
<cl ass nanme="Event" tabl e="EVENTS">
</ cl ass>

</ hi ber nat e- mappi ng>

So far we told Hibernate how to persist and load object of class Event to the table EVENTS, each instance repres-
ented by arow in that table. Now we continue with a mapping of the unique identifier property to the tables
primary key. In addition, as we don't want to care about handling this identifier, we configure Hibernate's iden-
tifier generation strategy for a surrogate primary key column:

<hi ber nat e- mappi ng>

<cl ass nanme="Event" tabl e="EVENTS">
<id name="id" col um="EVENT_I| D'>
<generator class="increnment"/>
</id>
</ cl ass>

</ hi ber nat e- mappi ng>

Thei d element is the declaration of the identifer property, nane="i d" declares the name of the Java property -
Hibernate will use the getter and setter methods to access the property. The column attribute tells Hibernate
which column of the EVENTS table we use for this primary key. The nested gener at or element specifies the
identifier generation strategy, in this case we used i ncr emrent , which is avery simple in-memory number incre-
ment method useful mostly for testing (and tutorials). Hibernate also supports database generated, globally
unique, as well as application assigned identifiers (or any strategy you have written an extension for).

Finally we include declarations for the persistent properties of the class in the mapping file. By default, no
properties of the class are considered persistent:

<hi ber nat e- mappi ng>

Hibernate 3.0.5 10

Introduction to Hibernate

<cl ass nanme="Event" tabl e="EVENTS">
<id name="id" col um="EVENT_| D'>
<generator class="increment"/>
</id>
<property nane="date" type="tinmestanp" col um="EVENT_DATE"/ >
<property nane="title"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Just as with the i d element, the nane attribute of the property element tells Hibernate which getter and setter
methods to use.

Why does the dat e property mapping include the col um attribute, but the ti t 1 e doesn't? Without the col urm
attribute Hibernate by default uses the property name as the column name. Thisworksfinefortitl e. However,
dat e isareserved keyword in most database, so we better map it to a different name.

The next interesting thing isthat theti t 1 e mapping also lacks at ype attribute. The types we declare and usein
the mapping files are not, as you might expect, Java data types. They are also not SQL database types. These
types are so called Hibernate mapping types, converters which can translate from Java to SQL data types and
vice versa. Again, Hibernate will try to determine the correct conversion and mapping type itself if thetype at-
tribute is not present in the mapping. In some cases this automatic detection (using Reflection on the Java class)
might not have the default you expect or need. This is the case with the dat e property. Hibernate can't know if
the property will map to a SQL dat e, ti mest anp or ti me column. We declare that we want to preserve full date
and time information by mapping the property with ati nest anp.

This mapping file should be saved as Event . hbm xni , right in the directory next to the Event Java class source
file. The naming of mapping files can be arbitrary, however the hom xm suffix became convention in the Hi-
bernate devel oper community. The directory structure should now look like this:

+lib

<Hi bernate and third-party |ibraries>
+src

Event.j ava

Event . hbm xni

We continue with the main configuration of Hibernate.

2.2.3. Hibernate configuration

We now have a persistent class and its mapping file in place. It is time to configure Hibernate. Before we do
this, we will need a database. HSQL DB, a java-based in-memory SQL DBMS, can be downloaded from the
HSQL DB website. Actually, you only need the hsql db. j ar from this download. Place thisfileintheli b/ dir-
ectory of the development folder.

Create a directory called dat a in the root of the development directory - this is where HSQL DB will store its
datafiles.

Hibernate is the layer in your application which connects to this database, so it needs connection information.
The connections are made through a JDBC connection pool, which we aso have to configure. The Hibernate
distribution contains several open source JDBC connection pooling tools, but will use the Hibernate built-in
connection pool for this tutorial. Note that you have to copy the required library into your classpath and use dif-
ferent connection pooling settingsif you want to use a production-quality third party JDBC pooling software.

For Hibernate's configuration, we can use a simple hi ber nat e. properti es file, a dlightly more sophisticated

Hibernate 3.0.5 11

Introduction to Hibernate

hi ber nat e. cf g. xm file, or even complete programmatic setup. Most users prefer the XML configuration file:

<?xm version='"1.0" encodi ng="utf-8" ?>

<I DOCTYPE hi ber nat e-confi gurati on PUBLIC
"-//H bernate/ H bernate Configuration DID 3. 0//EN'
"http://hibernate. sourceforge. net/hi bernate-configuration-3.0.dtd">

<hi ber nat e- confi gurati on>
<sessi on-factory>

<I-- Database connection settings -->

<property nanme="connection.driver_cl ass">org. hsql db.j dbcDri ver</ property>
<property nane="connection.url">j dbc: hsql db: data/tutorial </ property>
<property nanme="connecti on. user nane" >sa</ property>

<property nane="connecti on. password"></property>

<l-- JDBC connection pool (use the built-in) -->
<property nane="connection. pool _size">1</property>

<l-- SQ dialect -->
<property nanme="di al ect">org. hi bernat e. di al ect. HSQLD al ect </ pr operty>

<l-- Echo all executed SQ. to stdout -->
<property nane="show_sql ">t rue</property>

<lI-- Drop and re-create the database schema on startup -->
<property name="hbnRddl . aut 0" >cr eat e</ property>

<mappi ng resour ce="Event. hbm xm "/ >
</ sessi on-factory>

</ hi ber nat e- confi gurati on>

Note that this XML configuration uses a different DTD. We configure Hibernate's Sessi onFact ory - a global
factory responsible for a particular database. If you have severa databases, use several <session-factory>
configurations, usualy in several configuration files (for easier startup).

The first four property elements contain the necessary configuration for the JDBC connection. The dialect
property element specifies the particular SQL variant Hibernate generates. The hbneddl . aut o option turns on
automatic generation of database schemas - directly into the database. This can of course also be turned off (by
removing the config option) or redirected to afile with the help of the schemaExport Ant task. Finally, we add
the mapping file(s) for persistent classes.

Copy this file into the source directory, so it will end up in the root of the classpath. Hibernate automatically
looks for afile called hi ber nat e. cf g. xni in the root of the classpath, on startup.

2.2.4. Building with Ant

WEell now build the tutorial with Ant. Y ou will need to have Ant installed - get it from the Ant download page
[http://ant.apache.org/bindownload.cgi]. How to install Ant will not be covered here. Please refer to the Ant
manual [http://ant.apache.org/manual/index.html]. After you have installed Ant, we can start to create the build-
file. It will be caled bui I d. xm and placed directly in the development directory.

Fixing Ant

Note that the Ant distribution is by default broken (as described in the Ant FAQ) and has to be fixed by
you, for example, if you'd like to use JUnit from inside your build file. To make the JUnit task work
(we won't need it in this tutorial), either copy junitjar to ANT_HOME/Iib oOr remove the
ANT_HOVE/ | i b/ ant-j unit.jar plugin stub.

Hibernate 3.0.5 12

http://ant.apache.org/bindownload.cgi
http://ant.apache.org/manual/index.html
http://ant.apache.org/manual/index.html

Introduction to Hibernate

A basic build file looks like this:

<proj ect nane="hi bernate-tutorial" default="conpile">

<property name="sourcedir" val ue="${basedir}/src"/>
<property nane="targetdir" val ue="${basedir}/bin"/>
<property name="librarydir" val ue="${basedir}/lib"/>

<path id="libraries">
<fileset dir="${librarydir}">
<i ncl ude nane="*.jar"/>
</fileset>
</ pat h>

<target nane="cl ean">
<delete dir="${targetdir}"/>
<nkdir dir="${targetdir}"/>
</target>

<target nane="conpil e" depends="cl ean, copy-resources">
<javac srcdir="%${sourcedir}"
destdir="${targetdir}"
classpathref="1ibraries"/>
</target>

<target nane="copy-resources">
<copy todir="${targetdir}">
<fileset dir="${sourcedir}">
<excl ude nane="**/*_ java"/>
</fileset>
</ copy>
</target>

</ proj ect >

This will tell Ant to add all filesin the lib directory ending with . j ar to the classpath used for compilation. It
will also copy al non-Java source files to the target directory, e.g. configuration and Hibernate mapping files. If
you now run Ant, you should get this output:

C:\ hi bernat eTut ori al \ >ant
Bui l dfile: build.xn

copy- resour ces
[copy] Copying 2 files to C: \hibernateTutorial\bin

conpi | e:
[javac] Conpiling 1 source file to C\hibernateTutorial\bin

BUI LD SUCCESSFUL
Total tinme: 1 second

2.2.5. Startup and helpers

It's time to load and store some Event objects, but first we have to complete the setup with some infrastructure
code. We have to startup Hibernate. This startup includes building a global sessi onFact ory object and to store
it somewhere for easy access in application code. A Sessi onFactory Can Open up new Sessi on'S. A Sessi on
represents a single-threaded unit of work, the Sessi onFact ory is athread-safe global object, instantiated once.

WEe'll create aHi bernateUti | helper class which takes care of startup and makes Sessi on handling convenient.
The so caled ThreadLocal Session pattern is useful here, we keep the current unit of work associated with the
current thread. Let's have alook at the implementation:

i mport org. hi bernate. *;

Hibernate 3.0.5 13

Introduction to Hibernate

i mport org. hi bernate.cfg.*;
public class Hi bernateUtil {
public static final SessionFactory sessionFactory;

static {

try {
[/l Create the SessionFactory from hi bernate.cfg.xm

sessi onFactory = new Configuration().configure().buil dSessionFactory();
} catch (Throwabl e ex) {

/1l Make sure you | og the exception, as it m ght be swal |l owed

Systemerr.println("lInitial SessionFactory creation failed." + ex);

throw new ExceptionlnlnitializerError(ex);

}

public static final ThreadLocal session = new ThreadLocal ();

public static Session currentSession() throws Hi bernateException {
Session s = (Session) session.get();
/1l Open a new Session, if this thread has none yet
if (s ==null) {
s = sessionFactory. openSession();
// Store it in the ThreadLocal variable
session. set(s);

}

return s;

}

public static void closeSession() throws Hi bernateException {
Session s = (Session) session.get();
if (s !=null)
s.cl ose();
session.set(null);

This class does not only produce the global Sessi onFactory in its static initializer (caled once by the VM
when the class is loaded), but also has a Thr eadLocal variable to hold the Sessi on for the current thread. No
matter when you call Hi bernat eUti | . current Sessi on(), it will always return the same Hibernate unit of work
in the same thread. A call to Hi bernat eUti | . cl oseSessi on() ends the unit of work currently associated with
the thread.

Make sure you understand the Java concept of a thread-local variables before you use this helper. A more
powerful H bernateUti| helper can be found in caveat Enpt or 0on http://caveatemptor.hibernate.org/ - as well
as in the book "Hibernate in Action”. Note that this classis not necessary if you deploy Hibernate in a J2EE ap-
plication server: a Sessi on will be automatically bound to the current JTA transaction and you can look up the
Sessi onFact ory through JNDI. If you use JBoss AS, Hibernate can be deployed as a managed system service
and will automatically bind the Sessi onFact ory to a INDI name.

Place Hi bernat eUti | . j ava in the development source directory, next to Event . j ava:

+lib

<Hi bernate and third-party libraries>
+src

Event.j ava

Event . hbm xm

H bernateltil.java
hi ber nat e. cf g. xn
+dat a
bui | d. xm

Hibernate 3.0.5 14

Introduction to Hibernate

This should again compile without problems. We finally need to configure a logging system - Hibernate uses
commons logging and leaves you the choice between Log4j and JDK 1.4 logging. Most developers prefer
Log4j: copy | og4j . properties from the Hibernate distribution (it's in the et ¢/ directory) to your src direct-
ory, next to hi ber nat e. cf g. xnl . Have alook at the example configuration and change the settings if you like
to have more verbose output. By default, only Hibernate startup message are shown on stdout.

Thetutorial infrastructure is complete - and we are ready to do some real work with Hibernate.

2.2.6. Loading and storing objects

Finally, we can use Hibernate to load and store objects. We write an Event Manager class with amai n() meth-
od:

i mport org. hi bernate. Transacti on;
i mport org. hi bernate. Sessi on;

import java.util.Date;
public class Event Manager {

public static void main(String[] args) {
Event Manager ngr = new Event Manager () ;

if (args[0].equal s("store")) {
ngr. creat eAndSt or eEvent ("My Event", new Date());
}

H bernateUti| . sessionFactory. cl ose();

We read some arguments from the command line, and if the first argument is "store", we create and store a new
Event:

private void createAndStoreEvent(String title, Date theDate) {
Sessi on session = HibernateUtil.currentSession();
Transaction tx = session. begi nTransaction();

Event theEvent = new Event();
theEvent.setTitle(title);
t heEvent . set Dat e(t heDat e) ;

sessi on. save(theEvent);

tx.commt();
Hi bernateUtil . cl oseSession();

We create a new Event object, and hand it over to Hibernate. Hibernate now takes care of the SQL and ex-
ecutes | NSERTS on the database. Let's have alook at the Sessi on and Tr ansact i on-handling code before we run
this.

A sessi on isasingle unit of work. Y ou might be surprised that we have an additional API, Transacti on. This
implies that a unit of work can be "longer" than a single database transaction - imagine a unit of work that spans
several Http request/response cycles (e.g. a wizard dialog) in a web application. Separating database transac-
tions from "unit of work from the application user's point of view" is one of Hibernates basic design concepts.
We call along unit of work Application Transaction, usually encapsulating several short database transactions.
For now we'll keep things simple and assume a one-to-one granularity between a Sessi on and Tr ansact i on.

Hibernate 3.0.5 15

Introduction to Hibernate

What does Transacti on. begi n() and commit () do? Whereistherol I back() in case something goes wrong?
The Hibernate Transacti on APl is actually optional, but we use it for convenience and portability. If you'd
handle the database transaction yourself (e.g. by calling sessi on. connecti on. commi t ()), you'd bind the code
to a particular deployment environment, in this direct unmanaged JDBC. By setting the factory for Transac-
tion in your Hibernate configuration you can deploy your persistence layer anywhere. Have a look at
Chapter 12, Transactions And Concurrency for more information about transaction handling and demarcation.
We also skipped any error handling and rollback in this example.

To run thisfirst routine we have to add a callable target to the Ant build file:

<target nanme="run" depends="conpile">
<java fork="true" classnane="Event Manager" cl asspathref="Ilibraries">
<cl asspath path="${targetdir}"/>
<arg val ue="${action}"/>
</java>
</target>

The vaue of theact i on argument is set on the command line when calling the target:

C:\ hi bernateTutorial\>ant run -Dacti on=store

Y ou should see, after compilation, Hibernate starting up and, depending on your configuration, lots of log out-
put. At the end you will find the following line:

[java] Hi bernate: insert into EVENTS (EVENT_DATE, title, EVENT_ID) values (?, ?, ?)

Thisisthe I NSERT executed by Hibernate, the question marks represent JDBC bind parameters. To see the val-
ues bound as arguments, or to reduce the verbosity of the log, check your 1 og4j . properti es.

Now we'd liketo list stored events as well, so we add an option to the main method:

if (args[0].equal s("store")) {
ngr . creat eAndSt or eEvent ("My Event", new Date());
}

else if (args[0].equals("list")) {
Li st events = ngr.listEvents();

for (int i =0; i < events.size(); i++) {
Event theEvent = (Event) events.get(i);
Systemout.println("Event: " + theEvent.getTitle() +

" Time: " + theEvent.getDate());

Weasoaddanew i stEvents() method:

private List listEvents() {
Session session = Hi bernateUtil.currentSession();
Transaction tx = session. begi nTransaction();

List result = session.createQuery("fromEvent").list();

tx.commit();
session. cl ose();

return result;

What we do hereis use an HQL (Hibernate Query Language) query to load all existing Event objects from the
database. Hibernate will generate the appropriate SQL, send it to the database and populate Event objects with
the data. Y ou can create more complex queries with HQL, of course.

Hibernate 3.0.5 16

Introduction to Hibernate

If you now call Ant with - Dacti on=li st, you should see the events you have stored so far. You might be sur-
prised that this doesn't work, at least if you followed this tutorial step by step - the result will always be empty.
The reason for this is the hbr2ddl . aut o switch in the Hibernate configuration: Hibernate will re-create the
database on every run. Disable it by removing the option, and you will see results in your list after you called
the st or e action afew times. Automatic schema generation and export is mostly useful in unit testing.

2.3. Part 2 - Mapping associations

We mapped a persistent entity class to a table. Let's build on this and add some class associations. First well
add people to our application, and store alist of eventsthey participate in.

2.3.1. Mapping the Person class

Thefirst cut of the Per son classis simple:

public class Person {

private Long id;
private int age;
private String firstnane;
private String |astnaneg;

Person() {}

/1 Accessor nmethods for all properties, private setter for 'id

Create anew mapping file called Per son. hbom xni :

<hi ber nat e- mappi ng>

<cl ass name="Person" tabl e=" PERSON">

<id name="id" col um="PERSON | D'>
<generator class="increnment"/>

</id>
<property name="age"/>
<property nane="firstnane"/>
<property name="| ast name"/>

</ cl ass>

</ hi ber nat e- mappi ng>
Finally, add the new mapping to Hibernate's configuration:

<mappi ng resour ce="Event. hbm xm "/ >
<mappi ng resource="Person. hbm xm "/ >

WEe'll now create an association between these two entities. Obviously, persons can participate in events, and
events have participants. The design questions we have to deal with are: directionality, multiplicity, and collec-
tion behavior.

2.3.2. A unidirectional Set-based association

WEe'll add a collection of eventsto the Per son class. That way we can easily navigate to the events for a particu-
lar person, without executing an explicit query - by calling aPer son. get Event s() . We use a Java collection, a

Hibernate 3.0.5 17

Introduction to Hibernate

Set , because the collection will not contain duplicate elements and the ordering is not relevant for us.

So far we designed a unidirectional, many-valued associations, implemented with a Set . Let's write the code for
thisin the Java classes and then map it:

public class Person {
private Set events = new HashSet ();

public Set getEvents() {
return events;
}

public void set Events(Set events) {
this.events = events;
}

Before we map this association, think about the other side. Clearly, we could just keep this unidirectional. Or,
we could create another collection on the Event, if we want to be able to navigate it bi-directional, i.e. an-
Event. get Partici pants(). Thisis a design choice left to you, but what is clear from this discussion is the
multiplicity of the association: "many" valued on both sides, we call this a many-to-many association. Hence,
we use Hibernate's many-to-many mapping:

<cl ass nane="Person" tabl e="PERSON'>
<id name="id" col um="PERSON | D'>
<generator class="increment"/>
</id>
<property nane="age"/>
<property nane="firstnane"/>
<property nane="| ast nane"/>

<set nanme="events" tabl e=" PERSON_EVENT" >

<key col um="PERSON | D'/ >

<many-t o- many col um="EVENT_I|I D' cl ass="Event"/>
</set>

</ cl ass>

Hibernate supports all kinds of collection mappings, a <set > being most common. For a many-to-many associ-
ation (or n:m entity relationship), an association table is needed. Each row in this table represents a link
between a person and an event. The table name is configured with the t abl e attribute of the set element. The
identifier column name in the association, for the person's side, is defined with the <key> element, the column
name for the event's side with the col um attribute of the <many-t o- many>. You aso have to tell Hibernate the
class of the objectsin your collection (correct: the class on the other side of the collection of references).

The database schema for this mapping is therefore:

I I I I
| EVENTS | | PERSON EVENT | | |
| L T
*EVENT_ID	<-->	*EVENT_ID			
EVENT_DATE		*PERSON	D	<-->	*PERSONID
TITLE				AGE	
		FIRSTNAME			
LASTNAME					
I I

Hibernate 3.0.5 18

Introduction to Hibernate

2.3.3. Working the association

Let's bring some people and events together in a new method in Event Manager :

private voi d addPer sonToEvent (Long personld, Long eventld) {
Sessi on session = HibernateUtil.currentSession();
Transaction tx = session. begi nTransaction();

Person aPerson = (Person) session. | oad(Person.class, personld);
Event anEvent = (Event) session.|oad(Event.class, eventld);

aPer son. get Event s() . add(anEvent) ;

tx.commt();
H bernateltil.cl oseSession();

After loading a Person and an Event, sSimply modify the collection using the normal collection methods. As
you can see, there is no explicit call to updat e() or save(), Hibernate automatically detects the collection has
been modified and needs to be saved. Thisis called automatic dirty checking, and you can also try it by modify-
ing the name or the date property of any of your objects. Aslong asthey are in persistent state, that is, bound to
a particular Hibernate Sessi on (i.e. they have been just loaded or saved in a unit of work), Hibernate monitors
any changes and executes SQL in awrite-behind fashion. The process of synchronizing the memory state with
the database, usually only at the end of a unit of work, is called flushing.

You might of course load person and event in different units of work. Or you modify an object outside of a
Sessi on, When it is not in persistent state (if it was persistent before, we call this state detached). In (not very
realistic) code, this might look as follows:

private voi d addPer sonToEvent (Long personld, Long eventld) {

Sessi on session = HibernateUtil.current Session();
Transaction tx = session. begi nTransaction();

Person aPerson = (Person) session. | oad(Person.class, personld);
Event anEvent = (Event) session.|load(Event.class, eventld);

tx.commt();
Hi bernateUtil . cl oseSession();

aPer son. get Event s() . add(anEvent); // aPerson is detached

Session session2 = Hi bernateUtil.currentSession();
Transaction tx2 = session. begi nTransaction();

sessi on2. updat e(aPerson); // Reattachnent of aPerson

tx2. conmit();
Hi bernateUtil.cl oseSession();

The call to updat e makes a detached object persistent again, you could say it binds it to a new unit of work, so
any modifications you made to it while detached can be saved to the database.

WEéll, this is not much use in our current situation, but it's an important concept you can design into your own
application. For now, complete this exercise by adding a new action to the Event Manager 's main method and
call it from the command line. If you need the identifiers of a person and an event - the save() method returns
it.

This was an example of an association between two equally important classes, two entities. As mentioned earli-
er, there are other classes and typesin a typical model, usually "less important”. Some you have aready seen,

Hibernate 3.0.5 19

Introduction to Hibernate

likeanint orastring. We call these classes value types, and their instances depend on a particular entity. In-
stances of these types don't have their own identity, nor are they shared between entities (two persons don't ref-
erence the samefi r st nane object, even if they have the same first name). Of course, value types can not only
be found in the JDK (in fact, in a Hibernate application all JDK classes are considered value types), but you can
also write dependent classes yourself, Addr ess Of Monet ar yAnount , for example.

You can also design a collection of value types. This is conceptualy very different from a collection of refer-
ences to other entities, but looks amost the samein Java.

2.3.4. Collection of values

We add a collection of value typed objects to the Per son entity. We want to store email addresses, so the type
weuseisstring, and the collection isagain a Set :

private Set enmil Addresses = new HashSet ();

public Set get Email Addresses() {
return emai | Addr esses;
}

public void set Emai | Addresses(Set enmi | Addresses) ({
this. emai | Addresses = enui | Addr esses;
}

The mapping of this Set :

<set nanme="enui | Addresses" tabl e="PERSON_EMAI L_ADDR" >
<key col um="PERSON | D'/ >
<el ement type="string" col um="EMAI L_ADDR'/ >
</set>

The difference compared with the earlier mapping isthe el ement part, which tells Hibernate that the collection
does not contain references to another entity, but a collection of elements of type stri ng (the lowercase name
tells you it's a Hibernate mapping type/converter). Once again, the t abl e attribute of the set element determ-
ines the table name for the collection. The key element defines the foreign-key column name in the collection
table. The col um attribute in the el enent element defines the column name where the st ri ng values will actu-
ally be stored.

Have alook at the updated schema:

I I I I
| EVENTS | | PERSON_EVENT | | |
I I I I I PERSON | I
						PERSON_EMAI L_ADDR
*EVENT_ID	<-->	*EVENT_ID				
EVENT_DATE		*PERSON_I D	<-->	*PERSON_ID	<-->	*PERSON.ID
TITLE				AGE		*EMAIL_ADDR
		FIRSTNAME				
LASTNAME						
I I

You can see that the primary key of the collection table is in fact a composite key, using both columns. This
also impliesthat there can't be duplicate email addresses per person, which is exactly the semantics we need for
asetinJava

Y ou can now try and add elements to this collection, just like we did before by linking persons and events. It's

Hibernate 3.0.5 20

Introduction to Hibernate

the same code in Java.

2.3.5. Bi-directional associations

Next we are going to map a bi-directional association - making the association between person and event work
from both sides in Java. Of course, the database schema doesn't change, we still have many-to-many multipli-
city. A relational database is more flexible than a network programming language, so it doesn't need anything
like a navigation direction - data can be viewed and retrieved in any possible way.

First, add a collection of participantsto the Event Event class:

private Set participants = new HashSet ();

public Set getParticipants() {
return partici pants;
}

public void setParticipants(Set participants) {
this.participants = participants;
}

Now map this side of the association too, in Event . hbom xni .

<set name="partici pants" tabl e="PERSON EVENT" i nverse="true">
<key col um="EVENT_I D"/ >
<many-t o- many col um="PERSON I D' cl ass="Person"/>

</set>

As you see, these are normal set mappings in both mapping documents. Notice that the column names in key
and many-to-many are swapped in both mapping documents. The most important addition here is the i n-
verse="true" atributeintheset element of the Event 's collection mapping.

What this means is that Hibernate should take the other side - the Per son class - when it needs to find out in-
formation about the link between the two. This will be a lot easier to understand once you see how the bi-
directional link between our two entitiesis created .

2.3.6. Working bi-directional links

First, keep in mind that Hibernate does not affect normal Java semantics. How did we create a link between a
Person and an Event in the unidirectional example? We added an instance of Event to the collection of event
references, of an instance of Person. So, obvioudly, if we want to make this link working bi-directional, we
have to do the same on the other side - adding a Per son reference to the collection in an Event . This "setting the
link on both sides" is absolutely necessary and you should never forget doing it.

Many developers program defensive and create a link management methods to correctly set both sides, e.g. in
Per son:

protected Set getEvents() {
return events;
}

protected void set Events(Set events) {
this.events = events;
}

public void addToEvent (Event event) {
this. get Events().add(event);
event.getPartici pants().add(this);

Hibernate 3.0.5 21

Introduction to Hibernate

}

public void renmoveFronEvent (Event event) ({
thi s. get Events().renove(event);
event . get Parti ci pants().renove(this);

}

Notice that the get and set methods for the collection are now protected - this allows classes in the same pack-
age and subclasses to still access the methods, but prevents everybody else from messing with the collections
directly (well, amost). Y ou should probably do the same with the collection on the other side.

What about thei nver se mapping attribute? For you, and for Java, abi-directional link is simply a matter of set-
ting the references on both sides correctly. Hibernate however doesn't have enough information to correctly ar-
range SQL | NSERT and UPDATE statements (to avoid constraint violations), and needs some help to handle bi-
directional associations properly. Making one side of the association i nver se tells Hibernate to basically ignore
it, to consider it amirror of the other side. That's al that is necessary for Hibernate to work out all of the issues
when transformation a directional navigation model to a SQL database schema. The rules you have to remem-
ber are straightforward: All bi-directional associations need one side asi nver se. In a one-to-many association
it has to be the many-side, in many-to-many association you can pick either side, thereis no difference.

2.4. Summary

Thistutorial covered the basics of writing a simple standalone Hibernate application.

If you already fedl confident with Hibernate, continue browsing through the reference documentation table of
contents for topics you find interesting - most asked are transactional processing (Chapter 12, Transactions And
Concurrency), fetch performance (Chapter 20, Improving performance), or the usage of the API (Chapter 11,
Working with objects) and the query features (Section 11.4, “Querying”).

Don't forget to check the Hibernate website for more (specialized) tutorials.

Hibernate 3.0.5 22

Chapter 3. Architecture

3.1. Overview

A (very) high-level view of the Hibernate architecture:

Application

Persistent Objects

HIBERNATE

st i

Database

This diagram shows Hibernate using the database and configuration data to provide persistence services (and
persistent objects) to the application.

We would like to show a more detailed view of the runtime architecture. Unfortunately, Hibernate is flexible
and supports several approaches. We will show the two extremes. The "lite" architecture has the application
provide its own JDBC connections and manage its own transactions. This approach uses a minimal subset of
Hibernate's APIs:

Transient Objects Application

Persistent
Objects

SessionFactory Session | JDBC| JNDI JTA

Database

The "full cream" architecture abstracts the application away from the underlying JDBC/JTA APls and lets Hi-

Hibernate 3.0.5 23

Architecture

bernate take care of the details.

Transient Objects Application

Persistent
Objects

SessionFactory

Session | Transaction

TransactionFactory ConnectionProvider

JNDI JDBC JTA

Database

Heres some definitions of the objectsin the diagrams:

SessionFactory (or g. hi ber nat e. Sessi onFact ory)
A threadsafe (immutable) cache of compiled mappings for a single database. A factory for Sessi on and a
client of ConnectionProvider. Might hold an optional (second-level) cache of data that is reusable

between transactions, at a process- or cluster-level.

Session (or g. hi ber nat e. Sessi on)
A single-threaded, short-lived object representing a conversation between the application and the persistent
store. Wraps a JDBC connection. Factory for Transacti on. Holds a mandatory (first-level) cache of per-
sistent objects, used when navigating the object graph or looking up objects by identifier.

Persistent objects and collections
Short-lived, single threaded objects containing persistent state and business function. These might be ordin-
ary JavaBeans/POJOs, the only special thing about them is that they are currently associated with (exactly
one) Sessi on. As soon as the sessi on is closed, they will be detached and free to use in any application
layer (e.g. directly as datatransfer objectsto and from presentation).

Transient and detached objects and collections
Instances of persistent classes that are not currently associated with a Sessi on. They may have been instan-
tiated by the application and not (yet) persisted or they may have been instantiated by a closed Sessi on.

Transaction (or g. hi ber nat e. Transact i on)
(Optional) A single-threaded, short-lived object used by the application to specify atomic units of work.
Abstracts application from underlying JDBC, JTA or CORBA transaction. A Sessi on might span several
Transact i onSin some cases. However, transaction demarcation, either using the underlying APl or Tr ans-
acti on, ishever optional!

Hibernate 3.0.5 24

Architecture

ConnectionProvider (or g. hi ber nat e. connect i on. Connect i onPr ovi der)
(Optional) A factory for (and pool of) JDBC connections. Abstracts application from underlying Dat a-
sour ce Or Dri ver Manager . Not exposed to application, but can be extended/implemented by the developer.

TransactionFactory (or g. hi ber nat e. Transact i onFact ory)
(Optional) A factory for Transaction instances. Not exposed to the application, but can be extended/
implemented by the devel oper.

Extension Interfaces
Hibernate offers many optional extension interfaces you can implement to customize the behavior of your
persistence layer. See the APl documentation for details.

Given a "lite" architecture, the application bypasses the Transacti on/Transacti onFact ory and/or Connec-
tionProvi der APIstotalk to JTA or JDBC directly.

3.2. Instance states

An instance of a persistent classes may be in one of three different states, which are defined with respect to a
persistence context. The Hibernate Sessi on object is the persistence context:

transient
The instance is not, and has never been associated with any persistence context. It has no persistent identity
(primary key value).

persistent
The instance is currently associated with a persistence context. It has a persistent identity (primary key
value) and, perhaps, a corresponding row in the database. For a particular persistence context, Hibernate
guarantees that persistent identity is equivalent to Java identity (in-memory location of the object).

detached
The instance was once associated with a persistence context, but that context was closed, or the instance
was serialized to another process. It has a persistent identity and, perhaps, a corrsponding row in the data-
base. For detached instances, Hibernate makes no guarantees about the relationship between persistent
identity and Javaidentity.

3.3. JMX Integration

JMX isthe J2EE standard for management of Java components. Hibernate may be managed viaa IMX stand-
ard service. We provide an MBean implementation in the distribution,
org. hi bernat e. j nx. Hi bernat eServi ce.

For an example how to deploy Hibernate as a IMX service on the JBoss Application Server, please see the
JBoss User Guide. On JBoss AS, you also get these benefitsif you deploy using IMX:

* Session Management: The Hibernate sessi on's lifecycle can be automatically bound to the scope of a JTA
transaction. This means you no longer have to manually open and close the Sessi on, this becomes the job
of a JBoss EJB interceptor. You also don't have to worry about transaction demarcation in your code any-
more (unless you'd like to write a portable persistence layer of course, use the optional Hibernate Tr ansac-
ti on API for this). You call the H ber nat eCont ext t0 access a Sessi on.

Hibernate 3.0.5 25

Architecture

* HAR deployment: Usually you deploy the Hibernate JIMX service using a JBoss service deployment
descriptor (in an EAR and/or SAR file), it supports all the usual configuration options of a Hibernate Ses-
si onFact ory. However, you still have to name all your mapping files in the deployment descriptor. If you
decide to use the optional HAR deployment, JBoss will automatically detect all mapping filesin your HAR
file.

Consult the JBoss AS user guide for more information about these options.
Another feature available as a IMX service are runtime Hibernate statistics. See Section 4.4.6, “Hibernate stat-

istics’.

3.4. JCA Support

Hibernate may also be configured as a JCA connector. Please see the website for more details. Please note that
Hibernate JCA support is still considered experimental.

Hibernate 3.0.5 26

Chapter 4. Configuration

Because Hibernate is designed to operate in many different environments, there are alarge number of configur-
ation parameters. Fortunately, most have sensible default values and Hibernate is distributed with an example
hi ber nat e. properties fileinetc/ that shows the various options. Just put the example file in your classpath
and customizeit.

4.1. Programmatic configuration

An instance of org. hi bernate. cfg. Configuration represents an entire set of mappings of an application's
Javatypesto an SQL database. The Confi gurati on isused to build an (immutable) Sessi onFact ory. The map-
pings are compiled from various XML mapping files.

You may obtain a Configuration instance by instantiating it directly and specifying XML mapping docu-
ments. If the mapping files are in the classpath, use addResour ce() :

Configuration cfg = new Configuration()
.addResource("Item hbm xm ")
. addResour ce("Bi d. hbm xm ") ;

An alternative (sometimes better) way is to specify the mapped class, and let Hibernate find the mapping docu-
ment for you:

Configuration cfg = new Configuration()
.addd ass(org. hi bernate. auction.ltem cl ass)
.addC ass(org. hi bernate. aucti on. Bi d. cl ass);

Then Hibernate will look for mapping files named /org/ hi bernate/auction/Itemhbmxm and /
or g/ hi ber nat e/ auct i on/ Bi d. hbm xni in the classpath. This approach eliminates any hardcoded filenames.

A Confi guration aso allowsyou to specify configuration properties:

Configuration cfg = new Configuration()
.addd ass(org. hi bernate. auction.ltem cl ass)
.addd ass(org. hi bernate. aucti on. Bi d. cl ass)

.set Property("hibernate.dialect”, "org.hibernate.dial ect. MySQ.I nnoDBDi al ect")
. set Property("hi bernate. connection. datasource", "java:conp/env/jdbc/test")
.set Property("hibernate.order_updates", "true");

Thisis not the only way to pass configuration properties to Hibernate. The various options include:

Pass an instance of j ava. uti| . Properties to Confi guration. set Properties().
Place hi ber nat e. properti es inaroot directory of the classpath.

Set syst empropertiesusing j ava - Dpropert y=val ue.

Include <pr oper t y> elementsin hi ber nat e. cf g. xn (discussed later).

~pwbdhpE

hi ber nat e. properti es iSthe easiest approach if you want to get started quickly.

The Confi gur at i on isintended as a startup-time object, to be discarded once a Sessi onFact ory is created.

4.2. Obtaining a SessionFactory

When all mappings have been parsed by the Confi gur at i on, the application must obtain a factory for Sessi on

Hibernate 3.0.5 27

Configuration

instances. Thisfactory isintended to be shared by all application threads:

Sessi onFactory sessions = cfg. buil dSessi onFactory();

Hibernate does alow your application to instantiate more than one Sessi onFact ory. Thisis useful if you are
using more than one database.

4.3. JIDBC connections

Usually, you want to have the Sessi onFact ory create and pool JDBC connections for you. If you take this ap-
proach, opening a Sessi on isassimple as:

Sessi on session = sessions.openSession(); // open a new Session

As soon as you do something that requires access to the database, a JDBC connection will be obtained from the
pool.

For thisto work, we need to pass some JDBC connection properties to Hibernate. All Hibernate property names
and semantics are defined on the class or g. hi ber nat e. cf g. Envi ronnment . We will now describe the most im-
portant settings for JIDBC connection configuration.

Hibernate will obtain (and pool) connections using j ava. sql . Dri ver Manager if you set the following proper-
ties:

Table4.1. Hibernate JDBC Properties

Property name Purpose

hi ber nat e. connecti on. driver_cl ass jdbc driver class

hi ber nat e. connecti on. ur| jdbc URL

hi ber nat e. connect i on. user nane database user

hi ber nat e. connect i on. passwor d database user password

hi ber nat e. connect i on. pool _si ze maxi mum number of pooled connections

Hibernate's own connection pooling algorithm is however quite rudimentary. It is intended to help you get star-
ted and is not intended for use in a production system or even for performance testing. Y ou should use athird
party pool for best performance and stability. Just replace the hi ber nat e. connecti on. pool _si ze property with
connection pool specific settings. This will turn off Hibernate's internal pool. For example, you might like to
use C3PO0.

C3P0 is an open source JDBC connection pool distributed along with Hibernate in the1'i b directory. Hibernate
will use its c3PoConnect i onProvi der for connection pooling if you set hi ber nat e. ¢3p0. * properties. If you'd
like to use Proxool refer to the packaged hi ber nat e. properti es and the Hibernate web site for more informa-
tion.

Hereis an example hi ber nat e. properti es file for C3PO:

hi ber nat e. connecti on. dri ver_cl ass = org. postgresql.Driver

hi ber nat e. connection.url = jdbc: postgresql://|ocal host/nydat abase
hi ber nat e. connecti on. usernane = myuser

hi ber nat e. connecti on. passwor d secret

Hibernate 3.0.5 28

Configuration

hi ber nat e. ¢3p0. m n_si ze=5

hi ber nat e. c3p0. max_si ze=20

hi ber nat e. ¢c3p0. ti meout =1800

hi ber nat e. ¢c3p0. max_st at emrent s=50

hi bernat e. di al ect = org. hi bernat e. di al ect. Post greSQLDi al ect

For use inside an application server, you should almost always configure Hibernate to obtain connections from
an application server Dat asour ce registered in JINDI. You'll need to set at |east one of the following properties:

Table 4.2. Hiber nate Datasour ce Properties

Propery name Purpose

hi ber nat e. connect i on. dat asour ce datasource JNDI name

hi bernate. j ndi . url URL of the JNDI provider (optional)

hi bernate. j ndi . cl ass class of the JNDI 1 ni ti al Cont ext Fact ory (optional)
hi ber nat e. connect i on. user nane database user (optional)

hi ber nat e. connect i on. passwor d database user password (optional)

Here's an example hi ber nat e. proper ti es file for an application server provided INDI datasource:

hi ber nat e. connecti on. dat asource = java:/conp/env/jdbc/test
hi bernate.transaction.factory_class =\

org. hi bernate. transacti on. JTATr ansacti onFactory
hi ber nat e. t ransacti on. manager _| ookup_cl ass =\

org. hi bernate. transacti on. JBossTransact i onManager Lookup
hi bernat e. di al ect = org. hi bernat e. di al ect. Post greSQLDi al ect

JDBC connections obtained from a JNDI datasource will automatically participate in the container-managed
transactions of the application server.

Arbitrary connection properties may be given by prepending "hi ber nat e. connnecti on" to the property name.
For example, you may specify achar Set using hi ber nat e. connect i on. char Set .

You may define your own plugin strategy for obtaining JDBC connections by implementing the interface
or g. hi ber nat e. connect i on. Connect i onProvi der. YOU may select a custom implementation by setting hi -
ber nat e. connecti on. provi der _cl ass.

4.4. Optional configuration properties

There are a number of other properties that control the behaviour of Hibernate at runtime. All are optional and
have reasonable default values.

Warning: some of these properties are "system-level” only. System-level properties can be set only viaj ava -
Dpr oper t y=val ue OF hi ber nat e. properti es. They may not be set by the other techniques described above.
Table 4.3. Hibernate Configuration Properties

Property name Purpose

hi ber nat e. di al ect The classname of a Hibernate bi al ect which allows

Hibernate 3.0.5 29

Configuration

Property name

Purpose

Hibernate to generate SQL optimized for a particular
relational database.

€d.full.classnane. of. Di al ect

hi ber nat e. show_sql

hi ber nat e. def ault _schema

hi ber nat e. def aul t _cat al og

hi ber nat e. sessi on_factory_nane

hi ber nat e. max_f et ch_depth

hi ber nat e. default _batch_fetch_si ze

hi bernat e. defaul t _entity_node

hi ber nat e. or der _updat es

hi ber nat e. generate_statistics

hi bernat e. use_i dentifer_roll back

hi ber nat e. use_sqgl _coment s

Write all SQL statements to console.

€g.true |fal se

Qualify unqualified tablenames with the given
schemaltablespace in generated SQL.

€g. SCHEMA_NAVE

Qualify unqualified tablenames with the given cata-
log in generated SQL.

€g. CATALOG _NAMVE

The Sessi onFact ory will be automatically bound to
this name in JNDI after it has been created.

€J. j ndi / conposi t e/ name

Set a maximum "depth" for the outer join fetch tree
for single-ended associations (one-to-one, many-
to-one). A o disables default outer join fetching.

eg. recommended values between 0 and 3

Set a default size for Hibernate batch fetching of as-
sociations.

eg. recommended values 4, 8, 16

Set a default mode for entity representation for al
sessions opened from this Sessi onFact ory

dynam c- map, domdj , poj o

Force Hibernate to order SQL updates by the primary
key value of the items being updates. This will result
in fewer transaction deadlocks in highly concurrent
systems.

eg.true |fal se

If enabled, Hibernate will collect statistics useful for
performance tuning.

€g.true |fal se

If enabled, generated identifier properties will be re-
set to default values when objects are del eted.

€g.true |fal se

If turned on, Hibernate will generate comments inside

Hibernate 3.0.5

30

Configuration

Property name

Purpose

the SQL, for easier debugging, defaultsto f al se.

€g.true |fal se

Table 4.4. Hibernate JDBC and Connection Properties

Property name

Purpose

hi bernate. jdbc. fetch_size

hi ber nat e. j dbc. bat ch_si ze

hi ber nat e. j dbc. bat ch_ver si oned_dat a

hi bernate. jdbc.factory_cl ass

hi bernat e. j dbc. use_scrol | abl e_resul t set

hi ber nat e. j dbc. use_streans_for_binary

hi bernat e. j dbc. use_get _gener at ed_keys

hi ber nat e. connecti on. provi der _cl ass

A non-zero value determines the JDBC fetch size
(calls st at enent . set Fet chSi ze()).

A non-zero value enables use of JDBC2 batch up-
dates by Hibernate.

eg. recommended values between 5 and 30

Set this property to true if your JDBC driver returns
correct row counts from execut eBat ch() (it is usu-
aly safe to turn this option on). Hibernate will then
use batched DML for automatically versioned data.
Defaultstof al se.

€g.true |fal se

Select a custom Bat cher . Most applications will not
need this configuration property.

€Q. cl assnare. of . Bat cher

Enables use of JDBC2 scrollable resultsets by Hi-
bernate. This property is only necessary when using
user supplied JDBC connections, Hibernate uses con-
nection metadata otherwise.

eg.true |fal se

Use streams when writing/reading bi nary or seri al -
i zabl e typesto/from JDBC (system-level property).

€g.true |fal se

Enable use of JDBC3 Pr epar edSt at e-
ment . get Gener at edKeys() to retrieve natively gener-
ated keys after insert. Requires JDBC3+ driver and
JRE1.4+, set to false if your driver has problems with
the Hibernate identifier generators. By default, triesto
determine the driver capabilites using connection
metadata.

€g.true| fal se

The classname of a custom Connecti onProvi der
which provides JDBC connections to Hibernate.

€g. cl assnane. of . Connect i onProvi der

Hibernate 3.0.5

31

Configuration

Property name Purpose

hi ber nat e. connection. i sol ati on Set the JDBC transaction isolation level. Check
j ava. sql . Connecti on for meaningful values but note
that most databases do not support all isolation levels.

eg.1, 2, 4, 8

hi ber nat e. connect i on. aut oconmi t Enables autocommit for JDBC pooled connections
(not recommended).

€g.true |fal se

hi ber nat e. connecti on. rel ease_node Specify when Hibernate should release JDBC con-
nections. By default, a JDBC connection is held until
the session is explicitly closed or disconnected. For
an application server JTA datasource, you should use
after_statement to aggressively release connections
after every JDBC call. For a non-JTA connection, it
often makes sense to release the connection at the end
of each transaction, by using after_transacti on.
aut o Will choose after_statement for the JTA and
CMT transaction strategies and after _transaction
for the JDBC transaction strategy.

€g. on_close (default) | after_transaction |
after_statement |auto

hi ber nat e. connect i on. <pr oper t yNane> Pass the JDBC property pr oper t yNane t0 Dri ver Man-
ager . get Connection().

hi ber nat e. j ndi . <pr opert yName> Pass the property propertyName to the JNDI Ini -
tial Cont ext Factory.

Table 4.5. Hibernate Cache Properties

Property name Purpose

hi ber nat e. cache. provi der_cl ass The classname of a custom CachePr ovi der .

€g. cl assnane. of . CachePr ovi der

hi ber nat e. cache. use_ni ni mal _puts Optimize second-level cache operation to minimize
writes, at the cost of more frequent reads. This setting
is most useful for clustered caches and, in Hibernate3,
is enabled by default for clustered cache implementa-
tions.

€g.true| fal se

hi ber nat e. cache. use_query_cache Enable the query cache, individua queries still have
to be set cachable.

€Jd.true| fal se

hi ber nat e. cache. use_second_| evel _cache May be used to completely disable the second level

Hibernate 3.0.5 32

Configuration

Property name

Purpose

cache, which is enabled by default for classes which
specify a<cache> mapping.

€Jd.true| fal se

hi ber nat e. cache. query_cache_factory

The classname of a custom Quer yCache interface, de-
faultsto the built-in st andar dQuer yCache.

€g. cl assnane. of . Quer yCache

hi ber nat e. cache. regi on_prefix

hi ber nat e. cache. use_structured _entries

Table 4.6. Hibernate Transaction Properties

A prefix to use for second-level cache region names.

€g. prefix

Forces Hibernate to store data in the second-level
cache in amore human-friendly format.

€g.true| fal se

Property name

hi bernate.transaction.factory_cl ass

Pur pose

The classname of a Transacti onFact ory to use with
Hibernate Tr ansacti on APl (defaults to JDBCTr ans-
acti onFact ory).

€d. cl assnane. of . Transact i onFact ory

jta. UserTransaction

hi ber nat e. t ransact i on. manager _| ookup_cl ass

hi bernat e. transacti on. fl ush_before_conpl etion

A INDI name used by JTATransactionFactory to
obtain the JTA User Transacti on from the applica-
tion server.

€J. j ndi / conposi t e/ name

The classname of a Tr ansact i onManager Lookup - re-
quired when JVM-level caching is enabled or when
using hilo generator in a JTA environment.

€g. cl assnane. of . Tr ansact i onManager Lookup

If enabled, the session will be automatically flushed
during the before compl etion phase of the transaction.
(Very useful when using Hibernate with CMT.)

eg.true |fal se

hi bernat e. t ransacti on. aut o_cl ose_sessi on

If enabled, the session will be automatically closed
during the after completion phase of the transaction.
(Very useful when using Hibernate with CMT.)

€g.true |fal se

Hibernate 3.0.5

33

Configuration

Table 4.7. Miscellaneous Properties

Property name

hi ber nat e. query. factory_cl ass

hi ber nat e. query. substitutions

Purpose

Chooses the HQL parser implementation.

€g.
org. hi bernate. hgl . ast. ASTQuer yTr ansl at or Fact o
ry or

org. hi bernate. hgl . cl assi c. d assi cQueryTransl a
torFactory

Mapping from tokens in Hibernate queries to SQL
tokens (tokens might be function or literal names, for
example).

€g. hgl Li teral =SQL_LI TERAL, hgl Func-
ti on=SQLFUNC

hi ber nat e. hbnRddl . aut o

Automatically export schema DDL to the database
when the Sessi onFactory is created. With creat e-
dr op, the database schema will be dropped when the
Sessi onFact ory is closed explicitly.

€0. updat e |create | creat e-drop

hi bernate. cglib.use_reflection_optimn zer

4.4.1. SQL Dialects

Enables use of CGLIB instead of runtime reflection
(System-level property). Reflection can sometimes be
useful when troubleshooting, note that Hibernate al-
ways requires CGLIB even if you turn off the optim-
izer. You can not set this property in hibern-
ate.cfg. xnm .

€g.true |fal se

Y ou should always set the hi ber nat e. di al ect property to the correct or g. hi ber nat e. di al ect . Di al ect Sub-
class for your database. If you specify a dialect, Hibernate will use sensible defaults for some of the other prop-
erties listed above, saving you the effort of specifying them manually.

