
Hibernate Reference Documentation

Version: 3.0.5

Table of Contents
Preface .. viii
1. Quickstart with Tomcat .. 1

1.1. Getting started with Hibernate ... 1
1.2. First persistent class ... 3
1.3. Mapping the cat ... 4
1.4. Playing with cats .. 5
1.5. Finally ... 7

2. Introduction to Hibernate ... 8
2.1. Preface .. 8
2.2. Part 1 - The first Hibernate Application ... 8

2.2.1. The first class .. 8
2.2.2. The mapping file ... 9
2.2.3. Hibernate configuration ... 11
2.2.4. Building with Ant .. 12
2.2.5. Startup and helpers .. 13
2.2.6. Loading and storing objects .. 15

2.3. Part 2 - Mapping associations .. 17
2.3.1. Mapping the Person class ... 17
2.3.2. A unidirectional Set-based association .. 17
2.3.3. Working the association ... 19
2.3.4. Collection of values ... 20
2.3.5. Bi-directional associations ... 21
2.3.6. Working bi-directional links ... 21

2.4. Summary ... 22
3. Architecture .. 23

3.1. Overview ... 23
3.2. Instance states .. 25
3.3. JMX Integration ... 25
3.4. JCA Support .. 26

4. Configuration .. 27
4.1. Programmatic configuration .. 27
4.2. Obtaining a SessionFactory ... 27
4.3. JDBC connections .. 28
4.4. Optional configuration properties .. 29

4.4.1. SQL Dialects ... 34
4.4.2. Outer Join Fetching ... 35
4.4.3. Binary Streams .. 35
4.4.4. Second-level and query cache ... 35
4.4.5. Query Language Substitution ... 36
4.4.6. Hibernate statistics .. 36

4.5. Logging ... 36
4.6. Implementing a NamingStrategy ... 37
4.7. XML configuration file ... 37
4.8. J2EE Application Server integration .. 38

4.8.1. Transaction strategy configuration .. 39
4.8.2. JNDI-bound SessionFactory ... 40
4.8.3. Automatic JTA and Session binding ... 40
4.8.4. JMX deployment ... 40

Hibernate 3.0.5 ii

5. Persistent Classes .. 42
5.1. A simple POJO example ... 42

5.1.1. Declare accessors and mutators for persistent fields ... 43
5.1.2. Implement a no-argument constructor ... 43
5.1.3. Provide an identifier property (optional) .. 43
5.1.4. Prefer non-final classes (optional) ... 44

5.2. Implementing inheritance ... 44
5.3. Implementing equals() and hashCode() .. 44
5.4. Dynamic models .. 45

6. Basic O/R Mapping ... 48
6.1. Mapping declaration ... 48

6.1.1. Doctype .. 49
6.1.2. hibernate-mapping ... 49
6.1.3. class ... 50
6.1.4. id .. 52

6.1.4.1. Generator ... 53
6.1.4.2. Hi/lo algorithm ... 54
6.1.4.3. UUID algorithm ... 54
6.1.4.4. Identity columns and sequences ... 54
6.1.4.5. Assigned identifiers .. 55
6.1.4.6. Primary keys assigned by triggers .. 55

6.1.5. composite-id ... 55
6.1.6. discriminator ... 56
6.1.7. version (optional) .. 56
6.1.8. timestamp (optional) .. 57
6.1.9. property .. 57
6.1.10. many-to-one .. 59
6.1.11. one-to-one ... 60
6.1.12. natural-id .. 62
6.1.13. component, dynamic-component .. 62
6.1.14. properties .. 63
6.1.15. subclass .. 64
6.1.16. joined-subclass .. 65
6.1.17. union-subclass ... 66
6.1.18. join ... 66
6.1.19. key ... 67
6.1.20. column and formula elements ... 68
6.1.21. import ... 68
6.1.22. any ... 69

6.2. Hibernate Types ... 69
6.2.1. Entities and values ... 70
6.2.2. Basic value types ... 70
6.2.3. Custom value types ... 71

6.3. SQL quoted identifiers .. 72
6.4. Metadata alternatives .. 72

6.4.1. Using XDoclet markup .. 72
6.4.2. Using JDK 5.0 Annotations .. 74

7. Collection Mapping ... 76
7.1. Persistent collections .. 76
7.2. Collection mappings ... 76

7.2.1. Collection foreign keys .. 77
7.2.2. Collection elements ... 78

HIBERNATE - Relational Persistence for Idiomatic Java

Hibernate 3.0.5 iii

7.2.3. Indexed collections .. 78
7.2.4. Collections of values and many-to-many associations .. 79
7.2.5. One-to-many associations .. 80

7.3. Advanced collection mappings .. 81
7.3.1. Sorted collections .. 81
7.3.2. Bidirectional associations ... 82
7.3.3. Ternary associations .. 83
7.3.4. Using an <idbag> .. 84

7.4. Collection examples ... 84
8. Association Mappings ... 87

8.1. Introduction ... 87
8.2. Unidirectional associations ... 87

8.2.1. many to one .. 87
8.2.2. one to one ... 87
8.2.3. one to many .. 88

8.3. Unidirectional associations with join tables .. 89
8.3.1. one to many .. 89
8.3.2. many to one .. 89
8.3.3. one to one ... 90
8.3.4. many to many ... 90

8.4. Bidirectional associations ... 90
8.4.1. one to many / many to one ... 91
8.4.2. one to one ... 91

8.5. Bidirectional associations with join tables .. 92
8.5.1. one to many / many to one ... 92
8.5.2. one to one ... 92
8.5.3. many to many ... 93

9. Component Mapping .. 95
9.1. Dependent objects .. 95
9.2. Collections of dependent objects ... 96
9.3. Components as Map indices .. 97
9.4. Components as composite identifiers ... 97
9.5. Dynamic components ... 99

10. Inheritance Mapping ... 100
10.1. The Three Strategies ... 100

10.1.1. Table per class hierarchy .. 100
10.1.2. Table per subclass ... 100
10.1.3. Table per subclass, using a discriminator ... 101
10.1.4. Mixing table per class hierarchy with table per subclass 101
10.1.5. Table per concrete class ... 102
10.1.6. Table per concrete class, using implicit polymorphism ... 102
10.1.7. Mixing implicit polymorphism with other inheritance mappings 103

10.2. Limitations .. 104
11. Working with objects .. 106

11.1. Hibernate object states .. 106
11.2. Making objects persistent .. 106
11.3. Loading an object ... 107
11.4. Querying ... 108

11.4.1. Executing queries .. 108
11.4.1.1. Iterating results ... 108
11.4.1.2. Queries that return tuples ... 109
11.4.1.3. Scalar results .. 109

HIBERNATE - Relational Persistence for Idiomatic Java

Hibernate 3.0.5 iv

11.4.1.4. Bind parameters .. 109
11.4.1.5. Pagination .. 110
11.4.1.6. Scrollable iteration .. 110
11.4.1.7. Externalizing named queries .. 111

11.4.2. Filtering collections ... 111
11.4.3. Criteria queries .. 111
11.4.4. Queries in native SQL .. 112

11.5. Modifying persistent objects ... 112
11.6. Modifying detached objects .. 112
11.7. Automatic state detection .. 113
11.8. Deleting persistent objects .. 114
11.9. Replicating object between two different datastores .. 114
11.10. Flushing the Session ... 115
11.11. Transitive persistence ... 116
11.12. Using metadata ... 117

12. Transactions And Concurrency ... 118
12.1. Session and transaction scopes .. 118

12.1.1. Unit of work .. 118
12.1.2. Application transactions ... 119
12.1.3. Considering object identity ... 120
12.1.4. Common issues ... 120

12.2. Database transaction demarcation .. 121
12.2.1. Non-managed environment .. 121
12.2.2. Using JTA ... 122
12.2.3. Exception handling .. 123

12.3. Optimistic concurrency control .. 124
12.3.1. Application version checking ... 124
12.3.2. Long session and automatic versioning ... 124
12.3.3. Detached objects and automatic versioning ... 125
12.3.4. Customizing automatic versioning .. 126

12.4. Pessimistic Locking .. 126
13. Interceptors and events ... 128

13.1. Interceptors .. 128
13.2. Event system .. 129
13.3. Hibernate declarative security ... 130

14. Batch processing .. 131
14.1. Batch inserts .. 131
14.2. Batch updates ... 131
14.3. Bulk update/delete .. 132

15. HQL: The Hibernate Query Language .. 134
15.1. Case Sensitivity .. 134
15.2. The from clause .. 134
15.3. Associations and joins .. 134
15.4. The select clause .. 135
15.5. Aggregate functions ... 136
15.6. Polymorphic queries ... 137
15.7. The where clause .. 137
15.8. Expressions .. 139
15.9. The order by clause .. 141
15.10. The group by clause .. 141
15.11. Subqueries ... 142
15.12. HQL examples ... 143

HIBERNATE - Relational Persistence for Idiomatic Java

Hibernate 3.0.5 v

15.13. Bulk UPDATE & DELETE Statements ... 144
15.14. Tips & Tricks ... 145

16. Criteria Queries .. 147
16.1. Creating a Criteria instance ... 147
16.2. Narrowing the result set .. 147
16.3. Ordering the results .. 148
16.4. Associations ... 148
16.5. Dynamic association fetching .. 149
16.6. Example queries ... 149
16.7. Projections, aggregation and grouping ... 150
16.8. Detached queries and subqueries ... 151
16.9. Queries by natural identifier .. 151

17. Native SQL .. 153
17.1. Creating a native SQL Query .. 153
17.2. Alias and property references .. 153
17.3. Named SQL queries ... 154

17.3.1. Using return-property to explicitly specify column/alias names 154
17.3.2. Using stored procedures for querying .. 155

17.3.2.1. Rules/limitations for using stored procedures .. 155
17.4. Custom SQL for create, update and delete .. 156
17.5. Custom SQL for loading ... 157

18. Filtering data ... 158
18.1. Hibernate filters ... 158

19. XML Mapping .. 160
19.1. Working with XML data ... 160

19.1.1. Specifying XML and class mapping together ... 160
19.1.2. Specifying only an XML mapping .. 160

19.2. XML mapping metadata ... 161
19.3. Manipulating XML data ... 162

20. Improving performance .. 164
20.1. Fetching strategies .. 164

20.1.1. Working with lazy associations .. 164
20.1.2. Tuning fetch strategies ... 165
20.1.3. Single-ended association proxies .. 166
20.1.4. Initializing collections and proxies .. 167
20.1.5. Using batch fetching .. 168
20.1.6. Using subselect fetching ... 169
20.1.7. Using lazy property fetching ... 169

20.2. The Second Level Cache ... 170
20.2.1. Cache mappings .. 170
20.2.2. Strategy: read only ... 170
20.2.3. Strategy: read/write .. 171
20.2.4. Strategy: nonstrict read/write .. 171
20.2.5. Strategy: transactional .. 171

20.3. Managing the caches .. 172
20.4. The Query Cache ... 173
20.5. Understanding Collection performance .. 173

20.5.1. Taxonomy ... 173
20.5.2. Lists, maps, idbags and sets are the most efficient collections to update 174
20.5.3. Bags and lists are the most efficient inverse collections .. 175
20.5.4. One shot delete .. 175

20.6. Monitoring performance ... 175

HIBERNATE - Relational Persistence for Idiomatic Java

Hibernate 3.0.5 vi

20.6.1. Monitoring a SessionFactory .. 175
20.6.2. Metrics ... 176

21. Toolset Guide .. 178
21.1. Automatic schema generation .. 178

21.1.1. Customizing the schema ... 178
21.1.2. Running the tool .. 180
21.1.3. Properties .. 180
21.1.4. Using Ant ... 181
21.1.5. Incremental schema updates ... 181
21.1.6. Using Ant for incremental schema updates .. 182

22. Example: Parent/Child .. 183
22.1. A note about collections .. 183
22.2. Bidirectional one-to-many ... 183
22.3. Cascading lifecycle ... 184
22.4. Cascades and unsaved-value ... 185
22.5. Conclusion ... 186

23. Example: Weblog Application ... 187
23.1. Persistent Classes ... 187
23.2. Hibernate Mappings ... 188
23.3. Hibernate Code .. 189

24. Example: Various Mappings ... 193
24.1. Employer/Employee ... 193
24.2. Author/Work .. 194
24.3. Customer/Order/Product ... 196
24.4. Miscellaneous example mappings .. 198

24.4.1. "Typed" one-to-one association .. 198
24.4.2. Composite key example ... 198
24.4.3. Content based discrimination .. 200
24.4.4. Associations on alternate keys .. 201

25. Best Practices .. 203

HIBERNATE - Relational Persistence for Idiomatic Java

Hibernate 3.0.5 vii

Preface
Working with object-oriented software and a relational database can be cumbersome and time consuming in
today's enterprise environments. Hibernate is an object/relational mapping tool for Java environments. The term
object/relational mapping (ORM) refers to the technique of mapping a data representation from an object model
to a relational data model with a SQL-based schema.

Hibernate not only takes care of the mapping from Java classes to database tables (and from Java data types to
SQL data types), but also provides data query and retrieval facilities and can significantly reduce development
time otherwise spent with manual data handling in SQL and JDBC.

Hibernates goal is to relieve the developer from 95 percent of common data persistence related programming
tasks. Hibernate may not be the best solution for data-centric applications that only use stored-procedures to
implement the business logic in the database, it is most useful with object-oriented domain models and business
logic in the Java-based middle-tier. However, Hibernate can certainly help you to remove or encapsulate
vendor-specific SQL code and will help with the common task of result set translation from a tabular represent-
ation to a graph of objects.

If you are new to Hibernate and Object/Relational Mapping or even Java, please follow these steps:

1. Read Chapter 1, Quickstart with Tomcat for a 30 minute quickstart, using Tomcat.

2. Read Chapter 2, Introduction to Hibernate for a longer tutorial with more step-by-step instructions.

3. Read Chapter 3, Architecture to understand the environments where Hibernate can be used.

4. Have a look at the eg/ directory in the Hibernate distribution, it contains a simple standalone application.
Copy your JDBC driver to the lib/ directory and edit etc/hibernate.properties, specifying correct val-
ues for your database. From a command prompt in the distribution directory, type ant eg (using Ant), or
under Windows, type build eg.

5. Use this reference documentation as your primary source of information. Consider reading Hibernate in
Action (http://www.manning.com/bauer) if you need more help with application design or if you prefer a
step-by-step tutorial. Also visit http://caveatemptor.hibernate.org and download the example application
for Hibernate in Action.

6. FAQs are answered on the Hibernate website.

7. Third party demos, examples, and tutorials are linked on the Hibernate website.

8. The Community Area on the Hibernate website is a good resource for design patterns and various integra-
tion solutions (Tomcat, JBoss AS, Struts, EJB, etc.).

If you have questions, use the user forum linked on the Hibernate website. We also provide a JIRA issue track-
ings system for bug reports and feature requests. If you are interested in the development of Hibernate, join the
developer mailing list. If you are interested in translating this documentation into your language, contact us on
the developer mailing list.

Commercial development support, production support, and training for Hibernate is available through JBoss
Inc. (see http://www.hibernate.org/SupportTraining/). Hibernate is a Professional Open Source project and a
critical component of the JBoss Enterprise Middleware System (JEMS) suite of products.

Hibernate 3.0.5 viii

Chapter 1. Quickstart with Tomcat

1.1. Getting started with Hibernate

This tutorial explains a setup of Hibernate 3.0 with the Apache Tomcat servlet container (we used version 4.1,
the differences to 5.0 should be minimal) for a web-based application. Hibernate works well in a managed en-
vironment with all major J2EE application servers, or even in standalone Java applications. The database sys-
tem used in this tutorial is PostgreSQL 7.4, support for other database is only a matter of changing the Hibern-
ate SQL dialect configuration and connection properties.

First, we have to copy all required libraries to the Tomcat installation. We use a separate web context
(webapps/quickstart) for this tutorial, so we've to consider both the global library search path (TOMCAT/com-
mon/lib) and the classloader at the context level in webapps/quickstart/WEB-INF/lib (for JAR files) and
webapps/quickstart/WEB-INF/classes. We refer to both classloader levels as the global classpath and the
context classpath.

Now, copy the libraries to the two classpaths:

1. Copy the JDBC driver for the database to the global classpath. This is required for the DBCP connection
pool software which comes bundled with Tomcat. Hibernate uses JDBC connections to execute SQL on
the database, so you either have to provide pooled JDBC connections or configure Hibernate to use one of
the directly supported pools (C3P0, Proxool). For this tutorial, copy the pg74jdbc3.jar library (for Post-
greSQL 7.4 and JDK 1.4) to the global classloaders path. If you'd like to use a different database, simply
copy its appropriate JDBC driver.

2. Never copy anything else into the global classloader path in Tomcat, or you will get problems with various
tools, including Log4j, commons-logging and others. Always use the context classpath for each web ap-
plication, that is, copy libraries to WEB-INF/lib and your own classes and configuration/property files to
WEB-INF/classes. Both directories are in the context level classpath by default.

3. Hibernate is packaged as a JAR library. The hibernate3.jar file should be copied in the context
classpath together with other classes of the application. Hibernate requires some 3rd party libraries at
runtime, these come bundled with the Hibernate distribution in the lib/ directory; see Table 1.1, “ Hibern-
ate 3rd party libraries ”. Copy the required 3rd party libraries to the context classpath.

Table 1.1. Hibernate 3rd party libraries

Library Description

antlr (required) Hibernate uses ANTLR to produce query parsers, this library is also
needed at runtime.

dom4j (required) Hibernate uses dom4j to parse XML configuration and XML mapping
metadata files.

CGLIB, asm (required) Hibernate uses the code generation library to enhance classes at runtime
(in combination with Java reflection).

Commons Collections, Commons
Logging (required)

Hibernate uses various utility libraries from the Apache Jakarta Com-
mons project.

EHCache (required) Hibernate can use various cache providers for the second-level cache.

Hibernate 3.0.5 1

Library Description

EHCache is the default cache provider if not changed in the configura-
tion.

Log4j (optional) Hibernate uses the Commons Logging API, which in turn can use Log4j
as the underlying logging mechanism. If the Log4j library is available in
the context library directory, Commons Logging will use Log4j and the
log4j.properties configuration in the context classpath. An example
properties file for Log4j is bundled with the Hibernate distribution. So,
copy log4j.jar and the configuration file (from src/) to your context
classpath if you want to see whats going on behind the scenes.

Required or not? Have a look at the file lib/README.txt in the Hibernate distribution.
This is an up-to-date list of 3rd party libraries distributed with Hibern-
ate. You will find all required and optional libraries listed there (note
that "buildtime required" here means for Hibernate's build, not your ap-
plication).

We now set up the database connection pooling and sharing in both Tomcat and Hibernate. This means Tomcat
will provide pooled JDBC connections (using its builtin DBCP pooling feature), Hibernate requests theses con-
nections through JNDI. Alternatively, you can let Hibernate manage the connection pool. Tomcat binds its con-
nection pool to JNDI; we add a resource declaration to Tomcats main configuration file, TOMCAT/

conf/server.xml:

<Context path="/quickstart" docBase="quickstart">
<Resource name="jdbc/quickstart" scope="Shareable" type="javax.sql.DataSource"/>
<ResourceParams name="jdbc/quickstart">

<parameter>
<name>factory</name>
<value>org.apache.commons.dbcp.BasicDataSourceFactory</value>

</parameter>

<!-- DBCP database connection settings -->
<parameter>

<name>url</name>
<value>jdbc:postgresql://localhost/quickstart</value>

</parameter>
<parameter>

<name>driverClassName</name><value>org.postgresql.Driver</value>
</parameter>
<parameter>

<name>username</name>
<value>quickstart</value>

</parameter>
<parameter>

<name>password</name>
<value>secret</value>

</parameter>

<!-- DBCP connection pooling options -->
<parameter>

<name>maxWait</name>
<value>3000</value>

</parameter>
<parameter>

<name>maxIdle</name>
<value>100</value>

</parameter>
<parameter>

<name>maxActive</name>
<value>10</value>

</parameter>

Quickstart with Tomcat

Hibernate 3.0.5 2

</ResourceParams>
</Context>

The context we configure in this example is named quickstart, its base is the TOMCAT/webapp/quickstart dir-
ectory. To access any servlets, call the path http://localhost:8080/quickstart in your browser (of course,
adding the name of the servlet as mapped in your web.xml). You may also go ahead and create a simple servlet
now that has an empty process() method.

Tomcat provides connections now through JNDI at java:comp/env/jdbc/quickstart. If you have trouble get-
ting the connection pool running, refer to the Tomcat documentation. If you get JDBC driver exception mes-
sages, try to setup JDBC connection pool without Hibernate first. Tomcat & JDBC tutorials are available on the
Web.

Your next step is to configure Hibernate. Hibernate has to know how it should obtain JDBC connections. We
use Hibernate's XML-based configuration. The other approach, using a properties file, is almost equivalent but
misses a few features the XML syntax allows. The XML configuration file is placed in the context classpath
(WEB-INF/classes), as hibernate.cfg.xml:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC

"-//Hibernate/Hibernate Configuration DTD//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

<session-factory>

<property name="connection.datasource">java:comp/env/jdbc/quickstart</property>
<property name="show_sql">false</property>
<property name="dialect">org.hibernate.dialect.PostgreSQLDialect</property>

<!-- Mapping files -->
<mapping resource="Cat.hbm.xml"/>

</session-factory>

</hibernate-configuration>

We turn logging of SQL commands off and tell Hibernate what database SQL dialect is used and where to get
the JDBC connections (by declaring the JNDI address of the Tomcat bound pool). The dialect is a required set-
ting, databases differ in their interpretation of the SQL "standard". Hibernate will take care of the differences
and comes bundled with dialects for all major commercial and open source databases.

A SessionFactory is Hibernate's concept of a single datastore, multiple databases can be used by creating mul-
tiple XML configuration files and creating multiple Configuration and SessionFactory objects in your ap-
plication.

The last element of the hibernate.cfg.xml declares Cat.hbm.xml as the name of a Hibernate XML mapping
file for the persistent class Cat. This file contains the metadata for the mapping of the POJO class Cat to a dat-
base table (or tables). We'll come back to that file soon. Let's write the POJO class first and then declare the
mapping metadata for it.

1.2. First persistent class

Hibernate works best with the Plain Old Java Objects (POJOs, sometimes called Plain Ordinary Java Objects)
programming model for persistent classes. A POJO is much like a JavaBean, with properties of the class ac-
cessible via getter and setter methods, shielding the internal representation from the publicly visible interface

Quickstart with Tomcat

Hibernate 3.0.5 3

(Hibernate can also access fields directly, if needed):

package org.hibernate.examples.quickstart;

public class Cat {

private String id;
private String name;
private char sex;
private float weight;

public Cat() {
}

public String getId() {
return id;

}

private void setId(String id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public char getSex() {
return sex;

}

public void setSex(char sex) {
this.sex = sex;

}

public float getWeight() {
return weight;

}

public void setWeight(float weight) {
this.weight = weight;

}

}

Hibernate is not restricted in its usage of property types, all Java JDK types and primitives (like String, char
and Date) can be mapped, including classes from the Java collections framework. You can map them as values,
collections of values, or associations to other entities. The id is a special property that represents the database
identifer (primary key) of that class, it is highly recommended for entities like a Cat. Hibernate can use identifi-
ers only internally, but we would lose some of the flexibility in our application architecture.

No special interface has to be implemented for persistent classes nor do you have to subclass from a special
root persistent class. Hibernate also doesn't require any build time processing, such as byte-code manipulation,
it relies solely on Java reflection and runtime class enhancement (through CGLIB). So, without any depend-
ency of the POJO class on Hibernate, we can map it to a database table.

1.3. Mapping the cat

The Cat.hbm.xml mapping file contains the metadata required for the object/relational mapping. The metadata
includes declaration of persistent classes and the mapping of properties (to columns and foreign key relation-

Quickstart with Tomcat

Hibernate 3.0.5 4

ships to other entities) to database tables.

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>

<class name="org.hibernate.examples.quickstart.Cat" table="CAT">

<!-- A 32 hex character is our surrogate key. It's automatically
generated by Hibernate with the UUID pattern. -->

<id name="id" type="string" unsaved-value="null" >
<column name="CAT_ID" sql-type="char(32)" not-null="true"/>
<generator class="uuid.hex"/>

</id>

<!-- A cat has to have a name, but it shouldn' be too long. -->
<property name="name">

<column name="NAME" length="16" not-null="true"/>
</property>

<property name="sex"/>

<property name="weight"/>

</class>

</hibernate-mapping>

Every persistent class should have an identifer attribute (actually, only classes representing entities, not depend-
ent value-typed classes, which are mapped as components of an entity). This property is used to distinguish per-
sistent objects: Two cats are equal if catA.getId().equals(catB.getId()) is true, this concept is called data-
base identity. Hibernate comes bundled with various identifer generators for different scenarios (including nat-
ive generators for database sequences, hi/lo identifier tables, and application assigned identifiers). We use the
UUID generator (only recommended for testing, as integer surrogate keys generated by the database should be
prefered) and also specify the column CAT_ID of the table CAT for the Hibernate generated identifier value (as a
primary key of the table).

All other properties of Cat are mapped to the same table. In the case of the name property, we mapped it with an
explicit database column declaration. This is especially useful when the database schema is automatically gen-
erated (as SQL DDL statements) from the mapping declaration with Hibernate's SchemaExport tool. All other
properties are mapped using Hibernate's default settings, which is what you need most of the time. The table
CAT in the database looks like this:

Column | Type | Modifiers
--------+-----------------------+-----------
cat_id | character(32) | not null
name | character varying(16) | not null
sex | character(1) |
weight | real |

Indexes: cat_pkey primary key btree (cat_id)

You should now create this table in your database manually, and later read Chapter 21, Toolset Guide if you
want to automate this step with the hbm2ddl tool. This tool can create a full SQL DDL, including table defini-
tion, custom column type constraints, unique constraints and indexes.

1.4. Playing with cats

We're now ready to start Hibernate's Session. It is the persistence manager, we use it to store and retrieve Cats

Quickstart with Tomcat

Hibernate 3.0.5 5

to and from the database. But first, we've to get a Session (Hibernate's unit-of-work) from the
SessionFactory:

SessionFactory sessionFactory =
new Configuration().configure().buildSessionFactory();

The call to configure() loads the hibernate.cfg.xml configuration file and initializes the Configuration in-
stance. You can set other properties (and even change the mapping metadata) by accessing the Configuration

before you build the SessionFactory (it is immutable). Where do we create the SessionFactory and how can
we access it in our application?

A SessionFactory is usually only build once, e.g. at startup with a load-on-startup servlet. This also means
you should not keep it in an instance variable in your servlets, but in some other location. Furthermore, we need
some kind of Singleton, so we can access the SessionFactory easily in application code. The approach shown
next solves both problems: startup configuration and easy access to a SessionFactory.

We implement a HibernateUtil helper class:

import org.hibernate.*;
import org.hibernate.cfg.*;

public class HibernateUtil {

private static Log log = LogFactory.getLog(HibernateUtil.class);

private static final SessionFactory sessionFactory;

static {
try {

// Create the SessionFactory
sessionFactory = new Configuration().configure().buildSessionFactory();

} catch (Throwable ex) {
// Make sure you log the exception, as it might be swallowed
log.error("Initial SessionFactory creation failed.", ex);
throw new ExceptionInInitializerError(ex);

}
}

public static final ThreadLocal session = new ThreadLocal();

public static Session currentSession() {
Session s = (Session) session.get();
// Open a new Session, if this Thread has none yet
if (s == null) {

s = sessionFactory.openSession();
session.set(s);

}
return s;

}

public static void closeSession() {
Session s = (Session) session.get();
if (s != null)

s.close();
session.set(null);

}
}

This class does not only take care of the SessionFactory with its static initializer, but also has a ThreadLocal

variable which holds the Session for the current thread. Make sure you understand the Java concept of a
thread-local variable before you try to use this helper. A more complex and powerful HibernateUtil class can
be found in CaveatEmptor, http://caveatemptor.hibernate.org/

A SessionFactory is threadsafe, many threads can access it concurrently and request Sessions. A Session is a

Quickstart with Tomcat

Hibernate 3.0.5 6

non-threadsafe object that represents a single unit-of-work with the database. Sessions are opened from a Ses-

sionFactory and are closed when all work is completed. An example in your servlet's process() method
might look like this (sans exception handling):

Session session = HibernateUtil.currentSession();
Transaction tx = session.beginTransaction();

Cat princess = new Cat();
princess.setName("Princess");
princess.setSex('F');
princess.setWeight(7.4f);

session.save(princess);

tx.commit();
HibernateUtil.closeSession();

In a Session, every database operation occurs inside a transaction that isolates the database operations (even
read-only operations). We use Hibernates Transaction API to abstract from the underlying transaction strategy
(in our case, JDBC transactions). This allows our code to be deployed with container-managed transactions
(using JTA) without any changes.

Note that you may call HibernateUtil.currentSession(); as many times as you like, you will always get the
current Session of this thread. You have to make sure the Session is closed after your unit-of-work completes,
either in your servlet code or in a servlet filter before the HTTP response is send. The nice side effect of the
second option is easy lazy initialization: the Session is still open when the view is rendered, so Hibernate can
load unitialized objects while you navigate the current object graph.

Hibernate has various methods that can be used to retrieve objects from the database. The most flexible way is
using the Hibernate Query Language (HQL), which is an easy to learn and powerful object-oriented extension
to SQL:

Transaction tx = session.beginTransaction();

Query query = session.createQuery("select c from Cat as c where c.sex = :sex");
query.setCharacter("sex", 'F');
for (Iterator it = query.iterate(); it.hasNext();) {

Cat cat = (Cat) it.next();
out.println("Female Cat: " + cat.getName());

}

tx.commit();

Hibernate also offers an object-oriented query by criteria API that can be used to formulate type-safe queries.
Hibernate of course uses PreparedStatements and parameter binding for all SQL communication with the
database. You may also use Hibernate's direct SQL query feature or get a plain JDBC connection from a Ses-

sion in rare cases.

1.5. Finally

We only scratched the surface of Hibernate in this small tutorial. Please note that we don't include any servlet
specific code in our examples. You have to create a servlet yourself and insert the Hibernate code as you see fit.

Keep in mind that Hibernate, as a data access layer, is tightly integrated into your application. Usually, all other
layers depent on the persistence mechanism. Make sure you understand the implications of this design.

For a more complex application example, see http://caveatemptor.hibernate.org/ and have a look at other tutori-
als linked on http://www.hibernate.org/Documentation

Quickstart with Tomcat

Hibernate 3.0.5 7

Chapter 2. Introduction to Hibernate

2.1. Preface

This chapter is an introductory tutorial for new users of Hibernate. We start with a simple command line applic-
ation using an in-memory database and develop it in easy to understand steps.

This tutorial is intended for new users of Hibernate but requires Java and SQL knowledge. It is based on a tu-
torial by Michael Gloegl, the third-party libraries we name are for JDK 1.4 and 5.0. You might need others for
JDK 1.3.

2.2. Part 1 - The first Hibernate Application

First, we'll create a simple console-based Hibernate application. We use an in-memory database (HSQL DB),
so we do not have to install any database server.

Let's assume we need a small database application that can store events we want to attend, and information
about the hosts of these events.

The first thing we do, is set up our development directory and put all the Java libraries we need into it. Down-
load the Hibernate distribution from the Hibernate website. Extract the package and place all required libraries
found in /lib into into the /lib directory of your new development working directory. It should look like this:

.
+lib

antlr.jar
cglib-full.jar
asm.jar
asm-attrs.jars
commons-collections.jar
commons-logging.jar
ehcache.jar
hibernate3.jar
jta.jar
dom4j.jar
log4j.jar

This is the minimum set of required libraries (note that we also copied hibernate3.jar, the main archive) for Hi-
bernate. See the README.txt file in the lib/ directory of the Hibernate distribution for more information about
required and optional third-party libraries. (Actually, Log4j is not required but preferred by many developers.)

Next we create a class that represents the event we want to store in database.

2.2.1. The first class

Our first persistent class is a simple JavaBean class with some properties:

import java.util.Date;

public class Event {
private Long id;

private String title;
private Date date;

Hibernate 3.0.5 8

Event() {}

public Long getId() {
return id;

}

private void setId(Long id) {
this.id = id;

}

public Date getDate() {
return date;

}

public void setDate(Date date) {
this.date = date;

}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;

}
}

You can see that this class uses standard JavaBean naming conventions for property getter and setter methods,
as well as private visibility for the fields. This is a recommended design - but not required. Hibernate can also
access fields directly, the benefit of accessor methods is robustness for refactoring.

The id property holds a unique identifier value for a particular event. All persistent entity classes (there are less
important dependent classes as well) will need such an identifier property if we want to use the full feature set
of Hibernate. In fact, most applications (esp. web applications) need to distinguish objects by identifier, so you
should consider this a feature rather than a limitation. However, we usually don't manipulate the identity of an
object, hence the setter method should be private. Only Hibernate will assign identifiers when an object is
saved. You can see that Hibernate can access public, private, and protected accessor methods, as well as
(public, private, protected) fields directly. The choice is up to you and you can match it to fit your application
design.

The no-argument constructor is a requirement for all persistent classes; Hibernate has to create objects for you,
using Java Reflection. The constructor can be private, however, package visibility is required for runtime proxy
generation and efficient data retrieval without bytecode instrumentation.

Place this Java source file in a directory called src in the development folder. The directory should now look
like this:

.
+lib

<Hibernate and third-party libraries>
+src

Event.java

In the next step, we tell Hibernate about this persistent class.

2.2.2. The mapping file

Hibernate needs to know how to load and store objects of the persistent class. This is where the Hibernate map-
ping file comes into play. The mapping file tells Hibernate what table in the database it has to access, and what
columns in that table it should use.

Introduction to Hibernate

Hibernate 3.0.5 9

The basic structure of a mapping file looks like this:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
[...]
</hibernate-mapping>

Note that the Hibernate DTD is very sophisticated. You can use it for auto-completion of XML mapping ele-
ments and attributes in your editor or IDE. You also should open up the DTD file in your text editor - it's the
easiest way to get an overview of all elements and attributes and to see the defaults, as well as some comments.
Note that Hibernate will not load the DTD file from the web, but first look it up from the classpath of the ap-
plication. The DTD file is included in hibernate3.jar as well as in the src/ directory of the Hibernate distri-
bution.

We will omit the DTD declaration in future examples to shorten the code. It is of course not optional.

Between the two hibernate-mapping tags, include a class element. All persistent entity classes (again, there
might be dependent classes later on, which are not first-class entities) need such a mapping, to a table in the
SQL database:

<hibernate-mapping>

<class name="Event" table="EVENTS">

</class>

</hibernate-mapping>

So far we told Hibernate how to persist and load object of class Event to the table EVENTS, each instance repres-
ented by a row in that table. Now we continue with a mapping of the unique identifier property to the tables
primary key. In addition, as we don't want to care about handling this identifier, we configure Hibernate's iden-
tifier generation strategy for a surrogate primary key column:

<hibernate-mapping>

<class name="Event" table="EVENTS">
<id name="id" column="EVENT_ID">

<generator class="increment"/>
</id>

</class>

</hibernate-mapping>

The id element is the declaration of the identifer property, name="id" declares the name of the Java property -
Hibernate will use the getter and setter methods to access the property. The column attribute tells Hibernate
which column of the EVENTS table we use for this primary key. The nested generator element specifies the
identifier generation strategy, in this case we used increment, which is a very simple in-memory number incre-
ment method useful mostly for testing (and tutorials). Hibernate also supports database generated, globally
unique, as well as application assigned identifiers (or any strategy you have written an extension for).

Finally we include declarations for the persistent properties of the class in the mapping file. By default, no
properties of the class are considered persistent:

<hibernate-mapping>

Introduction to Hibernate

Hibernate 3.0.5 10

<class name="Event" table="EVENTS">
<id name="id" column="EVENT_ID">

<generator class="increment"/>
</id>
<property name="date" type="timestamp" column="EVENT_DATE"/>
<property name="title"/>

</class>

</hibernate-mapping>

Just as with the id element, the name attribute of the property element tells Hibernate which getter and setter
methods to use.

Why does the date property mapping include the column attribute, but the title doesn't? Without the column

attribute Hibernate by default uses the property name as the column name. This works fine for title. However,
date is a reserved keyword in most database, so we better map it to a different name.

The next interesting thing is that the title mapping also lacks a type attribute. The types we declare and use in
the mapping files are not, as you might expect, Java data types. They are also not SQL database types. These
types are so called Hibernate mapping types, converters which can translate from Java to SQL data types and
vice versa. Again, Hibernate will try to determine the correct conversion and mapping type itself if the type at-
tribute is not present in the mapping. In some cases this automatic detection (using Reflection on the Java class)
might not have the default you expect or need. This is the case with the date property. Hibernate can't know if
the property will map to a SQL date, timestamp or time column. We declare that we want to preserve full date
and time information by mapping the property with a timestamp.

This mapping file should be saved as Event.hbm.xml, right in the directory next to the Event Java class source
file. The naming of mapping files can be arbitrary, however the hbm.xml suffix became convention in the Hi-
bernate developer community. The directory structure should now look like this:

.
+lib

<Hibernate and third-party libraries>
+src

Event.java
Event.hbm.xml

We continue with the main configuration of Hibernate.

2.2.3. Hibernate configuration

We now have a persistent class and its mapping file in place. It is time to configure Hibernate. Before we do
this, we will need a database. HSQL DB, a java-based in-memory SQL DBMS, can be downloaded from the
HSQL DB website. Actually, you only need the hsqldb.jar from this download. Place this file in the lib/ dir-
ectory of the development folder.

Create a directory called data in the root of the development directory - this is where HSQL DB will store its
data files.

Hibernate is the layer in your application which connects to this database, so it needs connection information.
The connections are made through a JDBC connection pool, which we also have to configure. The Hibernate
distribution contains several open source JDBC connection pooling tools, but will use the Hibernate built-in
connection pool for this tutorial. Note that you have to copy the required library into your classpath and use dif-
ferent connection pooling settings if you want to use a production-quality third party JDBC pooling software.

For Hibernate's configuration, we can use a simple hibernate.properties file, a slightly more sophisticated

Introduction to Hibernate

Hibernate 3.0.5 11

hibernate.cfg.xml file, or even complete programmatic setup. Most users prefer the XML configuration file:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC

"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

<session-factory>

<!-- Database connection settings -->
<property name="connection.driver_class">org.hsqldb.jdbcDriver</property>
<property name="connection.url">jdbc:hsqldb:data/tutorial</property>
<property name="connection.username">sa</property>
<property name="connection.password"></property>

<!-- JDBC connection pool (use the built-in) -->
<property name="connection.pool_size">1</property>

<!-- SQL dialect -->
<property name="dialect">org.hibernate.dialect.HSQLDialect</property>

<!-- Echo all executed SQL to stdout -->
<property name="show_sql">true</property>

<!-- Drop and re-create the database schema on startup -->
<property name="hbm2ddl.auto">create</property>

<mapping resource="Event.hbm.xml"/>

</session-factory>

</hibernate-configuration>

Note that this XML configuration uses a different DTD. We configure Hibernate's SessionFactory - a global
factory responsible for a particular database. If you have several databases, use several <session-factory>

configurations, usually in several configuration files (for easier startup).

The first four property elements contain the necessary configuration for the JDBC connection. The dialect
property element specifies the particular SQL variant Hibernate generates. The hbm2ddl.auto option turns on
automatic generation of database schemas - directly into the database. This can of course also be turned off (by
removing the config option) or redirected to a file with the help of the SchemaExport Ant task. Finally, we add
the mapping file(s) for persistent classes.

Copy this file into the source directory, so it will end up in the root of the classpath. Hibernate automatically
looks for a file called hibernate.cfg.xml in the root of the classpath, on startup.

2.2.4. Building with Ant

We'll now build the tutorial with Ant. You will need to have Ant installed - get it from the Ant download page
[http://ant.apache.org/bindownload.cgi]. How to install Ant will not be covered here. Please refer to the Ant
manual [http://ant.apache.org/manual/index.html]. After you have installed Ant, we can start to create the build-
file. It will be called build.xml and placed directly in the development directory.

Fixing Ant

Note that the Ant distribution is by default broken (as described in the Ant FAQ) and has to be fixed by
you, for example, if you'd like to use JUnit from inside your build file. To make the JUnit task work
(we won't need it in this tutorial), either copy junit.jar to ANT_HOME/lib or remove the
ANT_HOME/lib/ant-junit.jar plugin stub.

Introduction to Hibernate

Hibernate 3.0.5 12

http://ant.apache.org/bindownload.cgi
http://ant.apache.org/manual/index.html
http://ant.apache.org/manual/index.html

A basic build file looks like this:

<project name="hibernate-tutorial" default="compile">

<property name="sourcedir" value="${basedir}/src"/>
<property name="targetdir" value="${basedir}/bin"/>
<property name="librarydir" value="${basedir}/lib"/>

<path id="libraries">
<fileset dir="${librarydir}">

<include name="*.jar"/>
</fileset>

</path>

<target name="clean">
<delete dir="${targetdir}"/>
<mkdir dir="${targetdir}"/>

</target>

<target name="compile" depends="clean, copy-resources">
<javac srcdir="${sourcedir}"

destdir="${targetdir}"
classpathref="libraries"/>

</target>

<target name="copy-resources">
<copy todir="${targetdir}">

<fileset dir="${sourcedir}">
<exclude name="**/*.java"/>

</fileset>
</copy>

</target>

</project>

This will tell Ant to add all files in the lib directory ending with .jar to the classpath used for compilation. It
will also copy all non-Java source files to the target directory, e.g. configuration and Hibernate mapping files. If
you now run Ant, you should get this output:

C:\hibernateTutorial\>ant
Buildfile: build.xml

copy-resources:
[copy] Copying 2 files to C:\hibernateTutorial\bin

compile:
[javac] Compiling 1 source file to C:\hibernateTutorial\bin

BUILD SUCCESSFUL
Total time: 1 second

2.2.5. Startup and helpers

It's time to load and store some Event objects, but first we have to complete the setup with some infrastructure
code. We have to startup Hibernate. This startup includes building a global SessionFactory object and to store
it somewhere for easy access in application code. A SessionFactory can open up new Session's. A Session

represents a single-threaded unit of work, the SessionFactory is a thread-safe global object, instantiated once.

We'll create a HibernateUtil helper class which takes care of startup and makes Session handling convenient.
The so called ThreadLocal Session pattern is useful here, we keep the current unit of work associated with the
current thread. Let's have a look at the implementation:

import org.hibernate.*;

Introduction to Hibernate

Hibernate 3.0.5 13

import org.hibernate.cfg.*;

public class HibernateUtil {

public static final SessionFactory sessionFactory;

static {
try {

// Create the SessionFactory from hibernate.cfg.xml
sessionFactory = new Configuration().configure().buildSessionFactory();

} catch (Throwable ex) {
// Make sure you log the exception, as it might be swallowed
System.err.println("Initial SessionFactory creation failed." + ex);
throw new ExceptionInInitializerError(ex);

}
}

public static final ThreadLocal session = new ThreadLocal();

public static Session currentSession() throws HibernateException {
Session s = (Session) session.get();
// Open a new Session, if this thread has none yet
if (s == null) {

s = sessionFactory.openSession();
// Store it in the ThreadLocal variable
session.set(s);

}
return s;

}

public static void closeSession() throws HibernateException {
Session s = (Session) session.get();
if (s != null)

s.close();
session.set(null);

}
}

This class does not only produce the global SessionFactory in its static initializer (called once by the JVM
when the class is loaded), but also has a ThreadLocal variable to hold the Session for the current thread. No
matter when you call HibernateUtil.currentSession(), it will always return the same Hibernate unit of work
in the same thread. A call to HibernateUtil.closeSession() ends the unit of work currently associated with
the thread.

Make sure you understand the Java concept of a thread-local variables before you use this helper. A more
powerful HibernateUtil helper can be found in CaveatEmptor on http://caveatemptor.hibernate.org/ - as well
as in the book "Hibernate in Action". Note that this class is not necessary if you deploy Hibernate in a J2EE ap-
plication server: a Session will be automatically bound to the current JTA transaction and you can look up the
SessionFactory through JNDI. If you use JBoss AS, Hibernate can be deployed as a managed system service
and will automatically bind the SessionFactory to a JNDI name.

Place HibernateUtil.java in the development source directory, next to Event.java:

.
+lib

<Hibernate and third-party libraries>
+src

Event.java
Event.hbm.xml
HibernateUtil.java
hibernate.cfg.xml

+data
build.xml

Introduction to Hibernate

Hibernate 3.0.5 14

This should again compile without problems. We finally need to configure a logging system - Hibernate uses
commons logging and leaves you the choice between Log4j and JDK 1.4 logging. Most developers prefer
Log4j: copy log4j.properties from the Hibernate distribution (it's in the etc/ directory) to your src direct-
ory, next to hibernate.cfg.xml. Have a look at the example configuration and change the settings if you like
to have more verbose output. By default, only Hibernate startup message are shown on stdout.

The tutorial infrastructure is complete - and we are ready to do some real work with Hibernate.

2.2.6. Loading and storing objects

Finally, we can use Hibernate to load and store objects. We write an EventManager class with a main() meth-
od:

import org.hibernate.Transaction;
import org.hibernate.Session;

import java.util.Date;

public class EventManager {

public static void main(String[] args) {
EventManager mgr = new EventManager();

if (args[0].equals("store")) {
mgr.createAndStoreEvent("My Event", new Date());

}

HibernateUtil.sessionFactory.close();
}

}

We read some arguments from the command line, and if the first argument is "store", we create and store a new
Event:

private void createAndStoreEvent(String title, Date theDate) {
Session session = HibernateUtil.currentSession();
Transaction tx = session.beginTransaction();

Event theEvent = new Event();
theEvent.setTitle(title);
theEvent.setDate(theDate);

session.save(theEvent);

tx.commit();
HibernateUtil.closeSession();

}

We create a new Event object, and hand it over to Hibernate. Hibernate now takes care of the SQL and ex-
ecutes INSERTs on the database. Let's have a look at the Session and Transaction-handling code before we run
this.

A Session is a single unit of work. You might be surprised that we have an additional API, Transaction. This
implies that a unit of work can be "longer" than a single database transaction - imagine a unit of work that spans
several Http request/response cycles (e.g. a wizard dialog) in a web application. Separating database transac-
tions from "unit of work from the application user's point of view" is one of Hibernates basic design concepts.
We call a long unit of work Application Transaction, usually encapsulating several short database transactions.
For now we'll keep things simple and assume a one-to-one granularity between a Session and Transaction.

Introduction to Hibernate

Hibernate 3.0.5 15

What does Transaction.begin() and commit() do? Where is the rollback() in case something goes wrong?
The Hibernate Transaction API is actually optional, but we use it for convenience and portability. If you'd
handle the database transaction yourself (e.g. by calling session.connection.commit()), you'd bind the code
to a particular deployment environment, in this direct unmanaged JDBC. By setting the factory for Transac-

tion in your Hibernate configuration you can deploy your persistence layer anywhere. Have a look at
Chapter 12, Transactions And Concurrency for more information about transaction handling and demarcation.
We also skipped any error handling and rollback in this example.