Table 4.8. Hibernate SQL Dialects (hi ber nat e. di al ect)

RDBM S Dialect

DB2 or g. hi ber nat e. di al ect. DB2Di al ect

DB2 AS/400 or g. hi ber nat e. di al ect . DB2400Di al ect
DB2 OS390 org. hi bernat e. di al ect. DB2390Di al ect
PostgreSQL org. hi bernate. di al ect. Post gr eSQLDi al ect
MySQL org. hi bernate. di al ect. MySQLDi al ect

Hibernate 3.0.5

34

Configuration

RDBMS Dialect

MySQL with InnoDB or g. hi ber nat e. di al ect . MySQLI nnoDBDi al ect
MySQL with MylSAM org. hi bernate. di al ect. MySQLMy| SAMDI al ect
Oracle (any version) or g. hi ber nat e. di al ect. Or acl eDi al ect
Oracle 9i/10g or g. hi ber nat e. di al ect. Or acl e9Di al ect
Sybase org. hi bernat e. di al ect. SybaseDi al ect
Sybase Anywhere org. hi bernat e. di al ect. SybaseAnywher eDi al ect
Microsoft SQL Server org. hi bernat e. di al ect. SQLSer ver Di al ect
SAPDB or g. hi ber nat e. di al ect. SAPDBDI al ect
Informix org. hi bernate. di al ect. I nformi xDi al ect
HypersonicSQL org. hi bernat e. di al ect. HSQLDi al ect

Ingres org. hi bernate. di al ect. I ngresbhi al ect
Progress org. hi bernate. di al ect. ProgressDi al ect
Mckoi SQL org. hi bernat e. di al ect. Mckoi Di al ect
Interbase org. hi bernate. di al ect. | nterbasebDi al ect
Pointbase or g. hi ber nat e. di al ect . Poi nt baseDi al ect
FrontBase org. hi bernat e. di al ect. Front baseDi al ect
Firebird org. hi bernat e. di al ect. Fi rebi rdDi al ect

4.4.2. Outer Join Fetching

If your database supports ANSI, Oracle or Sybase style outer joins, outer join fetching will often increase per-
formance by limiting the number of round trips to and from the database (at the cost of possibly more work per-
formed by the database itself). Outer join fetching allows a whole graph of objects connected by many-to-one,
one-to-many, many-to-many and one-to-one associations to be retrieved in asingle SQL SELECT.

Outer join fetching may be disabled globally by setting the property hi ber nat e. max_f et ch_dept h t0 0. A set-
ting of 1 or higher enables outer join fetching for one-to-one and many-to-one associations which have been
mapped with f et ch="j oi n".

See Section 20.1, “Fetching strategies’ for more information.

4.4.3. Binary Streams
Oracle limits the size of byt e arrays that may be passed to/from its JDBC driver. If you wish to use large in-

stances of bi nary Or seri al i zabl e type, you should enable hi ber nat e. j dbc. use_st reans_f or _bi nary. This
isa system-level setting only.

4.4.4. Second-level and query cache

Hibernate 3.0.5 35

Configuration

The properties prefixed by hi ber nat e. cache alow you to use a process or cluster scoped second-level cache
system with Hibernate. See the Section 20.2, “The Second Level Cache” for more details.

4.4.5. Query Language Substitution

Y ou may define new Hibernate query tokens using hi ber nat e. query. substi t uti ons. For example:

hi ber nat e. query. substitutions true=1, fal se=0

would cause the tokenst rue and f al se to be trandated to integer literals in the generated SQL .

hi ber nat e. query. substituti ons tolLowercase=LONER

would allow you to rename the SQL LOWER function.

4.4.6. Hibernate statistics

If you enable hi ber nat e. generate_st ati stics, Hibernate will expose a number of metrics that are useful
when tuning arunning system via Sessi onFact ory. get St at i sti cs() . Hibernate can even be configured to ex-
pose these statistics via IMX. Read the Javadoc of the interfaces in or g. hi ber nat e. st at s for more informa-
tion.

4.5. Logging

Hibernate logs various events using A pache commons-logging.

The commons-logging service will direct output to either Apache Log4j (if you include | og4j . jar in your
classpath) or JDK1.4 logging (if running under JDK1.4 or above). You may download Log4j from ht -
tp://jakarta. apache. org. To use Log4j you will need to place al og4j . properti es filein your classpath, an
example properties file is distributed with Hibernatein the src/ directory.

We strongly recommend that you familiarize yourself with Hibernate's log messages. A lot of work has been
put into making the Hibernate log as detailed as possible, without making it unreadable. It is an essentia
troubleshooting device. The most interesting log categories are the following:

Table 4.9. Hibernate L og Categories

Category Function
org. hi bernat e. SQL Log all SQL DML statements as they are executed
org. hi bernate. type Log al JDBC parameters

org. hi bernate. tool . hbn2dd Log al SQL DDL statements as they are executed
I

org. hibernate.pretty Log the state of all entities (max 20 entities) associated with the session at
flush time
or g. hi ber nat e. cache Log all second-level cache activity

org. hi bernate. transaction Log transaction related activity

Hibernate 3.0.5 36

Configuration

Category Function
org. hi bernate. j dbc Log al JDBC resource acquisition
org. hi bernate. hgl . ast. AST Log HQL and SQL ASTsduring query parsing

org. hi bernat e. secure Log al JAAS authorization requests

org. hi bernate Log everything (alot of information, but very useful for troubleshoating)

When developing applications with Hibernate, you should almost always work with debug enabled for the cat-
€gory or g. hi ber nat e. SQL, or, alternatively, the property hi ber nat e. show_sql enabled.

4.6. Implementing a Nani ngSt r at egy

The interface or g. hi ber nat e. cf g. Nari ngSt r at egy allows you to specify a"naming standard” for database ob-
jects and schema elements.

Y ou may provide rules for automatically generating database identifiers from Java identifiers or for processing
"logical" column and table names given in the mapping file into "physical” table and column names. This fea-
ture helps reduce the verbosity of the mapping document, eliminating repetitive noise (TBL_ prefixes, for ex-
ample). The default strategy used by Hibernate is quite minimal.

You may specify a different strategy by calling Confi gurati on. set Nami ngStrat egy() before adding map-
pings:

Sessi onFactory sf = new Confi guration()
. set Nam ngSt r at egy (| mpr ovedNami ngSt r at egy. | NSTANCE)
.addFile("Item hbm xm ")
.addFi | e("Bi d. hbm xni ")
. bui | dSessi onFactory();

org. hi bernat e. cf g. | nprovedNami ngSt r at egy IS a built-in strategy that might be a useful starting point for
some applications.

4.7. XML configuration file

An alternative approach to configuration is to specify afull configuration in afile named hi ber nat e. cf g. xni .
This file can be used as a replacement for the hi ber nat e. properti es file or, if both are present, to override
properties.

The XML configuration file is by default expected to be in the root 0 your CLASSPATH. Hereis an example:

<?xm version='"1.0" encodi ng='utf-8" ?>
<! DOCTYPE hi ber nat e- confi gurati on PUBLIC
"-//Hi bernate/ H bernate Configuration DTD//EN'
"http://hibernate. sourceforge. net/hi bernat e-confi guration-3.0.dtd">

<hi ber nat e- confi gurati on>

<I-- a SessionFactory instance listed as /jndi/name -->
<sessi on-factory
nane="j ava: hi ber nat e/ Sessi onFact ory" >

<l-- properties -->
<property nane="connecti on. dat asource">j ava:/conp/ env/jdbc/ MyDB</ pr operty>
<property nane="di al ect">org. hi bernate. di al ect. MySQLDi al ect </ property>

Hibernate 3.0.5 37

Configuration

<property nane="show_sql ">f al se</ property>
<property nane="transaction.factory_cl ass">
org. hi bernate. transacti on. JTATransacti onFact ory
</ property>
<property nane="jta.User Transacti on">j ava: conp/ User Tr ansact i on</ property>

<I-- mapping files -->
<mappi ng resource="or g/ hi bernat e/ auction/ltem hbm xm"/>
<mappi ng resour ce="or g/ hi bernat e/ aucti on/ Bi d. hbm xm "/ >

<l-- cache settings -->

<cl ass-cache cl ass="org. hi bernate. auction.|ten usage="read-wite"/>

<cl ass-cache cl ass="org. hi bernate. aucti on. Bi d* usage="read-only"/>

<col | ecti on-cache cl ass="org. hi bernate. auction.|tem bi ds" usage="read-wite"/>

</ sessi on-f act ory>

</ hi ber nat e- conf i gurati on>

As you can see, the advantage of this approach is the externalization of the mapping file names to configura
tion. The hi bernate. cfg. xm is aso more convenient once you have to tune the Hibernate cache. Note that is
your choice to use either hi ber nat e. properties Or hi bernate. cfg. xm , both are equivalent, except for the
above mentioned benefits of using the XML syntax.

With the XML configuration, starting Hibernate is then as ssimple as

Sessi onFactory sf = new Configuration().configure().buildSessionFactory();

Y ou can pick adifferent XML configuration file using

Sessi onFactory sf = new Configuration()
.configure("catdb.cfg.xm")
. bui | dSessi onFactory();

4.8. J2EE Application Server integration

Hibernate has the following integration points for J2EE infrastructure:

Container-managed datasources. Hibernate can use JDBC connections managed by the container and
provided through JNDI. Usually, a JTA compatible Tr ansact i onManager and a Resour ceManager take care
of transaction management (CMT), esp. distributed transaction handling across several datasources. Y ou
may of course also demarcate transaction boundaries programatically (BMT) or you might want to use the
optional Hibernate Tr ansact i on API for thisto keep your code portable.

Automatic JNDI binding: Hibernate can bind its Sessi onFact ory to JNDI after startup.

JTA Session binding: The Hibernate Sessi on may be automatically bound to the scope of JTA transactions
if you use EJBs. Simply lookup the Sessi onFact ory from JNDI and get the current Sessi on. Let Hibernate
take care of flushing and closing the Sessi on when your JTA transaction completes. Transaction demarca-
tion is declarative, in EJB deployment descriptors.

JMX deployment: If you have a IMX capable application server (e.g. JBoss AS), you can chose to deploy
Hibernate as a managed MBean. This saves you the one line startup code to build your Sessi onFact ory
from a Confi guration. The container will startup your H ber nat eSer vi ce, and ideally aso take care of

Hibernate 3.0.5 38

Configuration

service dependencies (Datasource has to be available before Hibernate starts, etc).

Depending on your environment, you might have to set the configuration option hibern-
at e. connect i on. aggr essi ve_r el ease to true if your application server shows "connection containment" ex-
ceptions.

4.8.1. Transaction strategy configuration

The Hibernate Sessi on API is independent of any transaction demarcation system in your architecture. If you
let Hibernate use JDBC directly, through a connection pool, you may begin and end your transactions by call-
ing the JIDBC API. If you run in a J2EE application server, you might want to use bean-managed transactions
and call the JTA APl and User Tr ansact i on when needed.

To keep your code portable between these two (and other) environments we recommend the optional Hibernate
Transaction API, which wraps and hides the underlying system. You have to specify a factory class for
Transaction instances by setting the Hibernate configuration property hi ber n-
ate.transaction.factory_cl ass.

There are three standard (built-in) choices:
org. hi bernate. transacti on. JDBCTransacti onFactory

delegates to database (JDBC) transactions (default)

org. hi bernate. transacti on. JTATransacti onFactory
delegates to container-managed transaction if an existing transaction is underway in this context (e.g. EJB
session bean method), otherwise a new transaction is started and bean-managed transaction are used.

org. hi bernate. transacti on. CMI'Tr ansact i onFact ory
delegates to container-managed JTA transactions

Y ou may also define your own transaction strategies (for a CORBA transaction service, for example).

Some features in Hibernate (i.e. the second level cache, automatic JTA and Session binding, etc.) require access
to the JTA Transact i onManager in a managed environment. In an application server you have to specify how
Hibernate should obtain a reference to the Transact i onvanager, since J2EE does not standardize a single
mechanism:

Table4.10. JTA TransactionM anagers

Transaction Factory Application Server
org. hi bernate.transacti on. JBossTransacti onManager Lookup JBoss

org. hi bernate. transacti on. Webl ogi cTr ansact i onManager Lookup Weblogic
org. hi bernate.transacti on. WebSpher eTr ansact i onManager Lookup WebSphere

or g. hi bernat e. transacti on. WebSpher eExt endedJTATr ansact i onLookup WebSphere 6
org. hi bernate. transacti on. i onTransacti onManager Lookup Orion

org. hi bernate. transacti on. Resi nTransacti onManager Lookup Resin

org. hi bernate. transacti on. JOTMIr ansact i onManager Lookup JOTM

org. hi bernate. transacti on. JOnASTr ansact i onManager Lookup JOnAS

Hibernate 3.0.5 39

Configuration

Transaction Factory Application Server
org. hi bernate. transacti on. JRun4Tr ansact i onManager Lookup JRun4
org. hi bernate. transacti on. BESTransact i onManager Lookup Borland ES

4.8.2. INDI-bound Sessi onFactory

A INDI bound Hibernate Sessi onFact ory can simplify the lookup of the factory and the creation of new Ses-
si ons. Note that thisis not related to a JINDI bound Dat asour ce, both simply use the same registry!

If you wish to have the sSessionFactory bound to a JNDI namespace, specify a name (eg.
j ava: hi ber nat e/ Sessi onFact ory) using the property hi ber nat e. sessi on_f act ory_nane. If this property is
omitted, the Sessi onFact ory will not be bound to JNDI. (Thisis especialy useful in environments with a read-
only JNDI default implementation, e.g. Tomcat.)

When binding the Sessi onFact ory to JNDI, Hibernate will use the values of hi bernate. j ndi. url, hi bern-
ate.jndi.class toinstantiate an initial context. If they are not specified, the default 1 ni ti al Cont ext will be
used.

Hibernate will automatically place the Sessi onFact ory in JNDI after you call cf g. bui | dSessi onFact ory() .
This means you will at least have this call in some startup code (or utility class) in your application, unless you
use IMX deployment with the Hi ber nat eSer vi ce (discussed later).

If you use a JNDI Sessi onFact ory, an EJB or any other class may obtain the Sessi onFact ory using a JNDI
lookup. Note that this setup is not neccessary if you use the Hi ber nat eUt i I helper class introduced in chapter
one, which acts as a Singleton registry. However, Hi ber nat eUti | iS more common in a non-managed environ-
ment.

4.8.3. Automatic JTA and Session binding

For non-managed environments we suggested Hi ber nat eUt i | with a static Sessi onFact ory, and Thr eadLocal

management of the Hibernate Sessi on. This approach isn't easy to use in an EJB environment, as several EJB's
may execute inside the same transaction but not the same thread. We recommend that you bind the Sessi on-

Fact ory to JNDI in a managend environment.

Instead of rolling your own Thr eadLocal Utility, use the get Cur r ent Sessi on() method on the Sessi onFact ory
to obtain a Hibernate Sessi on. If there is no Hibernate Sessi on in current JTA transaction, one will be started
and assigned. Both the hibernate.transaction.flush_before_conpletion and hibern-
ate.transaction. aut o_cl ose_sessi on configuration option, will be set automatically for every Sessi on you
retrieve with get Current Sessi on(), so they will aso be flushed and closed automatically when the container
ends the JTA transactions.

If you, for example, use the DAO design pattern to write your persistence layer, all DAO'slookup the Sessi on-
Fact or y when needed and open the "current” Session. There is no need to pass instances of Sessi onFactory Or
Sessi on around between controlling code and DA O code.

4.8.4. IMX deployment

Thelinecf g. bui | dSessi onFact ory() still has to be executed somewhere to get a Sessi onFact ory into JINDI.
You can do this either in ast ati c initializer block (like the onein Hi ber nat et i 1) or you deploy Hibernate as
amanaged service.

Hibernate 3.0.5 40

Configuration

Hibernate is distributed with or g. hi ber nat e. j nx. Hi ber nat eSer vi ce for deployment on an application server
with IMX capabilities, such as JBoss AS. The actual deployment and configuration is vendor specific. Here is
an examplej boss- servi ce. xn for JBoss 4.0.x:

<?xm version="1.0"?>
<server >

<nbean code="org. hi bernate.jnx. H bernat eServi ce"
nanme="j boss. j ca: servi ce=H ber nat eFact ory, nane=H ber nat eFact ory" >

<!-- Required services -->
<depends>j boss. j ca: servi ce=RARDepl oyer </ depends>
<depends>j boss. j ca: servi ce=Local TxCM nane=Hsql DS</ depends>

<l-- Bind the Hi bernate service to JNDI -->
<attribute name="Jndi Nane">j ava: / hi ber nat e/ Sessi onFact ory</attri bute>

<l-- Datasource settings -->
<attribute name="Dat asource">j ava: Hsql DS</ attri but e>
<attribute name="D al ect">org. hi bernate. di al ect. HSQLD al ect </ attri but e>

<l-- Transaction integration -->
<attribute name="Transacti onStrategy">

org. hi bernate. transacti on. JTATransacti onFactory</attri but e>
<attribute name="Transacti onManager LookupStr at egy" >

org. hi bernate. transacti on. JBossTransact i onManager Lookup</ attri but e>
<attribute name="Fl ushBef or eConpl eti onEnabl ed" >true</attri bute>
<attribute name="Aut oCl oseSessi onEnabl ed">true</attri bute>

<l-- Fetching options -->
<attribute name="Maxi muntet chDept h" >5</attri bute>

<l-- Second-|evel caching -->

<attri bute name="SecondLevel CacheEnabl ed">true</attri bute>

<attribute name="CacheProvi der C ass">or g. hi ber nat e. cache. EhCacheProvi der</attri bute>
<attribute name="QueryCacheEnabl ed">true</attribute>

<l-- Logging -->
<attribute name="ShowSql Enabl ed">true</attri bute>

<I-- Mapping files -->
<attri bute name="MapResources">auction/Item hbm xm , aucti on/ Cat egory. hbm xm </ attri but e>

</ nbean>

</ server>

Thisfileis deployed in adirectory called META- | NF and packaged in a JAR file with the extension . sar (service
archive). You also need to package Hibernate, its required third-party libraries, your compiled persistent
classes, as well as your mapping files in the same archive. Your enterprise beans (usually session beans) may
be kept in their own JAR file, but you may include this EJB JAR file in the main service archive to get asingle
(hot-)deployable unit. Consult the JBoss AS documentation for more information about IMX service and EJB
deployment.

Hibernate 3.0.5 41

Chapter 5. Persistent Classes

Persistent classes are classes in an application that implement the entities of the business problem (e.g. Custom-
er and Order in an E-commerce application). Not all instances of a persistent class are considered to be in the
persistent state - an instance may instead be transient or detached.

Hibernate works best if these classes follow some simple rules, also known as the Plain Old Java Object
(POJO) programming model. However none of these rules are hard requirements. Indeed, Hibernate3 assumes
very little about the nature of your persistent objects. You may express a domain model in other ways: using
trees of Map instances, for example.

5.1. A simple POJO example

Most Java applications require a persistent class representing felines.

package eg;
import java.util. Set;
i mport java.util.Date;

public class Cat {
private Long id; // identifier

private Date birthdate;
private Col or col or;
private char sex;
private float weight;
private int litterld;

private Cat nother;
private Set kittens = new HashSet();

private void setld(Long id) {
this.id=id;

public Long getld() {
return id;

}

voi d setBirthdate(Date date) {
bi rt hdate = date;

}

public Date getBirthdate() {
return birthdate;

}

voi d set Wi ght (fl oat weight) {
this.weight = weight;

}
public float getWight() {
return weight;

}

public Col or getColor() {
return col or;

}

voi d set Col or (Col or color) {
this.color = color;

}

voi d set Sex(char sex) {
t hi s. sex=sex;

}

public char getSex() {
return sex;

Hibernate 3.0.5 42

Persistent Classes

}

void setLitterld(int id) {
this.litterld = id;

}
public int getLitterld() {

return litterld;
}

voi d set Mot her (Cat not her) {
t hi s. not her = not her;
}

public Cat getMther() {
return nother;
}

voi d setKittens(Set kittens) {
this.kittens = kittens;
}

public Set getKittens() {
return kittens;
}

/1 addKi tten not needed by Hi bernate
public void addKitten(Cat kitten) ({
ki tten.set Mother(this);
kitten.setLitterld(kittens.size());
kittens. add(kitten);

There are four main rulesto follow here:

5.1.1. Declare accessors and mutators for persistent fields

Cat declares accessor methods for al its persistent fields. Many other ORM tools directly persist instance vari-
ables. We believe it is far better to decouple this implementation detail from the persistence mechanism. Hi-
bernate persists JavaBeans style properties, and recognizes method names of the form get Foo, i sFoo and set -
Foo. You may however switch to direct field access for particular properties, if needed.

Properties need not be declared public - Hibernate can persist a property with a default, prot ect ed or private
get / set pair.

5.1.2. Implement a no-argument constructor

cat has a no-argument constructor. All persistent classes must have a default constructor (which may be non-
public) so Hibernate can instantiate them using Const r uct or . newt nst ance() . We recommend having a con-
structor with at least package visibility for runtime proxy generation in Hibernate.

5.1.3. Provide an identifier property (optional)

cat has a property caled i d. This property maps to the primary key column of a database table. The property
might have been called anything, and its type might have been any primitive type, any primitive "wrapper"
type, j ava. l ang. String Or java. util . Date. (If your legacy database table has composite keys, you can even
use a user-defined class with properties of these types - see the section on composite identifiers later.)

The identifier property is strictly optional. Y ou can leave them off and let Hibernate keep track of object identi-
fiersinternally. We do not recommend this, however.

Hibernate 3.0.5 43

Persistent Classes

In fact, some functionality is available only to classes which declare an identifier property:

« Trangtive reattachment for detached objects (cascade update or cascade merge) - see Section 11.11,
“Transitive persistence”

®* Session.saveOr Updat e()

* Session. nerge()

We recommend you declare consistently-named identifier properties on persistent classes. We further recom-
mend that you use a nullable (ie. non-primitive) type.

5.1.4. Prefer non-final classes (optional)

A central feature of Hibernate, proxies, depends upon the persistent class being either non-final, or the imple-
mentation of an interface that declares all public methods.

You can persist fi nal classes that do not implement an interface with Hibernate, but you won't be able to use
proxies for lazy association fetching - which will limit your options for performance tuning.

You should also avoid declaring public final methods on the non-final classes. If you want to use a class
with apublic final method, you must explicitly disable proying by setting | azy="f al se".

5.2. Implementing inheritance

A subclass must also observe the first and second rules. It inherits its identifier property from the superclass,
Cat .

package eg;

public class DonmesticCat extends Cat {
private String namne;

public String getNanme() {
return nane;
}

protected void set Nane(String nanme) {
t hi s. nane=nane;
}

5.3. Implementing equal s() and hashCode()

Y ou have to override the equal s() and hashCode() methodsif you

« intend to put instances of persistent classesin a set (the recommended way to represent many-valued asso-
ciations) and
« intend to use reattachment of detached instances

Hibernate guarantees equivalence of persistent identity (database row) and Java identity only inside a particular
Session scope. So as soon as we mix instances retrieved in different sessions, we must implement equal s() and
hashCode() if we wish to have meaningful semanticsfor Set s.

The most obvious way isto implement equal s() /hashCode() by comparing the identifier value of both objects.
If the value is the same, both must be the same database row, they are therefore equal (if both are added to a
Set , we will only have one element in the set). Unfortunately, we can't use that approach with generated iden-

Hibernate 3.0.5 44

Persistent Classes

tifiers! Hibernate will only assign identifier values to objects that are persistent, a newly created instance will
not have any identifier value! Furthermore, if an instance is unsaved and currently in aSet , saving it will assign
an identifier value to the object. If equal s() and hashCode() are based on the identifier value, the hash code
would change, breaking the contract of the set . See the Hibernate website for afull discussion of this problem.
Note that thisis not a Hibernate issue, but normal Java semantics of object identity and equality.

We recommend implementing equal s() and hashCode() using Business key equality. Business key equality
means that the equal s() method compares only the properties that form the business key, a key that would
identify our instance in the real world (anatural candidate key):

public class Cat {

publ i c bool ean equal s(oj ect other) {
if (this == other) return true;
if (!'(other instanceof Cat)) return false;

final Cat cat = (Cat) other;

if (!cat.getLitterld().equals(getLitterld())) return false;
if (!cat.getMther().equals(getMther())) return false;

return true;

}

public int hashCode() ({
int result;
result = get Mot her (). hashCode();
result =29 * result + getLitterld();
return result;

Note that a business key does not have to be as solid as a database primary key candidate (see Section 12.1.3,
“Considering object identity”). Immutable or unique properties are usually good candidates for a business key.

5.4. Dynamic models

Note that the following features are currently considered experimental and may change in the near future.

Persistent entities don't necessarily have to be represented as POJO classes or as JavaBean objects at runtime.
Hibernate also supports dynamic models (using Maps of Maps at runtime) and the representation of entities as
DOMA4J trees. With this approach, you don't write persistent classes, only mapping files.

By default, Hibernate works in normal POJO mode. Y ou may set a default entity representation mode for a par-
ticular Sessi onFact ory using the def aul t _enti ty_node configuration option (see Table 4.3, “Hibernate Con-
figuration Properties’.

The following examples demonstrates the representation using Maps. First, in the mapping file, anenti t y- nane
has to be declared instead of (or in addition to) a class name:

<hi ber nat e- mappi ng>
<cl ass entity-nanme="Custoner" >

<id name="id"

type="1ong"

col um="1D">

<generator class="sequence"/>
</id>

Hibernate 3.0.5 45

Persistent Classes

<property name="name"
col umm=" NAME"
type="string"/>

<property nanme="address"
col umm=" ADDRESS"
type="string"/>

<many-t o- one nane="organi zati on"
col um=" ORGANI ZATI ON_I D"
cl ass="Organi zation"/ >

<bag name="orders"
i nverse="true"
| azy="fal se"
cascade="al | ">
<key col um="CUSTOMER | D'/ >
<one-to-many class="Order"/>
</ bag>

</ cl ass>

</ hi ber nat e- mappi ng>

Note that even though associations are declared using target class hames, the target type of an associations may

also be adynamic entity instead of a POJO.

After setting the default entity mode to dynami c- map for the Sessi onFact ory, we can at runtime work with

Maps Of Maps:

Session s = openSession();
Transaction tx = s.begi nTransaction();
Sessi on s = openSession();

/1l Create a custoner
Map david = new HashMap();
davi d. put ("name", "David");

/1 Create an organization
Map foobar = new HashMap();
f oobar. put ("nane", "Foobar Inc.");

/1 Link both
davi d. put (" or gani zati on", foobar);

/1 Save both
s. save("Custoner", david);
s.save("Organi zati on", foobar);

tx.commt();
s.cl ose();

The advantages of a dynamic mapping are quick turnaround time for prototyping without the need for entity
class implementation. However, you lose compile-time type checking and will very likely deal with many ex-
ceptions at runtime. Thanks to the Hibernate mapping, the database schema can easily be normalized and

sound, allowing to add a proper domain model implementation on top later on.
Entity representation modes can also be set on a per Sessi on basis:

Sessi on dynami cSessi on = poj oSessi on. get Sessi on(Enti t yMode. MAP) ;

/'l Create a custoner

Map david = new HashMap();

davi d. put (" name", "David");

dynami cSessi on. save(" Custoner", david);

Hibernate 3.0.5

46

Persistent Classes

dynam cSessi on. fl ush();
dynami cSessi on. cl ose()

/1 Continue on poj oSession

Please note that the call to get Sessi on() using an Enti t yMbde iS 0N the Sessi on API, not the Sessi onFact ory.
That way, the new Sessi on shares the underlying JDBC connection, transaction, and other context information.
This means you don't have tocall 1 ush() and cl ose() on the secondary Sessi on, and also leave the transac-
tion and connection handling to the primary unit of work.

More information about the XML representation capabilities can be found in Chapter 19, XML Mapping.

TODO: Document user-extension framework in the property and proxy packages

Hibernate 3.0.5 47

Chapter 6. Basic O/R Mapping

6.1. Mapping declaration

Object/relational mappings are usually defined in an XML document. The mapping document is designed to be
readable and hand-editable. The mapping language is Java-centric, meaning that mappings are constructed
around persistent class declarations, not table declarations.

Note that, even though many Hibernate users choose to write the XML by hand, a number of tools exist to gen-
erate the mapping document, including XDaoclet, Middlegen and AndroMDA.

Letskick off with an example mapping:

<?xm version="1.0"?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DID 3. 0//EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-3. 0. dtd">

<hi ber nat e- mappi ng package="eg">

<cl ass nane="Cat"
t abl e="cat s"
di scri m nat or-val ue="C"'>

<id name="id">
<generator class="native"/>
</id>

<di scri m nat or col unm="subcl ass"
type="character"/>

<property name="wei ght"/>

<property name="birt hdate"
type="dat e"
not - nul I ="true"
updat e="f al se"/ >

<property nane="col or"
type="eg. types. Col or User Type"
not-nul | ="true"
updat e="f al se"/ >

<property nanme="sex"
not-nul | ="true"
updat e="f al se"/ >

<property nane="litterld"
colum="litterld"
updat e="f al se"/ >

<many-t o- one nane="not her"
col um="not her _i d"
updat e="f al se"/ >

<set name="kittens"
i nverse="true"
order-by="litter_id">
<key col um="not her _i d"/>
<one-to-nmany class="Cat"/>
</ set>

<subcl ass nanme="Donesti cCat"
di scri m nator-val ue="D"'>

Hibernate 3.0.5 48

Basic O/R Mapping

<property nanme="nane"
type="string"/>

</ subcl ass>
</ cl ass>

<cl ass nane="Dog" >
<l-- mapping for Dog could go here -->
</ cl ass>

</ hi ber nat e- mappi ng>

We will now discuss the content of the mapping document. We will only describe the document elements and
attributes that are used by Hibernate at runtime. The mapping document also contains some extra optional at-
tributes and elements that affect the database schemas exported by the schema export tool. (For example the
not - nul | attribute.)

6.1.1. Doctype

All XML mappings should declare the doctype shown. The actual DTD may be found at the URL above, in the
directory hi ber nat e- x. x. x/ src/ org/ hi bernate Of in hi bernat e3. j ar. Hibernate will aways look for the
DTD inits classpath first. If you experience lookups of the DTD using an Internet connection, check your DTD
declaration against the contents of your claspath.

6.1.2. hibernate-mapping

This element has several optional attributes. The schema and cat al og attributes specify that tables referred to in
this mapping belong to the named schema and/or catalog. If specified, tablenames will be qualified by the given
schema and catalog names. If missing, tablenames will be unqualified. The def aul t - cascade attribute specifies
what cascade style should be assumed for properties and collections which do not specify acascade attribute.
The aut o-i nport attribute lets us use unqualified class names in the query language, by default.

<hi ber nat e- mappi ng

schema="schenaNane" (1)
cat al og="cat al ogNane" (2)
def aul t - cascade="cascade_styl e" (3)
defaul t-access="fi el d| property| C assNane" (4)
default-lazy="true|fal se" (5)
aut o-i nport="true| fal se" (6)
package="package. nane" (7)

/>

(1) schema (optional): The name of a database schema.

(2) catal og (optional): The name of a database catal og.

(3) defaul t-cascade (optional - defaultsto none): A default cascade style.

(4) defaul t-access (optional - defaults to property): The strategy Hibernate should use for accessing all
properties. Can be a custom implementation of Propert yAccessor.

(5) defaul t-1azy (optiona - defaults to t rue): The default value for unspecifed | azy attributes of class and
collection mappings.

(6) auto-inport (optional - defaults to true): Specifies whether we can use unqualified class names (of
classes in this mapping) in the query language.

(7) package (optional): Specifies a package prefix to assume for unqualified class names in the mapping doc-
ument.

Hibernate 3.0.5 49

Basic O/R Mapping

If you have two persistent classes with the same (unqualified) name, you should set aut o- i nport ="f al se". Hi-
bernate will throw an exception if you attempt to assign two classes to the same "imported" name.

Note that the hi ber nat e- mappi ng element allows you to nest several persistent <cl ass> mappings, as shown
above. It is however good practice (and expected by some tools) to map only a single persistent class (or a
single class hierarchy) in one mapping file and name it after the persistent superclass, e.g. Cat.hbm xni ,
Dog. hbm xmi , or if using inheritance, Ani mal . hbm xn .

6.1.3. class

Y ou may declare a persistent class using the cl ass element:

<cl ass
nane="d assNane" (1)
t abl e="t abl eNang" (2)
di scri m nat or-val ue="di scri m nat or _val ue" (3)
mut abl e="true| f al se" (4)
schema="owner" (5)
cat al og="cat al og" (6)
proxy="Proxyl nterface" (7)
dynam c- updat e="true| f al se" (8)
dynami c-insert="true|fal se" (9)
sel ect - bef or e- updat e="t r ue| f al se" (10)
pol ynor phi sm="inplicit|explicit" (11)
where="arbitrary sql where condition" (12)
persi ster="Persi sterC ass" (13)
bat ch- si ze="N' (14)
optim stic-lock="none|version|dirty|all" (15)
lazy="true|fal se" (16)
entity-name="EntityNane" (17)
check="arbitrary sql check condition" (18)
rowi d="r owi d" (19)
subsel ect ="SQL expressi on" (20)
abstract="true|fal se" (21)
entity-name="EntityNane" (22)
node="el enent - nane" (23)
/>

(1

(2)
(3)

(4
(5)
(6)
(7
(8)
(9)

(10)

(11)

nane (optional): The fully qualified Java class name of the persistent class (or interface). If this attribute is
missing, it is assumed that the mapping is for a non-POJO entity.

t abl e (optional - defaultsto the unqualified class name): The name of its database table.

di scrimi nator - val ue (optiona - defaults to the class name): A value that distiguishes individual sub-
classes, used for polymorphic behaviour. Acceptable valuesinclude nul I and not nul 1.

nut abl e (optional, defaultsto t r ue): Specifies that instances of the class are (not) mutable.

schema (optional): Override the schema name specified by the root <hi ber nat e- mappi ng> €lement.

cat al og (optional): Override the catalog name specified by the root <hi ber nat e- mappi ng> €lement.

proxy (optional): Specifies an interface to use for lazy initializing proxies. You may specify the name of
the classitsalf.

dynani c- updat e (optional, defaults to f al se): Specifies that uPDATE SQL should be generated at runtime
and contain only those columns whose values have changed.

dynani c-i nsert (optional, defaultsto f al se): Specifies that | NSERT SQL should be generated at runtime
and contain only the columns whose values are not null.

sel ect - bef or e- updat e (optional, defaults to f al se): Specifies that Hibernate should never perform an
SQL UPDATE unlessiit is certain that an object is actually modified. In certain cases (actually, only when a
transient object has been associated with a new session using updat e()), this means that Hibernate will
perform an extra SQL SELECT to determine if an UPDATE is actually required.

pol ynor phi sm(optional, defaultstoi npl i ci t): Determines whether implicit or explicit query polymorph-
ismis used.

Hibernate 3.0.5 50

Basic O/R Mapping

(12) wher e (optional) specify an arbitrary SQL WHERE condition to be used when retrieving objects of this class

(13) persister (optional): Specifies acustom d assPersi ster.

(14) bat ch-si ze (optional, defaultsto 1) specify a"batch size" for fetching instances of this class by identifier.

(15) optinistic-1ock (optional, defaultsto ver si on): Determines the optimistic locking strategy.

(16) | azy (optiona): Lazy fetching may be completely disabled by setting | azy="f al se".

(17) entity-name (optional): Hibernate3 allows a class to be mapped multiple times (to different tables, poten-
tialy), and allows entity mappings that are represented by Maps or XML at the Java level. In these cases,
you should provide an explicit arbitrary name for the entity. See Section 5.4, “Dynamic models’ and
Chapter 19, XML Mapping for more information.

(18) check (optional): A SQL expression used to generate a multi-row check constraint for automatic schema
generation.

(19) rowi d (optional): Hibernate can use so called ROWIDs on databases which support. E.g. on Oracle, Hi-
bernate can use the rowi d extra column for fast updates if you set this option to rowi d. A ROWID is an
implementation detail and represents the physical location of a stored tuple.

(20) subsel ect (optional): Maps an immutable and read-only entity to a database subselect. Useful if you want
to have aview instead of a base table, but don't. See below for more information.

(21) abstract (optional): Used to mark abstract superclassesin <uni on- subcl ass> hierarchies.

(22) entity-nane (optional, defaultsto the class name): Explicitly specify an entity name.

It is perfectly acceptable for the named persistent class to be an interface. Y ou would then declare implement-
ing classes of that interface using the <subcl ass> element. Y ou may persist any static inner class. Y ou should
specify the class name using the standard form ie. eg. Foo$Bar .

Immutable classes, nut abl e="f al se", may not be updated or deleted by the application. This alows Hibernate
to make some minor performance optimizations.

The optional proxy attribute enables lazy initialization of persistent instances of the class. Hibernate will ini-
tially return CGLIB proxies which implement the named interface. The actual persistent object will be loaded
when amethod of the proxy isinvoked. See "Proxies for Lazy Initialization" below.

Implicit polymorphism means that instances of the class will be returned by a query that names any superclass
or implemented interface or the class and that instances of any subclass of the class will be returned by a query
that names the class itself. Explicit polymorphism means that class instances will be returned only by queries
that explicitly name that class and that queries that name the class will return only instances of subclasses
mapped inside this <cl ass> declaration as a<subcl ass> 0Or <j oi ned- subcl ass>. For most purposes the defaullt,
pol yror phi sme"inplicit", is appropriate. Explicit polymorphism is useful when two different classes are
mapped to the same table (this alows a"lightweight" class that contains a subset of the table columns).

The persi st er attribute lets you customize the persistence strategy used for the class. You may, for example,
specify your own subclass of or g. hi ber nat e. persi ster. EntityPersister Or you might even provide a com-
pletely new implementation of the interface or g. hi ber nat e. per si st er. d assPer si st er that implements per-
sistence via, for example, stored procedure calls, seridization to flat files or LDAP. See
org. hi bernat e. t est . Cust onPer si st er for asimple example (of "persistence" to a Hasht abl e).

Note that the dynani c- updat e and dynami c-i nsert Settings are not inherited by subclasses and so may aso be
specified on the <subcl ass> Of <j oi ned- subcl ass> elements. These settings may increase performance in
some cases, but might actually decrease performance in others. Use judicioudly.

Use of sel ect - bef or e- updat e Will usually decrease performance. It is very useful to prevent a database update
trigger being called unnecessarily if you reattach a graph of detached instances to a Sessi on.

If you enable dynani c- updat e, you will have a choice of optimistic locking strategies:

e versi on check the version/timestamp columns

Hibernate 3.0.5 51

Basic O/R Mapping

e all check al columns
e dirty check the changed columns, allowing some concurrent updates
* none do not use optimistic locking

We very strongly recommend that you use version/timestamp columns for optimistic locking with Hibernate.
Thisisthe optimal strategy with respect to performance and is the only strategy that correctly handles modific-
ations made to detached instances (ie. when Sessi on. ner ge() isused).

There is no difference between a view and a base table for a Hibernate mapping, as expected this is transparent
at the database level (note that some DBMS don't support views properly, especially with updates). Sometimes
you want to use a view, but can't create one in the database (ie. with a legacy schema). In this case, you can
map an immutable and read-only entity to a given SQL subselect expression:

<cl ass name="Sunmary" >

<subsel ect >
sel ect item nanme, nmax(bid.amunt), count(*)
fromitem
join bid on bid.itemid =itemid
group by item name

</ subsel ect >

<synchroni ze table="iten/>

<synchroni ze tabl e="hbid"/>

<i d name="nane"/>

</ cl ass>
Declare the tables to synchronize this entity with, ensuring that auto-flush happens correctly, and that queries

against the derived entity do not return stale data. The <subsel ect > is available as both as an attribute and a
nested mapping element.

6.1.4.id

Mapped classes must declare the primary key column of the database table. Most classes will also have a Java-
Beans-style property holding the unique identifier of an instance. The <i d> element defines the mapping from
that property to the primary key column.

<id
nanme="pr oper t yNane" (1)
type="t ypenane" (2)
col um="col um_nane" (3)
unsaved- val ue="nul | | any| none| undefi ned| i d_val ue" (4)
access="fi el d| property| d assNane" > (5)
node="el enent - nane| @ttri but e- nane| el ement/ @ttribute|."
<generator class="generatorC ass"/>

</id>

(1) nare (optional): The name of the identifier property.

(2) type (optiona): A name that indicates the Hibernate type.

(3) col um (optional - defaults to the property name): The name of the primary key column.

(4) unsaved-val ue (optional - defaults to a "sensible" value): An identifier property value that indicates that
an instance is newly instantiated (unsaved), distinguishing it from detached instances that were saved or
loaded in aprevious session.

(5) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

Hibernate 3.0.5 52

Basic O/R Mapping

If the nane attribute is missing, it is assumed that the class has no identifier property.

The unsaved- val ue attribute isimportant! If the identfier property of your class does not default to the normal
Java default value (null or zero), then you should specify the actual default.

There is an alternative <conposi t e-i d> declaration to allow access to legacy data with composite keys. We
strongly discourage its use for anything else.

Generator

The optional <gener at or > child element names a Java class used to generate unique identifiers for instances of
the persistent class. If any parameters are required to configure or initialize the generator instance, they are
passed using the <par an> element.

<id name="id" type="long" colum="cat_id">
<generator class="org. hi bernate.id. Tabl eH LoGener at or">
<par am nane="t abl e" >ui d_t abl e</ par an>
<par am nane="col utm" >next _hi _val ue_col utm</ par an»
</ gener at or >
</id>

All generators implement the interface or g. hi bernate. i d. I denti fi er Generator. Thisis avery simple inter-
face; some applications may choose to provide their own specialized implementations. However, Hibernate
provides arange of built-in implementations. There are shortcut names for the built-in generators:

i ncrenment
generates identifiers of type | ong, short orint that are unique only when no other processis inserting data
into the same table. Do not usein a cluster.

identity
supports identity columns in DB2, MySQL, MS SQL Server, Sybase and HypersonicSQL. The returned
identifier is of typel ong, short Orint.

sequence
uses a sequence in DB2, PostgreSQL, Oracle, SAP DB, McKoi or a generator in Interbase. The returned
identifier isof typel ong, short Orint

hilo
uses a hi/lo algorithm to efficiently generate identifiers of type 1 ong, short or int, given a table and
column (by default hi ber nat e_uni que_key and next _hi respectively) as a source of hi values. The hi/lo al-
gorithm generates identifiers that are unique only for a particular database.

seghilo
uses a hi/lo algorithm to efficiently generate identifiers of type | ong, short ori nt, given a named database
sequence.

uui d
uses a 128-bit UUID agorithm to generate identifiers of type string, unique within a network (the IP ad-
dressisused). The UUID is encoded as astring of hexadecimal digits of length 32.

gui d
uses a database-generated GUID string on MS SQL Server and MySQL.

native
picksi dentity, sequence Or hi | o depending upon the capabilities of the underlying database.

Hibernate 3.0.5 53

Basic O/R Mapping

assi gned
lets the application to assign an identifier to the object before save() iscalled. Thisisthe default strategy if
No <gener at or > element is specified.

sel ect
retrieves a primary key assigned by a database trigger by selecting the row by some unique key and retriev-
ing the primary key value.

foreign
uses the identifier of another associated object. Usually used in conjunction with a <one- t o- one> primary
key association.

Hi/lo algorithm

The hi | o and seghi | o generators provide two alternate implementations of the hi/lo algorithm, a favorite ap-
proach to identifier generation. The first implementation requires a "specia" database table to hold the next
available "hi" value. The second uses an Oracle-style sequence (where supported).

<id name="id" type="long" colum="cat _id">
<generator class="hilo">
<par am name="t abl e">hi _val ue</ par ant
<par am nanme="col utm" >next _val ue</ par an>
<par am nane="nmax_| 0" >100</ par an>
</ gener at or >
</id>

<id name="id" type="long" colum="cat_id">
<generator class="seghil o">
<par am nane="sequence" >hi _val ue</ par an»
<par am name="max_| 0" >100</ par an»
</ gener at or >
</id>

Unfortunately, you can't use hi | o when supplying your own Connect i on to Hibernate. When Hibernate is using
an application server datasource to obtain connections enlisted with JTA, you must properly configure the hi -
bernnate.transacti on. nanager _| ookup_cl ass.

UUID algorithm

The UUID contains: |P address, startup time of the VM (accurate to a quarter second), system time and a
counter value (unique within the JVM). It's not possible to obtain a MAC address or memory address from Java
code, so thisisthe best we can do without using JNI.

Identity columns and sequences

For databases which support identity columns (DB2, MySQL, Sybase, MS SQL), you may usei dentity key
generation. For databases that support sequences (DB2, Oracle, PostgreSQL, Interbase, McKoi, SAP DB) you
may use sequence Style key generation. Both these strategies require two SQL queries to insert a new object.

<id name="id" type="long" columm="person_id">
<generator class="sequence">
<par am nane="sequence" >per son_i d_sequence</ par anr
</ gener at or >
</id>

<id name="id" type="long" columm="person_id" unsaved-val ue="0">
<generator class="identity"/>

Hibernate 3.0.5 54

Basic O/R Mapping

</id>

For cross-platform development, the native strategy will choose from the identity, sequence and hilo
strategies, dependant upon the capabilities of the underlying database.

Assigned identifiers

If you want the application to assign identifiers (as opposed to having Hibernate generate them), you may use
the assi gned generator. This special generator will use the identifier value already assigned to the object's iden-
tifier property. This generator is used when the primary key is a natural key instead of a surrogate key. Thisis
the default behavior if you do no specify a<gener at or > element.

Choosing the assi gned generator makes Hibernate use unsaved- val ue="undef i ned", forcing Hibernate to go
to the database to determine if an instance is transient or detached, unless there is a version or timestamp prop-
erty, or you define I nt er cept or . i sUnsaved() .

Primary keys assigned by triggers
For legacy schemas only (Hibernate does not generate DDL with triggers).

<id name="id" type="long" columm="person_id">
<generator class="select">
<par am nane="key" >soci al Securit yNunber </ par an>
</ gener at or >
</id>

In the above example, there is a unique valued property named soci al Securi t yNunber defined by the class, as
anatural key, and a surrogate key named per son_i d whose value is generated by atrigger.

6.1.5. composite-id

<conposite-id
name="pr opert yNanme"
cl ass="dC assNane"
unsaved- val ue="undef i ned| any| none"
access="fiel d| property| d assNane" >
node="el enent - nang| . "

<key- property nanme="propertyNane" type="typenane" col um="col um_nane"/>
<key- many-t o-one nane="propertyNane cl ass="d assNane" col um="col utm_nane"/>

</ conposi te-id>

For a table with a composite key, you may map multiple properties of the class as identifier properties. The
<conposi te-i d> element accepts <key- property> property mappings and <key- many-t o- one> Mappings as
child elements.

<conposi te-id>
<key- property nanme="nmedi car eNunber"/ >
<key- property nanme="dependent"/>

</ conposi te-id>

Your persistent class must override equal s() and hashCode() to implement composite identifier equality. It
must also implements Seri al i zabl e.

Unfortunately, this approach to composite identifiers means that a persistent object is its own identifier. There
is no convenient "handle" other than the object itself. Y ou must instantiate an instance of the persistent class it-

Hibernate 3.0.5 55

Basic O/R Mapping

self and populate its identifier properties before you can | oad() the persistent state associated with a composite
key. We will describe a much more convenient approach where the composite identifier is implemented as a
separate class in Section 9.4, “ Components as composite identifiers’. The attributes described below apply only
to this alternative approach:

« nane (optional): A property of component type that holds the composite identifier (see next section).

e class (optiona - defaults to the property type determined by reflection): The component class used as a
composite identifier (see next section).

e unsaved-val ue (optiona - defaults to undefi ned): Indicates that transient instances should be considered
newly instantiated, if set to any, or detached, if set to none. It is best to leave the default value in all cases.

6.1.6. discriminator

The <di scri ni nat or > element is required for polymorphic persistence using the table-per-class-hierarchy map-
ping strategy and declares a discriminator column of the table. The discriminator column contains marker val-
ues that tell the persistence layer what subclass to instantiate for a particular row. A restricted set of types may
be used: string, character, i nteger, byte, short, bool ean, yes_no, true_f al se.

<di scri m nat or

col um="di scri m nat or _col um" (1)
type="di scri m nator _type" (2)
force="true|fal se" (3)
insert="true|fal se" (4)
formul a="arbitrary sql expression" (5)

/>

(1) col unn (optional - defaultsto cl ass) the name of the discriminator column.

(2) type (optional - defaultsto st ri ng) a name that indicates the Hibernate type

(3) force (optional - defaultsto f al se) "force" Hibernate to specify allowed discriminator values even when
retrieving all instances of the root class.

(4) insert (optiona - defaultstotrue) setthistofal se if your discriminator column is also part of a mapped
composite identifier. (Tells Hibernate to not include the column in SQL | NSERTS.)

(5) fornul a (optional) an arbitrary SQL expression that is executed when a type has to be evaluated. Allows
content-based discrimination.

Actual values of the discriminator column are specified by the di scri ni nat or - val ue attribute of the <cl ass>
and <subcl ass> elements.

The force attribute is (only) useful if the table contains rows with "extra" discriminator values that are not
mapped to a persistent class. Thiswill not usually be the case.

Using the f or nul a attribute you can declare an arbitrary SQL expression that will be used to evaluate the type
of arow:

<di scri m nat or
formul a="case when CLASS TYPE in ('a', 'b', 'c') then 0 else 1 end"
type="integer"/>

6.1.7. version (optional)

The <ver si on> element is optional and indicates that the table contains versioned data. Thisis particularly use-
ful if you plan to use long transactions (see below).

<versi on
col um="ver si on_col um" (1)

Hibernate 3.0.5 56

Basic O/R Mapping

name="pr opert yNanme" (2)
type="t ypenane" (3)
access="fi el d| property| Cl assNane" (4)
unsaved- val ue="nul | | negati ve| undef i ned" (5)

node="el enent - nane| @ttri but e- nane| el ement/ @ttribute|."
/>

(1) col um (optional - defaults to the property name): The name of the column holding the version number.

(2) nane: The name of aproperty of the persistent class.

(3) type (optional - defaultstoi nt eger): The type of the version number.

(4) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

(5) unsaved-val ue (optional - defaultsto undefi ned): A version property value that indicates that an instance
is newly instantiated (unsaved), distinguishing it from detached instances that were saved or loaded in a
previous session. (undef i ned specifies that the identifier property value should be used.)

Version numbers may be of Hibernate typel ong, i nt eger, short, ti mest anp Or cal endar .

A version or timestamp property should never be null for a detached instance, so Hibernate will detact any in-
stance with a null version or timestamp as transient, no matter what other unsaved- val ue Strategies are spe-
cified. Declaring a nullable version or timestamp property is an easy way to avoid any problems with transitive
reattachment in Hibernate, especially useful for people using assigned identifiers or composite keys!

6.1.8. timestamp (optional)

The optional <t i nest anp> element indicates that the table contains timestamped data. Thisisintended as an al-
ternative to versioning. Timestamps are by nature a less safe implementation of optimistic locking. However,
sometimes the application might use the timestamps in other ways.

<ti mest anp

col um="ti nest anp_col um" (1)
nanme="pr opertyNane" (2)
access="fi el d| property| d assNane" (3)
unsaved- val ue="nul | | undefi ned" (4)

node="el enent - nane| @ttri but e-nanme| el enent/ @ttribute|."
/>

(1) col um (optional - defaults to the property name): The name of a column holding the timestamp.

(2) nane: The name of a JavaBeans style property of Javatype Dat e or Ti mest anp Of the persistent class.

(3) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

(4) unsaved-val ue (optional - defaults to nul 1): A version property value that indicates that an instance is
newly instantiated (unsaved), distinguishing it from detached instances that were saved or |oaded in a pre-
vious session. (undef i ned specifies that the identifier property value should be used.)

Note that <t i mest anp> isequivalent to <ver si on type="ti mest anp">.

6.1.9. property

The <pr oper t y> element declares a persistent, JavaBean style property of the class.

<property
nane="pr opert yNane" (1)
col um="col unm_nane" (2)
type="t ypenane" (3)
updat e="true| f al se" (4)

Hibernate 3.0.5 57

Basic O/R Mapping

insert="true|fal se" (4)
formul a="arbitrary SQ. expression" (5)
access="fi el d| property| Cl assNane" (6)
lazy="true| fal se" (7)
uni que="true| fal se" (8)
not - nul | ="true| f al se" (9)
optimstic-lock="true|fal se" (10)

node="el enent - nane| @ttri but e-name| el enent/ @ttribute|."
i ndex="i ndex_nane"
uni que_key="uni que_key_i d"
| engt h="1L"
preci si on="P"
preci si on="S"
/>

(1) nare: the name of the property, with aninitial lowercase letter.

(2) colum (optional - defaults to the property name): the name of the mapped database table column. This
may also be specified by nested <col urm> element(s).

(3) type (optiona): a name that indicates the Hibernate type.

(4) update, insert (optiona - defaultsto true) : specifies that the mapped columns should be included in
SQL uPDATE and/or | NSERT statements. Setting both to fal se allows a pure "derived" property whose
value is initialized from some other property that maps to the same colum(s) or by a trigger or other ap-
plication.

(5) formula (optional): an SQL expression that defines the value for a computed property. Computed proper-
ties do not have a column mapping of their own.

(6) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

(7) lazy (optional - defaultsto f al se): Specifies that this property should be fetched lazily when the instance
variableisfirst accessed (requires build-time bytecode instrumentation).

(8) uni que (optional): Enable the DDL generation of a unique constraint for the columns. Also, alow this to
be the target of aproperty-ref.

(9) not-nul | (optional): Enable the DDL generation of anullability constraint for the columns.

(10) optimistic-1ock (optiona - defaultsto t rue): Specifies that updates to this property do or do not require
acquisition of the optimistic lock. In other words, determines if a version increment should occur when
this property isdirty.

typename could be:

1. The name of a Hibernate basic type (eg. i nteger, string, character, date, tinestanp, float,
bi nary, serializable, object, bl ob).

2. The name of a Java class with a default basic type (eg. int, float, char, java.lang. String,
java.util.Date, java.lang.lnteger, java.sql.d ob).

3. Thename of aserializable Javaclass.

4. Theclass name of acustom type (eg. comi || fl ow. t ype. MyCust onilype).

If you do not specify atype, Hibernate will use reflection upon the named property to take a guess at the correct
Hibernate type. Hibernate will try to interpret the name of the return class of the property getter using rules 2, 3,
4 in that order. However, this is not always enough. In certain cases you will still need the t ype attribute. (For
example, to distinguish between Hi ber nat e. DATE and Hi ber nat e. TI MESTAMP, Or t0 specify a custom type.)

The access attribute lets you control how Hibernate will access the property at runtime. By default, Hibernate
will call the property get/set pair. If you specify access="fi el d", Hibernate will bypass the get/set pair and ac-
cess the field directly, using reflection. You may specify your own strategy for property access by naming a
class that implements the interface or g. hi ber nat e. property. PropertyAccessor.

An especialy powerful feature are derived properties. These properties are by definition read-only, the property

Hibernate 3.0.5 58

Basic O/R Mapping

value is computed at load time. Y ou declare the computation as a SQL expression, this transates to a SELECT
clause subquery in the SQL query that loads an instance:

<property nane="total Price"
formul a="(SELECT SUM (Ili.quantity*p.price) FROM Lineltem|i, Product p
WHERE | i . productld = p.productld
AND |i.custonerld = customerld
AND | i . order Nunber = order Nunber)"/>

Note that you can reference the entities own table by not declaring an alias on a particular column (cust oner I d
in the given example). Also note that you can use the nested <f or mul a> mapping element if you don't like to
use the attribute.

6.1.10. many-to-one

An ordinary association to another persistent class is declared using a nany-t o- one element. The relational
model is a many-to-one association: aforeign key in one table is referencing the primary key column(s) of the
target table.

<nmany-t o- one

name="pr oper t yName" (1)
col um="col utm_nane" (2)
cl ass="C assNane" (3)
cascade="cascade_styl e" (4)
fetch="j oi n| sel ect " (5)
updat e="true| f al se" (6)
insert="true|fal se" (6)
property-ref="propertyNameFromAssoci at edd ass" (7)
access="fi el d| property| Cl assNane" (8)
uni que="true| f al se" (9)
not-nul | ="true| f al se" (10)
optimistic-lock="true|fal se" (11)
| azy="true| proxy| f al se" (12)
not - f ound="i gnor e| except i on" (13)
entity-name="EntityName" (14)
fornul ="arbitrary SQL expression" (15)

node="el enent - nane| @ttri but e- nane| el ement/ @ttribute|."
enbed- xm ="true| f al se"
i ndex="i ndex_nane"
uni que_key="uni que_key_i d"
forei gn- key="f orei gn_key_nane"
/>

(1) nare: The name of the property.
(2) colum (optional): The name of the foreign key column. This may aso be specified by nested <col um>

element(s).

(3) class (optiona - defaults to the property type determined by reflection): The name of the associated
class.

(4) cascade (optional): Specifies which operations should be cascaded from the parent object to the associ-
ated object.

(5) fetch (optional - defaultsto sel ect): Chooses between outer-join fetching or sequentia select fetching.

(6) update, insert (optional - defaults to true) specifies that the mapped columns should be included in
SQL upPDATE and/or | NSERT statements. Setting both to f al se allows a pure "derived" association whose
value is initialized from some other property that maps to the same colum(s) or by atrigger or other ap-
plication.

(7) property-ref: (optional) The name of a property of the associated class that is joined to this foreign key.
If not specified, the primary key of the associated classis used.

(8) access (optional - defaults to property): The strategy Hibernate should use for accessing the property

Hibernate 3.0.5 59

Basic O/R Mapping

value.

(9) uni que (optional): Enable the DDL generation of a unique constraint for the foreign-key column. Also, al-
low thisto be the target of apr operty-ref. This makes the association multiplicity effectively oneto one.

(10) not-nul | (optional): Enable the DDL generation of anullability constraint for the foreign key columns.

(11) optimistic-1ock (optiona - defaultsto t rue): Specifies that updates to this property do or do not require
acquisition of the optimistic lock. In other words, dertermines if a version increment should occur when
this property isdirty.

(12) 1 azy (optiona - defaults to proxy): By default, single point associations are proxied. | azy="true" spe-
cifies that the property should be fetched lazily when the instance variable is first accessed (requires
build-time bytecode instrumentation). | azy="f al se" specifies that the association will always be eagerly
fetched.

(13) not - f ound (optional - defaultsto except i on): Specifies how foreign keys that reference missing rows will
be handled: i gnor e will treat a missing row as a null association.

(14) entity-name (optional): The entity name of the associated class.

Setting a value of the cascade attribute to any meaningful value other than none will propagate certain opera-
tions to the associated object. The meaningful values are the names of Hibernate's basic operations, per si st,
nerge, delete, save-update, evict, replicate, |ock, refresh, aswell asthe specia values del et e-
orphan and all and commaseparated combinations of operation names, for example, cas-
cade="per si st, merge, evi ct" Of cascade="al | , del et e- or phan" . See Section 11.11, “Transitive persistence”
for afull explanation.

A typical many-t o- one declaration looks as simple as this:

<many-t o- one nane="product"” class="Product" col um="PRODUCT | D"/>

Theproperty-ref attribute should only be used for mapping legacy data where aforeign key refersto a unique
key of the associated table other than the primary key. Thisis an ugly relational model. For example, suppose
the Product class had a unique serial number, that is not the primary key. (The uni que attribute controls Hi-
bernate's DDL generation with the SchemaExport tool.)

<property nane="serial Nunber" uni que="true" type="string" col umm="SERI AL_NUMBER"/ >

Then the mapping for o der I t emmight use:

<many-t o- one nane="product" property-ref="serial Nunber" col um="PRODUCT_SERI AL_NUMBER"'/ >

Thisis certainly not encouraged, however.

If the referenced unique key comprises multiple properties of the associated entity, you should map the refer-
enced propertiesinside a named <pr opert i es> element.

6.1.11. one-to-one

A one-to-one association to another persistent classis declared using a one- t o- one element.

<one-t 0-one

nane="pr opert yNane" (1)
cl ass="C assNane" (2)
cascade="cascade_styl e" (3)
constrai ned="true|fal se" (4)
fetch="j oi n| sel ect™" (5)
property-ref="propertyNaneFromAssoci at edd ass" (6)
access="fi el d| property| assNane" (7)
formul a="any SQL expression" (8)
| azy="true| proxy| fal se" (9)

Hibernate 3.0.5 60

Basic O/R Mapping

/>

(1
(2)

(3)

(4

(5)
(6)

(7

(8)

(9)

(10)

entity-nane="EntityName" (10)
node="el enent - nane| @ttri but e-nanme| el enent/ @ttribute|."

enbed- xm ="true| fal se"

forei gn- key="f orei gn_key_nane"

name: The name of the property.

cl ass (optional - defaults to the property type determined by reflection): The name of the associated
class.

cascade (optional) specifies which operations should be cascaded from the parent object to the associated
object.

const rai ned (optional) specifies that aforeign key constraint on the primary key of the mapped table ref-
erences the table of the associated class. This option affects the order in which save() and del ete() are
cascaded, and determines whether the association may be proxied (it is also used by the schema export
tool).

fet ch (optional - defaultsto sel ect): Chooses between outer-join fetching or sequential select fetching.
property-ref: (optional) The name of a property of the associated class that is joined to the primary key
of this class. If not specified, the primary key of the associated classis used.

access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

for mul a (optional): Almost all one to one associations map to the primary key of the owning entity. In the
rare case that thisis not the case, you may specify a some other column, columns or expression to join on
using an SQL formula. (Seeor g. hi ber nat e. t est . onet oonef or nul a for an example.)

| azy (optional - defaults to proxy): By default, single point associations are proxied. | azy="true" Spe-
cifies that the property should be fetched lazily when the instance variable is first accessed (requires
build-time bytecode instrumentation). | azy="f al se" specifies that the association will always be eagerly
fetched. Note that if const rai ned="f al se", proxying is impossible and Hibernate will eager fetch the as-
sociation!

entity-nane (optional): The entity name of the associated class.

There are two varieties of one-to-one association:

* primary key associations

» unique foreign key associations

Primary key associations don't need an extra table column; if two rows are related by the association then the
two table rows share the same primary key value. So if you want two objects to be related by a primary key as-
sociation, you must make sure that they are assigned the same identifier value!

For aprimary key association, add the following mappings to Enpl oyee and Per son, respectively.

<one-to-one name="person" class="Person"/>

<one-t o- one nanme="enpl oyee" cl ass="Enpl oyee" constrai ned="true"/>

Now we must ensure that the primary keys of related rows in the PERSON and EMPLOY EE tables are equal.
We use a specia Hibernate identifier generation strategy called f or ei gn:

<cl ass nane="person" tabl e="PERSON'>

<id name="id" col um="PERSON_| D" >
<generator class="foreign">
<par am nane="property" >enpl oyee</ par an>
</ gener at or >
</id>

Hibernate 3.0.5 61

Basic O/R Mapping

<one-t 0- one nane="enpl oyee"
cl ass="Enpl oyee"
constrai ned="true"/>
</ cl ass>

A newly saved instance of Per son isthen assigned the same primary key value as the Enpl oyee instance refered
with the enpl oyee property of that Per son.

Alternatively, aforeign key with a unique constraint, from Enpl oyee to Per son, may be expressed as:

<many-t 0- one nanme="person" class="Person" col um="PERSON | D' uni que="true"/>

And this association may be made bidirectional by adding the following to the Per son mapping:

<one-t o-one nane"enpl oyee" cl ass="Enpl oyee" property-ref="person"/>

6.1.12. natural-id

<natural -id nmutabl e="true|fal se"/>
<property ... />
<many-to-one ... />

</natural -id>

Even though we recommend the use of surrogate keys as primary keys, you should still try to identify natural
keysfor all entities. A natural key is a property or combination of properties that is unique and non-null. If itis
also immutable, even better. Map the properties of the natural key inside the <nat ur al - i d> element. Hibernate
will generate the necessary unique key and nullability constraints, and your mapping will be more self-
documenting.

We strongly recommend that you implement equal s() and hashCode() to compare the natural key properties
of the entity.

This mapping is not intended for use with entities with natural primary keys.

* nutabl e (optional, defaults to f al se): By default, natural identifier properties as assumed to be immutable
(constant).

6.1.13. component, dynamic-component

The <conponent > element maps properties of a child object to columns of the table of a parent class. Compon-
ents may, in turn, declare their own properties, components or collections. See "Components' below.

<conponent
nanme="pr oper t yNane" (1)
cl ass="cl assNane" (2)
insert="true|fal se" (3)
updat e="true| f al se" (4)
access="fi el d| property| O assNane" (5)
| azy="true|fal se" (6)
optimstic-lock="true|fal se" (7)
uni que="true| f al se" (8)

node="el enent - nang| . "

<property />
<many-to-one />

Hibernate 3.0.5 62

Basic O/R Mapping

</ conponent >

(1) nane: The name of the property.

(2) class (optional - defaults to the property type determined by reflection): The name of the component
(child) class.

(3) insert: Do the mapped columns appear in SQL | NSERTS?

(4) updat e: Do the mapped columns appear in SQL UPDATES?

(5) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

(6) lazy (optiona - defaults to f al se): Specifies that this component should be fetched lazily when the in-
stance variable isfirst accessed (requires build-time bytecode instrumentation).

(7) optinistic-1ock (optiona - defaults to t r ue): Specifies that updates to this component do or do not re-
quire acquisition of the optimistic lock. In other words, determines if a version increment should occur
when this property isdirty.

(8) uni que (optional - defaults to f al se): Specifies that a unique constraint exists upon al mapped columns
of the component.

The child <pr oper t y> tags map properties of the child class to table columns.

The <conponent > element alows a <par ent > subelement that maps a property of the component class as a ref-
erence back to the containing entity.

The <dynani c- conponent > element allows a Map to be mapped as a component, where the property names refer

to keys of the map, see Section 9.5, “Dynamic components”.

6.1.14. properties

The <properti es> element allows the definition of a named, logical grouping of properties of aclass. The most
important use of the construct is that it allows a combination of properties to be the target of aproperty-ref. It
is aso aconvenient way to define a multi-column unique constraint.

<properties

nanme="| ogi cal Nane" (1)
insert="true|fal se" (2)
updat e="true| f al se" (3)
optimstic-lock="true|fal se" (4)
uni que="true| fal se" (5)
>
<property />
<many-to-one />

</ properties>

(1) nane: Thelogical name of the grouping - not an actual property name.

(2) insert: Do the mapped columns appear in SQL | NSERTS?

(3) updat e: Do the mapped columns appear in SQL UPDATES?

(4) optinistic-1ock (optional - defaultsto t rue): Specifies that updates to these properties do or do not re-
quire acquisition of the optimistic lock. In other words, determines if a version increment should occur
when these properties are dirty.

(5) uni que (optional - defaults to f al se): Specifies that a unique constraint exists upon al mapped columns
of the component.

For example, if we have the following <pr oper t i es> mapping:

Hibernate 3.0.5 63

Basic O/R Mapping

<cl ass nanme="Person" >
<i d name="per sonNunber"/>

<properties nanme="nane"
uni que="true" update="fal se">
<property nanme="firstName"/>
<property nane="initial"/>
<property name="| ast Narme"/>
</ properties>
</ cl ass>

Then we might have some legacy data association which refers to this unique key of the per son table, instead
of to the primary key:

<many-t 0- one nane="person"
cl ass="Person" property-ref="nanme">
<col um nane="first Nane"/ >
<col um nanme="initial"/>
<col um nane="1| ast Nane"/ >
</ many-t o- one>

We don't recommend the use of this kind of thing outside the context of mapping legacy data.

6.1.15. subclass

Finally, polymorphic persistence requires the declaration of each subclass of the root persistent class. For the
table-per-class-hierarchy mapping strategy, the <subcl ass> declaration is used.

<subcl ass
nanme="C assNane" (1)
di scri m nator -val ue="di scri m nat or _val ue" (2)
proxy="Proxyl nterface" (3)
| azy="true| fal se" (4)

dynami c- updat e="true| f al se"
dynam c-insert="true|fal se"
entity-nane="EntityNanme"
node="el enent - nane" >

<property [>

</ subcl ass>

(1) nare: Thefully qualified class name of the subclass.

(2) discrininator-val ue (optional - defaults to the class name): A value that distiguishes individual sub-
classes.

(3) proxy (optional): Specifiesaclass or interface to use for lazy initializing proxies.

(4) lazy (optional, defaultstot rue): Setting | azy="f al se" disablesthe use of lazy fetching.

Each subclass should declare its own persistent properties and subclasses. <ver si on> and <i d> properties are
assumed to be inherited from the root class. Each subclass in a heirarchy must define a unique di scri mi nat or -
val ue. If noneis specified, the fully qualified Java class nameis used.

It is possible to define subcl ass, uni on- subcl ass, and j oi ned- subcl ass mappings in separate mapping docu-
ments, directly beneath hi ber nat e- mappi ng. This allows you to extend a class hierachy just by adding a new
mapping file. Y ou must specify an ext ends attribute in the subclass mapping, naming a previously mapped su-
perclass. Note: Previoudy this feature made the ordering of the mapping documents important. Since Hibern-
ate3, the ordering of mapping files does not matter when using the extends keyword. The ordering inside a
single mapping file still needs to be defined as superclasses before subclasses.

Hibernate 3.0.5 64

Basic O/R Mapping

<hi ber nat e- mappi ng>
<subcl ass nane="Donesti cCat" extends="Cat" discrim nator-val ue="D'>
<property nanme="nane" type="string"/>
</ subcl ass>
</ hi ber nat e- mappi ng>

For information about inheritance mappings, see Chapter 10, Inheritance Mapping.

6.1.16. joined-subclass

Alternatively, each subclass may be mapped to its own table (table-per-subclass mapping strategy). Inherited
state isretrieved by joining with the table of the superclass. We use the <j oi ned- subcl ass> element.

<j oi ned- subcl ass

nane="Cl assNane" (1)
t abl e="t abl enane" (2)
proxy="Proxyl nterface" (3)
| azy="true| fal se" (4)

dynami c- updat e="true| f al se"
dynam c-insert="true|fal se"
schema="schema"

cat al og="cat al og"

ext ends=" Super cl assNane"
persi st er="C assNange"
subsel ect =" SQ. expressi on"
entity-nane="EntityNanme"
node="el enent - nane" >

<key >

<property [>

</ j oi ned- subcl ass>

(1) nane: Thefully qualified class name of the subclass.

(2) tabl e: The name of the subclass table.

(3) proxy (optional): Specifiesaclass or interface to use for lazy initializing proxies.

(4) lazy (optional, defaultstot rue): Setting | azy="f al se" disables the use of lazy fetching.

No discriminator column is required for this mapping strategy. Each subclass must, however, declare a table
column holding the object identifier using the <key> element. The mapping at the start of the chapter would be
re-written as:

<?xm version="1.0"?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-//Hi bernate/H bernate Mappi ng DTD// EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-3. 0. dtd">

<hi ber nat e- mappi ng package="eg">
<cl ass name="Cat" tabl e="CATS">

<id name="id" col um="uid" type="long">
<generator class="hilo"/>

</id>

<property nane="birthdate" type="date"/>
<property nane="col or" not-null="true"/>
<property nane="sex" not-null="true"/>

<property nanme="wei ght"/>
<many-t o- one nane="nmate"/>
<set name="kittens">
<key col um="MOTHER"/ >
<one-to-many class="Cat"/>
</set>
<j oi ned- subcl ass nane="Donesti cCat" tabl e="DOVESTI C_CATS" >

Hibernate 3.0.5 65

Basic O/R Mapping

<key col um="CAT"/ >
<property nane="nane" type="string"/>
</ j oi ned- subcl ass>
</ cl ass>

<cl ass name="eg. Dog" >
<!'-- mapping for Dog could go here -->
</ cl ass>

</ hi ber nat e- mappi ng>

For information about inheritance mappings, see Chapter 10, Inheritance Mapping.

6.1.17. union-subclass

A third option is to map only the concrete classes of an inheritance hierarchy to tables, (the table-
per-concrete-class strategy) where each table defines all persistent state of the class, including inherited state. In
Hibernate, it is not absolutely necessary to explicitly map such inheritance hierarchies. You can simply map
each class with a separate <cl ass> declaration. However, if you wish use polymorphic associations (e.g. an as-
sociation to the superclass of your hierarchy), you need to use the <uni on- subcl ass> mapping.

<uni on- subcl ass

nanme="C assNane" (1)
t abl e="t abl enane" (2)
proxy="Proxyl nterface" (3)
lazy="true| fal se" (4)

dynami c- updat e="true| f al se"
dynam c-i nsert="true|fal se"
schema="schem"

cat al og="cat al og"

ext ends="Super cl assNane"
abstract ="true|fal se"

per si st er="C assNane"
subsel ect =" SQ. expr essi on"
entity-nanme="EntityNane"
node="el enent - nane" >

<property />

</ uni on- subcl ass>

(1) nane: Thefully qualified class name of the subclass.

(2) tabl e: The name of the subclasstable.

(3) proxy (optional): Specifiesaclass or interface to use for lazy initializing proxies.

(4) lazy (optional, defaultstot rue): Setting | azy="f al se" disables the use of lazy fetching.

No discriminator column or key column is required for this mapping strategy.

For information about inheritance mappings, see Chapter 10, Inheritance Mapping.

6.1.18. join

Using the <j oi n> element, it is possible to map properties of one classto severa tables.

<join
t abl e="t abl enane" (1)
schema="owner" (2)
cat al og="cat al 0og" (3)
fetch="j oi n| sel ect™ (4)
i nverse="true| fal se" (5)
optional ="true|fal se"> (6)

Hibernate 3.0.5 66

Basic O/R Mapping

<key ... [>
<property ... [>

</j oi n>

(1) tabl e: The name of the joined table.

(2) schema (optiona): Override the schema name specified by the root <hi ber nat e- mappi ng> element.

(3) catal og (optional): Override the catalog name specified by the root <hi ber nat e- mappi ng> element.

(4) fetch (optiona - defaultstoj oi n): If set toj oi n, the default, Hibernate will use an inner join to retrieve a
<j oi n> defined by aclass or its superclasses and an outer join for a<j oi n> defined by a subclass. If set to
sel ect then Hibernate will use a sequential select for a <j oi n> defined on a subclass, which will be is-
sued only if arow turns out to represent an instance of the subclass. Inner joins will still be used to re-
trieve a<j oi n> defined by the class and its superclasses.

(5) inverse (optional - defaultsto f al se): If enabled, Hibernate will not try to insert or update the properties
defined by thisjoin.

(6) optional (optiona - defaults to fal se): If enabled, Hibernate will insert a row only if the properties
defined by thisjoin are non-null and will always use an outer join to retrieve the properties.

For example, the address information for a person can be mapped to a separate table (while preserving value
type semantics for al properties):

<cl ass nanme="Per son"
t abl e=" PERSON" >

<id name="id" colum="PERSON |D'>...</id>

<j oi n tabl e=" ADDRESS" >
<key col umm="ADDRESS | D'/ >
<property nane="address"/>
<property name="zip"/>
<property name="country"/>
</joi n>

This feature is often only useful for legacy data models, we recommend fewer tables than classes and a fine-
grained domain model. However, it is useful for switching between inheritance mapping strategies in a single
hierarchy, as explained later.

6.1.19. key

We've seen the <key> element crop up a few times now. It appears anywhere the parent mapping element
defines ajoin to a new table, and defines the foreign key in the joined table, that references the primary key of
the original table.

<key
col um="col umnange" (1)
on- del et e="noacti on| cascade" (2)
property-ref="propertyNane" (3)
not-null ="true|fal se" (4)
updat e="true| fal se" (5)
uni que="true| fal se" (6)

/>

(1) col um (optional): The name of the foreign key column. This may also be specified by nested <col urm>
element(s).
(2) on-delete (optional, defaults to noacti on): Specifies whether the foreign key constraint has database-

Hibernate 3.0.5 67

Basic O/R Mapping

level cascade delete enabled.

(3) property-ref (optiona): Specifies that the foreign key refers to columns that are not the primary key of
the orginal table. (Provided for legacy data.)

(4) not-null (optional): Specifies that the foreign key columns are not nullable (this is implied whenever the
foreign key is also part of the primary key).

(5) update (optional): Specifies that the foreign key should never be updated (this is implied whenever the
foreign key is also part of the primary key).

(6) unique (optional): Specifies that the foreign key should have a unique constraint (thisisimplied whenever
the foreign key is also the primary key).

We recommend that for systems where delete performance is important, all keys should be defined on- de-
| et e="cascade", and Hibernate will use a database-level ON CASCADE DELETE constraint, instead of many indi-
vidual DELETE statements. Be aware that this feature bypasses Hibernate's usual optimistic locking strategy for
versioned data.

The not - nul | and updat e attributes are useful when mapping a unidirectional one to many association. If you
map a unidirectional one to many to a non-nullable foreign key, you must declare the key column using <key
not-null ="true">.

6.1.20. column and formula elements

Any mapping element which accepts a col umm attribute will alternatively accept a <col urm> subelement. Like-
wise, <f or mul a> isan adternative to the f or mul a attribute.

<col um
nane="col unm_nane"
| engt h="N'
preci si on="N'
scal e="N'
not-null ="true|fal se"
uni que="true| fal se"
uni que- key="mul ti col umm_uni que_key_nane"
i ndex="i ndex_nange"
sql -type="sql _type_nane"
check="SQL expression"/>

<f or mul a>SQL expr essi on</f or mul a>

col um and f or nul a attributes may even be combined within the same property or association mapping to ex-
press, for example, exotic join conditions.

<many-t o- one nane="honmeAddr ess" cl ass="Address"
insert="fal se" update="fal se">
<col um nane="person_i d" not-null="true" |ength="10"/>
<f or mul a>' MAI LI NG </ f or mul a>
</ many-t o- one>

6.1.21. import

Suppose your application has two persistent classes with the same name, and you don't want to specify the fully
qualified (package) name in Hibernate queries. Classes may be "imported” explicitly, rather than relying upon
aut o-i nport="true". You may even import classes and interfaces that are not explicitly mapped.

<inmport class="java.lang. Cbject" renane="Universe"/>

<i nport
cl ass="d assNane" (1)

Hibernate 3.0.5 68

Basic O/R Mapping

r enanme=" Shor t Nanme" (2)
/>

(1) class: Thefully qualified class name of of any Javaclass.
(2) renanme (optional - defaults to the unqualified class name): A name that may be used in the query lan-

guage.

6.1.22. any

There is one further type of property mapping. The <any> mapping element defines a polymorphic association
to classes from multiple tables. This type of mapping always requires more than one column. The first column
holds the type of the associated entity. The remaining columns hold the identifier. It isimpossible to specify a
foreign key constraint for this kind of association, so thisis most certainly not meant as the usual way of map-
ping (polymorphic) associations. You should use this only in very special cases (eg. audit logs, user session
data, etc).

The net a- t ype attribute lets the application specify a custom type that maps database column values to persist-
ent classes which have identifier properties of the type specified by i d- t ype. You must specify the mapping
from values of the meta-type to class names.

<any nanme="bei ng" id-type="long" neta-type="string">
<nmet a- val ue val ue="TBL_AN MAL" cl ass="Ani mal "/ >
<net a- val ue val ue="TBL_HUMAN' cl ass="Human"/>
<net a-val ue val ue="TBL_ALI EN' cl ass="Alien"/>
<col um nane="t abl e_nane"/>
<col um nane="id"/>

</ any>
<any
nanme="pr opert yNane" (1)
i d-type="idtypenane" (2)
met a- t ype=" et at ypenane" (3)
cascade="cascade_styl e" (4)
access="fi el d| property| O assNane" (5)
optimstic-lock="true|fal se" (6)
>
<meta-value ... />
<meta-value ... />
<colum />
<colum />
</ any>

(1) nane: the property name.

(2) id-type: theidentifier type.

(3) nmeta-type (optional - defaultsto st ri ng): Any typethat is allowed for a discriminator mapping.

(4) cascade (optional- defaultsto none): the cascade style.

(5) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

(6) optinistic-1ock (optional - defaultsto t rue): Specifies that updates to this property do or do not require
acquisition of the optimistic lock. In other words, define if a version increment should occur if this prop-
erty isdirty.

6.2. Hibernate Types

Hibernate 3.0.5 69

Basic O/R Mapping

6.2.1. Entities and values

To understand the behaviour of various Java language-level objects with respect to the persistence service, we
need to classify them into two groups:

An entity exists independently of any other objects holding references to the entity. Contrast this with the usual
Java model where an unreferenced object is garbage collected. Entities must be explicitly saved and deleted
(except that saves and deletions may be cascaded from a parent entity to its children). Thisis different from the
ODMG model of object persistence by reachablity - and corresponds more closely to how application objects
are usually used in large systems. Entities support circular and shared references. They may a so be versioned.

An entity's persistent state consists of references to other entities and instances of value types. Values are prim-
itives, collections (not what's inside a collection), components and certain immutable objects. Unlike entities,
values (in particular collections and components) are persisted and deleted by reachability. Since value objects
(and primitives) are persisted and deleted along with their containing entity they may not be independently ver-
sioned. Values have no independent identity, so they cannot be shared by two entities or collections.

Up until now, we've been using the term "persistent class' to refer to entities. We will continue to do that.
Strictly speaking, however, not all user-defined classes with persistent state are entities. A component is a user
defined class with value semantics. A Java property of typej ava. | ang. St ri ng also has value semantics. Given
this definition, we can say that all types (classes) provided by the JDK have value type semantics in Java, while
user-defined types may be mapped with entity or value type semantics. This decision is up to the application
developer. A good hint for an entity class in a domain model are shared references to a single instance of that
class, while composition or aggregation usually transates to a value type.

WeEel'll revisit both concepts throughout the documentation.

The challenge is to map the Java type system (and the developers' definition of entities and value types) to the
SQL /database type system. The bridge between both systems is provided by Hibernate: for entities we use
<cl ass>, <subcl ass> and so on. For value types we use <pr oper t y>, <conponent >, etc, usually with at ype at-
tribute. The value of this attribute is the name of a Hibernate mapping type. Hibernate provides many mappings
(for standard JDK value types) out of the box. Y ou can write your own mapping types and implement your cus-
tom conversion strategies as well, as you'll see later.

All built-in Hibernate types except collections support null semantics.

6.2.2. Basic value types

The built-in basic mapping types may be roughly categorized into

i nteger, long, short, float, double, character, byte, bool ean, yes_no, true_false
Type mappings from Java primitives or wrapper classes to appropriate (vendor-specific) SQL column
types. boolean, yes_no and true_false are al aternative encodings for a Java bool ean or
java. |l ang. Bool ean.

string
A type mapping fromj ava. | ang. St ri ng t0 VARCHAR (or Oracle VARCHAR?).

date, tine, tinmestanp
Type mappings from j ava. uti | . Dat e and its subclasses to SQL types DATE, TI ME and TI MESTAMP (Or equi-
valent).

cal endar, cal endar_date

Hibernate 3.0.5 70

Basic O/R Mapping

Type mappings fromj ava. uti| . Cal endar to SQL types TI MESTAMP and DATE (or equivalent).

bi g_deci mal, big_integer
Type mappings fromj ava. mat h. Bi gDeci mal and j ava. mat h. Bi gl nt eger t0 NUVERI C (or Oracle NUVBER).

| ocal e, tinezone, currency
Type mappings from j ava. util . Local e, java. util.Ti meZone and java. util. Currency tO VARCHAR (Or
Oracle VARCHAR?). Instances of Local e and cur rency are mapped to their ISO codes. Instances of Ti nezone
are mapped to their 1 D.

cl ass
A type mapping from j ava. | ang. O ass t0 VARCHAR (or Oracle VARCHAR?2). A d ass is mapped to its fully
qualified name.

bi nary
Maps byte arrays to an appropriate SQL binary type.

t ext
Maps long Java strings to a SQL CLOB or TEXT type.

serializable
Maps serializable Java types to an appropriate SQL binary type. You may also indicate the Hibernate type
seri al i zabl e with the name of a serializable Java class or interface that does not default to a basic type.

cl ob, blob
Type mappings for the IDBC classesj ava. sql . O ob and j ava. sql . Bl ob. These types may be inconveni-
ent for some applications, since the blob or clob object may not be reused outside of a transaction.
(Furthermore, driver support is patchy and inconsistent.)

Unique identifiers of entities and collections may be of any basic type except binary, blob and cl ob.
(Composite identifiers are also allowed, see below.)

The basic value types have corresponding Type constants defined on or g. hi ber nat e. Hi ber nat e. For example,
Hi ber nat e. STRI NG representsthe st ri ng type.

6.2.3. Custom value types

Itisrelatively easy for developers to create their own value types. For example, you might want to persist prop-
erties of typej ava. | ang. Bi gl nt eger t0 VARCHAR columns. Hibernate does not provide a built-in type for this.
But custom types are not limited to mapping a property (or collection element) to a single table column. So, for
example, you might have a Java property get Nane() /set Name() Of typej ava.lang. String that is persisted to
the columns FI RST_NAME, | NI TI AL, SURNAVE.

To implement a custom type, implement either or g. hi ber nat e. User Type or
or g. hi ber nat e. Conposi t eUser Type and declare properties using the fully qualified classname of the type.
Check out or g. hi ber nat e. t est . Doubl eSt ri ngType to see the kind of things that are possible.

<property nanme="twoStrings" type="org.hibernate.test.Doubl eStringType">
<col um nane="first_string"/>
<col um nane="second_string"/>

</ property>

Notice the use of <col unmn> tags to map a property to multiple columns.

The Conposi t eUser Type, EnhancedUser Type, User Col | ecti onType, and User Ver si onType interfaces provide

Hibernate 3.0.5 71

Basic O/R Mapping

support for more specialized uses.

Y ou may even supply parametersto a User Type in the mapping file. To do this, your User Type must implement
the or g. hi ber nat e. user t ype. Par amet eri zedType interface. To supply parameters to your custom type, you
can use the <t ype> element in your mapping files.

<property nane="priority">
<t ype name="com myconpany. usertypes. Def aul t Val uel nt eger Type" >
<par am name="def aul t " >0</ par an>
</type>
</ property>

The User Type can now retrieve the value for the parameter named def aul t from the Properti es object passed
toit.

If you use a certain User Type very often, it may be useful to define a shorter name for it. You can do this using
the <t ypedef > element. Typedefs assign a name to a custom type, and may also contain a list of default para-
meter values if the type is parameterized.

<t ypedef class="com myconpany. usertypes. Def aul t Val uel nt eger Type" nanme="default_zero">
<par am name="def aul t " >0</ par an>
</typedef >

<property nane="priority" type="default_zero"/>

It is also possible to override the parameters supplied in a typedef on a case-by-case basis by using type para
meters on the property mapping.

Even though Hibernate's rich range of built-in types and support for components means you will very rarely
need to use a custom type, it is nevertheless considered good form to use custom types for (non-entity) classes
that occur frequently in your application. For example, a Monet ar yAnount class is a good candidate for a com

posi t eUser Type, even though it could easily be mapped as a component. One mativation for thisis abstraction.
With a custom type, your mapping documents would be future-proofed against possible changes in your way of
representing monetary values.

6.3. SQL quoted identifiers

Y ou may force Hibernate to quote an identifier in the generated SQL by enclosing the table or column name in
backticks in the mapping document. Hibernate will use the correct quotation style for the SQL bi al ect (usually
double quotes, but brackets for SQL Server and backticks for MySQL).

<cl ass nanme="Linelten table=""Line Item">

<id name="id" colum=""Item |d "/><generator class="assigned"/></id>
<property nane="itenmNunber" colum=""Item# "/>
</ cl ass>

6.4. Metadata alternatives

XML isn't for everyone, and so there are some alternative ways to define O/R mapping metadata in Hibernate.

6.4.1. Using XDoclet markup

Hibernate 3.0.5 72

Basic O/R Mapping

Many Hibernate users prefer to embed mapping information directly in sourcecode using XDoclet
@i bernat e. t ags. We will not cover this approach in this document, since strictly it is considered part of
XDoclet. However, we include the following example of the cat class with XDoclet mappings.

package eg;
i mport java.util. Set;
import java.util.Date;

/**

* @i bernate. cl ass

* tabl e="CATS"

*/

public class Cat {
private Long id; // identifier
private Date birthdate;
private Cat nother;
private Set kittens
private Col or col or;
private char sex;
private float weight;

/*
* @i bernate.id
* generator-class="native"
* col um="CAT_I D"

=

public Long getld() {
return id;

}

private void setld(Long id) {
this.id=id;

}

/**

* @i bernat e. many-t o- one
* col um="PARENT I D'
=
public Cat getMother() {
return not her;
}

voi d set Mot her (Cat nother) {
thi s. not her = not her;

}
/**
* @i bernate. property
* col um=" Bl RTH_DATE"
=[]
public Date getBirthdate() ({
return birthdate;
}
voi d setBirthdate(Date date) {
bi rthdate = date;
}
/**
* @i bernate. property
* col um="\WEl GHT"
=
public float getWight() {
return wei ght;
}

voi d set Wi ght (fl oat wei ght) {
thi s. wei ght = wei ght;
}

/**

* @i bernate. property
* col um="COLOR'

* not-null="true"

*/

Hibernate 3.0.5 73

Basic O/R Mapping

public Col or getColor() {
return col or;
}

voi d set Col or (Col or color) {
this.color = color;

}

/

*

@i ber nat e. set
i nverse="true"
or der - by="BI RTH_DATE"
@i ber nat e. col | ecti on-key
col um="PARENT | D'
@i ber nat e. col | ecti on-one-t o- many

L A

*

=[]

public Set getKittens() {
return kittens;

}

voi d setKittens(Set kittens) {
this.kittens = kittens;

}

// addKitten not needed by Hi bernate

public void addKitten(Cat kitten) {
kittens. add(kitten);

}

/**

* @i bernate. property
* col um="SEX"

* not-null="true"
* update="fal se"
&/

public char getSex() {
return sex;
}

voi d set Sex(char sex) {
t hi s. sex=sex;
}

See the Hibernate web site for more examples of XDoclet and Hibernate.

6.4.2. Using JDK 5.0 Annotations

JDK 5.0 introduced XDoclet-style annotations at the language level, type-safe and checked at compile time.
This mechnism is more powerful than XDoclet annotations and better supported by tools and IDEs. IntelliJ
IDEA, for example, supports auto-completion and syntax highlighting of JDK 5.0 annotations. The new revi-
sion of the EJB specification (JSR-220) uses JDK 5.0 annotations as the primary metadata mechanism for en-
tity beans. Hibernate3 implements the Ent i t yManager of JSR-220 (the persistence API), support for mapping
metadata is available via the Hibernate Annotations package, as a separate download. Both EJB3 (JSR-220)
and Hibernate3 metadata is supported.

Thisis an example of a POJO class annotated as an EJB entity bean:

@ntity(access = AccessType. FI ELD)
public class Custoner inplenents Serializable {

@d;
Long i d;

String firstNanme;
String | ast Nane;
Dat e birthday;

@r ansi ent
| nt eger age;

Hibernate 3.0.5 74

Basic O/R Mapping

@ependent
private Address homeAddress;

@neToMany(cascade=CascadeType. ALL,
targetEntity="Order")

@oi nCol utm(nanme=" CUSTOVER | D")

Set orders;

/|l Getter/setter and busi ness nethods

Note that support for JDK 5.0 Annotations (and JSR-220) is still work in progress and not compl eted.

Hibernate 3.0.5

75

Chapter 7. Collection Mapping

7.1. Persistent collections

Hibernate requires that persistent collection-valued fields be declared as an interface type, for example:

public class Product {
private String serial Nunber;
private Set parts = new HashSet ();

public Set getParts() { return parts; }

voi d setParts(Set parts) { this.parts = parts; }

public String getSerial Nunber() { return serial Nunber; }
voi d setSerial Nunber(String sn) { serial Nunber = sn; }

The actual interface might be java.util.Set, java.util.Collection, java.util.List, java.util.Map,
java.util.SortedSet,java.util.SortedMap Or ... anything you like! (Where "anything you like" means you
will have to write an implementation of or g. hi ber nat e. usert ype. User Col | ecti onType.)

Notice how we initialized the instance variable with an instance of Hashset . This is the best way to initialize
collection valued properties of newly instantiated (non-persistent) instances. When you make the instance per-
sistent - by calling persi st (), for example - Hibernate will actually replace the HashSet with an instance of
Hibernate's own implementation of set . Watch out for errorslike this:

Cat cat = new DonesticCat();
Cat kitten = new DonesticCat();

Set kittens = new HashSet ();

kittens. add(kitten);

cat.setKittens(kittens);

sessi on. persi st(cat);

kittens = cat.getKittens(); // Okay, kittens collection is a Set
(HashSet) cat.getKittens(); // Error!

The persistent collections injected by Hibernate behave like HashMap, HashSet, TreeMap, TreeSet Of
ArrayLi st , depending upon the interface type.

Callections instances have the usual behavior of value types. They are automatically persisted when referenced
by a persistent object and automatically deleted when unreferenced. If a collection is passed from one persistent
object to another, its elements might be moved from one table to another. Two entities may not share a refer-
ence to the same collection instance. Due to the underlying relational model, collection-valued properties do
not support null value semantics; Hibernate does not distinguish between a null collection reference and an
empty collection.

Y ou shouldn't have to worry much about any of this. Use persistent collections the same way you use ordinary
Java collections. Just make sure you understand the semantics of bidirectional associations (discussed |ater).

7.2. Collection mappings

The Hibernate mapping element used for mapping a collection depends upon the type of the interface. For ex-
ample, a<set > element is used for mapping properties of type Set .

<cl ass nane="Product" >
<id name="seri al Nunber" col um="product Seri al Nunber"/ >

Hibernate 3.0.5 76

Collection Mapping

<set nane="parts">

<key col um="product Seri al Nunber" not-nul | ="true"/>
<one-to-nmany class="Part"/>
</ set>
</ cl ass>

Apart from <set >, there is also <l i st >, <map>, <bag>, <array> and <prini tive-array> mapping elements.
The <map> element is representative:

<map
nane="pr opert yNane" (1)
tabl e="t abl e_nane" (2)
schema="schena_nange" (3)
| azy="true|fal se" (4)
i nverse="true| fal se" (5)
cascade="al | | none| save- updat e| del et e| al | - del et e- or phan" (6)
sort="unsort ed| nat ural | conpar at or d ass" (7)
or der - by="col utm_nane asc| desc" (8)
where="arbitrary sql where condition" (9)
fetch="j oi n| sel ect| subsel ect" (10)
bat ch-si ze="N" (12)
access="fi el d| property| Cl assNane" (12)
optimstic-lock="true|fal se" (13)

node="el enent - naneg| . "
enbed- xm ="true| f al se"

<key [>

<map-key />

<elenent />
</ map>

(D
(2)

(3)
(4

(5)
(6)
(7
(8)
(9)

(10)

(11)
(12)

(12)

name the collection property name

tabl e (optional - defaults to property name) the name of the collection table (not used for one-to-many
associations)

schema (optional) the name of a table schemato override the schema declared on the root element

| azy (optional - defaultsto t rue) may be used to disable lazy fetching and specify that the association is
aways eagerly fetched (not available for arrays)

i nver se (optional - defaults to f al se) mark this collection as the "inverse" end of a bidirectiona associ-
ation

cascade (optional - defaultsto none) enable operations to cascade to child entities

sort (optional) specify a sorted collection with nat ur al sort order, or a given comparator class

order - by (optional, JDK1.4 only) specify a table column (or columns) that define the iteration order of
the Map, Set or bag, together with an optional asc or desc

wher e (optional) specify an arbitrary SQL WHERE condition to be used when retrieving or removing the
collection (useful if the collection should contain only a subset of the available data)

fetch (optional, defaults to sel ect) Choose between outer-join fetching, fetching by sequential select,
and fetching by sequential subselect.

bat ch- si ze (optional, defaultsto 1) specify a"batch size" for lazily fetching instances of this collection.
access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

optimistic-1ock (optional - defaultstot rue): Speciesthat changes to the state of the collection resultsin
increment of the owning entity's version. (For one to many associations, it is often reasonable to disable
this setting.)

7.2.1. Collection foreign keys

Coallection instances are distinguished in the database by the foreign key of the entity that owns the collection.

Hibernate 3.0.5 77

Collection Mapping

This foreign key is referred to as the collection key column (or columns) of the collection table. The collection
key column is mapped by the <key> element.

There may be a nullability constraint on the foreign key column. For most collections, this isimplied. For uni-
directional one to many associations, the foreign key column is nullable by default, so you might need to spe-
Cify not -nul | ="t rue".

<key col um="product Seri al Nunber" not-nul |l ="true"/>

The foreign key constraint may use ON DELETE CASCADE.

<key col umm="product Seri al Number" on-del et e="cascade"/>

See the previous chapter for afull definition of the <key> element.

7.2.2. Collection elements

Collections may contain almost any other Hibernate type, including all basic types, custom types, components,
and of course, references to other entities. This is an important distinction: an object in a collection might be
handled with "value" semantics (its lifecycle fully depends on the collection owner) or it might be a reference
to another entity, with its own lifecycle. In the latter case, only the "link" between the two objects is considered
to be state held by the collection.

The contained type is referred to as the collection element type. Collection elements are mapped by <el enent >
Or <conposi t e- el ement >, Or in the case of entity references, with <one- t o- many> or <many- t o- many>. Thefirst
two map elements with value semantics, the next two are used to map entity associations.

7.2.3. Indexed collections

All collection mappings, except those with set and bag semantics, need an index column in the collection table -
a column that maps to an array index, or Li st index, or Map key. The index of a vap may be of any basic type,
mapped with <map- key>, it may be an entity reference mapped with <nmap- key- many- t o- many>, or it may be a
composite type, mapped with <conposi t e- map- key>. The index of an array or list is aways of type i nt eger

and is mapped using the <l i st -i ndex> element. The mapped column contains sequential integers (numbered
from zero, by default).

<list-index
col um="col um_nane" (1)
base="0|1|..."/>

(1) col umn_nane (required): The name of the column holding the collection index values.
(1) base (optional, defaults to 0): The value of the index column that corresponds to the first element of the

list or array.
<map- key
col um="col um_nane" (1)
formul a="any SQL expression" (2)
type="t ype_nane" (3)
node="@t t ri but e- nane"
| engt h="N'"/>

(1) col um (optional): The name of the column holding the collection index values.
(2) formula (optional): A SQL formula used to evaluate the key of the map.
(3) type (optional, defaultstoi nt eger): The type of the collection index.

Hibernate 3.0.5 78

Collection Mapping

<map- key- many-t o- many
col um="col umm_nange" (1)
formul a="any SQL expression" (2)(3)
cl ass="dC assNane"

/>

(1) col um (optional): The name of the foreign key column for the collection index values.
(2) formula (optional): A SQL formula used to evaluate the foreign key of the map key.
(3) class (required): The entity class used as the collection index.

If your table doesn't have an index column, and you still wish to use Li st as the property type, you should map
the property as a Hibernate <bag>. A bag does not retain its order when it is retrieved from the database, but it
may be optionally sorted or ordered.

There are quite a range of mappings that can be generated for collections, covering many common relational
models. We suggest you experiment with the schema generation tool to get a feeling for how various mapping
declarations translate to database tables.

7.2.4. Collections of values and many-to-many associations

Any collection of values or many-to-many association requires a dedicated collection table with a foreign key
column or columns, collection element column or columns and possibly an index column or columns.

For acollection of values, we use the <el enent > tag.

<el enent
col um="col um_nange" (1)
formul a="any SQL expression" (2)
type="t ypenane" (3)
| engt h="L"
preci si on="P"
scal e="S"
not - nul | ="true| f al se"
uni que="true| f al se"
node="el enent - nane"

/>

(1) col um (optional): The name of the column holding the collection element values.
(2) fornula (optional): An SQL formula used to evaluate the element.
(3) type (required): The type of the collection element.

A many-to-many association is specified using the <many- t o- many> element.

<many-t o- many

col um="col unmm_nane" (1)
formul a="any SQL expression" (2)
cl ass="C assNane" (3)
fetch="sel ect|joi n" (4)
uni que="true| fal se" (5)
not - f ound="i gnor e| excepti on" (6)
entity-nane="EntityNane" (7)

node="el enent - nane"
enbed- xm ="true| fal se"
/>

(1) col um (optional): The name of the element foreign key column.

(2) formula (optional): An SQL formula used to evaluate the element foreign key value.

(3) class (required): The name of the associated class.