To run this first routine we have to add a callable target to the Ant build file:

<target name="run" depends="compile">
<java fork="true" classname="EventManager" classpathref="libraries">

<classpath path="${targetdir}"/>
<arg value="${action}"/>

</java>
</target>

The value of the action argument is set on the command line when calling the target:

C:\hibernateTutorial\>ant run -Daction=store

You should see, after compilation, Hibernate starting up and, depending on your configuration, lots of log out-
put. At the end you will find the following line:

[java] Hibernate: insert into EVENTS (EVENT_DATE, title, EVENT_ID) values (?, ?, ?)

This is the INSERT executed by Hibernate, the question marks represent JDBC bind parameters. To see the val-
ues bound as arguments, or to reduce the verbosity of the log, check your log4j.properties.

Now we'd like to list stored events as well, so we add an option to the main method:

if (args[0].equals("store")) {
mgr.createAndStoreEvent("My Event", new Date());

}
else if (args[0].equals("list")) {

List events = mgr.listEvents();
for (int i = 0; i < events.size(); i++) {

Event theEvent = (Event) events.get(i);
System.out.println("Event: " + theEvent.getTitle() +

" Time: " + theEvent.getDate());
}

}

We also add a new listEvents() method:

private List listEvents() {
Session session = HibernateUtil.currentSession();
Transaction tx = session.beginTransaction();

List result = session.createQuery("from Event").list();

tx.commit();
session.close();

return result;
}

What we do here is use an HQL (Hibernate Query Language) query to load all existing Event objects from the
database. Hibernate will generate the appropriate SQL, send it to the database and populate Event objects with
the data. You can create more complex queries with HQL, of course.

Introduction to Hibernate

Hibernate 3.0.5 16

If you now call Ant with -Daction=list, you should see the events you have stored so far. You might be sur-
prised that this doesn't work, at least if you followed this tutorial step by step - the result will always be empty.
The reason for this is the hbm2ddl.auto switch in the Hibernate configuration: Hibernate will re-create the
database on every run. Disable it by removing the option, and you will see results in your list after you called
the store action a few times. Automatic schema generation and export is mostly useful in unit testing.

2.3. Part 2 - Mapping associations

We mapped a persistent entity class to a table. Let's build on this and add some class associations. First we'll
add people to our application, and store a list of events they participate in.

2.3.1. Mapping the Person class

The first cut of the Person class is simple:

public class Person {

private Long id;
private int age;
private String firstname;
private String lastname;

Person() {}

// Accessor methods for all properties, private setter for 'id'

}

Create a new mapping file called Person.hbm.xml:

<hibernate-mapping>

<class name="Person" table="PERSON">
<id name="id" column="PERSON_ID">

<generator class="increment"/>
</id>
<property name="age"/>
<property name="firstname"/>
<property name="lastname"/>

</class>

</hibernate-mapping>

Finally, add the new mapping to Hibernate's configuration:

<mapping resource="Event.hbm.xml"/>
<mapping resource="Person.hbm.xml"/>

We'll now create an association between these two entities. Obviously, persons can participate in events, and
events have participants. The design questions we have to deal with are: directionality, multiplicity, and collec-
tion behavior.

2.3.2. A unidirectional Set-based association

We'll add a collection of events to the Person class. That way we can easily navigate to the events for a particu-
lar person, without executing an explicit query - by calling aPerson.getEvents(). We use a Java collection, a

Introduction to Hibernate

Hibernate 3.0.5 17

Set, because the collection will not contain duplicate elements and the ordering is not relevant for us.

So far we designed a unidirectional, many-valued associations, implemented with a Set. Let's write the code for
this in the Java classes and then map it:

public class Person {

private Set events = new HashSet();

public Set getEvents() {
return events;

}

public void setEvents(Set events) {
this.events = events;

}
}

Before we map this association, think about the other side. Clearly, we could just keep this unidirectional. Or,
we could create another collection on the Event, if we want to be able to navigate it bi-directional, i.e. an-
Event.getParticipants(). This is a design choice left to you, but what is clear from this discussion is the
multiplicity of the association: "many" valued on both sides, we call this a many-to-many association. Hence,
we use Hibernate's many-to-many mapping:

<class name="Person" table="PERSON">
<id name="id" column="PERSON_ID">

<generator class="increment"/>
</id>
<property name="age"/>
<property name="firstname"/>
<property name="lastname"/>

<set name="events" table="PERSON_EVENT">
<key column="PERSON_ID"/>
<many-to-many column="EVENT_ID" class="Event"/>

</set>

</class>

Hibernate supports all kinds of collection mappings, a <set> being most common. For a many-to-many associ-
ation (or n:m entity relationship), an association table is needed. Each row in this table represents a link
between a person and an event. The table name is configured with the table attribute of the set element. The
identifier column name in the association, for the person's side, is defined with the <key> element, the column
name for the event's side with the column attribute of the <many-to-many>. You also have to tell Hibernate the
class of the objects in your collection (correct: the class on the other side of the collection of references).

The database schema for this mapping is therefore:

_____________ __________________
| | | | _____________
EVENTS		PERSON_EVENT		
_____________		__________________		PERSON

*EVENT_ID	<-->	*EVENT_ID		
EVENT_DATE		*PERSON_ID	<-->	*PERSON_ID
TITLE		__________________		AGE
_____________		FIRSTNAME		

| LASTNAME |
|_____________|

Introduction to Hibernate

Hibernate 3.0.5 18

2.3.3. Working the association

Let's bring some people and events together in a new method in EventManager:

private void addPersonToEvent(Long personId, Long eventId) {
Session session = HibernateUtil.currentSession();
Transaction tx = session.beginTransaction();

Person aPerson = (Person) session.load(Person.class, personId);
Event anEvent = (Event) session.load(Event.class, eventId);

aPerson.getEvents().add(anEvent);

tx.commit();
HibernateUtil.closeSession();

}

After loading a Person and an Event, simply modify the collection using the normal collection methods. As
you can see, there is no explicit call to update() or save(), Hibernate automatically detects the collection has
been modified and needs to be saved. This is called automatic dirty checking, and you can also try it by modify-
ing the name or the date property of any of your objects. As long as they are in persistent state, that is, bound to
a particular Hibernate Session (i.e. they have been just loaded or saved in a unit of work), Hibernate monitors
any changes and executes SQL in a write-behind fashion. The process of synchronizing the memory state with
the database, usually only at the end of a unit of work, is called flushing.

You might of course load person and event in different units of work. Or you modify an object outside of a
Session, when it is not in persistent state (if it was persistent before, we call this state detached). In (not very
realistic) code, this might look as follows:

private void addPersonToEvent(Long personId, Long eventId) {

Session session = HibernateUtil.currentSession();
Transaction tx = session.beginTransaction();

Person aPerson = (Person) session.load(Person.class, personId);
Event anEvent = (Event) session.load(Event.class, eventId);

tx.commit();
HibernateUtil.closeSession();

aPerson.getEvents().add(anEvent); // aPerson is detached

Session session2 = HibernateUtil.currentSession();
Transaction tx2 = session.beginTransaction();

session2.update(aPerson); // Reattachment of aPerson

tx2.commit();
HibernateUtil.closeSession();

}

The call to update makes a detached object persistent again, you could say it binds it to a new unit of work, so
any modifications you made to it while detached can be saved to the database.

Well, this is not much use in our current situation, but it's an important concept you can design into your own
application. For now, complete this exercise by adding a new action to the EventManager's main method and
call it from the command line. If you need the identifiers of a person and an event - the save() method returns
it.

This was an example of an association between two equally important classes, two entities. As mentioned earli-
er, there are other classes and types in a typical model, usually "less important". Some you have already seen,

Introduction to Hibernate

Hibernate 3.0.5 19

like an int or a String. We call these classes value types, and their instances depend on a particular entity. In-
stances of these types don't have their own identity, nor are they shared between entities (two persons don't ref-
erence the same firstname object, even if they have the same first name). Of course, value types can not only
be found in the JDK (in fact, in a Hibernate application all JDK classes are considered value types), but you can
also write dependent classes yourself, Address or MonetaryAmount, for example.

You can also design a collection of value types. This is conceptually very different from a collection of refer-
ences to other entities, but looks almost the same in Java.

2.3.4. Collection of values

We add a collection of value typed objects to the Person entity. We want to store email addresses, so the type
we use is String, and the collection is again a Set:

private Set emailAddresses = new HashSet();

public Set getEmailAddresses() {
return emailAddresses;

}

public void setEmailAddresses(Set emailAddresses) {
this.emailAddresses = emailAddresses;

}

The mapping of this Set:

<set name="emailAddresses" table="PERSON_EMAIL_ADDR">
<key column="PERSON_ID"/>
<element type="string" column="EMAIL_ADDR"/>

</set>

The difference compared with the earlier mapping is the element part, which tells Hibernate that the collection
does not contain references to another entity, but a collection of elements of type String (the lowercase name
tells you it's a Hibernate mapping type/converter). Once again, the table attribute of the set element determ-
ines the table name for the collection. The key element defines the foreign-key column name in the collection
table. The column attribute in the element element defines the column name where the String values will actu-
ally be stored.

Have a look at the updated schema:

_____________ __________________
| | | | _____________
| EVENTS | | PERSON_EVENT | | | ___________________
_____________		__________________		PERSON		
				_____________		PERSON_EMAIL_ADDR
*EVENT_ID	<-->	*EVENT_ID				___________________
EVENT_DATE		*PERSON_ID	<-->	*PERSON_ID	<-->	*PERSON_ID
TITLE		__________________		AGE		*EMAIL_ADDR
_____________		FIRSTNAME		___________________		

| LASTNAME |
|_____________|

You can see that the primary key of the collection table is in fact a composite key, using both columns. This
also implies that there can't be duplicate email addresses per person, which is exactly the semantics we need for
a set in Java.

You can now try and add elements to this collection, just like we did before by linking persons and events. It's

Introduction to Hibernate

Hibernate 3.0.5 20

the same code in Java.

2.3.5. Bi-directional associations

Next we are going to map a bi-directional association - making the association between person and event work
from both sides in Java. Of course, the database schema doesn't change, we still have many-to-many multipli-
city. A relational database is more flexible than a network programming language, so it doesn't need anything
like a navigation direction - data can be viewed and retrieved in any possible way.

First, add a collection of participants to the Event Event class:

private Set participants = new HashSet();

public Set getParticipants() {
return participants;

}

public void setParticipants(Set participants) {
this.participants = participants;

}

Now map this side of the association too, in Event.hbm.xml.

<set name="participants" table="PERSON_EVENT" inverse="true">
<key column="EVENT_ID"/>
<many-to-many column="PERSON_ID" class="Person"/>

</set>

As you see, these are normal set mappings in both mapping documents. Notice that the column names in key

and many-to-many are swapped in both mapping documents. The most important addition here is the in-

verse="true" attribute in the set element of the Event's collection mapping.

What this means is that Hibernate should take the other side - the Person class - when it needs to find out in-
formation about the link between the two. This will be a lot easier to understand once you see how the bi-
directional link between our two entities is created .

2.3.6. Working bi-directional links

First, keep in mind that Hibernate does not affect normal Java semantics. How did we create a link between a
Person and an Event in the unidirectional example? We added an instance of Event to the collection of event
references, of an instance of Person. So, obviously, if we want to make this link working bi-directional, we
have to do the same on the other side - adding a Person reference to the collection in an Event. This "setting the
link on both sides" is absolutely necessary and you should never forget doing it.

Many developers program defensive and create a link management methods to correctly set both sides, e.g. in
Person:

protected Set getEvents() {
return events;

}

protected void setEvents(Set events) {
this.events = events;

}

public void addToEvent(Event event) {
this.getEvents().add(event);
event.getParticipants().add(this);

Introduction to Hibernate

Hibernate 3.0.5 21

}

public void removeFromEvent(Event event) {
this.getEvents().remove(event);
event.getParticipants().remove(this);

}

Notice that the get and set methods for the collection are now protected - this allows classes in the same pack-
age and subclasses to still access the methods, but prevents everybody else from messing with the collections
directly (well, almost). You should probably do the same with the collection on the other side.

What about the inverse mapping attribute? For you, and for Java, a bi-directional link is simply a matter of set-
ting the references on both sides correctly. Hibernate however doesn't have enough information to correctly ar-
range SQL INSERT and UPDATE statements (to avoid constraint violations), and needs some help to handle bi-
directional associations properly. Making one side of the association inverse tells Hibernate to basically ignore
it, to consider it a mirror of the other side. That's all that is necessary for Hibernate to work out all of the issues
when transformation a directional navigation model to a SQL database schema. The rules you have to remem-
ber are straightforward: All bi-directional associations need one side as inverse. In a one-to-many association
it has to be the many-side, in many-to-many association you can pick either side, there is no difference.

2.4. Summary

This tutorial covered the basics of writing a simple standalone Hibernate application.

If you already feel confident with Hibernate, continue browsing through the reference documentation table of
contents for topics you find interesting - most asked are transactional processing (Chapter 12, Transactions And
Concurrency), fetch performance (Chapter 20, Improving performance), or the usage of the API (Chapter 11,
Working with objects) and the query features (Section 11.4, “Querying”).

Don't forget to check the Hibernate website for more (specialized) tutorials.

Introduction to Hibernate

Hibernate 3.0.5 22

Chapter 3. Architecture

3.1. Overview

A (very) high-level view of the Hibernate architecture:

This diagram shows Hibernate using the database and configuration data to provide persistence services (and
persistent objects) to the application.

We would like to show a more detailed view of the runtime architecture. Unfortunately, Hibernate is flexible
and supports several approaches. We will show the two extremes. The "lite" architecture has the application
provide its own JDBC connections and manage its own transactions. This approach uses a minimal subset of
Hibernate's APIs:

The "full cream" architecture abstracts the application away from the underlying JDBC/JTA APIs and lets Hi-

Hibernate 3.0.5 23

bernate take care of the details.

Heres some definitions of the objects in the diagrams:

SessionFactory (org.hibernate.SessionFactory)
A threadsafe (immutable) cache of compiled mappings for a single database. A factory for Session and a
client of ConnectionProvider. Might hold an optional (second-level) cache of data that is reusable
between transactions, at a process- or cluster-level.

Session (org.hibernate.Session)
A single-threaded, short-lived object representing a conversation between the application and the persistent
store. Wraps a JDBC connection. Factory for Transaction. Holds a mandatory (first-level) cache of per-
sistent objects, used when navigating the object graph or looking up objects by identifier.

Persistent objects and collections
Short-lived, single threaded objects containing persistent state and business function. These might be ordin-
ary JavaBeans/POJOs, the only special thing about them is that they are currently associated with (exactly
one) Session. As soon as the Session is closed, they will be detached and free to use in any application
layer (e.g. directly as data transfer objects to and from presentation).

Transient and detached objects and collections
Instances of persistent classes that are not currently associated with a Session. They may have been instan-
tiated by the application and not (yet) persisted or they may have been instantiated by a closed Session.

Transaction (org.hibernate.Transaction)
(Optional) A single-threaded, short-lived object used by the application to specify atomic units of work.
Abstracts application from underlying JDBC, JTA or CORBA transaction. A Session might span several
Transactions in some cases. However, transaction demarcation, either using the underlying API or Trans-
action, is never optional!

Architecture

Hibernate 3.0.5 24

ConnectionProvider (org.hibernate.connection.ConnectionProvider)
(Optional) A factory for (and pool of) JDBC connections. Abstracts application from underlying Data-

source or DriverManager. Not exposed to application, but can be extended/implemented by the developer.

TransactionFactory (org.hibernate.TransactionFactory)
(Optional) A factory for Transaction instances. Not exposed to the application, but can be extended/
implemented by the developer.

Extension Interfaces
Hibernate offers many optional extension interfaces you can implement to customize the behavior of your
persistence layer. See the API documentation for details.

Given a "lite" architecture, the application bypasses the Transaction/TransactionFactory and/or Connec-

tionProvider APIs to talk to JTA or JDBC directly.

3.2. Instance states

An instance of a persistent classes may be in one of three different states, which are defined with respect to a
persistence context. The Hibernate Session object is the persistence context:

transient
The instance is not, and has never been associated with any persistence context. It has no persistent identity
(primary key value).

persistent
The instance is currently associated with a persistence context. It has a persistent identity (primary key
value) and, perhaps, a corresponding row in the database. For a particular persistence context, Hibernate
guarantees that persistent identity is equivalent to Java identity (in-memory location of the object).

detached
The instance was once associated with a persistence context, but that context was closed, or the instance
was serialized to another process. It has a persistent identity and, perhaps, a corrsponding row in the data-
base. For detached instances, Hibernate makes no guarantees about the relationship between persistent
identity and Java identity.

3.3. JMX Integration

JMX is the J2EE standard for management of Java components. Hibernate may be managed via a JMX stand-
ard service. We provide an MBean implementation in the distribution,
org.hibernate.jmx.HibernateService.

For an example how to deploy Hibernate as a JMX service on the JBoss Application Server, please see the
JBoss User Guide. On JBoss AS, you also get these benefits if you deploy using JMX:

• Session Management: The Hibernate Session's lifecycle can be automatically bound to the scope of a JTA
transaction. This means you no longer have to manually open and close the Session, this becomes the job
of a JBoss EJB interceptor. You also don't have to worry about transaction demarcation in your code any-
more (unless you'd like to write a portable persistence layer of course, use the optional Hibernate Transac-

tion API for this). You call the HibernateContext to access a Session.

Architecture

Hibernate 3.0.5 25

• HAR deployment: Usually you deploy the Hibernate JMX service using a JBoss service deployment
descriptor (in an EAR and/or SAR file), it supports all the usual configuration options of a Hibernate Ses-

sionFactory. However, you still have to name all your mapping files in the deployment descriptor. If you
decide to use the optional HAR deployment, JBoss will automatically detect all mapping files in your HAR
file.

Consult the JBoss AS user guide for more information about these options.

Another feature available as a JMX service are runtime Hibernate statistics. See Section 4.4.6, “Hibernate stat-
istics”.

3.4. JCA Support

Hibernate may also be configured as a JCA connector. Please see the website for more details. Please note that
Hibernate JCA support is still considered experimental.

Architecture

Hibernate 3.0.5 26

Chapter 4. Configuration
Because Hibernate is designed to operate in many different environments, there are a large number of configur-
ation parameters. Fortunately, most have sensible default values and Hibernate is distributed with an example
hibernate.properties file in etc/ that shows the various options. Just put the example file in your classpath
and customize it.

4.1. Programmatic configuration

An instance of org.hibernate.cfg.Configuration represents an entire set of mappings of an application's
Java types to an SQL database. The Configuration is used to build an (immutable) SessionFactory. The map-
pings are compiled from various XML mapping files.

You may obtain a Configuration instance by instantiating it directly and specifying XML mapping docu-
ments. If the mapping files are in the classpath, use addResource():

Configuration cfg = new Configuration()
.addResource("Item.hbm.xml")
.addResource("Bid.hbm.xml");

An alternative (sometimes better) way is to specify the mapped class, and let Hibernate find the mapping docu-
ment for you:

Configuration cfg = new Configuration()
.addClass(org.hibernate.auction.Item.class)
.addClass(org.hibernate.auction.Bid.class);

Then Hibernate will look for mapping files named /org/hibernate/auction/Item.hbm.xml and /

org/hibernate/auction/Bid.hbm.xml in the classpath. This approach eliminates any hardcoded filenames.

A Configuration also allows you to specify configuration properties:

Configuration cfg = new Configuration()
.addClass(org.hibernate.auction.Item.class)
.addClass(org.hibernate.auction.Bid.class)
.setProperty("hibernate.dialect", "org.hibernate.dialect.MySQLInnoDBDialect")
.setProperty("hibernate.connection.datasource", "java:comp/env/jdbc/test")
.setProperty("hibernate.order_updates", "true");

This is not the only way to pass configuration properties to Hibernate. The various options include:

1. Pass an instance of java.util.Properties to Configuration.setProperties().
2. Place hibernate.properties in a root directory of the classpath.
3. Set System properties using java -Dproperty=value.
4. Include <property> elements in hibernate.cfg.xml (discussed later).

hibernate.properties is the easiest approach if you want to get started quickly.

The Configuration is intended as a startup-time object, to be discarded once a SessionFactory is created.

4.2. Obtaining a SessionFactory

When all mappings have been parsed by the Configuration, the application must obtain a factory for Session

Hibernate 3.0.5 27

instances. This factory is intended to be shared by all application threads:

SessionFactory sessions = cfg.buildSessionFactory();

Hibernate does allow your application to instantiate more than one SessionFactory. This is useful if you are
using more than one database.

4.3. JDBC connections

Usually, you want to have the SessionFactory create and pool JDBC connections for you. If you take this ap-
proach, opening a Session is as simple as:

Session session = sessions.openSession(); // open a new Session

As soon as you do something that requires access to the database, a JDBC connection will be obtained from the
pool.

For this to work, we need to pass some JDBC connection properties to Hibernate. All Hibernate property names
and semantics are defined on the class org.hibernate.cfg.Environment. We will now describe the most im-
portant settings for JDBC connection configuration.

Hibernate will obtain (and pool) connections using java.sql.DriverManager if you set the following proper-
ties:

Table 4.1. Hibernate JDBC Properties

Property name Purpose

hibernate.connection.driver_class jdbc driver class

hibernate.connection.url jdbc URL

hibernate.connection.username database user

hibernate.connection.password database user password

hibernate.connection.pool_size maximum number of pooled connections

Hibernate's own connection pooling algorithm is however quite rudimentary. It is intended to help you get star-
ted and is not intended for use in a production system or even for performance testing. You should use a third
party pool for best performance and stability. Just replace the hibernate.connection.pool_size property with
connection pool specific settings. This will turn off Hibernate's internal pool. For example, you might like to
use C3P0.

C3P0 is an open source JDBC connection pool distributed along with Hibernate in the lib directory. Hibernate
will use its C3P0ConnectionProvider for connection pooling if you set hibernate.c3p0.* properties. If you'd
like to use Proxool refer to the packaged hibernate.properties and the Hibernate web site for more informa-
tion.

Here is an example hibernate.properties file for C3P0:

hibernate.connection.driver_class = org.postgresql.Driver
hibernate.connection.url = jdbc:postgresql://localhost/mydatabase
hibernate.connection.username = myuser
hibernate.connection.password = secret

Configuration

Hibernate 3.0.5 28

hibernate.c3p0.min_size=5
hibernate.c3p0.max_size=20
hibernate.c3p0.timeout=1800
hibernate.c3p0.max_statements=50
hibernate.dialect = org.hibernate.dialect.PostgreSQLDialect

For use inside an application server, you should almost always configure Hibernate to obtain connections from
an application server Datasource registered in JNDI. You'll need to set at least one of the following properties:

Table 4.2. Hibernate Datasource Properties

Propery name Purpose

hibernate.connection.datasource datasource JNDI name

hibernate.jndi.url URL of the JNDI provider (optional)

hibernate.jndi.class class of the JNDI InitialContextFactory (optional)

hibernate.connection.username database user (optional)

hibernate.connection.password database user password (optional)

Here's an example hibernate.properties file for an application server provided JNDI datasource:

hibernate.connection.datasource = java:/comp/env/jdbc/test
hibernate.transaction.factory_class = \

org.hibernate.transaction.JTATransactionFactory
hibernate.transaction.manager_lookup_class = \

org.hibernate.transaction.JBossTransactionManagerLookup
hibernate.dialect = org.hibernate.dialect.PostgreSQLDialect

JDBC connections obtained from a JNDI datasource will automatically participate in the container-managed
transactions of the application server.

Arbitrary connection properties may be given by prepending "hibernate.connnection" to the property name.
For example, you may specify a charSet using hibernate.connection.charSet.

You may define your own plugin strategy for obtaining JDBC connections by implementing the interface
org.hibernate.connection.ConnectionProvider. You may select a custom implementation by setting hi-

bernate.connection.provider_class.

4.4. Optional configuration properties

There are a number of other properties that control the behaviour of Hibernate at runtime. All are optional and
have reasonable default values.

Warning: some of these properties are "system-level" only. System-level properties can be set only via java -

Dproperty=value or hibernate.properties. They may not be set by the other techniques described above.

Table 4.3. Hibernate Configuration Properties

Property name Purpose

hibernate.dialect The classname of a Hibernate Dialect which allows

Configuration

Hibernate 3.0.5 29

Property name Purpose

Hibernate to generate SQL optimized for a particular
relational database.

eg. full.classname.of.Dialect

hibernate.show_sql Write all SQL statements to console.

eg. true | false

hibernate.default_schema Qualify unqualified tablenames with the given
schema/tablespace in generated SQL.

eg. SCHEMA_NAME

hibernate.default_catalog Qualify unqualified tablenames with the given cata-
log in generated SQL.

eg. CATALOG_NAME

hibernate.session_factory_name The SessionFactory will be automatically bound to
this name in JNDI after it has been created.

eg. jndi/composite/name

hibernate.max_fetch_depth Set a maximum "depth" for the outer join fetch tree
for single-ended associations (one-to-one, many-
to-one). A 0 disables default outer join fetching.

eg. recommended values between 0 and 3

hibernate.default_batch_fetch_size Set a default size for Hibernate batch fetching of as-
sociations.

eg. recommended values 4, 8, 16

hibernate.default_entity_mode Set a default mode for entity representation for all
sessions opened from this SessionFactory

dynamic-map, dom4j, pojo

hibernate.order_updates Force Hibernate to order SQL updates by the primary
key value of the items being updates. This will result
in fewer transaction deadlocks in highly concurrent
systems.

eg. true | false

hibernate.generate_statistics If enabled, Hibernate will collect statistics useful for
performance tuning.

eg. true | false

hibernate.use_identifer_rollback If enabled, generated identifier properties will be re-
set to default values when objects are deleted.

eg. true | false

hibernate.use_sql_comments If turned on, Hibernate will generate comments inside

Configuration

Hibernate 3.0.5 30

Property name Purpose

the SQL, for easier debugging, defaults to false.

eg. true | false

Table 4.4. Hibernate JDBC and Connection Properties

Property name Purpose

hibernate.jdbc.fetch_size A non-zero value determines the JDBC fetch size
(calls Statement.setFetchSize()).

hibernate.jdbc.batch_size A non-zero value enables use of JDBC2 batch up-
dates by Hibernate.

eg. recommended values between 5 and 30

hibernate.jdbc.batch_versioned_data Set this property to true if your JDBC driver returns
correct row counts from executeBatch() (it is usu-
ally safe to turn this option on). Hibernate will then
use batched DML for automatically versioned data.
Defaults to false.

eg. true | false

hibernate.jdbc.factory_class Select a custom Batcher. Most applications will not
need this configuration property.

eg. classname.of.Batcher

hibernate.jdbc.use_scrollable_resultset Enables use of JDBC2 scrollable resultsets by Hi-
bernate. This property is only necessary when using
user supplied JDBC connections, Hibernate uses con-
nection metadata otherwise.

eg. true | false

hibernate.jdbc.use_streams_for_binary Use streams when writing/reading binary or serial-
izable types to/from JDBC (system-level property).

eg. true | false

hibernate.jdbc.use_get_generated_keys Enable use of JDBC3 PreparedState-

ment.getGeneratedKeys() to retrieve natively gener-
ated keys after insert. Requires JDBC3+ driver and
JRE1.4+, set to false if your driver has problems with
the Hibernate identifier generators. By default, tries to
determine the driver capabilites using connection
metadata.

eg. true|false

hibernate.connection.provider_class The classname of a custom ConnectionProvider

which provides JDBC connections to Hibernate.

eg. classname.of.ConnectionProvider

Configuration

Hibernate 3.0.5 31

Property name Purpose

hibernate.connection.isolation Set the JDBC transaction isolation level. Check
java.sql.Connection for meaningful values but note
that most databases do not support all isolation levels.

eg. 1, 2, 4, 8

hibernate.connection.autocommit Enables autocommit for JDBC pooled connections
(not recommended).

eg. true | false

hibernate.connection.release_mode Specify when Hibernate should release JDBC con-
nections. By default, a JDBC connection is held until
the session is explicitly closed or disconnected. For
an application server JTA datasource, you should use
after_statement to aggressively release connections
after every JDBC call. For a non-JTA connection, it
often makes sense to release the connection at the end
of each transaction, by using after_transaction.
auto will choose after_statement for the JTA and
CMT transaction strategies and after_transaction

for the JDBC transaction strategy.

eg. on_close (default) | after_transaction |
after_statement | auto

hibernate.connection.<propertyName> Pass the JDBC property propertyName to DriverMan-

ager.getConnection().

hibernate.jndi.<propertyName> Pass the property propertyName to the JNDI Ini-

tialContextFactory.

Table 4.5. Hibernate Cache Properties

Property name Purpose

hibernate.cache.provider_class The classname of a custom CacheProvider.

eg. classname.of.CacheProvider

hibernate.cache.use_minimal_puts Optimize second-level cache operation to minimize
writes, at the cost of more frequent reads. This setting
is most useful for clustered caches and, in Hibernate3,
is enabled by default for clustered cache implementa-
tions.

eg. true|false

hibernate.cache.use_query_cache Enable the query cache, individual queries still have
to be set cachable.

eg. true|false

hibernate.cache.use_second_level_cache May be used to completely disable the second level

Configuration

Hibernate 3.0.5 32

Property name Purpose

cache, which is enabled by default for classes which
specify a <cache> mapping.

eg. true|false

hibernate.cache.query_cache_factory The classname of a custom QueryCache interface, de-
faults to the built-in StandardQueryCache.

eg. classname.of.QueryCache

hibernate.cache.region_prefix A prefix to use for second-level cache region names.

eg. prefix

hibernate.cache.use_structured_entries Forces Hibernate to store data in the second-level
cache in a more human-friendly format.

eg. true|false

Table 4.6. Hibernate Transaction Properties

Property name Purpose

hibernate.transaction.factory_class The classname of a TransactionFactory to use with
Hibernate Transaction API (defaults to JDBCTrans-

actionFactory).

eg. classname.of.TransactionFactory

jta.UserTransaction A JNDI name used by JTATransactionFactory to
obtain the JTA UserTransaction from the applica-
tion server.

eg. jndi/composite/name

hibernate.transaction.manager_lookup_class The classname of a TransactionManagerLookup - re-
quired when JVM-level caching is enabled or when
using hilo generator in a JTA environment.

eg. classname.of.TransactionManagerLookup

hibernate.transaction.flush_before_completion If enabled, the session will be automatically flushed
during the before completion phase of the transaction.
(Very useful when using Hibernate with CMT.)

eg. true | false

hibernate.transaction.auto_close_session If enabled, the session will be automatically closed
during the after completion phase of the transaction.
(Very useful when using Hibernate with CMT.)

eg. true | false

Configuration

Hibernate 3.0.5 33

Table 4.7. Miscellaneous Properties

Property name Purpose

hibernate.query.factory_class Chooses the HQL parser implementation.

eg.
org.hibernate.hql.ast.ASTQueryTranslatorFacto

ry or
org.hibernate.hql.classic.ClassicQueryTransla

torFactory

hibernate.query.substitutions Mapping from tokens in Hibernate queries to SQL
tokens (tokens might be function or literal names, for
example).

eg. hqlLiteral=SQL_LITERAL, hqlFunc-

tion=SQLFUNC

hibernate.hbm2ddl.auto Automatically export schema DDL to the database
when the SessionFactory is created. With create-

drop, the database schema will be dropped when the
SessionFactory is closed explicitly.

eg. update | create | create-drop

hibernate.cglib.use_reflection_optimizer Enables use of CGLIB instead of runtime reflection
(System-level property). Reflection can sometimes be
useful when troubleshooting, note that Hibernate al-
ways requires CGLIB even if you turn off the optim-
izer. You can not set this property in hibern-

ate.cfg.xml.

eg. true | false

4.4.1. SQL Dialects

You should always set the hibernate.dialect property to the correct org.hibernate.dialect.Dialect sub-
class for your database. If you specify a dialect, Hibernate will use sensible defaults for some of the other prop-
erties listed above, saving you the effort of specifying them manually.

Table 4.8. Hibernate SQL Dialects (hibernate.dialect)

RDBMS Dialect

DB2 org.hibernate.dialect.DB2Dialect

DB2 AS/400 org.hibernate.dialect.DB2400Dialect

DB2 OS390 org.hibernate.dialect.DB2390Dialect

PostgreSQL org.hibernate.dialect.PostgreSQLDialect

MySQL org.hibernate.dialect.MySQLDialect

Configuration

Hibernate 3.0.5 34

RDBMS Dialect

MySQL with InnoDB org.hibernate.dialect.MySQLInnoDBDialect

MySQL with MyISAM org.hibernate.dialect.MySQLMyISAMDialect

Oracle (any version) org.hibernate.dialect.OracleDialect

Oracle 9i/10g org.hibernate.dialect.Oracle9Dialect

Sybase org.hibernate.dialect.SybaseDialect

Sybase Anywhere org.hibernate.dialect.SybaseAnywhereDialect

Microsoft SQL Server org.hibernate.dialect.SQLServerDialect

SAP DB org.hibernate.dialect.SAPDBDialect

Informix org.hibernate.dialect.InformixDialect

HypersonicSQL org.hibernate.dialect.HSQLDialect

Ingres org.hibernate.dialect.IngresDialect

Progress org.hibernate.dialect.ProgressDialect

Mckoi SQL org.hibernate.dialect.MckoiDialect

Interbase org.hibernate.dialect.InterbaseDialect

Pointbase org.hibernate.dialect.PointbaseDialect

FrontBase org.hibernate.dialect.FrontbaseDialect

Firebird org.hibernate.dialect.FirebirdDialect

4.4.2. Outer Join Fetching

If your database supports ANSI, Oracle or Sybase style outer joins, outer join fetching will often increase per-
formance by limiting the number of round trips to and from the database (at the cost of possibly more work per-
formed by the database itself). Outer join fetching allows a whole graph of objects connected by many-to-one,
one-to-many, many-to-many and one-to-one associations to be retrieved in a single SQL SELECT.

Outer join fetching may be disabled globally by setting the property hibernate.max_fetch_depth to 0. A set-
ting of 1 or higher enables outer join fetching for one-to-one and many-to-one associations which have been
mapped with fetch="join".

See Section 20.1, “Fetching strategies” for more information.

4.4.3. Binary Streams

Oracle limits the size of byte arrays that may be passed to/from its JDBC driver. If you wish to use large in-
stances of binary or serializable type, you should enable hibernate.jdbc.use_streams_for_binary. This
is a system-level setting only.

4.4.4. Second-level and query cache

Configuration

Hibernate 3.0.5 35

The properties prefixed by hibernate.cache allow you to use a process or cluster scoped second-level cache
system with Hibernate. See the Section 20.2, “The Second Level Cache” for more details.

4.4.5. Query Language Substitution

You may define new Hibernate query tokens using hibernate.query.substitutions. For example:

hibernate.query.substitutions true=1, false=0

would cause the tokens true and false to be translated to integer literals in the generated SQL.

hibernate.query.substitutions toLowercase=LOWER

would allow you to rename the SQL LOWER function.

4.4.6. Hibernate statistics

If you enable hibernate.generate_statistics, Hibernate will expose a number of metrics that are useful
when tuning a running system via SessionFactory.getStatistics(). Hibernate can even be configured to ex-
pose these statistics via JMX. Read the Javadoc of the interfaces in org.hibernate.stats for more informa-
tion.

4.5. Logging

Hibernate logs various events using Apache commons-logging.

The commons-logging service will direct output to either Apache Log4j (if you include log4j.jar in your
classpath) or JDK1.4 logging (if running under JDK1.4 or above). You may download Log4j from ht-

tp://jakarta.apache.org. To use Log4j you will need to place a log4j.properties file in your classpath, an
example properties file is distributed with Hibernate in the src/ directory.

We strongly recommend that you familiarize yourself with Hibernate's log messages. A lot of work has been
put into making the Hibernate log as detailed as possible, without making it unreadable. It is an essential
troubleshooting device. The most interesting log categories are the following:

Table 4.9. Hibernate Log Categories

Category Function

org.hibernate.SQL Log all SQL DML statements as they are executed

org.hibernate.type Log all JDBC parameters

org.hibernate.tool.hbm2dd

l

Log all SQL DDL statements as they are executed

org.hibernate.pretty Log the state of all entities (max 20 entities) associated with the session at
flush time

org.hibernate.cache Log all second-level cache activity

org.hibernate.transaction Log transaction related activity

Configuration

Hibernate 3.0.5 36

Category Function

org.hibernate.jdbc Log all JDBC resource acquisition

org.hibernate.hql.ast.AST Log HQL and SQL ASTs during query parsing

org.hibernate.secure Log all JAAS authorization requests

org.hibernate Log everything (a lot of information, but very useful for troubleshooting)

When developing applications with Hibernate, you should almost always work with debug enabled for the cat-
egory org.hibernate.SQL, or, alternatively, the property hibernate.show_sql enabled.

4.6. Implementing a NamingStrategy

The interface org.hibernate.cfg.NamingStrategy allows you to specify a "naming standard" for database ob-
jects and schema elements.

You may provide rules for automatically generating database identifiers from Java identifiers or for processing
"logical" column and table names given in the mapping file into "physical" table and column names. This fea-
ture helps reduce the verbosity of the mapping document, eliminating repetitive noise (TBL_ prefixes, for ex-
ample). The default strategy used by Hibernate is quite minimal.

You may specify a different strategy by calling Configuration.setNamingStrategy() before adding map-
pings:

SessionFactory sf = new Configuration()
.setNamingStrategy(ImprovedNamingStrategy.INSTANCE)
.addFile("Item.hbm.xml")
.addFile("Bid.hbm.xml")
.buildSessionFactory();

org.hibernate.cfg.ImprovedNamingStrategy is a built-in strategy that might be a useful starting point for
some applications.

4.7. XML configuration file

An alternative approach to configuration is to specify a full configuration in a file named hibernate.cfg.xml.
This file can be used as a replacement for the hibernate.properties file or, if both are present, to override
properties.

The XML configuration file is by default expected to be in the root o your CLASSPATH. Here is an example:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC

"-//Hibernate/Hibernate Configuration DTD//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

<!-- a SessionFactory instance listed as /jndi/name -->
<session-factory

name="java:hibernate/SessionFactory">

<!-- properties -->
<property name="connection.datasource">java:/comp/env/jdbc/MyDB</property>
<property name="dialect">org.hibernate.dialect.MySQLDialect</property>

Configuration

Hibernate 3.0.5 37

<property name="show_sql">false</property>
<property name="transaction.factory_class">

org.hibernate.transaction.JTATransactionFactory
</property>
<property name="jta.UserTransaction">java:comp/UserTransaction</property>

<!-- mapping files -->
<mapping resource="org/hibernate/auction/Item.hbm.xml"/>
<mapping resource="org/hibernate/auction/Bid.hbm.xml"/>

<!-- cache settings -->
<class-cache class="org.hibernate.auction.Item" usage="read-write"/>
<class-cache class="org.hibernate.auction.Bid" usage="read-only"/>
<collection-cache class="org.hibernate.auction.Item.bids" usage="read-write"/>

</session-factory>

</hibernate-configuration>

As you can see, the advantage of this approach is the externalization of the mapping file names to configura-
tion. The hibernate.cfg.xml is also more convenient once you have to tune the Hibernate cache. Note that is
your choice to use either hibernate.properties or hibernate.cfg.xml, both are equivalent, except for the
above mentioned benefits of using the XML syntax.

With the XML configuration, starting Hibernate is then as simple as

SessionFactory sf = new Configuration().configure().buildSessionFactory();

You can pick a different XML configuration file using

SessionFactory sf = new Configuration()
.configure("catdb.cfg.xml")
.buildSessionFactory();

4.8. J2EE Application Server integration

Hibernate has the following integration points for J2EE infrastructure:

• Container-managed datasources: Hibernate can use JDBC connections managed by the container and
provided through JNDI. Usually, a JTA compatible TransactionManager and a ResourceManager take care
of transaction management (CMT), esp. distributed transaction handling across several datasources. You
may of course also demarcate transaction boundaries programatically (BMT) or you might want to use the
optional Hibernate Transaction API for this to keep your code portable.

• Automatic JNDI binding: Hibernate can bind its SessionFactory to JNDI after startup.

• JTA Session binding: The Hibernate Session may be automatically bound to the scope of JTA transactions
if you use EJBs. Simply lookup the SessionFactory from JNDI and get the current Session. Let Hibernate
take care of flushing and closing the Session when your JTA transaction completes. Transaction demarca-
tion is declarative, in EJB deployment descriptors.

• JMX deployment: If you have a JMX capable application server (e.g. JBoss AS), you can chose to deploy
Hibernate as a managed MBean. This saves you the one line startup code to build your SessionFactory

from a Configuration. The container will startup your HibernateService, and ideally also take care of

Configuration

Hibernate 3.0.5 38

service dependencies (Datasource has to be available before Hibernate starts, etc).

Depending on your environment, you might have to set the configuration option hibern-

ate.connection.aggressive_release to true if your application server shows "connection containment" ex-
ceptions.

4.8.1. Transaction strategy configuration

The Hibernate Session API is independent of any transaction demarcation system in your architecture. If you
let Hibernate use JDBC directly, through a connection pool, you may begin and end your transactions by call-
ing the JDBC API. If you run in a J2EE application server, you might want to use bean-managed transactions
and call the JTA API and UserTransaction when needed.

To keep your code portable between these two (and other) environments we recommend the optional Hibernate
Transaction API, which wraps and hides the underlying system. You have to specify a factory class for
Transaction instances by setting the Hibernate configuration property hibern-

ate.transaction.factory_class.

There are three standard (built-in) choices:

org.hibernate.transaction.JDBCTransactionFactory

delegates to database (JDBC) transactions (default)

org.hibernate.transaction.JTATransactionFactory

delegates to container-managed transaction if an existing transaction is underway in this context (e.g. EJB
session bean method), otherwise a new transaction is started and bean-managed transaction are used.

org.hibernate.transaction.CMTTransactionFactory

delegates to container-managed JTA transactions

You may also define your own transaction strategies (for a CORBA transaction service, for example).

Some features in Hibernate (i.e. the second level cache, automatic JTA and Session binding, etc.) require access
to the JTA TransactionManager in a managed environment. In an application server you have to specify how
Hibernate should obtain a reference to the TransactionManager, since J2EE does not standardize a single
mechanism:

Table 4.10. JTA TransactionManagers

Transaction Factory Application Server

org.hibernate.transaction.JBossTransactionManagerLookup JBoss

org.hibernate.transaction.WeblogicTransactionManagerLookup Weblogic

org.hibernate.transaction.WebSphereTransactionManagerLookup WebSphere

org.hibernate.transaction.WebSphereExtendedJTATransactionLookup WebSphere 6

org.hibernate.transaction.OrionTransactionManagerLookup Orion

org.hibernate.transaction.ResinTransactionManagerLookup Resin

org.hibernate.transaction.JOTMTransactionManagerLookup JOTM

org.hibernate.transaction.JOnASTransactionManagerLookup JOnAS

Configuration

Hibernate 3.0.5 39

Transaction Factory Application Server

org.hibernate.transaction.JRun4TransactionManagerLookup JRun4

org.hibernate.transaction.BESTransactionManagerLookup Borland ES

4.8.2. JNDI-bound SessionFactory

A JNDI bound Hibernate SessionFactory can simplify the lookup of the factory and the creation of new Ses-

sions. Note that this is not related to a JNDI bound Datasource, both simply use the same registry!

If you wish to have the SessionFactory bound to a JNDI namespace, specify a name (eg.
java:hibernate/SessionFactory) using the property hibernate.session_factory_name. If this property is
omitted, the SessionFactory will not be bound to JNDI. (This is especially useful in environments with a read-
only JNDI default implementation, e.g. Tomcat.)

When binding the SessionFactory to JNDI, Hibernate will use the values of hibernate.jndi.url, hibern-
ate.jndi.class to instantiate an initial context. If they are not specified, the default InitialContext will be
used.

Hibernate will automatically place the SessionFactory in JNDI after you call cfg.buildSessionFactory().
This means you will at least have this call in some startup code (or utility class) in your application, unless you
use JMX deployment with the HibernateService (discussed later).

If you use a JNDI SessionFactory, an EJB or any other class may obtain the SessionFactory using a JNDI
lookup. Note that this setup is not neccessary if you use the HibernateUtil helper class introduced in chapter
one, which acts as a Singleton registry. However, HibernateUtil is more common in a non-managed environ-
ment.

4.8.3. Automatic JTA and Session binding

For non-managed environments we suggested HibernateUtil with a static SessionFactory, and ThreadLocal

management of the Hibernate Session. This approach isn't easy to use in an EJB environment, as several EJB's
may execute inside the same transaction but not the same thread. We recommend that you bind the Session-

Factory to JNDI in a managend environment.

Instead of rolling your own ThreadLocal utility, use the getCurrentSession() method on the SessionFactory

to obtain a Hibernate Session. If there is no Hibernate Session in current JTA transaction, one will be started
and assigned. Both the hibernate.transaction.flush_before_completion and hibern-

ate.transaction.auto_close_session configuration option, will be set automatically for every Session you
retrieve with getCurrentSession(), so they will also be flushed and closed automatically when the container
ends the JTA transactions.

If you, for example, use the DAO design pattern to write your persistence layer, all DAO's lookup the Session-

Factory when needed and open the "current" Session. There is no need to pass instances of SessionFactory or
Session around between controlling code and DAO code.

4.8.4. JMX deployment

The line cfg.buildSessionFactory() still has to be executed somewhere to get a SessionFactory into JNDI.
You can do this either in a static initializer block (like the one in HibernateUtil) or you deploy Hibernate as
a managed service.