(4) fetch (optional - defaults to j oi n): enables outer-join or sequential select fetching for this association.

Hibernate 3.0.5 79

Collection Mapping

Thisis a special case; for full eager fetching (in a single SELECT) of an entity and its many-to-many rela-
tionships to other entities, you would enable j oi n fetching not only of the collection itself, but also with
this attribute on the <many- t o- many> nested element.

(5) uni que (optional): Enable the DDL generation of a unique constraint for the foreign-key column. This
makes the association multiplicity effectively one to many.

(6) not-found (optional - defaultsto except i on): Specifies how foreign keys that reference missing rows will
be handled: i gnor e will treat a missing row as a null association.

(7) entity-nane (optional): The entity name of the associated class, as an alternativeto cl ass.
Some examples, first, a set of strings:

<set name="nanes" tabl e="person_nanmes" >

<key col um="person_i d"/>

<el enent col um="person_nane" type="string"/>
</ set>

A bag containing integers (with an iteration order determined by the or der - by attribute):

<bag nane="si zes"
tabl e="item sizes"
order-by="si ze asc">
<key colum="item.id"/>
<el ement col um="si ze" type="integer"/>
</ bag>

An array of entities - in this case, amany to many association:

<array nane="addresses"
t abl e=" Per sonAddr ess"
cascade="persist">
<key col um="personld"/>
<list-index colum="sortOrder"/>
<many-t o- many col utm="addressl d" cl ass="Address"/>
</array>

A map from string indices to dates:

<map nane="hol i days"
t abl e="hol i days"
schema="dbo"
order - by="hol nane asc">
<key col um="id"/>
<map- key col um="hol _nanme" type="string"/>
<el ement col um="hol _date" type="date"/>
</ map>

A list of components (discussed in the next chapter):

<l i st nane="car Conponent s"
t abl e=" Car Conponent s" >
<key columm="carld"/>
<list-index colum="sortOrder"/>
<conposi te-el ement cl ass="Car Conponent ">
<property name="price"/>
<property nane="type"/>
<property nanme="seri al Nunber" col um="seri al Nun{'/ >
</ conposi t e-el enent >
</list>

7.2.5. One-to-many associations

Hibernate 3.0.5 80

Collection Mapping

A oneto many association links the tables of two classes viaaforeign key, with no intervening collection table.
This mapping loses certain semantics of normal Java collections:

* Aninstance of the contained entity class may not belong to more than one instance of the collection
« Aninstance of the contained entity class may not appear at more than one value of the collection index

An association from Product to Part requires existence of aforeign key column and possibly an index column
tothePart table. A <one-t o- many> tag indicates that thisis a one to many association.

<one-t o- many

cl ass="C assNane" (1)
not - f ound="1i gnor e| excepti on" (2)
entity-name="EntityName" (3)

node="el enent - nane"
enbed- xm ="true| fal se"
/>

(1) class (required): The name of the associated class.

(2) not-found (optiona - defaults to exception): Specifies how cached identifiers that reference missing
rows will be handled: i gnor e will treat a missing row as a null association.

(3) entity-name (optional): The entity name of the associated class, as an aternativeto cl ass.

Notice that the <one- t o- many> element does not need to declare any columns. Nor is it necessary to specify the
t abl e name anywhere.

Very important note: If the foreign key column of a <one- t o- many> association is declared NOT NULL, you must
declare the <key> mapping not - nul I ="true" or use a bidirectional association with the collection mapping
marked i nver se="t r ue". See the discussion of bidirectional associations later in this chapter.

This example shows a map of Part entities by name (where par t Nane is a persistent property of part). Notice
the use of aformula-based index.

<map nane="parts"
cascade="al | ">
<key col um="product!ld" not-null="true"/>
<map- key fornul a="partNanme"/>
<one-to-many class="Part"/>
</ map>

7.3. Advanced collection mappings

7.3.1. Sorted collections

Hibernate supports collections implementing j ava. uti | . Sort edMap andj ava. util . Sort edSet . You must spe-
cify acomparator in the mapping file:

<set nanme="al i ases"
tabl e="person_al i ases"
sort="natural ">
<key col umm="person"/>
<el ement col um="nanme" type="string"/>
</set>

<map name="hol i days" sort="mny.custom Hol i dayConpar at or" >
<key col um="year _id"/>
<map- key col um="hol _nane" type="string"/>
<el enent col um="hol _date" type="date"/>

</ map>

Hibernate 3.0.5 81

Collection Mapping

Allowed values of the sort attribute are unsorted, natural and the name of a class implementing
java.util . Conparator.

Sorted collections actually behave likej ava. util. TreeSet Of j ava. util. TreeMap.

If you want the database itself to order the collection elements use the or der - by attribute of set, bag or map
mappings. This solution is only available under JDK 1.4 or higher (it is implemented using Li nkedHashSet Or
Li nkedHashMap). This performs the ordering in the SQL query, not in memory.

<set nane="al i ases" tabl e="person_aliases" order-by="|ower(nane) asc">
<key col um="person"/>
<el enent col um="nane" type="string"/>

</ set>

<map nane="hol i days" order-by="hol date, hol nane">
<key col um="year _id"/>
<map- key col um="hol _nanme" type="string"/>
<el ement col um="hol _date type="date"/>

</ map>

Note that the value of the or der - by attributeis an SQL ordering, not aHQL ordering!
Associations may even be sorted by some arbitrary criteriaat runtime using acollectionfilter().

sortedUsers = s.createFilter(group.getUsers(), "order by this.name").list();

7.3.2. Bidirectional associations

A bidirectional association alows navigation from both "ends" of the association. Two kinds of bidirectional
association are supported:

one-to-many
set or bag valued at one end, single-valued at the other

many-to-many
set or bag valued at both ends

Y ou may specify abidirectional many-to-many association simply by mapping two many-to-many associations
to the same database table and declaring one end as inverse (which one is your choice, but it can not be an in-
dexed collection).

Here's an example of a bidirectional many-to-many association; each category can have many items and each
item can be in many categories.

<cl ass nane="Cat egory" >
<id name="id" col um="CATEGORY_I D'/ >

<bag nanme="itens" tabl e="CATEGORY_| TEM >
<key col um="CATEGORY_I D'/ >
<many-to- many class="Iten colum="ITEM |ID"'/>
</ bag>
</ cl ass>

<cl ass nane="Itenl >

<id name="id" col um="CATEGORY_| D'/ >

<I-- inverse end -->
<bag nane="cat egori es" tabl e=" CATEGORY_| TEM' i nverse="true">

Hibernate 3.0.5 82

Collection Mapping

<key colum="1TEM | D"/ >
<many-t o- many cl ass="Category" col utm="CATEGORY_| D'/ >
</ bag>
</cl ass>

Changes made only to the inverse end of the association are not persisted. This means that Hibernate has two
representations in memory for every bidirectional association, one link from A to B and another link from B to
A. Thisis easier to understand if you think about the Java object model and how we create a many-to-many re-
lationship in Java:

category.getltens().add(item; /1l The category now "knows" about the rel ationship
i tem get Cat egori es().add(category); /1l The item now "knows" about the rel ationship
session. persist(iten); /1 The relationship won't be saved!

sessi on. persi st (category); /1l The relationship will be saved

The non-inverse side is used to save the in-memory representation to the database.

Y ou may define a bidirectional one-to-many association by mapping a one-to-many association to the same ta-
ble column(s) as a many-to-one association and declaring the many-valued end i nver se="t rue".

<cl ass nane="Parent">
<id name="id" col um="parent_id"/>

<set nane="children" inverse="true">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</set>
</ cl ass>

<cl ass nanme="eg. Chil d">
<id name="id" colum="id"/>

<many-t o- one name="parent"
cl ass="Parent"
col um="parent _i d"
not-null ="true"/>
</ cl ass>

Mapping one end of an association with i nver se="true" doesn't affect the operation of cascades, these are or-
thogonal concepts!

7.3.3. Ternary associations

There are three possible approaches to mapping aternary association. One isto use a Map with an association as
itsindex:

<map nanme="contracts">
<key col um="enpl oyer i d" not-nul | ="true"/>
<map- key- many-t o- many col um="enpl oyee_i d" cl ass="Enpl oyee"/>
<one-to-many class="Contract"/>

</ map>

<map name="connections">
<key col um="i ncom ng_node_i d"/>
<map- key- many-t o- many col unm="out goi ng_node_i d" cl ass="Node"/>
<many-t o- many col um="connection_i d" cl ass="Connecti on"/>

</ map>

Hibernate 3.0.5 83

Collection Mapping

A second approach is to simply remodel the association as an entity class. This is the approach we use most
commonly.

A final aternative isto use composite elements, which we will discuss later.

7.3.4. Usi ng an <i dbag>

If you've fully embraced our view that composite keys are a bad thing and that entities should have synthetic
identifiers (surrogate keys), then you might find it a bit odd that the many to many associations and collections
of values that we've shown so far all map to tables with composite keys! Now, this point is quite arguable; a
pure association table doesn't seem to benefit much from a surrogate key (though a collection of composite val-
ues might). Nevertheless, Hibernate provides a feature that allows you to map many to many associations and
collections of values to atable with a surrogate key.

The <i dbag> element letsyou map aLi st (or Col | ecti on) with bag semantics.

<i dbag nane="I| overs" tabl e="LOVERS">
<col l ection-id colum="ID" type="long">
<gener ator cl ass="sequence"/>
</coll ection-id>
<key col unm="PERSONL"/ >
<many-t o- many col um="PERSON2" cl ass="eg. Person" outer-join="true"/>
</i dbag>

As you can see, an <i dbag> has a synthetic id generator, just like an entity class! A different surrogate key is
assigned to each collection row. Hibernate does not provide any mechanism to discover the surrogate key value
of aparticular row, however.

Note that the update performance of an <i dbag> is much better than a regular <bag>! Hibernate can locate indi-
vidual rows efficiently and update or delete them individually, just like alist, map or set.

In the current implementation, the nat i ve identifier generation strategy is not supported for <i dbag> collection
identifiers.

7.4. Collection examples

The previous sections are pretty confusing. So letslook at an example. This class:

package eg;
i mport java.util. Set;

public class Parent {
private |ong id,;
private Set children

public long getld() { returnid; }
private void setld(long id) { this.id=id; }

private Set getChildren() { return children; }
private void setChildren(Set children) { this.children=children; }

has a collection of chi | d instances. If each child has at most one parent, the most natural mapping is a one-
to-many association:

Hibernate 3.0.5 84

Collection Mapping

<hi ber nat e- mappi ng>

<cl ass nane="Parent">
<id name="id">
<generator cl ass="sequence"/>
</id>
<set name="chil dren">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</set>
</ cl ass>

<cl ass nanme="Chi | d">
<id name="id">
<gener ator cl ass="sequence"/>
</id>
<property nanme="nane"/>
</cl ass>

</ hi ber nat e- mappi ng>

This maps to the following table definitions:

create table parent (id bigint not null primary key)
create table child (id bigint not null primary key, nane varchar(255), parent_id bigint)
alter table child add constraint childfkO (parent_id) references parent

If the parent isrequired, use a bidirectional one-to-many association:

<hi ber nat e- mappi ng>

<cl ass nanme="Parent" >
<id name="id">
<gener ator cl ass="sequence"/>
</id>
<set nane="children" inverse="true">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</ set >
</ cl ass>

<cl ass nanme="Chil d">
<id nanme="id">
<generator class="sequence"/>

</id>

<property nane="nane"/>

<many-t o-one nane="parent" class="Parent" colum="parent_id" not-null="true"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Noticethe NOT NULL constraint:

create table parent (id bigint not null primary key)
create table child (id bigint not nul
primry key,
nanme var char (255),
parent _id bigint not null)
alter table child add constraint childfkO (parent_id) references parent

Alternatively, if you absolutely insist that this association should be unidirectional, you can declare the nor
NULL constraint on the <key> mapping:

<hi ber nat e- mappi ng>

<cl ass nanme="Parent">

Hibernate 3.0.5 85

Collection Mapping

<id nanme="id">
<gener ator cl ass="sequence"/>

</id>
<set nanme="children">
<key col um="parent _id" not-null="true"/>
<one-to-many class="Child"/>
</set>
</ cl ass>

<cl ass nane="Chil d">
<id name="id">
<generator cl ass="sequence"/>
</id>
<property nanme="nane"/>
</ cl ass>

</ hi ber nat e- mappi ng>

On the other hand, if a child might have multiple parents, a many-to-many association is appropriate:

<hi ber nat e- mappi ng>

<cl ass name="Par ent" >
<id name="id">
<gener at or cl ass="sequence"/>
</id>
<set nane="children" tabl e="chil dset">
<key col um="parent _id"/>
<many-to- many class="Child" colum="child_id"/>
</ set >
</ cl ass>

<cl ass nane="Chil d">
<id name="id">
<gener ator cl ass="sequence"/>
</id>
<property nane="nane"/>
</cl ass>

</ hi ber nat e- mappi ng>

Table definitions;

create table parent (id bigint not null primry key)
create table child (id bigint not null primry key, name varchar(255))
create table childset (parent_id bigint not null

child_id bigint not null,

primary key (parent_id, child_id))
alter table childset add constraint childsetfkO (parent_id) references parent
alter table childset add constraint childsetfkl (child_id) references child

For more examples and a complete walk-through a parent/child relationship mapping, see Chapter 22, Ex-
ample: Parent/Child.

Even more exotic association mappings are possible, we will catalog all possibilitiesin the next chapter.

Hibernate 3.0.5 86

Chapter 8. Association Mappings

8.1. Introduction

Association mappings are the often most difficult thing to get right. In this section we'll go through the canonic-
al cases one by one, starting with unidirectional mappings, and then considering the bidirectional cases. Welll
use Per son and Addr ess in al the examples.

Well classify associations by whether or not they map to an intervening join table, and by multiplicity.

Nullable foreign keys are not considered good practice in traditional data modelling, so al our examples use
not null foreign keys. This is not a requirement of Hibernate, and the mappings will al work if you drop the
nullability constraints.

8.2. Unidirectional associations

8.2.1. many to one

A unidirectional many-to-one association is the most common kind of unidirectional association.

<cl ass nanme="Person" >
<id name="id" col um="personld">
<generator class="native"/>
</id>
<many-t o- one nane="addr ess"
col um="addr essl d"
not - nul | ="true"/>
</ cl ass>

<cl ass nanme="Address" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primry key, addressld bigint not null)
create table Address (addressld bigint not null primry key)

8.2.2. one to one

A unidirectional one-to-one association on a foreign key is amost identical. The only difference is the column
unique constraint.

<cl ass nanme="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<many-t o- one nanme="addr ess"
col um="addr essl d"
uni que="true"
not - nul | ="true"/>
</cl ass>

Hibernate 3.0.5 87

Association Mappings

<cl ass nanme="Address" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primry key, addressld bigint not null unique)
create table Address (addressld bigint not null primry key)

A unidirectional one-to-one association on a primary key usually uses a special id generator. (Notice that we've
reversed the direction of the association in this example.)

<cl ass name="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
</ cl ass>

<cl ass nane="Addr ess" >
<id name="id" col um="personld">
<generator class="foreign">
<par am nane="property" >per son</ par an»
</ gener at or >
</id>
<one-t o-one nanme="person" constrained="true"/>
</ cl ass>

create table Person (personld bigint not null primry key)
create table Address (personld bigint not null primry key)

8.2.3. one to many

A unidirectional one-to-many association on a foreign key is a very unusual case, and is not really recommen-
ded.

<cl ass name="Person" >
<id name="id" col um="personld">
<generator class="native"/>
</id>
<set nanme="addresses">
<key col um="personl d"
not-nul | ="true"/>
<one-to-many cl ass="Address"/>
</set>
</ cl ass>

<cl ass nanme="Address" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primry key)
create table Address (addressld bigint not null primary key, personld bigint not null)

We think it's better to use ajoin table for this kind of association.

Hibernate 3.0.5 88

Association Mappings

8.3. Unidirectional associations with join tables

8.3.1. one to many

A unidirectional one-to-many association on a join table is much preferred. Notice that by specifying
uni que="t r ue" , we have changed the multiplicity from many-to-many to one-to-many.

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<set nanme="addresses" tabl e="PersonAddress">
<key col umm="personld"/>
<many-t o- many col um="addr essl d"
uni que="true"
cl ass="Address"/ >
</set>
</ cl ass>

<cl ass nanme="Address" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primry key)
create table PersonAddress (personld not null, addressld bigint not null primry key)
create table Address (addressld bigint not null primry key)

8.3.2. many to one

A unidirectional many-to-one association on ajoin table is quite common when the association is optional.

<cl ass nanme="Person" >
<id name="id" col um="personld">
<generator class="native"/>
</id>
<j oi n tabl e="Per sonAddr ess"
optional ="true">
<key col umm="personl d" uni que="true"/>
<many-t o- one nane="address"
col um="addr essl d"
not-null="true"/>
</joi n>
</ cl ass>

<cl ass nanme="Addr ess" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primry key)
create tabl e PersonAddress (personld bigint not null primary key, addressld bigint not null)
create table Address (addressld bigint not null primry key)

Hibernate 3.0.5 89

Association Mappings

8.3.3. one to one

A unidirectional one-to-one association on a join table is extremely unusual, but possible.

<cl ass nanme="Person" >
<id name="id" col um="personld">
<generator class="native"/>
</id>
<j oi n tabl e="Per sonAddr ess"
optional ="true">
<key col umm="personl d"
uni que="true"/>
<many-t o- one nane="address"
col um="addr essl d"
not - nul I ="true"
uni que="true"/>
</joi n>
</ cl ass>

<cl ass nane="Address" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primry key)
create tabl e PersonAddress (personld bigint not null primry key, addresslid bigint not null unique)
create table Address (addressld bigint not null primry key)

8.3.4. many to many

Finally, we have a unidirectional many-to-many association.

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<set nane="addresses" tabl e="PersonAddress" >
<key col um="personld"/>
<many-t o- many col utm="addr essl d"
cl ass="Address"/ >
</set>
</ cl ass>

<cl ass nanme="Address" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primry key)
create tabl e PersonAddress (personld bigint not null, addresslid bigint not null, primry key (person
create table Address (addressld bigint not null prinmary key)

8.4. Bidirectional associations

Hibernate 3.0.5 90

Association Mappings

8.4.1. one to many / many to one

A bidirectional many-to-one association is the most common kind of association. (This is the standard parent/
child relationship.)

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<many-t o- one nane="address"
col um="addr essl d"
not-null="true"/>
</ cl ass>

<cl ass nane="Address" >
<id name="id" col um="addressl d">
<generator class="native"/>
</id>
<set nanme="peopl e" inverse="true">
<key col um="addressl d"/>
<one-to-many cl ass="Person"/>
</set>
</ cl ass>

create table Person (personld bigint not null primry key, addresslid bigint not null)
create table Address (addressld bigint not null prinary key)

8.4.2. one to one

A bidirectional one-to-one association on a foreign key is quite common.

<cl ass nanme="Person" >
<id name="id" col um="personld">
<generator class="native"/>
</id>
<many-t o- one nane="addr ess"
col um="addr essl d"
uni que="true"
not-nul | ="true"/>
</cl ass>

<cl ass nane="Address" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
<one-to-one nane="person"
property-ref="address"/>
</ cl ass>

create table Person (personld bigint not null primry key, addressld bigint not null unique)
create table Address (addressld bigint not null prinary key)

A bidirectional one-to-one association on a primary key uses the special id generator.

<cl ass nanme="Person" >
<id name="id" col um="personld">
<generator class="native"/>
</id>
<one-to- one nanme="address"/>
</ cl ass>

Hibernate 3.0.5 91

Association Mappings

<cl ass nane="Address" >
<id name="id" col um="personld">
<generator class="foreign">
<par am name="pr operty" >per son</ par an>
</ gener at or >
</id>
<one-t o0- one nane="person"
constrai ned="true"/>
</cl ass>

create table Person (personld bigint not null primry key)
create table Address (personld bigint not null primary key)

8.5. Bidirectional associations with join tables

8.5.1. one to many / many to one

A bidirectional one-to-many association on a join table. Note that the i nver se="true" can go on either end of
the association, on the collection, or on the join.

<cl ass name="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<set nanme="addresses"
t abl e=" Per sonAddr ess" >
<key col umm="personld"/>
<many-t o- many col um="addr essl d"
uni que="true"
cl ass="Address"/ >
</set>
</ cl ass>

<cl ass nane="Address" >
<id name="id" col um="addressl d">
<generator class="native"/>
</id>
<j oi n tabl e="Per sonAddr ess"
i nverse="true"
optional ="true">
<key col um="addressl d"/>
<many-t o- one name="person"
col um="per sonl d"
not - nul | ="true"/>
</join>
</ cl ass>

create table Person (personld bigint not null primry key)
create tabl e PersonAddress (personld bigint not null, addressid bigint not null primry key)
create table Address (addressld bigint not null primry key)

8.5.2. one to one

A bidirectional one-to-one association on a join table is extremely unusual, but possible.

<cl ass nane="Person" >

Hibernate 3.0.5 92

Association Mappings

<id name="id" col um="personld">
<generator class="native"/>
</id>
<j oi n tabl e="Per sonAddr ess"
optional ="true">
<key col um="personl d"
uni que="true"/>
<many-t o- one nane="addr ess"
col um="addr essl d"
not - nul I ="true"
uni que="true"/>
</joi n>
</ cl ass>

<cl ass nane="Addr ess" >
<id name="id" col um="addressl d">
<generator class="native"/>
</id>
<j oi n tabl e="Per sonAddr ess"
optional ="true"
i nverse="true">
<key col umm="addr essl d"
uni que="true"/>
<many-t o- one nane="address"
col um="per sonl d"
not - nul I ="true"
uni que="true"/>
</join>
</ cl ass>

create table Person (personld bigint not null primry key)

create tabl e PersonAddress (personld bigint not null primry key,
create table Address (addressld bigint not null primry key)

8.5.3. many to many

Finaly, we have abidirectional many-to-many association.

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<set nanme="addresses">
<key col um="personld"/>
<many-t o- many col um="addr essl d"
cl ass="Address"/ >
</set>
</ cl ass>

<cl ass nanme="Address" >
<id name="id" col um="addressl d">
<generator class="native"/>
</id>
<set nane="peopl e" inverse="true">
<key col um="addressl d"/>
<many-t o- many col um="personl d"
cl ass="Person"/ >
</set>
</ cl ass>

create table Person (personld bigint not null primry key)

addressld bigint not null unique)

create tabl e PersonAddress (personld bigint not null, addressld bigint not null, primry key (person

create table Address (addressld bigint not null primry key)

Hibernate 3.0.5

93

Association Mappings

Hibernate 3.0.5

94

Chapter 9. Component Mapping

The notion of a component isre-used in several different contexts, for different purposes, throughout Hibernate.

9.1. Dependent objects

A component is a contained object that is persisted as a value type, not an entity reference. The term "compon-
ent” refers to the object-oriented notion of composition (not to architecture-level components). For example,
you might model a person like this:

public class Person {
private java.util.Date birthday;
private Name name;
private String key;
public String getKey() {
return key;
}

private void setKey(String key) {
t hi s. key=key;
}

public java.util.Date getBirthday() {
return birthday;

}

public void setBirthday(java.util.Date birthday) {
this.birthday = birthday;

}

public Name get Nanme() ({
return nane;

}

public void set Nane(Nanme nane) ({
thi s. nane = nane;

public class Name {
char initial;
String first;
String |ast;
public String getFirst() {
return first;
}

void setFirst(String first) {
this.first = first;

}

public String getlLast() {
return | ast;

}

voi d setlLast(String last) {
this.last = | ast;

public char getlnitial () {
return initial;

}

void setlnitial (char initial) {
this.initial = initial;

}

Now Name may be persisted as a component of Per son. Notice that Nane defines getter and setter methods for
its persistent properties, but doesn't need to declare any interfaces or identifier properties.

Hibernate 3.0.5 95

Component Mapping

Our Hibernate mapping would look like:

<cl ass nane="eg. Person" tabl e="person">
<i d name="Key" col um="pid" type="string">
<generator class="uuid. hex"/>

</id>
<property nane="birthday" type="date"/>
<conmponent name="Nane" cl ass="eg. Name"> <!-- class attribute optional -->

<property nane="initial"/>
<property nanme="first"/>
<property nane="last"/>
</ conponent >
</ cl ass>

The person table would have the columns pi d, bi rt hday, initial,first andl ast.

Like all value types, components do not support shared references. In other words, two persons could have the
same hame, but the two person objects would contain two independent name ojects, only "the same" by value.
The null value semantics of a component are ad hoc. When reloading the containing object, Hibernate will as-
sume that if al component columns are null, then the entire component is null. This should be okay for most
purposes.

The properties of a component may be of any Hibernate type (collections, many-to-one associations, other
components, etc). Nested components should not be considered an exotic usage. Hibernate is intended to sup-
port avery fine-grained object model.

The <conponent > element alows a <par ent > subelement that maps a property of the component class as a ref-
erence back to the containing entity.

<cl ass nane="eg. Person" tabl e="person">
<i d name="Key" col um="pid" type="string">
<generator class="uuid. hex"/>
</id>
<property nane="birthday" type="date"/>
<conponent nanme="Nane" cl ass="eg. Nane" uni que="true">
<par ent nanme="nanedPerson"/> <!-- reference back to the Person -->
<property nane="initial"/>
<property nane="first"/>
<property nanme="|ast"/>
</ conponent >
</ cl ass>

9.2. Collections of dependent objects

Coallections of components are supported (eg. an array of type Nane). Declare your component collection by re-
placing the <el ement > tag with a<conposi t e- el enent > tag.

<set nane="soneNanes" tabl e="sone_nanes" |azy="true">
<key col um="id"/>
<conposite-el enent cl ass="eg. Nane"> <!-- class attribute required -->
<property nane="initial"/>
<property nane="first"/>
<property nane="last"/>
</ conposi t e- el emrent >
</ set>

Note: if you define a set of composite elements, it is very important to implement equal s() and hashCode()
correctly.

Hibernate 3.0.5 96

Component Mapping

Composite elements may contain components but not collections. If your composite element itself contains
components, use the <nest ed- conposi t e- el ement > tag. Thisis a pretty exotic case - a collection of compon-
ents which themselves have components. By this stage you should be asking yourself if a one-to-many associ-
ation is more appropriate. Try remodelling the composite element as an entity - but note that even though the
Javamodel is the same, the relational model and persistence semantics are still slightly different.

Please note that a composite element mapping doesn't support null-able properties if you're using a <set >. Hi-
bernate has to use each columns value to identify a record when deleting objects (there is no separate primary
key column in the composite element table), which is not possible with null values. Y ou have to either use only
not-null propertiesin a composite-element or choose a<l i st >, <map>, <bag> Or <i dbag>.

A special case of a composite element is a composite element with a nested <many- t o- one> element. A map-
ping like this allows you to map extra columns of a many-to-many association table to the composite element
class. The following is a many-to-many association from order to Item where purchasebDate, price and
quant ity are properties of the association:

<cl ass name="eg. Order" >

<set name="purchasedltens" tabl e="purchase_itens" |azy="true">
<key col um="order _id">
<conposi te-el ement cl ass="eg. Purchase" >
<property name="purchaseDate"/>
<property nane="price"/>
<property name="quantity"/>
<many-to-one nane="iten'' class="eg.lten/> <!-- class attribute is optional -->
</ conposi t e- el enent >
</set>
</ cl ass>

Of course, there can't be a reference to the purchae on the other side, for bidirectional association navigation.
Remember that components are value types and don't allow shared references. A single Pur chase can bein the
set of an Or der, but it can't be referenced by the 1 t emat the same time.

Even ternary (or quaternary, etc) associations are possible:

<cl ass name="eg. Order" >

<set nane="purchasedltens" tabl e="purchase_itens" |azy="true">
<key col umm="order _id">
<conposite-el enent cl ass="eg. O derLi ne">
<many-t o- one nane="purchaseDetails cl ass="eg. Purchase"/>
<many-to- one name="iten' class="eg.lteni/>
</ conposi t e-el enent >
</set>
</ cl ass>

Composite elements may appear in queries using the same syntax as associations to other entities.

9.3. Components as Map indices

The <conposi t e- map- key> element lets you map a component class as the key of a vap. Make sure you over-
ride hashCode() and equal s() correctly on the component class.

9.4. Components as composite identifiers

Y ou may use a component as an identifier of an entity class. Y our component class must satisfy certain require-

Hibernate 3.0.5 97

Component Mapping

ments:

e It mustimplementjava.io. Serial i zabl e.
e |t must re-implement equal s() and hashCode() , consistently with the database's notion of composite key
equality.

Note: in Hibernate3, the second requirement is not an absolutely hard requirement of Hibernate. But do it any-
way.

You can't usean I dentifierGenerator togenerate composite keys. Instead the application must assign its own
identifiers.

Use the <conposi t e-i d> tag (with nested <key- pr oper t y> elements) in place of the usual <i d> declaration. For
example, the o der Li ne class has a primary key that depends upon the (composite) primary key of o der .

<cl ass nanme="Order Li ne" >

<conposite-id nane="id" class="OderLineld" >
<key- property name="1lineld"/>
<key- property nane="order|d"/>
<key- property nane="custonerld"/>

</ conposi te-id>

<property nane="nane"/>

<many-t o-one nane="order" class="Order"
insert="fal se" update="fal se">
<col umm nane="order|d"/>
<col um nane="custoner|d"/>
</ many-t o- one>

</ cl ass>

Now, any foreign keys referencing the o der Li ne table are also composite. Y ou must declare this in your map-
pings for other classes. An association to Or der Li ne would be mapped like this:

<many-t o- one nane="orderLi ne" class="OderLine">
<l-- the "class" attribute is optional, as usual -->
<col um nane="linel d"/>
<col um nane="orderld"/>
<col um nane="custonerld"/>
</ many-t o- one>

(Note that the <col um> tag is an alternative to the col um attribute everywhere.)
A many-t o- many association to O der Li ne aso uses the composite foreign key:

<set nane="undel i ver edOr der Li nes" >
<key col umm nanme="war ehousel d"/ >
<many-t o- many cl ass="COrderLi ne">
<col um nane="li nel d"/>
<col um nane="orderld"/>
<col um nane="custonerld"/>
</ many-t o- many>
</set>

The collection of o der Li nesin o der would use:

<set nane="orderLines" inverse="true">
<key>
<col um nane="orderld"/>
<col um nane="custonerld"/>

Hibernate 3.0.5 98

Component Mapping

</ key>
<one-to-many cl ass="OrderLine"/>
</ set>

(The <one- t o- many> element, as usual, declares no columns.)
If o der Li ne itself owns acollection, it also has a composite foreign key.

<cl ass nanme="Or der Li ne" >

<list name="deliveryAttenpts">

<key> <I-- a collection inherits the conposite key type -->
<col um nane="linel d"/>
<col um nane="orderld"/>
<col umm nane="custoner|d"/>

</ key>

<list-index colum="attenptld" base="1"/>

<conposi te-el emrent class="DeliveryAttenpt">

</ conposi t e-el enent >
</set>
</cl ass>

9.5. Dynamic components

Y ou may even map a property of type Map:

<dynami c- conponent nanme="userAttri butes">

<property nane="foo" col um="FQOO'/>

<property nane="bar" col um="BAR'/>

<many-t o- one name="baz" cl ass="Baz" col um="BAZ_|D'/>
</ dynam c- conponent >

The semantics of a <dynani c- conponent > mapping are identical to <conponent >. The advantage of this kind of
mapping is the ability to determine the actual properties of the bean at deployment time, just by editing the
mapping document. Runtime manipulation of the mapping document is also possible, using a DOM parser.
Even better, you can access (and change) Hibernate's configuration-time metamodel viathe Confi gur ati on ob-
ject.

Hibernate 3.0.5 99

Chapter 10. Inheritance Mapping

10.1. The Three Strategies

Hibernate supports the three basic inheritance mapping strategies.

* table per class hierarchy
e table per subclass
» table per concrete class

In addition, Hibernate supports afourth, slightly different kind of polymorphism:

e implicit polymorphism

It is possible to use different mapping strategies for different branches of the same inheritance hierarchy, and
then make use of implicit polymorphism to achieve polymorphism across the whole hierarchy. However, Hi-
bernate does not support mixing <subcl ass>, and <j oi ned- subcl ass> and <uni on- subcl ass> Mappings under
the same root <cl ass> element. It is possible to mix together the table per hierarchy and table per subclass
strategies, under the the same <cl ass> element, by combining the <subcl ass> and <j oi n> elements (see be-
low).

10.1.1. Table per class hierarchy

Suppose we have an interface Payment , with implementors Cr edi t Car dPaynent , CashPayment , ChequePaynent .
The table per hierarchy mapping would look like:

<cl ass nane="Paynent" tabl e=" PAYMENT" >
<id name="id" type="long" col um="PAYMENT | D'>
<generator class="native"/>
</id>
<di scri m nator col um="PAYMENT_TYPE" type="string"/>
<property name="anount" col utm="AMOUNT"/ >

<subcl ass nane="Credi t Car dPaynent" di scri m nator-val ue="CREDI T" >
<property nane="creditCardType" col um="CCTYPE"/>

</ subcl ass>
<subcl ass nane="CashPaynent" di scri m nator-val ue=" CASH"' >

</ subcl ass>
<subcl ass nane="ChequePaynent" di scri n nator-val ue=" CHEQUE" >

</ subcl ass>
</ cl ass>

Exactly onetableisrequired. Thereisone big limitation of this mapping strategy: columns declared by the sub-
classes, such as cCTYPE, may not have NOT NULL constraints.

10.1.2. Table per subclass

A table per subclass mapping would look like:

Hibernate 3.0.5 100

Inheritance Mapping

<cl ass nane="Paynent" tabl e=" PAYMENT" >
<id name="id" type="long" col um="PAYMENT | D"'>
<generator class="native"/>
</id>
<property nane="anmount" col utm="AMOUNT"/ >

<j oi ned- subcl ass nane="Credi t Car dPaynent " tabl e=" CREDI T_PAYMENT" >
<key col umm="PAYMENT | D'/ >
<property nane="creditCardType" col um="CCTYPE"/>

</ j oi ned- subcl ass>
<j oi ned- subcl ass nane="CashPaynent" tabl e=" CASH_PAYNMENT" >
<key col um="PAYMENT_I D'/ >

</j oi ned- subcl ass>
<j oi ned- subcl ass nane="ChequePaynent" tabl e=" CHEQUE PAYMENT" >
<key col um="PAYMENT_I D'/ >

</ j oi ned- subcl ass>
</ cl ass>

Four tables are required. The three subclass tables have primary key associations to the superclass table (so the
relational model is actually a one-to-one association).

10.1.3. Table per subclass, using a discriminator

Note that Hibernate's implementation of table per subclass requires no discriminator column. Other object/
relational mappers use a different implementation of table per subclass which requires a type discriminator
column in the superclass table. The approach taken by Hibernate is much more difficult to implement but argu-
ably more correct from arelational point of view. If you would like to use a discriminator column with the table
per subclass strategy, you may combine the use of <subcl ass> and <j oi n>, asfollow:

<cl ass nane="Paynent" tabl e=" PAYMENT" >
<id name="id" type="long" col um="PAYMENT | D'>
<generator class="native"/>
</id>
<di scri m nator col um="PAYMENT_TYPE" type="string"/>
<property nanme="anount" col utm="AMOUNT"/ >

<subcl ass nane="Credit CardPaynent" di scrim nator-val ue="CREDI T" >
<joi n tabl e="CRED T_PAYMENT" >
<property nane="creditCardType" col um="CCTYPE"/ >

</joi n>

</ subcl ass>

<subcl ass nane="CashPaynent" di scri m nator-val ue=" CASH"' >
<j oi n tabl e=" CASH_PAYMENT" >

</j oi n>

</ subcl ass>

<subcl ass nane="ChequePaynment" di scri n nator-val ue=" CHEQUE" >
<j oi n tabl e=" CHEQUE_PAYMENT" fetch="sel ect">

</joi n>
</ subcl ass>
</ cl ass>

The optional f et ch="sel ect " declaration tells Hibernate not to fetch the chequePayment subclass data using an
outer join when querying the superclass.

10.1.4. Mixing table per class hierarchy with table per subclass

Hibernate 3.0.5 101

Inheritance Mapping

Y ou may even mix the table per hierarchy and table per subclass strategies using this approach:

<cl ass nane="Paynent" tabl e=" PAYMENT" >
<id name="id" type="long" col um="PAYMENT_| D">
<generator class="native"/>
</id>
<di scri m nat or col um="PAYMENT TYPE" type="string"/>
<property nane="anount" col utm="AMOUNT"/ >

<subcl ass nane="Credit Car dPaynent" di scri m nator-val ue="CREDI T" >
<joi n tabl e="CREDI T_PAYNMENT" >
<property nane="creditCardType" col um="CCTYPE"/>

</j oi n>
</ subcl ass>
<subcl ass nane="CashPaynment" di scri m nat or-val ue=" CASH" >

</ subcl ass>
<subcl ass nane="ChequePaynent" di scri nm nator-val ue=" CHEQUE" >

</ subcl ass>
</ cl ass>

For any of these mapping strategies, a polymorphic association to the root Paynent class is mapped using
<many-t o-one>.

<many-t o- one nane="paynent" col um="PAYMENT_ I D' cl ass="Paynent"/>

10.1.5. Table per concrete class

There are two ways we could go about mapping the table per concrete class strategy. The first is to use
<uni on- subcl ass>.

<cl ass nane="Paynent ">
<id name="id" type="long" col um="PAYMENT | D'>
<generator class="sequence"/>
</id>
<property nane="anmount" col utm="AMOUNT"/ >

<uni on- subcl ass nanme="Credit CardPaynment" tabl e=" CREDI T_PAYMENT" >
<property nanme="creditCardType" col utm="CCTYPE"/>

</ uni on- subcl ass>
<uni on- subcl ass nanme="CashPaynent" tabl e=" CASH PAYMENT" >

</ uni on- subcl ass>
<uni on- subcl ass nane="ChequePaynent" t abl e=" CHEQUE_ PAYNMENT" >

</ uni on- subcl ass>
</ cl ass>

Three tables are involved. Each table defines columns for all properties of the class, including inherited proper-
ties.

The limitation of this approach is that if a property is mapped on the superclass, the column name must be the
same on all subclass tables. (We might relax this in a future release of Hibernate)) The identity generator
strategy is not allowed in union subclass inheritance, indeed the primary key seed has to be shared accross all
unioned subclasses of a hierarchy.

10.1.6. Table per concrete class, using implicit polymorphism

Hibernate 3.0.5 102

Inheritance Mapping

An aternative approach is to make use of implicit polymorphism:

<cl ass nanme="Credit CardPaynent" tabl e=" CREDI T_PAYMENT" >
<id name="id" type="long" colum="CRED T_PAYMENT | D"'>
<generator class="native"/>
</id>
<property nane="anmount" col um="CREDI T_AMOUNT"/ >

</ cl ass>
<cl ass nanme="CashPaynent" tabl e=" CASH PAYMENT" >
<id name="id" type="long" columm="CASH PAYMENT | D'>
<generator class="native"/>

</id>
<property nane="anmount" col utm="CASH_AMOUNT"/ >

</ cl ass>
<cl ass nane="ChequePaynent" tabl e=" CHEQUE PAYMENT" >
<id name="id" type="long" col um="CHEQUE PAYMENT | D">
<generator class="native"/>

</id>
<property nane="anmount" col um="CHEQUE AMOUNT"/ >

</ cl ass>

Notice that nowhere do we mention the Paynent interface explicitly. Also notice that properties of Payment are
mapped in each of the subclasses. If you want to avoid duplication, consider using XML entities (e.g. |
<IENTITY al |l properties SYSTEM "al | properties.xm ">] inthe DOCTYPE declartion and &al | properti es;
in the mapping).

The disadvantage of this approach is that Hibernate does not generate SQL uNi ans when performing poly-
morphic queries.

For this mapping strategy, a polymorphic association to Payrent is usually mapped using <any>.

<any name="payment" mneta-type="string" id-type="Iong">
<net a- val ue val ue="CREDI T" cl ass="Credit CardPaynent"/ >
<net a- val ue val ue="CASH"' cl ass="CashPaynent"/>
<net a- val ue val ue="CHEQUE" cl ass="ChequePaynent"/>
<col um name="PAYMENT_CLASS"/ >
<col um nane="PAYMENT | D'/ >

</ any>

10.1.7. Mixing implicit polymorphism with other inheritance mappings

There is one further thing to notice about this mapping. Since the subclasses are each mapped in their own
<cl ass> element (and since Paynent isjust an interface), each of the subclasses could easily be part of another
inheritance hierarchy! (And you can still use polymorphic queries against the Payrent interface.)

<cl ass nanme="Credit CardPaynent" tabl e="CREDI T_PAYMENT" >
<id name="id" type="long" colum="CRED T_PAYMENT | D"'>
<generator class="native"/>
</id>
<di scri m nat or col um="CREDI T_CARD' type="string"/>
<property nane="anount" col utm="CREDI T_AMOUNT"/ >

<subcl ass nane="Mast er Car dPaynent " di scri m nat or-val ue="MDC'/ >
<subcl ass nane="Vi saPaynent" di scri m nator-val ue="VI SA"/ >
</ cl ass>

<cl ass nanme="Nonel ectroni cTransacti on” tabl e=" NONELECTRONI C_TXN'>
<id name="id" type="long" colum="TXN | D"'>

Hibernate 3.0.5 103

Inheritance Mapping

<generator class="native"/>

</id>

<j oi ned- subcl ass nane="CashPayment" tabl e=" CASH_PAYMENT" >

<key col um="PAYMENT_| D'/ >

<property nanme="anount" col utm="CASH AMOUNT"/ >

</ j oi ned- subcl ass>

<j oi ned- subcl ass nane="ChequePaynent" tabl e=" CHEQUE_PAYMENT" >

<key col umm="PAYMENT | D'/ >

<property nanme="anount" col um="CHEQUE AMOUNT"/ >

</j oi ned- subcl ass>

</ cl ass>

Once again, we don't mention Payrent explicitly. If we execute a query against the Paynent interface - for ex-
ample, from Paynent - Hibernate automatically returns instances of Credi t Car dPaynent (and its subclasses,
since they also implement Paynent), CashPayment and ChequePayment but not instances of Nonel ect roni c-

Transacti on.

10.2. Limitations

There are certain limitations to the "implicit polymorphism™ approach to the table per concrete-class mapping
strategy. There are somewhat less restrictive limitations to <uni on- subcl ass> mappings.

The following table shows the limitations of table per concrete-class mappings, and of implicit polymorphism,

in Hibernate.

Table 10.1. Features of inheritance mappings

Inherit- Poly- Poly- Poly- Poly- Poly- Poly- Poly-
ance mor phic mor phic mor phic mor phic mor phic mor phic mor phic
strategy many- one-to-one one- many- | oad()/get queries joins
to-one to-many to-many)
table per <many-to-o0 <one-to0-on <one-to-ma <many-to-m s.get(Paym from Pay- from O der
class- ne> e> ny> any> ent.class, nent p o join
hierarchy i d) 0. payment
p
table per <nmany-to-o0 | <one-to-on <one-to-ma <many-to-m s.get(Paym from Pay- from O der
subclass ne> e> ny> any> ent.class, ment p ojoin
i d) 0. paynent
p
table per <many-to-o <one-to0-on | <one-to-ma <many-to-m s.get(Paym from Pay- from O der
concrete- ne> e> ny> (for any> ent.class, nent p ojoin
class in- i d) 0. payment
(union-subc verse="tru p
|ass) e" only)
table per <any> not suppor- | Not sUuppor- <meny-to-a 's.createCr from Pay- NOt sUppor-
concrete ted ted ny> iter- ment p ted
class i a(Paynent
(implicit .class). ad
polymorph- d(Re-

Hibernate 3.0.5

104

Inheritance Mapping

Inherit- Poly-
ance mor phic
strategy many-

to-one
ism)

Poly- Poly- Poly-
mor phic mor phic mor phic
one-to-one one- many-

to-many to-many

Poly- Poly-
mor phic mor phic
| oad()/get queries
0

stric-
tions.idEq
(id)

) . uni queRe
sult()

Poly-
mor phic
joins

Hibernate 3.0.5

105

Chapter 11. Working with objects

Hibernate is a full object/relational mapping solution that not only shields the developer from the details of the
underlying database management system, but also offers state management of objects. This s, contrary to the
management of SQL statenents in common JDBC/SQL persistence layers, a very natural object-oriented
view of persistence in Java applications.

In other words, Hibernate application developers should always think about the state of their objects, and not
necessarily about the execution of SQL statements. This part is taken care of by Hibernate and is only relevant
for the application devel oper when tuning the performance of the system.

11.1. Hibernate object states

Hibernate defines and supports the following object states:

e Transient - an object istransient if it has just been instantiated using the new operator, and it is not associ-
ated with a Hibernate Sessi on. It has no persistent representation in the database and no identifier value has
been assigned. Transient instances will be destroyed by the garbage collector if the application doesn't hold
areference anymore. Use the Hibernate Sessi on to make an object persistent (and let Hibernate take care of
the SQL statements that heed to be executed for this transition).

« Persistent - a persistent instance has a representation in the database and an identifier value. It might just
have been saved or loaded, however, it is by definition in the scope of a Sessi on. Hibernate will detect any
changes made to an object in persistent state and synchronize the state with the database when the unit of
work completes. Developers don't execute manual UPDATE statements, or DELETE statements when an object
should be made transient.

« Detached - a detached instance is an object that has been persistent, but its Sessi on has been closed. The
reference to the object is still valid, of course, and the detached instance might even be modified in this
state. A detached instance can be reattached to a new Sessi on at alater point in time, making it (and all the
modifications) persistent again. This feature enables a programming model for long running units of work
that require user think-time. We call them application transactions, i.e. a unit of work from the point of
view of the user.

WEell now discuss the states and state transitions (and the Hibernate methods that trigger a transition) in more
detail.

11.2. Making objects persistent

Newly instantiated instances of a a persistent class are considered transient by Hibernate. We can make a tran-
sient instance persistent by associating it with a session:

DonmesticCat fritz = new DomesticCat();
fritz.setCol or(Col or. d NGER) ;
fritz.setSex('M);

fritz.setNane("Fritz");

Long generatedld = (Long) sess.save(fritz);

If cat has a generated identifier, the identifier is generated and assigned to the cat when save() is caled. If
cat has an assi gned identifier, or a composite key, the identifier should be assigned to the cat instance before
calling save() . You may also use persi st () instead of save(), with the semantics defined in the EJB3 early

Hibernate 3.0.5 106

Working with objects

draft.
Alternatively, you may assign the identifier using an overloaded version of save() .

Donesti cCat pk = new DonesticCat();
pk. set Col or (Col or. TABBY) ;

pk. set Sex(' F');

pk. set Name(" PK") ;

pk. setKittens(new HashSet());
pk.addKitten(fritz);

sess. save(pk, new Long(1234));

If the object you make persistent has associated objects (e.g. the ki t t ens collection in the previous example),
these objects may be made persistent in any order you like unless you have a NOT NULL constraint upon a for-
eign key column. There is never arisk of violating foreign key constraints. However, you might violate a NOT
NULL constraint if you save() the objectsin the wrong order.

Usually you don't bother with this detail, as you'll very likely use Hibernate's transitive persistence feature to
save the associated objects automatically. Then, even NOT NULL constraint violations don't occur - Hibernate
will take care of everything. Transitive persistence is discussed later in this chapter.

11.3. Loading an object

Thel oad() methods of sessi on gives you away to retrieve a persistent instance if you already know itsidenti-
fier. | oad() takesaclass object and will load the state into a newly instantiated instance of that class, in persist-
ent state.

Cat fritz = (Cat) sess.load(Cat.class, generatedld);

/1 you need to wap primtive identifiers
| ong pkld = 1234;
Donesti cCat pk = (DonesticCat) sess.load(Cat.class, new Long(pkld));

Alternatively, you can load state into a given instance:

Cat cat = new DonesticCat();

/1 load pk's state into cat

sess. | oad(cat, new Long(pkld));
Set kittens = cat.getKittens();

Note that 1 oad() will throw an unrecoverable exception if there is no matching database row. If the classis
mapped with aproxy, | oad() just returns an uninitialized proxy and does not actually hit the database until you
invoke a method of the proxy. This behaviour is very useful if you wish to create an association to an object
without actually loading it from the database. It also alows multiple instances to be loaded as a batch if bat ch-
si ze isdefined for the class mapping.

If you are not certain that a matching row exists, you should use the get () method, which hits the database im-
mediately and returns null if there is no matching row.

Cat cat = (Cat) sess.get(Cat.class, id);
if (cat==null) {

cat = new Cat();

sess. save(cat, id);

}

return cat;

You may even load an object using an SQL SELECT ... FOR UPDATE, using a LockMde. See the API docu-

Hibernate 3.0.5 107

Working with objects

mentation for more information.

Cat cat = (Cat) sess.get(Cat.class, id, LockMde. UPGRADE);

Note that any associated instances or contained collections are not selected FOR UPDATE, unless you decide to
specify | ock or al | as acascade style for the association.

It is possible to re-load an object and all its collections at any time, using the ref resh() method. Thisis useful
when database triggers are used to initialize some of the properties of the object.

sess. save(cat);
sess. flush(); //force the SQ. | NSERT
sess.refresh(cat); //re-read the state (after the trigger executes)

An important question usually appears at this point: How much does Hibernate load from the database and how
many SQL seLecTs will it use? This depends on the fetching strategy and is explained in Section 20.1,
“Fetching strategies’.

11.4. Querying

If you don't know the identifiers of the objects you are looking for, you need a query. Hibernate supports an
easy-to-use but powerful object oriented query language (HQL). For programmatic query creation, Hibernate
supports a sophisticated Criteria and Example query feature (QBC and QBE). Y ou may also express your query
in the native SQL of your database, with optional support from Hibernate for result set conversion into objects.

11.4.1. Executing queries

HQL and native SQL queries are represented with an instance of or g. hi ber nat e. Query. This interface offers
methods for parameter binding, result set handling, and for the execution of the actual query. You aways ob-
tain aQuery using the current Sessi on:

Li st cats = session. createQuery(
"from Cat as cat where cat.birthdate < ?")
.setDate(0, date)
dist();

Li st nmothers = session. createQuery(
"select nother fromCat as cat join cat.nother as nother where cat.nane = ?")
.setString(0, nane)
dist();

Li st kittens = session. createQuery(
"from Cat as cat where cat.nother = ?")
.setEntity(0, pk)
dist();

Cat nother = (Cat) session.createQuery(
"sel ect cat.nother from Cat as cat where cat = ?")
.setEntity(0, izi)
.uni queResul t () ;

A query isusually executed by invoking | i st (), the result of the query will be loaded completely into a collec-
tion in memory. Entity instances retrieved by a query are in persistent state. The uni queResul t () method offers

ashortcut if you know your query will only return a single object.

Iterating results

Hibernate 3.0.5 108

Working with objects

Occasionally, you might be able to achieve better performance by executing the query using the i terat e()
method. This will only usually be the case if you expect that the actual entity instances returned by the query
will aready be in the session or second-level cache. If they are not already cached, i terate() will be slower
than i st () and might require many database hits for a simple query, usually 1 for the initial select which only
returnsidentifiers, and n additional selectsto initialize the actual instances.

[l fetch ids
Iterator iter = sess.createQuery("fromeg. Qx q order by g.likeliness").iterate();
while (iter.hasNext()) {
Qux qux = (Qux) iter.next(); // fetch the object
/1 sonmething we coul dnt express in the query
i f (qux.calcul ateConplicatedAl gorithm()) {
/1 delete the current instance
iter.renmove();
/1 dont need to process the rest
br eak;

Queries that return tuples
Hibernate queries sometimes return tuples of objects, in which case each tuple is returned as an array:

Iterator kittensAndMothers = sess. createQuery(
"select kitten, nmother from Cat kitten join kitten. nother nother")
list()
.iterator();

whil e (kittensAndMot hers. hasNext ()) {
bject[] tuple = (Object[]) kittensAndMot hers. next();
Cat kitten tupl e[0] ;
Cat not her tupl e[1];

Scalar results

Queries may specify a property of aclassin the sel ect clause. They may even call SQL aggregate functions.
Properties or aggregates are considered "scalar” results (and not entitiesin persistent state).

Iterator results = sess.createQuery(
"select cat.color, mn(cat.birthdate), count(cat) fromCat cat " +
"group by cat.color")
ist()
.iterator();

while (results.hasNext()) {
Cbject[] row = results. next();
Col or type = (Color) row0];
Date ol dest = (Date) row 1];
I nteger count = (Integer) row2];

Bind parameters

Methods on Query are provided for binding values to named parameters or JDBC-style ? parameters. Contrary
to JDBC, Hibernate numbers parameters from zero. Named parameters are identifiers of the form : nane in the
query string. The advantages of named parameters are:

* named parameters are insensitive to the order they occur in the query string

Hibernate 3.0.5 109

Working with objects

» they may occur multiple timesin the same query
» they are self-documenting

[/ named paraneter (preferred)
Query g = sess.createQuery("from Donesti cCat cat where cat.nane = :nanme");
g.setString("name", "Fritz");
Iterator cats = g.iterate();

[/ positional paraneter

Query g = sess.createQuery("from Donmesti cCat cat where cat.nane = ?");
g.setString(0, "lzi");

Iterator cats = qg.iterate();

/I naned paraneter |ist

Li st nanes = new ArraylList();

nanes. add("1zi");

nanmes. add("Fritz");

Query g = sess.createQuery("from DonesticCat cat where cat.nane in (:nanmesList)");
g. set Par anet er Li st ("nanesLi st", nanes);

List cats = qg.list();

Pagination

If you need to specify bounds upon your result set (the maximum number of rows you want to retrieve and / or
the first row you want to retrieve) you should use methods of the Quer y interface:

Query g = sess.createQuery("from DonmesticCat cat");
g. set Fi rst Resul t (20) ;

g. set MaxResul t s(10) ;

List cats = g.list();

Hibernate knows how to trandlate this limit query into the native SQL of your DBMS.

Scrollable iteration

If your JDBC driver supports scrollable Resul t Set S, the Query interface may be used to obtain a Scrol | a-
bl eResul t s object, which allows flexible navigation of the query results.

Query g = sess.createQuery("sel ect cat.name, cat from DonmesticCat cat " +
"order by cat.nane");

Scrol | abl eResults cats = q.scroll();

if (cats.first()) {

/1 find the first name on each page of an al phabetical |ist of cats by nane
firstNamesOf Pages = new ArraylList();
do {

String nanme = cats.getString(0);
first NanmesOf Pages. add(nane) ;

}
while (cats.scroll (PAGE_SIZE));

/1 Now get the first page of cats

pageOf Cats = new Arraylist();

cats. beforeFirst();

int i=0;

while((PAGE_SIZE > i++) && cats.next()) pageO Cats.add(cats.get(1));

cats.close()

Note that an open database connection (and cursor) is required for this functionality, use set MaxResul t () /set -
Fi rstResul t () if you need offline pagination functionality.

Hibernate 3.0.5 110

Working with objects

Externalizing named queries

Y ou may also define named queries in the mapping document. (Remember to use a CDATA section if your query
contains characters that could be interpreted as markup.)

<query nane="eg. Donesti cCat . by. nane. and. m ni mum wei ght " ><! [CDATA[
from eg. Donesti cCat as cat
where cat.name = ?
and cat.weight > ?
1 1></query>

Parameter binding and executing is done programatically:

Query g = sess. get NanmedQuery("eg. Donesti cCat . by. nane. and. m ni nrum wei ght");
g.setString(0, nane);

g.setInt(1, mnWight);

List cats = qg.list();

Note that the actual program code is independent of the query language that is used, you may also define native
SQL queriesin metadata, or migrate existing queries to Hibernate by placing them in mapping files.

11.4.2. Filtering collections

A collection filter is a specia type of query that may be applied to a persistent collection or array. The query
string may refer to t hi s, meaning the current collection element.

Col I ection blackKittens = session.createFilter(
pk. getKittens(),
"where this.color = ?")
. set Paranet er (Col or. BLACK, Hi bernate. custon(Col orUser Type. cl ass))
list()

The returned collection is considered a bag, and it's a copy of the given collection. The original collection is not
modified (thisis contrary to the implication of the name "filter", but consistent with expected behavior).

Observe that filters do not require af r omclause (though they may have one if required). Filters are not limited
to returning the collection elements themselves.

Col I ection bl ackKittenMates = session.createFilter(
pk.getKittens(),
"select this.mate where this.color = eg. Col or. BLACK. i nt Val ue")
dist();

Even an empty filter query isuseful, e.g. to load a subset of elementsin a huge collection:

Col l ection tenKittens = session.createFilter(

not her. getKittens(), "")
.setFirstResul t (0).set MaxResul t s(10)
dist();

11.4.3. Criteria queries

HQL is extremely powerful but some developers prefer to build queries dynamically, using an object-oriented
AP, rather than building query strings. Hibernate provides an intuitive cri t eri a query APl for these cases:

Criteria crit = session.createCriteria(Cat.class);

Hibernate 3.0.5 111

Working with objects

crit.add(Expression.eq("color", eg.Color.BLACK));
crit.set MaxResul t s(10);
List cats = crit.list();

Thecriteria and the associated Exanpl e API are discussed in more detail in Chapter 16, Criteria Queries.

11.4.4. Queries in native SQL

You may express a query in SQL, using creat eSQLQuery() and let Hibernate take care of the mapping from
result sets to objects. Note that you may at any time call sessi on. connecti on() and use the JDBC Connecti on
directly. If you chose to use the Hibernate API, you must enclose SQL aliasesin braces:

Li st cats = session. createSQLQuery(
"SELECT {cat.*} FROM CAT {cat} WHERE ROWNUMK10",
"cat”,
Cat . cl ass

). list();

Li st cats = session. createSQ.Query(
"SELECT {cat}.ID AS {cat.id}, {cat}.SEX AS {cat.sex}, " +
"{cat}. MATE AS {cat.mate}, {cat}.SUBCLASS AS {cat.class}, ... " +
"FROM CAT {cat} WHERE RO/NUM<10",
"cat",
Cat . cl ass

). list()

SQL gueries may contain named and positional parameters, just like Hibernate queries. More information about
native SQL queriesin Hibernate can be found in Chapter 17, Native SQL.

11.5. Modifying persistent objects

Transactional persistent instances (ie. objects loaded, saved, created or queried by the Sessi on) may be manip-
ulated by the application and any changes to persistent state will be persisted when the Sessi on is flushed
(discussed later in this chapter). There is no need to call a particular method (like updat e() , which has a differ-
ent purpose) to make your modifications persistent. So the most straightforward way to update the state of an
objectisto oad() it, and then manipulate it directly, while the Sessi on is open:

DonesticCat cat = (DonesticCat) sess.|load(Cat.class, new Long(69));
cat.set Nane("PK");
sess.flush(); // changes to cat are automatically detected and persisted

Sometimes this programming model is inefficient since it would require both an SQL SELECT (to load an ob-
ject) and an SQL UPDATE (to persist its updated state) in the same session. Therefore Hibernate offers an altern-
ate approach, using detached instances.

Note that Hibernate does not offer its own API for direct execution of UPDATE or DELETE statements. Hibernate
is a state management service, you don't have to think in statements to use it. JDBC is a perfect API for execut-
ing QL statements, you can get a JDBC Connect i on at any time by calling sessi on. connecti on() . Further-
mor e, the notion of mass operations conflicts with object/relational mapping for online transaction processing-
oriented applications. Future versions of Hibernate may however provide special mass operation functions. See
Chapter 14, Batch processing for some possible batch operation tricks.

11.6. Modifying detached objects

Hibernate 3.0.5 112

Working with objects

Many applications need to retrieve an object in one transaction, send it to the Ul layer for manipulation, then
save the changes in a hew transaction. Applications that use this kind of approach in a high-concurrency envir-
onment usually use versioned data to ensure isolation for the "long" unit of work.

Hibernate supports this model by providing for reattachment of detached instances using the Ses-
si on. updat e() Or Sessi on. ner ge() methods:

/1 in the first session

Cat cat = (Cat) firstSession.|load(Cat.class, catld);
Cat potential Mate = new Cat ();
firstSession.save(potential Mate);

/1 in a higher |ayer of the application
cat.set Mate(potenti al Mate);

// later, in a new session
secondSessi on. update(cat); // update cat
secondSessi on. update(mate); // update mate

If the cat with identifier cat |1 d had already been loaded by secondSessi on when the application tried to reat-
tach it, an exception would have been thrown.

Use updat e() if you are sure that the session does not contain an already persistent instance with the same
identifier, and mer ge() if you want to merge your modifications at any time without consideration of the state
of the session. In other words, updat e() is usually the first method you would call in a fresh session, ensuring
that reattachment of your detached instances is the first operation that is executed.

The application should individually updat e() detached instances reachable from the given detached instance if
and only if it wants their state al'so updated. This can be automated of course, using transitive persistence, see
Section 11.11, “Transitive persistence”.

The 1 ock() method also allows an application to reassociate an object with a new session. However, the de-
tached instance has to be unmodified!

/ljust reassoci ate:

sess. lock(fritz, LockMbde. NONE);

//do a version check, then reassoci ate:

sess. |l ock(izi, LockMbde. READ);

//do a version check, using SELECT ... FOR UPDATE, then reassoci ate:
sess. | ock(pk, LockMbde. UPGRADE) ;

Note that | ock() can be used with various LockMdes, see the APl documentation and the chapter on transac-
tion handling for more information. Reattachment is not the only usecase for | ock() .

Other models for long units of work are discussed in Section 12.3, * Optimistic concurrency control”.

11.7. Automatic state detection

Hibernate users have requested a general purpose method that either saves a transient instance by generating a
new identifier or updates/reattaches the detached instances associated with its current identifier. The saveOr Up-
dat e() method implements this functionality.

/1 in the first session
Cat cat = (Cat) firstSession.load(Cat.class, catlD);

/1 in a higher tier of the application
Cat mate = new Cat ();
cat.setMate(nmate);

Hibernate 3.0.5 113

Working with objects

// later, in a new session
secondSessi on. saveOr Updat e(cat) ; /] update existing state (cat has a non-null id)
secondSessi on. saveOr Update(mate); // save the new instance (nmate has a null id)

The usage and semantics of saveOr Updat e() seems to be confusing for new users. Firstly, so long as you are
not trying to use instances from one session in another new session, you should not need to use updat e() , sa-
veOr Updat e() , Or mer ge() . Some whole applications will never use either of these methods.

Usually updat e() or saveOr Updat e() are used in the following scenario:

« the application loads an object in the first session

» theobject ispassed up to the Ul tier

» some modifications are made to the object

« theobject is passed back down to the businesslogic tier

« the application persists these modifications by calling updat e() inasecond session

saveOr Updat e() doesthe following:

» if the object is aready persistent in this session, do nothing

« if another object associated with the session has the same identifier, throw an exception

« if the object has no identifier property, save() it

» if the object'sidentifier has the value assigned to a newly instantiated object, save() it

« if the object is versioned (by a <versi on> or <ti mest anp>), and the version property value is the same
value assigned to a newly instantiated object, save() it

e otherwise updat e() the object

and rrer ge() isvery different:

» if thereis a persistent instance with the same identifier currently associated with the session, copy the state
of the given object onto the persistent instance

e if there is no persistent instance currently associated with the session, try to load it from the database, or
create anew persistent instance

» the persistent instance is returned

« the given instance does not become associated with the session, it remains detached

11.8. Deleting persistent objects

Sessi on. del et e() will remove an object's state from the database. Of course, your application might still hold
areference to adeleted object. It's best to think of del et e() as making a persistent instance transient.

sess. del ete(cat);

You may delete objects in any order you like, without risk of foreign key constraint violations. It is till pos-
sible to violate a NOT NULL constraint on a foreign key column by deleting objects in the wrong order, e.g. if
you delete the parent, but forget to delete the children.

11.9. Replicating object between two different datastores

It is occasionally useful to be able to take a graph of persistent instances and make them persistent in a different
datastore, without regenerating identifier values.

/lretrieve a cat from one dat abase

Hibernate 3.0.5 114

Working with objects

Sessi on sessionl = factoryl. openSession();
Transaction tx1l = sessionl. begi nTransaction();
Cat cat = sessionl.get(Cat.class, catld);
tx1l.comit();

sessi onl. cl ose();

/lreconcile with a second dat abase

Sessi on session2 = factory2. openSessi on();

Transaction tx2 = session2. begi nTransacti on();
session2.replicate(cat, ReplicationMde. LATEST VERSI ON);
tx2.commt();

sessi on2. cl ose();

TheRepl i cati onMode determines how repl i cat e() will deal with conflicts with existing rows in the database.

* ReplicationMde. | GNORE - ignore the object when there is an existing database row with the same identifi-
er

* ReplicationMde. OVERWRI TE - overwrite any existing database row with the same identifier

e ReplicationMde. EXCEPTI ON - throw an exception if there is an existing database row with the same identi-
fier

* ReplicationMde. LATEST_VERSI ON - overwrite the row if its version number is earlier than the version
number of the object, or ignore the object otherwise

Usecases for this feature include reconciling data entered into different database instances, upgrading system
configuration information during product upgrades, rolling back changes made during non-ACID transactions
and more.

11.10. Flushing the Session

From time to time the Sessi on will execute the SQL statements needed to synchronize the JDBC connection's
state with the state of objects held in memory. This process, flush, occurs by default at the following points

« before some query executions
e fromorg. hi bernate. Transacti on. commi t ()
e from Sessi on. f1 ush()

The SQL statements are issued in the following order

al entity insertions, in the same order the corresponding objects were saved using Sessi on. save()

al entity updates

all collection deletions

al collection element deletions, updates and insertions

al collection insertions

all entity deletions, in the same order the corresponding objects were deleted using Sessi on. del et e()

ok wbhNE

(An exception is that objects using nat i ve ID generation are inserted when they are saved.)

Except when you explicity 1 ush(), there are absolutely no guarantees about when the Sessi on executes the
JDBC calls, only the order in which they are executed. However, Hibernate does guarantee that the
Query. list(..) will never return stale data; nor will they return the wrong data.

It is possible to change the default behavior so that flush occurs less frequently. The Fl ushMode class defines
three different modes:. only flush at commit time (and only when the Hibernate Tr ansact i on API isused), flush
automatically using the explained routine, or never flush unless f1 ush() is called explicitly. The last mode is
useful for long running units of work, where a Sessi on is kept open and disconnected for a long time (see Sec-

Hibernate 3.0.5 115

Working with objects

tion 12.3.2, “Long session and automatic versioning”).

sess = sf.openSession();
Transaction tx = sess. begi nTransaction();
sess. set Fl ushMbde(Fl ushMode. COM T); // allow queries to return stale state

Cat izi = (Cat) sess.load(Cat.class, id);
i zi.setName(iznizi);

/1 mght return stale data
sess.find("from Cat as cat |left outer join cat.kittens kitten");

/'l change to izi is not flushed!

tx.commt(); // flush occurs

During flush, an exception might occur (e.g. if a DML operation violates a constraint). Since handling excep-
tions involves some understanding of Hibernate's transactional behavior, we discuss it in Chapter 12, Transac-
tions And Concurrency.

11.11. Transitive persistence

It is quite cumbersome to save, delete, or reattach individual objects, especidly if you deal with a graph of as-
sociated objects. A common case is a parent/child relationship. Consider the following example:

If the children in a parent/child relationship would be value typed (e.g. a collection of addresses or strings),
their lifecycle would depend on the parent and no further action would be required for convenient "cascading"
of state changes. When the parent is saved, the value-typed child objects are saved as well, when the parent is
deleted, the children will be deleted, etc. This even works for operations such as the removal of a child from the
collection; Hibernate will detect this and, since value-typed objects can't have shared references, delete the
child from the database.

Now consider the same scenario with parent and child objects being entities, not value-types (e.g. categories
and items, or parent and child cats). Entities have their own lifecycle, support shared references (so removing
an entity from the collection does not mean it can be deleted), and there is by default no cascading of state from
one entity to any other associated entities. Hibernate does not implement persistence by reachability by default.

For each basic operation of the Hibernate session - including persist(), nerge(), saveO Update(), de-
lete(), lock(), refresh(), evict(), replicate() -thereisa corresponding cascade style. Respectively,
the cascade styles are named create, merge, save-update, delete, |ock, refresh, evict, replicate.
If you want an operation to be cascaded along an association, you must indicate that in the mapping document.
For example:

<one-t o- one name="person" cascade="persist"/>

Cascade styles my be combined:

<one-to- one name="person" cascade="persist, del ete, | ock"/>

You may even use cascade="al | " to specify that all operations should be cascaded along the association. The
default cascade="none" specifiesthat no operations are to be cascaded.

A special cascade style, del et e- or phan, applies only to one-to-many associations, and indicates that the de-
I et e() operation should be applied to any child object that is removed from the association.

Recommendations;

Hibernate 3.0.5 116

Working with objects

e It doesn't usually make sense to enable cascade on a <many- t o- one> OF <many-t o- many> association. Cas-
cadeis often useful for <one- t 0- one> and <one- t o- many> associations.

« |If the child object's lifespan is bounded by the lifespan of the of the parent object make it a lifecycle object
by specifying cascade="al | , del et e- or phan".

e Otherwise, you might not need cascade at all. But if you think that you will often be working with the par-
ent and children together in the same transaction, and you want to save yourself some typing, consider us-
ing cascade="persi st, nmerge, save- updat e".

Mapping an association (either a single valued association, or a collection) with cascade="al | * marks the as-
sociation as a parent/child style relationship where save/update/del ete of the parent results in save/update/del ete
of the child or children.

Futhermore, a mere reference to a child from a persistent parent will result in save/update of the child. This
metaphor is incomplete, however. A child which becomes unreferenced by its parent is not automatically de-
leted, except in the case of a <one- t o- many> association mapped with cascade="del et e- or phan". The precise
semantics of cascading operations for a parent/child relationship are as follows:

o If aparentispassedtopersist (), al children are passed to per si st ()

e |If aparentispassedtonerge(), al children are passed to mer ge()

e |If aparentispassedtosave(), update() Of saveOr Update(), al children are passed to saveOr Updat e()

e If atransient or detached child becomes referenced by a persistent parent, it is passed to saveOr Updat e()

e |If aparentisdeleted, al children are passed to del et e()

« If achild is dereferenced by a persistent parent, nothing special happens - the application should explicitly
delete the child if necessary - unless cascade="del et e- or phan", in which case the "orphaned" child is de-
leted.

11.12. Using metadata

Hibernate requires a very rich meta-level model of all entity and value types. From time to time, this model is
very useful to the application itself. For example, the application might use Hibernate's metadata to implement
a"smart” deep-copy algorithm that understands which objects should be copied (eg. mutable value types) and
which should not (eg. immutable value types and, possibly, associated entities).

Hibernate exposes metadata via the c assMet adat a and Col | ect i onMet adat a interfaces and the Type hier-
archy. Instances of the metadata interfaces may be obtained from the Sessi onFact ory.

Cat fritz = ;
Cl assMet adat a cat Meta = sessi onfactory. get Cl assMet adat a(Cat . cl ass);

oj ect[] propertyVal ues = cat Meta. get PropertyVal ues(fritz);
String[] propertyNanmes = cat Meta. get PropertyNanes();
Type[] propertyTypes = cat Meta. get PropertyTypes();

/1 get a Map of all properties which are not collections or associations
Map nanedVal ues = new HashMap();
for (int i=0; i<propertyNames.length; i++) {
if (!'propertyTypes[i].isEntityType() && !propertyTypes[i].isCollectionType()) {
nanedVal ues. put (propertyNanes[i], propertyValues[i]);
}

Hibernate 3.0.5 117

Chapter 12. Transactions And Concurrency

The most important point about Hibernate and concurrency control isthat it is very easy to understand. Hibern-
ate directly uses JDBC connections and JTA resources without adding any additional locking behavior. We
highly recommend you spend some time with the JDBC, ANSI, and transaction isolation specification of your
database management system. Hibernate only adds automatic versioning but does not lock objects in memory
or change the isolation level of your database transactions. Basically, use Hibernate like you would use direct
JDBC (or JTA/CMT) with your database resources.

However, in addition to automatic versioning, Hibernate also offers a (minor) API for pessimistic locking of
rows, using the SELECT FOR UPDATE syntax. This API is discussed later in this chapter.

We start the discussion of concurrency control in Hibernate with the granularity of Confi gurati on, Sessi on-
Fact ory, and Sessi on, aswell as database and long application transactions.

12.1. Session and transaction scopes

A Sessi onFact ory iS an expensive-to-create, threadsafe object intended to be shared by all application threads.
It is created once, usually on application startup, from a Conf i gur at i on instance.

A Sessi on is an inexpensive, non-threadsafe object that should be used once, for a single business process, a
single unit of work, and then discarded. A Sessi on will not obtain a JDBC Connecti on (Or a Dat asour ce) un-
lessit is needed, so you may safely open and close a Sessi on even if you are not sure that data access will be
needed to serve a particular request. (This becomes important as soon as you are implementing some of the fol-
lowing patterns using request interception.)

To complete this picture you aso have to think about database transactions. A database transaction has to be as
short as possible, to reduce lock contention in the database. Long database transactions will prevent your ap-
plication from scaling to highly concurrent load.

What is the scope of a unit of work? Can a single Hibernate Sessi on span severa database transactions or is
this a one-to-one relationship of scopes? When should you open and close a Sessi on and how do you demarc-
ate the database transaction boundaries?

12.1.1. Unit of work

First, don't use the session-per-operation antipattern, that is, don't open and close a Sessi on for every simple
database call in a single thread! Of course, the same is true for database transactions. Database calls in an ap-
plication are made using a planned sequence, they are grouped into atomic units of work. (Note that this also
means that auto-commit after every single SQL statement is useless in an application, this mode is intended for
ad-hoc SQL console work. Hibernate disables, or expects the application server to do so, auto-commit mode
immediately.)

The most common pattern in a multi-user client/server application is session-per-regquest. In this model, a re-
quest from the client is send to the server (where the Hibernate persistence layer runs), a new Hibernate Ses-
si on is opened, and all database operations are executed in this unit of work. Once the work has been com-
pleted (and the response for the client has been prepared), the session is flushed and closed. Y ou would aso use
a single database transaction to serve the clients request, starting and committing it when you open and close
the Sessi on. The relationship between the two is one-to-one and this model is a perfect fit for many applica
tions.

Hibernate 3.0.5 118

Transactions And Concurrency

The challenge lies in the implementation: not only has the Sessi on and transaction to be started and ended cor-
rectly, but they also have to be accessible for data access operations. The demarcation of a unit of work is
ideally implemented using an interceptor that runs when a request hits the server and before the response will
be send (i.e. aServl et Fi | t er). We recommend to bind the Sessi on to the thread that serves the request, using
aThreadLocal variable. This allows easy access (like accessing a static variable) in al code that runs in this
thread. Depending on the database transaction demarcation mechanism you chose, you might also keep the
transaction context in a Thr eadLocal variable. The implementation patterns for this are known as ThreadLocal
Session and Open Session in View. You can easily extend the Hi ber nateUt i | helper class shown earlier in this
documentation to implement this. Of course, you'd have to find away to implement an interceptor and set it up
in your environment. See the Hibernate website for tips and examples.

12.1.2. Application transactions

The session-per-request pattern is not the only useful concept you can use to design units of work. Many busi-
ness processes require a whole series of interactions with the user interleaved with database accesses. In web
and enterprise applications it is not acceptable for a database transaction to span a user interaction. Consider the
following example:

» The first screen of a dialog opens, the data seen by the user has been loaded in a particular Sessi on and
database transaction. The user is free to modify the objects.

e The user clicks "Save" after 5 minutes and expects his modifications to be made persistent; he also expects
that he was the only person editing this information and that no conflicting modification can occur.

We call this unit of work, from the point of view of the user, along running application transaction. There are
many ways how you can implement this in your application.

A first naive implementation might keep the Sessi on and database transaction open during user think time,
with locks held in the database to prevent concurrent modification, and to guarantee isolation and atomicity.
Thisisof course an anti-pattern, since lock contention would not allow the application to scale with the number
of concurrent users.

Clearly, we have to use severa database transactions to implement the application transaction. In this case,
maintaining isolation of business processes becomes the partial responsibility of the application tier. A single
application transaction usually spans severa database transactions. It will be atomic if only one of these data-
base transactions (the last one) stores the updated data, all others simply read data (e.g. in awizard-style dialog
spanning several request/response cycles). Thisis easier to implement than it might sound, especially if you use
Hibernate's features:

» Automatic Versioning - Hibernate can do automatic optimistic concurrency control for you, it can automat-
ically detect if a concurrent modification occured during user think time.

» Detached Objects - If you decide to use the already discussed session-per-request pattern, all loaded in-
stances will be in detached state during user think time. Hibernate allows you to reattach the objects and
persist the modifications, the pattern is called session-per-request-with-detached-objects. Automatic ver-
sioning is used to isolate concurrent modifications.

e Long Session - The Hibernate Sessi on may be disconnected from the underlying JDBC connection after the
database transaction has been committed, and reconnected when a new client request occurs. This patternis
known as session-per-application-transaction and makes even reattachment unnecessary. Automatic ver-
sioning is used to isolate concurrent modifications.

Hibernate 3.0.5 119

Transactions And Concurrency

Both session-per-request-with-detached-objects and session-per-application-transaction have advantages and
disadvantages, we discuss them later in this chapter in the context of optimistic concurrency control.

12.1.3. Considering object identity

An application may concurrently access the same persistent state in two different Sessi ons. However, an in-
stance of a persistent class is never shared between two Sessi on instances. Hence there are two different no-
tions of identity:

Database Identity
foo.getld().equal s(bar.getld())

VM Identity

f oo==bar

Then for objects attached to a particular Sessi on (i.e. in the scope of a Sessi on) the two notions are equival-
ent, and JVM identity for database identity is guaranteed by Hibernate. However, while the application might
concurrently access the "same" (persistent identity) business object in two different sessions, the two instances
will actually be "different” (JVM identity). Conflicts are resolved using (automatic versioning) at flush/commit
time, using an optimistic approach.

This approach leaves Hibernate and the database to worry about concurrency; it also provides the best scal abil-
ity, since guaranteeing identity in single-threaded units of work only doesn't need expensive locking or other
means of synchronization. The application never needs to synchronize on any business object, as long as it
sticksto asingle thread per Sessi on. Within a Sessi on the application may safely use == to compare objects.

However, an application that uses == outside of a Sessi on, might see unexpected results. This might occur even
in some unexpected places, for example, if you put two detached instances into the same Set . Both might have
the same database identity (i.e. they represent the same row), but VM identity is by definition not guaranteed
for instances in detached state. The developer has to override the equal s() and hashCode() methodsin persist-
ent classes and implement his own notion of object equality. There is one caveat: Never use the database identi-
fier to implement equality, use a business key, a combination of unique, usually immutable, attributes. The
database identifier will change if atransient object is made persistent. If the transient instance (usually together
with detached instances) is held in a set, changing the hashcode breaks the contract of the set . Attributes for
business keys don't have to be as stable as database primary keys, you only have to guarantee stability as long
as the objects are in the same set . See the Hibernate website for a more thorough discussion of thisissue. Also
note that thisis not a Hibernate issue, but ssmply how Java object identity and equality has to be implemented.

12.1.4. Common issues

Never use the anti-patterns session-per-user-session or session-per-application (of course, there are rare excep-
tions to this rule). Note that some of the following issues might also appear with the recommended patterns,
make sure you understand the implications before making a design decision:

* A sessi on isnot thread-safe. Things which are supposed to work concurrently, like HTTP requests, session
beans, or Swing workers, will cause race conditions if a Sessi on instance would be shared. If you keep
your Hibernate Sessi on in your H: t pSessi on (discussed later), you should consider synchronizing access
to your Http session. Otherwise, a user that clicks reload fast enough may use the same Sessi on in two con-
currently running threads.

* Anexception thrown by Hibernate means you have to rollback your database transaction and close the Ses-

Hibernate 3.0.5 120

Transactions And Concurrency

si on immediately (discussed later in more detail). If your Sessi on is bound to the application, you have to
stop the application. Rolling back the database transaction doesn't put your business abjects back into the
state they were at the start of the transaction. This means the database state and the business objects do get
out of sync. Usually thisis not a problem, because exceptions are not recoverable and you have to start over
after rollback anyway.

* The sessi on caches every object that isin persistent state (watched and checked for dirty state by Hibern-
ate). This means it grows endlessly until you get an OutOfMemoryException, if you keep it open for along
time or simply load too much data. One solution for thisisto cal cl ear () and evi ct () to manage the Ses-
si on cache, but you most likely should consider a Stored Procedure if you need mass data operations. Some
solutions are shown in Chapter 14, Batch processing. Keeping a Sessi on open for the duration of a user
session also means a high probability of stale data.

12.2. Database transaction demarcation

Datatabase (or system) transaction boundaries are always necessary. No communication with the database can
occur outside of a database transaction (this seems to confuse many developers who are used to the auto-
commit mode). Always use clear transaction boundaries, even for read-only operations. Depending on your
isolation level and database capabilities this might not be required but there is no downside if you always de-
marcate transactions explicitly.

A Hibernate application can run in non-managed (i.e. standalone, simple Web- or Swing applications) and man-
aged J2EE environments. In a non-managed environment, Hibernate is usually responsible for its own database
connection pool. The application developer has to manually set transaction boundaries, in other words, begin,
commit, or rollback database transactions himself. A managed environment usually provides container-man-
aged transactions, with the transaction assembly defined declaratively in deployment descriptors of EJB session
beans, for example. Programmatic transaction demarcation is then no longer necessary, even flushing the Ses-
si on isdone automatically.

However, it is often desirable to keep your persistence layer portable. Hibernate offers a wrapper APl called
Transact i on that tranglates into the native transaction system of your deployment environment. This API isac-
tually optional, but we strongly encourage its use unlessyou arein aCMT session bean.

Usually, ending a Sessi on involves four distinct phases:

» flush the session

e commit the transaction
¢ closethe session

¢ handle exceptions

Flushing the session has been discussed earlier, we'll now have a closer look at transaction demarcation and ex-
ception handling in both managed- and non-managed environments.

12.2.1. Non-managed environment

If a Hibernate persistence layer runs in a non-managed environment, database connections are usually handled
by Hibernate's pooling mechanism. The session/transaction handling idiom looks like this:

/I Non- managed environnent idiom
Session sess = factory. openSession();
Transaction tx = null;

try {
tXx = sess. begi nTransaction();

Hibernate 3.0.5 121

Transactions And Concurrency

/! do sone work

tx.commt();

catch (Runti neException e) {
if (tx '=null) tx.rollback();
throw e; // or display error nessage

}
finally {

sess. cl ose();
}

You don't havetoflush() the Sessi on explicitly - the call to conmi t () automatically triggers the synchroniza-
tion.

A call to cl ose() marks the end of a session. The main implication of cl ose() is that the JDBC connection
will be relinquished by the session.

This Java code is portable and runs in both non-managed and JTA environments.

You will very likely never see this idiom in business code in a normal application; fatal (system) exceptions
should always be caught at the "top". In other words, the code that executes Hibernate calls (in the persistence
layer) and the code that handles Runt i meExcept i on (and usually can only clean up and exit) arein different lay-
ers. This can be a challenge to design yourself and you should use J2EE/EJB container services whenever they
are available. Exception handling is discussed later in this chapter.

Note that you should select or g. hi ber nat e. t ransact i on. JDBCTr ansact i onFact ory (which isthe default).

12.2.2. Using JTA

If your persistence layer runs in an application server (e.g. behind EJB session beans), every datasource con-
nection obtained by Hibernate will automatically be part of the global JTA transaction. Hibernate offers two
strategies for thisintegration.

If you use bean-managed transactions (BMT) Hibernate will tell the application server to start and end aBMT
transaction if you use the Transacti on APl. So, the transaction management code is identical to the non-
managed environment.

/1 BMI idiom
Sessi on sess = factory. openSession();
Transaction tx = null;

try {
tx = sess. begi nTransaction();

/! do sone work

tx.commt();

catch (Runti neException e) {
if (tx '= null) tx.rollback();
throw e; // or display error nessage

}
finally {

sess. cl ose();
}

With CMT, transaction demarcation is done in session bean deployment descriptors, not programatically. If you

Hibernate 3.0.5 122

Transactions And Concurrency

dont want to manualy flush and <close the Session yoursef, just set hibern-
ate.transaction. flush_before_conpl etion to true, hi ber nat e. connecti on. r el ease_node to
after_statenment OF auto and hi bernate.transaction.auto_cl ose_sessi on t0 true. Hibernate will then
automatically flush and close the Sessi on for you. The only thing left is to rollback the transaction when an ex-
ception occurs. Fortunately, in a CMT bean, even this happens automatically, since an unhandled Runt i meEx-
ception thrown by a session bean method tells the container to set the global transaction to rollback. This
means you do not need to use the Hibernate Tr ansacti on APl at all in CMT.

Note that you should choose or g. hi bernat e. t ransact i on. JTATr ansact i onFact ory in a BMT session bean,
and or g. hi bernate. transacti on. OMITr ansact i onFactory in a CMT session bean, when you configure Hi-
bernate's transaction factory. Remember to also set or g. hi ber nat e. t ransact i on. manager _| ookup_cl ass.

If youwork inaCMT environment, and use automatic flushing and closing of the session, you might also want
to use the same session in different parts of your code. Typically, in a non-managed environment you would
use aThreadLocal Vvariableto hold the session, but a single EJB request might execute in different threads (e.g.
session bean calling another session bean). If you don't want to bother passing your Sessi on instance around,
the Sessi onFact ory provides the get Current Sessi on() method, which returns a session that is bound to the
JTA transaction context. This is the easiest way to integrate Hibernate into an application! The "current” ses-
sion aways has auto-flush, auto-close and auto-connection-release enabled (regardiess of the above property
settings). Our session/transaction management idiom is reduced to this:

/1 CMT idiom
Sessi on sess = factory. get Current Session();

/! do sone work

In other words, all you have to do in a managed environment is call Sessi onFact ory. get Current Sessi on(),
do your data access work, and |eave the rest to the container. Transaction boundaries are set declaratively in the
deployment descriptors of your session bean. The lifecycle of the session is completely managed by Hibernate.

There is one caveat to the use of after_stat ement connection release mode. Due to a silly limitation of the
JTA spec, it is not possible for Hibernate to automatically clean up any unclosed Scrol | abl eResul ts Of I ter-
at or instancesreturned by scrol I () oriterate().Youmust release the underlying database cursor by calling
Scrol | abl eResul ts. cl ose() Of Hibernate.close(lterator) explicity from a finally block. (Of course,
most applications can easily avoid using scrol 1 () oriterate() a al fromthe CMT code.)

12.2.3. Exception handling

If the Sessi on throws an exception (including any SQ.Except i on), you should immediately rollback the data-
base transaction, call Sessi on. cl ose() and discard the Sessi on instance. Certain methods of Sessi on will not
leave the session in a consistent state. No exception thrown by Hibernate can be treated as recoverable. Ensure
that the Sessi on will be closed by calling cl ose() inafinal Iy block.

The Hi ber nat eExcept i on, which wraps most of the errors that can occur in a Hibernate persistence layer, is an
unchecked exception (it wasn't in older versions of Hibernate). In our opinion, we shouldn't force the applica-
tion developer to catch an unrecoverable exception at alow layer. In most systems, unchecked and fatal excep-
tions are handled in one of the first frames of the method call stack (i.e. in higher layers) and an error message
is presented to the application user (or some other appropriate action is taken). Note that Hibernate might also
throw other unchecked exceptions which are not a Hi ber nat eExcept i on. These are, again, not recoverable and
appropriate action should be taken.

Hibernate wraps sQ.Except i ons thrown while interacting with the database in a JDBCExcept i on. In fact, Hi-

Hibernate 3.0.5 123

Transactions And Concurrency

bernate will attempt to convert the eexception into a more meningful subclass of JDBCExcept i on. The underly-
ing SQLExcepti on is always available via JDBCExcept i on. get Cause() . Hibernate converts the SQL.Excepti on
into an appropriate JDBCExcept i on subclass using the SQLExcept i onConvert er attached to the Sessi onFact -
ory. By default, the SQLExcepti onConverter is defined by the configured dialect; however, it is also possible
to plug in a custom implementation (see the javadocs for the SQLExcepti onConverter Factory class for de-
tails). The standard JDBCExcept i on subtypes are:

* JDBCConnect i onExcept i on - indicates an error with the underlying JDBC communication.

e SQLG anmar Except i on - indicates agrammar or syntax problem with theissued SQL.

* ConstraintViol ati onExcept i on - indicates some form of integrity constraint violation.

* LockAcqui sitionException - indicates an error acquiring a lock level necessary to perform the requested
operation.

* Generi cJDBCExcept i on - ageneric exception which did not fall into any of the other categories.

12.3. Optimistic concurrency control

The only approach that is consistent with high concurrency and high scalability is optimistic concurrency con-
trol with versioning. Version checking uses version numbers, or timestamps, to detect conflicting updates (and
to prevent lost updates). Hibernate provides for three possible approaches to writing application code that uses
optimistic concurrency. The use cases we show are in the context of long application transactions but version
checking also has the benefit of preventing lost updates in single database transactions.

12.3.1. Application version checking

In an implementation without much help from Hibernate, each interaction with the database occurs in a new
Sessi on and the developer is responsible for reloading all persistent instances from the database before manip-
ulating them. This approach forces the application to carry out its own version checking to ensure application
transaction isolation. This approach is the least efficient in terms of database access. It is the approach most
similar to entity EJBs.

/1l foo is an instance | oaded by a previ ous Session

session = factory.openSession();

Transaction t = session. begi nTransacti on();

int ol dVersion = foo.getVersion();

session. | oad(foo, foo.getKey()); // load the current state

if (oldVersion!=foo.getVersion) throw new Stal eCbj ect St at eExcepti on();
f 0o. set Property("bar");

t.commt();

session. cl ose();

Thever si on property is mapped using <ver si on>, and Hibernate will automatically increment it during flush if
the entity is dirty.

Of course, if you are operating in alow-data-concurrency environment and don't require version checking, you
may use this approach and just skip the version check. In that case, last commit wins will be the default strategy
for your long application transactions. Keep in mind that this might confuse the users of the application, as they
might experience lost updates without error messages or a chance to merge conflicting changes.

Clearly, manual version checking is only feasible in very trivial circumstances and not practical for most ap-
plications. Often not only single instances, but complete graphs of modified ojects have to be checked. Hibern-
ate offers automatic version checking with either long Sessi on or detached instances as the design paradigm.

12.3.2. Long session and automatic versioning

Hibernate 3.0.5 124

Transactions And Concurrency

A single Sessi on instance and its persistent instances are used for the whole application transaction. Hibernate
checks instance versions at flush time, throwing an exception if concurrent modification is detected. It's up to
the developer to catch and handle this exception (common options are the opportunity for the user to merge
changes or to restart the business process with non-stale data).

The Sessi on is disconnected from any underlying JDBC connection when waiting for user interaction. This ap-
proach is the most efficient in terms of database access. The application need not concern itself with version
checking or with reattaching detached instances, nor does it have to reload instances in every database transac-
tion.

/1 foo is an instance | oaded earlier by the Session

sessi on. reconnect(); // Obtain a new JDBC connection

Transaction t = session. begi nTransacti on();

f 0o. set Property("bar");

t.commt(); // End database transaction, flushing the change and checki ng the version
sessi on. di sconnect (); // Return JDBC connection

Thef oo object still knows which Sessi on it wasloaded in. Sessi on. reconnect () obtainsanew connection (or
you may supply one) and resumes the session. The method Sessi on. di sconnect () will disconnect the session
from the JDBC connection and return the connection to the pool (unless you provided the connection). After re-
connection, to force a version check on data you aren't updating, you may call Sessi on. 1 ock() With Lock-

Mode. READ on any objects that might have been updated by another transaction. Y ou don't need to lock any data
that you are updating.

If the explicit cals to disconnect() and reconnect() are too onerous, you may instead use hi bern-
at e. connection. rel ease_node.

This pattern is problematic if the Sessi on is too big to be stored during user think time, e.g. an Ht t pSessi on
should be kept as small as possible. As the Sessi on is adso the (mandatory) first-level cache and contains all
loaded objects, we can probably use this strategy only for a few request/response cycles. Thisis indeed recom-
mended, as the Sessi on will soon also have stale data.

Also note that you should keep the disconnected Sessi on close to the persistence layer. In other words, use an
EJB stateful session bean to hold the Sessi on and don't transfer it to the web layer (or even serialize it to a sep-
aratetier) to storeit in the Ht t pSessi on.

12.3.3. Detached objects and automatic versioning

Each interaction with the persistent store occurs in a new Sessi on. However, the same persistent instances are
reused for each interaction with the database. The application manipulates the state of detached instances ori-
gindly loaded in another sSession and then reattaches them using Session.update(), Ses-
si on. saveOr Updat e(), Or Sessi on. nerge() .

/1 foo is an instance | oaded by a previ ous Session

f 0o. set Property("bar");

session = factory.openSession();

Transaction t = session. begi nTransacti on();

sessi on. saveOr Updat e(foo); // Use nmerge() if "foo" might have been | oaded al ready
t.commt();

session. cl ose();

Again, Hibernate will check instance versions during flush, throwing an exception if conflicting updates oc-
cured.

You may also call 1 ock() instead of updat e() and use LockMode. READ (performing a version check, bypassing
all caches) if you are sure that the object has not been modified.

Hibernate 3.0.5 125

Transactions And Concurrency

12.3.4. Customizing automatic versioning

Y ou may disable Hibernate's automatic version increment for particular properties and collections by setting the
opti mistic-1ock mapping attribute to f al se. Hibernate will then no longer increment versions if the property
isdirty.

Legacy database schemas are often static and can't be modified. Or, other applications might also access the
same database and don't know how to handle version numbers or even timestamps. In both cases, versioning
can't rely on a particular column in atable. To force a version check without a version or timestamp property
mapping, with a comparison of the state of all fieldsin arow, turn on opti mistic-1ock="al I " inthe <cl ass>
mapping. Note that this concepetually only works if Hibernate can compare the old and new state, i.e. if you
use asingle long Sessi on and not session-per-request-with-detached-objects.

Sometimes concurrent modification can be permitted as long as the changes that have been made don't overlap.
If you set optimistic-1ock="dirty" when mapping the <cl ass>, Hibernate will only compare dirty fields dur-
ing flush.

In both cases, with dedicated version/timestamp columns or with full/dirty field comparison, Hibernate uses a
single UPDATE statement (with an appropriate WHERE clause) per entity to execute the version check and update
the information. If you use transitive persistence to cascade reattachment to associated entities, Hibernate might
execute uneccessary updates. Thisis usually not a problem, but on update triggers in the database might be ex-
ecuted even when no changes have been made to detached instances. Y ou can customize this behavior by set-
ting sel ect - bef or e- updat e="true" in the <cl ass> mapping, forcing Hibernate to SELECT the instance to en-
sure that changes did actually occur, before updating the row.

12.4. Pessimistic Locking

It is not intended that users spend much time worring about locking strategies. Its usually enough to specify an
isolation level for the JDBC connections and then simply let the database do al the work. However, advanced
users may sometimes wish to obtain exclusive pessimistic locks, or re-obtain locks at the start of a new transac-
tion.

Hibernate will always use the locking mechanism of the database, never lock objects in memory!

The LockMde class defines the different lock levels that may be acquired by Hibernate. A lock is obtained by
the following mechanisms:

e LockMde. WRI TE is acquired automatically when Hibernate updates or inserts arow.

* LockMde. UPGRADE may be acquired upon explicit user request using SELECT ... FOR UPDATE on databases
which support that syntax.
* LockMde. UPGRADE_NOWAI T may be acquired upon explicit user request using a SELECT ... FOR UPDATE

NOomal T under Oracle.

e LockMde. READ is acquired automatically when Hibernate reads data under Repeatable Read or Serializable
isolation level. May be re-acquired by explicit user request.

* LockMde. NONE represents the absence of alock. All objects switch to thislock mode at the end of a Tr ans-
act i on. Objects associated with the session via a call to updat e() Or saveOr Updat e() also start out in this
lock mode.

The "explicit user request” is expressed in one of the following ways:

* A cal to session. | oad(), specifying aLockMde.
e A cal toSession. | ock().
* AcaltoQuery. set LockMbde() .

Hibernate 3.0.5 126

Transactions And Concurrency

If Session. 1 oad() is called with UPGRADE or UPGRADE_NOWAI T, and the requested object was not yet loaded by
the session, the object isloaded using SELECT ... FOR UPDATE. If | oad() is called for an abject that is already
loaded with aless restrictive lock than the one requested, Hibernate calls1 ock() for that object.

Sessi on. | ock() performs a version number check if the specified lock mode is READ, UPGRADE oOr UP-
GRADE_NOWMAI T. (In the case of UPGRADE Or UPGRADE_NOWAI T, SELECT ... FOR UPDATE iSused.)

If the database does not support the requested lock mode, Hibernate will use an appropriate alternate mode
(instead of throwing an exception). This ensures that applications will be portable.

Hibernate 3.0.5 127

Chapter 13. Interceptors and events

It is often useful for the application to react to certain events that occur inside Hibernate. This alows imple-
mentation of certain kinds of generic functionality, and extension of Hibernate functionality.

13.1. Interceptors

Thel ntercept or interface provides callbacks from the session to the application alowing the application to in-
spect and/or manipulate properties of a persistent object before it is saved, updated, deleted or loaded. One pos-
sible use for thisis to track auditing information. For example, the following I nt er cept or automatically sets
the creat eTi nest anp When an Audi t abl e is created and updates the | ast Updat eTi mest anp property when an
Audi t abl e is updated.

package org. hi bernate.test;

import java.io.Serializable;
i mport java.util.Date;
inmport java.util.lterator;

i mport org. hibernate.Interceptor;
i mport org. hi bernate.type. Type;

public class Auditlnterceptor inplements Interceptor, Serializable {

private int updates;
private int creates;

public void onDel ete(Object entity,
Serializable id,
bj ect[] state,
String[] propertyNanes,
Type[] types) {
/1 do not hi ng
}

publ i ¢ bool ean onFl ushDirty(Obj ect entity,
Serializable id,
Cbj ect[] currentState,
Cbj ect[] previousState,
String[] propertyNanes,
Type[] types) {

——

if (entity instanceof Auditable) {
updat es++;
for (int i=0; i < propertyNanes.length; i++) {
if ("lastUpdateTi mestanp". equal s(propertyNames[i])) {
currentState[i] = new Date();
return true;

}
}

return false;

}

publ i c bool ean onLoad(Obj ect entity,
Serializable id,
oj ect[] state,
String[] propertyNanes,
Type[] types) {
return false;

}

publ i ¢ bool ean onSave((Chject entity,
Serializable id,

Hibernate 3.0.5 128

Interceptors and events

oj ect[] state,
String[] propertyNanes,

Type[] types) {

if (entity instanceof Auditable) {
Creat es++;
for (int i=0; i<propertyNanes.length; i++) {
if ("createTi mestanp". equal s(propertyNanes[i])) {
state[i] = new Date();
return true;

}
}

return fal se;

}

public void postFlush(lterator entities) {
Systemout.println("Creations: " + creates + ", Updates: " + updates);

}

public void preFlush(lterator entities) {
updat es=0;
creat es=0;

The interceptor would be specified when a session is created.

Session session = sf.openSession(new Auditlnterceptor());

Y ou may also set an interceptor on aglobal level, using the Conf i gur ati on:

new Configuration().setlnterceptor(new Auditlnterceptor());

13.2. Event system

If you have to react to particular events in your persistence layer, you may also use the Hibernate3 event archi-
tecture. The event system can be used in addition or as a replacement for interceptors.