Configuration

Hibernate 3.0.5 40

Hibernate is distributed with org.hibernate.jmx.HibernateService for deployment on an application server
with JMX capabilities, such as JBoss AS. The actual deployment and configuration is vendor specific. Here is
an example jboss-service.xml for JBoss 4.0.x:

<?xml version="1.0"?>
<server>

<mbean code="org.hibernate.jmx.HibernateService"
name="jboss.jca:service=HibernateFactory,name=HibernateFactory">

<!-- Required services -->
<depends>jboss.jca:service=RARDeployer</depends>
<depends>jboss.jca:service=LocalTxCM,name=HsqlDS</depends>

<!-- Bind the Hibernate service to JNDI -->
<attribute name="JndiName">java:/hibernate/SessionFactory</attribute>

<!-- Datasource settings -->
<attribute name="Datasource">java:HsqlDS</attribute>
<attribute name="Dialect">org.hibernate.dialect.HSQLDialect</attribute>

<!-- Transaction integration -->
<attribute name="TransactionStrategy">

org.hibernate.transaction.JTATransactionFactory</attribute>
<attribute name="TransactionManagerLookupStrategy">

org.hibernate.transaction.JBossTransactionManagerLookup</attribute>
<attribute name="FlushBeforeCompletionEnabled">true</attribute>
<attribute name="AutoCloseSessionEnabled">true</attribute>

<!-- Fetching options -->
<attribute name="MaximumFetchDepth">5</attribute>

<!-- Second-level caching -->
<attribute name="SecondLevelCacheEnabled">true</attribute>
<attribute name="CacheProviderClass">org.hibernate.cache.EhCacheProvider</attribute>
<attribute name="QueryCacheEnabled">true</attribute>

<!-- Logging -->
<attribute name="ShowSqlEnabled">true</attribute>

<!-- Mapping files -->
<attribute name="MapResources">auction/Item.hbm.xml,auction/Category.hbm.xml</attribute>

</mbean>

</server>

This file is deployed in a directory called META-INF and packaged in a JAR file with the extension .sar (service
archive). You also need to package Hibernate, its required third-party libraries, your compiled persistent
classes, as well as your mapping files in the same archive. Your enterprise beans (usually session beans) may
be kept in their own JAR file, but you may include this EJB JAR file in the main service archive to get a single
(hot-)deployable unit. Consult the JBoss AS documentation for more information about JMX service and EJB
deployment.

Configuration

Hibernate 3.0.5 41

Chapter 5. Persistent Classes
Persistent classes are classes in an application that implement the entities of the business problem (e.g. Custom-
er and Order in an E-commerce application). Not all instances of a persistent class are considered to be in the
persistent state - an instance may instead be transient or detached.

Hibernate works best if these classes follow some simple rules, also known as the Plain Old Java Object
(POJO) programming model. However none of these rules are hard requirements. Indeed, Hibernate3 assumes
very little about the nature of your persistent objects. You may express a domain model in other ways: using
trees of Map instances, for example.

5.1. A simple POJO example

Most Java applications require a persistent class representing felines.

package eg;
import java.util.Set;
import java.util.Date;

public class Cat {
private Long id; // identifier

private Date birthdate;
private Color color;
private char sex;
private float weight;
private int litterId;

private Cat mother;
private Set kittens = new HashSet();

private void setId(Long id) {
this.id=id;

}
public Long getId() {

return id;
}

void setBirthdate(Date date) {
birthdate = date;

}
public Date getBirthdate() {

return birthdate;
}

void setWeight(float weight) {
this.weight = weight;

}
public float getWeight() {

return weight;
}

public Color getColor() {
return color;

}
void setColor(Color color) {

this.color = color;
}

void setSex(char sex) {
this.sex=sex;

}
public char getSex() {

return sex;

Hibernate 3.0.5 42

}

void setLitterId(int id) {
this.litterId = id;

}
public int getLitterId() {

return litterId;
}

void setMother(Cat mother) {
this.mother = mother;

}
public Cat getMother() {

return mother;
}
void setKittens(Set kittens) {

this.kittens = kittens;
}
public Set getKittens() {

return kittens;
}

// addKitten not needed by Hibernate
public void addKitten(Cat kitten) {

kitten.setMother(this);
kitten.setLitterId(kittens.size());
kittens.add(kitten);

}
}

There are four main rules to follow here:

5.1.1. Declare accessors and mutators for persistent fields

Cat declares accessor methods for all its persistent fields. Many other ORM tools directly persist instance vari-
ables. We believe it is far better to decouple this implementation detail from the persistence mechanism. Hi-
bernate persists JavaBeans style properties, and recognizes method names of the form getFoo, isFoo and set-

Foo. You may however switch to direct field access for particular properties, if needed.

Properties need not be declared public - Hibernate can persist a property with a default, protected or private
get / set pair.

5.1.2. Implement a no-argument constructor

Cat has a no-argument constructor. All persistent classes must have a default constructor (which may be non-
public) so Hibernate can instantiate them using Constructor.newInstance(). We recommend having a con-
structor with at least package visibility for runtime proxy generation in Hibernate.

5.1.3. Provide an identifier property (optional)

Cat has a property called id. This property maps to the primary key column of a database table. The property
might have been called anything, and its type might have been any primitive type, any primitive "wrapper"
type, java.lang.String or java.util.Date. (If your legacy database table has composite keys, you can even
use a user-defined class with properties of these types - see the section on composite identifiers later.)

The identifier property is strictly optional. You can leave them off and let Hibernate keep track of object identi-
fiers internally. We do not recommend this, however.

Persistent Classes

Hibernate 3.0.5 43

In fact, some functionality is available only to classes which declare an identifier property:

• Transitive reattachment for detached objects (cascade update or cascade merge) - see Section 11.11,
“Transitive persistence”

• Session.saveOrUpdate()

• Session.merge()

We recommend you declare consistently-named identifier properties on persistent classes. We further recom-
mend that you use a nullable (ie. non-primitive) type.

5.1.4. Prefer non-final classes (optional)

A central feature of Hibernate, proxies, depends upon the persistent class being either non-final, or the imple-
mentation of an interface that declares all public methods.

You can persist final classes that do not implement an interface with Hibernate, but you won't be able to use
proxies for lazy association fetching - which will limit your options for performance tuning.

You should also avoid declaring public final methods on the non-final classes. If you want to use a class
with a public final method, you must explicitly disable proying by setting lazy="false".

5.2. Implementing inheritance

A subclass must also observe the first and second rules. It inherits its identifier property from the superclass,
Cat.

package eg;

public class DomesticCat extends Cat {
private String name;

public String getName() {
return name;

}
protected void setName(String name) {

this.name=name;
}

}

5.3. Implementing equals() and hashCode()

You have to override the equals() and hashCode() methods if you

• intend to put instances of persistent classes in a Set (the recommended way to represent many-valued asso-
ciations) and

• intend to use reattachment of detached instances

Hibernate guarantees equivalence of persistent identity (database row) and Java identity only inside a particular
session scope. So as soon as we mix instances retrieved in different sessions, we must implement equals() and
hashCode() if we wish to have meaningful semantics for Sets.

The most obvious way is to implement equals()/hashCode() by comparing the identifier value of both objects.
If the value is the same, both must be the same database row, they are therefore equal (if both are added to a
Set, we will only have one element in the Set). Unfortunately, we can't use that approach with generated iden-

Persistent Classes

Hibernate 3.0.5 44

tifiers! Hibernate will only assign identifier values to objects that are persistent, a newly created instance will
not have any identifier value! Furthermore, if an instance is unsaved and currently in a Set, saving it will assign
an identifier value to the object. If equals() and hashCode() are based on the identifier value, the hash code
would change, breaking the contract of the Set. See the Hibernate website for a full discussion of this problem.
Note that this is not a Hibernate issue, but normal Java semantics of object identity and equality.

We recommend implementing equals() and hashCode() using Business key equality. Business key equality
means that the equals() method compares only the properties that form the business key, a key that would
identify our instance in the real world (a natural candidate key):

public class Cat {

...
public boolean equals(Object other) {

if (this == other) return true;
if (!(other instanceof Cat)) return false;

final Cat cat = (Cat) other;

if (!cat.getLitterId().equals(getLitterId())) return false;
if (!cat.getMother().equals(getMother())) return false;

return true;
}

public int hashCode() {
int result;
result = getMother().hashCode();
result = 29 * result + getLitterId();
return result;

}

}

Note that a business key does not have to be as solid as a database primary key candidate (see Section 12.1.3,
“Considering object identity”). Immutable or unique properties are usually good candidates for a business key.

5.4. Dynamic models

Note that the following features are currently considered experimental and may change in the near future.

Persistent entities don't necessarily have to be represented as POJO classes or as JavaBean objects at runtime.
Hibernate also supports dynamic models (using Maps of Maps at runtime) and the representation of entities as
DOM4J trees. With this approach, you don't write persistent classes, only mapping files.

By default, Hibernate works in normal POJO mode. You may set a default entity representation mode for a par-
ticular SessionFactory using the default_entity_mode configuration option (see Table 4.3, “Hibernate Con-
figuration Properties”.

The following examples demonstrates the representation using Maps. First, in the mapping file, an entity-name

has to be declared instead of (or in addition to) a class name:

<hibernate-mapping>

<class entity-name="Customer">

<id name="id"
type="long"
column="ID">
<generator class="sequence"/>

</id>

Persistent Classes

Hibernate 3.0.5 45

<property name="name"
column="NAME"
type="string"/>

<property name="address"
column="ADDRESS"
type="string"/>

<many-to-one name="organization"
column="ORGANIZATION_ID"
class="Organization"/>

<bag name="orders"
inverse="true"
lazy="false"
cascade="all">
<key column="CUSTOMER_ID"/>
<one-to-many class="Order"/>

</bag>

</class>

</hibernate-mapping>

Note that even though associations are declared using target class names, the target type of an associations may
also be a dynamic entity instead of a POJO.

After setting the default entity mode to dynamic-map for the SessionFactory, we can at runtime work with
Maps of Maps:

Session s = openSession();
Transaction tx = s.beginTransaction();
Session s = openSession();

// Create a customer
Map david = new HashMap();
david.put("name", "David");

// Create an organization
Map foobar = new HashMap();
foobar.put("name", "Foobar Inc.");

// Link both
david.put("organization", foobar);

// Save both
s.save("Customer", david);
s.save("Organization", foobar);

tx.commit();
s.close();

The advantages of a dynamic mapping are quick turnaround time for prototyping without the need for entity
class implementation. However, you lose compile-time type checking and will very likely deal with many ex-
ceptions at runtime. Thanks to the Hibernate mapping, the database schema can easily be normalized and
sound, allowing to add a proper domain model implementation on top later on.

Entity representation modes can also be set on a per Session basis:

Session dynamicSession = pojoSession.getSession(EntityMode.MAP);

// Create a customer
Map david = new HashMap();
david.put("name", "David");
dynamicSession.save("Customer", david);

Persistent Classes

Hibernate 3.0.5 46

...
dynamicSession.flush();
dynamicSession.close()
...
// Continue on pojoSession

Please note that the call to getSession() using an EntityMode is on the Session API, not the SessionFactory.
That way, the new Session shares the underlying JDBC connection, transaction, and other context information.
This means you don't have tocall flush() and close() on the secondary Session, and also leave the transac-
tion and connection handling to the primary unit of work.

More information about the XML representation capabilities can be found in Chapter 19, XML Mapping.

TODO: Document user-extension framework in the property and proxy packages

Persistent Classes

Hibernate 3.0.5 47

Chapter 6. Basic O/R Mapping

6.1. Mapping declaration

Object/relational mappings are usually defined in an XML document. The mapping document is designed to be
readable and hand-editable. The mapping language is Java-centric, meaning that mappings are constructed
around persistent class declarations, not table declarations.

Note that, even though many Hibernate users choose to write the XML by hand, a number of tools exist to gen-
erate the mapping document, including XDoclet, Middlegen and AndroMDA.

Lets kick off with an example mapping:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="eg">

<class name="Cat"
table="cats"
discriminator-value="C">

<id name="id">
<generator class="native"/>

</id>

<discriminator column="subclass"
type="character"/>

<property name="weight"/>

<property name="birthdate"
type="date"
not-null="true"
update="false"/>

<property name="color"
type="eg.types.ColorUserType"
not-null="true"
update="false"/>

<property name="sex"
not-null="true"
update="false"/>

<property name="litterId"
column="litterId"
update="false"/>

<many-to-one name="mother"
column="mother_id"
update="false"/>

<set name="kittens"
inverse="true"
order-by="litter_id">

<key column="mother_id"/>
<one-to-many class="Cat"/>

</set>

<subclass name="DomesticCat"
discriminator-value="D">

Hibernate 3.0.5 48

<property name="name"
type="string"/>

</subclass>

</class>

<class name="Dog">
<!-- mapping for Dog could go here -->

</class>

</hibernate-mapping>

We will now discuss the content of the mapping document. We will only describe the document elements and
attributes that are used by Hibernate at runtime. The mapping document also contains some extra optional at-
tributes and elements that affect the database schemas exported by the schema export tool. (For example the
not-null attribute.)

6.1.1. Doctype

All XML mappings should declare the doctype shown. The actual DTD may be found at the URL above, in the
directory hibernate-x.x.x/src/org/hibernate or in hibernate3.jar. Hibernate will always look for the
DTD in its classpath first. If you experience lookups of the DTD using an Internet connection, check your DTD
declaration against the contents of your claspath.

6.1.2. hibernate-mapping

This element has several optional attributes. The schema and catalog attributes specify that tables referred to in
this mapping belong to the named schema and/or catalog. If specified, tablenames will be qualified by the given
schema and catalog names. If missing, tablenames will be unqualified. The default-cascade attribute specifies
what cascade style should be assumed for properties and collections which do not specify a cascade attribute.
The auto-import attribute lets us use unqualified class names in the query language, by default.

<hibernate-mapping
schema="schemaName" (1)
catalog="catalogName" (2)
default-cascade="cascade_style" (3)
default-access="field|property|ClassName" (4)
default-lazy="true|false" (5)
auto-import="true|false" (6)
package="package.name" (7)

/>

(1) schema (optional): The name of a database schema.
(2) catalog (optional): The name of a database catalog.
(3) default-cascade (optional - defaults to none): A default cascade style.
(4) default-access (optional - defaults to property): The strategy Hibernate should use for accessing all

properties. Can be a custom implementation of PropertyAccessor.
(5) default-lazy (optional - defaults to true): The default value for unspecifed lazy attributes of class and

collection mappings.
(6) auto-import (optional - defaults to true): Specifies whether we can use unqualified class names (of

classes in this mapping) in the query language.
(7) package (optional): Specifies a package prefix to assume for unqualified class names in the mapping doc-

ument.

Basic O/R Mapping

Hibernate 3.0.5 49

If you have two persistent classes with the same (unqualified) name, you should set auto-import="false". Hi-
bernate will throw an exception if you attempt to assign two classes to the same "imported" name.

Note that the hibernate-mapping element allows you to nest several persistent <class> mappings, as shown
above. It is however good practice (and expected by some tools) to map only a single persistent class (or a
single class hierarchy) in one mapping file and name it after the persistent superclass, e.g. Cat.hbm.xml,
Dog.hbm.xml, or if using inheritance, Animal.hbm.xml.

6.1.3. class

You may declare a persistent class using the class element:

<class
name="ClassName" (1)
table="tableName" (2)
discriminator-value="discriminator_value" (3)
mutable="true|false" (4)
schema="owner" (5)
catalog="catalog" (6)
proxy="ProxyInterface" (7)
dynamic-update="true|false" (8)
dynamic-insert="true|false" (9)
select-before-update="true|false" (10)
polymorphism="implicit|explicit" (11)
where="arbitrary sql where condition" (12)
persister="PersisterClass" (13)
batch-size="N" (14)
optimistic-lock="none|version|dirty|all" (15)
lazy="true|false" (16)
entity-name="EntityName" (17)
check="arbitrary sql check condition" (18)
rowid="rowid" (19)
subselect="SQL expression" (20)
abstract="true|false" (21)
entity-name="EntityName" (22)
node="element-name" (23)

/>

(1) name (optional): The fully qualified Java class name of the persistent class (or interface). If this attribute is
missing, it is assumed that the mapping is for a non-POJO entity.

(2) table (optional - defaults to the unqualified class name): The name of its database table.
(3) discriminator-value (optional - defaults to the class name): A value that distiguishes individual sub-

classes, used for polymorphic behaviour. Acceptable values include null and not null.
(4) mutable (optional, defaults to true): Specifies that instances of the class are (not) mutable.
(5) schema (optional): Override the schema name specified by the root <hibernate-mapping> element.
(6) catalog (optional): Override the catalog name specified by the root <hibernate-mapping> element.
(7) proxy (optional): Specifies an interface to use for lazy initializing proxies. You may specify the name of

the class itself.
(8) dynamic-update (optional, defaults to false): Specifies that UPDATE SQL should be generated at runtime

and contain only those columns whose values have changed.
(9) dynamic-insert (optional, defaults to false): Specifies that INSERT SQL should be generated at runtime

and contain only the columns whose values are not null.
(10) select-before-update (optional, defaults to false): Specifies that Hibernate should never perform an

SQL UPDATE unless it is certain that an object is actually modified. In certain cases (actually, only when a
transient object has been associated with a new session using update()), this means that Hibernate will
perform an extra SQL SELECT to determine if an UPDATE is actually required.

(11) polymorphism (optional, defaults to implicit): Determines whether implicit or explicit query polymorph-
ism is used.

Basic O/R Mapping

Hibernate 3.0.5 50

(12) where (optional) specify an arbitrary SQL WHERE condition to be used when retrieving objects of this class
(13) persister (optional): Specifies a custom ClassPersister.
(14) batch-size (optional, defaults to 1) specify a "batch size" for fetching instances of this class by identifier.
(15) optimistic-lock (optional, defaults to version): Determines the optimistic locking strategy.
(16) lazy (optional): Lazy fetching may be completely disabled by setting lazy="false".
(17) entity-name (optional): Hibernate3 allows a class to be mapped multiple times (to different tables, poten-

tially), and allows entity mappings that are represented by Maps or XML at the Java level. In these cases,
you should provide an explicit arbitrary name for the entity. See Section 5.4, “Dynamic models” and
Chapter 19, XML Mapping for more information.

(18) check (optional): A SQL expression used to generate a multi-row check constraint for automatic schema
generation.

(19) rowid (optional): Hibernate can use so called ROWIDs on databases which support. E.g. on Oracle, Hi-
bernate can use the rowid extra column for fast updates if you set this option to rowid. A ROWID is an
implementation detail and represents the physical location of a stored tuple.

(20) subselect (optional): Maps an immutable and read-only entity to a database subselect. Useful if you want
to have a view instead of a base table, but don't. See below for more information.

(21) abstract (optional): Used to mark abstract superclasses in <union-subclass> hierarchies.
(22) entity-name (optional, defaults to the class name): Explicitly specify an entity name.

It is perfectly acceptable for the named persistent class to be an interface. You would then declare implement-
ing classes of that interface using the <subclass> element. You may persist any static inner class. You should
specify the class name using the standard form ie. eg.Foo$Bar.

Immutable classes, mutable="false", may not be updated or deleted by the application. This allows Hibernate
to make some minor performance optimizations.

The optional proxy attribute enables lazy initialization of persistent instances of the class. Hibernate will ini-
tially return CGLIB proxies which implement the named interface. The actual persistent object will be loaded
when a method of the proxy is invoked. See "Proxies for Lazy Initialization" below.

Implicit polymorphism means that instances of the class will be returned by a query that names any superclass
or implemented interface or the class and that instances of any subclass of the class will be returned by a query
that names the class itself. Explicit polymorphism means that class instances will be returned only by queries
that explicitly name that class and that queries that name the class will return only instances of subclasses
mapped inside this <class> declaration as a <subclass> or <joined-subclass>. For most purposes the default,
polymorphism="implicit", is appropriate. Explicit polymorphism is useful when two different classes are
mapped to the same table (this allows a "lightweight" class that contains a subset of the table columns).

The persister attribute lets you customize the persistence strategy used for the class. You may, for example,
specify your own subclass of org.hibernate.persister.EntityPersister or you might even provide a com-
pletely new implementation of the interface org.hibernate.persister.ClassPersister that implements per-
sistence via, for example, stored procedure calls, serialization to flat files or LDAP. See
org.hibernate.test.CustomPersister for a simple example (of "persistence" to a Hashtable).

Note that the dynamic-update and dynamic-insert settings are not inherited by subclasses and so may also be
specified on the <subclass> or <joined-subclass> elements. These settings may increase performance in
some cases, but might actually decrease performance in others. Use judiciously.

Use of select-before-update will usually decrease performance. It is very useful to prevent a database update
trigger being called unnecessarily if you reattach a graph of detached instances to a Session.

If you enable dynamic-update, you will have a choice of optimistic locking strategies:

• version check the version/timestamp columns

Basic O/R Mapping

Hibernate 3.0.5 51

• all check all columns

• dirty check the changed columns, allowing some concurrent updates

• none do not use optimistic locking

We very strongly recommend that you use version/timestamp columns for optimistic locking with Hibernate.
This is the optimal strategy with respect to performance and is the only strategy that correctly handles modific-
ations made to detached instances (ie. when Session.merge() is used).

There is no difference between a view and a base table for a Hibernate mapping, as expected this is transparent
at the database level (note that some DBMS don't support views properly, especially with updates). Sometimes
you want to use a view, but can't create one in the database (ie. with a legacy schema). In this case, you can
map an immutable and read-only entity to a given SQL subselect expression:

<class name="Summary">
<subselect>

select item.name, max(bid.amount), count(*)
from item
join bid on bid.item_id = item.id
group by item.name

</subselect>
<synchronize table="item"/>
<synchronize table="bid"/>
<id name="name"/>
...

</class>

Declare the tables to synchronize this entity with, ensuring that auto-flush happens correctly, and that queries
against the derived entity do not return stale data. The <subselect> is available as both as an attribute and a
nested mapping element.

6.1.4. id

Mapped classes must declare the primary key column of the database table. Most classes will also have a Java-
Beans-style property holding the unique identifier of an instance. The <id> element defines the mapping from
that property to the primary key column.

<id
name="propertyName" (1)
type="typename" (2)
column="column_name" (3)
unsaved-value="null|any|none|undefined|id_value" (4)
access="field|property|ClassName"> (5)
node="element-name|@attribute-name|element/@attribute|."

<generator class="generatorClass"/>
</id>

(1) name (optional): The name of the identifier property.
(2) type (optional): A name that indicates the Hibernate type.
(3) column (optional - defaults to the property name): The name of the primary key column.
(4) unsaved-value (optional - defaults to a "sensible" value): An identifier property value that indicates that

an instance is newly instantiated (unsaved), distinguishing it from detached instances that were saved or
loaded in a previous session.

(5) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

Basic O/R Mapping

Hibernate 3.0.5 52

If the name attribute is missing, it is assumed that the class has no identifier property.

The unsaved-value attribute is important! If the identfier property of your class does not default to the normal
Java default value (null or zero), then you should specify the actual default.

There is an alternative <composite-id> declaration to allow access to legacy data with composite keys. We
strongly discourage its use for anything else.

Generator

The optional <generator> child element names a Java class used to generate unique identifiers for instances of
the persistent class. If any parameters are required to configure or initialize the generator instance, they are
passed using the <param> element.

<id name="id" type="long" column="cat_id">
<generator class="org.hibernate.id.TableHiLoGenerator">

<param name="table">uid_table</param>
<param name="column">next_hi_value_column</param>

</generator>
</id>

All generators implement the interface org.hibernate.id.IdentifierGenerator. This is a very simple inter-
face; some applications may choose to provide their own specialized implementations. However, Hibernate
provides a range of built-in implementations. There are shortcut names for the built-in generators:

increment

generates identifiers of type long, short or int that are unique only when no other process is inserting data
into the same table. Do not use in a cluster.

identity

supports identity columns in DB2, MySQL, MS SQL Server, Sybase and HypersonicSQL. The returned
identifier is of type long, short or int.

sequence

uses a sequence in DB2, PostgreSQL, Oracle, SAP DB, McKoi or a generator in Interbase. The returned
identifier is of type long, short or int

hilo

uses a hi/lo algorithm to efficiently generate identifiers of type long, short or int, given a table and
column (by default hibernate_unique_key and next_hi respectively) as a source of hi values. The hi/lo al-
gorithm generates identifiers that are unique only for a particular database.

seqhilo

uses a hi/lo algorithm to efficiently generate identifiers of type long, short or int, given a named database
sequence.

uuid

uses a 128-bit UUID algorithm to generate identifiers of type string, unique within a network (the IP ad-
dress is used). The UUID is encoded as a string of hexadecimal digits of length 32.

guid

uses a database-generated GUID string on MS SQL Server and MySQL.

native

picks identity, sequence or hilo depending upon the capabilities of the underlying database.

Basic O/R Mapping

Hibernate 3.0.5 53

assigned

lets the application to assign an identifier to the object before save() is called. This is the default strategy if
no <generator> element is specified.

select

retrieves a primary key assigned by a database trigger by selecting the row by some unique key and retriev-
ing the primary key value.

foreign

uses the identifier of another associated object. Usually used in conjunction with a <one-to-one> primary
key association.

Hi/lo algorithm

The hilo and seqhilo generators provide two alternate implementations of the hi/lo algorithm, a favorite ap-
proach to identifier generation. The first implementation requires a "special" database table to hold the next
available "hi" value. The second uses an Oracle-style sequence (where supported).

<id name="id" type="long" column="cat_id">
<generator class="hilo">

<param name="table">hi_value</param>
<param name="column">next_value</param>
<param name="max_lo">100</param>

</generator>
</id>

<id name="id" type="long" column="cat_id">
<generator class="seqhilo">

<param name="sequence">hi_value</param>
<param name="max_lo">100</param>

</generator>
</id>

Unfortunately, you can't use hilo when supplying your own Connection to Hibernate. When Hibernate is using
an application server datasource to obtain connections enlisted with JTA, you must properly configure the hi-

bernate.transaction.manager_lookup_class.

UUID algorithm

The UUID contains: IP address, startup time of the JVM (accurate to a quarter second), system time and a
counter value (unique within the JVM). It's not possible to obtain a MAC address or memory address from Java
code, so this is the best we can do without using JNI.

Identity columns and sequences

For databases which support identity columns (DB2, MySQL, Sybase, MS SQL), you may use identity key
generation. For databases that support sequences (DB2, Oracle, PostgreSQL, Interbase, McKoi, SAP DB) you
may use sequence style key generation. Both these strategies require two SQL queries to insert a new object.

<id name="id" type="long" column="person_id">
<generator class="sequence">

<param name="sequence">person_id_sequence</param>
</generator>

</id>

<id name="id" type="long" column="person_id" unsaved-value="0">
<generator class="identity"/>

Basic O/R Mapping

Hibernate 3.0.5 54

</id>

For cross-platform development, the native strategy will choose from the identity, sequence and hilo

strategies, dependant upon the capabilities of the underlying database.

Assigned identifiers

If you want the application to assign identifiers (as opposed to having Hibernate generate them), you may use
the assigned generator. This special generator will use the identifier value already assigned to the object's iden-
tifier property. This generator is used when the primary key is a natural key instead of a surrogate key. This is
the default behavior if you do no specify a <generator> element.

Choosing the assigned generator makes Hibernate use unsaved-value="undefined", forcing Hibernate to go
to the database to determine if an instance is transient or detached, unless there is a version or timestamp prop-
erty, or you define Interceptor.isUnsaved().

Primary keys assigned by triggers

For legacy schemas only (Hibernate does not generate DDL with triggers).

<id name="id" type="long" column="person_id">
<generator class="select">

<param name="key">socialSecurityNumber</param>
</generator>

</id>

In the above example, there is a unique valued property named socialSecurityNumber defined by the class, as
a natural key, and a surrogate key named person_id whose value is generated by a trigger.

6.1.5. composite-id

<composite-id
name="propertyName"
class="ClassName"
unsaved-value="undefined|any|none"
access="field|property|ClassName">
node="element-name|."

<key-property name="propertyName" type="typename" column="column_name"/>
<key-many-to-one name="propertyName class="ClassName" column="column_name"/>
......

</composite-id>

For a table with a composite key, you may map multiple properties of the class as identifier properties. The
<composite-id> element accepts <key-property> property mappings and <key-many-to-one> mappings as
child elements.

<composite-id>
<key-property name="medicareNumber"/>
<key-property name="dependent"/>

</composite-id>

Your persistent class must override equals() and hashCode() to implement composite identifier equality. It
must also implements Serializable.

Unfortunately, this approach to composite identifiers means that a persistent object is its own identifier. There
is no convenient "handle" other than the object itself. You must instantiate an instance of the persistent class it-

Basic O/R Mapping

Hibernate 3.0.5 55

self and populate its identifier properties before you can load() the persistent state associated with a composite
key. We will describe a much more convenient approach where the composite identifier is implemented as a
separate class in Section 9.4, “Components as composite identifiers”. The attributes described below apply only
to this alternative approach:

• name (optional): A property of component type that holds the composite identifier (see next section).
• class (optional - defaults to the property type determined by reflection): The component class used as a

composite identifier (see next section).
• unsaved-value (optional - defaults to undefined): Indicates that transient instances should be considered

newly instantiated, if set to any, or detached, if set to none. It is best to leave the default value in all cases.

6.1.6. discriminator

The <discriminator> element is required for polymorphic persistence using the table-per-class-hierarchy map-
ping strategy and declares a discriminator column of the table. The discriminator column contains marker val-
ues that tell the persistence layer what subclass to instantiate for a particular row. A restricted set of types may
be used: string, character, integer, byte, short, boolean, yes_no, true_false.

<discriminator
column="discriminator_column" (1)
type="discriminator_type" (2)
force="true|false" (3)
insert="true|false" (4)
formula="arbitrary sql expression" (5)

/>

(1) column (optional - defaults to class) the name of the discriminator column.
(2) type (optional - defaults to string) a name that indicates the Hibernate type
(3) force (optional - defaults to false) "force" Hibernate to specify allowed discriminator values even when

retrieving all instances of the root class.
(4) insert (optional - defaults to true) set this to false if your discriminator column is also part of a mapped

composite identifier. (Tells Hibernate to not include the column in SQL INSERTs.)
(5) formula (optional) an arbitrary SQL expression that is executed when a type has to be evaluated. Allows

content-based discrimination.

Actual values of the discriminator column are specified by the discriminator-value attribute of the <class>

and <subclass> elements.

The force attribute is (only) useful if the table contains rows with "extra" discriminator values that are not
mapped to a persistent class. This will not usually be the case.

Using the formula attribute you can declare an arbitrary SQL expression that will be used to evaluate the type
of a row:

<discriminator
formula="case when CLASS_TYPE in ('a', 'b', 'c') then 0 else 1 end"
type="integer"/>

6.1.7. version (optional)

The <version> element is optional and indicates that the table contains versioned data. This is particularly use-
ful if you plan to use long transactions (see below).

<version
column="version_column" (1)

Basic O/R Mapping

Hibernate 3.0.5 56

name="propertyName" (2)
type="typename" (3)
access="field|property|ClassName" (4)
unsaved-value="null|negative|undefined" (5)
node="element-name|@attribute-name|element/@attribute|."

/>

(1) column (optional - defaults to the property name): The name of the column holding the version number.
(2) name: The name of a property of the persistent class.
(3) type (optional - defaults to integer): The type of the version number.
(4) access (optional - defaults to property): The strategy Hibernate should use for accessing the property

value.
(5) unsaved-value (optional - defaults to undefined): A version property value that indicates that an instance

is newly instantiated (unsaved), distinguishing it from detached instances that were saved or loaded in a
previous session. (undefined specifies that the identifier property value should be used.)

Version numbers may be of Hibernate type long, integer, short, timestamp or calendar.

A version or timestamp property should never be null for a detached instance, so Hibernate will detact any in-
stance with a null version or timestamp as transient, no matter what other unsaved-value strategies are spe-
cified. Declaring a nullable version or timestamp property is an easy way to avoid any problems with transitive
reattachment in Hibernate, especially useful for people using assigned identifiers or composite keys!

6.1.8. timestamp (optional)

The optional <timestamp> element indicates that the table contains timestamped data. This is intended as an al-
ternative to versioning. Timestamps are by nature a less safe implementation of optimistic locking. However,
sometimes the application might use the timestamps in other ways.

<timestamp
column="timestamp_column" (1)
name="propertyName" (2)
access="field|property|ClassName" (3)
unsaved-value="null|undefined" (4)
node="element-name|@attribute-name|element/@attribute|."

/>

(1) column (optional - defaults to the property name): The name of a column holding the timestamp.
(2) name: The name of a JavaBeans style property of Java type Date or Timestamp of the persistent class.
(3) access (optional - defaults to property): The strategy Hibernate should use for accessing the property

value.
(4) unsaved-value (optional - defaults to null): A version property value that indicates that an instance is

newly instantiated (unsaved), distinguishing it from detached instances that were saved or loaded in a pre-
vious session. (undefined specifies that the identifier property value should be used.)

Note that <timestamp> is equivalent to <version type="timestamp">.

6.1.9. property

The <property> element declares a persistent, JavaBean style property of the class.

<property
name="propertyName" (1)
column="column_name" (2)
type="typename" (3)
update="true|false" (4)

Basic O/R Mapping

Hibernate 3.0.5 57

insert="true|false" (4)
formula="arbitrary SQL expression" (5)
access="field|property|ClassName" (6)
lazy="true|false" (7)
unique="true|false" (8)
not-null="true|false" (9)
optimistic-lock="true|false" (10)
node="element-name|@attribute-name|element/@attribute|."
index="index_name"
unique_key="unique_key_id"
length="L"
precision="P"
precision="S"

/>

(1) name: the name of the property, with an initial lowercase letter.
(2) column (optional - defaults to the property name): the name of the mapped database table column. This

may also be specified by nested <column> element(s).
(3) type (optional): a name that indicates the Hibernate type.
(4) update, insert (optional - defaults to true) : specifies that the mapped columns should be included in

SQL UPDATE and/or INSERT statements. Setting both to false allows a pure "derived" property whose
value is initialized from some other property that maps to the same colum(s) or by a trigger or other ap-
plication.

(5) formula (optional): an SQL expression that defines the value for a computed property. Computed proper-
ties do not have a column mapping of their own.

(6) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

(7) lazy (optional - defaults to false): Specifies that this property should be fetched lazily when the instance
variable is first accessed (requires build-time bytecode instrumentation).

(8) unique (optional): Enable the DDL generation of a unique constraint for the columns. Also, allow this to
be the target of a property-ref.

(9) not-null (optional): Enable the DDL generation of a nullability constraint for the columns.
(10) optimistic-lock (optional - defaults to true): Specifies that updates to this property do or do not require

acquisition of the optimistic lock. In other words, determines if a version increment should occur when
this property is dirty.

typename could be:

1. The name of a Hibernate basic type (eg. integer, string, character, date, timestamp, float,

binary, serializable, object, blob).
2. The name of a Java class with a default basic type (eg. int, float, char, java.lang.String,

java.util.Date, java.lang.Integer, java.sql.Clob).
3. The name of a serializable Java class.
4. The class name of a custom type (eg. com.illflow.type.MyCustomType).

If you do not specify a type, Hibernate will use reflection upon the named property to take a guess at the correct
Hibernate type. Hibernate will try to interpret the name of the return class of the property getter using rules 2, 3,
4 in that order. However, this is not always enough. In certain cases you will still need the type attribute. (For
example, to distinguish between Hibernate.DATE and Hibernate.TIMESTAMP, or to specify a custom type.)

The access attribute lets you control how Hibernate will access the property at runtime. By default, Hibernate
will call the property get/set pair. If you specify access="field", Hibernate will bypass the get/set pair and ac-
cess the field directly, using reflection. You may specify your own strategy for property access by naming a
class that implements the interface org.hibernate.property.PropertyAccessor.

An especially powerful feature are derived properties. These properties are by definition read-only, the property

Basic O/R Mapping

Hibernate 3.0.5 58

value is computed at load time. You declare the computation as a SQL expression, this translates to a SELECT

clause subquery in the SQL query that loads an instance:

<property name="totalPrice"
formula="(SELECT SUM (li.quantity*p.price) FROM LineItem li, Product p

WHERE li.productId = p.productId
AND li.customerId = customerId
AND li.orderNumber = orderNumber)"/>

Note that you can reference the entities own table by not declaring an alias on a particular column (customerId
in the given example). Also note that you can use the nested <formula> mapping element if you don't like to
use the attribute.

6.1.10. many-to-one

An ordinary association to another persistent class is declared using a many-to-one element. The relational
model is a many-to-one association: a foreign key in one table is referencing the primary key column(s) of the
target table.

<many-to-one
name="propertyName" (1)
column="column_name" (2)
class="ClassName" (3)
cascade="cascade_style" (4)
fetch="join|select" (5)
update="true|false" (6)
insert="true|false" (6)
property-ref="propertyNameFromAssociatedClass" (7)
access="field|property|ClassName" (8)
unique="true|false" (9)
not-null="true|false" (10)
optimistic-lock="true|false" (11)
lazy="true|proxy|false" (12)
not-found="ignore|exception" (13)
entity-name="EntityName" (14)
formul="arbitrary SQL expression" (15)
node="element-name|@attribute-name|element/@attribute|."
embed-xml="true|false"
index="index_name"
unique_key="unique_key_id"
foreign-key="foreign_key_name"

/>

(1) name: The name of the property.
(2) column (optional): The name of the foreign key column. This may also be specified by nested <column>

element(s).
(3) class (optional - defaults to the property type determined by reflection): The name of the associated

class.
(4) cascade (optional): Specifies which operations should be cascaded from the parent object to the associ-

ated object.
(5) fetch (optional - defaults to select): Chooses between outer-join fetching or sequential select fetching.
(6) update, insert (optional - defaults to true) specifies that the mapped columns should be included in

SQL UPDATE and/or INSERT statements. Setting both to false allows a pure "derived" association whose
value is initialized from some other property that maps to the same colum(s) or by a trigger or other ap-
plication.

(7) property-ref: (optional) The name of a property of the associated class that is joined to this foreign key.
If not specified, the primary key of the associated class is used.

(8) access (optional - defaults to property): The strategy Hibernate should use for accessing the property

Basic O/R Mapping

Hibernate 3.0.5 59

value.
(9) unique (optional): Enable the DDL generation of a unique constraint for the foreign-key column. Also, al-

low this to be the target of a property-ref. This makes the association multiplicity effectively one to one.
(10) not-null (optional): Enable the DDL generation of a nullability constraint for the foreign key columns.
(11) optimistic-lock (optional - defaults to true): Specifies that updates to this property do or do not require

acquisition of the optimistic lock. In other words, dertermines if a version increment should occur when
this property is dirty.

(12) lazy (optional - defaults to proxy): By default, single point associations are proxied. lazy="true" spe-
cifies that the property should be fetched lazily when the instance variable is first accessed (requires
build-time bytecode instrumentation). lazy="false" specifies that the association will always be eagerly
fetched.

(13) not-found (optional - defaults to exception): Specifies how foreign keys that reference missing rows will
be handled: ignore will treat a missing row as a null association.

(14) entity-name (optional): The entity name of the associated class.

Setting a value of the cascade attribute to any meaningful value other than none will propagate certain opera-
tions to the associated object. The meaningful values are the names of Hibernate's basic operations, persist,
merge, delete, save-update, evict, replicate, lock, refresh, as well as the special values delete-

orphan and all and comma-separated combinations of operation names, for example, cas-

cade="persist,merge,evict" or cascade="all,delete-orphan". See Section 11.11, “Transitive persistence”
for a full explanation.

A typical many-to-one declaration looks as simple as this:

<many-to-one name="product" class="Product" column="PRODUCT_ID"/>

The property-ref attribute should only be used for mapping legacy data where a foreign key refers to a unique
key of the associated table other than the primary key. This is an ugly relational model. For example, suppose
the Product class had a unique serial number, that is not the primary key. (The unique attribute controls Hi-
bernate's DDL generation with the SchemaExport tool.)

<property name="serialNumber" unique="true" type="string" column="SERIAL_NUMBER"/>

Then the mapping for OrderItem might use:

<many-to-one name="product" property-ref="serialNumber" column="PRODUCT_SERIAL_NUMBER"/>

This is certainly not encouraged, however.

If the referenced unique key comprises multiple properties of the associated entity, you should map the refer-
enced properties inside a named <properties> element.

6.1.11. one-to-one

A one-to-one association to another persistent class is declared using a one-to-one element.

<one-to-one
name="propertyName" (1)
class="ClassName" (2)
cascade="cascade_style" (3)
constrained="true|false" (4)
fetch="join|select" (5)
property-ref="propertyNameFromAssociatedClass" (6)
access="field|property|ClassName" (7)
formula="any SQL expression" (8)
lazy="true|proxy|false" (9)

Basic O/R Mapping

Hibernate 3.0.5 60

entity-name="EntityName" (10)
node="element-name|@attribute-name|element/@attribute|."
embed-xml="true|false"
foreign-key="foreign_key_name"

/>

(1) name: The name of the property.
(2) class (optional - defaults to the property type determined by reflection): The name of the associated

class.
(3) cascade (optional) specifies which operations should be cascaded from the parent object to the associated

object.
(4) constrained (optional) specifies that a foreign key constraint on the primary key of the mapped table ref-

erences the table of the associated class. This option affects the order in which save() and delete() are
cascaded, and determines whether the association may be proxied (it is also used by the schema export
tool).

(5) fetch (optional - defaults to select): Chooses between outer-join fetching or sequential select fetching.
(6) property-ref: (optional) The name of a property of the associated class that is joined to the primary key

of this class. If not specified, the primary key of the associated class is used.
(7) access (optional - defaults to property): The strategy Hibernate should use for accessing the property

value.
(8) formula (optional): Almost all one to one associations map to the primary key of the owning entity. In the

rare case that this is not the case, you may specify a some other column, columns or expression to join on
using an SQL formula. (See org.hibernate.test.onetooneformula for an example.)

(9) lazy (optional - defaults to proxy): By default, single point associations are proxied. lazy="true" spe-
cifies that the property should be fetched lazily when the instance variable is first accessed (requires
build-time bytecode instrumentation). lazy="false" specifies that the association will always be eagerly
fetched. Note that if constrained="false", proxying is impossible and Hibernate will eager fetch the as-
sociation!

(10) entity-name (optional): The entity name of the associated class.

There are two varieties of one-to-one association:

• primary key associations

• unique foreign key associations

Primary key associations don't need an extra table column; if two rows are related by the association then the
two table rows share the same primary key value. So if you want two objects to be related by a primary key as-
sociation, you must make sure that they are assigned the same identifier value!

For a primary key association, add the following mappings to Employee and Person, respectively.

<one-to-one name="person" class="Person"/>

<one-to-one name="employee" class="Employee" constrained="true"/>

Now we must ensure that the primary keys of related rows in the PERSON and EMPLOYEE tables are equal.
We use a special Hibernate identifier generation strategy called foreign:

<class name="person" table="PERSON">
<id name="id" column="PERSON_ID">

<generator class="foreign">
<param name="property">employee</param>

</generator>
</id>

Basic O/R Mapping

Hibernate 3.0.5 61

...
<one-to-one name="employee"

class="Employee"
constrained="true"/>

</class>

A newly saved instance of Person is then assigned the same primary key value as the Employee instance refered
with the employee property of that Person.

Alternatively, a foreign key with a unique constraint, from Employee to Person, may be expressed as:

<many-to-one name="person" class="Person" column="PERSON_ID" unique="true"/>

And this association may be made bidirectional by adding the following to the Person mapping:

<one-to-one name"employee" class="Employee" property-ref="person"/>

6.1.12. natural-id

<natural-id mutable="true|false"/>
<property ... />
<many-to-one ... />
......

</natural-id>

Even though we recommend the use of surrogate keys as primary keys, you should still try to identify natural
keys for all entities. A natural key is a property or combination of properties that is unique and non-null. If it is
also immutable, even better. Map the properties of the natural key inside the <natural-id> element. Hibernate
will generate the necessary unique key and nullability constraints, and your mapping will be more self-
documenting.

We strongly recommend that you implement equals() and hashCode() to compare the natural key properties
of the entity.

This mapping is not intended for use with entities with natural primary keys.

• mutable (optional, defaults to false): By default, natural identifier properties as assumed to be immutable
(constant).

6.1.13. component, dynamic-component

The <component> element maps properties of a child object to columns of the table of a parent class. Compon-
ents may, in turn, declare their own properties, components or collections. See "Components" below.

<component
name="propertyName" (1)
class="className" (2)
insert="true|false" (3)
update="true|false" (4)
access="field|property|ClassName" (5)
lazy="true|false" (6)
optimistic-lock="true|false" (7)
unique="true|false" (8)
node="element-name|."

>

<property/>
<many-to-one />

Basic O/R Mapping

Hibernate 3.0.5 62

........
</component>

(1) name: The name of the property.
(2) class (optional - defaults to the property type determined by reflection): The name of the component

(child) class.
(3) insert: Do the mapped columns appear in SQL INSERTs?
(4) update: Do the mapped columns appear in SQL UPDATEs?
(5) access (optional - defaults to property): The strategy Hibernate should use for accessing the property

value.
(6) lazy (optional - defaults to false): Specifies that this component should be fetched lazily when the in-

stance variable is first accessed (requires build-time bytecode instrumentation).
(7) optimistic-lock (optional - defaults to true): Specifies that updates to this component do or do not re-

quire acquisition of the optimistic lock. In other words, determines if a version increment should occur
when this property is dirty.

(8) unique (optional - defaults to false): Specifies that a unique constraint exists upon all mapped columns
of the component.

The child <property> tags map properties of the child class to table columns.

The <component> element allows a <parent> subelement that maps a property of the component class as a ref-
erence back to the containing entity.

The <dynamic-component> element allows a Map to be mapped as a component, where the property names refer
to keys of the map, see Section 9.5, “Dynamic components”.

6.1.14. properties

The <properties> element allows the definition of a named, logical grouping of properties of a class. The most
important use of the construct is that it allows a combination of properties to be the target of a property-ref. It
is also a convenient way to define a multi-column unique constraint.

<properties
name="logicalName" (1)
insert="true|false" (2)
update="true|false" (3)
optimistic-lock="true|false" (4)
unique="true|false" (5)

>

<property/>
<many-to-one />
........

</properties>

(1) name: The logical name of the grouping - not an actual property name.
(2) insert: Do the mapped columns appear in SQL INSERTs?
(3) update: Do the mapped columns appear in SQL UPDATEs?
(4) optimistic-lock (optional - defaults to true): Specifies that updates to these properties do or do not re-

quire acquisition of the optimistic lock. In other words, determines if a version increment should occur
when these properties are dirty.

(5) unique (optional - defaults to false): Specifies that a unique constraint exists upon all mapped columns
of the component.

For example, if we have the following <properties> mapping:

Basic O/R Mapping

Hibernate 3.0.5 63

<class name="Person">
<id name="personNumber"/>
...
<properties name="name"

unique="true" update="false">
<property name="firstName"/>
<property name="initial"/>
<property name="lastName"/>

</properties>
</class>

Then we might have some legacy data association which refers to this unique key of the Person table, instead
of to the primary key:

<many-to-one name="person"
class="Person" property-ref="name">

<column name="firstName"/>
<column name="initial"/>
<column name="lastName"/>

</many-to-one>

We don't recommend the use of this kind of thing outside the context of mapping legacy data.

6.1.15. subclass

Finally, polymorphic persistence requires the declaration of each subclass of the root persistent class. For the
table-per-class-hierarchy mapping strategy, the <subclass> declaration is used.

<subclass
name="ClassName" (1)
discriminator-value="discriminator_value" (2)
proxy="ProxyInterface" (3)
lazy="true|false" (4)
dynamic-update="true|false"
dynamic-insert="true|false"
entity-name="EntityName"
node="element-name">

<property />
.....

</subclass>

(1) name: The fully qualified class name of the subclass.
(2) discriminator-value (optional - defaults to the class name): A value that distiguishes individual sub-

classes.
(3) proxy (optional): Specifies a class or interface to use for lazy initializing proxies.
(4) lazy (optional, defaults to true): Setting lazy="false" disables the use of lazy fetching.