Essentially all of the methods of the Session interface correlate to an event. You have a LoadEvent, a
Fl ushEvent , etc (consult the XML configuration-file DTD or the or g. hi ber nat e. event package for the full
list of defined event types). When a request is made of one of these methods, the Hibernate Sessi on generates
an appropriate event and passes it to the configured event listener for that type. Out-of-the-box, these listeners
implement the same processing in which those methods always resulted. However, you are free to implement a
customization of one of the listener interfaces (i.e., the LoadEvent is processed by the registered implemenation
of the LoadEvent Li st ener interface), in which case their implementation would be responsible for processing
any | oad() requests made of the Sessi on.

The listeners should be considered effectively singletons, meaning, they are shared between requests, and thus
should not save any state as instance variables.

A custom listener should implement the appropriate interface for the event it wants to process and/or extend
one of the convenience base classes (or even the default event listeners used by Hibernate out-of-the-box as
these are declared non-fina for this purpose). Custom listeners can either be registered programmatically
through the confi gur at i on object, or specified in the Hibernate configuration XML (declarative configuration
through the propertiesfileis not supported). Here's an example of a custom load event listener:

Hibernate 3.0.5 129

Interceptors and events

public class MyLoadLi stener extends Defaul t LoadEventLi stener {
/1 this is the single nethod defined by the LoadEventLi stener interface
publ i c Obj ect onLoad(LoadEvent event, LoadEventListener.LoadType | oadType)
t hrows Hi ber nat eException {
if (!'MySecurity.isAuthorized(event.getEntityC assNanme(), event.getEntityld())) {
throw MySecurityException("Unaut horized access");

}

return super.onLoad(event, |oadType);

Y ou also heed a configuration entry telling Hibernate to use the listener instead of the default listener:

<hi ber nat e- confi gurati on>
<sessi on-factory>

<listener type="load" cl ass="M/LoadLi stener"/>
</ sessi on-factory>
</ hi ber nat e- confi gurati on>

Instead, you may register it programmatically:

Configuration cfg = new Configuration();
cf g. get Sessi onEvent Li st ener Confi g(). set LoadEvent Li st ener (new MyLoadLi stener());

Listeners registered declaratively cannot share instances. If the same class name is used in multiple
<li st ener/> elements, each reference will result in a separate instance of that class. If you need the capability
to share listener instances between listener types you must use the programmatic registration approach.

Why implement an interface and define the specific type during configuration? Well, a listener implementation
could implement multiple event listener interfaces. Having the type additionally defined during registration
makes it easier to turn custom listeners on or off during configuration.

13.3. Hibernate declarative security

Usually, declarative security in Hibernate applications is managed in a session facade layer. Now, Hibernate3
allows certain actions to be permissioned via JACC, and authorized via JAAS. This is optional functionality
built on top of the event architecture.

First, you must configure the appropriate event listeners, to enable the use of JAAS authorization.

<listener type="pre-del ete" class="org. hibernate.secure. JACCPreDel et eEvent Li stener"/>
<listener type="pre-update" class="org. hi bernate.secure. JACCPreUpdat eEvent Li st ener"/ >
<listener type="pre-insert" class="org. hibernate.secure. JACCPrel nsert Event Li stener"/>
<listener type="pre-load" class="org. hi bernate.secure. JACCPreLoadEvent Li stener"/>

Next, still in hi ber nat e. cf g. xni , bind the permissionsto roles:

<grant role="adm n" entity-nane="User" actions="insert, update, read"/>
<grant rol e="su" entity-nane="User" actions="*"/>

The role names are the roles understood by your JACC provider.

Hibernate 3.0.5 130

Chapter 14. Batch processing

A naive approach to inserting 100 000 rows in the database using Hibernate might look like this:

Sessi on session = sessi onFactory. openSessi on();
Transaction tx = session. begi nTransaction();
for (int i=0; i<100000; i++) {
Cust oner customer = new Custoner(.....)
sessi on. save(custoner);

}

tx.commt();
session. cl ose();

This would fall over with an cut O Menor yExcept i on somewhere around the 50 000th row. That's because Hi-
bernate caches all the newly inserted cust orer instances in the session-level cache.

In this chapter we'll show you how to avoid this problem. First, however, if you are doing batch processing, itis
absolutely critical that you enable the use of JDBC batching, if you intend to achieve reasonable performance.
Set the IDBC batch size to areasonable number (say, 10-50):

hi ber nat e. j dbc. bat ch_si ze 20

Y ou also might like to do this kind of work in a process where interaction with the second-level cache is com-
pletely disabled:

hi ber nat e. cache. use_second_| evel _cache fal se

14.1. Batch inserts

When making new objects persistent, you must f 1 ush() and then cl ear () the session regularly, to control the
size of thefirst-level cache.

Sessi on sessi on = sessi onFact ory. openSessi on();
Transacti on tx = session. begi nTransaction();

for (int i=0; i<100000; i++) {
Cust oner customer = new Custoner(.....);
sessi on. save(custoner);
if (1 %20 ==0) { //20, sanme as the JDBC batch size
[/ flush a batch of inserts and rel ease nenory:
session. flush();
session. clear();

}

tx.commt();
session. cl ose();

14.2. Batch updates

For retrieving and updating data the same ideas apply. In addition, you need to use scrol | () to take advantage
of server-side cursors for queries that return many rows of data.

Sessi on session = sessi onFact ory. openSession();
Transaction tx = session. begi nTransaction();

Hibernate 3.0.5 131

Batch processing

Scrol | abl eResul ts custoners = session. get NamedQuer y(" Get Cust oner s")
. set CacheMbde(CacheMode. | GNORE)
.scrol | (Scroll Mode. FORWARD_ONLY) ;
i nt count=0;
while (customers.next()) {
Cust oner custonmer = (Custoner) custoners.get(0);
cust oner . updateStuff(...);
if (++count %20 == 0) {
[/flush a batch of updates and rel ease nenory:
session. flush();
session. clear();

}

tx.commit();
session. cl ose();

14.3. Bulk update/delete

As dready discussed, automatic and transparent object/relational mapping is concerned with the management
of object state. Thisimplies that the object state is available in memory, hence updating or deleting (using SQL
UPDATE and DELETE) data directly in the database will not affect in-memory state. However, Hibernate provides
methods for bulk SQL-style UPDATE and DELETE statement execution which are performed through the Hibern-
ate Query Language (Chapter 15, HQL: The Hibernate Query Language).

The psuedo-syntax for UPDATE and DELETE statements is; (UPDATE | DELETE) FROW? O assNane (WHERE
WHERE_CONDI TI ONS) ?. Some points to note:

¢ Inthefrom-clause, the FROM keyword is optional

» There can only be asingle class named in the from-clause, and it cannot have an alias.

¢ Nojoins (either implicit or explicit) can be specified in a bulk HQL query. Sub-queries may be used in the
where-clause.

e Thewhere-clauseis also optional.

As an example, to execute an HQL UPDATE, use the Query. execut eUpdat e() method:

Sessi on session = sessi onFact ory. openSessi on();
Transaction tx = session. begi nTransaction();

String hgl Update = "update Custoner set name = :newNane where nanme = :ol dNanme";
int updatedEntities = s.createQuery(hgl Update)
.setString("newNane", newNane)
.setString("ol dNane", ol dNane)
. execut eUpdat e() ;
tx.commt();
session. cl ose();

To execute an HQL DELETE, use the same Query. execut eUpdat e() method (the method is named for those fa-
miliar with JDBC's Pr epar edSt at enent . execut eUpdat e()):

Sessi on sessi on = sessi onFact ory. openSessi on();
Transaction tx = session. begi nTransaction();

String hgl Del ete = "del ete Custonmer where nanme = :ol dNane";
int deletedEntities = s.createQuery(hqgl Del ete)
.setString("ol dNane", ol dNane)
. execut eUpdat e() ;
tx.commt();
session. cl ose();

Hibernate 3.0.5 132

Batch processing

Theint value returned by the Query. execut eUpdat e() method indicate the number of entities effected by the
operation. Consider this may or may not correlate to the number of rows effected in the database. An HQL bulk
operation might result in multiple actual SQL statements being executed, for joined-subclass, for example. The
returned number indicates the number of actual entities affected by the statement. Going back to the example of
joined-subclass, a delete against one of the subclasses may actually result in deletes against not just the table to
which that subclass is mapped, but also the "root" table and potentially joined-subclass tables further down the
inheritence hierarchy.

Note that there are currently a few limitations with the bulk HQL operations which will be addressed in future
releases; consult the JRA roadmap for details.

Hibernate 3.0.5 133

Chapter 15. HQL: The Hibernate Query Language

Hibernate is equiped with an extremely powerful query language that (quite intentionally) looks very much like
SQL. But don't be fooled by the syntax; HQL is fully object-oriented, understanding notions like inheritence,
polymorphism and association.

15.1. Case Sensitivity

Queries are case-insensitive, except for names of Java classes and properties. So SeLeCT is the same as sELEct
is the same as SELECT but org. hi bernate. eg. FOO iS Not org. hi bernat e. eg. Foo and f oo. bar Set iS not
f 00. BARSET.

This manual uses lowercase HQL keywords. Some users find queries with uppercase keywords more readable,
but we find this convention ugly when embedded in Java code.

15.2. The from clause

The simplest possible Hibernate query is of the form:

from eg. Cat

which simply returns all instances of the class eg. cat . We don't usually need to qualify the class name, since
aut o-i mport isthe default. So we almost always just write:

from Cat

Most of the time, you will need to assign an alias, since you will want to refer to the cat in other parts of the
query.

from Cat as cat

This query assignsthe alias cat to cat instances, so we could use that alias later in the query. The as keyword
is optional; we could also write:

from Cat cat

Multiple classes may appear, resulting in a cartesian product or "cross' join.

from Fornmul a, Paraneter
fromFornmula as form Paranmeter as param

It is considered good practice to name query aliases using an initial lowercase, consistent with Java naming
standards for local variables (eg. donest i cCat).

15.3. Associations and joins

We may also assign aliases to associated entities, or even to elements of a collection of values, using aj oi n.

Hibernate 3.0.5 134

HQL: The Hibernate Query Language

from Cat as cat
inner join cat.mate as mate
left outer join cat.kittens as kitten

fromCat as cat left join cat.mate.kittens as kittens
fromFormula formfull join form paraneter param

The supported join types are borrowed from ANSI SQL

® inner join

e |eft outer join

* right outer join

e full join (notusualy useful)

Theinner join,left outer joinandright outer join constructs may be abbreviated.

from Cat as cat
join cat.mate as nate
left join cat.kittens as kitten

In addition, a "fetch" join allows associations or collections of values to be initialized along with their parent
objects, using a single select. This is particularly useful in the case of a collection. It effectively overrides the
outer join and lazy declarations of the mapping file for associations and collections. See Section 20.1,
“Fetching strategies’ for more information.

from Cat as cat
inner join fetch cat. mate
left join fetch cat.kittens

A fetch join does not usually need to assign an alias, because the associated objects should not be used in the
wher e clause (or any other clause). Also, the associated objects are not returned directly in the query results. In-
stead, they may be accessed via the parent object. The only reason we might need an dliasisif we are recurs-
ively join fetching a further collection:

from Cat as cat
inner join fetch cat.nmate
left join fetch cat.kittens child
left join fetch child.kittens

Note that the f et ch construct may not be used in queries called using scrol I () or iterate(). Nor should
f et ch be used together with set MaxResul t s() Of set Fi rst Resul t () . It ispossible to create a cartesian product
by join fetching more than one collection in a query, so take care in this case. Join fetching multiple collection
roles also sometimes gives unexpected results for bag mappings, so be careful about how you formulate your
queriesin this case. Finaly, notethat ful | join fetchandright join fetch arenot meaningful.

If you are using property-level lazy fetching (with bytecode instrumentation), it is possible to force Hibernate to
fetch the lazy propertiesimmediately (in the first query) usingfetch all properties.

from Docunent fetch all properties order by nane

from Docunment doc fetch all properties where | ower(doc. nane) |ike '9%ats%

15.4. The select clause

Hibernate 3.0.5 135

HQL: The Hibernate Query Language

Thesel ect clause picks which objects and properties to return in the query result set. Consider:

sel ect mate
from Cat as cat
inner join cat.mate as mate

The query will select mat es of other cat s. Actually, you may express this query more compactly as:

sel ect cat.mate from Cat cat

Queries may return properties of any value type including properties of component type:

sel ect cat.nanme from DonesticCat cat
where cat.nanme like '"fri%

sel ect cust.nane.firstName from Custoner as cust

Queries may return multiple objects and/or properties as an array of type j ect[],

sel ect nother, offspr, mate.nane
from DonesticCat as not her
inner join nother.mate as mate
| eft outer join nother.kittens as offspr

Oor asali st,

sel ect new |ist(nmother, offspr, nate.nane)
from Donmesti cCat as not her

inner join nother.mate as nate

| eft outer join nother.kittens as offspr

or as an actual typesafe Java object,

sel ect new Fami | y(nother, mate, offspr)
from Domesti cCat as not her

join nother.mate as nate

left join nother.kittens as of fspr

assuming that the class Fani | y has an appropriate constructor.
Y ou may assign aliases to selected expressions using as:

sel ect max(bodyWei ght) as nax, m n(bodyWight) as mn, count(*) as n
from Cat cat

Thisis most useful when used together with sel ect new map:

sel ect new map(max(bodyWei ght) as max, m n(bodyWight) as min, count(*) as n)
from Cat cat

This query returns a vap from aliases to selected values.

15.5. Aggregate functions

HQL queries may even return the results of aggregate functions on properties:

sel ect avg(cat.weight), sun{cat.weight), max(cat.weight), count(cat)

Hibernate 3.0.5 136

HQL: The Hibernate Query Language

from Cat cat

The supported aggregate functions are
* avg(...), sun(...), mn(...), max(...)
e count(*)

e count(...), count(distinct ...), count(all...)

Y ou may use arithmetic operators, concatenation, and recognized SQL functions in the select clause:

sel ect cat.weight + sun(kitten.weight)
from Cat cat

join cat.kittens kitten
group by cat.id, cat.weight

select firstName||" "||initial||" "]|]|upper(lastName) from Person

Thedi stinct andal | keywords may be used and have the same semantics asin SQL.

sel ect distinct cat.nanme from Cat cat

sel ect count (distinct cat.name), count(cat) from Cat cat

15.6. Polymorphic queries

A query like:

from Cat as cat

returns instances not only of cat, but also of subclasses like Donest i cCat . Hibernate queries may name any
Java class or interface in the f romclause. The query will return instances of all persistent classes that extend
that class or implement the interface. The following query would return all persistent objects:

fromjava.l ang. Obj ect o

The interface Named might be implemented by various persistent classes:

from Naned n, Naned m where n.nane = m nane

Note that these last two queries will require more than one SQL SELECT. This means that the or der by clause
does not correctly order the whole result set. (It also means you can't call these queries using Query. scrol | () .)

15.7. The where clause

The wher e clause allows you to narrow the list of instances returned. If no alias exists, you may refer to proper-
ties by name:

from Cat where nane='Fritz'

If thereisan alias, use aqualified property name:

from Cat as cat where cat.name='Fritz'

Hibernate 3.0.5 137

HQL: The Hibernate Query Language

returns instances of cat named 'Fritz'.

sel ect foo
from Foo foo, Bar bar
where foo.startDate = bar.date

will return all instances of Foo for which there exists an instance of bar with a dat e property equal to the
start Dat e property of the Foo. Compound path expressions make the wher e clause extremely powerful. Con-
sider:

from Cat cat where cat.nmate.nane is not null

This query tranglates to an SQL query with atable (inner) join. If you were to write something like

from Foo foo
wher e foo. bar.baz. custoner. address.city is not null

you would end up with aquery that would require four table joinsin SQL.
The = operator may be used to compare not only properties, but also instances:

fromCat cat, Cat rival where cat.mate = rival.mate

sel ect cat, nmate
fromCat cat, Cat mate
where cat.mate = nate

The special property (lowercase) i d may be used to reference the unique identifier of an object. (Y ou may also
use its property name.)

fromCat as cat where cat.id = 123
fromCat as cat where cat.mate.id = 69
The second query is efficient. No table join is required!

Properties of composite identifiers may also be used. Suppose Per son has a composite identifier consisting of
count ry and nedi car eNunber .

from bank. Per son person
where person.id.country = "'AU
and person.id. medi car eNunber = 123456

f rom bank. Account account
wher e account.owner.id.country = "'AU
and account. owner.id. nedi careNunber = 123456

Once again, the second query requires no tablejain.

Likewise, the special property cl ass accesses the discriminator value of an instance in the case of polymorphic
persistence. A Java class name embedded in the where clause will be trandlated to its discriminator value.

from Cat cat where cat.class = Donesti cCat

You may also specify properties of components or composite user types (and of components of components,
etc). Never try to use a path-expression that endsin a property of component type (as opposed to a property of a
component). For example, if st or e. owner isan entity with acomponent addr ess

Hibernate 3.0.5 138

HQL: The Hibernate Query Language

store. owner. address.city /1 okay
st or e. owner . addr ess /1 error!

An "any" type has the specia propertiesid and cl ass, alowing us to express a join in the following way
(where Audi t Log. i t emis a property mapped with <any>).

from AuditLog | og, Paynment payment
where log.itemclass = 'Paynent' and log.itemid = paynent.id

Notice that 1 og.item cl ass and payment . cl ass would refer to the values of completely different database
columnsin the above query.

15.8. Expressions

Expressions allowed in the wher e clause include most of the kind of things you could writein SQL:

e mathematical operators+, -, *, /

* binary comparison operators=, >=, <=, <>, !=, like
» logical operationsand, or, not

» Parentheses(), indicating grouping

* in,not in,between,is null,is not null,is enpty,is not enpty, menber of andnot nenber of

e "Simple' case, case ... when ... then ... else ... end, and "searched" case, case when ... then
else ... end

e string concatenation...||... Ofrconcat(...,...)

e current_date(),current_time(),current_timestanp()

e second(...),mnute(...),hour(...),day(...),nmonth(...),year(...),

e Any function or operator defined by EJB-QL 3.0: substring(), trim), lower(), upper(), |ength(),
| ocate(), abs(), sqrt(), bit_length()

e coalesce() andnul i f()

* cast(... as ...), where the second argument is the name of a Hibernate type, and extract(... from
...) if ANSI cast () andextract () issupported by the underlying database

e Any database-supported SQL scalar function likesi gn(), trunc(),rtrin(), sin()

e JDBCIN parameters ?

e named parameters: nane, : start_date, : x1

e SQL literals' foo', 69, ' 1970-01-01 10: 00: 01. 0'

e Javapublic static final constantseg. Col or. TABBY

i n and bet ween may be used as follows:

from DonesticCat cat where cat.name between 'A and 'B'
from DonesticCat cat where cat.nanme in ('Foo', 'Bar', 'Baz')

and the negated forms may be written

from DonesticCat cat where cat.name not between 'A' and 'B'
from DonesticCat cat where cat.name not in ('Foo', 'Bar', 'Baz')

Likewise, is null andis not null may beused to test for null values.

Booleans may be easily used in expressions by declaring HQL query substitutions in Hibernate configuration:

Hibernate 3.0.5 139

HQL: The Hibernate Query Language

<property nane="hi bernate. query. substitutions">true 1, fal se 0</property>

Thiswill replace the keywordst rue and f al se with theliterals 1 and o in the trandated SQL from thisHQL :

from Cat cat where cat.alive = true

Y ou may test the size of a collection with the special property si ze, or the specia si ze() function.

fromCat cat where cat.kittens.size > 0
fromCat cat where size(cat.kittens) > 0

For indexed collections, you may refer to the minimum and maximum indices using mi ni ndex and maxi ndex
functions. Similarly, you may refer to the minimum and maximum elements of a collection of basic type using
the mi nel enent and maxel enent functions.

from Cal endar cal where nmaxel enent (cal . holidays) > current date
from Order order where maxi ndex(order.itens) > 100
from Order order where m nel enent (order.itens) > 10000

The SQL functionsany, sone, all, exists, in aresupportedwhen passed the element or index set of acol-
lection (el enent s and i ndi ces functions) or the result of a subquery (see below).

sel ect nother from Cat as nother, Cat as kit
where kit in el ements(foo.kittens)

select p from NaneList |ist, Person p
where p.nane = sone el ements(list. nanes)

fromCat cat where exists el enents(cat.kittens)
fromPlayer p where 3 > all el ements(p.scores)
from Show show where 'fizard in indices(show acts)

Note that these constructs - si ze, el enent s, i ndi ces, ni ni ndex, maxi ndex, m nel ement , maxel enent - may
only be used in the where clause in Hibernate3.

Elements of indexed collections (arrays, lists, maps) may be referred to by index (in awhere clause only):

from Order order where order.itens[0].id = 1234

sel ect person from Person person, Cal endar cal endar
wher e cal endar. hol i days[' nati onal day'] = person. birthDay
and person. nationality.cal endar = cal endar

select itemfromlitemitem O der order
where order.itens[order.deliveredltem ndices[0]] = itemand order.id = 11

select itemfromlitemitem O der order
where order.itens[maxindex(order.itens)] = itemand order.id = 11

Hibernate 3.0.5 140

HQL: The Hibernate Query Language

The expression inside[] may even be an arithmetic expression.

select itemfromltemitem Order order
where order.itens[size(order.items) - 1] = item

HQL also provides the built-in i ndex() function, for elements of a one-to-many association or collection of
values.

select item index(itenm) from O der order
join order.itens item
where index(iten) < 5

Scalar SQL functions supported by the underlying database may be used

from DonesticCat cat where upper(cat.nane) |ike 'FRl %

If you are not yet convinced by al this, think how much longer and less readable the following query would be
in SQL:

sel ect cust
from Product prod,
Store store
i nner join store.custonmers cust
where prod. namre = 'w dget'
and store.location.nane in (' Ml bourne', 'Sydney')
and prod = all elenments(cust.currentOrder.lineltens)

Hint: something like

SELECT cust. nane, cust.address, cust.phone, cust.id, cust.current_order
FROM cust oners cust,
stores store,
| ocations |oc,
store_custoners sc,
product prod
VWHERE prod. nane = 'w dget'’
AND store.loc_id = loc.id
AND | oc. nane IN (' Mel bourne', 'Sydney')
AND sc.store_id = store.id
AND sc.cust _id = cust.id
AND prod.id = ALL(
SELECT item prod_id
FROM line_itens item orders o
VWHERE itemorder _id = o.id
AND cust.current_order = o.id

15.9. The order by clause

The list returned by a query may be ordered by any property of areturned class or components:

from Donesti cCat cat
order by cat.name asc, cat.weight desc, cat.birthdate

The optional asc or desc indicate ascending or descending order respectively.

15.10. The group by clause

Hibernate 3.0.5 141

HQL: The Hibernate Query Language

A query that returns aggregate values may be grouped by any property of areturned class or components:

sel ect cat.color, sum(cat.weight), count(cat)
from Cat cat
group by cat. col or

sel ect foo.id, avg(name), nmax(nane)
from Foo foo join foo.nanes nane
group by foo.id

A havi ng clauseisalso allowed.

sel ect cat.color, sum(cat.weight), count(cat)
from Cat cat
group by cat. col or

havi ng cat.color in (eg. Col or. TABBY, eg. Col or. BLACK)

SQL functions and aggregate functions are allowed in the havi ng and or der by clauses, if supported by the un-

derlying database (eg. not in MySQL).

sel ect cat
from Cat cat
join cat.kittens kitten
group by cat
havi ng avg(kitten.weight) > 100

order by count(kitten) asc, sum(kitten.weight) desc

Note that neither the gr oup by clause nor the or der by clause may contain arithmetic expressions.

15.11. Subqueries

For databases that support subselects, Hibernate supports subqueries within queries. A subguery must be sur-
rounded by parentheses (often by an SQL aggregate function call). Even correlated subgueries (subqueries that

refer to an aliasin the outer query) are allowed.

from Cat as fatcat
where fatcat.weight > (

sel ect avg(cat.weight) from DonesticCat cat
)

from Donesti cCat as cat
where cat.name = sone (
sel ect nane. ni ckNanme from Nane as nane

)

from Cat as cat
where not exists (

fromCat as nate where nate. rate = cat
)

from Donesti cCat as cat
where cat.nanme not in (

sel ect nane. ni ckNanme from Nane as nane
)

For subqueries with more than one expression in the select list, you can use atuple constructor:

from Cat as cat

Hibernate 3.0.5

142

HQL: The Hibernate Query Language

where not (cat.name, cat.color) in (
sel ect cat.nanme, cat.color from DonesticCat cat

)

Note that on some databases (but not Oracle or HSQL), you can use tuple constructors in other contexts, for ex-
ample when querying components or composite user types.

from Person where nane = (' Gavin', 'A, 'King')

Which is equivalent to the more verbose:

from Person where nane.first = "Gavin' and nane.initial ='A and nane.last = 'King')

There are two good reasons you might not want to do this kind of thing: first, it is not completely portable
between database platforms; second, the query is now dependent upon the ordering of properties in the map-
ping document.

15.12. HQL examples

Hibernate queries can be quite powerful and complex. In fact, the power of the query language is one of Hi-
bernate's main selling points. Here are some example queries very similar to queries that | used on a recent
project. Note that most queries you will write are much simpler than these!

The following query returns the order id, number of items and total value of the order for al unpaid ordersfor a
particular customer and given minimum total value, ordering the results by total value. In determining the
prices, it uses the current catalog. The resulting SQL query, against the ORDER, ORDER LI NE, PRODUCT, CATALOG
and PRI CE tables has four inner joins and an (uncorrelated) subsel ect.

sel ect order.id, sun(price.anmount), count(item
from Order as order
join order.lineltens as item
join item product as product,
Cat al og as cat al og
join catal og.prices as price
where order.paid = fal se
and order.custonmer = :custoner
and price. product = product
and catal og. effectiveDate < sysdate
and catal og. effectivebDate >= all (
sel ect cat.effectiveDate
from Catal og as cat
where cat.effectiveDate < sysdate
)
group by order
havi ng sum(price. amount) > :m nAmount
order by sun{price.anmpunt) desc

What amonster! Actually, in redl life, I'm not very keen on subqueries, so my query was really more like this:

sel ect order.id, sun(price.anmount), count(item
from Order as order

join order.lineltens as item

join item product as product,

Cat al og as cat al og

join catal og.prices as price
where order.paid = fal se

and order. custonmer = :custoner
and price. product = product
and catal og = :current Cat al og

group by order

Hibernate 3.0.5 143

HQL: The Hibernate Query Language

havi ng sum(price. amount) > :m nAmount
order by sun{price.anmpunt) desc

The next query counts the number of payments in each status, excluding all payments in the Awal T-
| NG_APPROVAL status where the most recent status change was made by the current user. It trandates to an SQL
query with two inner joins and a correlated subselect against the PAYMENT, PAYMENT_STATUS and PAY-
MENT_STATUS_CHANGE tables.

sel ect count (paynent), status.nane
from Paynent as paynent
join payment.currentStatus as status
join paynent. st at usChanges as st at usChange
wher e paynent. st at us. name <> Paynent St at us. AWAI TI NG_APPROVAL
or (
statusChange.tineStamp = (
sel ect max(change. ti meSt anp)
f rom Paynent St at usChange change
wher e change. paynent = paynent
)
and st atusChange. user <> :currentUser
)
group by status.nane, status.sortOrder
order by status.sortO der

If | would have mapped the st at usChanges collection as a list, instead of a set, the query would have been
much simpler to write.

sel ect count (paynent), status.nane
from Paynent as paynent
join payment.currentStatus as status
wher e paynent. status. nane <> Paynent St at us. AWAI TI NG_APPROVAL
or paynent. st atusChanges[nmaxlndex(paynment. st at usChanges)].user <> :currentUser
group by status.nane, status.sortOrder
order by status.sortO der

The next query uses the MS SQL Server i shul | () function to return al the accounts and unpaid payments for
the organization to which the current user belongs. It trandlates to an SQL query with three inner joins, an outer
join and a subselect against the ACCOUNT, PAYMENT, PAYMENT_STATUS, ACCOUNT_TYPE, ORGANI ZATI ON and
ORG_USER tables.

sel ect account, paynent
from Account as account
| eft outer join account.paynents as paynent
where :currentUser in el enents(account. hol der. users)
and Paynent St at us. UNPAI D = i sNul | (paynent. current St at us. nane, Paynent St at us. UNPAI D)
order by account.type.sort O der, account.account Nunber, paymnent. dueDate

For some databases, we would need to do away with the (correlated) subselect.

sel ect account, paynent
from Account as account
join account. hol der. users as user
|l eft outer join account.paynents as payment
where :currentUser = user
and Paynent St at us. UNPAI D = i sNul | (paynent . current St at us. nane, Paynent St at us. UNPAI D)
order by account.type.sortOder, account.accountNunber, payment.dueDate

15.13. Bulk UPDATE & DELETE Statements

HQL now supports UPDATE and DELETE statementsin HQL. See Section 14.3, “Bulk update/delete” for de-

Hibernate 3.0.5 144

HQL: The Hibernate Query Language

tails.

15.14. Tips & Tricks

Y ou can count the number of query results without actually returning them:

((I'nteger) session.iterate("select count(*) from....").next()).intValue()

To order aresult by the size of a collection, use the following query:

sel ect usr.id, usr.nane
from User as usr
| eft join usr.nmessages as nsg
group by usr.id, usr.name
order by count (nsg)

If your database supports subselects, you can place a condition upon selection size in the where clause of your
query:

from User usr where size(usr.nmessages) >= 1

If your database doesn't support subselects, use the following query:

sel ect usr.id, usr.nane
from User usr.nane

join usr.messages nsg
group by usr.id, usr.nanme
havi ng count(nsg) >= 1

Asthis solution can't return a User with zero messages because of the inner join, the following form is also use-
ful:

sel ect usr.id, usr.nane
from User as usr
| eft join usr.nessages as nsg
group by usr.id, usr.nane
havi ng count(nsg) = 0

Properties of a JavaBean can be bound to named query parameters:

Query g = s.createQuery("fromfoo Foo as foo where foo.nanme=: name and foo.size=:size");
g. set Properties(fooBean); // fooBean has get Nane() and getSize()
List foos = qg.list();

Collections are pageable by using the Quer y interface with afilter:

Query g = s.createFilter(collection, ""); // the trivial filter
g. set MaxResul t s(PAGE_SI ZE) ;

g. set Fi rst Resul t (PAGE_SI ZE * pageNunber) ;

List page = qg.list();

Coallection elements may be ordered or grouped using a query filter:

Col I ection orderedCol l ection = s.filter(collection, "order by this.amunt");
Col l ection counts = s.filter(collection, "select this.type, count(this) group by this.type");

Y ou can find the size of a collection without initializing it:

Hibernate 3.0.5 145

HQL: The Hibernate Query Language

((Integer) session.iterate("select count(*) from....").next()).intValue();

Hibernate 3.0.5 146

Chapter 16. Criteria Queries

Hibernate features an intuitive, extensible criteria query API.

16.1. Creating aCriteri ainstance

The interface or g. hi bernate. Cri teri a represents a query against a particular persistent class. The Sessi on is
afactory for Cri teri a instances.

Criteria crit = sess.createCriteria(Cat.class);
crit.set MaxResul t s(50);
List cats = crit.list();

16.2. Narrowing the result set

An individual query criterion is an instance of the interface or g. hi bernate. criterion. Criterion. The class
org. hibernate.criterion. Restrictions defines factory methods for obtaining certain built-in Criterion

types.

Li st cats = sess.createCriteria(Cat.class)

.add(Restrictions.like("name", "Fritz%))
.add(Restrictions. between("weight", m nWight, maxWeight))
dist();

Restrictions may be grouped logically.

Li st cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name", "Fritz%))
.add(Restrictions. or(
Restrictions.eq("age", new Integer(0)),
Restrictions.isNull ("age")

))
dist();

List cats = sess.createCriteria(Cat.cl ass)
.add(Restrictions.in("nanme", new String[] { "Fritz", "lzi", "Pk" }))
.add(Restrictions.disjunction()
.add(Restrictions.isNull("age"))

.add(Restrictions.eq("age", new Integer(0)))
.add(Restrictions.eq("age", new Integer(1)))
.add(Restrictions.eq("age", new Integer(2)))
))
dist();

There are quite a range of built-in criterion types (Restri cti ons subclasses), but one that is especialy useful
lets you specify SQL directly.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.sql ("lower({alias}.nanme) like lower(?)", "Fritz%,6 Hi bernate. STRING)
dist();

The{al i as} placeholder with be replaced by the row alias of the queried entity.

An aternative approach to obtaining a criterion is to get it from a Property instance. You can create a Pr op-
erty by calling Property. f or Nanme() .

Hibernate 3.0.5 147

Criteria Queries

Property age = Property.forNane("age");
Li st cats = sess.createCriteria(Cat.class)
.add(Restrictions.disjunction()
.add(age.isNull ())
.add(age.eq(new Integer(0)))
.add(age.eq(new Integer(1)))
.add(age.eq(new Integer(2)))
))
.add(Property.forName("nanme").in(new String[] { "Fritz", "lzi", "Pk" }))
dist();

16.3. Ordering the results

Y ou may order the results using or g. hi bernate. criterion. Order.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.!like("nanme", "F%)
.addOrder(Order.asc("nane"))
.addOrder(Order.desc("age"))

. set MaxResul t s(50)
ist();

List cats = sess.createCriteria(Cat.class)
.add(Property.forName("nanme").like("F%))
.addOrder (Property. forNanme("nane").asc())
.addOrder (Property. forNanme("age").desc())
. set MaxResul t s(50)
dist();

16.4. Associations

Y ou may easily specify constraints upon related entities by navigating associationsusing creat eCriteri a() .

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("nane", "F%)
.createCriteria("kittens")

.add(Restrictions.like("nane", "F%)
dist();

note that the second creat eCriteri a() returnsanew instance of Cri t eri a, which refers to the elements of the
ki tt ens collection.

Thefollowing, aternate form isuseful in certain circumstances.

List cats = sess.createCriteria(Cat.class)
.createAlias("kittens", "kt")
.createAlias("nmate", "nt")
.add(Restrictions.eqProperty("kt.nanme", "nt.name"))
dist();

(createAl i as() doesnot create anew instance of Criteri a.)

Note that the kittens collections held by the cat instances returned by the previous two queries are not pre-
filtered by the criterial If you wish to retrieve just the kittens that match the criteria, you must use r et ur n-
Maps() .

Li st cats = sess.createCriteria(Cat.cl ass)

Hibernate 3.0.5 148

Criteria Queries

Iter
whi |

.createCriteria("kittens", "kt")
.add(Restrictions.eq("nanme", "F%))
.returnMaps()
dist();
ator iter = cats.iterator();
e (iter.hasNext()) {
Map map = (Map) iter.next();
Cat cat = (Cat) map.get(Criteria. ROOT_ALI AS);
Cat kitten = (Cat) map.get("kt");

16.5. Dynamic association fetching

Y ou may specify association fetching semantics at runtime using set Fet chMode() .

Li st

cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("nane", "Fritz%))
. set Fet chMbde(" mat e", Fet chMbde. EAGER)
. set Fet chMbde("ki ttens", FetchMde. EAGER)
ist();

This query will fetch both nmat e and ki t t ens by outer join. See Section 20.1, “Fetching strategies’ for more in-
formation.

16.6. Example queries

Theclassorg. hi bernate. criterion. Exanpl e alowsyou to construct a query criterion from a given instance.

Cat

cat.
cat.
Li st

cat = new Cat();
set Sex('F');
set Col or (Col or. BLACK) ;
results = session.createCriteria(Cat.class)
.add(Exanpl e.create(cat))
list();

Version properties, identifiers and associations are ignored. By default, null valued properties are excluded.

Y ou can adjust how the Exanpl e is applied.

Exanpl e exanpl e = Exanpl e. create(cat)

Li st

. excl udeZer oes() /I excl ude zero val ued properties
.excludeProperty("color") [//exclude the property naned "col or"

. i gnoreCase() /I perform case insensitive string conparisons
. enabl eLi ke() ; [luse like for string conparisons

results = session.createCriteria(Cat.class)
. add(exanpl e)
dist();

Y ou can even use examples to place criteria upon associated objects.

Li st

results = session.createCriteria(Cat.class)
.add(Exanple.create(cat))
.CcreateCriteria("mte")
.add(Exanple.create(cat.gethMate()))
dist();

Hibernate 3.0.5 149

Criteria Queries

16.7. Projections, aggregation and grouping

The class org. hi bernate. criterion. Proj ections isafactory for Proj ecti on instances. We apply a projec-
tion to aquery by calling set Proj ecti on() .

List results = session.createCriteria(Cat.class)
.setProjection(Projections.rowCount())
.add(Restrictions.eq("color", Color.BLACK))
dist();

List results = session.createCriteria(Cat.class)
.setProjection(Projections.projectionList()
.add(Projections. rowCount())
.add(Projections.avg("weight"))
.add(Projections. max("weight"))
.add(Projections.groupProperty("color"))

)
dist();

Thereisno explicit "group by" necessary in acriteria query. Certain projection types are defined to be grouping
projections, which also appear in the SQL gr oup by clause.

An aias may optionaly be assigned to a projection, so that the projected value may be referred to in restrictions
or orderings. Here are two different waysto do this:

List results = session.createCriteria(Cat.class)
.setProjection(Projections.alias(Projections.groupProperty(“color"), "colr"))
.addOrder(Order.asc("colr"))
dist();

List results = session.createCriteria(Cat.cl ass)
.setProjection(Projections.groupProperty("color").as("colr"))
.addOrder(Order.asc("colr"))
dist();

Thealias() and as() methods simply wrap a projection instance in another, aliased, instance of proj ecti on.
As a shortcut, you can assign an alias when you add the projection to a projection list:

List results = session.createCriteria(Cat.class)
.setProjection(Projections.projectionList()
.add(Projections.rowCount (), "catCountByColor")
.add(Projections.avg("weight"), "avgWight")
.add(Projections. max("weight"), "maxWight")
.add(Projections.groupProperty(“color"), "color")

)

.addOrder (Order. desc("cat Count ByCol or"))
.addOrder (Order.desc("avgWight"))
dist();

List results = session.createCriteri a(Donestic.class, "cat")
.createAlias("kittens", "kit")
.setProjection(Projections.projectionList()
.add(Projections.property("cat.nane"), "catName")
.add(Projections.property("kit.name"), "kitNanme")

)
.addOrder (Order. asc("cat Name"))

.addOrder (Order.asc("kitName"))
dist();

You can also use Property. f or Name() tO express projections:

Hibernate 3.0.5 150

Criteria Queries

List results = session.createCriteria(Cat.class)
.setProjection(Property.forNane("nane"))
.add(Property.forNanme("col or"). eq(Col or. BLACK))
dist();

List results = session.createCriteria(Cat.class)
.setProjection(Projections.projectionList()
.add(Projections.rowCount().as("cat CountByColor"))
.add(Property.forNanme("wei ght").avg().as("avgWeight"))
.add(Property.forNanme("weight"). max().as("mxWeight"))
.add(Property.forNane("color").group().as("color")

)

.addOrder (Order. desc("cat Count ByCol or"))
.addOrder (Order.desc("avgWight"))
dist();

16.8. Detached queries and subqueries

The Det achedCri teri a class lets you create a query outside the scope of a session, and then later execute it us-
ing some arhitrary Sessi on.

Det achedCriteria query = DetachedCriteria.ford ass(Cat. cl ass)
.add(Property.forNane("sex").eq('F));

Sessi on session =;

Transaction txn = session. begi nTransaction();

List results = query. get Executabl eCriteria(session).set MaxResults(100).list();
txn.commit();

session. cl ose();

A Det achedCri teri a may also be used to express a subquery. Criterion instances involving subqueries may be
obtained via Subqueri es Or Property.

Det achedCriteria avgWi ght = DetachedCriteria.forC ass(Cat.cl ass)
.setProjection(Property.forNanme("wei ght").avg());
session.createCriteri a(Cat.cl ass)
.add(Property.forName("wei ght).gt(avgWight))
dist();

Det achedCriteria weights = DetachedCriteria.ford ass(Cat.cl ass)
.setProjection(Property.forNane("weight"));
session.createCriteria(Cat.cl ass)
.add(Subqueries.geAl ("weight", weights))
dist();

Even correlated subqueries are possible:

Det achedCriteria avgWi ght For Sex = DetachedCriteria.forC ass(Cat.class, "cat2")
.setProjection(Property.forName("wei ght").avg())
.add(Property.forNane("cat2.sex").eqgProperty("cat.sex"));
session.createCriteria(Cat.class, "cat")
.add(Property.forName("wei ght).gt(avgWei ght For Sex))
dist();

16.9. Queries by natural identifier

For most queries, including criteria queries, the query cache is not very efficient, because query cache invalida-
tion occurs too frequently. However, there is one special kind of query where we can optimize the cache inval-

Hibernate 3.0.5 151

Criteria Queries

idation algorithm: lookups by a constant natural key. In some applications, this kind of query occurs frequently.
The criteria API provides special provision for this use case.

First, you should map the natural key of your entity using <nat ural -i d>, and enable use of the second-level
cache.

<cl ass name="User">
<cache usage="read-write"/>
<id name="id">
<generator class="increnment"/>
</id>
<natural -id>
<property nane="nane"/>
<property name="org"/>
</ natural -id>
<property nane="password"/>
</ cl ass>

Note that this functionality is not intended for use with entities with mutable natural keys.
Next, enable the Hibernate query cache.
Now, Restrictions. natural 1 d() alows usto make use of the more efficient cache algorithm.

session.createCriteria(User. cl ass)
.add(Restrictions.naturalld()
.set ("name", "gavin")
.set("org", "hb")
). set Cacheabl e(true)
.uni queResul t () ;

Hibernate 3.0.5 152

Chapter 17. Native SQL

You may also express queries in the native SQL dialect of your database. This is useful if you want to utilize
database specific features such as query hints or the coNNECT keyword in Oracle. It also provides a clean migra-
tion path from adirect SQL/JDBC based application to Hibernate.

Hibernate3 allows you to specify handwritten SQL (including stored procedures) for all create, update, delete,
and load operations.

17.1. Creating a native SQL Query

SQL queries are controlled via the sQquery interface, which is obtained by caling Ses-
si on. creat eSQLQuery() .

List cats = sess.createSQ.Query("select {cat.*} fromcats cat")
.addEntity("cat", Cat.class);
. set MaxResul t s(50) ;
dist();

This query specified:

» the SQL query string, with a placeholder for Hibernate to inject the column aliases
» the entity returned by the query, and its SQL table alias

The addentity() method associates SQL table aliases with entity classes, and determines the shape of the
query result set.

The addJoi n() method may be used to load associations to other entities and collections. TODO: examples!
A native SQL query might return asimple scalar value or a combination of scalars and entities.

Doubl e max = (Doubl e) sess.createSQ.Query("sel ect nax(cat.weight) as maxWight fromcats cat")
. addScal ar (" maxWei ght", Hi ber nat e. DOUBLE) ;
.uni queResul t ();

17.2. Alias and property references

The{cat.*} notation used aboveis a shorthand for "all properties’. Alternatively, you may list the columns ex-
plicity, but even then you must let Hibernate inject the SQL column aliases for each property. The placeholder
for a column dias is just the property name qualified by the table alias. In the following example, we retrieve
cat s from a different table (cat _| og) to the one declared in the mapping metadata. Notice that we may even
use the property aiases in the where clause if we like. The {}-syntax is not required for named queries. See
morein Section 17.3, “Named SQL queries’

String sql = "select cat.originalld as {cat.id}, " +
"cat.mateid as {cat.mate}, cat.sex as {cat.sex}, " +
"cat.weight*10 as {cat.weight}, cat.name as {cat.nane} " +
"fromcat _|og cat where {cat.mte} = :catld"

Li st | oggedCats = sess. createSQQuery(sql)
.addEntity("cat", Cat.class)
.setlLong("catld", catld)
ist();

Hibernate 3.0.5 153

Native SQL

Note: if you list each property explicitly, you must include all properties of the class and its subclasses!

17.3. Named SQL queries

Named SQL queries may be defined in the mapping document and called in exactly the same way as a named
HQL query. In this case, we do not need to call addEntity().

<sql - query name="nySql Query">
<return alias="person" class="eg. Person"/>
SELECT person. NAME AS { per son. nane},
person. AGE AS { person. age},
per son. SEX AS {person. sex}
FROM PERSON per son WHERE per son. NAME LI KE ' Hi ber %
</ sql - query>

Li st peopl e = sess. get NamedQuery (" mySql Query")
. set MaxResul t s(50)
dist();

A named SQL query may return a scalar value. Y ou must specfy the column alias and Hibernate type using the
<return-scal ar > €lement:

<sql - query name="nySql Query">
<return-scal ar col um="nane" type="string"/>
<return-scal ar col um="age" type="long"/>
SELECT p. NAME AS nane,
p. AGE AS age,
FROM PERSON p WHERE p. NAME LI KE ' Hi ber %
</ sql - query>

The <return-j oi n> and <l oad- col | ecti on> elements are used to join associations and define queries which
initialize collections, respectively. TODO!

17.3.1. Using return-property to explicitly specify column/alias names

With <r et ur n- proper t y> you can explicitly tell Hibernate what columns to use as opposed to use { } -syntax to
let Hibernate inject its own aliases.

<sqgl - query name="mySql Query" >
<return alias="person" class="eg. Person">
<return-property name="nanme" col um="nyNanme"/>
<return-property nane="age" col um="nyAge"/>
<return-property nane="sex" col um="nmySex"/>
</return>
SELECT person. NAME AS nyNane,
person. AGE AS nyAge,
per son. SEX AS nySex,
FROM PERSON per son WHERE per son. NAVE LI KE : nane
</ sql - query>

<r et ur n- proper t y> aso works with multiple columns. This solves a limitation with the {} -syntax which can
not alow fine grained control of multi-column properties.

<sqgl - query name="organi zati onCurrent Enpl oynent s" >
<return alias="enp" class="Enpl oynent">
<return-property nane="sal ary">
<return-col um nanme="VALUE"/ >
<return-col um nane="CURRENCY"/ >
</return-property>
<return-property nane="endDate" col um="nyEndDate"/>

Hibernate 3.0.5 154

Native SQL

</return>
SELECT EMPLOYEE AS {enp. enpl oyee}, EMPLOYER AS {enp. enpl oyer},
STARTDATE AS {enp. startDate}, ENDDATE AS {enp. endDat e},
REG ONCODE as {enp.regi onCode}, EID AS {enp.id}, VALUE, CURRENCY
FROM EMPLOYMENT
VWHERE EMPLOYER = :id AND ENDDATE | S NULL
ORDER BY STARTDATE ASC
</ sql - query>

Notice that in this example we used <r et ur n- proper t y> in combination with the {} -syntax for injection. Al-
lowing users to choose how they want to refer column and properties.

If your mapping has a discriminator you must use <return-discriminator> to specify the discriminator column.

17.3.2. Using stored procedures for querying

Hibernate 3 introduces support for queries via stored procedures. The stored procedures must return a resultset
asthe first out-parameter to be able to work with Hibernate. An example of such a stored procedure in Oracle 9
and higher isasfollows:

CREATE OR REPLACE FUNCTI ON sel ect Al | Enpl oynent s
RETURN SYS_ REFCURSOR
AS
st _cursor SYS_ REFCURSOR;
BEG N
OPEN st _cursor FOR
SELECT EMPLOYEE, EMPLOYER,
STARTDATE, ENDDATE,
REG ONCODE, EI D, VALUE, CURRENCY
FROM EMPLOYMENT;
RETURN st _cursor;
END;

To use this query in Hibernate you need to map it viaa named query.

<sql - query name="sel ect Al | Enpl oyees_SP" cal | abl e="true">
<return alias="enp" class="Enpl oynent">
<return-property name="enpl oyee" col utm="EMPLOYEE"/ >
<return-property nane="enpl oyer" col unmm="EMPLOYER'/ >
<return-property nane="startDate" col um="STARTDATE"/ >
<return-property nane="endDate" col um="ENDDATE"/ >
<return-property nane="regi onCode" col um="REG ONCCDE"/ >
<return-property nane="id" colum="EID'/>
<return-property nane="sal ary">
<return-col um nanme="VALUE"/ >
<return-col um nane=" CURRENCY"/ >
</return-property>
</return>
{ ? = call selectAllEnploynents() }
</ sql - query>

Notice stored procedures currently only return scalars and entities. <r et ur n-j oi n> and <l oad- col | ecti on> are
not supported.

Rules/limitations for using stored procedures

To use stored procedures with Hibernate the procedures have to follow some rules. If they do not follow those
rules they are not usable with Hibernate. If you still want to use these procedures you have to execute them via
sessi on. connection() . Therules are different for each database, since database vendors have different stored
procedure semantics/syntax.

Hibernate 3.0.5 155

Native SQL

Stored procedure queries can't be paged with set Fi rst Resul t () / set MaxResul t s() .

For Oracle the following rules apply:

e The procedure must return aresult set. Thisis done by returning aSYS REFCURSOR in Oracle 9 or 10. In
Oracle you need to define aREF CURSOR type.

* Recommended formis{ ? = call procName(<paraneters>) } Of{ ? = call procNane } (Thisismore
an Oracle rule than a Hibernate rule.)

For Sybase or MS SQL server the following rules apply:

e The procedure must return aresult set. Note that since these servers can/will return multiple result sets and
update counts, Hibernate will iterate the results and take the first result that is a result set asits return value.
Everything else will be discarded.

e |If you can enable SET NOCOUNT ONin your procedure it will probably be more efficient, but thisis not are-
quirement.

17.4. Custom SQL for create, update and delete

Hibernate3 can use custom SQL statements for create, update, and delete operations. The class and collection
persisters in Hibernate already contain a set of configuration time generated strings (insertsgl, deletesql, updat-
esgl etc.). The mapping tags <sql -i nsert >, <sql - del et e>, and <sql - updat e> override these strings:

<cl ass nanme="Person" >
<id name="id">
<generator class="increnent"/>
</id>
<property nane="nane" not-null="true"/>
<sql -i nsert > NSERT | NTO PERSON (NAVME, |D) VALUES (UPPER(?), ?)</sql-insert>
<sqgl - updat e>UPDATE PERSON SET NAME=UPPER(?) WHERE | D=?</sql - updat e>
<sql - del et e>DELETE FROM PERSON WHERE | D=?</ sql - del et e>
</ cl ass>

The SQL is directly executed in your database, so you are free to use any diaect you like. This will of course
reduce the portability of your mapping if you use database specific SQL.

Stored procedures are supported if the cal | abl e attributeis set:

<cl ass name="Person">

<id name="id">

<generator class="increment"/>

</id>

<property nane="nane" not-null="true"/>

<sqgl -insert callable="true">{call createPerson (?, ?)}</sql-insert>

<sql -del ete callable="true">{? = call del etePerson (?)}</sql-delete>

<sql -update cal |l abl e="true">{? = call updatePerson (?, ?)}</sql-update>
</ cl ass>

The order of the positional parameters are currently vital, as they must be in the same sequence as Hibernate
expects them.

You can see the expected order by enabling debug logging for the or g. hi berante. persister.entity level.
With this level enabled Hibernate will print out the static SQL that is used to create, update, delete etc. entities.
To see the expected sequence, remember to not include your custom SQL in the mapping files as that will over-
ride the Hibernate generated static sql.

The stored procedures are in most cases (read: better do it than not) required to return the number of rows inser-

Hibernate 3.0.5 156

Native SQL

ted/updated/del eted, as Hibernate has some runtime checks for the success of the statement. Hibernate always
registers the first statement parameter as a numeric output parameter for the CUD operations:

CREATE OR REPLACE FUNCTI ON updat ePerson (uid | N NUMBER, unanme | N VARCHAR2)
RETURN NUMBER | S
BEG N

updat e PERSON
set

NAME = unane,
wher e

ID = uid;

return SQLYROWCOUNT;

END updat ePer son

17.5. Custom SQL for loading

Y ou may also declare your own SQL (or HQL) queries for entity loading:

<sql - query name="person">

<return alias="p" class="Person" |ock-node="upgrade"/>

SELECT NAME AS {p.nane}, ID AS {p.id} FROM PERSON WHERE | D=? FOR UPDATE
</ sql - query>

This is just a named query declaration, as discussed earlier. You may reference this named query in a class
mapping:
<cl ass name="Person">

<id name="id">
<generator class="increnent"/>

</id>
<property nane="nane" not-null="true"/>
<l oader query-ref="person"/>

</ cl ass>

And this also works with stored procedures.
TODO: Document the following example for collection loader.

<sqgl - query name="organi zati onEnpl oynent s" >
<l oad-col | ection alias="enpcol" rol e="COrgani zati on. enpl oynent s"/ >
SELECT {enpcol .*}
FROM EMPLOYMENT enpco
WHERE EMPLOYER = :id
CRDER BY STARTDATE ASC, EMPLOYEE ASC
</ sql - query>

<sql - query name="or gani zati onCurrent Enpl oynment s" >
<return alias="enp" class="Enpl oynent"/>
<synchroni ze tabl e=" EMPLOYMENT"/ >
SELECT EMPLOYEE AS {enp. enpl oyee}, EMPLOYER AS {enp. enpl oyer},
STARTDATE AS {enp. startDate}, ENDDATE AS {enp. endDat e},
REG ONCODE as {enp. regi onCode}, ID AS {enp.id}
FROM EMPLOYMENT
WHERE EMPLOYER = :id AND ENDDATE | S NULL
ORDER BY STARTDATE ASC
</ sql - query>

Hibernate 3.0.5 157

Chapter 18. Filtering data

Hibernate3 provides an innovative new approach to handling data with "visibility" rules. A Hibernate filter isa
global, named, parameterized filter that may be enabled or disabled for a particular Hibernate session.

18.1. Hibernate filters

Hibernate3 adds the ahility to pre-define filter criteria and attach those filters at both a class and a collection
level. A filter criteria is the ability to define a restriction clause very similiar to the existing "where" attribute
available on the class and various collection elements. Except these filter conditions can be parameterized. The
application can then make the decision at runtime whether given filters should be enabled and what their para-
meter values should be. Filters can be used like database views, but parameterized inside the application.

In order to use filters, they must first be defined and then attached to the appropriate mapping elements. To
define afilter, usethe<fil t er- def/ > element within a<hi ber nat e- mappi ng/ > element:

<filter-def name="nyFilter">
<filter-param nanme="nyFilterParam' type="string"/>
</filter-def>

Then, thisfilter can be attached to a class:

<cl ass nanme="nyd ass" ...>
<filter name="nyFilter" condition=":nyFilterParam = MY_FI LTERED COLUWN'/ >

</ cl ass>

or, to acollection:

<set ...>
<filter nane="nyFilter" condition=":nyFilterParam = MY_FI LTERED COLUWN'/ >
</ set>

or, even to both (or multiples of each) at the sametime.

The methods on Sessi on are: enabl eFil ter(String filterNane), get Enabl edFilter(String filterNane),
and di sabl eFilter(String filterName). By default, filters are not enabled for a given session; they must be
explcitly enabled through use of the Sessi on. enabl edFi | ter () method, which returns an instance of the Fi | -
ter interface. Using the simple filter defined above, thiswould look like:

session.enableFilter("nyFilter").setParaneter("nyFilterParant, "sone-value");

Note that methods on the org.hibernate.Filter interface do allow the method-chaining common to much of Hi-
bernate.

A full example, using temporal data with an effective record date pattern:

<filter-def name="effectiveDate">
<filter-param name="asOf Date" type="date"/>
</filter-def>

<cl ass nane="Enpl oyee" ...>
<many-t o-one nane="departnment"” col um="dept _id" cl ass="Departnent"/>

<property nane="effectiveStartDate" type="date" colum="eff_start_dt"/>
<property nane="effectiveEndDate" type="date" colum="eff_end_dt"/>

Hibernate 3.0.5 158

Filtering data

<l--
Note that this assumes non-term nal records have an eff_end_dt set to
a max db date for sinplicity-sake
-->
<filter nane="effectiveDate"
condi ti on=":asCf Date BETWEEN eff_start_dt and eff_end_dt"/>
</ cl ass>

<cl ass nane="Departnent" ...>

<set nanme="enpl oyees" |azy="true">
<key col um="dept _id"/>
<one-to- many cl ass="Enpl oyee"/>
<filter nanme="effectiveDate"
condi ti on=":asCf Dat e BETWEEN eff_start_dt and eff_end_dt"/>
</ set>
</ cl ass>

Then, in order to ensure that you always get back currently effective records, simply enable the filter on the ses-
sion prior to retrieving employee data:

Session session = ...;

sessi on. enabl edFi l ter("effectiveDate"). setParaneter("asO Date", new Date());

List results = session.createQuery("from Enpl oyee as e where e.salary > :targetSal ary")
.setLong("target Sal ary", new Long(1000000))
dist();

In the HQL above, even though we only explicitly mentioned a salary constraint on the results, because of the
enabled filter the query will return only currently active employees who have a salary greater than a million
dollars.

Note: if you plan on using filters with outer joining (either through HQL or load fetching) be careful of the dir-
ection of the condition expression. Its safest to set this up for left outer joining; in general, place the parameter
first followed by the column name(s) after the operator.

Hibernate 3.0.5 159

Chapter 19. XML Mapping

Note that thisis an experimental feature in Hibernate 3.0 and is under extremely active devel opment.

19.1. Working with XML data

Hibernate lets you work with persistent XML data in much the same way you work with persistent POJOs. A
parsed XML tree can be thought of as just another way to represent the relational data at the object level, in-
stead of POJOs.

Hibernate supports domd4j as API for manipulating XML trees. You can write queries that retrieve domd4j trees
from the database and have any modification you make to the tree automatically synchronized to the database.
Y ou can even take an XML document, parse it using dom4j, and write it to the database with any of Hibernate's
basic operations: persist(), saveOrUpdate(), nerge(), delete(), replicate() (mergingis not yet sup-
ported).

This feature has many applications including data import/export, externalization of entity data via JMS or
SOAP and X SLT-based reporting.

A single mapping may be used to simultaneously map properties of a class and nodes of an XML document to
the database, or, if thereis no classto map, it may be used to map just the XML.

19.1.1. Specifying XML and class mapping together

Here is an example of mapping a POJO and XML simultaneousdly:

<cl ass nanme="Account"
t abl e=" ACCOUNTS"
node="account " >

<id name="account | d"
col um=" ACCOUNT_I D"
node="@d"/ >

<many-t o- one nane="cust oner"
col um="CUSTOVER | D"
node="cust oner/ @d"
enbed- xm ="f al se"/ >

<property nane="bal ance"

col um=" BALANCE"
node="bal ance"/ >

</ cl ass>

19.1.2. Specifying only an XML mapping

Here is an example where thereis no POJO class:

<cl ass entity-name="Account"
t abl e=" ACCOUNTS"
node="account ">

<id name="id"
col um="ACCOUNT_I D"

Hibernate 3.0.5 160

XML Mapping

node="@ d"
type="string"/>

<many-t o- one nane="cust oner|d"
col um=" CUSTOVER_| D"
node="cust oner/ @d"
enbed- xm ="f al se"
entity-nanme="Custoner"/>

<property nane="bal ance"
col utm=" BALANCE"
node="bal ance"
type="bi g_deci mal "/ >

</ cl ass>

This mapping allows you to access the data as a dom4j tree, or as a graph of property name/value pairs (java
vaps). The property names are purely logical constructs that may be referred to in HQL queries.

19.2. XML mapping metadata

Many Hibernate mapping elements accept the node attribute. This let's you specify the name of an XML attrib-
ute or element that holds the property or entity data. The format of the node attribute must be one of the follow-

ing:

e el ement - name" - Mmap to the named XML element

e "@ttribute-nanme" - map to the named XML attribute

e . -map to the parent element

e "elenent-nanme/ @ttribute-name" - map to the named attribute of the named element

For collections and single valued associations, there is an additional enbed- xni attribute. If enbed- xm ="t r ue",
the default, the XML tree for the associated entity (or collection of value type) will be embedded directly in the
XML tree for the entity that owns the association. Otherwise, if enbed- xm ="f al se", then only the referenced
identifier value will appear in the XML for single point associations and collections will simply not appear at
all.

Y ou should be careful not to leave enbed- xm ="t rue" for too many associations, since XML does not deal well
with circularity!

<cl ass nanme="Cust oner"
t abl e=" CUSTOVER"
node="cust oner" >

<id nane="id"
col um="CUST_I D"
node="@d"/ >

<map nane="accounts"
node="."
enbed- xm ="true">
<key col um="CUSTOMER | D"
not-null ="true"/>
<map- key col utm="SHORT_DESC"'
node="@hort - desc"
type="string"/>
<one-to-many entity-nanme="Account"
enbed- xm ="f al se"
node="account"/ >
</ map>

Hibernate 3.0.5 161

XML Mapping

<conponent name="nane"
node="nane" >
<property nane="firstNanme"
node="first-nane"/ >
<property name="initial"
node="initial"/>
<property nane="I| ast Nane"
node="I ast - nane"/ >
</ conponent >

</ cl ass>

in this case, we have decided to embed the collection of account ids, but not the actual account data. The fol-
lowing HQL query:

fromCustoner c left join fetch c.accounts where c.lastNane |ike :|astNane

Would return datasets such as this;

<custoner id="123456789">
<account short-desc="Savi ngs">987632567</ account >
<account short-desc="Credit Card">985612323</account >
<nane>
<first-name>Gvi n</first-name>
<initial >A</initial>
<l| ast - nane>Ki ng</ | ast - nanme>
</ name>

</cu§i6ner>
If you set enbed- xm ="t rue" on the <one- t o- many> mapping, the data might look more like this:

<customer id="123456789">
<account id="987632567" short-desc="Savi ngs">
<custonmer id="123456789"/>
<bal ance>100. 29</ bal ance>

</ account >
<account id="985612323" short-desc="Credit Card">

<customer id="123456789"/>
<bal ance>- 2370. 34</ bal ance>

</ account >

<nane>
<first-name>Gvi n</first-name>
<initial >A</initial>
<| ast - nane>Ki ng</ | ast - name>

</ nanme>

</ cust oner >

19.3. Manipulating XML data
Let'srearead and update XML documentsin the application. We do this by obtaining a dom4j session:

Docunment doc =;

Session session = factory. openSession();
Sessi on don¥j Sessi on = sessi on. get Sessi on(EntityMode. DOWAJ) ;
Transaction tx = session. begi nTransaction();

List results = domdj Sessi on
.createQuery("from Custoner c left join fetch c.accounts where c.lastNanme |ike :|astNanme")

Hibernate 3.0.5 162

XML Mapping

dist();

for (int i=0; i<results.size(); i++) {
//add the custoner data to the XM. document
El ement custonmer = (Elenent) results.get(i);
doc. add(cust oner) ;

}

tx.commt();
session. cl ose();

Sessi on session = factory. openSession();
Sessi on dom¥j Sessi on = sessi on. get Sessi on(Enti t yMbde. DOWAJ) ;
Transaction tx = session. begi nTransaction();

El enent cust = (El enment) dom4j Session. get("Custoner", custonerld);
for (int i=0; i<results.size(); i++) {

El enent custonmer = (Elenment) results.get(i);

[/ change the customer nane in the XML and dat abase

El enent nane = custoner. el enent (" nane");

nane. el ement ("first-name"). set Text (firstNane);

nane. el ement ("initial").setText(initial);

nane. el ement ("I ast - nane") . set Text (| ast Nane) ;

}

tx.commit();
sessi on. cl ose();

It is extremely useful to combine this feature with Hibernate's repli cate() operation to implement XML-
based data import/export.

Hibernate 3.0.5 163

Chapter 20. Improving performance

20.1. Fetching strategies

A fetching strategy is the strategy Hibernate will use for retrieving associated objects if the application needs to
navigate the association. Fetch strategies may be declared in the O/R mapping metadata, or over-ridden by a
particular HQL or Cri teri a query.

Hibernate3 defines the following fetching strategies:

« Join fetching - Hibernate retrieves the associated instance or collection in the same SELECT, using an OUTER
JON.

« Sdect fetching - a second SELECT is used to retrieve the associated entity or collection. Unless you explicitly
disable lazy fetching by specifying | azy="f al se", this second select will only be executed when you actu-
ally access the association.

* Subselect fetching - a second SELECT is used to retrieve the associated collections for al entities retrieved in
a previous query or fetch. Unless you explicitly disable lazy fetching by specifying | azy="f al se", this
second select will only be executed when you actually access the association.

« Batch fetching - an optimization strategy for select fetching - Hibernate retrieves a batch of entity instances
or collectionsin asingle SELECT, by specifying alist of primary keys or foreign keys.

Hibernate also distinguishes between:

Immediate fetching - an association, collection or attribute is fetched immediately, when the owner is
loaded.

e Lazy collection fetching - a collection is fetched when the application invokes an operation upon that collec-
tion. (Thisisthe default for collections.)

e Proxy fetching - a single-valued association is fetched when a method other than the identifier getter isin-
voked upon the associated object.

» Lagzy attribute fetching - an attribute or single valued association is fetched when the instance variableis ac-
cessed (required buildtime bytecode instrumentation). This approach is rarely necessary.

We have two orthogonal notions here: when is the association fetched, and how is it fetched (what SQL is
used). Don't confuse them! We usef et ch to tune performance. We may use | azy to define a contract for what
datais always available in any detached instance of a particular class.

20.1.1. Working with lazy associations

By default, Hibernate3 uses lazy select fetching for collections and lazy proxy fetching for single-valued asso-
ciations. These defaults make sense for almost all associationsin almost all applications.

Note: if you set hi ber nat e. def aul t _bat ch_f et ch_si ze, Hibernate will use the batch fetch optimization for
lazy fetching (this optimization may also be enabled at a more granular level).

However, lazy fetching poses one problem that you must be aware of. Access to a lazy association outside of

Hibernate 3.0.5 164

Improving performance

the context of an open Hibernate session will result in an exception. For example:

s = sessions. openSessi on();
Transaction tx = s.begi nTransaction();

User u = (User) s.createQuery("from User u where u.name=:user Nane")
.setString("userName", userNane). uni queResult();
Map perm ssions = u. getPerm ssions();

tx.commt();
s.cl ose();

I nt eger accesslLevel = (Integer) perm ssions.get("accounts"); // Error!

Since the permissions collection was not initialized when the Sessi on was closed, the collection will not be
ableto load its state. Hibernate does not support lazy initialization for detached objects. The fix is to move the
code that reads from the collection to just before the transaction is committed.

Alternatively, we could use a non-lazy collection or association, by specifying | azy="f al se" for the associ-
ation mapping. However, it is intended that lazy initialization be used for aimost all collections and associ-
ations. If you define too many non-lazy associations in your object model, Hibernate will end up needing to
fetch the entire database into memory in every transaction!

On the other hand, we often want to choose join fetching (which is non-lazy by nature) instead of select fetch-
ing in a particular transaction. We'll now see how to customize the fetching strategy. In Hibernate3, the mech-
anisms for choosing afetch strategy are identical for single-valued associations and collections.

20.1.2. Tuning fetch strategies

Select fetching (the default) is extremely vulnerable to N+1 selects problems, so we might want to enable join
fetching in the mapping document:

<set nane="perm ssi ons"
fetch="join">
<key col um="userld"/>
<one-to-many cl ass="Perm ssi on"/>
</ set

<many-t o- one name="nother" class="Cat" fetch="join"/>

The fetch strategy defined in the mapping document affects:

* retrieval viaget () orl oad()
» retrieval that happens implicitly when an association is navigated (lazy fetching)
e Criteriaqueries

Usually, we don't use the mapping document to customize fetching. Instead, we keep the default behavior, and
overrideit for aparticular transaction, usingl eft join fetch in HQL. Thistells Hibernate to fetch the associ-
ation eagerly in the first select, using an outer join. In the Criteria query API, you would use set Fet ch-
Mode(Fet chMbde. JO N) .

If you ever feel like you wish you could change the fetching strategy used by get () or | oad(), Smply use a
Criteria query, for example:

User user = (User) session.createCriteria(User.class)

Hibernate 3.0.5 165

Improving performance

. set Fet chMbde(" perm ssi ons", FetchMbde. JO N)
.add(Restrictions.idEq(userld))
. uni queResul t () ;

(Thisis Hibernate's equivaent of what some ORM solutions call a"fetch plan™.)

A completely different way to avoid problems with N+1 selectsisto use the second-level cache.

20.1.3. Single-ended association proxies

Lazy fetching for collections is implemented using Hibernate's own implementation of persistent collections.
However, a different mechanism is needed for lazy behavior in single-ended associations. The target entity of
the association must be proxied. Hibernate implements lazy initializing proxies for persistent objects using
runtime bytecode enhancement (viathe excellent CGLIB library).

By default, Hibernate3 generates proxies (at startup) for all persistent classes and uses them to enable lazy
fetching of many- t o- one and one- t o- one associations.

The mapping file may declare an interface to use as the proxy interface for that class, with the pr oxy attribute.
By default, Hibernate uses a subclass of the class. Note that the proxied class must implement a default con-
structor with at least package visibility. We recommend this constructor for all persistent classes!

There are some gotchas to be aware of when extending this approach to polymorphic classes, eg.

<cl ass nane="Cat" proxy="Cat">

</ subcl ass>
</ cl ass>

Firstly, instances of cat will never be castable to Donest i cCat , even if the underlying instance is an instance of
Donesti cCat :

Cat cat = (Cat) session.load(Cat.class, id); // instantiate a proxy (does not hit the db)
if (cat.isDonesticCat()) { /1 hit the db to initialize the proxy
Donesti cCat dc = (DomesticCat) cat; /1 Error!

Secondly, it is possible to break proxy ==.

Cat cat = (Cat) session.load(Cat.class, id); [/ instantiate a Cat proxy
Donesti cCat dc =

(DonesticCat) session.|oad(DonesticCat.class, id); // acquire new DonesticCat proxy!
System out . printl n(cat==dc); /1 fal se

However, the situation is not quite as bad as it looks. Even though we now have two references to different
proxy objects, the underlying instance will still be the same object:

cat.setWight(11.0); // hit the db to initialize the proxy
System out.println(dc.getWight()); [// 11.0

Third, you may not use a CGLIB proxy for afi nal classor aclasswith any fi nal methods.

Finaly, if your persistent object acquires any resources upon instantiation (eg. in initializers or default con-
structor), then those resources will also be acquired by the proxy. The proxy class is an actual subclass of the

Hibernate 3.0.5 166

Improving performance

persistent class.

These problems are al due to fundamental limitations in Java's single inheritance model. If you wish to avoid
these problems your persistent classes must each implement an interface that declares its business methods.
Y ou should specify these interfaces in the mapping file. eg.

<cl ass nanme="Catl npl" proxy="Cat">
<subcl ass nane="DonesticCatlnpl" proxy="DonesticCat">

</ subcl ass>
</ cl ass>

where cat I npl implements the interface cat and Donesti cCat | npl implements the interface Donesti cCat .
Then proxies for instances of cat and DonesticCat may be returned by | oad() or iterate(). (Note that
l'ist() doesnot usualy return proxies.)

Cat cat = (Cat) session.load(Catlnpl.class, catid);
Iterator iter = session.iterate("from Catlnpl as cat where cat.name="fritz'");
Cat fritz = (Cat) iter.next();

Relationships are also lazily initialized. This means you must declare any properties to be of type cat, not
Cat I npl .

Certain operations do not require proxy initialization

* equal s(), if the persistent class does not override equal s()
e hashCode(), if the persistent class does not override hashCode()
e Theidentifier getter method

Hibernate will detect persistent classes that override equal s() or hashCode().

20.1.4. Initializing collections and proxies

A LazylnitializationException will be thrown by Hibernate if an uninitialized collection or proxy is ac-
cessed outside of the scope of the Sessi on, ie. when the entity owning the collection or having the reference to
the proxy isin the detached state.

Sometimes we need to ensure that a proxy or collection isinitialized before closing the Sessi on. Of course, we
can alway force initialization by calling cat . get Sex() Of cat. getKittens().size(), for example. But that is
confusing to readers of the code and is not convenient for generic code.

The static methods Hi bernate. i nitialize() and Hi bernate.islnitialized() provide the application with a
convenient way of working with lazily initialized collections or proxies. Hibernate.initialize(cat) will
force the initialization of a proxy, cat, as long as its Session is still open. Hibernate.initialize(
cat.getKittens()) hasasmilar effect for the collection of kittens.

Another option is to keep the Sessi on open until al needed collections and proxies have been loaded. In some
application architectures, particularly where the code that accesses data using Hibernate, and the code that uses
it are in different application layers or different physical processes, it can be a problem to ensure that the Ses-
si on isopen when acollection isinitialized. There are two basic ways to deal with thisissue:

* In aweb-based application, a servlet filter can be used to close the Sessi on only at the very end of a user
regquest, once the rendering of the view is complete (the Open Session in View pattern). Of course, this
places heavy demands on the correctness of the exception handling of your application infrastructure. It is

Hibernate 3.0.5 167

Improving performance

vitally important that the Sessi on is closed and the transaction ended before returning to the user, even
when an exception occurs during rendering of the view. The servlet filter has to be able to access the Ses-
si on for this approach. We recommend that a Thr eadLocal variable be used to hold the current Sessi on
(see chapter 1, Section 1.4, “Playing with cats’, for an example implementation).

* Inan application with a separate business tier, the business logic must "prepare” all collections that will be
needed by the web tier before returning. This means that the business tier should load all the data and return
al the data already initialized to the presentation/web tier that is required for a particular use case. Usualy,
the application calls Hi bernate.initialize() for each collection that will be needed in the web tier (this
call must occur before the session is closed) or retrieves the collection eagerly using a Hibernate query with
aFETCH clause or aFet chMode. JONINn Criteria. Thisisusualy easier if you adopt the Command pattern
instead of a Session Facade.

¢ You may aso attach a previously loaded object to a new Sessi on with nerge() or 1 ock() before accessing
uninitialized collections (or other proxies). No, Hibernate does not, and certainly should not do this auto-
matically, since it would introduce ad hoc transaction semantics!

Sometimes you don't want to initialize a large collection, but still need some information about it (like its size)
or asubset of the data.

Y ou can use a collection filter to get the size of a collection without initializing it:

((I'nteger) s.createFilter(collection, "select count(*)").list().get(0)).intValue()

ThecreateFilter() method is also used to efficiently retrieve subsets of a collection without needing to ini-
tialize the whole collection:

s.createFilter(lazyCollection, "").setFirstResult(0).setMaxResults(10).list();

20.1.5. Using batch fetching

Hibernate can make efficient use of batch fetching, that is, Hibernate can load several uninitialized proxies if
one proxy is accessed (or collections. Batch fetching is an optimization of the lazy select fetching strategy.
There are two ways you can tune batch fetching: on the class and the collection level.

Batch fetching for classeg/entities is easier to understand. Imagine you have the following situation at runtime;
You have 25 cat instances loaded in a Sessi on, each cat has a reference to its owner, a Person. The Per son
class is mapped with a proxy, 1 azy="true". If you now iterate through al cats and call get omer () on each,
Hibernate will by default execute 25 SELECT statements, to retrieve the proxied owners. Y ou can tune this beha-
vior by specifying abat ch- si ze in the mapping of Per son:

<cl ass nanme="Person" batch-size="10">...</cl ass>

Hibernate will now execute only three queries, the patternis 10, 10, 5.

You may also enable batch fetching of collections. For example, if each Per son has a lazy collection of cat s,
and 10 persons are currently loaded in the Sesssi on, iterating through all persons will generate 10 SELECTS, one
for every call to get Cat s() . If you enable batch fetching for the cat s collection in the mapping of Per son, Hi-
bernate can pre-fetch collections:

<cl ass nane="Person" >
<set nane="cats" batch-size="3">

</ set >

Hibernate 3.0.5 168

Improving performance

</ cl ass>

With abat ch- si ze of 8, Hibernate will load 3, 3, 3, 1 collections in four SELECTS. Again, the value of the at-
tribute depends on the expected number of uninitialized collectionsin aparticular Sessi on.

Batch fetching of collections is particularly useful if you have a nested tree of items, ie. the typica hill-
of-materials pattern. (Although a nested set or a materialized path might be a better option for read-mostly
trees.)

20.1.6. Using subselect fetching

If one lazy collection or single-valued proxy has to be fetched, Hibernate loads all of them, re-running the ori-
ginal query in asubselect. Thisworks in the same way as batch-fetching, without the piecemeal loading.

20.1.7. Using lazy property fetching

Hibernate3 supports the lazy fetching of individual properties. This optimization technique is aso known as
fetch groups. Please note that this is mostly a marketing feature, as in practice, optimizing row reads is much
more important than optimization of column reads. However, only loading some properties of a class might be
useful in extreme cases, when legacy tables have hundreds of columns and the data model can not be improved.

To enable lazy property loading, set thel azy attribute on your particular property mappings:

<cl ass nane="Docunent" >
<id name="id">
<generator class="native"/>

</id>

<property nane="nanme" not-null="true" |ength="50"/>

<property nanme="summary" not-nul | ="true" |ength="200" |azy="true"/>

<property nane="text" not-null="true" |ength="2000" |azy="true"/>
</ cl ass>

Lazy property loading requires buildtime bytecode instrumentation! If your persistent classes are not enhanced,
Hibernate will silently ignore lazy property settings and fall back to immediate fetching.

For bytecode instrumentation, use the following Ant task:

<target nanme="instrunment" depends="conpile">
<t askdef nane="instrunment" classname="org. hi bernate.tool.instrunment.InstrunentTask">
<cl asspath path="${jar.path}"/>
<cl asspath path="${cl asses.dir}"/>
<cl asspath refid="lib.class.path"/>
</t askdef >

<i nstrunment verbose="true">
<fileset dir="${testclasses.dir}/org/hibernate/auction/ nodel">
<i ncl ude nane="*.cl ass"/>
</fileset>
</i nstrunent >
</target>

A different (better?) way to avoid unnecessary column reads, at least for read-only transactions is to use the
projection features of HQL or Criteria queries. This avoids the need for buildtime bytecode processing and is
certainly a prefered solution.

Y ou may force the usual eager fetching of propertiesusingfetch all properties in HQL.

Hibernate 3.0.5 169

Improving performance

20.2. The Second Level Cache

A Hibernate Sessi on isatransaction-level cache of persistent data. It is possible to configure a cluster or VM-
level (Sessi onFact ory-level) cache on a class-by-class and collection-by-collection basis. Y ou may even plug
in a clustered cache. Be careful. Caches are never aware of changes made to the persistent store by another ap-
plication (though they may be configured to regularly expire cached data).

By default, Hibernate uses EHCache for WM-level caching. (JCS support is how deprecated and will be re-
moved in a future version of Hibernate.) Y ou may choose a different implementation by specifying the name of
a class that implements org. hi bernate.cache. CacheProvider using the property hibern-
at e. cache. provi der_cl ass.

Table 20.1. Cache Providers

Cache Provider class Type Cluster Safe Query Cache
Supported

Hashtable or g. hi ber nat e. cache. Hasht abl eCacheProv = memory yes

(not intended i der

for produc-

tion use)

EHCache or g. hi ber nat e. cache. EhCachePr ovi der memory, disk yes

OSCache or g. hi ber nat e. cache. OSCachePr ovi der memory, disk yes

SwarmCache org. hi ber nat e. cache. Swar nCacheProvi der clustered (ip yes (clustered

multicast) invalidation)
JBoss or g. hi ber nat e. cache. TreeCacheProvider clustered (ip yes yes (clock
TreeCache multicast), (replication) syncreq.)
transactional

20.2.1. Cache mappings

The <cache> element of a class or collection mapping has the following form:

<cache
usage="transactional |[read-wite|nonstrict-read-wite|read-only" (1)
/>

(1) usage specifiesthe caching strategy: t r ansacti onal , read-write, nonstrict-read-wite Of read-only

Alternatively (preferrably?), you may specify <cl ass- cache> and <col | ecti on- cache> elements in hi ber n-
ate.cfg. xm.

The usage attribute specifies a cache concurrency strategy.

20.2.2. Strategy: read only

If your application needs to read but never modify instances of a persistent class, aread-onl y cache may be
used. Thisisthe simplest and best performing strategy. It's even perfectly safe for use in a cluster.

Hibernate 3.0.5 170

Improving performance

<cl ass nane="eg. | nmut abl e" mnut abl e="f al se">
<cache usage="read-only"/>

</ cl ass>

20.2.3. Strategy: read/write

If the application needs to update data, aread-wite cache might be appropriate. This cache strategy should
never be used if serializable transaction isolation level is required. If the cache is used in a JTA environment,
you must specify the property hi ber nat e. transact i on. manager _| ookup_cl ass, haming a strategy for obtain-
ing the JTA Transact i onManager . In other environments, you should ensure that the transaction is completed
when Sessi on. cl ose() Or Sessi on. di sconnect () is called. If you wish to use this strategy in a cluster, you
should ensure that the underlying cache implementation supports locking. The built-in cache providers do not.

<cl ass nane="eg.Cat" >
<cache usage="read-write"/>

<set name="kittens" ... >
<cache usage="read-write"/>

</ set >
</ cl ass>

20.2.4. Strategy: nonstrict read/write

If the application only occasionally needs to update data (ie. if it is extremely unlikely that two transactions
would try to update the same item simultaneously) and strict transaction isolation is not required, anonstri ct -
read-wr it e cache might be appropriate. If the cache is used in a JTA environment, you must specify hi ber n-
ate.transacti on. manager_| ookup_cl ass. In other environments, you should ensure that the transaction is
completed when Sessi on. cl ose() Or Sessi on. di sconnect () iscalled.

20.2.5. Strategy: transactional

The transactional cache strategy provides support for fully transactional cache providers such as JBoss
TreeCache. Such a cache may only be used in a JTA environment and you must specify hi bern-
ate.transacti on. manager _| ookup_cl ass.

None of the cache providers support al of the cache concurrency strategies. The following table shows which
providers are compatible with which concurrency strategies.

Table 20.2. Cache Concurrency Strategy Support

Cache read-only nonstrict- read-write transactional
read-write

Hashtable (notin- | yes yes yes

tended for produc-

tion use)

EHCache yes yes yes

OSCache yes yes yes

SwarmCache yes yes

Hibernate 3.0.5 171

Improving performance

Cache read-only nonstrict- read-write transactional
read-write

JBoss TreeCache yes yes

20.3. Managing the caches

Whenever you pass an object to save() , updat e() Or saveOr Updat e() and whenever you retrieve an object us-
ingload(),get(),list(),iterate() Orscroll (), that object isadded to the internal cache of the Sessi on.

When 1 ush() is subsequently called, the state of that object will be synchronized with the database. If you do
not want this synchronization to occur or if you are processing a huge number of objects and need to manage
memory efficiently, the evi ct () method may be used to remove the object and its collections from the first-
level cache.

Scrol | abl eResult cats = sess.createQuery("from Cat as cat").scroll(); //a huge result set
while (cats.next()) {

Cat cat = (Cat) cats.get(0);

doSonet hi ngW t hACat (cat) ;

sess. evict(cat);

The Sessi on aso providesacont ai ns() method to determine if an instance belongs to the session cache.

To completely evict al objects from the session cache, call Sessi on. cl ear ()

For the second-level cache, there are methods defined on Sessi onFact ory for evicting the cached state of an
instance, entire class, collection instance or entire collection role,

sessionFactory.evict(Cat.class, catld); //evict a particular Cat

sessionFactory. evict(Cat.class); //evict all Cats

sessi onFactory. evictCol l ection("Cat.kittens", catld); //evict a particular collection of kittens
sessionFactory. evictCol |l ection("Cat.kittens"); //evict all kitten collections

The cacheMode controls how a particular session interacts with the second-level cache.

* CacheMode. NORMAL - read items from and write items to the second-level cache

e CacheMde. GET - read items from the second-level cache, but don't write to the second-level cache except
when updating data

e CacheMde. PUT - write items to the second-level cache, but don't read from the second-level cache

e CacheMde. REFRESH - write items to the second-level cache, but don't read from the second-level cache, by-
pass the effect of hi ber nate. cache. use_mi ni mal _put s, forcing a refresh of the second-level cache for all
items read from the database

To browse the contents of a second-level or query cacheregion, usethe st ati stics API:

Map cacheEntries = sessionFactory. getStatistics()
. get SecondLevel CacheStati sti cs(regi onNane)
.getEntries();

You'll need to enable statistics, and, optionally, force Hibernate to keep the cache entries in a more human-
understandable format:

Hibernate 3.0.5 172

Improving performance

hi ber nat e. generate_statistics true
hi ber nat e. cache. use_structured_entries true

20.4. The Query Cache

Query result sets may also be cached. Thisisonly useful for queries that are run frequently with the same para-
meters. To use the query cache you must first enable it:

hi ber nat e. cache. use_query_cache true

This setting causes the creation of two new cache regions - one holding cached query result sets
(or g. hi ber nat e. cache. St andar dQuer yCache), the other holding timestamps of the most recent updates to
queryable tables (or g. hi ber nat e. cache. Updat eTi nest anpsCache). Note that the query cache does not cache
the state of the actual entities in the result set; it caches only identifier values and results of value type. So the
query cache should always be used in conjunction with the second-level cache.

Most queries do not benefit from caching, so by default queries are not cached. To enable caching, call
Query. set Cacheabl e(true). This call alows the query to look for existing cache results or add its results to
the cache when it is executed.

If you require fine-grained control over query cache expiration policies, you may specify a named cache region
for a particular query by calling Query. set CacheRegi on() .

Li st bl ogs = sess.createQuery("from Bl og bl og where bl og. bl ogger = : bl ogger")
.setEntity("bl ogger", bl ogger)
. set MaxResul t s(15)
. set Cacheabl e(true)
. set CacheRegi on("front pages")
dist();

If the query should force a refresh of its query cache region, you should cal
Query. set CacheMbde(CacheMbde. REFRESH) . This is particularly useful in cases where underlying data may
have been updated via a separate process (i.e., not modified through Hibernate) and allows the application to
selectively refresh particular query result sets. This is a more efficient aternative to eviction of a query cache
region via Sessi onFact ory. evi ct Queri es() .

20.5. Understanding Collection performance

We've already spent quite some time talking about collections. In this section we will highlight a couple more
issues about how collections behave at runtime.

20.5.1. Taxonomy

Hibernate defines three basic kinds of collections:

e collections of values
e Oneto many associations

* many to many associations

Hibernate 3.0.5 173

Improving performance

This classification distinguishes the various table and foreign key relationships but does not tell us quite
everything we need to know about the relational model. To fully understand the relationa structure and per-
formance characteristics, we must also consider the structure of the primary key that is used by Hibernate to up-
date or delete collection rows. This suggests the following classification:

* indexed collections
o sets
e bags

All indexed collections (maps, lists, arrays) have a primary key consisting of the <key> and <i ndex> columns.
In this case collection updates are usualy extremely efficient - the primary key may be efficiently indexed and
a particular row may be efficiently located when Hibernate tries to update or delete it.

Sets have a primary key consisting of <key> and element columns. This may be less efficient for some types of
collection element, particularly composite elements or large text or binary fields; the database may not be able
to index a complex primary key as efficently. On the other hand, for one to many or many to many associ-
ations, particularly in the case of synthetic identifiers, it is likely to be just as efficient. (Side-note: if you want
SchemaExport to actually create the primary key of a <set> for you, you must declare all columns as not -
nul 1 ="true".)

<i dbag> mappings define a surrogate key, so they are aways very efficient to update. In fact, they are the best
case.

Bags are the worst case. Since a bag permits duplicate element values and has no index column, no primary key
may be defined. Hibernate has no way of distinguishing between duplicate rows. Hibernate resolves this prob-
lem by completely removing (in a single DELETE) and recreating the collection whenever it changes. This might
be very inefficient.

Note that for a one-to-many association, the "primary key" may not be the physical primary key of the database
table - but even in this case, the above classification is still useful. (It still reflects how Hibernate "locates" indi-
vidual rows of the collection.)

20.5.2. Lists, maps, idbags and sets are the most efficient collections to up-
date

From the discussion above, it should be clear that indexed collections and (usually) sets alow the most efficient
operation in terms of adding, removing and updating elements.

There is, arguably, one more advantage that indexed collections have over sets for many to many associations
or collections of values. Because of the structure of a Set, Hibernate doesn't ever UPDATE a row when an ele-
ment is "changed". Changesto a Set alwayswork via | NSERT and DELETE (of individual rows). Once again, this
consideration does not apply to one to many associations.

After observing that arrays cannot be lazy, we would conclude that lists, maps and idbags are the most perform-
ant (non-inverse) collection types, with sets not far behind. Sets are expected to be the most common kind of
collection in Hibernate applications. This is because the "set" semantics are most natural in the relational mod-
el.

However, in well-designed Hibernate domain models, we usually see that most collections are in fact one-
to-many associations with i nver se="t rue" . For these associations, the update is handled by the many-to-one
end of the association, and so considerations of collection update performance simply do not apply.

Hibernate 3.0.5 174

Improving performance

20.5.3. Bags and lists are the most efficient inverse collections

Just before you ditch bags forever, there is a particular case in which bags (and aso lists) are much more per-
formant than sets. For a collection with i nverse="true" (the standard bidirectional one-to-many relationship
idiom, for example) we can add elements to a bag or list without needing to initialize (fetch) the bag elements!
Thisis because Col | ecti on. add() Or Col | ecti on. addAl | () must always return true for a bag or Li st (unlike
aset). This can make the following common code much faster.

Parent p = (Parent) sess.load(Parent.class, id);
Child ¢ = new Child();
c.setParent (p);
p.getChildren().add(c); //no need to fetch the collection!
sess. flush();

20.5.4. One shot delete

Occasionally, deleting collection elements one by one can be extremely inefficient. Hibernate isn't completely
stupid, so it knows not to do that in the case of an newly-empty collection (if you called i st. cl ear (), for ex-
ample). In this case, Hibernate will issue a single DELETE and we are done!

Suppose we add a single element to a collection of size twenty and then remove two elements. Hibernate will
issue one | NSERT statement and two DELETE statements (unless the collection is a bag). This is certainly desir-
able.

However, suppose that we remove eighteen elements, leaving two and then add thee new elements. There are
two possible ways to proceed

« delete eighteen rows one by one and then insert three rows
« remove the whole collection (in one SQL DELETE) and insert al five current elements (one by one)

Hibernate isn't smart enough to know that the second option is probably quicker in this case. (And it would
probably be undesirable for Hibernate to be that smart; such behaviour might confuse database triggers, etc.)

Fortunately, you can force this behaviour (ie. the second strategy) at any time by discarding (ie. dereferencing)
the original collection and returning a newly instantiated collection with all the current elements. This can be
very useful and powerful from timeto time.

Of course, one-shot-del ete does not apply to collections mapped i nver se="t r ue".

20.6. Monitoring performance

Optimization is not much use without monitoring and access to performance numbers. Hibernate provides a fulll
range of figures about itsinternal operations. Statistics in Hibernate are available per Sessi onFact ory.

20.6.1. Monitoring a SessionFactory

You can access SessionFactory Mmetrics in two ways. Your first option is to call sessionFact-
ory.get Statistics() andread or display the st ati sti cs yourself.

Hibernate can also use IMX to publish metrics if you enable the St ati sti csServi ce MBean. You may enable
asingle MBean for all your Sessi onFactory or one per factory. See the following code for minimalistic con-

Hibernate 3.0.5 175

Improving performance

figuration examples:

/1 MBean service registration for a specific SessionFactory

Hasht abl e tb = new Hashtabl e();

tb.put("type", "statistics");

tb. put ("sessi onFactory", "myFi nanci al App");

Obj ect Nare on = new Obj ect Nanme(" hi bernate", tb); // MBean object nane

StatisticsService stats = new StatisticsService(); // Mean inplenentation
stats. set Sessi onFact ory(sessi onFactory); // Bind the stats to a Sessi onFactory
server.regi sterMBean(stats, on); // Register the Miean on the server

/1 MBean service registration for all SessionFactory's

Hasht abl e tb = new Hasht abl e();

th.put("type", "statistics");

tb. put ("sessi onFactory", "all");

oj ect Name on = new Obj ect Name(" hi bernate", tb); // MBean object nane

StatisticsService stats = new StatisticsService(); // MBean inplenentation
server.regi sterMBean(stats, on); // Register the MBean on the server

TODO: This doesn't make sense: In the first case, we retrieve and use the MBean directly. In the second one,
we must give the JNDI name in which the session factory is held before using it. Use hi ber nat eSt at s-
Bean. set Sessi onFact or yJNDI Nane(" ny/ JNDI / Nane")

Y ou can (de)activate the monitoring for a Sessi onFact ory

e at configuration time, set hi ber nat e. generate_statistics tofal se

o at runtime; sf.getStatistics().setStatisticsEnabl ed(true) or hi ber nat eSt at s-
Bean. set Stati sti csEnabl ed(true)

Statistics can be reset programatically using the cl ear () method. A summary can be sent to a logger (info
level) using the | ogSummar y() method.

20.6.2. Metrics

Hibernate provides a number of metrics, from very basic to the specialized information only relevant in certain
scenarios. All available counters are described inthe st at i sti cs interface API, in three categories:

» Metrics related to the general Sessi on usage, such as number of open sessions, retrieved JDBC connec-
tions, etc.

» Metricsrelated to he entities, collections, queries, and caches as awhole (aka global metrics),
» Detailed metrics related to a particular entity, collection, query or cache region.

For exampl,e you can check the cache hit, miss, and put ratio of entities, collections and queries, and the aver-
age time a query needs. Beware that the number of milliseconds is subject to approximation in Java. Hibernate
istied to the VM precision, on some platforms this might even only be accurate to 10 seconds.

Simple getters are used to access the global metrics (i.e. not tied to a particular entity, collection, cache region,
efc.). You can access the metrics of a particular entity, collection or cache region through its name, and through
its HQL or SQL representation for queries. Please refer to the Stati stics, EntityStatistics, Col | ectionS-
tatistics, SecondLevel CacheStatistics, and QueryStatistics APl Javadoc for more information. The fol-
lowing code shows a simple example:

Hibernate 3.0.5 176

Improving performance

Statistics stats = HibernateUtil.sessionFactory.getStatistics();

doubl e queryCacheHit Count = stats.getQueryCacheHitCount();
doubl e queryCacheM ssCount = stats.get QueryCacheM ssCount ();
doubl e queryCacheH tRatio =
queryCacheHi t Count / (queryCacheHitCount + queryCacheM ssCount);

log.info("Query Hit ratio:" + queryCacheHitRati0);

EntityStatistics entityStats =
stats.getEntityStatistics(Cat.class.getName());
| ong changes =
entityStats. getlnsert Count ()
+ entityStats. get Updat eCount ()
+ entityStats. get Del et eCount () ;
| og.info(Cat.class.getNane() + " changed " + changes + "tines");

To work on all entities, collections, queries and region caches, you can retrieve the list of names of entities, col-
lections, queries and region caches with the following methods. get Queri es(), get Enti t yNanes(), get Col -
| ectionRol eNames(), and get SecondLevel CacheRegi onNames() .

Hibernate 3.0.5 177

Chapter 21. Toolset Guide

Roundtrip engineering with Hibernate is possible using a set of Eclipse plugins, commandline tools, as well as
Ant tasks.

The Hibernate Tools currently include plugins for the Eclipse IDE as well as Ant tasks for reverse engineering
of existing databases:

» Mapping Editor: An editor for Hibernate XML mapping files, supporting auto-completion and syntax high-
lighting. It also supports semantic auto-completion for class names and property/field names, making it
much more versatile than anormal XML editor.

» Console: The console is a new view in Eclipse. In addition to a tree overview of your console configura-
tions, you also get an interactive view of your persistent classes and their relationships. The console allows
you to execute HQL queries against your database and browse the result directly in Eclipse.

« Development Wizards. Severa wizards are provided with the Hibernate Eclipse tools; you can use awizard
to quickly generate Hibernate configuration (cfg.xml) files, or you may even completely reverse engineer
an existing database schema into POJO source files and Hibernate mapping files. The reverse engineering
wizard supports customizable templates.

* Ant Tasks:
Please refer to the Hibernate Tools package and it's documentation for more information.

However, the Hibernate main package comes bundled with an integrated tool (it can even be used from "inside"
Hibernate on-the-fly): SchemaExport aka hbn2ddl .

21.1. Automatic schema generation

DDL may be generated from your mapping files by a Hibernate utility. The generated schema includes referen-
tial integrity constraints (primary and foreign keys) for entity and collection tables. Tables and sequences are
also created for mapped identifier generators.

You must specify a SQL Di al ect viathe hi ber nat e. di al ect property when using thistool, as DDL is highly
vendor specific.

First, customize your mapping files to improve the generated schema.

21.1.1. Customizing the schema

Many Hibernate mapping elements define an optional attribute named | engt h. You may set the length of a
column with this attribute. (Or, for numeric/decimal datatypes, the precision.)

Some tags also accept a not - nul | attribute (for generating a NOT NULL constraint on table columns) and a
uni que attribute (for generating UNI QUE constraint on table columns).

Some tags accept an i ndex attribute for specifying the name of an index for that column. A uni que- key attrib-
ute can be used to group columns in a single unit key constraint. Currently, the specified value of the uni que-
key attribute is not used to name the constraint, only to group the columnsin the mapping file.

Hibernate 3.0.5 178

Toolset Guide

Examples:

<property nanme="foo" type="string" |ength="64" not-null="true"/>

<many-t o-one nane="bar" foreign-key="fk foo_bar"

<el ement col um="seri al nunber" type="I|ong"

not-null ="true"/>

not-null ="true" uni que="true"/>

Alternatively, these elements also accept a child <col um> element. Thisis particularly useful for multi-column

types:

<property name="foo" type="string">

<col um
</ pr operty>

nanme="f 00"

| engt h="64"

not-null="true" sql-type="text"/>

<property nane="bar" type="mny.custontypes. Milti Col umType"/>

<col um
<col um
<col um
</ property>

nanme="f ee"
name="fi"
name="f o"

not-nul | ="true"
not - nul | ="true"
not - nul | ="true"

i ndex="bar _i dx"/>
i ndex="bar _i dx"/>
i ndex="bar _i dx"/>

Thesql -t ype attribute allows the user to override the default mapping of Hibernate type to SQL datatype.

The check attribute allows you to specify a check constraint.

<property nanme="foo" type="integer">
check="foo > 10"/>

<col um
</ property>

<cl ass name=

<property nane="bar" type="float"/>

</ cl ass>

nanme="f 00"

"Foo" tab

Table 21.1. Summary

e="foos"

check="bar < 100.0">

Attribute
 ength
not - nul

uni que

i ndex

uni que- key

forei gn- key

sql -type

check

Values

number

true|fal se

true|fal se

i ndex_narne

uni que_key_nane

forei gn_key_nane

col um_type

SQL expression

I nterpretation

column length/decimal precision

specfies that the column should be non-nullable
specifies that the column should have a unique constraint
specifies the name of a (multi-column) index

specifies the name of a multi-column unique constraint

specifies the name of the foreign key constraint generated
for an association, use it on <one-to-one>, <many-to-one>,
<key>, and <many-to-many> mapping elements. Note that
i nverse="true" sideswill not be considered by SchermaEx-
port.

overrides the default column type (attribute of <col urm>
element only)

create an SQL check constraint on either column or table

Hibernate 3.0.5

179

Toolset Guide

The <commrent > element allows you to specify a comments for the generated schema.

<cl ass nane="Custoner" tabl e="CurCust">
<conmment >Current custoners onl y</co

</ cl ass>

<property nane="bal ance" >
<col um nane="bal ">

mrent >

<conment >Bal ance i n USD</ corment >

</ col um>
</ property>

Thisresultsin acomment on tabl e Or conmrent on col unn statement in the generated DDL (where supported).