Each subclass should declare its own persistent properties and subclasses. <version> and <id> properties are
assumed to be inherited from the root class. Each subclass in a heirarchy must define a unique discriminator-

value. If none is specified, the fully qualified Java class name is used.

It is possible to define subclass, union-subclass, and joined-subclass mappings in separate mapping docu-
ments, directly beneath hibernate-mapping. This allows you to extend a class hierachy just by adding a new
mapping file. You must specify an extends attribute in the subclass mapping, naming a previously mapped su-
perclass. Note: Previously this feature made the ordering of the mapping documents important. Since Hibern-
ate3, the ordering of mapping files does not matter when using the extends keyword. The ordering inside a
single mapping file still needs to be defined as superclasses before subclasses.

Basic O/R Mapping

Hibernate 3.0.5 64

<hibernate-mapping>
<subclass name="DomesticCat" extends="Cat" discriminator-value="D">

<property name="name" type="string"/>
</subclass>

</hibernate-mapping>

For information about inheritance mappings, see Chapter 10, Inheritance Mapping.

6.1.16. joined-subclass

Alternatively, each subclass may be mapped to its own table (table-per-subclass mapping strategy). Inherited
state is retrieved by joining with the table of the superclass. We use the <joined-subclass> element.

<joined-subclass
name="ClassName" (1)
table="tablename" (2)
proxy="ProxyInterface" (3)
lazy="true|false" (4)
dynamic-update="true|false"
dynamic-insert="true|false"
schema="schema"
catalog="catalog"
extends="SuperclassName"
persister="ClassName"
subselect="SQL expression"
entity-name="EntityName"
node="element-name">

<key >

<property />
.....

</joined-subclass>

(1) name: The fully qualified class name of the subclass.
(2) table: The name of the subclass table.
(3) proxy (optional): Specifies a class or interface to use for lazy initializing proxies.
(4) lazy (optional, defaults to true): Setting lazy="false" disables the use of lazy fetching.

No discriminator column is required for this mapping strategy. Each subclass must, however, declare a table
column holding the object identifier using the <key> element. The mapping at the start of the chapter would be
re-written as:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="eg">

<class name="Cat" table="CATS">
<id name="id" column="uid" type="long">

<generator class="hilo"/>
</id>
<property name="birthdate" type="date"/>
<property name="color" not-null="true"/>
<property name="sex" not-null="true"/>
<property name="weight"/>
<many-to-one name="mate"/>
<set name="kittens">

<key column="MOTHER"/>
<one-to-many class="Cat"/>

</set>
<joined-subclass name="DomesticCat" table="DOMESTIC_CATS">

Basic O/R Mapping

Hibernate 3.0.5 65

<key column="CAT"/>
<property name="name" type="string"/>

</joined-subclass>
</class>

<class name="eg.Dog">
<!-- mapping for Dog could go here -->

</class>

</hibernate-mapping>

For information about inheritance mappings, see Chapter 10, Inheritance Mapping.

6.1.17. union-subclass

A third option is to map only the concrete classes of an inheritance hierarchy to tables, (the table-
per-concrete-class strategy) where each table defines all persistent state of the class, including inherited state. In
Hibernate, it is not absolutely necessary to explicitly map such inheritance hierarchies. You can simply map
each class with a separate <class> declaration. However, if you wish use polymorphic associations (e.g. an as-
sociation to the superclass of your hierarchy), you need to use the <union-subclass> mapping.

<union-subclass
name="ClassName" (1)
table="tablename" (2)
proxy="ProxyInterface" (3)
lazy="true|false" (4)
dynamic-update="true|false"
dynamic-insert="true|false"
schema="schema"
catalog="catalog"
extends="SuperclassName"
abstract="true|false"
persister="ClassName"
subselect="SQL expression"
entity-name="EntityName"
node="element-name">

<property />
.....

</union-subclass>

(1) name: The fully qualified class name of the subclass.
(2) table: The name of the subclass table.
(3) proxy (optional): Specifies a class or interface to use for lazy initializing proxies.
(4) lazy (optional, defaults to true): Setting lazy="false" disables the use of lazy fetching.

No discriminator column or key column is required for this mapping strategy.

For information about inheritance mappings, see Chapter 10, Inheritance Mapping.

6.1.18. join

Using the <join> element, it is possible to map properties of one class to several tables.

<join
table="tablename" (1)
schema="owner" (2)
catalog="catalog" (3)
fetch="join|select" (4)
inverse="true|false" (5)
optional="true|false"> (6)

Basic O/R Mapping

Hibernate 3.0.5 66

<key ... />

<property ... />
...

</join>

(1) table: The name of the joined table.
(2) schema (optional): Override the schema name specified by the root <hibernate-mapping> element.
(3) catalog (optional): Override the catalog name specified by the root <hibernate-mapping> element.
(4) fetch (optional - defaults to join): If set to join, the default, Hibernate will use an inner join to retrieve a

<join> defined by a class or its superclasses and an outer join for a <join> defined by a subclass. If set to
select then Hibernate will use a sequential select for a <join> defined on a subclass, which will be is-
sued only if a row turns out to represent an instance of the subclass. Inner joins will still be used to re-
trieve a <join> defined by the class and its superclasses.

(5) inverse (optional - defaults to false): If enabled, Hibernate will not try to insert or update the properties
defined by this join.

(6) optional (optional - defaults to false): If enabled, Hibernate will insert a row only if the properties
defined by this join are non-null and will always use an outer join to retrieve the properties.

For example, the address information for a person can be mapped to a separate table (while preserving value
type semantics for all properties):

<class name="Person"
table="PERSON">

<id name="id" column="PERSON_ID">...</id>

<join table="ADDRESS">
<key column="ADDRESS_ID"/>
<property name="address"/>
<property name="zip"/>
<property name="country"/>

</join>
...

This feature is often only useful for legacy data models, we recommend fewer tables than classes and a fine-
grained domain model. However, it is useful for switching between inheritance mapping strategies in a single
hierarchy, as explained later.

6.1.19. key

We've seen the <key> element crop up a few times now. It appears anywhere the parent mapping element
defines a join to a new table, and defines the foreign key in the joined table, that references the primary key of
the original table.

<key
column="columnname" (1)
on-delete="noaction|cascade" (2)
property-ref="propertyName" (3)
not-null="true|false" (4)
update="true|false" (5)
unique="true|false" (6)

/>

(1) column (optional): The name of the foreign key column. This may also be specified by nested <column>

element(s).
(2) on-delete (optional, defaults to noaction): Specifies whether the foreign key constraint has database-

Basic O/R Mapping

Hibernate 3.0.5 67

level cascade delete enabled.
(3) property-ref (optional): Specifies that the foreign key refers to columns that are not the primary key of

the orginal table. (Provided for legacy data.)
(4) not-null (optional): Specifies that the foreign key columns are not nullable (this is implied whenever the

foreign key is also part of the primary key).
(5) update (optional): Specifies that the foreign key should never be updated (this is implied whenever the

foreign key is also part of the primary key).
(6) unique (optional): Specifies that the foreign key should have a unique constraint (this is implied whenever

the foreign key is also the primary key).

We recommend that for systems where delete performance is important, all keys should be defined on-de-

lete="cascade", and Hibernate will use a database-level ON CASCADE DELETE constraint, instead of many indi-
vidual DELETE statements. Be aware that this feature bypasses Hibernate's usual optimistic locking strategy for
versioned data.

The not-null and update attributes are useful when mapping a unidirectional one to many association. If you
map a unidirectional one to many to a non-nullable foreign key, you must declare the key column using <key

not-null="true">.

6.1.20. column and formula elements

Any mapping element which accepts a column attribute will alternatively accept a <column> subelement. Like-
wise, <formula> is an alternative to the formula attribute.

<column
name="column_name"
length="N"
precision="N"
scale="N"
not-null="true|false"
unique="true|false"
unique-key="multicolumn_unique_key_name"
index="index_name"
sql-type="sql_type_name"
check="SQL expression"/>

<formula>SQL expression</formula>

column and formula attributes may even be combined within the same property or association mapping to ex-
press, for example, exotic join conditions.

<many-to-one name="homeAddress" class="Address"
insert="false" update="false">

<column name="person_id" not-null="true" length="10"/>
<formula>'MAILING'</formula>

</many-to-one>

6.1.21. import

Suppose your application has two persistent classes with the same name, and you don't want to specify the fully
qualified (package) name in Hibernate queries. Classes may be "imported" explicitly, rather than relying upon
auto-import="true". You may even import classes and interfaces that are not explicitly mapped.

<import class="java.lang.Object" rename="Universe"/>

<import
class="ClassName" (1)

Basic O/R Mapping

Hibernate 3.0.5 68

rename="ShortName" (2)
/>

(1) class: The fully qualified class name of of any Java class.
(2) rename (optional - defaults to the unqualified class name): A name that may be used in the query lan-

guage.

6.1.22. any

There is one further type of property mapping. The <any> mapping element defines a polymorphic association
to classes from multiple tables. This type of mapping always requires more than one column. The first column
holds the type of the associated entity. The remaining columns hold the identifier. It is impossible to specify a
foreign key constraint for this kind of association, so this is most certainly not meant as the usual way of map-
ping (polymorphic) associations. You should use this only in very special cases (eg. audit logs, user session
data, etc).

The meta-type attribute lets the application specify a custom type that maps database column values to persist-
ent classes which have identifier properties of the type specified by id-type. You must specify the mapping
from values of the meta-type to class names.

<any name="being" id-type="long" meta-type="string">
<meta-value value="TBL_ANIMAL" class="Animal"/>
<meta-value value="TBL_HUMAN" class="Human"/>
<meta-value value="TBL_ALIEN" class="Alien"/>
<column name="table_name"/>
<column name="id"/>

</any>

<any
name="propertyName" (1)
id-type="idtypename" (2)
meta-type="metatypename" (3)
cascade="cascade_style" (4)
access="field|property|ClassName" (5)
optimistic-lock="true|false" (6)

>
<meta-value ... />
<meta-value ... />
.....
<column />
<column />
.....

</any>

(1) name: the property name.
(2) id-type: the identifier type.
(3) meta-type (optional - defaults to string): Any type that is allowed for a discriminator mapping.
(4) cascade (optional- defaults to none): the cascade style.
(5) access (optional - defaults to property): The strategy Hibernate should use for accessing the property

value.
(6) optimistic-lock (optional - defaults to true): Specifies that updates to this property do or do not require

acquisition of the optimistic lock. In other words, define if a version increment should occur if this prop-
erty is dirty.

6.2. Hibernate Types

Basic O/R Mapping

Hibernate 3.0.5 69

6.2.1. Entities and values

To understand the behaviour of various Java language-level objects with respect to the persistence service, we
need to classify them into two groups:

An entity exists independently of any other objects holding references to the entity. Contrast this with the usual
Java model where an unreferenced object is garbage collected. Entities must be explicitly saved and deleted
(except that saves and deletions may be cascaded from a parent entity to its children). This is different from the
ODMG model of object persistence by reachablity - and corresponds more closely to how application objects
are usually used in large systems. Entities support circular and shared references. They may also be versioned.

An entity's persistent state consists of references to other entities and instances of value types. Values are prim-
itives, collections (not what's inside a collection), components and certain immutable objects. Unlike entities,
values (in particular collections and components) are persisted and deleted by reachability. Since value objects
(and primitives) are persisted and deleted along with their containing entity they may not be independently ver-
sioned. Values have no independent identity, so they cannot be shared by two entities or collections.

Up until now, we've been using the term "persistent class" to refer to entities. We will continue to do that.
Strictly speaking, however, not all user-defined classes with persistent state are entities. A component is a user
defined class with value semantics. A Java property of type java.lang.String also has value semantics. Given
this definition, we can say that all types (classes) provided by the JDK have value type semantics in Java, while
user-defined types may be mapped with entity or value type semantics. This decision is up to the application
developer. A good hint for an entity class in a domain model are shared references to a single instance of that
class, while composition or aggregation usually translates to a value type.

We'll revisit both concepts throughout the documentation.

The challenge is to map the Java type system (and the developers' definition of entities and value types) to the
SQL/database type system. The bridge between both systems is provided by Hibernate: for entities we use
<class>, <subclass> and so on. For value types we use <property>, <component>, etc, usually with a type at-
tribute. The value of this attribute is the name of a Hibernate mapping type. Hibernate provides many mappings
(for standard JDK value types) out of the box. You can write your own mapping types and implement your cus-
tom conversion strategies as well, as you'll see later.

All built-in Hibernate types except collections support null semantics.

6.2.2. Basic value types

The built-in basic mapping types may be roughly categorized into

integer, long, short, float, double, character, byte, boolean, yes_no, true_false

Type mappings from Java primitives or wrapper classes to appropriate (vendor-specific) SQL column
types. boolean, yes_no and true_false are all alternative encodings for a Java boolean or
java.lang.Boolean.

string

A type mapping from java.lang.String to VARCHAR (or Oracle VARCHAR2).

date, time, timestamp

Type mappings from java.util.Date and its subclasses to SQL types DATE, TIME and TIMESTAMP (or equi-
valent).

calendar, calendar_date

Basic O/R Mapping

Hibernate 3.0.5 70

Type mappings from java.util.Calendar to SQL types TIMESTAMP and DATE (or equivalent).

big_decimal, big_integer

Type mappings from java.math.BigDecimal and java.math.BigInteger to NUMERIC (or Oracle NUMBER).

locale, timezone, currency

Type mappings from java.util.Locale, java.util.TimeZone and java.util.Currency to VARCHAR (or
Oracle VARCHAR2). Instances of Locale and Currency are mapped to their ISO codes. Instances of TimeZone
are mapped to their ID.

class

A type mapping from java.lang.Class to VARCHAR (or Oracle VARCHAR2). A Class is mapped to its fully
qualified name.

binary

Maps byte arrays to an appropriate SQL binary type.

text

Maps long Java strings to a SQL CLOB or TEXT type.

serializable

Maps serializable Java types to an appropriate SQL binary type. You may also indicate the Hibernate type
serializable with the name of a serializable Java class or interface that does not default to a basic type.

clob, blob

Type mappings for the JDBC classes java.sql.Clob and java.sql.Blob. These types may be inconveni-
ent for some applications, since the blob or clob object may not be reused outside of a transaction.
(Furthermore, driver support is patchy and inconsistent.)

Unique identifiers of entities and collections may be of any basic type except binary, blob and clob.
(Composite identifiers are also allowed, see below.)

The basic value types have corresponding Type constants defined on org.hibernate.Hibernate. For example,
Hibernate.STRING represents the string type.

6.2.3. Custom value types

It is relatively easy for developers to create their own value types. For example, you might want to persist prop-
erties of type java.lang.BigInteger to VARCHAR columns. Hibernate does not provide a built-in type for this.
But custom types are not limited to mapping a property (or collection element) to a single table column. So, for
example, you might have a Java property getName()/setName() of type java.lang.String that is persisted to
the columns FIRST_NAME, INITIAL, SURNAME.

To implement a custom type, implement either org.hibernate.UserType or
org.hibernate.CompositeUserType and declare properties using the fully qualified classname of the type.
Check out org.hibernate.test.DoubleStringType to see the kind of things that are possible.

<property name="twoStrings" type="org.hibernate.test.DoubleStringType">
<column name="first_string"/>
<column name="second_string"/>

</property>

Notice the use of <column> tags to map a property to multiple columns.

The CompositeUserType, EnhancedUserType, UserCollectionType, and UserVersionType interfaces provide

Basic O/R Mapping

Hibernate 3.0.5 71

support for more specialized uses.

You may even supply parameters to a UserType in the mapping file. To do this, your UserType must implement
the org.hibernate.usertype.ParameterizedType interface. To supply parameters to your custom type, you
can use the <type> element in your mapping files.

<property name="priority">
<type name="com.mycompany.usertypes.DefaultValueIntegerType">

<param name="default">0</param>
</type>

</property>

The UserType can now retrieve the value for the parameter named default from the Properties object passed
to it.

If you use a certain UserType very often, it may be useful to define a shorter name for it. You can do this using
the <typedef> element. Typedefs assign a name to a custom type, and may also contain a list of default para-
meter values if the type is parameterized.

<typedef class="com.mycompany.usertypes.DefaultValueIntegerType" name="default_zero">
<param name="default">0</param>

</typedef>

<property name="priority" type="default_zero"/>

It is also possible to override the parameters supplied in a typedef on a case-by-case basis by using type para-
meters on the property mapping.

Even though Hibernate's rich range of built-in types and support for components means you will very rarely
need to use a custom type, it is nevertheless considered good form to use custom types for (non-entity) classes
that occur frequently in your application. For example, a MonetaryAmount class is a good candidate for a Com-

positeUserType, even though it could easily be mapped as a component. One motivation for this is abstraction.
With a custom type, your mapping documents would be future-proofed against possible changes in your way of
representing monetary values.

6.3. SQL quoted identifiers

You may force Hibernate to quote an identifier in the generated SQL by enclosing the table or column name in
backticks in the mapping document. Hibernate will use the correct quotation style for the SQL Dialect (usually
double quotes, but brackets for SQL Server and backticks for MySQL).

<class name="LineItem" table="`Line Item`">
<id name="id" column="`Item Id`"/><generator class="assigned"/></id>
<property name="itemNumber" column="`Item #`"/>
...

</class>

6.4. Metadata alternatives

XML isn't for everyone, and so there are some alternative ways to define O/R mapping metadata in Hibernate.

6.4.1. Using XDoclet markup

Basic O/R Mapping

Hibernate 3.0.5 72

Many Hibernate users prefer to embed mapping information directly in sourcecode using XDoclet
@hibernate.tags. We will not cover this approach in this document, since strictly it is considered part of
XDoclet. However, we include the following example of the Cat class with XDoclet mappings.

package eg;
import java.util.Set;
import java.util.Date;

/**
* @hibernate.class
* table="CATS"
*/

public class Cat {
private Long id; // identifier
private Date birthdate;
private Cat mother;
private Set kittens
private Color color;
private char sex;
private float weight;

/*
* @hibernate.id
* generator-class="native"
* column="CAT_ID"
*/
public Long getId() {

return id;
}
private void setId(Long id) {

this.id=id;
}

/**
* @hibernate.many-to-one
* column="PARENT_ID"
*/
public Cat getMother() {

return mother;
}
void setMother(Cat mother) {

this.mother = mother;
}

/**
* @hibernate.property
* column="BIRTH_DATE"
*/
public Date getBirthdate() {

return birthdate;
}
void setBirthdate(Date date) {

birthdate = date;
}
/**
* @hibernate.property
* column="WEIGHT"
*/
public float getWeight() {

return weight;
}
void setWeight(float weight) {

this.weight = weight;
}

/**
* @hibernate.property
* column="COLOR"
* not-null="true"
*/

Basic O/R Mapping

Hibernate 3.0.5 73

public Color getColor() {
return color;

}
void setColor(Color color) {

this.color = color;
}
/**
* @hibernate.set
* inverse="true"
* order-by="BIRTH_DATE"
* @hibernate.collection-key
* column="PARENT_ID"
* @hibernate.collection-one-to-many
*/
public Set getKittens() {

return kittens;
}
void setKittens(Set kittens) {

this.kittens = kittens;
}
// addKitten not needed by Hibernate
public void addKitten(Cat kitten) {

kittens.add(kitten);
}

/**
* @hibernate.property
* column="SEX"
* not-null="true"
* update="false"
*/
public char getSex() {

return sex;
}
void setSex(char sex) {

this.sex=sex;
}

}

See the Hibernate web site for more examples of XDoclet and Hibernate.

6.4.2. Using JDK 5.0 Annotations

JDK 5.0 introduced XDoclet-style annotations at the language level, type-safe and checked at compile time.
This mechnism is more powerful than XDoclet annotations and better supported by tools and IDEs. IntelliJ
IDEA, for example, supports auto-completion and syntax highlighting of JDK 5.0 annotations. The new revi-
sion of the EJB specification (JSR-220) uses JDK 5.0 annotations as the primary metadata mechanism for en-
tity beans. Hibernate3 implements the EntityManager of JSR-220 (the persistence API), support for mapping
metadata is available via the Hibernate Annotations package, as a separate download. Both EJB3 (JSR-220)
and Hibernate3 metadata is supported.

This is an example of a POJO class annotated as an EJB entity bean:

@Entity(access = AccessType.FIELD)
public class Customer implements Serializable {

@Id;
Long id;

String firstName;
String lastName;
Date birthday;

@Transient
Integer age;

Basic O/R Mapping

Hibernate 3.0.5 74

@Dependent
private Address homeAddress;

@OneToMany(cascade=CascadeType.ALL,
targetEntity="Order")

@JoinColumn(name="CUSTOMER_ID")
Set orders;

// Getter/setter and business methods
}

Note that support for JDK 5.0 Annotations (and JSR-220) is still work in progress and not completed.

Basic O/R Mapping

Hibernate 3.0.5 75

Chapter 7. Collection Mapping

7.1. Persistent collections

Hibernate requires that persistent collection-valued fields be declared as an interface type, for example:

public class Product {
private String serialNumber;
private Set parts = new HashSet();

public Set getParts() { return parts; }
void setParts(Set parts) { this.parts = parts; }
public String getSerialNumber() { return serialNumber; }
void setSerialNumber(String sn) { serialNumber = sn; }

}

The actual interface might be java.util.Set, java.util.Collection, java.util.List, java.util.Map,
java.util.SortedSet, java.util.SortedMap or ... anything you like! (Where "anything you like" means you
will have to write an implementation of org.hibernate.usertype.UserCollectionType.)

Notice how we initialized the instance variable with an instance of HashSet. This is the best way to initialize
collection valued properties of newly instantiated (non-persistent) instances. When you make the instance per-
sistent - by calling persist(), for example - Hibernate will actually replace the HashSet with an instance of
Hibernate's own implementation of Set. Watch out for errors like this:

Cat cat = new DomesticCat();
Cat kitten = new DomesticCat();
....
Set kittens = new HashSet();
kittens.add(kitten);
cat.setKittens(kittens);
session.persist(cat);
kittens = cat.getKittens(); // Okay, kittens collection is a Set
(HashSet) cat.getKittens(); // Error!

The persistent collections injected by Hibernate behave like HashMap, HashSet, TreeMap, TreeSet or
ArrayList, depending upon the interface type.

Collections instances have the usual behavior of value types. They are automatically persisted when referenced
by a persistent object and automatically deleted when unreferenced. If a collection is passed from one persistent
object to another, its elements might be moved from one table to another. Two entities may not share a refer-
ence to the same collection instance. Due to the underlying relational model, collection-valued properties do
not support null value semantics; Hibernate does not distinguish between a null collection reference and an
empty collection.

You shouldn't have to worry much about any of this. Use persistent collections the same way you use ordinary
Java collections. Just make sure you understand the semantics of bidirectional associations (discussed later).

7.2. Collection mappings

The Hibernate mapping element used for mapping a collection depends upon the type of the interface. For ex-
ample, a <set> element is used for mapping properties of type Set.

<class name="Product">
<id name="serialNumber" column="productSerialNumber"/>

Hibernate 3.0.5 76

<set name="parts">
<key column="productSerialNumber" not-null="true"/>
<one-to-many class="Part"/>

</set>
</class>

Apart from <set>, there is also <list>, <map>, <bag>, <array> and <primitive-array> mapping elements.
The <map> element is representative:

<map
name="propertyName" (1)
table="table_name" (2)
schema="schema_name" (3)
lazy="true|false" (4)
inverse="true|false" (5)
cascade="all|none|save-update|delete|all-delete-orphan" (6)
sort="unsorted|natural|comparatorClass" (7)
order-by="column_name asc|desc" (8)
where="arbitrary sql where condition" (9)
fetch="join|select|subselect" (10)
batch-size="N" (11)
access="field|property|ClassName" (12)
optimistic-lock="true|false" (13)
node="element-name|."
embed-xml="true|false"

>

<key />
<map-key />
<element />

</map>

(1) name the collection property name
(2) table (optional - defaults to property name) the name of the collection table (not used for one-to-many

associations)
(3) schema (optional) the name of a table schema to override the schema declared on the root element
(4) lazy (optional - defaults to true) may be used to disable lazy fetching and specify that the association is

always eagerly fetched (not available for arrays)
(5) inverse (optional - defaults to false) mark this collection as the "inverse" end of a bidirectional associ-

ation
(6) cascade (optional - defaults to none) enable operations to cascade to child entities
(7) sort (optional) specify a sorted collection with natural sort order, or a given comparator class
(8) order-by (optional, JDK1.4 only) specify a table column (or columns) that define the iteration order of

the Map, Set or bag, together with an optional asc or desc
(9) where (optional) specify an arbitrary SQL WHERE condition to be used when retrieving or removing the

collection (useful if the collection should contain only a subset of the available data)
(10) fetch (optional, defaults to select) Choose between outer-join fetching, fetching by sequential select,

and fetching by sequential subselect.
(11) batch-size (optional, defaults to 1) specify a "batch size" for lazily fetching instances of this collection.
(12) access (optional - defaults to property): The strategy Hibernate should use for accessing the property

value.
(12) optimistic-lock (optional - defaults to true): Species that changes to the state of the collection results in

increment of the owning entity's version. (For one to many associations, it is often reasonable to disable
this setting.)

7.2.1. Collection foreign keys

Collection instances are distinguished in the database by the foreign key of the entity that owns the collection.

Collection Mapping

Hibernate 3.0.5 77

This foreign key is referred to as the collection key column (or columns) of the collection table. The collection
key column is mapped by the <key> element.

There may be a nullability constraint on the foreign key column. For most collections, this is implied. For uni-
directional one to many associations, the foreign key column is nullable by default, so you might need to spe-
cify not-null="true".

<key column="productSerialNumber" not-null="true"/>

The foreign key constraint may use ON DELETE CASCADE.

<key column="productSerialNumber" on-delete="cascade"/>

See the previous chapter for a full definition of the <key> element.

7.2.2. Collection elements

Collections may contain almost any other Hibernate type, including all basic types, custom types, components,
and of course, references to other entities. This is an important distinction: an object in a collection might be
handled with "value" semantics (its lifecycle fully depends on the collection owner) or it might be a reference
to another entity, with its own lifecycle. In the latter case, only the "link" between the two objects is considered
to be state held by the collection.

The contained type is referred to as the collection element type. Collection elements are mapped by <element>

or <composite-element>, or in the case of entity references, with <one-to-many> or <many-to-many>. The first
two map elements with value semantics, the next two are used to map entity associations.

7.2.3. Indexed collections

All collection mappings, except those with set and bag semantics, need an index column in the collection table -
a column that maps to an array index, or List index, or Map key. The index of a Map may be of any basic type,
mapped with <map-key>, it may be an entity reference mapped with <map-key-many-to-many>, or it may be a
composite type, mapped with <composite-map-key>. The index of an array or list is always of type integer

and is mapped using the <list-index> element. The mapped column contains sequential integers (numbered
from zero, by default).

<list-index
column="column_name" (1)
base="0|1|..."/>

(1) column_name (required): The name of the column holding the collection index values.
(1) base (optional, defaults to 0): The value of the index column that corresponds to the first element of the

list or array.

<map-key
column="column_name" (1)
formula="any SQL expression" (2)
type="type_name" (3)
node="@attribute-name"
length="N"/>

(1) column (optional): The name of the column holding the collection index values.
(2) formula (optional): A SQL formula used to evaluate the key of the map.
(3) type (optional, defaults to integer): The type of the collection index.

Collection Mapping

Hibernate 3.0.5 78

<map-key-many-to-many
column="column_name" (1)
formula="any SQL expression" (2)(3)
class="ClassName"

/>

(1) column (optional): The name of the foreign key column for the collection index values.
(2) formula (optional): A SQL formula used to evaluate the foreign key of the map key.
(3) class (required): The entity class used as the collection index.

If your table doesn't have an index column, and you still wish to use List as the property type, you should map
the property as a Hibernate <bag>. A bag does not retain its order when it is retrieved from the database, but it
may be optionally sorted or ordered.

There are quite a range of mappings that can be generated for collections, covering many common relational
models. We suggest you experiment with the schema generation tool to get a feeling for how various mapping
declarations translate to database tables.

7.2.4. Collections of values and many-to-many associations

Any collection of values or many-to-many association requires a dedicated collection table with a foreign key
column or columns, collection element column or columns and possibly an index column or columns.

For a collection of values, we use the <element> tag.

<element
column="column_name" (1)
formula="any SQL expression" (2)
type="typename" (3)
length="L"
precision="P"
scale="S"
not-null="true|false"
unique="true|false"
node="element-name"

/>

(1) column (optional): The name of the column holding the collection element values.
(2) formula (optional): An SQL formula used to evaluate the element.
(3) type (required): The type of the collection element.

A many-to-many association is specified using the <many-to-many> element.

<many-to-many
column="column_name" (1)
formula="any SQL expression" (2)
class="ClassName" (3)
fetch="select|join" (4)
unique="true|false" (5)
not-found="ignore|exception" (6)
entity-name="EntityName" (7)
node="element-name"
embed-xml="true|false"

/>

(1) column (optional): The name of the element foreign key column.
(2) formula (optional): An SQL formula used to evaluate the element foreign key value.
(3) class (required): The name of the associated class.
(4) fetch (optional - defaults to join): enables outer-join or sequential select fetching for this association.

Collection Mapping

Hibernate 3.0.5 79

This is a special case; for full eager fetching (in a single SELECT) of an entity and its many-to-many rela-
tionships to other entities, you would enable join fetching not only of the collection itself, but also with
this attribute on the <many-to-many> nested element.

(5) unique (optional): Enable the DDL generation of a unique constraint for the foreign-key column. This
makes the association multiplicity effectively one to many.

(6) not-found (optional - defaults to exception): Specifies how foreign keys that reference missing rows will
be handled: ignore will treat a missing row as a null association.

(7) entity-name (optional): The entity name of the associated class, as an alternative to class.

Some examples, first, a set of strings:

<set name="names" table="person_names">
<key column="person_id"/>
<element column="person_name" type="string"/>

</set>

A bag containing integers (with an iteration order determined by the order-by attribute):

<bag name="sizes"
table="item_sizes"
order-by="size asc">

<key column="item_id"/>
<element column="size" type="integer"/>

</bag>

An array of entities - in this case, a many to many association:

<array name="addresses"
table="PersonAddress"
cascade="persist">

<key column="personId"/>
<list-index column="sortOrder"/>
<many-to-many column="addressId" class="Address"/>

</array>

A map from string indices to dates:

<map name="holidays"
table="holidays"
schema="dbo"
order-by="hol_name asc">

<key column="id"/>
<map-key column="hol_name" type="string"/>
<element column="hol_date" type="date"/>

</map>

A list of components (discussed in the next chapter):

<list name="carComponents"
table="CarComponents">

<key column="carId"/>
<list-index column="sortOrder"/>
<composite-element class="CarComponent">

<property name="price"/>
<property name="type"/>
<property name="serialNumber" column="serialNum"/>

</composite-element>
</list>

7.2.5. One-to-many associations

Collection Mapping

Hibernate 3.0.5 80

A one to many association links the tables of two classes via a foreign key, with no intervening collection table.
This mapping loses certain semantics of normal Java collections:

• An instance of the contained entity class may not belong to more than one instance of the collection
• An instance of the contained entity class may not appear at more than one value of the collection index

An association from Product to Part requires existence of a foreign key column and possibly an index column
to the Part table. A <one-to-many> tag indicates that this is a one to many association.

<one-to-many
class="ClassName" (1)
not-found="ignore|exception" (2)
entity-name="EntityName" (3)
node="element-name"
embed-xml="true|false"

/>

(1) class (required): The name of the associated class.
(2) not-found (optional - defaults to exception): Specifies how cached identifiers that reference missing

rows will be handled: ignore will treat a missing row as a null association.
(3) entity-name (optional): The entity name of the associated class, as an alternative to class.

Notice that the <one-to-many> element does not need to declare any columns. Nor is it necessary to specify the
table name anywhere.

Very important note: If the foreign key column of a <one-to-many> association is declared NOT NULL, you must
declare the <key> mapping not-null="true" or use a bidirectional association with the collection mapping
marked inverse="true". See the discussion of bidirectional associations later in this chapter.

This example shows a map of Part entities by name (where partName is a persistent property of Part). Notice
the use of a formula-based index.

<map name="parts"
cascade="all">

<key column="productId" not-null="true"/>
<map-key formula="partName"/>
<one-to-many class="Part"/>

</map>

7.3. Advanced collection mappings

7.3.1. Sorted collections

Hibernate supports collections implementing java.util.SortedMap and java.util.SortedSet. You must spe-
cify a comparator in the mapping file:

<set name="aliases"
table="person_aliases"
sort="natural">

<key column="person"/>
<element column="name" type="string"/>

</set>

<map name="holidays" sort="my.custom.HolidayComparator">
<key column="year_id"/>
<map-key column="hol_name" type="string"/>
<element column="hol_date" type="date"/>

</map>

Collection Mapping

Hibernate 3.0.5 81

Allowed values of the sort attribute are unsorted, natural and the name of a class implementing
java.util.Comparator.

Sorted collections actually behave like java.util.TreeSet or java.util.TreeMap.

If you want the database itself to order the collection elements use the order-by attribute of set, bag or map

mappings. This solution is only available under JDK 1.4 or higher (it is implemented using LinkedHashSet or
LinkedHashMap). This performs the ordering in the SQL query, not in memory.

<set name="aliases" table="person_aliases" order-by="lower(name) asc">
<key column="person"/>
<element column="name" type="string"/>

</set>

<map name="holidays" order-by="hol_date, hol_name">
<key column="year_id"/>
<map-key column="hol_name" type="string"/>
<element column="hol_date type="date"/>

</map>

Note that the value of the order-by attribute is an SQL ordering, not a HQL ordering!

Associations may even be sorted by some arbitrary criteria at runtime using a collection filter().

sortedUsers = s.createFilter(group.getUsers(), "order by this.name").list();

7.3.2. Bidirectional associations

A bidirectional association allows navigation from both "ends" of the association. Two kinds of bidirectional
association are supported:

one-to-many
set or bag valued at one end, single-valued at the other

many-to-many
set or bag valued at both ends

You may specify a bidirectional many-to-many association simply by mapping two many-to-many associations
to the same database table and declaring one end as inverse (which one is your choice, but it can not be an in-
dexed collection).

Here's an example of a bidirectional many-to-many association; each category can have many items and each
item can be in many categories:

<class name="Category">
<id name="id" column="CATEGORY_ID"/>
...
<bag name="items" table="CATEGORY_ITEM">

<key column="CATEGORY_ID"/>
<many-to-many class="Item" column="ITEM_ID"/>

</bag>
</class>

<class name="Item">
<id name="id" column="CATEGORY_ID"/>
...

<!-- inverse end -->
<bag name="categories" table="CATEGORY_ITEM" inverse="true">

Collection Mapping

Hibernate 3.0.5 82

<key column="ITEM_ID"/>
<many-to-many class="Category" column="CATEGORY_ID"/>

</bag>
</class>

Changes made only to the inverse end of the association are not persisted. This means that Hibernate has two
representations in memory for every bidirectional association, one link from A to B and another link from B to
A. This is easier to understand if you think about the Java object model and how we create a many-to-many re-
lationship in Java:

category.getItems().add(item); // The category now "knows" about the relationship
item.getCategories().add(category); // The item now "knows" about the relationship

session.persist(item); // The relationship won't be saved!
session.persist(category); // The relationship will be saved

The non-inverse side is used to save the in-memory representation to the database.

You may define a bidirectional one-to-many association by mapping a one-to-many association to the same ta-
ble column(s) as a many-to-one association and declaring the many-valued end inverse="true".

<class name="Parent">
<id name="id" column="parent_id"/>
....
<set name="children" inverse="true">

<key column="parent_id"/>
<one-to-many class="Child"/>

</set>
</class>

<class name="eg.Child">
<id name="id" column="id"/>
....
<many-to-one name="parent"

class="Parent"
column="parent_id"
not-null="true"/>

</class>

Mapping one end of an association with inverse="true" doesn't affect the operation of cascades, these are or-
thogonal concepts!

7.3.3. Ternary associations

There are three possible approaches to mapping a ternary association. One is to use a Map with an association as
its index:

<map name="contracts">
<key column="employer_id" not-null="true"/>
<map-key-many-to-many column="employee_id" class="Employee"/>
<one-to-many class="Contract"/>

</map>

<map name="connections">
<key column="incoming_node_id"/>
<map-key-many-to-many column="outgoing_node_id" class="Node"/>
<many-to-many column="connection_id" class="Connection"/>

</map>

Collection Mapping

Hibernate 3.0.5 83

A second approach is to simply remodel the association as an entity class. This is the approach we use most
commonly.

A final alternative is to use composite elements, which we will discuss later.

7.3.4. Using an <idbag>

If you've fully embraced our view that composite keys are a bad thing and that entities should have synthetic
identifiers (surrogate keys), then you might find it a bit odd that the many to many associations and collections
of values that we've shown so far all map to tables with composite keys! Now, this point is quite arguable; a
pure association table doesn't seem to benefit much from a surrogate key (though a collection of composite val-
ues might). Nevertheless, Hibernate provides a feature that allows you to map many to many associations and
collections of values to a table with a surrogate key.

The <idbag> element lets you map a List (or Collection) with bag semantics.

<idbag name="lovers" table="LOVERS">
<collection-id column="ID" type="long">

<generator class="sequence"/>
</collection-id>
<key column="PERSON1"/>
<many-to-many column="PERSON2" class="eg.Person" outer-join="true"/>

</idbag>

As you can see, an <idbag> has a synthetic id generator, just like an entity class! A different surrogate key is
assigned to each collection row. Hibernate does not provide any mechanism to discover the surrogate key value
of a particular row, however.

Note that the update performance of an <idbag> is much better than a regular <bag>! Hibernate can locate indi-
vidual rows efficiently and update or delete them individually, just like a list, map or set.

In the current implementation, the native identifier generation strategy is not supported for <idbag> collection
identifiers.

7.4. Collection examples

The previous sections are pretty confusing. So lets look at an example. This class:

package eg;
import java.util.Set;

public class Parent {
private long id;
private Set children;

public long getId() { return id; }
private void setId(long id) { this.id=id; }

private Set getChildren() { return children; }
private void setChildren(Set children) { this.children=children; }

....

....
}

has a collection of Child instances. If each child has at most one parent, the most natural mapping is a one-
to-many association:

Collection Mapping

Hibernate 3.0.5 84

<hibernate-mapping>

<class name="Parent">
<id name="id">

<generator class="sequence"/>
</id>
<set name="children">

<key column="parent_id"/>
<one-to-many class="Child"/>

</set>
</class>

<class name="Child">
<id name="id">

<generator class="sequence"/>
</id>
<property name="name"/>

</class>

</hibernate-mapping>

This maps to the following table definitions:

create table parent (id bigint not null primary key)
create table child (id bigint not null primary key, name varchar(255), parent_id bigint)
alter table child add constraint childfk0 (parent_id) references parent

If the parent is required, use a bidirectional one-to-many association:

<hibernate-mapping>

<class name="Parent">
<id name="id">

<generator class="sequence"/>
</id>
<set name="children" inverse="true">

<key column="parent_id"/>
<one-to-many class="Child"/>

</set>
</class>

<class name="Child">
<id name="id">

<generator class="sequence"/>
</id>
<property name="name"/>
<many-to-one name="parent" class="Parent" column="parent_id" not-null="true"/>

</class>

</hibernate-mapping>

Notice the NOT NULL constraint:

create table parent (id bigint not null primary key)
create table child (id bigint not null

primary key,
name varchar(255),
parent_id bigint not null)

alter table child add constraint childfk0 (parent_id) references parent

Alternatively, if you absolutely insist that this association should be unidirectional, you can declare the NOT

NULL constraint on the <key> mapping:

<hibernate-mapping>

<class name="Parent">

Collection Mapping

Hibernate 3.0.5 85

<id name="id">
<generator class="sequence"/>

</id>
<set name="children">

<key column="parent_id" not-null="true"/>
<one-to-many class="Child"/>

</set>
</class>

<class name="Child">
<id name="id">

<generator class="sequence"/>
</id>
<property name="name"/>

</class>

</hibernate-mapping>

On the other hand, if a child might have multiple parents, a many-to-many association is appropriate:

<hibernate-mapping>

<class name="Parent">
<id name="id">

<generator class="sequence"/>
</id>
<set name="children" table="childset">

<key column="parent_id"/>
<many-to-many class="Child" column="child_id"/>

</set>
</class>

<class name="Child">
<id name="id">

<generator class="sequence"/>
</id>
<property name="name"/>

</class>

</hibernate-mapping>

Table definitions:

create table parent (id bigint not null primary key)
create table child (id bigint not null primary key, name varchar(255))
create table childset (parent_id bigint not null,

child_id bigint not null,
primary key (parent_id, child_id))

alter table childset add constraint childsetfk0 (parent_id) references parent
alter table childset add constraint childsetfk1 (child_id) references child

For more examples and a complete walk-through a parent/child relationship mapping, see Chapter 22, Ex-
ample: Parent/Child.

Even more exotic association mappings are possible, we will catalog all possibilities in the next chapter.

Collection Mapping

Hibernate 3.0.5 86

Chapter 8. Association Mappings

8.1. Introduction

Association mappings are the often most difficult thing to get right. In this section we'll go through the canonic-
al cases one by one, starting with unidirectional mappings, and then considering the bidirectional cases. We'll
use Person and Address in all the examples.

We'll classify associations by whether or not they map to an intervening join table, and by multiplicity.

Nullable foreign keys are not considered good practice in traditional data modelling, so all our examples use
not null foreign keys. This is not a requirement of Hibernate, and the mappings will all work if you drop the
nullability constraints.

8.2. Unidirectional associations

8.2.1. many to one

A unidirectional many-to-one association is the most common kind of unidirectional association.

<class name="Person">
<id name="id" column="personId">

<generator class="native"/>
</id>
<many-to-one name="address"

column="addressId"
not-null="true"/>

</class>

<class name="Address">
<id name="id" column="addressId">

<generator class="native"/>
</id>

</class>

create table Person (personId bigint not null primary key, addressId bigint not null)
create table Address (addressId bigint not null primary key)

8.2.2. one to one

A unidirectional one-to-one association on a foreign key is almost identical. The only difference is the column
unique constraint.

<class name="Person">
<id name="id" column="personId">

<generator class="native"/>
</id>
<many-to-one name="address"

column="addressId"
unique="true"
not-null="true"/>

</class>

Hibernate 3.0.5 87

<class name="Address">
<id name="id" column="addressId">

<generator class="native"/>
</id>

</class>

create table Person (personId bigint not null primary key, addressId bigint not null unique)
create table Address (addressId bigint not null primary key)

A unidirectional one-to-one association on a primary key usually uses a special id generator. (Notice that we've
reversed the direction of the association in this example.)

<class name="Person">
<id name="id" column="personId">

<generator class="native"/>
</id>

</class>

<class name="Address">
<id name="id" column="personId">

<generator class="foreign">
<param name="property">person</param>

</generator>
</id>
<one-to-one name="person" constrained="true"/>

</class>

create table Person (personId bigint not null primary key)
create table Address (personId bigint not null primary key)

8.2.3. one to many

A unidirectional one-to-many association on a foreign key is a very unusual case, and is not really recommen-
ded.

<class name="Person">
<id name="id" column="personId">

<generator class="native"/>
</id>
<set name="addresses">

<key column="personId"
not-null="true"/>

<one-to-many class="Address"/>
</set>

</class>

<class name="Address">
<id name="id" column="addressId">

<generator class="native"/>
</id>

</class>

create table Person (personId bigint not null primary key)
create table Address (addressId bigint not null primary key, personId bigint not null)

We think it's better to use a join table for this kind of association.

Association Mappings

Hibernate 3.0.5 88

8.3. Unidirectional associations with join tables

8.3.1. one to many

A unidirectional one-to-many association on a join table is much preferred. Notice that by specifying
unique="true", we have changed the multiplicity from many-to-many to one-to-many.

<class name="Person">
<id name="id" column="personId">

<generator class="native"/>
</id>
<set name="addresses" table="PersonAddress">

<key column="personId"/>
<many-to-many column="addressId"

unique="true"
class="Address"/>

</set>
</class>

<class name="Address">
<id name="id" column="addressId">

<generator class="native"/>
</id>

</class>

create table Person (personId bigint not null primary key)
create table PersonAddress (personId not null, addressId bigint not null primary key)
create table Address (addressId bigint not null primary key)

8.3.2. many to one

A unidirectional many-to-one association on a join table is quite common when the association is optional.

<class name="Person">
<id name="id" column="personId">

<generator class="native"/>
</id>
<join table="PersonAddress"

optional="true">
<key column="personId" unique="true"/>
<many-to-one name="address"

column="addressId"
not-null="true"/>

</join>
</class>

<class name="Address">
<id name="id" column="addressId">

<generator class="native"/>
</id>

</class>

create table Person (personId bigint not null primary key)
create table PersonAddress (personId bigint not null primary key, addressId bigint not null)
create table Address (addressId bigint not null primary key)

Association Mappings

Hibernate 3.0.5 89

8.3.3. one to one

A unidirectional one-to-one association on a join table is extremely unusual, but possible.

<class name="Person">
<id name="id" column="personId">

<generator class="native"/>
</id>
<join table="PersonAddress"

optional="true">
<key column="personId"

unique="true"/>
<many-to-one name="address"

column="addressId"
not-null="true"
unique="true"/>

</join>
</class>

<class name="Address">
<id name="id" column="addressId">

<generator class="native"/>
</id>

</class>

create table Person (personId bigint not null primary key)
create table PersonAddress (personId bigint not null primary key, addressId bigint not null unique)
create table Address (addressId bigint not null primary key)

8.3.4. many to many

Finally, we have a unidirectional many-to-many association.

<class name="Person">
<id name="id" column="personId">

<generator class="native"/>
</id>
<set name="addresses" table="PersonAddress">

<key column="personId"/>
<many-to-many column="addressId"

class="Address"/>
</set>

</class>

<class name="Address">
<id name="id" column="addressId">

<generator class="native"/>
</id>

</class>

create table Person (personId bigint not null primary key)
create table PersonAddress (personId bigint not null, addressId bigint not null, primary key (personId, addressId))
create table Address (addressId bigint not null primary key)

8.4. Bidirectional associations

Association Mappings

Hibernate 3.0.5 90

8.4.1. one to many / many to one

A bidirectional many-to-one association is the most common kind of association. (This is the standard parent/
child relationship.)

<class name="Person">
<id name="id" column="personId">

<generator class="native"/>
</id>
<many-to-one name="address"

column="addressId"
not-null="true"/>

</class>

<class name="Address">
<id name="id" column="addressId">

<generator class="native"/>
</id>
<set name="people" inverse="true">

<key column="addressId"/>
<one-to-many class="Person"/>

</set>
</class>

create table Person (personId bigint not null primary key, addressId bigint not null)
create table Address (addressId bigint not null primary key)

8.4.2. one to one

A bidirectional one-to-one association on a foreign key is quite common.

<class name="Person">
<id name="id" column="personId">

<generator class="native"/>
</id>
<many-to-one name="address"

column="addressId"
unique="true"
not-null="true"/>

</class>

<class name="Address">
<id name="id" column="addressId">

<generator class="native"/>
</id>
<one-to-one name="person"

property-ref="address"/>
</class>

create table Person (personId bigint not null primary key, addressId bigint not null unique)
create table Address (addressId bigint not null primary key)

A bidirectional one-to-one association on a primary key uses the special id generator.

<class name="Person">
<id name="id" column="personId">

<generator class="native"/>
</id>
<one-to-one name="address"/>

</class>

Association Mappings

Hibernate 3.0.5 91

<class name="Address">
<id name="id" column="personId">

<generator class="foreign">
<param name="property">person</param>

</generator>
</id>
<one-to-one name="person"

constrained="true"/>
</class>

create table Person (personId bigint not null primary key)
create table Address (personId bigint not null primary key)

8.5. Bidirectional associations with join tables

8.5.1. one to many / many to one

A bidirectional one-to-many association on a join table. Note that the inverse="true" can go on either end of
the association, on the collection, or on the join.

<class name="Person">
<id name="id" column="personId">

<generator class="native"/>
</id>
<set name="addresses"

table="PersonAddress">
<key column="personId"/>
<many-to-many column="addressId"

unique="true"
class="Address"/>

</set>
</class>

<class name="Address">
<id name="id" column="addressId">

<generator class="native"/>
</id>
<join table="PersonAddress"

inverse="true"
optional="true">
<key column="addressId"/>
<many-to-one name="person"

column="personId"
not-null="true"/>

</join>
</class>

create table Person (personId bigint not null primary key)
create table PersonAddress (personId bigint not null, addressId bigint not null primary key)
create table Address (addressId bigint not null primary key)

8.5.2. one to one

A bidirectional one-to-one association on a join table is extremely unusual, but possible.

<class name="Person">

Association Mappings

Hibernate 3.0.5 92

<id name="id" column="personId">
<generator class="native"/>

</id>
<join table="PersonAddress"

optional="true">
<key column="personId"

unique="true"/>
<many-to-one name="address"

column="addressId"
not-null="true"
unique="true"/>

</join>
</class>

<class name="Address">
<id name="id" column="addressId">

<generator class="native"/>
</id>
<join table="PersonAddress"

optional="true"
inverse="true">
<key column="addressId"

unique="true"/>
<many-to-one name="address"

column="personId"
not-null="true"
unique="true"/>

</join>
</class>

create table Person (personId bigint not null primary key)
create table PersonAddress (personId bigint not null primary key, addressId bigint not null unique)
create table Address (addressId bigint not null primary key)

8.5.3. many to many

Finally, we have a bidirectional many-to-many association.

<class name="Person">
<id name="id" column="personId">

<generator class="native"/>
</id>
<set name="addresses">

<key column="personId"/>
<many-to-many column="addressId"

class="Address"/>
</set>

</class>

<class name="Address">
<id name="id" column="addressId">

<generator class="native"/>
</id>
<set name="people" inverse="true">

<key column="addressId"/>
<many-to-many column="personId"

class="Person"/>
</set>

</class>

create table Person (personId bigint not null primary key)
create table PersonAddress (personId bigint not null, addressId bigint not null, primary key (personId, addressId))
create table Address (addressId bigint not null primary key)

Association Mappings

Hibernate 3.0.5 93

Association Mappings

Hibernate 3.0.5 94

Chapter 9. Component Mapping
The notion of a component is re-used in several different contexts, for different purposes, throughout Hibernate.

9.1. Dependent objects

A component is a contained object that is persisted as a value type, not an entity reference. The term "compon-
ent" refers to the object-oriented notion of composition (not to architecture-level components). For example,
you might model a person like this:

public class Person {
private java.util.Date birthday;
private Name name;
private String key;
public String getKey() {

return key;
}
private void setKey(String key) {

this.key=key;
}
public java.util.Date getBirthday() {

return birthday;
}
public void setBirthday(java.util.Date birthday) {

this.birthday = birthday;
}
public Name getName() {

return name;
}
public void setName(Name name) {

this.name = name;
}
......
......

}

public class Name {
char initial;
String first;
String last;
public String getFirst() {

return first;
}
void setFirst(String first) {

this.first = first;
}
public String getLast() {

return last;
}
void setLast(String last) {

this.last = last;
}
public char getInitial() {

return initial;
}
void setInitial(char initial) {

this.initial = initial;
}

}

Now Name may be persisted as a component of Person. Notice that Name defines getter and setter methods for
its persistent properties, but doesn't need to declare any interfaces or identifier properties.

Hibernate 3.0.5 95

Our Hibernate mapping would look like:

<class name="eg.Person" table="person">
<id name="Key" column="pid" type="string">

<generator class="uuid.hex"/>
</id>
<property name="birthday" type="date"/>
<component name="Name" class="eg.Name"> <!-- class attribute optional -->

<property name="initial"/>
<property name="first"/>
<property name="last"/>

</component>
</class>

The person table would have the columns pid, birthday, initial, first and last.

Like all value types, components do not support shared references. In other words, two persons could have the
same name, but the two person objects would contain two independent name ojects, only "the same" by value.
The null value semantics of a component are ad hoc. When reloading the containing object, Hibernate will as-
sume that if all component columns are null, then the entire component is null. This should be okay for most
purposes.

The properties of a component may be of any Hibernate type (collections, many-to-one associations, other
components, etc). Nested components should not be considered an exotic usage. Hibernate is intended to sup-
port a very fine-grained object model.

The <component> element allows a <parent> subelement that maps a property of the component class as a ref-
erence back to the containing entity.

<class name="eg.Person" table="person">
<id name="Key" column="pid" type="string">

<generator class="uuid.hex"/>
</id>
<property name="birthday" type="date"/>
<component name="Name" class="eg.Name" unique="true">

<parent name="namedPerson"/> <!-- reference back to the Person -->
<property name="initial"/>
<property name="first"/>
<property name="last"/>

</component>
</class>

9.2. Collections of dependent objects

Collections of components are supported (eg. an array of type Name). Declare your component collection by re-
placing the <element> tag with a <composite-element> tag.

<set name="someNames" table="some_names" lazy="true">
<key column="id"/>
<composite-element class="eg.Name"> <!-- class attribute required -->

<property name="initial"/>
<property name="first"/>
<property name="last"/>

</composite-element>
</set>

Note: if you define a Set of composite elements, it is very important to implement equals() and hashCode()

correctly.

Component Mapping

Hibernate 3.0.5 96

Composite elements may contain components but not collections. If your composite element itself contains
components, use the <nested-composite-element> tag. This is a pretty exotic case - a collection of compon-
ents which themselves have components. By this stage you should be asking yourself if a one-to-many associ-
ation is more appropriate. Try remodelling the composite element as an entity - but note that even though the
Java model is the same, the relational model and persistence semantics are still slightly different.

Please note that a composite element mapping doesn't support null-able properties if you're using a <set>. Hi-
bernate has to use each columns value to identify a record when deleting objects (there is no separate primary
key column in the composite element table), which is not possible with null values. You have to either use only
not-null properties in a composite-element or choose a <list>, <map>, <bag> or <idbag>.

A special case of a composite element is a composite element with a nested <many-to-one> element. A map-
ping like this allows you to map extra columns of a many-to-many association table to the composite element
class. The following is a many-to-many association from Order to Item where purchaseDate, price and
quantity are properties of the association:

<class name="eg.Order" >
....
<set name="purchasedItems" table="purchase_items" lazy="true">

<key column="order_id">
<composite-element class="eg.Purchase">

<property name="purchaseDate"/>
<property name="price"/>
<property name="quantity"/>
<many-to-one name="item" class="eg.Item"/> <!-- class attribute is optional -->

</composite-element>
</set>

</class>

Of course, there can't be a reference to the purchae on the other side, for bidirectional association navigation.
Remember that components are value types and don't allow shared references. A single Purchase can be in the
set of an Order, but it can't be referenced by the Item at the same time.

Even ternary (or quaternary, etc) associations are possible:

<class name="eg.Order" >
....
<set name="purchasedItems" table="purchase_items" lazy="true">

<key column="order_id">
<composite-element class="eg.OrderLine">

<many-to-one name="purchaseDetails class="eg.Purchase"/>
<many-to-one name="item" class="eg.Item"/>

</composite-element>
</set>

</class>

Composite elements may appear in queries using the same syntax as associations to other entities.

9.3. Components as Map indices

The <composite-map-key> element lets you map a component class as the key of a Map. Make sure you over-
ride hashCode() and equals() correctly on the component class.

9.4. Components as composite identifiers

You may use a component as an identifier of an entity class. Your component class must satisfy certain require-

Component Mapping

Hibernate 3.0.5 97

ments:

• It must implement java.io.Serializable.
• It must re-implement equals() and hashCode(), consistently with the database's notion of composite key

equality.

Note: in Hibernate3, the second requirement is not an absolutely hard requirement of Hibernate. But do it any-
way.

You can't use an IdentifierGenerator to generate composite keys. Instead the application must assign its own
identifiers.

Use the <composite-id> tag (with nested <key-property> elements) in place of the usual <id> declaration. For
example, the OrderLine class has a primary key that depends upon the (composite) primary key of Order.

<class name="OrderLine">

<composite-id name="id" class="OrderLineId">
<key-property name="lineId"/>
<key-property name="orderId"/>
<key-property name="customerId"/>

</composite-id>

<property name="name"/>

<many-to-one name="order" class="Order"
insert="false" update="false">

<column name="orderId"/>
<column name="customerId"/>

</many-to-one>
....

</class>

Now, any foreign keys referencing the OrderLine table are also composite. You must declare this in your map-
pings for other classes. An association to OrderLine would be mapped like this:

<many-to-one name="orderLine" class="OrderLine">
<!-- the "class" attribute is optional, as usual -->

<column name="lineId"/>
<column name="orderId"/>
<column name="customerId"/>

</many-to-one>

(Note that the <column> tag is an alternative to the column attribute everywhere.)

A many-to-many association to OrderLine also uses the composite foreign key:

<set name="undeliveredOrderLines">
<key column name="warehouseId"/>
<many-to-many class="OrderLine">

<column name="lineId"/>
<column name="orderId"/>
<column name="customerId"/>

</many-to-many>
</set>

The collection of OrderLines in Order would use:

<set name="orderLines" inverse="true">
<key>

<column name="orderId"/>
<column name="customerId"/>

Component Mapping

Hibernate 3.0.5 98

</key>
<one-to-many class="OrderLine"/>

</set>

(The <one-to-many> element, as usual, declares no columns.)

If OrderLine itself owns a collection, it also has a composite foreign key.

<class name="OrderLine">
....
....
<list name="deliveryAttempts">

<key> <!-- a collection inherits the composite key type -->
<column name="lineId"/>
<column name="orderId"/>
<column name="customerId"/>

</key>
<list-index column="attemptId" base="1"/>
<composite-element class="DeliveryAttempt">

...
</composite-element>

</set>
</class>

9.5. Dynamic components

You may even map a property of type Map:

<dynamic-component name="userAttributes">
<property name="foo" column="FOO"/>
<property name="bar" column="BAR"/>
<many-to-one name="baz" class="Baz" column="BAZ_ID"/>

</dynamic-component>

The semantics of a <dynamic-component> mapping are identical to <component>. The advantage of this kind of
mapping is the ability to determine the actual properties of the bean at deployment time, just by editing the
mapping document. Runtime manipulation of the mapping document is also possible, using a DOM parser.
Even better, you can access (and change) Hibernate's configuration-time metamodel via the Configuration ob-
ject.

Component Mapping

Hibernate 3.0.5 99

Chapter 10. Inheritance Mapping

10.1. The Three Strategies

Hibernate supports the three basic inheritance mapping strategies:

• table per class hierarchy

• table per subclass

• table per concrete class

In addition, Hibernate supports a fourth, slightly different kind of polymorphism:

• implicit polymorphism

It is possible to use different mapping strategies for different branches of the same inheritance hierarchy, and
then make use of implicit polymorphism to achieve polymorphism across the whole hierarchy. However, Hi-
bernate does not support mixing <subclass>, and <joined-subclass> and <union-subclass> mappings under
the same root <class> element. It is possible to mix together the table per hierarchy and table per subclass
strategies, under the the same <class> element, by combining the <subclass> and <join> elements (see be-
low).

10.1.1. Table per class hierarchy

Suppose we have an interface Payment, with implementors CreditCardPayment, CashPayment, ChequePayment.
The table per hierarchy mapping would look like:

<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">

<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">

<property name="creditCardType" column="CCTYPE"/>
...

</subclass>
<subclass name="CashPayment" discriminator-value="CASH">

...
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">

...
</subclass>

</class>

Exactly one table is required. There is one big limitation of this mapping strategy: columns declared by the sub-
classes, such as CCTYPE, may not have NOT NULL constraints.

10.1.2. Table per subclass

A table per subclass mapping would look like:

Hibernate 3.0.5 100

<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">

<generator class="native"/>
</id>
<property name="amount" column="AMOUNT"/>
...
<joined-subclass name="CreditCardPayment" table="CREDIT_PAYMENT">

<key column="PAYMENT_ID"/>
<property name="creditCardType" column="CCTYPE"/>
...

</joined-subclass>
<joined-subclass name="CashPayment" table="CASH_PAYMENT">

<key column="PAYMENT_ID"/>
...

</joined-subclass>
<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">

<key column="PAYMENT_ID"/>
...

</joined-subclass>
</class>

Four tables are required. The three subclass tables have primary key associations to the superclass table (so the
relational model is actually a one-to-one association).

10.1.3. Table per subclass, using a discriminator

Note that Hibernate's implementation of table per subclass requires no discriminator column. Other object/
relational mappers use a different implementation of table per subclass which requires a type discriminator
column in the superclass table. The approach taken by Hibernate is much more difficult to implement but argu-
ably more correct from a relational point of view. If you would like to use a discriminator column with the table
per subclass strategy, you may combine the use of <subclass> and <join>, as follow:

<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">

<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">

<join table="CREDIT_PAYMENT">
<property name="creditCardType" column="CCTYPE"/>
...

</join>
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">

<join table="CASH_PAYMENT">
...

</join>
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">

<join table="CHEQUE_PAYMENT" fetch="select">
...

</join>
</subclass>

</class>

The optional fetch="select" declaration tells Hibernate not to fetch the ChequePayment subclass data using an
outer join when querying the superclass.

10.1.4. Mixing table per class hierarchy with table per subclass

Inheritance Mapping

Hibernate 3.0.5 101

You may even mix the table per hierarchy and table per subclass strategies using this approach:

<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">

<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">

<join table="CREDIT_PAYMENT">
<property name="creditCardType" column="CCTYPE"/>
...

</join>
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">

...
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">

...
</subclass>

</class>

For any of these mapping strategies, a polymorphic association to the root Payment class is mapped using
<many-to-one>.

<many-to-one name="payment" column="PAYMENT_ID" class="Payment"/>

10.1.5. Table per concrete class

There are two ways we could go about mapping the table per concrete class strategy. The first is to use
<union-subclass>.

<class name="Payment">
<id name="id" type="long" column="PAYMENT_ID">

<generator class="sequence"/>
</id>
<property name="amount" column="AMOUNT"/>
...
<union-subclass name="CreditCardPayment" table="CREDIT_PAYMENT">

<property name="creditCardType" column="CCTYPE"/>
...

</union-subclass>
<union-subclass name="CashPayment" table="CASH_PAYMENT">

...
</union-subclass>
<union-subclass name="ChequePayment" table="CHEQUE_PAYMENT">

...
</union-subclass>

</class>

Three tables are involved. Each table defines columns for all properties of the class, including inherited proper-
ties.

The limitation of this approach is that if a property is mapped on the superclass, the column name must be the
same on all subclass tables. (We might relax this in a future release of Hibernate.) The identity generator
strategy is not allowed in union subclass inheritance, indeed the primary key seed has to be shared accross all
unioned subclasses of a hierarchy.

10.1.6. Table per concrete class, using implicit polymorphism

Inheritance Mapping

Hibernate 3.0.5 102

An alternative approach is to make use of implicit polymorphism:

<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="id" type="long" column="CREDIT_PAYMENT_ID">

<generator class="native"/>
</id>
<property name="amount" column="CREDIT_AMOUNT"/>
...

</class>

<class name="CashPayment" table="CASH_PAYMENT">
<id name="id" type="long" column="CASH_PAYMENT_ID">

<generator class="native"/>
</id>
<property name="amount" column="CASH_AMOUNT"/>
...

</class>

<class name="ChequePayment" table="CHEQUE_PAYMENT">
<id name="id" type="long" column="CHEQUE_PAYMENT_ID">

<generator class="native"/>
</id>
<property name="amount" column="CHEQUE_AMOUNT"/>
...

</class>

Notice that nowhere do we mention the Payment interface explicitly. Also notice that properties of Payment are
mapped in each of the subclasses. If you want to avoid duplication, consider using XML entities (e.g. [

<!ENTITY allproperties SYSTEM "allproperties.xml">] in the DOCTYPE declartion and &allproperties;

in the mapping).

The disadvantage of this approach is that Hibernate does not generate SQL UNIONs when performing poly-
morphic queries.

For this mapping strategy, a polymorphic association to Payment is usually mapped using <any>.

<any name="payment" meta-type="string" id-type="long">
<meta-value value="CREDIT" class="CreditCardPayment"/>
<meta-value value="CASH" class="CashPayment"/>
<meta-value value="CHEQUE" class="ChequePayment"/>
<column name="PAYMENT_CLASS"/>
<column name="PAYMENT_ID"/>

</any>

10.1.7. Mixing implicit polymorphism with other inheritance mappings

There is one further thing to notice about this mapping. Since the subclasses are each mapped in their own
<class> element (and since Payment is just an interface), each of the subclasses could easily be part of another
inheritance hierarchy! (And you can still use polymorphic queries against the Payment interface.)

<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="id" type="long" column="CREDIT_PAYMENT_ID">

<generator class="native"/>
</id>
<discriminator column="CREDIT_CARD" type="string"/>
<property name="amount" column="CREDIT_AMOUNT"/>
...
<subclass name="MasterCardPayment" discriminator-value="MDC"/>
<subclass name="VisaPayment" discriminator-value="VISA"/>

</class>

<class name="NonelectronicTransaction" table="NONELECTRONIC_TXN">
<id name="id" type="long" column="TXN_ID">

Inheritance Mapping

Hibernate 3.0.5 103

<generator class="native"/>
</id>
...
<joined-subclass name="CashPayment" table="CASH_PAYMENT">

<key column="PAYMENT_ID"/>
<property name="amount" column="CASH_AMOUNT"/>
...

</joined-subclass>
<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">

<key column="PAYMENT_ID"/>
<property name="amount" column="CHEQUE_AMOUNT"/>
...

</joined-subclass>
</class>

Once again, we don't mention Payment explicitly. If we execute a query against the Payment interface - for ex-
ample, from Payment - Hibernate automatically returns instances of CreditCardPayment (and its subclasses,
since they also implement Payment), CashPayment and ChequePayment but not instances of Nonelectronic-

Transaction.

10.2. Limitations

There are certain limitations to the "implicit polymorphism" approach to the table per concrete-class mapping
strategy. There are somewhat less restrictive limitations to <union-subclass> mappings.

The following table shows the limitations of table per concrete-class mappings, and of implicit polymorphism,
in Hibernate.

Table 10.1. Features of inheritance mappings

Inherit-
ance
strategy

Poly-
morphic
many-
to-one

Poly-
morphic
one-to-one

Poly-
morphic
one-
to-many

Poly-
morphic
many-
to-many

Poly-
morphic
load()/get

()

Poly-
morphic
queries

Poly-
morphic
joins

table per
class-
hierarchy

<many-to-o

ne>

<one-to-on

e>

<one-to-ma

ny>

<many-to-m

any>

s.get(Paym

ent.class,

id)

from Pay-

ment p

from Order

o join

o.payment

p

table per
subclass

<many-to-o

ne>

<one-to-on

e>

<one-to-ma

ny>

<many-to-m

any>

s.get(Paym

ent.class,

id)

from Pay-

ment p

from Order

o join

o.payment

p

table per
concrete-
class
(union-subc
lass)

<many-to-o

ne>

<one-to-on

e>

<one-to-ma

ny> (for
in-

verse="tru

e" only)

<many-to-m

any>

s.get(Paym

ent.class,

id)

from Pay-

ment p

from Order

o join

o.payment

p

table per
concrete
class
(implicit
polymorph-

<any> not suppor-
ted

not suppor-
ted

<many-to-a

ny>

s.createCr

iter-

ia(Payment

.class).ad

d(Re-

from Pay-

ment p

not suppor-
ted

Inheritance Mapping

Hibernate 3.0.5 104

Inherit-
ance
strategy

Poly-
morphic
many-
to-one

Poly-
morphic
one-to-one

Poly-
morphic
one-
to-many

Poly-
morphic
many-
to-many

Poly-
morphic
load()/get

()

Poly-
morphic
queries

Poly-
morphic
joins

ism) stric-

tions.idEq

(id)

).uniqueRe

sult()

Inheritance Mapping

Hibernate 3.0.5 105

Chapter 11. Working with objects
Hibernate is a full object/relational mapping solution that not only shields the developer from the details of the
underlying database management system, but also offers state management of objects. This is, contrary to the
management of SQL statements in common JDBC/SQL persistence layers, a very natural object-oriented
view of persistence in Java applications.

In other words, Hibernate application developers should always think about the state of their objects, and not
necessarily about the execution of SQL statements. This part is taken care of by Hibernate and is only relevant
for the application developer when tuning the performance of the system.

11.1. Hibernate object states

Hibernate defines and supports the following object states:

• Transient - an object is transient if it has just been instantiated using the new operator, and it is not associ-
ated with a Hibernate Session. It has no persistent representation in the database and no identifier value has
been assigned. Transient instances will be destroyed by the garbage collector if the application doesn't hold
a reference anymore. Use the Hibernate Session to make an object persistent (and let Hibernate take care of
the SQL statements that need to be executed for this transition).

• Persistent - a persistent instance has a representation in the database and an identifier value. It might just
have been saved or loaded, however, it is by definition in the scope of a Session. Hibernate will detect any
changes made to an object in persistent state and synchronize the state with the database when the unit of
work completes. Developers don't execute manual UPDATE statements, or DELETE statements when an object
should be made transient.

• Detached - a detached instance is an object that has been persistent, but its Session has been closed. The
reference to the object is still valid, of course, and the detached instance might even be modified in this
state. A detached instance can be reattached to a new Session at a later point in time, making it (and all the
modifications) persistent again. This feature enables a programming model for long running units of work
that require user think-time. We call them application transactions, i.e. a unit of work from the point of
view of the user.

We'll now discuss the states and state transitions (and the Hibernate methods that trigger a transition) in more
detail.

11.2. Making objects persistent

Newly instantiated instances of a a persistent class are considered transient by Hibernate. We can make a tran-
sient instance persistent by associating it with a session:

DomesticCat fritz = new DomesticCat();
fritz.setColor(Color.GINGER);
fritz.setSex('M');
fritz.setName("Fritz");
Long generatedId = (Long) sess.save(fritz);

If Cat has a generated identifier, the identifier is generated and assigned to the cat when save() is called. If
Cat has an assigned identifier, or a composite key, the identifier should be assigned to the cat instance before
calling save(). You may also use persist() instead of save(), with the semantics defined in the EJB3 early

Hibernate 3.0.5 106

draft.

Alternatively, you may assign the identifier using an overloaded version of save().

DomesticCat pk = new DomesticCat();
pk.setColor(Color.TABBY);
pk.setSex('F');
pk.setName("PK");
pk.setKittens(new HashSet());
pk.addKitten(fritz);
sess.save(pk, new Long(1234));

If the object you make persistent has associated objects (e.g. the kittens collection in the previous example),
these objects may be made persistent in any order you like unless you have a NOT NULL constraint upon a for-
eign key column. There is never a risk of violating foreign key constraints. However, you might violate a NOT

NULL constraint if you save() the objects in the wrong order.

Usually you don't bother with this detail, as you'll very likely use Hibernate's transitive persistence feature to
save the associated objects automatically. Then, even NOT NULL constraint violations don't occur - Hibernate
will take care of everything. Transitive persistence is discussed later in this chapter.

11.3. Loading an object

The load() methods of Session gives you a way to retrieve a persistent instance if you already know its identi-
fier. load() takes a class object and will load the state into a newly instantiated instance of that class, in persist-
ent state.

Cat fritz = (Cat) sess.load(Cat.class, generatedId);

// you need to wrap primitive identifiers
long pkId = 1234;
DomesticCat pk = (DomesticCat) sess.load(Cat.class, new Long(pkId));

Alternatively, you can load state into a given instance:

Cat cat = new DomesticCat();
// load pk's state into cat
sess.load(cat, new Long(pkId));
Set kittens = cat.getKittens();

Note that load() will throw an unrecoverable exception if there is no matching database row. If the class is
mapped with a proxy, load() just returns an uninitialized proxy and does not actually hit the database until you
invoke a method of the proxy. This behaviour is very useful if you wish to create an association to an object
without actually loading it from the database. It also allows multiple instances to be loaded as a batch if batch-
size is defined for the class mapping.

If you are not certain that a matching row exists, you should use the get() method, which hits the database im-
mediately and returns null if there is no matching row.

Cat cat = (Cat) sess.get(Cat.class, id);
if (cat==null) {

cat = new Cat();
sess.save(cat, id);

}
return cat;

You may even load an object using an SQL SELECT ... FOR UPDATE, using a LockMode. See the API docu-

Working with objects

Hibernate 3.0.5 107

mentation for more information.

Cat cat = (Cat) sess.get(Cat.class, id, LockMode.UPGRADE);

Note that any associated instances or contained collections are not selected FOR UPDATE, unless you decide to
specify lock or all as a cascade style for the association.

It is possible to re-load an object and all its collections at any time, using the refresh() method. This is useful
when database triggers are used to initialize some of the properties of the object.

sess.save(cat);
sess.flush(); //force the SQL INSERT
sess.refresh(cat); //re-read the state (after the trigger executes)

An important question usually appears at this point: How much does Hibernate load from the database and how
many SQL SELECTs will it use? This depends on the fetching strategy and is explained in Section 20.1,
“Fetching strategies”.

11.4. Querying

If you don't know the identifiers of the objects you are looking for, you need a query. Hibernate supports an
easy-to-use but powerful object oriented query language (HQL). For programmatic query creation, Hibernate
supports a sophisticated Criteria and Example query feature (QBC and QBE). You may also express your query
in the native SQL of your database, with optional support from Hibernate for result set conversion into objects.

11.4.1. Executing queries

HQL and native SQL queries are represented with an instance of org.hibernate.Query. This interface offers
methods for parameter binding, result set handling, and for the execution of the actual query. You always ob-
tain a Query using the current Session:

List cats = session.createQuery(
"from Cat as cat where cat.birthdate < ?")
.setDate(0, date)
.list();

List mothers = session.createQuery(
"select mother from Cat as cat join cat.mother as mother where cat.name = ?")
.setString(0, name)
.list();

List kittens = session.createQuery(
"from Cat as cat where cat.mother = ?")
.setEntity(0, pk)
.list();

Cat mother = (Cat) session.createQuery(
"select cat.mother from Cat as cat where cat = ?")
.setEntity(0, izi)
.uniqueResult();

A query is usually executed by invoking list(), the result of the query will be loaded completely into a collec-
tion in memory. Entity instances retrieved by a query are in persistent state. The uniqueResult() method offers
a shortcut if you know your query will only return a single object.

Iterating results

Working with objects

Hibernate 3.0.5 108

Occasionally, you might be able to achieve better performance by executing the query using the iterate()

method. This will only usually be the case if you expect that the actual entity instances returned by the query
will already be in the session or second-level cache. If they are not already cached, iterate() will be slower
than list() and might require many database hits for a simple query, usually 1 for the initial select which only
returns identifiers, and n additional selects to initialize the actual instances.

// fetch ids
Iterator iter = sess.createQuery("from eg.Qux q order by q.likeliness").iterate();
while (iter.hasNext()) {

Qux qux = (Qux) iter.next(); // fetch the object
// something we couldnt express in the query
if (qux.calculateComplicatedAlgorithm()) {

// delete the current instance
iter.remove();
// dont need to process the rest
break;

}
}

Queries that return tuples

Hibernate queries sometimes return tuples of objects, in which case each tuple is returned as an array:

Iterator kittensAndMothers = sess.createQuery(
"select kitten, mother from Cat kitten join kitten.mother mother")
.list()
.iterator();

while (kittensAndMothers.hasNext()) {
Object[] tuple = (Object[]) kittensAndMothers.next();
Cat kitten = tuple[0];
Cat mother = tuple[1];
....

}

Scalar results

Queries may specify a property of a class in the select clause. They may even call SQL aggregate functions.
Properties or aggregates are considered "scalar" results (and not entities in persistent state).

Iterator results = sess.createQuery(
"select cat.color, min(cat.birthdate), count(cat) from Cat cat " +
"group by cat.color")
.list()
.iterator();

while (results.hasNext()) {
Object[] row = results.next();
Color type = (Color) row[0];
Date oldest = (Date) row[1];
Integer count = (Integer) row[2];
.....

}

Bind parameters

Methods on Query are provided for binding values to named parameters or JDBC-style ? parameters. Contrary
to JDBC, Hibernate numbers parameters from zero. Named parameters are identifiers of the form :name in the
query string. The advantages of named parameters are:

• named parameters are insensitive to the order they occur in the query string

Working with objects

Hibernate 3.0.5 109

• they may occur multiple times in the same query
• they are self-documenting

//named parameter (preferred)
Query q = sess.createQuery("from DomesticCat cat where cat.name = :name");
q.setString("name", "Fritz");
Iterator cats = q.iterate();

//positional parameter
Query q = sess.createQuery("from DomesticCat cat where cat.name = ?");
q.setString(0, "Izi");
Iterator cats = q.iterate();

//named parameter list
List names = new ArrayList();
names.add("Izi");
names.add("Fritz");
Query q = sess.createQuery("from DomesticCat cat where cat.name in (:namesList)");
q.setParameterList("namesList", names);
List cats = q.list();

Pagination

If you need to specify bounds upon your result set (the maximum number of rows you want to retrieve and / or
the first row you want to retrieve) you should use methods of the Query interface:

Query q = sess.createQuery("from DomesticCat cat");
q.setFirstResult(20);
q.setMaxResults(10);
List cats = q.list();

Hibernate knows how to translate this limit query into the native SQL of your DBMS.

Scrollable iteration

If your JDBC driver supports scrollable ResultSets, the Query interface may be used to obtain a Scrolla-

bleResults object, which allows flexible navigation of the query results.

Query q = sess.createQuery("select cat.name, cat from DomesticCat cat " +
"order by cat.name");

ScrollableResults cats = q.scroll();
if (cats.first()) {

// find the first name on each page of an alphabetical list of cats by name
firstNamesOfPages = new ArrayList();
do {

String name = cats.getString(0);
firstNamesOfPages.add(name);

}
while (cats.scroll(PAGE_SIZE));

// Now get the first page of cats
pageOfCats = new ArrayList();
cats.beforeFirst();
int i=0;
while((PAGE_SIZE > i++) && cats.next()) pageOfCats.add(cats.get(1));

}
cats.close()

Note that an open database connection (and cursor) is required for this functionality, use setMaxResult()/set-
FirstResult() if you need offline pagination functionality.

Working with objects

Hibernate 3.0.5 110

Externalizing named queries

You may also define named queries in the mapping document. (Remember to use a CDATA section if your query
contains characters that could be interpreted as markup.)

<query name="eg.DomesticCat.by.name.and.minimum.weight"><![CDATA[
from eg.DomesticCat as cat

where cat.name = ?
and cat.weight > ?

]]></query>

Parameter binding and executing is done programatically:

Query q = sess.getNamedQuery("eg.DomesticCat.by.name.and.minimum.weight");
q.setString(0, name);
q.setInt(1, minWeight);
List cats = q.list();

Note that the actual program code is independent of the query language that is used, you may also define native
SQL queries in metadata, or migrate existing queries to Hibernate by placing them in mapping files.

11.4.2. Filtering collections

A collection filter is a special type of query that may be applied to a persistent collection or array. The query
string may refer to this, meaning the current collection element.

Collection blackKittens = session.createFilter(
pk.getKittens(),
"where this.color = ?")
.setParameter(Color.BLACK, Hibernate.custom(ColorUserType.class))
.list()

);

The returned collection is considered a bag, and it's a copy of the given collection. The original collection is not
modified (this is contrary to the implication of the name "filter", but consistent with expected behavior).

Observe that filters do not require a from clause (though they may have one if required). Filters are not limited
to returning the collection elements themselves.

Collection blackKittenMates = session.createFilter(
pk.getKittens(),
"select this.mate where this.color = eg.Color.BLACK.intValue")
.list();

Even an empty filter query is useful, e.g. to load a subset of elements in a huge collection:

Collection tenKittens = session.createFilter(
mother.getKittens(), "")
.setFirstResult(0).setMaxResults(10)
.list();

11.4.3. Criteria queries

HQL is extremely powerful but some developers prefer to build queries dynamically, using an object-oriented
API, rather than building query strings. Hibernate provides an intuitive Criteria query API for these cases:

Criteria crit = session.createCriteria(Cat.class);

Working with objects

Hibernate 3.0.5 111

crit.add(Expression.eq("color", eg.Color.BLACK));
crit.setMaxResults(10);
List cats = crit.list();

The Criteria and the associated Example API are discussed in more detail in Chapter 16, Criteria Queries.

11.4.4. Queries in native SQL

You may express a query in SQL, using createSQLQuery() and let Hibernate take care of the mapping from
result sets to objects. Note that you may at any time call session.connection() and use the JDBC Connection

directly. If you chose to use the Hibernate API, you must enclose SQL aliases in braces:

List cats = session.createSQLQuery(
"SELECT {cat.*} FROM CAT {cat} WHERE ROWNUM<10",
"cat",
Cat.class

).list();

List cats = session.createSQLQuery(
"SELECT {cat}.ID AS {cat.id}, {cat}.SEX AS {cat.sex}, " +

"{cat}.MATE AS {cat.mate}, {cat}.SUBCLASS AS {cat.class}, ... " +
"FROM CAT {cat} WHERE ROWNUM<10",
"cat",
Cat.class

).list()

SQL queries may contain named and positional parameters, just like Hibernate queries. More information about
native SQL queries in Hibernate can be found in Chapter 17, Native SQL.

11.5. Modifying persistent objects

Transactional persistent instances (ie. objects loaded, saved, created or queried by the Session) may be manip-
ulated by the application and any changes to persistent state will be persisted when the Session is flushed
(discussed later in this chapter). There is no need to call a particular method (like update(), which has a differ-
ent purpose) to make your modifications persistent. So the most straightforward way to update the state of an
object is to load() it, and then manipulate it directly, while the Session is open:

DomesticCat cat = (DomesticCat) sess.load(Cat.class, new Long(69));
cat.setName("PK");
sess.flush(); // changes to cat are automatically detected and persisted

Sometimes this programming model is inefficient since it would require both an SQL SELECT (to load an ob-
ject) and an SQL UPDATE (to persist its updated state) in the same session. Therefore Hibernate offers an altern-
ate approach, using detached instances.

Note that Hibernate does not offer its own API for direct execution of UPDATE or DELETE statements. Hibernate
is a state management service, you don't have to think in statements to use it. JDBC is a perfect API for execut-
ing SQL statements, you can get a JDBC Connection at any time by calling session.connection(). Further-
more, the notion of mass operations conflicts with object/relational mapping for online transaction processing-
oriented applications. Future versions of Hibernate may however provide special mass operation functions. See
Chapter 14, Batch processing for some possible batch operation tricks.

11.6. Modifying detached objects

Working with objects

Hibernate 3.0.5 112

Many applications need to retrieve an object in one transaction, send it to the UI layer for manipulation, then
save the changes in a new transaction. Applications that use this kind of approach in a high-concurrency envir-
onment usually use versioned data to ensure isolation for the "long" unit of work.

Hibernate supports this model by providing for reattachment of detached instances using the Ses-

sion.update() or Session.merge() methods:

// in the first session
Cat cat = (Cat) firstSession.load(Cat.class, catId);
Cat potentialMate = new Cat();
firstSession.save(potentialMate);

// in a higher layer of the application
cat.setMate(potentialMate);

// later, in a new session
secondSession.update(cat); // update cat
secondSession.update(mate); // update mate

If the Cat with identifier catId had already been loaded by secondSession when the application tried to reat-
tach it, an exception would have been thrown.

Use update() if you are sure that the session does not contain an already persistent instance with the same
identifier, and merge() if you want to merge your modifications at any time without consideration of the state
of the session. In other words, update() is usually the first method you would call in a fresh session, ensuring
that reattachment of your detached instances is the first operation that is executed.

The application should individually update() detached instances reachable from the given detached instance if
and only if it wants their state also updated. This can be automated of course, using transitive persistence, see
Section 11.11, “Transitive persistence”.

The lock() method also allows an application to reassociate an object with a new session. However, the de-
tached instance has to be unmodified!

//just reassociate:
sess.lock(fritz, LockMode.NONE);
//do a version check, then reassociate:
sess.lock(izi, LockMode.READ);
//do a version check, using SELECT ... FOR UPDATE, then reassociate:
sess.lock(pk, LockMode.UPGRADE);

Note that lock() can be used with various LockModes, see the API documentation and the chapter on transac-
tion handling for more information. Reattachment is not the only usecase for lock().

Other models for long units of work are discussed in Section 12.3, “Optimistic concurrency control”.

11.7. Automatic state detection

Hibernate users have requested a general purpose method that either saves a transient instance by generating a
new identifier or updates/reattaches the detached instances associated with its current identifier. The saveOrUp-

date() method implements this functionality.

// in the first session
Cat cat = (Cat) firstSession.load(Cat.class, catID);

// in a higher tier of the application
Cat mate = new Cat();
cat.setMate(mate);

Working with objects

Hibernate 3.0.5 113

// later, in a new session
secondSession.saveOrUpdate(cat); // update existing state (cat has a non-null id)
secondSession.saveOrUpdate(mate); // save the new instance (mate has a null id)

The usage and semantics of saveOrUpdate() seems to be confusing for new users. Firstly, so long as you are
not trying to use instances from one session in another new session, you should not need to use update(), sa-
veOrUpdate(), or merge(). Some whole applications will never use either of these methods.

Usually update() or saveOrUpdate() are used in the following scenario:

• the application loads an object in the first session
• the object is passed up to the UI tier
• some modifications are made to the object
• the object is passed back down to the business logic tier
• the application persists these modifications by calling update() in a second session

saveOrUpdate() does the following:

• if the object is already persistent in this session, do nothing
• if another object associated with the session has the same identifier, throw an exception
• if the object has no identifier property, save() it
• if the object's identifier has the value assigned to a newly instantiated object, save() it
• if the object is versioned (by a <version> or <timestamp>), and the version property value is the same

value assigned to a newly instantiated object, save() it
• otherwise update() the object

and merge() is very different:

• if there is a persistent instance with the same identifier currently associated with the session, copy the state
of the given object onto the persistent instance

• if there is no persistent instance currently associated with the session, try to load it from the database, or
create a new persistent instance

• the persistent instance is returned
• the given instance does not become associated with the session, it remains detached

11.8. Deleting persistent objects

Session.delete() will remove an object's state from the database. Of course, your application might still hold
a reference to a deleted object. It's best to think of delete() as making a persistent instance transient.

sess.delete(cat);

You may delete objects in any order you like, without risk of foreign key constraint violations. It is still pos-
sible to violate a NOT NULL constraint on a foreign key column by deleting objects in the wrong order, e.g. if
you delete the parent, but forget to delete the children.

11.9. Replicating object between two different datastores

It is occasionally useful to be able to take a graph of persistent instances and make them persistent in a different
datastore, without regenerating identifier values.

//retrieve a cat from one database

Working with objects

Hibernate 3.0.5 114

Session session1 = factory1.openSession();
Transaction tx1 = session1.beginTransaction();
Cat cat = session1.get(Cat.class, catId);
tx1.commit();
session1.close();

//reconcile with a second database
Session session2 = factory2.openSession();
Transaction tx2 = session2.beginTransaction();
session2.replicate(cat, ReplicationMode.LATEST_VERSION);
tx2.commit();
session2.close();

The ReplicationMode determines how replicate() will deal with conflicts with existing rows in the database.

• ReplicationMode.IGNORE - ignore the object when there is an existing database row with the same identifi-
er

• ReplicationMode.OVERWRITE - overwrite any existing database row with the same identifier
• ReplicationMode.EXCEPTION - throw an exception if there is an existing database row with the same identi-

fier
• ReplicationMode.LATEST_VERSION - overwrite the row if its version number is earlier than the version

number of the object, or ignore the object otherwise

Usecases for this feature include reconciling data entered into different database instances, upgrading system
configuration information during product upgrades, rolling back changes made during non-ACID transactions
and more.

11.10. Flushing the Session

From time to time the Session will execute the SQL statements needed to synchronize the JDBC connection's
state with the state of objects held in memory. This process, flush, occurs by default at the following points

• before some query executions
• from org.hibernate.Transaction.commit()

• from Session.flush()

The SQL statements are issued in the following order

1. all entity insertions, in the same order the corresponding objects were saved using Session.save()

2. all entity updates
3. all collection deletions
4. all collection element deletions, updates and insertions
5. all collection insertions
6. all entity deletions, in the same order the corresponding objects were deleted using Session.delete()

(An exception is that objects using native ID generation are inserted when they are saved.)

Except when you explicity flush(), there are absolutely no guarantees about when the Session executes the
JDBC calls, only the order in which they are executed. However, Hibernate does guarantee that the
Query.list(..) will never return stale data; nor will they return the wrong data.

It is possible to change the default behavior so that flush occurs less frequently. The FlushMode class defines
three different modes: only flush at commit time (and only when the Hibernate Transaction API is used), flush
automatically using the explained routine, or never flush unless flush() is called explicitly. The last mode is
useful for long running units of work, where a Session is kept open and disconnected for a long time (see Sec-

Working with objects

Hibernate 3.0.5 115

tion 12.3.2, “Long session and automatic versioning”).

sess = sf.openSession();
Transaction tx = sess.beginTransaction();
sess.setFlushMode(FlushMode.COMMIT); // allow queries to return stale state

Cat izi = (Cat) sess.load(Cat.class, id);
izi.setName(iznizi);

// might return stale data
sess.find("from Cat as cat left outer join cat.kittens kitten");

// change to izi is not flushed!
...
tx.commit(); // flush occurs

During flush, an exception might occur (e.g. if a DML operation violates a constraint). Since handling excep-
tions involves some understanding of Hibernate's transactional behavior, we discuss it in Chapter 12, Transac-
tions And Concurrency.

11.11. Transitive persistence

It is quite cumbersome to save, delete, or reattach individual objects, especially if you deal with a graph of as-
sociated objects. A common case is a parent/child relationship. Consider the following example:

If the children in a parent/child relationship would be value typed (e.g. a collection of addresses or strings),
their lifecycle would depend on the parent and no further action would be required for convenient "cascading"
of state changes. When the parent is saved, the value-typed child objects are saved as well, when the parent is
deleted, the children will be deleted, etc. This even works for operations such as the removal of a child from the
collection; Hibernate will detect this and, since value-typed objects can't have shared references, delete the
child from the database.

Now consider the same scenario with parent and child objects being entities, not value-types (e.g. categories
and items, or parent and child cats). Entities have their own lifecycle, support shared references (so removing
an entity from the collection does not mean it can be deleted), and there is by default no cascading of state from
one entity to any other associated entities. Hibernate does not implement persistence by reachability by default.

For each basic operation of the Hibernate session - including persist(), merge(), saveOrUpdate(), de-

lete(), lock(), refresh(), evict(), replicate() - there is a corresponding cascade style. Respectively,
the cascade styles are named create, merge, save-update, delete, lock, refresh, evict, replicate.
If you want an operation to be cascaded along an association, you must indicate that in the mapping document.
For example:

<one-to-one name="person" cascade="persist"/>

Cascade styles my be combined:

<one-to-one name="person" cascade="persist,delete,lock"/>

You may even use cascade="all" to specify that all operations should be cascaded along the association. The
default cascade="none" specifies that no operations are to be cascaded.

A special cascade style, delete-orphan, applies only to one-to-many associations, and indicates that the de-

lete() operation should be applied to any child object that is removed from the association.

Recommendations:

Working with objects

Hibernate 3.0.5 116

• It doesn't usually make sense to enable cascade on a <many-to-one> or <many-to-many> association. Cas-
cade is often useful for <one-to-one> and <one-to-many> associations.

• If the child object's lifespan is bounded by the lifespan of the of the parent object make it a lifecycle object
by specifying cascade="all,delete-orphan".

• Otherwise, you might not need cascade at all. But if you think that you will often be working with the par-
ent and children together in the same transaction, and you want to save yourself some typing, consider us-
ing cascade="persist,merge,save-update".

Mapping an association (either a single valued association, or a collection) with cascade="all" marks the as-
sociation as a parent/child style relationship where save/update/delete of the parent results in save/update/delete
of the child or children.

Futhermore, a mere reference to a child from a persistent parent will result in save/update of the child. This
metaphor is incomplete, however. A child which becomes unreferenced by its parent is not automatically de-
leted, except in the case of a <one-to-many> association mapped with cascade="delete-orphan". The precise
semantics of cascading operations for a parent/child relationship are as follows:

• If a parent is passed to persist(), all children are passed to persist()

• If a parent is passed to merge(), all children are passed to merge()

• If a parent is passed to save(), update() or saveOrUpdate(), all children are passed to saveOrUpdate()

• If a transient or detached child becomes referenced by a persistent parent, it is passed to saveOrUpdate()

• If a parent is deleted, all children are passed to delete()

• If a child is dereferenced by a persistent parent, nothing special happens - the application should explicitly
delete the child if necessary - unless cascade="delete-orphan", in which case the "orphaned" child is de-
leted.

11.12. Using metadata

Hibernate requires a very rich meta-level model of all entity and value types. From time to time, this model is
very useful to the application itself. For example, the application might use Hibernate's metadata to implement
a "smart" deep-copy algorithm that understands which objects should be copied (eg. mutable value types) and
which should not (eg. immutable value types and, possibly, associated entities).

Hibernate exposes metadata via the ClassMetadata and CollectionMetadata interfaces and the Type hier-
archy. Instances of the metadata interfaces may be obtained from the SessionFactory.