21.1.2. Running the tool

The schemaExport tool writesa DDL script to standard out and/or executes the DDL statements.

java -cp hibernate_classpathsor g. hi ber nat e. t ool . hbn2ddl . SchemaExport options mapping_files

Table 21.2. SchemabExport Command Line Options

Option Description

--qui et don't output the script to stdout
--drop only drop the tables

--text don't export to the database

- - out put =ny_schenma. dd

--confi g=hi bernate. cfg. xnl

output the ddI script to afile

read Hibernate configuration from an XML file

--properties=hi bernate. properties
--fornmat

--delimter=x

read database properties from afile
format the generated SQL nicely in the script

set an end of line delimiter for the script

Y ou may even embed SchemaExport in your application:

Configuration cfg =;
new SchemaExport(cfg).create(false, tru

21.1.3. Properties

Database properties may be specified

e assystem properties with - b<property>
* inhibernate. properties

e);

* inanamed propertiesfilewith - - properti es

The needed properties are:

Hibernate 3.0.5

180

Toolset Guide

Table 21.3. SchemaExport Connection Properties

Property Name Description

hi ber nat e. connect i on. dri ver _cl ass jdbc driver class
hi ber nat e. connecti on. ur| jdbc url

hi ber nat e. connect i on. user nane database user

hi ber nat e. connect i on. password user password
hi ber nat e. di al ect diaect

21.1.4. Using Ant

Y ou can call SchemaExport from your Ant build script:

<target nane="schenmaexport">
<t askdef nane="schenmaexport™"
cl assname="or g. hi ber nat e. t ool . hbn2ddl . SchemaExport Task"
cl asspat href ="cl ass. pat h"/>

<schenmaexport
properties="hi bernate. properties"
qui et =" no"
text="no"
dr op="no"
delimter=";"
out put =" schema- export.sql ">
<fileset dir="src">

<i ncl ude nanme="**/*_hbm xm "/ >

</fileset>

</ schemaexport >

</target>

21.1.5. Incremental schema updates

The schemaUpdat e tool will update an existing schema with "incremental” changes. Note that SchemaUpdat e
depends heavily upon the JDBC metadata API, so it will not work with all JIDBC drivers.

java -cp hibernate_classpathsor g. hi ber nat e. t ool . hbn2ddl . SchemaUpdat e options mapping_files

Table 21.4. schemaupdat e Command Line Options

Option Description
- - qui et don't output the script to stdout
--properties=hi bernate. properties read database properties from afile

Y ou may embed SchemaUpdat e in your application:

Configuration cfg =;
new SchemaUpdat e(cf g) . execut e(fal se);

Hibernate 3.0.5 181

Toolset Guide

21.1.6. Using Ant for incremental schema updates

You can call SchemaUpdat e from the Ant script:

<t arget nane="schenaupdate" >
<t askdef nane="schenmaupdate"

cl assname="or g. hi ber nat e. t ool . hbnR2ddl . SchemaUpdat eTask"

cl asspat href ="cl ass. path"/>

<schenmaupdat e
properties="hi bernate. properties"
qui et ="no" >
<fileset dir="src">

<i ncl ude nanme="**/*_hbm xm "/ >
</fileset>

</ schemaupdat e>

</target>

Hibernate 3.0.5

182

Chapter 22. Example: Parent/Child

One of the very first things that new users try to do with Hibernate isto model a parent / child type relationship.
There are two different approaches to this. For various reasons the most convenient approach, especially for
new users, isto model both Par ent and chi | d as entity classes with a <one- t o- many> association from Par ent

to ¢hi | d. (The alternative approach is to declare the chi | d as a <conposi t e- el enent >.) Now, it turns out that
default semantics of a one to many association (in Hibernate) are much less close to the usual semantics of a
parent / child relationship than those of a composite element mapping. We will explain how to use a bidirec-
tional one to many association with cascades to model a parent / child relationship efficiently and elegantly. It's
not at all difficult!

22.1. A note about collections

Hibernate collections are considered to be alogical part of their owning entity; never of the contained entities.
Thisisacrucia distinction! It has the following consequences.

¢ When we remove / add an object from / to a collection, the version number of the collection owner isincre-
mented.

« If an object that was removed from a collection is an instance of a value type (eg, a composite el ement), that
object will cease to be persistent and its state will be completely removed from the database. Likewise,
adding a value type instance to the collection will cause its state to be immediately persistent.

e On the other hand, if an entity is removed from a collection (a one-to-many or many-to-many association),
it will not be deleted, by default. This behaviour is completely consistent - a change to the internal state of
another entity should not cause the associated entity to vanish! Likewise, adding an entity to a collection
does not cause that entity to become persistent, by default.

Instead, the default behaviour is that adding an entity to a collection merely creates a link between the two en-
tities, while removing it removes the link. This is very appropriate for al sorts of cases. Where it is not appro-
priate at all is the case of a parent / child relationship, where the life of the child is bound to the lifecycle of the
parent.

22.2. Bidirectional one-to-many

Suppose we start with asimple <one- t o- many> association from Par ent to Chi | d.

<set nanme="children">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</set>

If we were to execute the following code

Parent p = ;

Child ¢ = new Child();
p. get Chi l dren().add(c);
sessi on. save(c);
session. flush();

Hibernate would issue two SQL statements:

Hibernate 3.0.5 183

Example: Parent/Child

e an| NSERT to create the record for ¢
* an UPDATE to create thelink fromp toc

Thisis not only inefficient, but also violates any NOT NULL constraint on the par ent _i d column. We can fix the
nullability constraint violation by specifying not - nul | ="t r ue" in the collection mapping:

<set nane="chil dren">

<key col um="parent _id" not-null="true"/>
<one-to-many class="Child"/>
</set>

However, thisis not the recommended solution.

The underlying cause of this behaviour isthat the link (the foreign key par ent _i d) from p to ¢ is hot considered
part of the state of the chi | d object and is therefore not created in the | NSERT. So the solution is to make the
link part of the ¢chi | d mapping.

<many-t o-one nane="parent" col um="parent _id" not-null="true"/>

(We aso need to add the par ent property to the chi | d class.)

Now that the chi | d entity is managing the state of the link, we tell the collection not to update the link. We use
thei nver se attribute.

<set name="children" inverse="true">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</set>

The following code would be used to add anew chi 1 d

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = new Child();

c.setParent (p);

p. get Chi Il dren() . add(c);

sessi on. save(c);

session. flush();

And now, only one SQL 1 NSERT would be issued!
To tighten things up a bit, we could create an addchi | d() method of Par ent .

public void addChild(Child c) {
c.setParent (this);
chil dren. add(c);

Now, the code to add achi | d looks like

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = new Child();

p. addChi | d(c);

sessi on. save(c);

session. flush();

22.3. Cascading lifecycle

Hibernate 3.0.5 184

Example: Parent/Child

The explicit call tosave() isstill annoying. We will address this by using cascades.

<set nane="children" inverse="true" cascade="all">
<key col um="parent _id"/>
<one-to-many class="Child"/>

</ set >

This simplifies the code above to

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = new Child();

p. addChi I d(c);

session. flush();

Similarly, we don't need to iterate over the children when saving or deleting a Par ent . The following removes p
and al its children from the database.

Parent p = (Parent) session.|oad(Parent.class, pid);
sessi on. del et e(p);
session. flush();

However, this code

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = (Child) p.getChildren().iterator().next();
p. get Chil dren().renove(c);

c.setParent (null);

session. flush();

will not remove ¢ from the database; it will ony remove the link to p (and cause a NOT NULL constraint viola
tion, in this case). Y ou need to explicitly del et e() the chi | d.

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = (Child) p.getChildren().iterator().next();
p. get Chil dren().renmove(c);

sessi on. del ete(c);

session. flush();

Now, in our case, achi |l d can't really exist without its parent. So if we remove a chi | d from the collection, we
really do want it to be deleted. For this, we must use cascade="al | - del et e- or phan" .

<set nanme="children" inverse="true" cascade="all -del ete-orphan">
<key col um="parent _id"/>
<one-to-many class="Child"/>

</ set>

Note: even though the collection mapping specifies i nver se="true", cascades are still processed by iterating
the collection elements. So if you require that an object be saved, deleted or updated by cascade, you must add
it to the collection. It is not enough to simply call set Parent () .

22.4. Cascades and unsaved- val ue

Suppose we loaded up a Par ent in one Sessi on, Made some changes in a Ul action and wish to persist these
changes in a new session by calling updat e() . The Parent will contain a collection of childen and, since cas-
cading update is enabled, Hibernate needs to know which children are newly instantiated and which represent
existing rows in the database. L ets assume that both Par ent and chi | d have genenerated identifier properties of
type Long. Hibernate will use the identifier and version/timestamp property value to determine which of the

Hibernate 3.0.5 185

Example: Parent/Child

children are new. (See Section 11.7, “Automatic state detection”.) In Hibernate3, it is no longer necessary to
specify an unsaved- val ue explicitly.

The following code will update par ent and chi | d and insert newchi | d.

[/ parent and child were both | oaded in a previous session
parent. addChi I d(chil d);

Child newChild = new Child();

par ent . addChi | d(newChi | d) ;

sessi on. updat e(parent) ;

session. flush();

Well, that's all very well for the case of a generated identifier, but what about assigned identifiers and compos-
ite identifiers? This is more difficult, since Hibernate can't use the identifier property to distinguish between a
newly instantiated object (with an identifier assigned by the user) and an object loaded in a previous session. In
this case, Hibernate will either use the timestamp or version property, or will actualy query the second-level
cache or, worst case, the database, to seeif the row exists.

22.5. Conclusion

There is quite a bit to digest here and it might look confusing first time around. However, in practice, it all
works out very nicely. Most Hibernate applications use the parent / child pattern in many places.

We mentioned an dternative in the first paragraph. None of the above issues exist in the case of
<conposi t e- el ement > Mappings, which have exactly the semantics of a parent / child relationship. Unfortu-
nately, there are two big limitations to composite element classes. composite elements may not own collections,
and they should not be the child of any entity other than the unique parent.

Hibernate 3.0.5 186

Chapter 23. Example: Weblog Application

23.1. Persistent Classes

The persistent classes represent a weblog, and an item posted in a weblog. They are to be modelled as a stand-
ard parent/child relationship, but we will use an ordered bag, instead of a set.

package eg;
import java.util.List;

public class Blog {
private Long _id;
private String _namne;
private List _itens;

public Long getld() {
return _id,

}

public List getltems() {
return _itens;

public String getName() {
return _nane;

}

public void setld(Long Iongl) {
_id = 1longl;

}

public void setltens(List list) {
_items = list;

}

public void setName(String string) {
_nane = string;
}

package eg;

i mport java.text.DateFornat;
i mport java.util.Cal endar;

public class Blogltem {
private Long _id;
private Cal endar _dateti ne;
private String _text;
private String _title;
private Blog _bl og;

public Blog getBlog() {
return _bl og;

}

public Cal endar getDatetine() {
return _datetine;

}

public Long getld() {
return _id;

public String getText() {
return _text;
}

public String getTitle() {
return _title;

}

public void setBl og(Blog blog) {
_blog = bl og;

Hibernate 3.0.5 187

Example: Weblog Application

}

public void setDatetine(Cal endar cal endar) {

_datetine = cal endar

}

public void setld(Long | ongl) {
_id = longl;

}

public void setText(String string) {

_text = string;

}

public void setTitle(String string) {

_title = string;

}

23.2. Hibernate Mappings

The XML mappings should now be quite straightforward.

<?xm version="1.0"?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C

"-// Hi bernat e/ H bernate Mappi ng DID 3. 0//EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-3. 0. dtd">

<hi ber nat e- mappi ng package="eg">

<cl ass
nane=" Bl og"
t abl e=" BLOGS" >

<id
name="id"
col um="BLOG_| D' >

<generator class="native"/>
</id>

<property
nanme="nanme"
col um=" NAME"
not -nul | ="true"
uni que="true"/>

<bag
name="itens"
i nverse="true"
or der - by="DATE_TI ME"
cascade="al | ">

<key col um="BLOG_ | D'/ >

<one-to-many cl ass="Bl ogltent/>

</ bag>
</ cl ass>

</ hi ber nat e- mappi ng>

<?xm version="1.0"?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C

"-//H bernat e/ H bernat e Mappi ng DID 3. 0/ / EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-3. 0. dtd">

<hi ber nat e- mappi ng package="eg" >

Hibernate 3.0.5

188

Example: Weblog Application

<cl ass
nanme="Bl ogl t ent
tabl e="BLOG_| TEMS"
dynam c- updat e="true" >

<id

name="id"

col um="BLOG | TEM | D' >

<generator class="native"/>
</id>
<property

name="titl e"

col um="TI TLE"

not-null ="true"/>
<property

name="t ext"

col um="TEXT"

not-null ="true"/>
<property

nane="dat eti me"
col um="DATE_TI ME"
not-null ="true"/>

<nmany-to-one
nanme="bl og"
col um="BLOG | D"
not-null="true"/>

</ cl ass>

</ hi ber nat e- mappi ng>

23.3. Hibernate Code

The following class demonstrates some of the kinds of things we can do with these classes, using Hibernate.

package eg;

import java.util.Arraylist;
i mport java.util.Cal endar;
import java.util.lterator;
import java.util.List;

i mport org. hi bernate. H bernat eExcepti on

i mport org. hi bernate. Query;

i mport org. hi bernate. Sessi on;

i mport org. hi bernate. Sessi onFact ory;

i mport org. hi bernate. Transacti on

i mport org. hi bernate.cfg. Configuration

i mport org. hi bernate.tool.hbnRddl . SchemaExport;

public class Bl oghhin {
private SessionFactory _sessions;

public void configure() throws H bernateException {
_sessions = new Configuration()
. addd ass(Bl og. cl ass)
. addCl ass(Bl ogltem cl ass)
. bui | dSessi onFactory();

Hibernate 3.0.5 189

Example: Weblog Application

public void exportTabl es() throws Hi bernateException {
Configuration cfg = new Configuration()
. addd ass(Bl og. cl ass)
.addd ass(Bl ogltem cl ass);
new SchemaExport(cfg).create(true, true);

}

public Blog createBl og(String nane) throws Hi bernateException {

Bl og bl og = new Bl og();
bl og. set Nanme(nane) ;
bl og. setltens(new ArrayList());

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {

tx = session. begi nTransaction();
sessi on. persi st (bl og);
tx.commt();

catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

return bl og;

}

public BlogltemcreateBloglten(Blog blog, String title, String text)
throws Hi ber nat eException {

Blogltemitem = new Blogltenm();
itemsetTitle(title);

item set Text (text);

i tem set Bl og(bl og);

item setDateti me(Cal endar. getlnstance());
bl og. getltens().add(iten);

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {

tx = session. begi nTransaction();
sessi on. updat e(bl og) ;
tx.commt();

catch (Hi bernateExcepti on he) {
if (tx!'=null) tx.rollback();

t hrow he;
}
finally {

sessi on. cl ose();
}

return item

}

public Blogltem createBl oglten(Long blogid, String title, String text)
t hrows Hi bernat eException {

Blogltemitem = new Blogltenm();
itemsetTitle(title);

item set Text (text);

item set Dateti ne(Cal endar. getlnstance());

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {

tx = session. begi nTransaction();
Bl og bl og = (Bl og) session.|oad(Bl og.class, blogid);
i tem set Bl og(bl og);

Hibernate 3.0.5 190

Example: Weblog Application

bl og. getltens().add(iten);
tx.commt();

catch (H bernateExcepti on he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

return item

}

public void updateBl ogltenmBlogltemitem String text)
throws Hi ber nat eException {

item set Text (text);

Sessi on session = _sessions. openSessi on();
Transaction tx = null;
try {

tx = session. begi nTransaction();
session. update(itenm;
tx.commit();

catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

t hrow he;
}
finally {

sessi on. cl ose();
}

}

public void updateBl ogltemLong itemd, String text)
throws Hi ber nat eException {

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {

tXx = session. begi nTransaction();

Blogltemitem = (Bloglten) session.|load(Blogltemclass, itemd);
item set Text (text);

tx.commt();

catch (H bernateException he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

}

public List |istAllBlIogNamesAndltenCounts(int max)
t hrows Hi ber nat eException {

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
List result = null;
try {
tXx = session. begi nTransacti on();
Query g = session. createQuery(
"sel ect blog.id, blog.nane, count(blogltem) " +
"fromBlog as blog " +
"left outer join blog.itens as blogltem" +
"group by blog.nane, blog.id " +
"order by max(blogltem datetine)"
)
g. set MaxResul t s(max) ;
result = qg.list();

Hibernate 3.0.5 191

Example: Weblog Application

tx.commt();

catch (H bernateException he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

session. cl ose();
}

return result;

public Bl og getBl ogAndAl I | t ems(Long bl ogi d)
t hrows Hi ber nat eException {

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
Bl og blog = null;
try {
tXx = session. begi nTransaction();
Query g = session. creat eQuery(
"fromBlog as blog " +
"left outer join fetch blog.itens " +
"where blog.id = :blogid"
I
g. set Paranet er (" bl ogi d", bl ogi d);
blog = (Blog) g.uniqueResult();
tx.commt();

catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

return bl og;

public List |istBlogsAndRecentltens() throws Hi bernateException {

Sessi on session = _sessions. openSessi on();
Transaction tx = null;
List result = null;
try {
tx = session. begi nTransaction();
Query g = session. createQuery(
"fromBlog as blog " +
"inner join blog.itenms as blogltem" +
"where blogltemdatetime > : mnDate"

)

Cal endar cal = Cal endar. getlnstance();
cal .rol | (Cal endar. MONTH, fal se);
g. set Cal endar ("m nDate", cal);

result = q.list();
tx.commt();

catch (H bernat eExcepti on he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

return result;

Hibernate 3.0.5 192

Chapter 24. Example: Various Mappings

This chapters shows off some more complex association mappings.

24.1. Employer/Employee

The following model of the relationship between Enpl oyer and Enpl oyee Uses an actual entity class (Enpl oy-
ment) to represent the association. This is done because there might be more than one period of employment for
the same two parties. Components are used to model monetary values and employee names.

Employer Employment Employee Name
ploy +employer 0.% kit 0.+ Py

-id : long -startDate : Date = -id : long ~firstWame : 5tring
—hame : 5tring -endDate : Date +employee| taxfileMumber ; String +namel initial : char
+getldd : long -id : lang +gethamen : Hame ~lastName : String
+zetld_id:long +getstartDated : Date +setNameiname: Namel +getFirstNamen : 5tring
+getHamed ; String +setitartDate_startDate:Date) +getldi : long +3etFirstName_firstNameString
+setName_name:String) +getEndDated : Date +setldi_id:longs +ygetlnitiald : char

+setEndDatei_endDate:Datel +getTaxfileMumberd : String +setlnitialCinitial:chan

+getHourlyRated : MonetorgAmount +setTaxfileNumber_taxfileMumberString +getlastMamen ; String

+setHourlyRatelrate: Monetorydmount) +setlasthame_lastName:String

+getldd : long

+set|;(_|tl:l:lonil Emol +hourlyRatd Monetorydmount

+aget :

+gEtEmD| oyeri mEp 05;er " -amount : Bighecimal

setEmployeriemp:Employe
poy pEmpley —currency © Currency
+getEmployvesd : Employes . -
+getAmountd : Bighecimal
+setEmployveelemp Employves) X .
+setAmounti_amount:BigDecimal

+getCurrencyl @ Currency
+ et CUrrency_Currency Currencyl

Heres a possible mapping document:

<hi ber nat e- mappi ng>

<cl ass nanme="Enpl oyer" tabl e="enpl oyers">
<id name="id">
<generator class="sequence">
<par am nane="sequence" >enpl oyer _i d_seq</ par an>
</ gener at or >
</id>
<property nanme="nane"/>
</ cl ass>

<cl ass nanme="Enpl oynent" tabl e="enpl oynent peri ods" >

<id name="id">
<generator class="sequence">
<par am nanme="sequence" >enpl oynent _i d_seq</ par an»
</ gener at or >
</id>
<property nane="startDate" colum="start_date"/>
<property nanme="endDate" col utm="end_date"/>

<conponent name="hour | yRate" cl ass="Monet aryAmount" >
<property nane="anount">
<col um nane="hourly_rate" sql-type="NUMERI C(12, 2)"/>
</ property>
<property name="currency" |ength="12"/>
</ conponent >

<many-t o- one nane="enpl oyer" col um="enpl oyer _i d" not-nul |l ="true"/>
<many-t o- one nane="enpl oyee" col um="enpl oyee i d" not-null="true"/>
</ cl ass>

<cl ass nanme="Enpl oyee" tabl e="enpl oyees" >
<id name="id">

Hibernate 3.0.5 193

Example: Various Mappings

<gener at or cl ass="sequence">
<par am nane="sequence" >enpl oyee_i d_seq</ par an»

</ gener at or >

</id>

<property nane="taxfil eNunber"/>

<conponent nanme="nane" cl ass="Nane">
<property nane="firstNane"/>
<property nane="initial"/>
<property nane="| ast Nane"/>

</ conponent >

</ cl ass>

</ hi ber nat e- mappi ng>

And heres the table schema generated by SchemaExport .

create table enployers (
id BIG NT not null,
name VARCHAR(255),
primary key (id)

)

create tabl e enpl oynent _periods (
id BIG@ NT not null,
hourly rate NUMERI C(12, 2),
currency VARCHAR(12),
enpl oyee_id BI G NT not null,
enpl oyer _id BI G NT not null,
end_date TI MESTAVP
start_date TI MESTAMP
primary key (id)

)

create tabl e enpl oyees (
id BIA NT not null,
firstNane VARCHAR(255),
initial CHAR(1),
| ast Name VARCHAR(255),
taxfil eNunmber VARCHAR(255),
primary key (id)

)

alter table enpl oynment _peri ods

add constraint enpl oyment _peri odsFKO foreign key (enployer_id) references enpl oyers
alter table enpl oynment _peri ods

add constraint enpl oyment _peri odsFK1 foreign key (enployee_id) references enpl oyees
create sequence enpl oyee_id_seq
create sequence enpl oynent _id_seq
create sequence enployer _id_seq

24.2. Author/Work

Consider the following model of the relationships between wr k, Aut hor and Per son. We represent the relation-
ship between wor k and Aut hor as a many-to-many association. We choose to represent the relationship between
Aut hor and Per son as one-to-one association. Another possibility would be to have Aut hor extend Per son.

Hibernate 3.0.5 194

Example: Various Mappings

Whark: Author Persan

-id : long -id : long -id : long
~title : String 0..* 0% | _alias : String -hame : String
+qgetldd : long oo rhes +authord+oetidd : lang +persoh |HOetldd :long
+ietldi_id:long +zetldi_id:long +zetldiid:long
+gethuthorsi : Set +getWarksn : Set +getamen : 5tring
+setfAuthorsiemployees:Set) +setWarkslemployers:Set) +setName_namesString
+getTitled : 5tring +getPersond ; Person
+setTitle_title:String) +setPersanipersan:Person)

+gethliaso : 5tring

+setfliasi_alias:String

song Book
~tempao : float ~text :int
-genre : 5tring

+getTextd:int

+gethenred - String +setText_textiint
+ietGenre_genre:String)

+getTempob ; float
+ietTempai_tempo:floar

The following mapping document correctly represents these relationships:

<hi ber nat e- mappi ng>
<cl ass nanme="Work" tabl e="works" discrim nator-val ue="W >

<id name="id" col um="id">
<generator class="native"/>
</id>
<di scri m nator colum="type" type="character"/>

<property nane="title"/>
<set nanme="aut hors" tabl e="aut hor_ work">

<key col umm nanme="wor k_i d"/>

<many-to- many cl ass="Author" col um nane="aut hor _id"/>
</set>

<subcl ass nane="Book" di scri m nator-val ue="B">
<property nanme="text"/>

</ subcl ass>

<subcl ass nane="Song" di scri m nator-val ue="S">
<property nane="tenpo"/>
<property nane="genre"/>

</ subcl ass>

</ cl ass>

<cl ass nanme="Aut hor" tabl e="aut hors">

<id name="id" colum="id">

<l-- The Author nust have the sane identifier as the Person -->
<generator class="assigned"/>
</id>

<property nane="alias"/>
<one-t o-one nane="person" constrained="true"/>

<set nanme="wor ks" tabl e="aut hor_work" inverse="true">
<key col um="aut hor _i d"/>
<many-t o- many cl ass="Wrk" col um="work_id"/>
</set>

</ cl ass>

Hibernate 3.0.5 195

Example: Various Mappings

<cl ass nane="Person" tabl e="persons">
<id name="id" col um="id">
<generator class="native"/>
</id>
<property nane="nane"/>
</ cl ass>

</ hi ber nat e- mappi ng>

There are four tables in this mapping. wor ks, aut hor s and per sons hold work, author and person data respect-
ively. aut hor _work is an association table linking authors to works. Heres the table schema, as generated by
SchemaExport .

create table works (
id BIA NT not null generated by default as identity,
tenpo FLQAT,
genre VARCHAR(255),
text | NTEGER
titl e VARCHAR(255),
type CHAR(1) not null,
primary key (id)
)

create table author_work (
author _id BIANT not null,
work_id BIG NT not null,
primary key (work_id, author_id)
)

create table authors (
id BIA NT not null generated by default as identity,
al i as VARCHAR(255) ,
primary key (id)

)

create table persons (
id BIGA NT not null generated by default as identity,
nanme VARCHAR(255),
primary key (id)

)

alter table authors

add constraint authorsFKO foreign key (id) references persons
al ter table author_work

add constrai nt author_workFKO foreign key (author_id) references authors
al ter tabl e author_work

add constraint author_workFK1 foreign key (work_id) references works

24.3. Customer/Order/Product

Now consider a model of the relationships between cust omer, O der and Li nel temand Product . There is a
one-to-many association between custormer and o der, but how should we represent order / Lineltem/
Product ? I've chosen to map Li nel tem as an association class representing the many-to-many association
between o der and Pr oduct . In Hibernate, thisis called a composite element.

Hibernate 3.0.5 196

Example: Various Mappings

Customer Order Lineltem Product
- 0. = 1.2 — [-

-id : long -id : long —quantity :int -id : long
-hame : 5tring +customer +orders |-date : Date +Iine|ter1€ +getCuantityl : int +|Jr0dlﬁt/ -setialNumber : String
+getldd : long +aetldd : lang +setluantityl_quantity:int) +getldo: long
+setldizid:lang +setldi_id:long +getProductd ; Product +setldi_id:long
+getNamed : String +getlineltemso : List +setProductiproduct:Product) +getserialMumberd : String
+setNamei_name:>5tring +setlineltemsilineltems:List) +setSerialNumber_serialNumber:String
+getOrdersd : Set +getCustamerd : Customer
+setOrdersiordersSet) +ietCustomericustomer:Customen

+getDated : Date

+setDatei_date:Date)

The mapping document:

<hi ber nat e- mappi ng>

<cl ass nane="Custoner" tabl e="custoners">
<id name="id">
<generator class="native"/>
</id>
<property name="name"/>
<set nanme="orders" inverse="true">
<key col um="custoner_id"/>
<one-to-many class="Order"/>
</set>
</cl ass>

<cl ass nane="Order" tabl e="orders">
<id name="id">
<generator class="native"/>
</id>
<property nane="date"/>
<many-t o- one nane="custoner" colum="custoner _id"/>

<list nane="lineltens" table="line_itens">
<key col umm="order_id"/>
<list-index colum="1ine_nunber"/>

<conposi te-el emrent class="Linelteni>
<property nanme="quantity"/>
<many-t o- one nane="product" col um="product _id"/>
</ conposi te-el enent >
</list>
</cl ass>

<cl ass name="Product" tabl e="products">
<id name="id">
<generator class="native"/>
</id>
<property nane="seri al Nunber"/>
</cl ass>

</ hi ber nat e- mappi ng>

custoners, orders, line_i tems and product s hold customer, order, order line item and product data respect-
ively. line_i t ens also acts as an association table linking orders with products.

create table custoners (
id BIA NT not null generated by default as identity
nane VARCHAR(255),
primary key (id)

)

create table orders (
id BIA NT not null generated by default as identity
custoner_id Bl G NT,
date TI MESTAMP
primary key (id)
)

create table line_itens (
i ne_nunber | NTEGER not nul |,

Hibernate 3.0.5 197

Example: Various Mappings

order_id BIG NT not null,

product _id BI G NT,

quantity | NTEGER,

primary key (order_id, |ine_nunber)

)

create table products (
id BIANT not null generated by default as identity
seri al Nunber VARCHAR(255),
primary key (id)

)

alter table orders

add constraint ordersFKO foreign key (custoner_id) references custoners
alter table line_itens

add constraint line_itensFKO foreign key (product_id) references products
alter table line_itens

add constraint line_itensFKL foreign key (order_id) references orders

24.4. Miscellaneous example mappings

These examples are all taken from the Hibernate test suite. You will find many other useful example mappings
there. Have alook at the sr ¢ folder of the Hibernate distribution.

TODO: put words around this stuff

24.4.1. "Typed" one-to-one association

<cl ass nanme="Per son" >
<id nanme="nane"/>
<one-t o-one nanme="address"
cascade="al | ">
<f or mul a>nane</ f or mul a>
<f or mul a>' HOVE' </ f or mul a>
</ one-t o- one>
<one-to-one name="nail i ngAddr ess”
cascade="al | ">
<f or mul a>nane</ f or nul a>
<f ormul a>' MAI LI NG </ f or mul a>
</ one-t 0- one>
</ cl ass>

<cl ass nane="Address" batch-size="2"
check="addressType in (' MAILING, 'HOVE , 'BUSINESS)">
<conposite-id>
<key- many-t o- one nanme="person"
col um="per sonNane"/ >
<key- property name="type"
col um="addr essType"/ >
</ conposite-id>
<property nanme="street" type="text"/>
<property name="state"/>
<property nane="zip"/>
</ cl ass>

24.4.2. Composite key example

<cl ass nane="Cust oner" >

<i d name="custonerld"
| engt h="10">
<generator class="assi gned"/>

Hibernate 3.0.5 198

Example: Various Mappings

</id>
<property nane="nanme" not-null="true" |ength="100"/>
<property nane="address" not-null="true" |ength="200"/>

<list nane="orders"
i nverse="true"
cascade="save- updat e" >
<key col um="custoner|d"/>
<i ndex col um="or der Nunber"/ >
<one-to-many class="Order"/>
</list>

</ cl ass>

<cl ass nane="Order" tabl e="CustonerOder" |azy="true">
<synchroni ze tabl e="Linelteni/>
<synchroni ze tabl e="Product"/>

<conposite-id nane="id"
class="Order$l d">
<key-property name="custonerld" |ength="10"/>
<key- property nane="or der Nunber"/>
</ conposite-id>

<property nane="order Date"
type="cal endar _dat e"
not - nul | ="true"/>

<property nane="total ">
<f or mul a>
(select sun(li.quantity*p.price)
fromLineltemli, Product p
where |i.productld = p.productld
and |i.custonerld = custonerld
and |i.order Nunmber = order Nunber)
</ forml a>
</ property>

<many-t o- one nanme="cust oner"
col um="cust oner | d"
insert="fal se"
updat e="f al se"
not-null="true"/>

<bag nanme="lineltens"
fetch="joi n"
i nverse="true"
cascade="save- updat e" >
<key>
<col um nane="custonerl|d"/>
<col um nane="or der Nunber"/ >
</ key>
<one-to-many cl ass="Linelteni/>
</ bag>

</cl ass>
<cl ass nane="Linelten>

<conposite-id nane="id"
cl ass="Linel t ensl d">
<key-property name="custonerld" |ength="10"/>
<key-property nane="order Nunber"/>
<key- property nanme="productld" |ength="10"/>
</ conposi te-id>

<property name="quantity"/>

<many-t o- one nane="order"
insert="fal se"

Hibernate 3.0.5 199

Example: Various Mappings

updat e="f al se"
not-nul |l ="true">
<col um nane="custonerld"/>
<col um nane="or der Nunber"/ >
</ many-t o- one>

<many-t o- one nane="product"
i nsert="fal se"
updat e="f al se"
not - nul I ="true"
col um="product|d"/>

</ cl ass>

<cl ass nane="Product ">
<synchroni ze tabl e="Li neltent/>

<id name="productl|d"

| engt h="10">

<generator class="assigned"/>
</id>

<property nane="descri pti on"

not - nul I ="true"

| engt h="200"/ >
<property nane="price" |ength="3"/>
<property nanme="nunber Avail abl e"/ >

<property nane="nunber Or der ed" >
<f ormul a>
(select sum(li.quantity)
fromLineltemli
where |i.productld = productld)
</ for mul a>
</ property>

</ cl ass>

24.4 3. Content based discrimination

<cl ass nane="Per son"
di scri m nat or -val ue="pP">

<id name="id"
col um="person_i d"
unsaved- val ue="0">
<generator class="native"/>
</id>

<di scri m nat or
type="character">
<f or mul a>
case
when title is not null then 'E
when sal esperson is not null then 'C
el se 'P
end
</ formul a>
</ di scri m nat or >

<property name="nanme"
not - nul I ="true"
| engt h="80"/>

<property nane="sex"
not - nul | ="true"
updat e="fal se"/ >

Hibernate 3.0.5 200

Example: Various Mappings

<conponent nane="address">
<property nane="address"/>
<property name="zip"/>
<property nane="country"/>
</ conponent >

<subcl ass nane="Enpl oyee"
di scrim nat or-val ue="E">
<property nane="title"
| engt h="20"/>
<property nane="sal ary"/>
<many-t 0- one nane="nanager"/>
</ subcl ass>

<subcl ass nane="Cust ormer"
di scrim nat or-val ue="C'>
<property nane="comments"/>
<many-t o- one nane="sal esperson"/>
</ subcl ass>

</ cl ass>

24.4.4. Associations on alternate keys

<cl ass nanme="Per son" >

<id name="id">
<generator class="hilo"/>
</id>

<property nane="nane" | ength="100"/>

<one-t o-one nane="address"
property-ref="person"
cascade="al | "
fetch="join"/>

<set nane="accounts"
i nverse="true">
<key col um="userl d"
property-ref="userl d"/>
<one-to-many class="Account"/>
</set>

<property nane="userld" |ength="8"/>
</cl ass>
<cl ass nane="Addr ess" >
<id name="id">
<generator class="hilo"/>
</id>
<property nane="address" | ength="300"/>

<property nane="zip" |ength="5"/>
<property name="country" |ength="25"/>

<many-t o- one nane="person" uni que="true" not-null="true"/>

</ cl ass>

<cl ass nane="Account" >
<id name="account|d" |ength="32">
<generator class="uuid. hex"/>
</id>

<many-t o- one nane="user"

Hibernate 3.0.5

201

Example: Various Mappings

col um="user|d"
property-ref="userld"/>

<property name="type" not-null="true"/>

</ cl ass>

Hibernate 3.0.5 202

Chapter 25. Best Practices

Write fine-grained classes and map them using <conponent >.
Use an Addr ess class to encapsulate street, suburb, state, post code. This encourages code reuse and
simplifies refactoring.

Declare identifier properties on persistent classes.
Hibernate makes identifier properties optional. There are all sorts of reasons why you should use them. We
recommend that identifiers be 'synthetic' (generated, with no business meaning).

Identify natural keys.
Identify natural keys for al entities, and map them using <nat ur al -i d>. Implement equal s() and hash-
Code() to compare the properties that make up the natural key.

Place each class mapping in its own file.
Don't use a single monolithic mapping document. Map com eg. Foo in the file cont eg/ Foo. hbm xni . This
makes particularly good sense in ateam environment.

L oad mappings as resources.
Deploy the mappings along with the classes they map.

Consider externalising query strings.
This is a good practice if your queries call non-ANSI-standard SQL functions. Externalising the query
strings to mapping files will make the application more portable.

Use bind variables.
As in JDBC, aways replace non-constant values by "?'. Never use string manipulation to bind a non-
constant value in aquery! Even better, consider using named parametersin queries.

Don't manage your own JDBC connections.
Hibernate lets the application manage JDBC connections. This approach should be considered a last-resort.
If you can't use the built-in connections providers, consider providing your own implementation of
or g. hi bernat e. connecti on. Connecti onProvi der.

Consider using a custom type.
Suppose you have a Java type, say from some library, that needs to be persisted but doesn't provide the ac-
cessors needed to map it as a component. You should consider implementing or g. hi ber nat e. User Type.
This approach frees the application code from implementing transformations to / from a Hibernate type.

Use hand-coded JDBC in bottlenecks.
In performance-critical areas of the system, some kinds of operations might benefit from direct JDBC. But
please, wait until you know something is a bottleneck. And don't assume that direct JDBC is hecessarily
faster. If you need to use direct JDBC, it might be worth opening a Hibernate Sessi on and using that JDBC
connection. That way you can still use the same transaction strategy and underlying connection provider.

Understand Sessi on flushing.
From time to time the Session synchronizes its persistent state with the database. Performance will be af -
fected if this process occurs too often. You may sometimes minimize unnecessary flushing by disabling
automatic flushing or even by changing the order of queries and other operations within a particular trans-
action.

In athree tiered architecture, consider using detached objects.
When using a servlet / session bean architecture, you could pass persistent objects loaded in the session

Hibernate 3.0.5 203

Best Practices

bean to and from the servlet / JSP layer. Use a new session to service each request. Use Sessi on. ner ge()
Or Sessi on. saveOr Updat e() to Synchronize objects with the database.

In atwo tiered architecture, consider using long persistence contexts.

Database Transactions have to be as short as possible for best scalability. However, it is often neccessary to
implement long running application transactions, a single unit-of-work from the point of view of a user.
An application transaction might span severa client request/response cycles. It is common to use detached
objects to implement application transactions. An aternative, extremely appropriate in two tiered architec-
ture, is to maintain a single open persistence contact (session) for the whole lifecycle of the application
transaction and simply disconnect from the JDBC connection at the end of each request and reconnect at
the beginning of the subsequent request. Never share a single session across more than one application
transaction, or you will be working with stale data.

Don't treat exceptions as recoverable.
Thisis more of a necessary practice than a"best" practice. When an exception occurs, roll back the Tr ans-
acti on and close the sessi on. If you don't, Hibernate can't guarantee that in-memory state accurately rep-
resents persistent state. As a special case of this, do not use Sessi on. | oad() to determine if an instance
with the given identifier exists on the database; use Sessi on. get () or aquery instead.

Prefer lazy fetching for associations.
Use eager fetching sparingly. Use proxies and lazy collections for most associations to classes that are not
likely to be completely held in the second-level cache. For associations to cached classes, where there is an
a extremely high probability of a cache hit, explicitly disable eager fetching using | azy="f al se". When an
join fetching is appropriate to a particular use case, use aquery withaleft join fetch.

Use the open session in view pattern, or a disciplined assembly phase to avoid problems with unfetched data.
Hibernate frees the developer from writing tedious Data Transfer Objects (DTO). In a traditional EJB ar-
chitecture, DTOs serve dual purposes: first, they work around the problem that entity beans are not serializ-
able; second, they implicitly define an assembly phase where all data to be used by the view is fetched and
marshalled into the DTOs before returning control to the presentation tier. Hibernate eliminates the first
purpose. However, you will still need an assembly phase (think of your business methods as having a strict
contract with the presentation tier about what data is available in the detached objects) unless you are pre-
pared to hold the persistence context (the session) open across the view rendering process. Thisisnot alim-
itation of Hibernate! It isafundamental requirement of safe transactional data access.

Consider abstracting your business logic from Hibernate.
Hide (Hibernate) data-access code behind an interface. Combine the DAO and Thread Local Session pat-
terns. You can even have some classes persisted by handcoded JDBC, associated to Hibernate via a User -
Type. (This advice is intended for "sufficiently large" applications; it is not appropriate for an application
with five tables!)

Don't use exotic association mappings.
Good usecases for areal many-to-many associations are rare. Most of the time you need additiona inform-
ation stored in the "link table". In this case, it is much better to use two one-to-many associations to an in-
termediate link class. In fact, we think that most associations are one-to-many and many-to-one, you should
be careful when using any other association style and ask yourself if it isreally neccessary.

Prefer bidirectional associations.
Unidirectional associations are more difficult to query. In alarge application, amost all associations must
be navigable in both directionsin queries.

Hibernate 3.0.5 204

	HIBERNATE - Relational Persistence for Idiomatic Java
	Table of Contents
	Preface
	Chapter 1. Quickstart with Tomcat
	1.1. Getting started with Hibernate
	1.2. First persistent class
	1.3. Mapping the cat
	1.4. Playing with cats
	1.5. Finally

	Chapter 2. Introduction to Hibernate
	2.1. Preface
	2.2. Part 1 - The first Hibernate Application
	2.2.1. The first class
	2.2.2. The mapping file
	2.2.3. Hibernate configuration
	2.2.4. Building with Ant
	2.2.5. Startup and helpers
	2.2.6. Loading and storing objects

	2.3. Part 2 - Mapping associations
	2.3.1. Mapping the Person class
	2.3.2. A unidirectional Set-based association
	2.3.3. Working the association
	2.3.4. Collection of values
	2.3.5. Bi-directional associations
	2.3.6. Working bi-directional links

	2.4. Summary

	Chapter 3. Architecture
	3.1. Overview
	3.2. Instance states
	3.3. JMX Integration
	3.4. JCA Support

	Chapter 4. Configuration
	4.1. Programmatic configuration
	4.2. Obtaining a SessionFactory
	4.3. JDBC connections
	4.4. Optional configuration properties
	4.4.1. SQL Dialects
	4.4.2. Outer Join Fetching
	4.4.3. Binary Streams
	4.4.4. Second-level and query cache
	4.4.5. Query Language Substitution
	4.4.6. Hibernate statistics

	4.5. Logging
	4.6. Implementing a NamingStrategy
	4.7. XML configuration file
	4.8. J2EE Application Server integration
	4.8.1. Transaction strategy configuration
	4.8.2. JNDI-bound SessionFactory
	4.8.3. Automatic JTA and Session binding
	4.8.4. JMX deployment

	Chapter 5. Persistent Classes
	5.1. A simple POJO example
	5.1.1. Declare accessors and mutators for persistent fields
	5.1.2. Implement a no-argument constructor
	5.1.3. Provide an identifier property (optional)
	5.1.4. Prefer non-final classes (optional)

	5.2. Implementing inheritance
	5.3. Implementing equals() and hashCode()
	5.4. Dynamic models

	Chapter 6. Basic O/R Mapping
	6.1. Mapping declaration
	6.1.1. Doctype
	6.1.2. hibernate-mapping
	6.1.3. class
	6.1.4. id
	Generator
	Hi/lo algorithm
	UUID algorithm
	Identity columns and sequences
	Assigned identifiers
	Primary keys assigned by triggers

	6.1.5. composite-id
	6.1.6. discriminator
	6.1.7. version (optional)
	6.1.8. timestamp (optional)
	6.1.9. property
	6.1.10. many-to-one
	6.1.11. one-to-one
	6.1.12. natural-id
	6.1.13. component, dynamic-component
	6.1.14. properties
	6.1.15. subclass
	6.1.16. joined-subclass
	6.1.17. union-subclass
	6.1.18. join
	6.1.19. key
	6.1.20. column and formula elements
	6.1.21. import
	6.1.22. any

	6.2. Hibernate Types
	6.2.1. Entities and values
	6.2.2. Basic value types
	6.2.3. Custom value types

	6.3. SQL quoted identifiers
	6.4. Metadata alternatives
	6.4.1. Using XDoclet markup
	6.4.2. Using JDK 5.0 Annotations

	Chapter 7. Collection Mapping
	7.1. Persistent collections
	7.2. Collection mappings
	7.2.1. Collection foreign keys
	7.2.2. Collection elements
	7.2.3. Indexed collections
	7.2.4. Collections of values and many-to-many associations
	7.2.5. One-to-many associations

	7.3. Advanced collection mappings
	7.3.1. Sorted collections
	7.3.2. Bidirectional associations
	7.3.3. Ternary associations
	7.3.4. Using an <idbag>

	7.4. Collection examples

	Chapter 8. Association Mappings
	8.1. Introduction
	8.2. Unidirectional associations
	8.2.1. many to one
	8.2.2. one to one
	8.2.3. one to many

	8.3. Unidirectional associations with join tables
	8.3.1. one to many
	8.3.2. many to one
	8.3.3. one to one
	8.3.4. many to many

	8.4. Bidirectional associations
	8.4.1. one to many / many to one
	8.4.2. one to one

	8.5. Bidirectional associations with join tables
	8.5.1. one to many / many to one
	8.5.2. one to one
	8.5.3. many to many

	Chapter 9. Component Mapping
	9.1. Dependent objects
	9.2. Collections of dependent objects
	9.3. Components as Map indices
	9.4. Components as composite identifiers
	9.5. Dynamic components

	Chapter 10. Inheritance Mapping
	10.1. The Three Strategies
	10.1.1. Table per class hierarchy
	10.1.2. Table per subclass
	10.1.3. Table per subclass, using a discriminator
	10.1.4. Mixing table per class hierarchy with table per subclass
	10.1.5. Table per concrete class
	10.1.6. Table per concrete class, using implicit polymorphism
	10.1.7. Mixing implicit polymorphism with other inheritance mappings

	10.2. Limitations

	Chapter 11. Working with objects
	11.1. Hibernate object states
	11.2. Making objects persistent
	11.3. Loading an object
	11.4. Querying
	11.4.1. Executing queries
	Iterating results
	Queries that return tuples
	Scalar results
	Bind parameters
	Pagination
	Scrollable iteration
	Externalizing named queries

	11.4.2. Filtering collections
	11.4.3. Criteria queries
	11.4.4. Queries in native SQL

	11.5. Modifying persistent objects
	11.6. Modifying detached objects
	11.7. Automatic state detection
	11.8. Deleting persistent objects
	11.9. Replicating object between two different datastores
	11.10. Flushing the Session
	11.11. Transitive persistence
	11.12. Using metadata

	Chapter 12. Transactions And Concurrency
	12.1. Session and transaction scopes
	12.1.1. Unit of work
	12.1.2. Application transactions
	12.1.3. Considering object identity
	12.1.4. Common issues

	12.2. Database transaction demarcation
	12.2.1. Non-managed environment
	12.2.2. Using JTA
	12.2.3. Exception handling

	12.3. Optimistic concurrency control
	12.3.1. Application version checking
	12.3.2. Long session and automatic versioning
	12.3.3. Detached objects and automatic versioning
	12.3.4. Customizing automatic versioning

	12.4. Pessimistic Locking

	Chapter 13. Interceptors and events
	13.1. Interceptors
	13.2. Event system
	13.3. Hibernate declarative security

	Chapter 14. Batch processing
	14.1. Batch inserts
	14.2. Batch updates
	14.3. Bulk update/delete

	Chapter 15. HQL: The Hibernate Query Language
	15.1. Case Sensitivity
	15.2. The from clause
	15.3. Associations and joins
	15.4. The select clause
	15.5. Aggregate functions
	15.6. Polymorphic queries
	15.7. The where clause
	15.8. Expressions
	15.9. The order by clause
	15.10. The group by clause
	15.11. Subqueries
	15.12. HQL examples
	15.13. Bulk UPDATE & DELETE Statements
	15.14. Tips & Tricks

	Chapter 16. Criteria Queries
	16.1. Creating a Criteria instance
	16.2. Narrowing the result set
	16.3. Ordering the results
	16.4. Associations
	16.5. Dynamic association fetching
	16.6. Example queries
	16.7. Projections, aggregation and grouping
	16.8. Detached queries and subqueries
	16.9. Queries by natural identifier

	Chapter 17. Native SQL
	17.1. Creating a native SQL Query
	17.2. Alias and property references
	17.3. Named SQL queries
	17.3.1. Using return-property to explicitly specify column/alias names
	17.3.2. Using stored procedures for querying
	Rules/limitations for using stored procedures

	17.4. Custom SQL for create, update and delete
	17.5. Custom SQL for loading

	Chapter 18. Filtering data
	18.1. Hibernate filters

	Chapter 19. XML Mapping
	19.1. Working with XML data
	19.1.1. Specifying XML and class mapping together
	19.1.2. Specifying only an XML mapping

	19.2. XML mapping metadata
	19.3. Manipulating XML data

	Chapter 20. Improving performance
	20.1. Fetching strategies
	20.1.1. Working with lazy associations
	20.1.2. Tuning fetch strategies
	20.1.3. Single-ended association proxies
	20.1.4. Initializing collections and proxies
	20.1.5. Using batch fetching
	20.1.6. Using subselect fetching
	20.1.7. Using lazy property fetching

	20.2. The Second Level Cache
	20.2.1. Cache mappings
	20.2.2. Strategy: read only
	20.2.3. Strategy: read/write
	20.2.4. Strategy: nonstrict read/write
	20.2.5. Strategy: transactional

	20.3. Managing the caches
	20.4. The Query Cache
	20.5. Understanding Collection performance
	20.5.1. Taxonomy
	20.5.2. Lists, maps, idbags and sets are the most efficient collections to update
	20.5.3. Bags and lists are the most efficient inverse collections
	20.5.4. One shot delete

	20.6. Monitoring performance
	20.6.1. Monitoring a SessionFactory
	20.6.2. Metrics

	Chapter 21. Toolset Guide
	21.1. Automatic schema generation
	21.1.1. Customizing the schema
	21.1.2. Running the tool
	21.1.3. Properties
	21.1.4. Using Ant
	21.1.5. Incremental schema updates
	21.1.6. Using Ant for incremental schema updates

	Chapter 22. Example: Parent/Child
	22.1. A note about collections
	22.2. Bidirectional one-to-many
	22.3. Cascading lifecycle
	22.4. Cascades and unsaved-value
	22.5. Conclusion

	Chapter 23. Example: Weblog Application
	23.1. Persistent Classes
	23.2. Hibernate Mappings
	23.3. Hibernate Code

	Chapter 24. Example: Various Mappings
	24.1. Employer/Employee
	24.2. Author/Work
	24.3. Customer/Order/Product
	24.4. Miscellaneous example mappings
	24.4.1. "Typed" one-to-one association
	24.4.2. Composite key example
	24.4.3. Content based discrimination
	24.4.4. Associations on alternate keys

	Chapter 25. Best Practices