Cat fritz =;
ClassMetadata catMeta = sessionfactory.getClassMetadata(Cat.class);

Object[] propertyValues = catMeta.getPropertyValues(fritz);
String[] propertyNames = catMeta.getPropertyNames();
Type[] propertyTypes = catMeta.getPropertyTypes();

// get a Map of all properties which are not collections or associations
Map namedValues = new HashMap();
for (int i=0; i<propertyNames.length; i++) {

if (!propertyTypes[i].isEntityType() && !propertyTypes[i].isCollectionType()) {
namedValues.put(propertyNames[i], propertyValues[i]);

}
}

Working with objects

Hibernate 3.0.5 117

Chapter 12. Transactions And Concurrency
The most important point about Hibernate and concurrency control is that it is very easy to understand. Hibern-
ate directly uses JDBC connections and JTA resources without adding any additional locking behavior. We
highly recommend you spend some time with the JDBC, ANSI, and transaction isolation specification of your
database management system. Hibernate only adds automatic versioning but does not lock objects in memory
or change the isolation level of your database transactions. Basically, use Hibernate like you would use direct
JDBC (or JTA/CMT) with your database resources.

However, in addition to automatic versioning, Hibernate also offers a (minor) API for pessimistic locking of
rows, using the SELECT FOR UPDATE syntax. This API is discussed later in this chapter.

We start the discussion of concurrency control in Hibernate with the granularity of Configuration, Session-
Factory, and Session, as well as database and long application transactions.

12.1. Session and transaction scopes

A SessionFactory is an expensive-to-create, threadsafe object intended to be shared by all application threads.
It is created once, usually on application startup, from a Configuration instance.

A Session is an inexpensive, non-threadsafe object that should be used once, for a single business process, a
single unit of work, and then discarded. A Session will not obtain a JDBC Connection (or a Datasource) un-
less it is needed, so you may safely open and close a Session even if you are not sure that data access will be
needed to serve a particular request. (This becomes important as soon as you are implementing some of the fol-
lowing patterns using request interception.)

To complete this picture you also have to think about database transactions. A database transaction has to be as
short as possible, to reduce lock contention in the database. Long database transactions will prevent your ap-
plication from scaling to highly concurrent load.

What is the scope of a unit of work? Can a single Hibernate Session span several database transactions or is
this a one-to-one relationship of scopes? When should you open and close a Session and how do you demarc-
ate the database transaction boundaries?

12.1.1. Unit of work

First, don't use the session-per-operation antipattern, that is, don't open and close a Session for every simple
database call in a single thread! Of course, the same is true for database transactions. Database calls in an ap-
plication are made using a planned sequence, they are grouped into atomic units of work. (Note that this also
means that auto-commit after every single SQL statement is useless in an application, this mode is intended for
ad-hoc SQL console work. Hibernate disables, or expects the application server to do so, auto-commit mode
immediately.)

The most common pattern in a multi-user client/server application is session-per-request. In this model, a re-
quest from the client is send to the server (where the Hibernate persistence layer runs), a new Hibernate Ses-

sion is opened, and all database operations are executed in this unit of work. Once the work has been com-
pleted (and the response for the client has been prepared), the session is flushed and closed. You would also use
a single database transaction to serve the clients request, starting and committing it when you open and close
the Session. The relationship between the two is one-to-one and this model is a perfect fit for many applica-
tions.

Hibernate 3.0.5 118

The challenge lies in the implementation: not only has the Session and transaction to be started and ended cor-
rectly, but they also have to be accessible for data access operations. The demarcation of a unit of work is
ideally implemented using an interceptor that runs when a request hits the server and before the response will
be send (i.e. a ServletFilter). We recommend to bind the Session to the thread that serves the request, using
a ThreadLocal variable. This allows easy access (like accessing a static variable) in all code that runs in this
thread. Depending on the database transaction demarcation mechanism you chose, you might also keep the
transaction context in a ThreadLocal variable. The implementation patterns for this are known as ThreadLocal
Session and Open Session in View. You can easily extend the HibernateUtil helper class shown earlier in this
documentation to implement this. Of course, you'd have to find a way to implement an interceptor and set it up
in your environment. See the Hibernate website for tips and examples.

12.1.2. Application transactions

The session-per-request pattern is not the only useful concept you can use to design units of work. Many busi-
ness processes require a whole series of interactions with the user interleaved with database accesses. In web
and enterprise applications it is not acceptable for a database transaction to span a user interaction. Consider the
following example:

• The first screen of a dialog opens, the data seen by the user has been loaded in a particular Session and
database transaction. The user is free to modify the objects.

• The user clicks "Save" after 5 minutes and expects his modifications to be made persistent; he also expects
that he was the only person editing this information and that no conflicting modification can occur.

We call this unit of work, from the point of view of the user, a long running application transaction. There are
many ways how you can implement this in your application.

A first naive implementation might keep the Session and database transaction open during user think time,
with locks held in the database to prevent concurrent modification, and to guarantee isolation and atomicity.
This is of course an anti-pattern, since lock contention would not allow the application to scale with the number
of concurrent users.

Clearly, we have to use several database transactions to implement the application transaction. In this case,
maintaining isolation of business processes becomes the partial responsibility of the application tier. A single
application transaction usually spans several database transactions. It will be atomic if only one of these data-
base transactions (the last one) stores the updated data, all others simply read data (e.g. in a wizard-style dialog
spanning several request/response cycles). This is easier to implement than it might sound, especially if you use
Hibernate's features:

• Automatic Versioning - Hibernate can do automatic optimistic concurrency control for you, it can automat-
ically detect if a concurrent modification occured during user think time.

• Detached Objects - If you decide to use the already discussed session-per-request pattern, all loaded in-
stances will be in detached state during user think time. Hibernate allows you to reattach the objects and
persist the modifications, the pattern is called session-per-request-with-detached-objects. Automatic ver-
sioning is used to isolate concurrent modifications.

• Long Session - The Hibernate Session may be disconnected from the underlying JDBC connection after the
database transaction has been committed, and reconnected when a new client request occurs. This pattern is
known as session-per-application-transaction and makes even reattachment unnecessary. Automatic ver-
sioning is used to isolate concurrent modifications.

Transactions And Concurrency

Hibernate 3.0.5 119

Both session-per-request-with-detached-objects and session-per-application-transaction have advantages and
disadvantages, we discuss them later in this chapter in the context of optimistic concurrency control.

12.1.3. Considering object identity

An application may concurrently access the same persistent state in two different Sessions. However, an in-
stance of a persistent class is never shared between two Session instances. Hence there are two different no-
tions of identity:

Database Identity
foo.getId().equals(bar.getId())

JVM Identity
foo==bar

Then for objects attached to a particular Session (i.e. in the scope of a Session) the two notions are equival-
ent, and JVM identity for database identity is guaranteed by Hibernate. However, while the application might
concurrently access the "same" (persistent identity) business object in two different sessions, the two instances
will actually be "different" (JVM identity). Conflicts are resolved using (automatic versioning) at flush/commit
time, using an optimistic approach.

This approach leaves Hibernate and the database to worry about concurrency; it also provides the best scalabil-
ity, since guaranteeing identity in single-threaded units of work only doesn't need expensive locking or other
means of synchronization. The application never needs to synchronize on any business object, as long as it
sticks to a single thread per Session. Within a Session the application may safely use == to compare objects.

However, an application that uses == outside of a Session, might see unexpected results. This might occur even
in some unexpected places, for example, if you put two detached instances into the same Set. Both might have
the same database identity (i.e. they represent the same row), but JVM identity is by definition not guaranteed
for instances in detached state. The developer has to override the equals() and hashCode() methods in persist-
ent classes and implement his own notion of object equality. There is one caveat: Never use the database identi-
fier to implement equality, use a business key, a combination of unique, usually immutable, attributes. The
database identifier will change if a transient object is made persistent. If the transient instance (usually together
with detached instances) is held in a Set, changing the hashcode breaks the contract of the Set. Attributes for
business keys don't have to be as stable as database primary keys, you only have to guarantee stability as long
as the objects are in the same Set. See the Hibernate website for a more thorough discussion of this issue. Also
note that this is not a Hibernate issue, but simply how Java object identity and equality has to be implemented.

12.1.4. Common issues

Never use the anti-patterns session-per-user-session or session-per-application (of course, there are rare excep-
tions to this rule). Note that some of the following issues might also appear with the recommended patterns,
make sure you understand the implications before making a design decision:

• A Session is not thread-safe. Things which are supposed to work concurrently, like HTTP requests, session
beans, or Swing workers, will cause race conditions if a Session instance would be shared. If you keep
your Hibernate Session in your HttpSession (discussed later), you should consider synchronizing access
to your Http session. Otherwise, a user that clicks reload fast enough may use the same Session in two con-
currently running threads.

• An exception thrown by Hibernate means you have to rollback your database transaction and close the Ses-

Transactions And Concurrency

Hibernate 3.0.5 120

sion immediately (discussed later in more detail). If your Session is bound to the application, you have to
stop the application. Rolling back the database transaction doesn't put your business objects back into the
state they were at the start of the transaction. This means the database state and the business objects do get
out of sync. Usually this is not a problem, because exceptions are not recoverable and you have to start over
after rollback anyway.

• The Session caches every object that is in persistent state (watched and checked for dirty state by Hibern-
ate). This means it grows endlessly until you get an OutOfMemoryException, if you keep it open for a long
time or simply load too much data. One solution for this is to call clear() and evict() to manage the Ses-

sion cache, but you most likely should consider a Stored Procedure if you need mass data operations. Some
solutions are shown in Chapter 14, Batch processing. Keeping a Session open for the duration of a user
session also means a high probability of stale data.

12.2. Database transaction demarcation

Datatabase (or system) transaction boundaries are always necessary. No communication with the database can
occur outside of a database transaction (this seems to confuse many developers who are used to the auto-
commit mode). Always use clear transaction boundaries, even for read-only operations. Depending on your
isolation level and database capabilities this might not be required but there is no downside if you always de-
marcate transactions explicitly.

A Hibernate application can run in non-managed (i.e. standalone, simple Web- or Swing applications) and man-
aged J2EE environments. In a non-managed environment, Hibernate is usually responsible for its own database
connection pool. The application developer has to manually set transaction boundaries, in other words, begin,
commit, or rollback database transactions himself. A managed environment usually provides container-man-
aged transactions, with the transaction assembly defined declaratively in deployment descriptors of EJB session
beans, for example. Programmatic transaction demarcation is then no longer necessary, even flushing the Ses-

sion is done automatically.

However, it is often desirable to keep your persistence layer portable. Hibernate offers a wrapper API called
Transaction that translates into the native transaction system of your deployment environment. This API is ac-
tually optional, but we strongly encourage its use unless you are in a CMT session bean.

Usually, ending a Session involves four distinct phases:

• flush the session
• commit the transaction
• close the session
• handle exceptions

Flushing the session has been discussed earlier, we'll now have a closer look at transaction demarcation and ex-
ception handling in both managed- and non-managed environments.

12.2.1. Non-managed environment

If a Hibernate persistence layer runs in a non-managed environment, database connections are usually handled
by Hibernate's pooling mechanism. The session/transaction handling idiom looks like this:

//Non-managed environment idiom
Session sess = factory.openSession();
Transaction tx = null;
try {

tx = sess.beginTransaction();

Transactions And Concurrency

Hibernate 3.0.5 121

// do some work
...

tx.commit();
}
catch (RuntimeException e) {

if (tx != null) tx.rollback();
throw e; // or display error message

}
finally {

sess.close();
}

You don't have to flush() the Session explicitly - the call to commit() automatically triggers the synchroniza-
tion.

A call to close() marks the end of a session. The main implication of close() is that the JDBC connection
will be relinquished by the session.

This Java code is portable and runs in both non-managed and JTA environments.

You will very likely never see this idiom in business code in a normal application; fatal (system) exceptions
should always be caught at the "top". In other words, the code that executes Hibernate calls (in the persistence
layer) and the code that handles RuntimeException (and usually can only clean up and exit) are in different lay-
ers. This can be a challenge to design yourself and you should use J2EE/EJB container services whenever they
are available. Exception handling is discussed later in this chapter.

Note that you should select org.hibernate.transaction.JDBCTransactionFactory (which is the default).

12.2.2. Using JTA

If your persistence layer runs in an application server (e.g. behind EJB session beans), every datasource con-
nection obtained by Hibernate will automatically be part of the global JTA transaction. Hibernate offers two
strategies for this integration.

If you use bean-managed transactions (BMT) Hibernate will tell the application server to start and end a BMT
transaction if you use the Transaction API. So, the transaction management code is identical to the non-
managed environment.

// BMT idiom
Session sess = factory.openSession();
Transaction tx = null;
try {

tx = sess.beginTransaction();

// do some work
...

tx.commit();
}
catch (RuntimeException e) {

if (tx != null) tx.rollback();
throw e; // or display error message

}
finally {

sess.close();
}

With CMT, transaction demarcation is done in session bean deployment descriptors, not programatically. If you

Transactions And Concurrency

Hibernate 3.0.5 122

don't want to manually flush and close the Session yourself, just set hibern-

ate.transaction.flush_before_completion to true, hibernate.connection.release_mode to
after_statement or auto and hibernate.transaction.auto_close_session to true. Hibernate will then
automatically flush and close the Session for you. The only thing left is to rollback the transaction when an ex-
ception occurs. Fortunately, in a CMT bean, even this happens automatically, since an unhandled RuntimeEx-

ception thrown by a session bean method tells the container to set the global transaction to rollback. This
means you do not need to use the Hibernate Transaction API at all in CMT.

Note that you should choose org.hibernate.transaction.JTATransactionFactory in a BMT session bean,
and org.hibernate.transaction.CMTTransactionFactory in a CMT session bean, when you configure Hi-
bernate's transaction factory. Remember to also set org.hibernate.transaction.manager_lookup_class.

If you work in a CMT environment, and use automatic flushing and closing of the session, you might also want
to use the same session in different parts of your code. Typically, in a non-managed environment you would
use a ThreadLocal variable to hold the session, but a single EJB request might execute in different threads (e.g.
session bean calling another session bean). If you don't want to bother passing your Session instance around,
the SessionFactory provides the getCurrentSession() method, which returns a session that is bound to the
JTA transaction context. This is the easiest way to integrate Hibernate into an application! The "current" ses-
sion always has auto-flush, auto-close and auto-connection-release enabled (regardless of the above property
settings). Our session/transaction management idiom is reduced to this:

// CMT idiom
Session sess = factory.getCurrentSession();

// do some work
...

In other words, all you have to do in a managed environment is call SessionFactory.getCurrentSession(),
do your data access work, and leave the rest to the container. Transaction boundaries are set declaratively in the
deployment descriptors of your session bean. The lifecycle of the session is completely managed by Hibernate.

There is one caveat to the use of after_statement connection release mode. Due to a silly limitation of the
JTA spec, it is not possible for Hibernate to automatically clean up any unclosed ScrollableResults or Iter-
ator instances returned by scroll() or iterate(). You must release the underlying database cursor by calling
ScrollableResults.close() or Hibernate.close(Iterator) explicity from a finally block. (Of course,
most applications can easily avoid using scroll() or iterate() at all from the CMT code.)

12.2.3. Exception handling

If the Session throws an exception (including any SQLException), you should immediately rollback the data-
base transaction, call Session.close() and discard the Session instance. Certain methods of Session will not
leave the session in a consistent state. No exception thrown by Hibernate can be treated as recoverable. Ensure
that the Session will be closed by calling close() in a finally block.

The HibernateException, which wraps most of the errors that can occur in a Hibernate persistence layer, is an
unchecked exception (it wasn't in older versions of Hibernate). In our opinion, we shouldn't force the applica-
tion developer to catch an unrecoverable exception at a low layer. In most systems, unchecked and fatal excep-
tions are handled in one of the first frames of the method call stack (i.e. in higher layers) and an error message
is presented to the application user (or some other appropriate action is taken). Note that Hibernate might also
throw other unchecked exceptions which are not a HibernateException. These are, again, not recoverable and
appropriate action should be taken.

Hibernate wraps SQLExceptions thrown while interacting with the database in a JDBCException. In fact, Hi-

Transactions And Concurrency

Hibernate 3.0.5 123

bernate will attempt to convert the eexception into a more meningful subclass of JDBCException. The underly-
ing SQLException is always available via JDBCException.getCause(). Hibernate converts the SQLException

into an appropriate JDBCException subclass using the SQLExceptionConverter attached to the SessionFact-

ory. By default, the SQLExceptionConverter is defined by the configured dialect; however, it is also possible
to plug in a custom implementation (see the javadocs for the SQLExceptionConverterFactory class for de-
tails). The standard JDBCException subtypes are:

• JDBCConnectionException - indicates an error with the underlying JDBC communication.
• SQLGrammarException - indicates a grammar or syntax problem with the issued SQL.
• ConstraintViolationException - indicates some form of integrity constraint violation.
• LockAcquisitionException - indicates an error acquiring a lock level necessary to perform the requested

operation.
• GenericJDBCException - a generic exception which did not fall into any of the other categories.

12.3. Optimistic concurrency control

The only approach that is consistent with high concurrency and high scalability is optimistic concurrency con-
trol with versioning. Version checking uses version numbers, or timestamps, to detect conflicting updates (and
to prevent lost updates). Hibernate provides for three possible approaches to writing application code that uses
optimistic concurrency. The use cases we show are in the context of long application transactions but version
checking also has the benefit of preventing lost updates in single database transactions.

12.3.1. Application version checking

In an implementation without much help from Hibernate, each interaction with the database occurs in a new
Session and the developer is responsible for reloading all persistent instances from the database before manip-
ulating them. This approach forces the application to carry out its own version checking to ensure application
transaction isolation. This approach is the least efficient in terms of database access. It is the approach most
similar to entity EJBs.

// foo is an instance loaded by a previous Session
session = factory.openSession();
Transaction t = session.beginTransaction();
int oldVersion = foo.getVersion();
session.load(foo, foo.getKey()); // load the current state
if (oldVersion!=foo.getVersion) throw new StaleObjectStateException();
foo.setProperty("bar");
t.commit();
session.close();

The version property is mapped using <version>, and Hibernate will automatically increment it during flush if
the entity is dirty.

Of course, if you are operating in a low-data-concurrency environment and don't require version checking, you
may use this approach and just skip the version check. In that case, last commit wins will be the default strategy
for your long application transactions. Keep in mind that this might confuse the users of the application, as they
might experience lost updates without error messages or a chance to merge conflicting changes.

Clearly, manual version checking is only feasible in very trivial circumstances and not practical for most ap-
plications. Often not only single instances, but complete graphs of modified ojects have to be checked. Hibern-
ate offers automatic version checking with either long Session or detached instances as the design paradigm.

12.3.2. Long session and automatic versioning

Transactions And Concurrency

Hibernate 3.0.5 124

A single Session instance and its persistent instances are used for the whole application transaction. Hibernate
checks instance versions at flush time, throwing an exception if concurrent modification is detected. It's up to
the developer to catch and handle this exception (common options are the opportunity for the user to merge
changes or to restart the business process with non-stale data).

The Session is disconnected from any underlying JDBC connection when waiting for user interaction. This ap-
proach is the most efficient in terms of database access. The application need not concern itself with version
checking or with reattaching detached instances, nor does it have to reload instances in every database transac-
tion.

// foo is an instance loaded earlier by the Session
session.reconnect(); // Obtain a new JDBC connection
Transaction t = session.beginTransaction();
foo.setProperty("bar");
t.commit(); // End database transaction, flushing the change and checking the version
session.disconnect(); // Return JDBC connection

The foo object still knows which Session it was loaded in. Session.reconnect() obtains a new connection (or
you may supply one) and resumes the session. The method Session.disconnect() will disconnect the session
from the JDBC connection and return the connection to the pool (unless you provided the connection). After re-
connection, to force a version check on data you aren't updating, you may call Session.lock() with Lock-

Mode.READ on any objects that might have been updated by another transaction. You don't need to lock any data
that you are updating.

If the explicit calls to disconnect() and reconnect() are too onerous, you may instead use hibern-

ate.connection.release_mode.

This pattern is problematic if the Session is too big to be stored during user think time, e.g. an HttpSession

should be kept as small as possible. As the Session is also the (mandatory) first-level cache and contains all
loaded objects, we can probably use this strategy only for a few request/response cycles. This is indeed recom-
mended, as the Session will soon also have stale data.

Also note that you should keep the disconnected Session close to the persistence layer. In other words, use an
EJB stateful session bean to hold the Session and don't transfer it to the web layer (or even serialize it to a sep-
arate tier) to store it in the HttpSession.

12.3.3. Detached objects and automatic versioning

Each interaction with the persistent store occurs in a new Session. However, the same persistent instances are
reused for each interaction with the database. The application manipulates the state of detached instances ori-
ginally loaded in another Session and then reattaches them using Session.update(), Ses-

sion.saveOrUpdate(), or Session.merge().

// foo is an instance loaded by a previous Session
foo.setProperty("bar");
session = factory.openSession();
Transaction t = session.beginTransaction();
session.saveOrUpdate(foo); // Use merge() if "foo" might have been loaded already
t.commit();
session.close();

Again, Hibernate will check instance versions during flush, throwing an exception if conflicting updates oc-
cured.

You may also call lock() instead of update() and use LockMode.READ (performing a version check, bypassing
all caches) if you are sure that the object has not been modified.

Transactions And Concurrency

Hibernate 3.0.5 125

12.3.4. Customizing automatic versioning

You may disable Hibernate's automatic version increment for particular properties and collections by setting the
optimistic-lock mapping attribute to false. Hibernate will then no longer increment versions if the property
is dirty.

Legacy database schemas are often static and can't be modified. Or, other applications might also access the
same database and don't know how to handle version numbers or even timestamps. In both cases, versioning
can't rely on a particular column in a table. To force a version check without a version or timestamp property
mapping, with a comparison of the state of all fields in a row, turn on optimistic-lock="all" in the <class>

mapping. Note that this concepetually only works if Hibernate can compare the old and new state, i.e. if you
use a single long Session and not session-per-request-with-detached-objects.

Sometimes concurrent modification can be permitted as long as the changes that have been made don't overlap.
If you set optimistic-lock="dirty" when mapping the <class>, Hibernate will only compare dirty fields dur-
ing flush.

In both cases, with dedicated version/timestamp columns or with full/dirty field comparison, Hibernate uses a
single UPDATE statement (with an appropriate WHERE clause) per entity to execute the version check and update
the information. If you use transitive persistence to cascade reattachment to associated entities, Hibernate might
execute uneccessary updates. This is usually not a problem, but on update triggers in the database might be ex-
ecuted even when no changes have been made to detached instances. You can customize this behavior by set-
ting select-before-update="true" in the <class> mapping, forcing Hibernate to SELECT the instance to en-
sure that changes did actually occur, before updating the row.

12.4. Pessimistic Locking

It is not intended that users spend much time worring about locking strategies. Its usually enough to specify an
isolation level for the JDBC connections and then simply let the database do all the work. However, advanced
users may sometimes wish to obtain exclusive pessimistic locks, or re-obtain locks at the start of a new transac-
tion.

Hibernate will always use the locking mechanism of the database, never lock objects in memory!

The LockMode class defines the different lock levels that may be acquired by Hibernate. A lock is obtained by
the following mechanisms:

• LockMode.WRITE is acquired automatically when Hibernate updates or inserts a row.
• LockMode.UPGRADE may be acquired upon explicit user request using SELECT ... FOR UPDATE on databases

which support that syntax.
• LockMode.UPGRADE_NOWAIT may be acquired upon explicit user request using a SELECT ... FOR UPDATE

NOWAIT under Oracle.
• LockMode.READ is acquired automatically when Hibernate reads data under Repeatable Read or Serializable

isolation level. May be re-acquired by explicit user request.
• LockMode.NONE represents the absence of a lock. All objects switch to this lock mode at the end of a Trans-

action. Objects associated with the session via a call to update() or saveOrUpdate() also start out in this
lock mode.

The "explicit user request" is expressed in one of the following ways:

• A call to Session.load(), specifying a LockMode.
• A call to Session.lock().
• A call to Query.setLockMode().

Transactions And Concurrency

Hibernate 3.0.5 126

If Session.load() is called with UPGRADE or UPGRADE_NOWAIT, and the requested object was not yet loaded by
the session, the object is loaded using SELECT ... FOR UPDATE. If load() is called for an object that is already
loaded with a less restrictive lock than the one requested, Hibernate calls lock() for that object.

Session.lock() performs a version number check if the specified lock mode is READ, UPGRADE or UP-

GRADE_NOWAIT. (In the case of UPGRADE or UPGRADE_NOWAIT, SELECT ... FOR UPDATE is used.)

If the database does not support the requested lock mode, Hibernate will use an appropriate alternate mode
(instead of throwing an exception). This ensures that applications will be portable.

Transactions And Concurrency

Hibernate 3.0.5 127

Chapter 13. Interceptors and events
It is often useful for the application to react to certain events that occur inside Hibernate. This allows imple-
mentation of certain kinds of generic functionality, and extension of Hibernate functionality.

13.1. Interceptors

The Interceptor interface provides callbacks from the session to the application allowing the application to in-
spect and/or manipulate properties of a persistent object before it is saved, updated, deleted or loaded. One pos-
sible use for this is to track auditing information. For example, the following Interceptor automatically sets
the createTimestamp when an Auditable is created and updates the lastUpdateTimestamp property when an
Auditable is updated.

package org.hibernate.test;

import java.io.Serializable;
import java.util.Date;
import java.util.Iterator;

import org.hibernate.Interceptor;
import org.hibernate.type.Type;

public class AuditInterceptor implements Interceptor, Serializable {

private int updates;
private int creates;

public void onDelete(Object entity,
Serializable id,
Object[] state,
String[] propertyNames,
Type[] types) {

// do nothing
}

public boolean onFlushDirty(Object entity,
Serializable id,
Object[] currentState,
Object[] previousState,
String[] propertyNames,
Type[] types) {

if (entity instanceof Auditable) {
updates++;
for (int i=0; i < propertyNames.length; i++) {

if ("lastUpdateTimestamp".equals(propertyNames[i])) {
currentState[i] = new Date();
return true;

}
}

}
return false;

}

public boolean onLoad(Object entity,
Serializable id,
Object[] state,
String[] propertyNames,
Type[] types) {

return false;
}

public boolean onSave(Object entity,
Serializable id,

Hibernate 3.0.5 128

Object[] state,
String[] propertyNames,
Type[] types) {

if (entity instanceof Auditable) {
creates++;
for (int i=0; i<propertyNames.length; i++) {

if ("createTimestamp".equals(propertyNames[i])) {
state[i] = new Date();
return true;

}
}

}
return false;

}

public void postFlush(Iterator entities) {
System.out.println("Creations: " + creates + ", Updates: " + updates);

}

public void preFlush(Iterator entities) {
updates=0;
creates=0;

}

...

}

The interceptor would be specified when a session is created.

Session session = sf.openSession(new AuditInterceptor());

You may also set an interceptor on a global level, using the Configuration:

new Configuration().setInterceptor(new AuditInterceptor());

13.2. Event system

If you have to react to particular events in your persistence layer, you may also use the Hibernate3 event archi-
tecture. The event system can be used in addition or as a replacement for interceptors.

Essentially all of the methods of the Session interface correlate to an event. You have a LoadEvent, a
FlushEvent, etc (consult the XML configuration-file DTD or the org.hibernate.event package for the full
list of defined event types). When a request is made of one of these methods, the Hibernate Session generates
an appropriate event and passes it to the configured event listener for that type. Out-of-the-box, these listeners
implement the same processing in which those methods always resulted. However, you are free to implement a
customization of one of the listener interfaces (i.e., the LoadEvent is processed by the registered implemenation
of the LoadEventListener interface), in which case their implementation would be responsible for processing
any load() requests made of the Session.

The listeners should be considered effectively singletons; meaning, they are shared between requests, and thus
should not save any state as instance variables.

A custom listener should implement the appropriate interface for the event it wants to process and/or extend
one of the convenience base classes (or even the default event listeners used by Hibernate out-of-the-box as
these are declared non-final for this purpose). Custom listeners can either be registered programmatically
through the Configuration object, or specified in the Hibernate configuration XML (declarative configuration
through the properties file is not supported). Here's an example of a custom load event listener:

Interceptors and events

Hibernate 3.0.5 129

public class MyLoadListener extends DefaultLoadEventListener {
// this is the single method defined by the LoadEventListener interface
public Object onLoad(LoadEvent event, LoadEventListener.LoadType loadType)

throws HibernateException {
if (!MySecurity.isAuthorized(event.getEntityClassName(), event.getEntityId())) {

throw MySecurityException("Unauthorized access");
}
return super.onLoad(event, loadType);

}
}

You also need a configuration entry telling Hibernate to use the listener instead of the default listener:

<hibernate-configuration>
<session-factory>

...
<listener type="load" class="MyLoadListener"/>

</session-factory>
</hibernate-configuration>

Instead, you may register it programmatically:

Configuration cfg = new Configuration();
cfg.getSessionEventListenerConfig().setLoadEventListener(new MyLoadListener());

Listeners registered declaratively cannot share instances. If the same class name is used in multiple
<listener/> elements, each reference will result in a separate instance of that class. If you need the capability
to share listener instances between listener types you must use the programmatic registration approach.

Why implement an interface and define the specific type during configuration? Well, a listener implementation
could implement multiple event listener interfaces. Having the type additionally defined during registration
makes it easier to turn custom listeners on or off during configuration.

13.3. Hibernate declarative security

Usually, declarative security in Hibernate applications is managed in a session facade layer. Now, Hibernate3
allows certain actions to be permissioned via JACC, and authorized via JAAS. This is optional functionality
built on top of the event architecture.

First, you must configure the appropriate event listeners, to enable the use of JAAS authorization.

<listener type="pre-delete" class="org.hibernate.secure.JACCPreDeleteEventListener"/>
<listener type="pre-update" class="org.hibernate.secure.JACCPreUpdateEventListener"/>
<listener type="pre-insert" class="org.hibernate.secure.JACCPreInsertEventListener"/>
<listener type="pre-load" class="org.hibernate.secure.JACCPreLoadEventListener"/>

Next, still in hibernate.cfg.xml, bind the permissions to roles:

<grant role="admin" entity-name="User" actions="insert,update,read"/>
<grant role="su" entity-name="User" actions="*"/>

The role names are the roles understood by your JACC provider.

Interceptors and events

Hibernate 3.0.5 130

Chapter 14. Batch processing
A naive approach to inserting 100 000 rows in the database using Hibernate might look like this:

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
for (int i=0; i<100000; i++) {

Customer customer = new Customer(.....);
session.save(customer);

}
tx.commit();
session.close();

This would fall over with an OutOfMemoryException somewhere around the 50 000th row. That's because Hi-
bernate caches all the newly inserted Customer instances in the session-level cache.

In this chapter we'll show you how to avoid this problem. First, however, if you are doing batch processing, it is
absolutely critical that you enable the use of JDBC batching, if you intend to achieve reasonable performance.
Set the JDBC batch size to a reasonable number (say, 10-50):

hibernate.jdbc.batch_size 20

You also might like to do this kind of work in a process where interaction with the second-level cache is com-
pletely disabled:

hibernate.cache.use_second_level_cache false

14.1. Batch inserts

When making new objects persistent, you must flush() and then clear() the session regularly, to control the
size of the first-level cache.

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

for (int i=0; i<100000; i++) {
Customer customer = new Customer(.....);
session.save(customer);
if (i % 20 == 0) { //20, same as the JDBC batch size

//flush a batch of inserts and release memory:
session.flush();
session.clear();

}
}

tx.commit();
session.close();

14.2. Batch updates

For retrieving and updating data the same ideas apply. In addition, you need to use scroll() to take advantage
of server-side cursors for queries that return many rows of data.

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

Hibernate 3.0.5 131

ScrollableResults customers = session.getNamedQuery("GetCustomers")
.setCacheMode(CacheMode.IGNORE)
.scroll(ScrollMode.FORWARD_ONLY);

int count=0;
while (customers.next()) {

Customer customer = (Customer) customers.get(0);
customer.updateStuff(...);
if (++count % 20 == 0) {

//flush a batch of updates and release memory:
session.flush();
session.clear();

}
}

tx.commit();
session.close();

14.3. Bulk update/delete

As already discussed, automatic and transparent object/relational mapping is concerned with the management
of object state. This implies that the object state is available in memory, hence updating or deleting (using SQL
UPDATE and DELETE) data directly in the database will not affect in-memory state. However, Hibernate provides
methods for bulk SQL-style UPDATE and DELETE statement execution which are performed through the Hibern-
ate Query Language (Chapter 15, HQL: The Hibernate Query Language).

The psuedo-syntax for UPDATE and DELETE statements is: (UPDATE | DELETE) FROM? ClassName (WHERE

WHERE_CONDITIONS)?. Some points to note:

• In the from-clause, the FROM keyword is optional
• There can only be a single class named in the from-clause, and it cannot have an alias.
• No joins (either implicit or explicit) can be specified in a bulk HQL query. Sub-queries may be used in the

where-clause.
• The where-clause is also optional.

As an example, to execute an HQL UPDATE, use the Query.executeUpdate() method:

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlUpdate = "update Customer set name = :newName where name = :oldName";
int updatedEntities = s.createQuery(hqlUpdate)

.setString("newName", newName)

.setString("oldName", oldName)

.executeUpdate();
tx.commit();
session.close();

To execute an HQL DELETE, use the same Query.executeUpdate() method (the method is named for those fa-
miliar with JDBC's PreparedStatement.executeUpdate()):

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlDelete = "delete Customer where name = :oldName";
int deletedEntities = s.createQuery(hqlDelete)

.setString("oldName", oldName)

.executeUpdate();
tx.commit();
session.close();

Batch processing

Hibernate 3.0.5 132

The int value returned by the Query.executeUpdate() method indicate the number of entities effected by the
operation. Consider this may or may not correlate to the number of rows effected in the database. An HQL bulk
operation might result in multiple actual SQL statements being executed, for joined-subclass, for example. The
returned number indicates the number of actual entities affected by the statement. Going back to the example of
joined-subclass, a delete against one of the subclasses may actually result in deletes against not just the table to
which that subclass is mapped, but also the "root" table and potentially joined-subclass tables further down the
inheritence hierarchy.

Note that there are currently a few limitations with the bulk HQL operations which will be addressed in future
releases; consult the JIRA roadmap for details.

Batch processing

Hibernate 3.0.5 133

Chapter 15. HQL: The Hibernate Query Language
Hibernate is equiped with an extremely powerful query language that (quite intentionally) looks very much like
SQL. But don't be fooled by the syntax; HQL is fully object-oriented, understanding notions like inheritence,
polymorphism and association.

15.1. Case Sensitivity

Queries are case-insensitive, except for names of Java classes and properties. So SeLeCT is the same as sELEct

is the same as SELECT but org.hibernate.eg.FOO is not org.hibernate.eg.Foo and foo.barSet is not
foo.BARSET.

This manual uses lowercase HQL keywords. Some users find queries with uppercase keywords more readable,
but we find this convention ugly when embedded in Java code.

15.2. The from clause

The simplest possible Hibernate query is of the form:

from eg.Cat

which simply returns all instances of the class eg.Cat. We don't usually need to qualify the class name, since
auto-import is the default. So we almost always just write:

from Cat

Most of the time, you will need to assign an alias, since you will want to refer to the Cat in other parts of the
query.

from Cat as cat

This query assigns the alias cat to Cat instances, so we could use that alias later in the query. The as keyword
is optional; we could also write:

from Cat cat

Multiple classes may appear, resulting in a cartesian product or "cross" join.

from Formula, Parameter

from Formula as form, Parameter as param

It is considered good practice to name query aliases using an initial lowercase, consistent with Java naming
standards for local variables (eg. domesticCat).

15.3. Associations and joins

We may also assign aliases to associated entities, or even to elements of a collection of values, using a join.

Hibernate 3.0.5 134

from Cat as cat
inner join cat.mate as mate
left outer join cat.kittens as kitten

from Cat as cat left join cat.mate.kittens as kittens

from Formula form full join form.parameter param

The supported join types are borrowed from ANSI SQL

• inner join

• left outer join

• right outer join

• full join (not usually useful)

The inner join, left outer join and right outer join constructs may be abbreviated.

from Cat as cat
join cat.mate as mate
left join cat.kittens as kitten

In addition, a "fetch" join allows associations or collections of values to be initialized along with their parent
objects, using a single select. This is particularly useful in the case of a collection. It effectively overrides the
outer join and lazy declarations of the mapping file for associations and collections. See Section 20.1,
“Fetching strategies” for more information.

from Cat as cat
inner join fetch cat.mate
left join fetch cat.kittens

A fetch join does not usually need to assign an alias, because the associated objects should not be used in the
where clause (or any other clause). Also, the associated objects are not returned directly in the query results. In-
stead, they may be accessed via the parent object. The only reason we might need an alias is if we are recurs-
ively join fetching a further collection:

from Cat as cat
inner join fetch cat.mate
left join fetch cat.kittens child
left join fetch child.kittens

Note that the fetch construct may not be used in queries called using scroll() or iterate(). Nor should
fetch be used together with setMaxResults() or setFirstResult(). It is possible to create a cartesian product
by join fetching more than one collection in a query, so take care in this case. Join fetching multiple collection
roles also sometimes gives unexpected results for bag mappings, so be careful about how you formulate your
queries in this case. Finally, note that full join fetch and right join fetch are not meaningful.

If you are using property-level lazy fetching (with bytecode instrumentation), it is possible to force Hibernate to
fetch the lazy properties immediately (in the first query) using fetch all properties.

from Document fetch all properties order by name

from Document doc fetch all properties where lower(doc.name) like '%cats%'

15.4. The select clause

HQL: The Hibernate Query Language

Hibernate 3.0.5 135

The select clause picks which objects and properties to return in the query result set. Consider:

select mate
from Cat as cat

inner join cat.mate as mate

The query will select mates of other Cats. Actually, you may express this query more compactly as:

select cat.mate from Cat cat

Queries may return properties of any value type including properties of component type:

select cat.name from DomesticCat cat
where cat.name like 'fri%'

select cust.name.firstName from Customer as cust

Queries may return multiple objects and/or properties as an array of type Object[],

select mother, offspr, mate.name
from DomesticCat as mother

inner join mother.mate as mate
left outer join mother.kittens as offspr

or as a List,

select new list(mother, offspr, mate.name)
from DomesticCat as mother

inner join mother.mate as mate
left outer join mother.kittens as offspr

or as an actual typesafe Java object,

select new Family(mother, mate, offspr)
from DomesticCat as mother

join mother.mate as mate
left join mother.kittens as offspr

assuming that the class Family has an appropriate constructor.

You may assign aliases to selected expressions using as:

select max(bodyWeight) as max, min(bodyWeight) as min, count(*) as n
from Cat cat

This is most useful when used together with select new map:

select new map(max(bodyWeight) as max, min(bodyWeight) as min, count(*) as n)
from Cat cat

This query returns a Map from aliases to selected values.

15.5. Aggregate functions

HQL queries may even return the results of aggregate functions on properties:

select avg(cat.weight), sum(cat.weight), max(cat.weight), count(cat)

HQL: The Hibernate Query Language

Hibernate 3.0.5 136

from Cat cat

The supported aggregate functions are

• avg(...), sum(...), min(...), max(...)

• count(*)

• count(...), count(distinct ...), count(all...)

You may use arithmetic operators, concatenation, and recognized SQL functions in the select clause:

select cat.weight + sum(kitten.weight)
from Cat cat

join cat.kittens kitten
group by cat.id, cat.weight

select firstName||' '||initial||' '||upper(lastName) from Person

The distinct and all keywords may be used and have the same semantics as in SQL.

select distinct cat.name from Cat cat

select count(distinct cat.name), count(cat) from Cat cat

15.6. Polymorphic queries

A query like:

from Cat as cat

returns instances not only of Cat, but also of subclasses like DomesticCat. Hibernate queries may name any
Java class or interface in the from clause. The query will return instances of all persistent classes that extend
that class or implement the interface. The following query would return all persistent objects:

from java.lang.Object o

The interface Named might be implemented by various persistent classes:

from Named n, Named m where n.name = m.name

Note that these last two queries will require more than one SQL SELECT. This means that the order by clause
does not correctly order the whole result set. (It also means you can't call these queries using Query.scroll().)

15.7. The where clause

The where clause allows you to narrow the list of instances returned. If no alias exists, you may refer to proper-
ties by name:

from Cat where name='Fritz'

If there is an alias, use a qualified property name:

from Cat as cat where cat.name='Fritz'

HQL: The Hibernate Query Language

Hibernate 3.0.5 137

returns instances of Cat named 'Fritz'.

select foo
from Foo foo, Bar bar
where foo.startDate = bar.date

will return all instances of Foo for which there exists an instance of bar with a date property equal to the
startDate property of the Foo. Compound path expressions make the where clause extremely powerful. Con-
sider:

from Cat cat where cat.mate.name is not null

This query translates to an SQL query with a table (inner) join. If you were to write something like

from Foo foo
where foo.bar.baz.customer.address.city is not null

you would end up with a query that would require four table joins in SQL.

The = operator may be used to compare not only properties, but also instances:

from Cat cat, Cat rival where cat.mate = rival.mate

select cat, mate
from Cat cat, Cat mate
where cat.mate = mate

The special property (lowercase) id may be used to reference the unique identifier of an object. (You may also
use its property name.)

from Cat as cat where cat.id = 123

from Cat as cat where cat.mate.id = 69

The second query is efficient. No table join is required!

Properties of composite identifiers may also be used. Suppose Person has a composite identifier consisting of
country and medicareNumber.

from bank.Person person
where person.id.country = 'AU'

and person.id.medicareNumber = 123456

from bank.Account account
where account.owner.id.country = 'AU'

and account.owner.id.medicareNumber = 123456

Once again, the second query requires no table join.

Likewise, the special property class accesses the discriminator value of an instance in the case of polymorphic
persistence. A Java class name embedded in the where clause will be translated to its discriminator value.

from Cat cat where cat.class = DomesticCat

You may also specify properties of components or composite user types (and of components of components,
etc). Never try to use a path-expression that ends in a property of component type (as opposed to a property of a
component). For example, if store.owner is an entity with a component address

HQL: The Hibernate Query Language

Hibernate 3.0.5 138

store.owner.address.city // okay
store.owner.address // error!

An "any" type has the special properties id and class, allowing us to express a join in the following way
(where AuditLog.item is a property mapped with <any>).

from AuditLog log, Payment payment
where log.item.class = 'Payment' and log.item.id = payment.id

Notice that log.item.class and payment.class would refer to the values of completely different database
columns in the above query.

15.8. Expressions

Expressions allowed in the where clause include most of the kind of things you could write in SQL:

• mathematical operators +, -, *, /

• binary comparison operators =, >=, <=, <>, !=, like

• logical operations and, or, not

• Parentheses (), indicating grouping
• in, not in, between, is null, is not null, is empty, is not empty, member of and not member of

• "Simple" case, case ... when ... then ... else ... end, and "searched" case, case when ... then

... else ... end

• string concatenation ...||... or concat(...,...)
• current_date(), current_time(), current_timestamp()
• second(...), minute(...), hour(...), day(...), month(...), year(...),
• Any function or operator defined by EJB-QL 3.0: substring(), trim(), lower(), upper(), length(),

locate(), abs(), sqrt(), bit_length()

• coalesce() and nullif()

• cast(... as ...), where the second argument is the name of a Hibernate type, and extract(... from

...) if ANSI cast() and extract() is supported by the underlying database
• Any database-supported SQL scalar function like sign(), trunc(), rtrim(), sin()
• JDBC IN parameters ?
• named parameters :name, :start_date, :x1
• SQL literals 'foo', 69, '1970-01-01 10:00:01.0'

• Java public static final constants eg.Color.TABBY

in and between may be used as follows:

from DomesticCat cat where cat.name between 'A' and 'B'

from DomesticCat cat where cat.name in ('Foo', 'Bar', 'Baz')

and the negated forms may be written

from DomesticCat cat where cat.name not between 'A' and 'B'

from DomesticCat cat where cat.name not in ('Foo', 'Bar', 'Baz')

Likewise, is null and is not null may be used to test for null values.

Booleans may be easily used in expressions by declaring HQL query substitutions in Hibernate configuration:

HQL: The Hibernate Query Language

Hibernate 3.0.5 139

<property name="hibernate.query.substitutions">true 1, false 0</property>

This will replace the keywords true and false with the literals 1 and 0 in the translated SQL from this HQL:

from Cat cat where cat.alive = true

You may test the size of a collection with the special property size, or the special size() function.

from Cat cat where cat.kittens.size > 0

from Cat cat where size(cat.kittens) > 0

For indexed collections, you may refer to the minimum and maximum indices using minindex and maxindex

functions. Similarly, you may refer to the minimum and maximum elements of a collection of basic type using
the minelement and maxelement functions.

from Calendar cal where maxelement(cal.holidays) > current date

from Order order where maxindex(order.items) > 100

from Order order where minelement(order.items) > 10000

The SQL functions any, some, all, exists, in are supported when passed the element or index set of a col-
lection (elements and indices functions) or the result of a subquery (see below).

select mother from Cat as mother, Cat as kit
where kit in elements(foo.kittens)

select p from NameList list, Person p
where p.name = some elements(list.names)

from Cat cat where exists elements(cat.kittens)

from Player p where 3 > all elements(p.scores)

from Show show where 'fizard' in indices(show.acts)

Note that these constructs - size, elements, indices, minindex, maxindex, minelement, maxelement - may
only be used in the where clause in Hibernate3.

Elements of indexed collections (arrays, lists, maps) may be referred to by index (in a where clause only):

from Order order where order.items[0].id = 1234

select person from Person person, Calendar calendar
where calendar.holidays['national day'] = person.birthDay

and person.nationality.calendar = calendar

select item from Item item, Order order
where order.items[order.deliveredItemIndices[0]] = item and order.id = 11

select item from Item item, Order order
where order.items[maxindex(order.items)] = item and order.id = 11

HQL: The Hibernate Query Language

Hibernate 3.0.5 140

The expression inside [] may even be an arithmetic expression.

select item from Item item, Order order
where order.items[size(order.items) - 1] = item

HQL also provides the built-in index() function, for elements of a one-to-many association or collection of
values.

select item, index(item) from Order order
join order.items item

where index(item) < 5

Scalar SQL functions supported by the underlying database may be used

from DomesticCat cat where upper(cat.name) like 'FRI%'

If you are not yet convinced by all this, think how much longer and less readable the following query would be
in SQL:

select cust
from Product prod,

Store store
inner join store.customers cust

where prod.name = 'widget'
and store.location.name in ('Melbourne', 'Sydney')
and prod = all elements(cust.currentOrder.lineItems)

Hint: something like

SELECT cust.name, cust.address, cust.phone, cust.id, cust.current_order
FROM customers cust,

stores store,
locations loc,
store_customers sc,
product prod

WHERE prod.name = 'widget'
AND store.loc_id = loc.id
AND loc.name IN ('Melbourne', 'Sydney')
AND sc.store_id = store.id
AND sc.cust_id = cust.id
AND prod.id = ALL(

SELECT item.prod_id
FROM line_items item, orders o
WHERE item.order_id = o.id

AND cust.current_order = o.id
)

15.9. The order by clause

The list returned by a query may be ordered by any property of a returned class or components:

from DomesticCat cat
order by cat.name asc, cat.weight desc, cat.birthdate

The optional asc or desc indicate ascending or descending order respectively.

15.10. The group by clause

HQL: The Hibernate Query Language

Hibernate 3.0.5 141

A query that returns aggregate values may be grouped by any property of a returned class or components:

select cat.color, sum(cat.weight), count(cat)
from Cat cat
group by cat.color

select foo.id, avg(name), max(name)
from Foo foo join foo.names name
group by foo.id

A having clause is also allowed.

select cat.color, sum(cat.weight), count(cat)
from Cat cat
group by cat.color
having cat.color in (eg.Color.TABBY, eg.Color.BLACK)

SQL functions and aggregate functions are allowed in the having and order by clauses, if supported by the un-
derlying database (eg. not in MySQL).

select cat
from Cat cat

join cat.kittens kitten
group by cat
having avg(kitten.weight) > 100
order by count(kitten) asc, sum(kitten.weight) desc

Note that neither the group by clause nor the order by clause may contain arithmetic expressions.

15.11. Subqueries

For databases that support subselects, Hibernate supports subqueries within queries. A subquery must be sur-
rounded by parentheses (often by an SQL aggregate function call). Even correlated subqueries (subqueries that
refer to an alias in the outer query) are allowed.

from Cat as fatcat
where fatcat.weight > (

select avg(cat.weight) from DomesticCat cat
)

from DomesticCat as cat
where cat.name = some (

select name.nickName from Name as name
)

from Cat as cat
where not exists (

from Cat as mate where mate.mate = cat
)

from DomesticCat as cat
where cat.name not in (

select name.nickName from Name as name
)

For subqueries with more than one expression in the select list, you can use a tuple constructor:

from Cat as cat

HQL: The Hibernate Query Language

Hibernate 3.0.5 142

where not (cat.name, cat.color) in (
select cat.name, cat.color from DomesticCat cat

)

Note that on some databases (but not Oracle or HSQL), you can use tuple constructors in other contexts, for ex-
ample when querying components or composite user types:

from Person where name = ('Gavin', 'A', 'King')

Which is equivalent to the more verbose:

from Person where name.first = 'Gavin' and name.initial = 'A' and name.last = 'King')

There are two good reasons you might not want to do this kind of thing: first, it is not completely portable
between database platforms; second, the query is now dependent upon the ordering of properties in the map-
ping document.

15.12. HQL examples

Hibernate queries can be quite powerful and complex. In fact, the power of the query language is one of Hi-
bernate's main selling points. Here are some example queries very similar to queries that I used on a recent
project. Note that most queries you will write are much simpler than these!

The following query returns the order id, number of items and total value of the order for all unpaid orders for a
particular customer and given minimum total value, ordering the results by total value. In determining the
prices, it uses the current catalog. The resulting SQL query, against the ORDER, ORDER_LINE, PRODUCT, CATALOG
and PRICE tables has four inner joins and an (uncorrelated) subselect.

select order.id, sum(price.amount), count(item)
from Order as order

join order.lineItems as item
join item.product as product,
Catalog as catalog
join catalog.prices as price

where order.paid = false
and order.customer = :customer
and price.product = product
and catalog.effectiveDate < sysdate
and catalog.effectiveDate >= all (

select cat.effectiveDate
from Catalog as cat
where cat.effectiveDate < sysdate

)
group by order
having sum(price.amount) > :minAmount
order by sum(price.amount) desc

What a monster! Actually, in real life, I'm not very keen on subqueries, so my query was really more like this:

select order.id, sum(price.amount), count(item)
from Order as order

join order.lineItems as item
join item.product as product,
Catalog as catalog
join catalog.prices as price

where order.paid = false
and order.customer = :customer
and price.product = product
and catalog = :currentCatalog

group by order

HQL: The Hibernate Query Language

Hibernate 3.0.5 143

having sum(price.amount) > :minAmount
order by sum(price.amount) desc

The next query counts the number of payments in each status, excluding all payments in the AWAIT-

ING_APPROVAL status where the most recent status change was made by the current user. It translates to an SQL
query with two inner joins and a correlated subselect against the PAYMENT, PAYMENT_STATUS and PAY-

MENT_STATUS_CHANGE tables.

select count(payment), status.name
from Payment as payment

join payment.currentStatus as status
join payment.statusChanges as statusChange

where payment.status.name <> PaymentStatus.AWAITING_APPROVAL
or (

statusChange.timeStamp = (
select max(change.timeStamp)
from PaymentStatusChange change
where change.payment = payment

)
and statusChange.user <> :currentUser

)
group by status.name, status.sortOrder
order by status.sortOrder

If I would have mapped the statusChanges collection as a list, instead of a set, the query would have been
much simpler to write.

select count(payment), status.name
from Payment as payment

join payment.currentStatus as status
where payment.status.name <> PaymentStatus.AWAITING_APPROVAL

or payment.statusChanges[maxIndex(payment.statusChanges)].user <> :currentUser
group by status.name, status.sortOrder
order by status.sortOrder

The next query uses the MS SQL Server isNull() function to return all the accounts and unpaid payments for
the organization to which the current user belongs. It translates to an SQL query with three inner joins, an outer
join and a subselect against the ACCOUNT, PAYMENT, PAYMENT_STATUS, ACCOUNT_TYPE, ORGANIZATION and
ORG_USER tables.

select account, payment
from Account as account

left outer join account.payments as payment
where :currentUser in elements(account.holder.users)

and PaymentStatus.UNPAID = isNull(payment.currentStatus.name, PaymentStatus.UNPAID)
order by account.type.sortOrder, account.accountNumber, payment.dueDate

For some databases, we would need to do away with the (correlated) subselect.

select account, payment
from Account as account

join account.holder.users as user
left outer join account.payments as payment

where :currentUser = user
and PaymentStatus.UNPAID = isNull(payment.currentStatus.name, PaymentStatus.UNPAID)

order by account.type.sortOrder, account.accountNumber, payment.dueDate

15.13. Bulk UPDATE & DELETE Statements

HQL now supports UPDATE and DELETE statements in HQL. See Section 14.3, “Bulk update/delete” for de-

HQL: The Hibernate Query Language

Hibernate 3.0.5 144

tails.

15.14. Tips & Tricks

You can count the number of query results without actually returning them:

((Integer) session.iterate("select count(*) from").next()).intValue()

To order a result by the size of a collection, use the following query:

select usr.id, usr.name
from User as usr

left join usr.messages as msg
group by usr.id, usr.name
order by count(msg)

If your database supports subselects, you can place a condition upon selection size in the where clause of your
query:

from User usr where size(usr.messages) >= 1

If your database doesn't support subselects, use the following query:

select usr.id, usr.name
from User usr.name

join usr.messages msg
group by usr.id, usr.name
having count(msg) >= 1

As this solution can't return a User with zero messages because of the inner join, the following form is also use-
ful:

select usr.id, usr.name
from User as usr

left join usr.messages as msg
group by usr.id, usr.name
having count(msg) = 0

Properties of a JavaBean can be bound to named query parameters:

Query q = s.createQuery("from foo Foo as foo where foo.name=:name and foo.size=:size");
q.setProperties(fooBean); // fooBean has getName() and getSize()
List foos = q.list();

Collections are pageable by using the Query interface with a filter:

Query q = s.createFilter(collection, ""); // the trivial filter
q.setMaxResults(PAGE_SIZE);
q.setFirstResult(PAGE_SIZE * pageNumber);
List page = q.list();

Collection elements may be ordered or grouped using a query filter:

Collection orderedCollection = s.filter(collection, "order by this.amount");
Collection counts = s.filter(collection, "select this.type, count(this) group by this.type");

You can find the size of a collection without initializing it:

HQL: The Hibernate Query Language

Hibernate 3.0.5 145

((Integer) session.iterate("select count(*) from").next()).intValue();

HQL: The Hibernate Query Language

Hibernate 3.0.5 146

Chapter 16. Criteria Queries
Hibernate features an intuitive, extensible criteria query API.

16.1. Creating a Criteria instance

The interface org.hibernate.Criteria represents a query against a particular persistent class. The Session is
a factory for Criteria instances.

Criteria crit = sess.createCriteria(Cat.class);
crit.setMaxResults(50);
List cats = crit.list();

16.2. Narrowing the result set

An individual query criterion is an instance of the interface org.hibernate.criterion.Criterion. The class
org.hibernate.criterion.Restrictions defines factory methods for obtaining certain built-in Criterion

types.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name", "Fritz%"))
.add(Restrictions.between("weight", minWeight, maxWeight))
.list();

Restrictions may be grouped logically.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name", "Fritz%"))
.add(Restrictions.or(

Restrictions.eq("age", new Integer(0)),
Restrictions.isNull("age")

))
.list();

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.in("name", new String[] { "Fritz", "Izi", "Pk" }))
.add(Restrictions.disjunction()

.add(Restrictions.isNull("age"))

.add(Restrictions.eq("age", new Integer(0)))

.add(Restrictions.eq("age", new Integer(1)))

.add(Restrictions.eq("age", new Integer(2)))
))
.list();

There are quite a range of built-in criterion types (Restrictions subclasses), but one that is especially useful
lets you specify SQL directly.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.sql("lower({alias}.name) like lower(?)", "Fritz%", Hibernate.STRING))
.list();

The {alias} placeholder with be replaced by the row alias of the queried entity.

An alternative approach to obtaining a criterion is to get it from a Property instance. You can create a Prop-

erty by calling Property.forName().

Hibernate 3.0.5 147

Property age = Property.forName("age");
List cats = sess.createCriteria(Cat.class)

.add(Restrictions.disjunction()
.add(age.isNull())
.add(age.eq(new Integer(0)))
.add(age.eq(new Integer(1)))
.add(age.eq(new Integer(2)))

))
.add(Property.forName("name").in(new String[] { "Fritz", "Izi", "Pk" }))
.list();

16.3. Ordering the results

You may order the results using org.hibernate.criterion.Order.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name", "F%")
.addOrder(Order.asc("name"))
.addOrder(Order.desc("age"))
.setMaxResults(50)
.list();

List cats = sess.createCriteria(Cat.class)
.add(Property.forName("name").like("F%"))
.addOrder(Property.forName("name").asc())
.addOrder(Property.forName("age").desc())
.setMaxResults(50)
.list();

16.4. Associations

You may easily specify constraints upon related entities by navigating associations using createCriteria().

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name", "F%")
.createCriteria("kittens")

.add(Restrictions.like("name", "F%")
.list();

note that the second createCriteria() returns a new instance of Criteria, which refers to the elements of the
kittens collection.

The following, alternate form is useful in certain circumstances.

List cats = sess.createCriteria(Cat.class)
.createAlias("kittens", "kt")
.createAlias("mate", "mt")
.add(Restrictions.eqProperty("kt.name", "mt.name"))
.list();

(createAlias() does not create a new instance of Criteria.)

Note that the kittens collections held by the Cat instances returned by the previous two queries are not pre-
filtered by the criteria! If you wish to retrieve just the kittens that match the criteria, you must use return-

Maps().

List cats = sess.createCriteria(Cat.class)

Criteria Queries

Hibernate 3.0.5 148

.createCriteria("kittens", "kt")
.add(Restrictions.eq("name", "F%"))

.returnMaps()

.list();
Iterator iter = cats.iterator();
while (iter.hasNext()) {

Map map = (Map) iter.next();
Cat cat = (Cat) map.get(Criteria.ROOT_ALIAS);
Cat kitten = (Cat) map.get("kt");

}

16.5. Dynamic association fetching

You may specify association fetching semantics at runtime using setFetchMode().

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name", "Fritz%"))
.setFetchMode("mate", FetchMode.EAGER)
.setFetchMode("kittens", FetchMode.EAGER)
.list();

This query will fetch both mate and kittens by outer join. See Section 20.1, “Fetching strategies” for more in-
formation.

16.6. Example queries

The class org.hibernate.criterion.Example allows you to construct a query criterion from a given instance.

Cat cat = new Cat();
cat.setSex('F');
cat.setColor(Color.BLACK);
List results = session.createCriteria(Cat.class)

.add(Example.create(cat))

.list();

Version properties, identifiers and associations are ignored. By default, null valued properties are excluded.

You can adjust how the Example is applied.

Example example = Example.create(cat)
.excludeZeroes() //exclude zero valued properties
.excludeProperty("color") //exclude the property named "color"
.ignoreCase() //perform case insensitive string comparisons
.enableLike(); //use like for string comparisons

List results = session.createCriteria(Cat.class)
.add(example)
.list();

You can even use examples to place criteria upon associated objects.

List results = session.createCriteria(Cat.class)
.add(Example.create(cat))
.createCriteria("mate")

.add(Example.create(cat.getMate()))
.list();

Criteria Queries

Hibernate 3.0.5 149

16.7. Projections, aggregation and grouping

The class org.hibernate.criterion.Projections is a factory for Projection instances. We apply a projec-
tion to a query by calling setProjection().

List results = session.createCriteria(Cat.class)
.setProjection(Projections.rowCount())
.add(Restrictions.eq("color", Color.BLACK))
.list();

List results = session.createCriteria(Cat.class)
.setProjection(Projections.projectionList()

.add(Projections.rowCount())

.add(Projections.avg("weight"))

.add(Projections.max("weight"))

.add(Projections.groupProperty("color"))
)
.list();

There is no explicit "group by" necessary in a criteria query. Certain projection types are defined to be grouping
projections, which also appear in the SQL group by clause.

An alias may optionally be assigned to a projection, so that the projected value may be referred to in restrictions
or orderings. Here are two different ways to do this:

List results = session.createCriteria(Cat.class)
.setProjection(Projections.alias(Projections.groupProperty("color"), "colr"))
.addOrder(Order.asc("colr"))
.list();

List results = session.createCriteria(Cat.class)
.setProjection(Projections.groupProperty("color").as("colr"))
.addOrder(Order.asc("colr"))
.list();

The alias() and as() methods simply wrap a projection instance in another, aliased, instance of Projection.
As a shortcut, you can assign an alias when you add the projection to a projection list:

List results = session.createCriteria(Cat.class)
.setProjection(Projections.projectionList()

.add(Projections.rowCount(), "catCountByColor")

.add(Projections.avg("weight"), "avgWeight")

.add(Projections.max("weight"), "maxWeight")

.add(Projections.groupProperty("color"), "color")
)
.addOrder(Order.desc("catCountByColor"))
.addOrder(Order.desc("avgWeight"))
.list();

List results = session.createCriteria(Domestic.class, "cat")
.createAlias("kittens", "kit")
.setProjection(Projections.projectionList()

.add(Projections.property("cat.name"), "catName")

.add(Projections.property("kit.name"), "kitName")
)
.addOrder(Order.asc("catName"))
.addOrder(Order.asc("kitName"))
.list();

You can also use Property.forName() to express projections:

Criteria Queries

Hibernate 3.0.5 150

List results = session.createCriteria(Cat.class)
.setProjection(Property.forName("name"))
.add(Property.forName("color").eq(Color.BLACK))
.list();

List results = session.createCriteria(Cat.class)
.setProjection(Projections.projectionList()

.add(Projections.rowCount().as("catCountByColor"))

.add(Property.forName("weight").avg().as("avgWeight"))

.add(Property.forName("weight").max().as("maxWeight"))

.add(Property.forName("color").group().as("color")
)
.addOrder(Order.desc("catCountByColor"))
.addOrder(Order.desc("avgWeight"))
.list();

16.8. Detached queries and subqueries

The DetachedCriteria class lets you create a query outside the scope of a session, and then later execute it us-
ing some arbitrary Session.

DetachedCriteria query = DetachedCriteria.forClass(Cat.class)
.add(Property.forName("sex").eq('F'));

Session session =;
Transaction txn = session.beginTransaction();
List results = query.getExecutableCriteria(session).setMaxResults(100).list();
txn.commit();
session.close();

A DetachedCriteria may also be used to express a subquery. Criterion instances involving subqueries may be
obtained via Subqueries or Property.

DetachedCriteria avgWeight = DetachedCriteria.forClass(Cat.class)
.setProjection(Property.forName("weight").avg());

session.createCriteria(Cat.class)
.add(Property.forName("weight).gt(avgWeight))
.list();

DetachedCriteria weights = DetachedCriteria.forClass(Cat.class)
.setProjection(Property.forName("weight"));

session.createCriteria(Cat.class)
.add(Subqueries.geAll("weight", weights))
.list();

Even correlated subqueries are possible:

DetachedCriteria avgWeightForSex = DetachedCriteria.forClass(Cat.class, "cat2")
.setProjection(Property.forName("weight").avg())
.add(Property.forName("cat2.sex").eqProperty("cat.sex"));

session.createCriteria(Cat.class, "cat")
.add(Property.forName("weight).gt(avgWeightForSex))
.list();

16.9. Queries by natural identifier

For most queries, including criteria queries, the query cache is not very efficient, because query cache invalida-
tion occurs too frequently. However, there is one special kind of query where we can optimize the cache inval-

Criteria Queries

Hibernate 3.0.5 151

idation algorithm: lookups by a constant natural key. In some applications, this kind of query occurs frequently.
The criteria API provides special provision for this use case.

First, you should map the natural key of your entity using <natural-id>, and enable use of the second-level
cache.

<class name="User">
<cache usage="read-write"/>
<id name="id">

<generator class="increment"/>
</id>
<natural-id>

<property name="name"/>
<property name="org"/>

</natural-id>
<property name="password"/>

</class>

Note that this functionality is not intended for use with entities with mutable natural keys.

Next, enable the Hibernate query cache.

Now, Restrictions.naturalId() allows us to make use of the more efficient cache algorithm.

session.createCriteria(User.class)
.add(Restrictions.naturalId()

.set("name", "gavin")

.set("org", "hb")
).setCacheable(true)
.uniqueResult();

Criteria Queries

Hibernate 3.0.5 152

Chapter 17. Native SQL
You may also express queries in the native SQL dialect of your database. This is useful if you want to utilize
database specific features such as query hints or the CONNECT keyword in Oracle. It also provides a clean migra-
tion path from a direct SQL/JDBC based application to Hibernate.

Hibernate3 allows you to specify handwritten SQL (including stored procedures) for all create, update, delete,
and load operations.

17.1. Creating a native SQL Query

SQL queries are controlled via the SQLQuery interface, which is obtained by calling Ses-

sion.createSQLQuery().

List cats = sess.createSQLQuery("select {cat.*} from cats cat")
.addEntity("cat", Cat.class);
.setMaxResults(50);
.list();

This query specified:

• the SQL query string, with a placeholder for Hibernate to inject the column aliases

• the entity returned by the query, and its SQL table alias

The addEntity() method associates SQL table aliases with entity classes, and determines the shape of the
query result set.

The addJoin() method may be used to load associations to other entities and collections. TODO: examples!

A native SQL query might return a simple scalar value or a combination of scalars and entities.

Double max = (Double) sess.createSQLQuery("select max(cat.weight) as maxWeight from cats cat")
.addScalar("maxWeight", Hibernate.DOUBLE);
.uniqueResult();

17.2. Alias and property references

The {cat.*} notation used above is a shorthand for "all properties". Alternatively, you may list the columns ex-
plicity, but even then you must let Hibernate inject the SQL column aliases for each property. The placeholder
for a column alias is just the property name qualified by the table alias. In the following example, we retrieve
Cats from a different table (cat_log) to the one declared in the mapping metadata. Notice that we may even
use the property aliases in the where clause if we like. The {}-syntax is not required for named queries. See
more in Section 17.3, “Named SQL queries”

String sql = "select cat.originalId as {cat.id}, " +
"cat.mateid as {cat.mate}, cat.sex as {cat.sex}, " +
"cat.weight*10 as {cat.weight}, cat.name as {cat.name} " +
"from cat_log cat where {cat.mate} = :catId"

List loggedCats = sess.createSQLQuery(sql)
.addEntity("cat", Cat.class)
.setLong("catId", catId)
.list();

Hibernate 3.0.5 153

Note: if you list each property explicitly, you must include all properties of the class and its subclasses!

17.3. Named SQL queries

Named SQL queries may be defined in the mapping document and called in exactly the same way as a named
HQL query. In this case, we do not need to call addEntity().

<sql-query name="mySqlQuery">
<return alias="person" class="eg.Person"/>
SELECT person.NAME AS {person.name},

person.AGE AS {person.age},
person.SEX AS {person.sex}

FROM PERSON person WHERE person.NAME LIKE 'Hiber%'
</sql-query>

List people = sess.getNamedQuery("mySqlQuery")
.setMaxResults(50)
.list();

A named SQL query may return a scalar value. You must specfy the column alias and Hibernate type using the
<return-scalar> element:

<sql-query name="mySqlQuery">
<return-scalar column="name" type="string"/>
<return-scalar column="age" type="long"/>
SELECT p.NAME AS name,

p.AGE AS age,
FROM PERSON p WHERE p.NAME LIKE 'Hiber%'

</sql-query>

The <return-join> and <load-collection> elements are used to join associations and define queries which
initialize collections, respectively. TODO!

17.3.1. Using return-property to explicitly specify column/alias names

With <return-property> you can explicitly tell Hibernate what columns to use as opposed to use {}-syntax to
let Hibernate inject its own aliases.

<sql-query name="mySqlQuery">
<return alias="person" class="eg.Person">
<return-property name="name" column="myName"/>
<return-property name="age" column="myAge"/>
<return-property name="sex" column="mySex"/>

</return>
SELECT person.NAME AS myName,

person.AGE AS myAge,
person.SEX AS mySex,

FROM PERSON person WHERE person.NAME LIKE :name
</sql-query>

<return-property> also works with multiple columns. This solves a limitation with the {}-syntax which can
not allow fine grained control of multi-column properties.

<sql-query name="organizationCurrentEmployments">
<return alias="emp" class="Employment">
<return-property name="salary">
<return-column name="VALUE"/>
<return-column name="CURRENCY"/>

</return-property>
<return-property name="endDate" column="myEndDate"/>

Native SQL

Hibernate 3.0.5 154

</return>
SELECT EMPLOYEE AS {emp.employee}, EMPLOYER AS {emp.employer},
STARTDATE AS {emp.startDate}, ENDDATE AS {emp.endDate},
REGIONCODE as {emp.regionCode}, EID AS {emp.id}, VALUE, CURRENCY
FROM EMPLOYMENT
WHERE EMPLOYER = :id AND ENDDATE IS NULL
ORDER BY STARTDATE ASC

</sql-query>

Notice that in this example we used <return-property> in combination with the {}-syntax for injection. Al-
lowing users to choose how they want to refer column and properties.

If your mapping has a discriminator you must use <return-discriminator> to specify the discriminator column.

17.3.2. Using stored procedures for querying

Hibernate 3 introduces support for queries via stored procedures. The stored procedures must return a resultset
as the first out-parameter to be able to work with Hibernate. An example of such a stored procedure in Oracle 9
and higher is as follows:

CREATE OR REPLACE FUNCTION selectAllEmployments
RETURN SYS_REFCURSOR

AS
st_cursor SYS_REFCURSOR;

BEGIN
OPEN st_cursor FOR

SELECT EMPLOYEE, EMPLOYER,
STARTDATE, ENDDATE,
REGIONCODE, EID, VALUE, CURRENCY
FROM EMPLOYMENT;

RETURN st_cursor;
END;

To use this query in Hibernate you need to map it via a named query.

<sql-query name="selectAllEmployees_SP" callable="true">
<return alias="emp" class="Employment">

<return-property name="employee" column="EMPLOYEE"/>
<return-property name="employer" column="EMPLOYER"/>
<return-property name="startDate" column="STARTDATE"/>
<return-property name="endDate" column="ENDDATE"/>
<return-property name="regionCode" column="REGIONCODE"/>
<return-property name="id" column="EID"/>
<return-property name="salary">

<return-column name="VALUE"/>
<return-column name="CURRENCY"/>

</return-property>
</return>
{ ? = call selectAllEmployments() }

</sql-query>

Notice stored procedures currently only return scalars and entities. <return-join> and <load-collection> are
not supported.

Rules/limitations for using stored procedures

To use stored procedures with Hibernate the procedures have to follow some rules. If they do not follow those
rules they are not usable with Hibernate. If you still want to use these procedures you have to execute them via
session.connection(). The rules are different for each database, since database vendors have different stored
procedure semantics/syntax.

Native SQL

Hibernate 3.0.5 155

Stored procedure queries can't be paged with setFirstResult()/setMaxResults().

For Oracle the following rules apply:

• The procedure must return a result set. This is done by returning a SYS_REFCURSOR in Oracle 9 or 10. In
Oracle you need to define a REF CURSOR type.

• Recommended form is { ? = call procName(<parameters>) } or { ? = call procName } (This is more
an Oracle rule than a Hibernate rule.)

For Sybase or MS SQL server the following rules apply:

• The procedure must return a result set. Note that since these servers can/will return multiple result sets and
update counts, Hibernate will iterate the results and take the first result that is a result set as its return value.
Everything else will be discarded.

• If you can enable SET NOCOUNT ON in your procedure it will probably be more efficient, but this is not a re-
quirement.

17.4. Custom SQL for create, update and delete

Hibernate3 can use custom SQL statements for create, update, and delete operations. The class and collection
persisters in Hibernate already contain a set of configuration time generated strings (insertsql, deletesql, updat-
esql etc.). The mapping tags <sql-insert>, <sql-delete>, and <sql-update> override these strings:

<class name="Person">
<id name="id">

<generator class="increment"/>
</id>
<property name="name" not-null="true"/>
<sql-insert>INSERT INTO PERSON (NAME, ID) VALUES (UPPER(?), ?)</sql-insert>
<sql-update>UPDATE PERSON SET NAME=UPPER(?) WHERE ID=?</sql-update>
<sql-delete>DELETE FROM PERSON WHERE ID=?</sql-delete>

</class>

The SQL is directly executed in your database, so you are free to use any dialect you like. This will of course
reduce the portability of your mapping if you use database specific SQL.

Stored procedures are supported if the callable attribute is set:

<class name="Person">
<id name="id">

<generator class="increment"/>
</id>
<property name="name" not-null="true"/>
<sql-insert callable="true">{call createPerson (?, ?)}</sql-insert>
<sql-delete callable="true">{? = call deletePerson (?)}</sql-delete>
<sql-update callable="true">{? = call updatePerson (?, ?)}</sql-update>

</class>

The order of the positional parameters are currently vital, as they must be in the same sequence as Hibernate
expects them.

You can see the expected order by enabling debug logging for the org.hiberante.persister.entity level.
With this level enabled Hibernate will print out the static SQL that is used to create, update, delete etc. entities.
To see the expected sequence, remember to not include your custom SQL in the mapping files as that will over-
ride the Hibernate generated static sql.

The stored procedures are in most cases (read: better do it than not) required to return the number of rows inser-

Native SQL

Hibernate 3.0.5 156

ted/updated/deleted, as Hibernate has some runtime checks for the success of the statement. Hibernate always
registers the first statement parameter as a numeric output parameter for the CUD operations:

CREATE OR REPLACE FUNCTION updatePerson (uid IN NUMBER, uname IN VARCHAR2)
RETURN NUMBER IS

BEGIN

update PERSON
set

NAME = uname,
where

ID = uid;

return SQL%ROWCOUNT;

END updatePerson;

17.5. Custom SQL for loading

You may also declare your own SQL (or HQL) queries for entity loading:

<sql-query name="person">
<return alias="p" class="Person" lock-mode="upgrade"/>
SELECT NAME AS {p.name}, ID AS {p.id} FROM PERSON WHERE ID=? FOR UPDATE

</sql-query>

This is just a named query declaration, as discussed earlier. You may reference this named query in a class
mapping:

<class name="Person">
<id name="id">

<generator class="increment"/>
</id>
<property name="name" not-null="true"/>
<loader query-ref="person"/>

</class>

And this also works with stored procedures.

TODO: Document the following example for collection loader.

<sql-query name="organizationEmployments">
<load-collection alias="empcol" role="Organization.employments"/>
SELECT {empcol.*}
FROM EMPLOYMENT empcol
WHERE EMPLOYER = :id
ORDER BY STARTDATE ASC, EMPLOYEE ASC

</sql-query>

<sql-query name="organizationCurrentEmployments">
<return alias="emp" class="Employment"/>
<synchronize table="EMPLOYMENT"/>
SELECT EMPLOYEE AS {emp.employee}, EMPLOYER AS {emp.employer},

STARTDATE AS {emp.startDate}, ENDDATE AS {emp.endDate},
REGIONCODE as {emp.regionCode}, ID AS {emp.id}

FROM EMPLOYMENT
WHERE EMPLOYER = :id AND ENDDATE IS NULL
ORDER BY STARTDATE ASC

</sql-query>

Native SQL

Hibernate 3.0.5 157

Chapter 18. Filtering data
Hibernate3 provides an innovative new approach to handling data with "visibility" rules. A Hibernate filter is a
global, named, parameterized filter that may be enabled or disabled for a particular Hibernate session.

18.1. Hibernate filters

Hibernate3 adds the ability to pre-define filter criteria and attach those filters at both a class and a collection
level. A filter criteria is the ability to define a restriction clause very similiar to the existing "where" attribute
available on the class and various collection elements. Except these filter conditions can be parameterized. The
application can then make the decision at runtime whether given filters should be enabled and what their para-
meter values should be. Filters can be used like database views, but parameterized inside the application.

In order to use filters, they must first be defined and then attached to the appropriate mapping elements. To
define a filter, use the <filter-def/> element within a <hibernate-mapping/> element:

<filter-def name="myFilter">
<filter-param name="myFilterParam" type="string"/>

</filter-def>

Then, this filter can be attached to a class:

<class name="myClass" ...>
...
<filter name="myFilter" condition=":myFilterParam = MY_FILTERED_COLUMN"/>

</class>

or, to a collection:

<set ...>
<filter name="myFilter" condition=":myFilterParam = MY_FILTERED_COLUMN"/>

</set>

or, even to both (or multiples of each) at the same time.

The methods on Session are: enableFilter(String filterName), getEnabledFilter(String filterName),
and disableFilter(String filterName). By default, filters are not enabled for a given session; they must be
explcitly enabled through use of the Session.enabledFilter() method, which returns an instance of the Fil-

ter interface. Using the simple filter defined above, this would look like:

session.enableFilter("myFilter").setParameter("myFilterParam", "some-value");

Note that methods on the org.hibernate.Filter interface do allow the method-chaining common to much of Hi-
bernate.

A full example, using temporal data with an effective record date pattern:

<filter-def name="effectiveDate">
<filter-param name="asOfDate" type="date"/>

</filter-def>

<class name="Employee" ...>
...

<many-to-one name="department" column="dept_id" class="Department"/>
<property name="effectiveStartDate" type="date" column="eff_start_dt"/>
<property name="effectiveEndDate" type="date" column="eff_end_dt"/>

Hibernate 3.0.5 158

...
<!--

Note that this assumes non-terminal records have an eff_end_dt set to
a max db date for simplicity-sake

-->
<filter name="effectiveDate"

condition=":asOfDate BETWEEN eff_start_dt and eff_end_dt"/>
</class>

<class name="Department" ...>
...

<set name="employees" lazy="true">
<key column="dept_id"/>
<one-to-many class="Employee"/>
<filter name="effectiveDate"

condition=":asOfDate BETWEEN eff_start_dt and eff_end_dt"/>
</set>

</class>

Then, in order to ensure that you always get back currently effective records, simply enable the filter on the ses-
sion prior to retrieving employee data:

Session session = ...;
session.enabledFilter("effectiveDate").setParameter("asOfDate", new Date());
List results = session.createQuery("from Employee as e where e.salary > :targetSalary")

.setLong("targetSalary", new Long(1000000))

.list();

In the HQL above, even though we only explicitly mentioned a salary constraint on the results, because of the
enabled filter the query will return only currently active employees who have a salary greater than a million
dollars.

Note: if you plan on using filters with outer joining (either through HQL or load fetching) be careful of the dir-
ection of the condition expression. Its safest to set this up for left outer joining; in general, place the parameter
first followed by the column name(s) after the operator.

Filtering data

Hibernate 3.0.5 159

Chapter 19. XML Mapping
Note that this is an experimental feature in Hibernate 3.0 and is under extremely active development.

19.1. Working with XML data

Hibernate lets you work with persistent XML data in much the same way you work with persistent POJOs. A
parsed XML tree can be thought of as just another way to represent the relational data at the object level, in-
stead of POJOs.

Hibernate supports dom4j as API for manipulating XML trees. You can write queries that retrieve dom4j trees
from the database and have any modification you make to the tree automatically synchronized to the database.
You can even take an XML document, parse it using dom4j, and write it to the database with any of Hibernate's
basic operations: persist(), saveOrUpdate(), merge(), delete(), replicate() (merging is not yet sup-
ported).

This feature has many applications including data import/export, externalization of entity data via JMS or
SOAP and XSLT-based reporting.

A single mapping may be used to simultaneously map properties of a class and nodes of an XML document to
the database, or, if there is no class to map, it may be used to map just the XML.

19.1.1. Specifying XML and class mapping together

Here is an example of mapping a POJO and XML simultaneously:

<class name="Account"
table="ACCOUNTS"
node="account">

<id name="accountId"
column="ACCOUNT_ID"
node="@id"/>

<many-to-one name="customer"
column="CUSTOMER_ID"
node="customer/@id"
embed-xml="false"/>

<property name="balance"
column="BALANCE"
node="balance"/>

...

</class>

19.1.2. Specifying only an XML mapping

Here is an example where there is no POJO class:

<class entity-name="Account"
table="ACCOUNTS"
node="account">

<id name="id"
column="ACCOUNT_ID"

Hibernate 3.0.5 160

node="@id"
type="string"/>

<many-to-one name="customerId"
column="CUSTOMER_ID"
node="customer/@id"
embed-xml="false"
entity-name="Customer"/>

<property name="balance"
column="BALANCE"
node="balance"
type="big_decimal"/>

...

</class>

This mapping allows you to access the data as a dom4j tree, or as a graph of property name/value pairs (java
Maps). The property names are purely logical constructs that may be referred to in HQL queries.

19.2. XML mapping metadata

Many Hibernate mapping elements accept the node attribute. This let's you specify the name of an XML attrib-
ute or element that holds the property or entity data. The format of the node attribute must be one of the follow-
ing:

• "element-name" - map to the named XML element
• "@attribute-name" - map to the named XML attribute
• "." - map to the parent element
• "element-name/@attribute-name" - map to the named attribute of the named element

For collections and single valued associations, there is an additional embed-xml attribute. If embed-xml="true",
the default, the XML tree for the associated entity (or collection of value type) will be embedded directly in the
XML tree for the entity that owns the association. Otherwise, if embed-xml="false", then only the referenced
identifier value will appear in the XML for single point associations and collections will simply not appear at
all.

You should be careful not to leave embed-xml="true" for too many associations, since XML does not deal well
with circularity!

<class name="Customer"
table="CUSTOMER"
node="customer">

<id name="id"
column="CUST_ID"
node="@id"/>

<map name="accounts"
node="."
embed-xml="true">

<key column="CUSTOMER_ID"
not-null="true"/>

<map-key column="SHORT_DESC"
node="@short-desc"
type="string"/>

<one-to-many entity-name="Account"
embed-xml="false"
node="account"/>

</map>

XML Mapping

Hibernate 3.0.5 161

<component name="name"
node="name">

<property name="firstName"
node="first-name"/>

<property name="initial"
node="initial"/>

<property name="lastName"
node="last-name"/>

</component>

...

</class>

in this case, we have decided to embed the collection of account ids, but not the actual account data. The fol-
lowing HQL query:

from Customer c left join fetch c.accounts where c.lastName like :lastName

Would return datasets such as this:

<customer id="123456789">
<account short-desc="Savings">987632567</account>
<account short-desc="Credit Card">985612323</account>
<name>

<first-name>Gavin</first-name>
<initial>A</initial>
<last-name>King</last-name>

</name>
...

</customer>

If you set embed-xml="true" on the <one-to-many> mapping, the data might look more like this:

<customer id="123456789">
<account id="987632567" short-desc="Savings">

<customer id="123456789"/>
<balance>100.29</balance>

</account>
<account id="985612323" short-desc="Credit Card">

<customer id="123456789"/>
<balance>-2370.34</balance>

</account>
<name>

<first-name>Gavin</first-name>
<initial>A</initial>
<last-name>King</last-name>

</name>
...

</customer>

19.3. Manipulating XML data

Let's rearead and update XML documents in the application. We do this by obtaining a dom4j session:

Document doc =;

Session session = factory.openSession();
Session dom4jSession = session.getSession(EntityMode.DOM4J);
Transaction tx = session.beginTransaction();

List results = dom4jSession
.createQuery("from Customer c left join fetch c.accounts where c.lastName like :lastName")

XML Mapping

Hibernate 3.0.5 162

.list();
for (int i=0; i<results.size(); i++) {

//add the customer data to the XML document
Element customer = (Element) results.get(i);
doc.add(customer);

}

tx.commit();
session.close();

Session session = factory.openSession();
Session dom4jSession = session.getSession(EntityMode.DOM4J);
Transaction tx = session.beginTransaction();

Element cust = (Element) dom4jSession.get("Customer", customerId);
for (int i=0; i<results.size(); i++) {

Element customer = (Element) results.get(i);
//change the customer name in the XML and database
Element name = customer.element("name");
name.element("first-name").setText(firstName);
name.element("initial").setText(initial);
name.element("last-name").setText(lastName);

}

tx.commit();
session.close();

It is extremely useful to combine this feature with Hibernate's replicate() operation to implement XML-
based data import/export.

XML Mapping

Hibernate 3.0.5 163

Chapter 20. Improving performance

20.1. Fetching strategies

A fetching strategy is the strategy Hibernate will use for retrieving associated objects if the application needs to
navigate the association. Fetch strategies may be declared in the O/R mapping metadata, or over-ridden by a
particular HQL or Criteria query.

Hibernate3 defines the following fetching strategies:

• Join fetching - Hibernate retrieves the associated instance or collection in the same SELECT, using an OUTER

JOIN.

• Select fetching - a second SELECT is used to retrieve the associated entity or collection. Unless you explicitly
disable lazy fetching by specifying lazy="false", this second select will only be executed when you actu-
ally access the association.

• Subselect fetching - a second SELECT is used to retrieve the associated collections for all entities retrieved in
a previous query or fetch. Unless you explicitly disable lazy fetching by specifying lazy="false", this
second select will only be executed when you actually access the association.

• Batch fetching - an optimization strategy for select fetching - Hibernate retrieves a batch of entity instances
or collections in a single SELECT, by specifying a list of primary keys or foreign keys.

Hibernate also distinguishes between:

• Immediate fetching - an association, collection or attribute is fetched immediately, when the owner is
loaded.

• Lazy collection fetching - a collection is fetched when the application invokes an operation upon that collec-
tion. (This is the default for collections.)

• Proxy fetching - a single-valued association is fetched when a method other than the identifier getter is in-
voked upon the associated object.

• Lazy attribute fetching - an attribute or single valued association is fetched when the instance variable is ac-
cessed (required buildtime bytecode instrumentation). This approach is rarely necessary.

We have two orthogonal notions here: when is the association fetched, and how is it fetched (what SQL is
used). Don't confuse them! We use fetch to tune performance. We may use lazy to define a contract for what
data is always available in any detached instance of a particular class.

20.1.1. Working with lazy associations

By default, Hibernate3 uses lazy select fetching for collections and lazy proxy fetching for single-valued asso-
ciations. These defaults make sense for almost all associations in almost all applications.

Note: if you set hibernate.default_batch_fetch_size, Hibernate will use the batch fetch optimization for
lazy fetching (this optimization may also be enabled at a more granular level).

However, lazy fetching poses one problem that you must be aware of. Access to a lazy association outside of

Hibernate 3.0.5 164

the context of an open Hibernate session will result in an exception. For example:

s = sessions.openSession();
Transaction tx = s.beginTransaction();

User u = (User) s.createQuery("from User u where u.name=:userName")
.setString("userName", userName).uniqueResult();

Map permissions = u.getPermissions();

tx.commit();
s.close();

Integer accessLevel = (Integer) permissions.get("accounts"); // Error!

Since the permissions collection was not initialized when the Session was closed, the collection will not be
able to load its state. Hibernate does not support lazy initialization for detached objects. The fix is to move the
code that reads from the collection to just before the transaction is committed.

Alternatively, we could use a non-lazy collection or association, by specifying lazy="false" for the associ-
ation mapping. However, it is intended that lazy initialization be used for almost all collections and associ-
ations. If you define too many non-lazy associations in your object model, Hibernate will end up needing to
fetch the entire database into memory in every transaction!

On the other hand, we often want to choose join fetching (which is non-lazy by nature) instead of select fetch-
ing in a particular transaction. We'll now see how to customize the fetching strategy. In Hibernate3, the mech-
anisms for choosing a fetch strategy are identical for single-valued associations and collections.

20.1.2. Tuning fetch strategies

Select fetching (the default) is extremely vulnerable to N+1 selects problems, so we might want to enable join
fetching in the mapping document:

<set name="permissions"
fetch="join">

<key column="userId"/>
<one-to-many class="Permission"/>

</set

<many-to-one name="mother" class="Cat" fetch="join"/>

The fetch strategy defined in the mapping document affects:

• retrieval via get() or load()

• retrieval that happens implicitly when an association is navigated (lazy fetching)

• Criteria queries

Usually, we don't use the mapping document to customize fetching. Instead, we keep the default behavior, and
override it for a particular transaction, using left join fetch in HQL. This tells Hibernate to fetch the associ-
ation eagerly in the first select, using an outer join. In the Criteria query API, you would use setFetch-

Mode(FetchMode.JOIN).

If you ever feel like you wish you could change the fetching strategy used by get() or load(), simply use a
Criteria query, for example:

User user = (User) session.createCriteria(User.class)

Improving performance

Hibernate 3.0.5 165

.setFetchMode("permissions", FetchMode.JOIN)

.add(Restrictions.idEq(userId))

.uniqueResult();

(This is Hibernate's equivalent of what some ORM solutions call a "fetch plan".)

A completely different way to avoid problems with N+1 selects is to use the second-level cache.

20.1.3. Single-ended association proxies

Lazy fetching for collections is implemented using Hibernate's own implementation of persistent collections.
However, a different mechanism is needed for lazy behavior in single-ended associations. The target entity of
the association must be proxied. Hibernate implements lazy initializing proxies for persistent objects using
runtime bytecode enhancement (via the excellent CGLIB library).

By default, Hibernate3 generates proxies (at startup) for all persistent classes and uses them to enable lazy
fetching of many-to-one and one-to-one associations.

The mapping file may declare an interface to use as the proxy interface for that class, with the proxy attribute.
By default, Hibernate uses a subclass of the class. Note that the proxied class must implement a default con-
structor with at least package visibility. We recommend this constructor for all persistent classes!

There are some gotchas to be aware of when extending this approach to polymorphic classes, eg.

<class name="Cat" proxy="Cat">
......
<subclass name="DomesticCat">

.....
</subclass>

</class>

Firstly, instances of Cat will never be castable to DomesticCat, even if the underlying instance is an instance of
DomesticCat:

Cat cat = (Cat) session.load(Cat.class, id); // instantiate a proxy (does not hit the db)
if (cat.isDomesticCat()) { // hit the db to initialize the proxy

DomesticCat dc = (DomesticCat) cat; // Error!
....

}

Secondly, it is possible to break proxy ==.

Cat cat = (Cat) session.load(Cat.class, id); // instantiate a Cat proxy
DomesticCat dc =

(DomesticCat) session.load(DomesticCat.class, id); // acquire new DomesticCat proxy!
System.out.println(cat==dc); // false

However, the situation is not quite as bad as it looks. Even though we now have two references to different
proxy objects, the underlying instance will still be the same object:

cat.setWeight(11.0); // hit the db to initialize the proxy
System.out.println(dc.getWeight()); // 11.0

Third, you may not use a CGLIB proxy for a final class or a class with any final methods.

Finally, if your persistent object acquires any resources upon instantiation (eg. in initializers or default con-
structor), then those resources will also be acquired by the proxy. The proxy class is an actual subclass of the

Improving performance

Hibernate 3.0.5 166

persistent class.

These problems are all due to fundamental limitations in Java's single inheritance model. If you wish to avoid
these problems your persistent classes must each implement an interface that declares its business methods.
You should specify these interfaces in the mapping file. eg.

<class name="CatImpl" proxy="Cat">
......
<subclass name="DomesticCatImpl" proxy="DomesticCat">

.....
</subclass>

</class>

where CatImpl implements the interface Cat and DomesticCatImpl implements the interface DomesticCat.
Then proxies for instances of Cat and DomesticCat may be returned by load() or iterate(). (Note that
list() does not usually return proxies.)

Cat cat = (Cat) session.load(CatImpl.class, catid);
Iterator iter = session.iterate("from CatImpl as cat where cat.name='fritz'");
Cat fritz = (Cat) iter.next();

Relationships are also lazily initialized. This means you must declare any properties to be of type Cat, not
CatImpl.

Certain operations do not require proxy initialization

• equals(), if the persistent class does not override equals()

• hashCode(), if the persistent class does not override hashCode()

• The identifier getter method

Hibernate will detect persistent classes that override equals() or hashCode().

20.1.4. Initializing collections and proxies

A LazyInitializationException will be thrown by Hibernate if an uninitialized collection or proxy is ac-
cessed outside of the scope of the Session, ie. when the entity owning the collection or having the reference to
the proxy is in the detached state.

Sometimes we need to ensure that a proxy or collection is initialized before closing the Session. Of course, we
can alway force initialization by calling cat.getSex() or cat.getKittens().size(), for example. But that is
confusing to readers of the code and is not convenient for generic code.

The static methods Hibernate.initialize() and Hibernate.isInitialized() provide the application with a
convenient way of working with lazily initialized collections or proxies. Hibernate.initialize(cat) will
force the initialization of a proxy, cat, as long as its Session is still open. Hibernate.initialize(

cat.getKittens()) has a similar effect for the collection of kittens.

Another option is to keep the Session open until all needed collections and proxies have been loaded. In some
application architectures, particularly where the code that accesses data using Hibernate, and the code that uses
it are in different application layers or different physical processes, it can be a problem to ensure that the Ses-

sion is open when a collection is initialized. There are two basic ways to deal with this issue:

• In a web-based application, a servlet filter can be used to close the Session only at the very end of a user
request, once the rendering of the view is complete (the Open Session in View pattern). Of course, this
places heavy demands on the correctness of the exception handling of your application infrastructure. It is

Improving performance

Hibernate 3.0.5 167

vitally important that the Session is closed and the transaction ended before returning to the user, even
when an exception occurs during rendering of the view. The servlet filter has to be able to access the Ses-

sion for this approach. We recommend that a ThreadLocal variable be used to hold the current Session
(see chapter 1, Section 1.4, “Playing with cats”, for an example implementation).

• In an application with a separate business tier, the business logic must "prepare" all collections that will be
needed by the web tier before returning. This means that the business tier should load all the data and return
all the data already initialized to the presentation/web tier that is required for a particular use case. Usually,
the application calls Hibernate.initialize() for each collection that will be needed in the web tier (this
call must occur before the session is closed) or retrieves the collection eagerly using a Hibernate query with
a FETCH clause or a FetchMode.JOIN in Criteria. This is usually easier if you adopt the Command pattern
instead of a Session Facade.

• You may also attach a previously loaded object to a new Session with merge() or lock() before accessing
uninitialized collections (or other proxies). No, Hibernate does not, and certainly should not do this auto-
matically, since it would introduce ad hoc transaction semantics!

Sometimes you don't want to initialize a large collection, but still need some information about it (like its size)
or a subset of the data.

You can use a collection filter to get the size of a collection without initializing it:

((Integer) s.createFilter(collection, "select count(*)").list().get(0)).intValue()

The createFilter() method is also used to efficiently retrieve subsets of a collection without needing to ini-
tialize the whole collection:

s.createFilter(lazyCollection, "").setFirstResult(0).setMaxResults(10).list();

20.1.5. Using batch fetching

Hibernate can make efficient use of batch fetching, that is, Hibernate can load several uninitialized proxies if
one proxy is accessed (or collections. Batch fetching is an optimization of the lazy select fetching strategy.
There are two ways you can tune batch fetching: on the class and the collection level.

Batch fetching for classes/entities is easier to understand. Imagine you have the following situation at runtime:
You have 25 Cat instances loaded in a Session, each Cat has a reference to its owner, a Person. The Person

class is mapped with a proxy, lazy="true". If you now iterate through all cats and call getOwner() on each,
Hibernate will by default execute 25 SELECT statements, to retrieve the proxied owners. You can tune this beha-
vior by specifying a batch-size in the mapping of Person:

<class name="Person" batch-size="10">...</class>

Hibernate will now execute only three queries, the pattern is 10, 10, 5.

You may also enable batch fetching of collections. For example, if each Person has a lazy collection of Cats,
and 10 persons are currently loaded in the Sesssion, iterating through all persons will generate 10 SELECTs, one
for every call to getCats(). If you enable batch fetching for the cats collection in the mapping of Person, Hi-
bernate can pre-fetch collections:

<class name="Person">
<set name="cats" batch-size="3">

...
</set>

Improving performance

Hibernate 3.0.5 168

</class>

With a batch-size of 8, Hibernate will load 3, 3, 3, 1 collections in four SELECTs. Again, the value of the at-
tribute depends on the expected number of uninitialized collections in a particular Session.

Batch fetching of collections is particularly useful if you have a nested tree of items, ie. the typical bill-
of-materials pattern. (Although a nested set or a materialized path might be a better option for read-mostly
trees.)

20.1.6. Using subselect fetching

If one lazy collection or single-valued proxy has to be fetched, Hibernate loads all of them, re-running the ori-
ginal query in a subselect. This works in the same way as batch-fetching, without the piecemeal loading.

20.1.7. Using lazy property fetching

Hibernate3 supports the lazy fetching of individual properties. This optimization technique is also known as
fetch groups. Please note that this is mostly a marketing feature, as in practice, optimizing row reads is much
more important than optimization of column reads. However, only loading some properties of a class might be
useful in extreme cases, when legacy tables have hundreds of columns and the data model can not be improved.

To enable lazy property loading, set the lazy attribute on your particular property mappings:

<class name="Document">
<id name="id">
<generator class="native"/>

</id>
<property name="name" not-null="true" length="50"/>
<property name="summary" not-null="true" length="200" lazy="true"/>
<property name="text" not-null="true" length="2000" lazy="true"/>

</class>

Lazy property loading requires buildtime bytecode instrumentation! If your persistent classes are not enhanced,
Hibernate will silently ignore lazy property settings and fall back to immediate fetching.

For bytecode instrumentation, use the following Ant task:

<target name="instrument" depends="compile">
<taskdef name="instrument" classname="org.hibernate.tool.instrument.InstrumentTask">

<classpath path="${jar.path}"/>
<classpath path="${classes.dir}"/>
<classpath refid="lib.class.path"/>

</taskdef>

<instrument verbose="true">
<fileset dir="${testclasses.dir}/org/hibernate/auction/model">

<include name="*.class"/>
</fileset>

</instrument>
</target>

A different (better?) way to avoid unnecessary column reads, at least for read-only transactions is to use the
projection features of HQL or Criteria queries. This avoids the need for buildtime bytecode processing and is
certainly a prefered solution.

You may force the usual eager fetching of properties using fetch all properties in HQL.

Improving performance

Hibernate 3.0.5 169

20.2. The Second Level Cache

A Hibernate Session is a transaction-level cache of persistent data. It is possible to configure a cluster or JVM-
level (SessionFactory-level) cache on a class-by-class and collection-by-collection basis. You may even plug
in a clustered cache. Be careful. Caches are never aware of changes made to the persistent store by another ap-
plication (though they may be configured to regularly expire cached data).

By default, Hibernate uses EHCache for JVM-level caching. (JCS support is now deprecated and will be re-
moved in a future version of Hibernate.) You may choose a different implementation by specifying the name of
a class that implements org.hibernate.cache.CacheProvider using the property hibern-

ate.cache.provider_class.

Table 20.1. Cache Providers

Cache Provider class Type Cluster Safe Query Cache
Supported

Hashtable
(not intended
for produc-
tion use)

org.hibernate.cache.HashtableCacheProv

ider

memory yes

EHCache org.hibernate.cache.EhCacheProvider memory, disk yes

OSCache org.hibernate.cache.OSCacheProvider memory, disk yes

SwarmCache org.hibernate.cache.SwarmCacheProvider clustered (ip
multicast)

yes (clustered
invalidation)

JBoss
TreeCache

org.hibernate.cache.TreeCacheProvider clustered (ip
multicast),
transactional

yes
(replication)

yes (clock
sync req.)

20.2.1. Cache mappings

The <cache> element of a class or collection mapping has the following form:

<cache
usage="transactional|read-write|nonstrict-read-write|read-only" (1)

/>

(1) usage specifies the caching strategy: transactional, read-write, nonstrict-read-write or read-only

Alternatively (preferrably?), you may specify <class-cache> and <collection-cache> elements in hibern-

ate.cfg.xml.

The usage attribute specifies a cache concurrency strategy.

20.2.2. Strategy: read only

If your application needs to read but never modify instances of a persistent class, a read-only cache may be
used. This is the simplest and best performing strategy. It's even perfectly safe for use in a cluster.

Improving performance

Hibernate 3.0.5 170

<class name="eg.Immutable" mutable="false">
<cache usage="read-only"/>
....

</class>

20.2.3. Strategy: read/write

If the application needs to update data, a read-write cache might be appropriate. This cache strategy should
never be used if serializable transaction isolation level is required. If the cache is used in a JTA environment,
you must specify the property hibernate.transaction.manager_lookup_class, naming a strategy for obtain-
ing the JTA TransactionManager. In other environments, you should ensure that the transaction is completed
when Session.close() or Session.disconnect() is called. If you wish to use this strategy in a cluster, you
should ensure that the underlying cache implementation supports locking. The built-in cache providers do not.

<class name="eg.Cat" >
<cache usage="read-write"/>
....
<set name="kittens" ... >

<cache usage="read-write"/>
....

</set>
</class>

20.2.4. Strategy: nonstrict read/write

If the application only occasionally needs to update data (ie. if it is extremely unlikely that two transactions
would try to update the same item simultaneously) and strict transaction isolation is not required, a nonstrict-

read-write cache might be appropriate. If the cache is used in a JTA environment, you must specify hibern-

ate.transaction.manager_lookup_class. In other environments, you should ensure that the transaction is
completed when Session.close() or Session.disconnect() is called.

20.2.5. Strategy: transactional

The transactional cache strategy provides support for fully transactional cache providers such as JBoss
TreeCache. Such a cache may only be used in a JTA environment and you must specify hibern-

ate.transaction.manager_lookup_class.

None of the cache providers support all of the cache concurrency strategies. The following table shows which
providers are compatible with which concurrency strategies.

Table 20.2. Cache Concurrency Strategy Support

Cache read-only nonstrict-
read-write

read-write transactional

Hashtable (not in-
tended for produc-
tion use)

yes yes yes

EHCache yes yes yes

OSCache yes yes yes

SwarmCache yes yes

Improving performance

Hibernate 3.0.5 171

Cache read-only nonstrict-
read-write

read-write transactional

JBoss TreeCache yes yes

20.3. Managing the caches

Whenever you pass an object to save(), update() or saveOrUpdate() and whenever you retrieve an object us-
ing load(), get(), list(), iterate() or scroll(), that object is added to the internal cache of the Session.

When flush() is subsequently called, the state of that object will be synchronized with the database. If you do
not want this synchronization to occur or if you are processing a huge number of objects and need to manage
memory efficiently, the evict() method may be used to remove the object and its collections from the first-
level cache.

ScrollableResult cats = sess.createQuery("from Cat as cat").scroll(); //a huge result set
while (cats.next()) {

Cat cat = (Cat) cats.get(0);
doSomethingWithACat(cat);
sess.evict(cat);

}

The Session also provides a contains() method to determine if an instance belongs to the session cache.

To completely evict all objects from the session cache, call Session.clear()

For the second-level cache, there are methods defined on SessionFactory for evicting the cached state of an
instance, entire class, collection instance or entire collection role.

sessionFactory.evict(Cat.class, catId); //evict a particular Cat
sessionFactory.evict(Cat.class); //evict all Cats
sessionFactory.evictCollection("Cat.kittens", catId); //evict a particular collection of kittens
sessionFactory.evictCollection("Cat.kittens"); //evict all kitten collections

The CacheMode controls how a particular session interacts with the second-level cache.

• CacheMode.NORMAL - read items from and write items to the second-level cache

• CacheMode.GET - read items from the second-level cache, but don't write to the second-level cache except
when updating data

• CacheMode.PUT - write items to the second-level cache, but don't read from the second-level cache

• CacheMode.REFRESH - write items to the second-level cache, but don't read from the second-level cache, by-
pass the effect of hibernate.cache.use_minimal_puts, forcing a refresh of the second-level cache for all
items read from the database

To browse the contents of a second-level or query cache region, use the Statistics API:

Map cacheEntries = sessionFactory.getStatistics()
.getSecondLevelCacheStatistics(regionName)
.getEntries();

You'll need to enable statistics, and, optionally, force Hibernate to keep the cache entries in a more human-
understandable format:

Improving performance

Hibernate 3.0.5 172

hibernate.generate_statistics true
hibernate.cache.use_structured_entries true

20.4. The Query Cache

Query result sets may also be cached. This is only useful for queries that are run frequently with the same para-
meters. To use the query cache you must first enable it:

hibernate.cache.use_query_cache true

This setting causes the creation of two new cache regions - one holding cached query result sets
(org.hibernate.cache.StandardQueryCache), the other holding timestamps of the most recent updates to
queryable tables (org.hibernate.cache.UpdateTimestampsCache). Note that the query cache does not cache
the state of the actual entities in the result set; it caches only identifier values and results of value type. So the
query cache should always be used in conjunction with the second-level cache.

Most queries do not benefit from caching, so by default queries are not cached. To enable caching, call
Query.setCacheable(true). This call allows the query to look for existing cache results or add its results to
the cache when it is executed.

If you require fine-grained control over query cache expiration policies, you may specify a named cache region
for a particular query by calling Query.setCacheRegion().

List blogs = sess.createQuery("from Blog blog where blog.blogger = :blogger")
.setEntity("blogger", blogger)
.setMaxResults(15)
.setCacheable(true)
.setCacheRegion("frontpages")
.list();

If the query should force a refresh of its query cache region, you should call
Query.setCacheMode(CacheMode.REFRESH). This is particularly useful in cases where underlying data may
have been updated via a separate process (i.e., not modified through Hibernate) and allows the application to
selectively refresh particular query result sets. This is a more efficient alternative to eviction of a query cache
region via SessionFactory.evictQueries().

20.5. Understanding Collection performance

We've already spent quite some time talking about collections. In this section we will highlight a couple more
issues about how collections behave at runtime.

20.5.1. Taxonomy

Hibernate defines three basic kinds of collections:

• collections of values

• one to many associations

• many to many associations

Improving performance

Hibernate 3.0.5 173

This classification distinguishes the various table and foreign key relationships but does not tell us quite
everything we need to know about the relational model. To fully understand the relational structure and per-
formance characteristics, we must also consider the structure of the primary key that is used by Hibernate to up-
date or delete collection rows. This suggests the following classification:

• indexed collections

• sets

• bags

All indexed collections (maps, lists, arrays) have a primary key consisting of the <key> and <index> columns.
In this case collection updates are usually extremely efficient - the primary key may be efficiently indexed and
a particular row may be efficiently located when Hibernate tries to update or delete it.

Sets have a primary key consisting of <key> and element columns. This may be less efficient for some types of
collection element, particularly composite elements or large text or binary fields; the database may not be able
to index a complex primary key as efficently. On the other hand, for one to many or many to many associ-
ations, particularly in the case of synthetic identifiers, it is likely to be just as efficient. (Side-note: if you want
SchemaExport to actually create the primary key of a <set> for you, you must declare all columns as not-

null="true".)

<idbag> mappings define a surrogate key, so they are always very efficient to update. In fact, they are the best
case.

Bags are the worst case. Since a bag permits duplicate element values and has no index column, no primary key
may be defined. Hibernate has no way of distinguishing between duplicate rows. Hibernate resolves this prob-
lem by completely removing (in a single DELETE) and recreating the collection whenever it changes. This might
be very inefficient.

Note that for a one-to-many association, the "primary key" may not be the physical primary key of the database
table - but even in this case, the above classification is still useful. (It still reflects how Hibernate "locates" indi-
vidual rows of the collection.)

20.5.2. Lists, maps, idbags and sets are the most efficient collections to up-
date

From the discussion above, it should be clear that indexed collections and (usually) sets allow the most efficient
operation in terms of adding, removing and updating elements.

There is, arguably, one more advantage that indexed collections have over sets for many to many associations
or collections of values. Because of the structure of a Set, Hibernate doesn't ever UPDATE a row when an ele-
ment is "changed". Changes to a Set always work via INSERT and DELETE (of individual rows). Once again, this
consideration does not apply to one to many associations.

After observing that arrays cannot be lazy, we would conclude that lists, maps and idbags are the most perform-
ant (non-inverse) collection types, with sets not far behind. Sets are expected to be the most common kind of
collection in Hibernate applications. This is because the "set" semantics are most natural in the relational mod-
el.

However, in well-designed Hibernate domain models, we usually see that most collections are in fact one-
to-many associations with inverse="true". For these associations, the update is handled by the many-to-one
end of the association, and so considerations of collection update performance simply do not apply.

Improving performance

Hibernate 3.0.5 174

20.5.3. Bags and lists are the most efficient inverse collections

Just before you ditch bags forever, there is a particular case in which bags (and also lists) are much more per-
formant than sets. For a collection with inverse="true" (the standard bidirectional one-to-many relationship
idiom, for example) we can add elements to a bag or list without needing to initialize (fetch) the bag elements!
This is because Collection.add() or Collection.addAll() must always return true for a bag or List (unlike
a Set). This can make the following common code much faster.

Parent p = (Parent) sess.load(Parent.class, id);
Child c = new Child();
c.setParent(p);
p.getChildren().add(c); //no need to fetch the collection!
sess.flush();

20.5.4. One shot delete

Occasionally, deleting collection elements one by one can be extremely inefficient. Hibernate isn't completely
stupid, so it knows not to do that in the case of an newly-empty collection (if you called list.clear(), for ex-
ample). In this case, Hibernate will issue a single DELETE and we are done!

Suppose we add a single element to a collection of size twenty and then remove two elements. Hibernate will
issue one INSERT statement and two DELETE statements (unless the collection is a bag). This is certainly desir-
able.

However, suppose that we remove eighteen elements, leaving two and then add thee new elements. There are
two possible ways to proceed

• delete eighteen rows one by one and then insert three rows

• remove the whole collection (in one SQL DELETE) and insert all five current elements (one by one)

Hibernate isn't smart enough to know that the second option is probably quicker in this case. (And it would
probably be undesirable for Hibernate to be that smart; such behaviour might confuse database triggers, etc.)

Fortunately, you can force this behaviour (ie. the second strategy) at any time by discarding (ie. dereferencing)
the original collection and returning a newly instantiated collection with all the current elements. This can be
very useful and powerful from time to time.

Of course, one-shot-delete does not apply to collections mapped inverse="true".

20.6. Monitoring performance

Optimization is not much use without monitoring and access to performance numbers. Hibernate provides a full
range of figures about its internal operations. Statistics in Hibernate are available per SessionFactory.

20.6.1. Monitoring a SessionFactory

You can access SessionFactory metrics in two ways. Your first option is to call sessionFact-

ory.getStatistics() and read or display the Statistics yourself.

Hibernate can also use JMX to publish metrics if you enable the StatisticsService MBean. You may enable
a single MBean for all your SessionFactory or one per factory. See the following code for minimalistic con-

Improving performance

Hibernate 3.0.5 175

figuration examples:

// MBean service registration for a specific SessionFactory
Hashtable tb = new Hashtable();
tb.put("type", "statistics");
tb.put("sessionFactory", "myFinancialApp");
ObjectName on = new ObjectName("hibernate", tb); // MBean object name

StatisticsService stats = new StatisticsService(); // MBean implementation
stats.setSessionFactory(sessionFactory); // Bind the stats to a SessionFactory
server.registerMBean(stats, on); // Register the Mbean on the server

// MBean service registration for all SessionFactory's
Hashtable tb = new Hashtable();
tb.put("type", "statistics");
tb.put("sessionFactory", "all");
ObjectName on = new ObjectName("hibernate", tb); // MBean object name

StatisticsService stats = new StatisticsService(); // MBean implementation
server.registerMBean(stats, on); // Register the MBean on the server

TODO: This doesn't make sense: In the first case, we retrieve and use the MBean directly. In the second one,
we must give the JNDI name in which the session factory is held before using it. Use hibernateStats-

Bean.setSessionFactoryJNDIName("my/JNDI/Name")

You can (de)activate the monitoring for a SessionFactory

• at configuration time, set hibernate.generate_statistics to false

• at runtime: sf.getStatistics().setStatisticsEnabled(true) or hibernateStats-

Bean.setStatisticsEnabled(true)

Statistics can be reset programatically using the clear() method. A summary can be sent to a logger (info
level) using the logSummary() method.

20.6.2. Metrics

Hibernate provides a number of metrics, from very basic to the specialized information only relevant in certain
scenarios. All available counters are described in the Statistics interface API, in three categories:

• Metrics related to the general Session usage, such as number of open sessions, retrieved JDBC connec-
tions, etc.

• Metrics related to he entities, collections, queries, and caches as a whole (aka global metrics),

• Detailed metrics related to a particular entity, collection, query or cache region.

For exampl,e you can check the cache hit, miss, and put ratio of entities, collections and queries, and the aver-
age time a query needs. Beware that the number of milliseconds is subject to approximation in Java. Hibernate
is tied to the JVM precision, on some platforms this might even only be accurate to 10 seconds.

Simple getters are used to access the global metrics (i.e. not tied to a particular entity, collection, cache region,
etc.). You can access the metrics of a particular entity, collection or cache region through its name, and through
its HQL or SQL representation for queries. Please refer to the Statistics, EntityStatistics, CollectionS-
tatistics, SecondLevelCacheStatistics, and QueryStatistics API Javadoc for more information. The fol-
lowing code shows a simple example:

Improving performance

Hibernate 3.0.5 176

Statistics stats = HibernateUtil.sessionFactory.getStatistics();

double queryCacheHitCount = stats.getQueryCacheHitCount();
double queryCacheMissCount = stats.getQueryCacheMissCount();
double queryCacheHitRatio =

queryCacheHitCount / (queryCacheHitCount + queryCacheMissCount);

log.info("Query Hit ratio:" + queryCacheHitRatio);

EntityStatistics entityStats =
stats.getEntityStatistics(Cat.class.getName());

long changes =
entityStats.getInsertCount()
+ entityStats.getUpdateCount()
+ entityStats.getDeleteCount();

log.info(Cat.class.getName() + " changed " + changes + "times");

To work on all entities, collections, queries and region caches, you can retrieve the list of names of entities, col-
lections, queries and region caches with the following methods: getQueries(), getEntityNames(), getCol-
lectionRoleNames(), and getSecondLevelCacheRegionNames().

Improving performance

Hibernate 3.0.5 177

Chapter 21. Toolset Guide
Roundtrip engineering with Hibernate is possible using a set of Eclipse plugins, commandline tools, as well as
Ant tasks.

The Hibernate Tools currently include plugins for the Eclipse IDE as well as Ant tasks for reverse engineering
of existing databases:

• Mapping Editor: An editor for Hibernate XML mapping files, supporting auto-completion and syntax high-
lighting. It also supports semantic auto-completion for class names and property/field names, making it
much more versatile than a normal XML editor.

• Console: The console is a new view in Eclipse. In addition to a tree overview of your console configura-
tions, you also get an interactive view of your persistent classes and their relationships. The console allows
you to execute HQL queries against your database and browse the result directly in Eclipse.

• Development Wizards: Several wizards are provided with the Hibernate Eclipse tools; you can use a wizard
to quickly generate Hibernate configuration (cfg.xml) files, or you may even completely reverse engineer
an existing database schema into POJO source files and Hibernate mapping files. The reverse engineering
wizard supports customizable templates.

• Ant Tasks:

Please refer to the Hibernate Tools package and it's documentation for more information.

However, the Hibernate main package comes bundled with an integrated tool (it can even be used from "inside"
Hibernate on-the-fly): SchemaExport aka hbm2ddl.

21.1. Automatic schema generation

DDL may be generated from your mapping files by a Hibernate utility. The generated schema includes referen-
tial integrity constraints (primary and foreign keys) for entity and collection tables. Tables and sequences are
also created for mapped identifier generators.

You must specify a SQL Dialect via the hibernate.dialect property when using this tool, as DDL is highly
vendor specific.

First, customize your mapping files to improve the generated schema.

21.1.1. Customizing the schema

Many Hibernate mapping elements define an optional attribute named length. You may set the length of a
column with this attribute. (Or, for numeric/decimal data types, the precision.)

Some tags also accept a not-null attribute (for generating a NOT NULL constraint on table columns) and a
unique attribute (for generating UNIQUE constraint on table columns).

Some tags accept an index attribute for specifying the name of an index for that column. A unique-key attrib-
ute can be used to group columns in a single unit key constraint. Currently, the specified value of the unique-

key attribute is not used to name the constraint, only to group the columns in the mapping file.

Hibernate 3.0.5 178

Examples:

<property name="foo" type="string" length="64" not-null="true"/>

<many-to-one name="bar" foreign-key="fk_foo_bar" not-null="true"/>

<element column="serial_number" type="long" not-null="true" unique="true"/>

Alternatively, these elements also accept a child <column> element. This is particularly useful for multi-column
types:

<property name="foo" type="string">
<column name="foo" length="64" not-null="true" sql-type="text"/>

</property>

<property name="bar" type="my.customtypes.MultiColumnType"/>
<column name="fee" not-null="true" index="bar_idx"/>
<column name="fi" not-null="true" index="bar_idx"/>
<column name="fo" not-null="true" index="bar_idx"/>

</property>

The sql-type attribute allows the user to override the default mapping of Hibernate type to SQL datatype.

The check attribute allows you to specify a check constraint.

<property name="foo" type="integer">
<column name="foo" check="foo > 10"/>

</property>

<class name="Foo" table="foos" check="bar < 100.0">
...
<property name="bar" type="float"/>

</class>

Table 21.1. Summary

Attribute Values Interpretation

length number column length/decimal precision

not-null true|false specfies that the column should be non-nullable

unique true|false specifies that the column should have a unique constraint

index index_name specifies the name of a (multi-column) index

unique-key unique_key_name specifies the name of a multi-column unique constraint

foreign-key foreign_key_name specifies the name of the foreign key constraint generated
for an association, use it on <one-to-one>, <many-to-one>,
<key>, and <many-to-many> mapping elements. Note that
inverse="true" sides will not be considered by SchemaEx-

port.

sql-type column_type overrides the default column type (attribute of <column>

element only)

check SQL expression create an SQL check constraint on either column or table

Toolset Guide

Hibernate 3.0.5 179

The <comment> element allows you to specify a comments for the generated schema.

<class name="Customer" table="CurCust">
<comment>Current customers only</comment>
...

</class>

<property name="balance">
<column name="bal">

<comment>Balance in USD</comment>
</column>

</property>

This results in a comment on table or comment on column statement in the generated DDL (where supported).

21.1.2. Running the tool

The SchemaExport tool writes a DDL script to standard out and/or executes the DDL statements.

java -cp hibernate_classpaths org.hibernate.tool.hbm2ddl.SchemaExport options mapping_files

Table 21.2. SchemaExport Command Line Options

Option Description

--quiet don't output the script to stdout

--drop only drop the tables

--text don't export to the database

--output=my_schema.ddl output the ddl script to a file

--config=hibernate.cfg.xml read Hibernate configuration from an XML file

--properties=hibernate.properties read database properties from a file

--format format the generated SQL nicely in the script

--delimiter=x set an end of line delimiter for the script

You may even embed SchemaExport in your application:

Configuration cfg =;
new SchemaExport(cfg).create(false, true);

21.1.3. Properties

Database properties may be specified

• as system properties with -D<property>
• in hibernate.properties

• in a named properties file with --properties

The needed properties are:

Toolset Guide

Hibernate 3.0.5 180

Table 21.3. SchemaExport Connection Properties

Property Name Description

hibernate.connection.driver_class jdbc driver class

hibernate.connection.url jdbc url

hibernate.connection.username database user

hibernate.connection.password user password

hibernate.dialect dialect

21.1.4. Using Ant

You can call SchemaExport from your Ant build script:

<target name="schemaexport">
<taskdef name="schemaexport"

classname="org.hibernate.tool.hbm2ddl.SchemaExportTask"
classpathref="class.path"/>

<schemaexport
properties="hibernate.properties"
quiet="no"
text="no"
drop="no"
delimiter=";"
output="schema-export.sql">
<fileset dir="src">

<include name="**/*.hbm.xml"/>
</fileset>

</schemaexport>
</target>

21.1.5. Incremental schema updates

The SchemaUpdate tool will update an existing schema with "incremental" changes. Note that SchemaUpdate
depends heavily upon the JDBC metadata API, so it will not work with all JDBC drivers.

java -cp hibernate_classpaths org.hibernate.tool.hbm2ddl.SchemaUpdate options mapping_files

Table 21.4. SchemaUpdate Command Line Options

Option Description

--quiet don't output the script to stdout

--properties=hibernate.properties read database properties from a file

You may embed SchemaUpdate in your application:

Configuration cfg =;
new SchemaUpdate(cfg).execute(false);

Toolset Guide

Hibernate 3.0.5 181

21.1.6. Using Ant for incremental schema updates

You can call SchemaUpdate from the Ant script:

<target name="schemaupdate">
<taskdef name="schemaupdate"

classname="org.hibernate.tool.hbm2ddl.SchemaUpdateTask"
classpathref="class.path"/>

<schemaupdate
properties="hibernate.properties"
quiet="no">
<fileset dir="src">

<include name="**/*.hbm.xml"/>
</fileset>

</schemaupdate>
</target>

Toolset Guide

Hibernate 3.0.5 182

Chapter 22. Example: Parent/Child
One of the very first things that new users try to do with Hibernate is to model a parent / child type relationship.
There are two different approaches to this. For various reasons the most convenient approach, especially for
new users, is to model both Parent and Child as entity classes with a <one-to-many> association from Parent

to Child. (The alternative approach is to declare the Child as a <composite-element>.) Now, it turns out that
default semantics of a one to many association (in Hibernate) are much less close to the usual semantics of a
parent / child relationship than those of a composite element mapping. We will explain how to use a bidirec-
tional one to many association with cascades to model a parent / child relationship efficiently and elegantly. It's
not at all difficult!

22.1. A note about collections

Hibernate collections are considered to be a logical part of their owning entity; never of the contained entities.
This is a crucial distinction! It has the following consequences:

• When we remove / add an object from / to a collection, the version number of the collection owner is incre-
mented.

• If an object that was removed from a collection is an instance of a value type (eg, a composite element), that
object will cease to be persistent and its state will be completely removed from the database. Likewise,
adding a value type instance to the collection will cause its state to be immediately persistent.

• On the other hand, if an entity is removed from a collection (a one-to-many or many-to-many association),
it will not be deleted, by default. This behaviour is completely consistent - a change to the internal state of
another entity should not cause the associated entity to vanish! Likewise, adding an entity to a collection
does not cause that entity to become persistent, by default.

Instead, the default behaviour is that adding an entity to a collection merely creates a link between the two en-
tities, while removing it removes the link. This is very appropriate for all sorts of cases. Where it is not appro-
priate at all is the case of a parent / child relationship, where the life of the child is bound to the lifecycle of the
parent.

22.2. Bidirectional one-to-many

Suppose we start with a simple <one-to-many> association from Parent to Child.

<set name="children">
<key column="parent_id"/>
<one-to-many class="Child"/>

</set>

If we were to execute the following code

Parent p =;
Child c = new Child();
p.getChildren().add(c);
session.save(c);
session.flush();

Hibernate would issue two SQL statements:

Hibernate 3.0.5 183

• an INSERT to create the record for c

• an UPDATE to create the link from p to c

This is not only inefficient, but also violates any NOT NULL constraint on the parent_id column. We can fix the
nullability constraint violation by specifying not-null="true" in the collection mapping:

<set name="children">
<key column="parent_id" not-null="true"/>
<one-to-many class="Child"/>

</set>

However, this is not the recommended solution.

The underlying cause of this behaviour is that the link (the foreign key parent_id) from p to c is not considered
part of the state of the Child object and is therefore not created in the INSERT. So the solution is to make the
link part of the Child mapping.

<many-to-one name="parent" column="parent_id" not-null="true"/>

(We also need to add the parent property to the Child class.)

Now that the Child entity is managing the state of the link, we tell the collection not to update the link. We use
the inverse attribute.

<set name="children" inverse="true">
<key column="parent_id"/>
<one-to-many class="Child"/>

</set>

The following code would be used to add a new Child

Parent p = (Parent) session.load(Parent.class, pid);
Child c = new Child();
c.setParent(p);
p.getChildren().add(c);
session.save(c);
session.flush();

And now, only one SQL INSERT would be issued!

To tighten things up a bit, we could create an addChild() method of Parent.

public void addChild(Child c) {
c.setParent(this);
children.add(c);

}

Now, the code to add a Child looks like

Parent p = (Parent) session.load(Parent.class, pid);
Child c = new Child();
p.addChild(c);
session.save(c);
session.flush();

22.3. Cascading lifecycle

Example: Parent/Child

Hibernate 3.0.5 184

The explicit call to save() is still annoying. We will address this by using cascades.

<set name="children" inverse="true" cascade="all">
<key column="parent_id"/>
<one-to-many class="Child"/>

</set>

This simplifies the code above to

Parent p = (Parent) session.load(Parent.class, pid);
Child c = new Child();
p.addChild(c);
session.flush();

Similarly, we don't need to iterate over the children when saving or deleting a Parent. The following removes p
and all its children from the database.

Parent p = (Parent) session.load(Parent.class, pid);
session.delete(p);
session.flush();

However, this code

Parent p = (Parent) session.load(Parent.class, pid);
Child c = (Child) p.getChildren().iterator().next();
p.getChildren().remove(c);
c.setParent(null);
session.flush();

will not remove c from the database; it will ony remove the link to p (and cause a NOT NULL constraint viola-
tion, in this case). You need to explicitly delete() the Child.

Parent p = (Parent) session.load(Parent.class, pid);
Child c = (Child) p.getChildren().iterator().next();
p.getChildren().remove(c);
session.delete(c);
session.flush();

Now, in our case, a Child can't really exist without its parent. So if we remove a Child from the collection, we
really do want it to be deleted. For this, we must use cascade="all-delete-orphan".

<set name="children" inverse="true" cascade="all-delete-orphan">
<key column="parent_id"/>
<one-to-many class="Child"/>

</set>

Note: even though the collection mapping specifies inverse="true", cascades are still processed by iterating
the collection elements. So if you require that an object be saved, deleted or updated by cascade, you must add
it to the collection. It is not enough to simply call setParent().

22.4. Cascades and unsaved-value

Suppose we loaded up a Parent in one Session, made some changes in a UI action and wish to persist these
changes in a new session by calling update(). The Parent will contain a collection of childen and, since cas-
cading update is enabled, Hibernate needs to know which children are newly instantiated and which represent
existing rows in the database. Lets assume that both Parent and Child have genenerated identifier properties of
type Long. Hibernate will use the identifier and version/timestamp property value to determine which of the

Example: Parent/Child

Hibernate 3.0.5 185

children are new. (See Section 11.7, “Automatic state detection”.) In Hibernate3, it is no longer necessary to
specify an unsaved-value explicitly.

The following code will update parent and child and insert newChild.

//parent and child were both loaded in a previous session
parent.addChild(child);
Child newChild = new Child();
parent.addChild(newChild);
session.update(parent);
session.flush();

Well, that's all very well for the case of a generated identifier, but what about assigned identifiers and compos-
ite identifiers? This is more difficult, since Hibernate can't use the identifier property to distinguish between a
newly instantiated object (with an identifier assigned by the user) and an object loaded in a previous session. In
this case, Hibernate will either use the timestamp or version property, or will actually query the second-level
cache or, worst case, the database, to see if the row exists.

22.5. Conclusion

There is quite a bit to digest here and it might look confusing first time around. However, in practice, it all
works out very nicely. Most Hibernate applications use the parent / child pattern in many places.

We mentioned an alternative in the first paragraph. None of the above issues exist in the case of
<composite-element> mappings, which have exactly the semantics of a parent / child relationship. Unfortu-
nately, there are two big limitations to composite element classes: composite elements may not own collections,
and they should not be the child of any entity other than the unique parent.

Example: Parent/Child

Hibernate 3.0.5 186

Chapter 23. Example: Weblog Application

23.1. Persistent Classes

The persistent classes represent a weblog, and an item posted in a weblog. They are to be modelled as a stand-
ard parent/child relationship, but we will use an ordered bag, instead of a set.

package eg;

import java.util.List;

public class Blog {
private Long _id;
private String _name;
private List _items;

public Long getId() {
return _id;

}
public List getItems() {

return _items;
}
public String getName() {

return _name;
}
public void setId(Long long1) {

_id = long1;
}
public void setItems(List list) {

_items = list;
}
public void setName(String string) {

_name = string;
}

}

package eg;

import java.text.DateFormat;
import java.util.Calendar;

public class BlogItem {
private Long _id;
private Calendar _datetime;
private String _text;
private String _title;
private Blog _blog;

public Blog getBlog() {
return _blog;

}
public Calendar getDatetime() {

return _datetime;
}
public Long getId() {

return _id;
}
public String getText() {

return _text;
}
public String getTitle() {

return _title;
}
public void setBlog(Blog blog) {

_blog = blog;

Hibernate 3.0.5 187

}
public void setDatetime(Calendar calendar) {

_datetime = calendar;
}
public void setId(Long long1) {

_id = long1;
}
public void setText(String string) {

_text = string;
}
public void setTitle(String string) {

_title = string;
}

}

23.2. Hibernate Mappings

The XML mappings should now be quite straightforward.

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="eg">

<class
name="Blog"
table="BLOGS">

<id
name="id"
column="BLOG_ID">

<generator class="native"/>

</id>

<property
name="name"
column="NAME"
not-null="true"
unique="true"/>

<bag
name="items"
inverse="true"
order-by="DATE_TIME"
cascade="all">

<key column="BLOG_ID"/>
<one-to-many class="BlogItem"/>

</bag>

</class>

</hibernate-mapping>

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="eg">

Example: Weblog Application

Hibernate 3.0.5 188

<class
name="BlogItem"
table="BLOG_ITEMS"
dynamic-update="true">

<id
name="id"
column="BLOG_ITEM_ID">

<generator class="native"/>

</id>

<property
name="title"
column="TITLE"
not-null="true"/>

<property
name="text"
column="TEXT"
not-null="true"/>

<property
name="datetime"
column="DATE_TIME"
not-null="true"/>

<many-to-one
name="blog"
column="BLOG_ID"
not-null="true"/>

</class>

</hibernate-mapping>

23.3. Hibernate Code

The following class demonstrates some of the kinds of things we can do with these classes, using Hibernate.

package eg;

import java.util.ArrayList;
import java.util.Calendar;
import java.util.Iterator;
import java.util.List;

import org.hibernate.HibernateException;
import org.hibernate.Query;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.Configuration;
import org.hibernate.tool.hbm2ddl.SchemaExport;

public class BlogMain {

private SessionFactory _sessions;

public void configure() throws HibernateException {
_sessions = new Configuration()

.addClass(Blog.class)

.addClass(BlogItem.class)

.buildSessionFactory();
}

Example: Weblog Application

Hibernate 3.0.5 189

public void exportTables() throws HibernateException {
Configuration cfg = new Configuration()

.addClass(Blog.class)

.addClass(BlogItem.class);
new SchemaExport(cfg).create(true, true);

}

public Blog createBlog(String name) throws HibernateException {

Blog blog = new Blog();
blog.setName(name);
blog.setItems(new ArrayList());

Session session = _sessions.openSession();
Transaction tx = null;
try {

tx = session.beginTransaction();
session.persist(blog);
tx.commit();

}
catch (HibernateException he) {

if (tx!=null) tx.rollback();
throw he;

}
finally {

session.close();
}
return blog;

}

public BlogItem createBlogItem(Blog blog, String title, String text)
throws HibernateException {

BlogItem item = new BlogItem();
item.setTitle(title);
item.setText(text);
item.setBlog(blog);
item.setDatetime(Calendar.getInstance());
blog.getItems().add(item);

Session session = _sessions.openSession();
Transaction tx = null;
try {

tx = session.beginTransaction();
session.update(blog);
tx.commit();

}
catch (HibernateException he) {

if (tx!=null) tx.rollback();
throw he;

}
finally {

session.close();
}
return item;

}

public BlogItem createBlogItem(Long blogid, String title, String text)
throws HibernateException {

BlogItem item = new BlogItem();
item.setTitle(title);
item.setText(text);
item.setDatetime(Calendar.getInstance());

Session session = _sessions.openSession();
Transaction tx = null;
try {

tx = session.beginTransaction();
Blog blog = (Blog) session.load(Blog.class, blogid);
item.setBlog(blog);

Example: Weblog Application

Hibernate 3.0.5 190

blog.getItems().add(item);
tx.commit();

}
catch (HibernateException he) {

if (tx!=null) tx.rollback();
throw he;

}
finally {

session.close();
}
return item;

}

public void updateBlogItem(BlogItem item, String text)
throws HibernateException {

item.setText(text);

Session session = _sessions.openSession();
Transaction tx = null;
try {

tx = session.beginTransaction();
session.update(item);
tx.commit();

}
catch (HibernateException he) {

if (tx!=null) tx.rollback();
throw he;

}
finally {

session.close();
}

}

public void updateBlogItem(Long itemid, String text)
throws HibernateException {

Session session = _sessions.openSession();
Transaction tx = null;
try {

tx = session.beginTransaction();
BlogItem item = (BlogItem) session.load(BlogItem.class, itemid);
item.setText(text);
tx.commit();

}
catch (HibernateException he) {

if (tx!=null) tx.rollback();
throw he;

}
finally {

session.close();
}

}

public List listAllBlogNamesAndItemCounts(int max)
throws HibernateException {

Session session = _sessions.openSession();
Transaction tx = null;
List result = null;
try {

tx = session.beginTransaction();
Query q = session.createQuery(

"select blog.id, blog.name, count(blogItem) " +
"from Blog as blog " +
"left outer join blog.items as blogItem " +
"group by blog.name, blog.id " +
"order by max(blogItem.datetime)"

);
q.setMaxResults(max);
result = q.list();

Example: Weblog Application

Hibernate 3.0.5 191

tx.commit();
}
catch (HibernateException he) {

if (tx!=null) tx.rollback();
throw he;

}
finally {

session.close();
}
return result;

}

public Blog getBlogAndAllItems(Long blogid)
throws HibernateException {

Session session = _sessions.openSession();
Transaction tx = null;
Blog blog = null;
try {

tx = session.beginTransaction();
Query q = session.createQuery(

"from Blog as blog " +
"left outer join fetch blog.items " +
"where blog.id = :blogid"

);
q.setParameter("blogid", blogid);
blog = (Blog) q.uniqueResult();
tx.commit();

}
catch (HibernateException he) {

if (tx!=null) tx.rollback();
throw he;

}
finally {

session.close();
}
return blog;

}

public List listBlogsAndRecentItems() throws HibernateException {

Session session = _sessions.openSession();
Transaction tx = null;
List result = null;
try {

tx = session.beginTransaction();
Query q = session.createQuery(

"from Blog as blog " +
"inner join blog.items as blogItem " +
"where blogItem.datetime > :minDate"

);

Calendar cal = Calendar.getInstance();
cal.roll(Calendar.MONTH, false);
q.setCalendar("minDate", cal);

result = q.list();
tx.commit();

}
catch (HibernateException he) {

if (tx!=null) tx.rollback();
throw he;

}
finally {

session.close();
}
return result;

}
}

Example: Weblog Application

Hibernate 3.0.5 192

Chapter 24. Example: Various Mappings
This chapters shows off some more complex association mappings.

24.1. Employer/Employee

The following model of the relationship between Employer and Employee uses an actual entity class (Employ-
ment) to represent the association. This is done because there might be more than one period of employment for
the same two parties. Components are used to model monetary values and employee names.

Heres a possible mapping document:

<hibernate-mapping>

<class name="Employer" table="employers">
<id name="id">

<generator class="sequence">
<param name="sequence">employer_id_seq</param>

</generator>
</id>
<property name="name"/>

</class>

<class name="Employment" table="employment_periods">

<id name="id">
<generator class="sequence">

<param name="sequence">employment_id_seq</param>
</generator>

</id>
<property name="startDate" column="start_date"/>
<property name="endDate" column="end_date"/>

<component name="hourlyRate" class="MonetaryAmount">
<property name="amount">

<column name="hourly_rate" sql-type="NUMERIC(12, 2)"/>
</property>
<property name="currency" length="12"/>

</component>

<many-to-one name="employer" column="employer_id" not-null="true"/>
<many-to-one name="employee" column="employee_id" not-null="true"/>

</class>

<class name="Employee" table="employees">
<id name="id">

Hibernate 3.0.5 193

<generator class="sequence">
<param name="sequence">employee_id_seq</param>

</generator>
</id>
<property name="taxfileNumber"/>
<component name="name" class="Name">

<property name="firstName"/>
<property name="initial"/>
<property name="lastName"/>

</component>
</class>

</hibernate-mapping>

And heres the table schema generated by SchemaExport.

create table employers (
id BIGINT not null,
name VARCHAR(255),
primary key (id)

)

create table employment_periods (
id BIGINT not null,
hourly_rate NUMERIC(12, 2),
currency VARCHAR(12),
employee_id BIGINT not null,
employer_id BIGINT not null,
end_date TIMESTAMP,
start_date TIMESTAMP,
primary key (id)

)

create table employees (
id BIGINT not null,
firstName VARCHAR(255),
initial CHAR(1),
lastName VARCHAR(255),
taxfileNumber VARCHAR(255),
primary key (id)

)

alter table employment_periods
add constraint employment_periodsFK0 foreign key (employer_id) references employers

alter table employment_periods
add constraint employment_periodsFK1 foreign key (employee_id) references employees

create sequence employee_id_seq
create sequence employment_id_seq
create sequence employer_id_seq

24.2. Author/Work

Consider the following model of the relationships between Work, Author and Person. We represent the relation-
ship between Work and Author as a many-to-many association. We choose to represent the relationship between
Author and Person as one-to-one association. Another possibility would be to have Author extend Person.

Example: Various Mappings

Hibernate 3.0.5 194

The following mapping document correctly represents these relationships:

<hibernate-mapping>

<class name="Work" table="works" discriminator-value="W">

<id name="id" column="id">
<generator class="native"/>

</id>
<discriminator column="type" type="character"/>

<property name="title"/>
<set name="authors" table="author_work">

<key column name="work_id"/>
<many-to-many class="Author" column name="author_id"/>

</set>

<subclass name="Book" discriminator-value="B">
<property name="text"/>

</subclass>

<subclass name="Song" discriminator-value="S">
<property name="tempo"/>
<property name="genre"/>

</subclass>

</class>

<class name="Author" table="authors">

<id name="id" column="id">
<!-- The Author must have the same identifier as the Person -->
<generator class="assigned"/>

</id>

<property name="alias"/>
<one-to-one name="person" constrained="true"/>

<set name="works" table="author_work" inverse="true">
<key column="author_id"/>
<many-to-many class="Work" column="work_id"/>

</set>

</class>

Example: Various Mappings

Hibernate 3.0.5 195

<class name="Person" table="persons">
<id name="id" column="id">

<generator class="native"/>
</id>
<property name="name"/>

</class>

</hibernate-mapping>

There are four tables in this mapping. works, authors and persons hold work, author and person data respect-
ively. author_work is an association table linking authors to works. Heres the table schema, as generated by
SchemaExport.

create table works (
id BIGINT not null generated by default as identity,
tempo FLOAT,
genre VARCHAR(255),
text INTEGER,
title VARCHAR(255),
type CHAR(1) not null,
primary key (id)

)

create table author_work (
author_id BIGINT not null,
work_id BIGINT not null,
primary key (work_id, author_id)

)

create table authors (
id BIGINT not null generated by default as identity,
alias VARCHAR(255),
primary key (id)

)

create table persons (
id BIGINT not null generated by default as identity,
name VARCHAR(255),
primary key (id)

)

alter table authors
add constraint authorsFK0 foreign key (id) references persons

alter table author_work
add constraint author_workFK0 foreign key (author_id) references authors

alter table author_work
add constraint author_workFK1 foreign key (work_id) references works

24.3. Customer/Order/Product

Now consider a model of the relationships between Customer, Order and LineItem and Product. There is a
one-to-many association between Customer and Order, but how should we represent Order / LineItem /
Product? I've chosen to map LineItem as an association class representing the many-to-many association
between Order and Product. In Hibernate, this is called a composite element.

Example: Various Mappings

Hibernate 3.0.5 196

The mapping document:

<hibernate-mapping>

<class name="Customer" table="customers">
<id name="id">

<generator class="native"/>
</id>
<property name="name"/>
<set name="orders" inverse="true">

<key column="customer_id"/>
<one-to-many class="Order"/>

</set>
</class>

<class name="Order" table="orders">
<id name="id">

<generator class="native"/>
</id>
<property name="date"/>
<many-to-one name="customer" column="customer_id"/>
<list name="lineItems" table="line_items">

<key column="order_id"/>
<list-index column="line_number"/>
<composite-element class="LineItem">

<property name="quantity"/>
<many-to-one name="product" column="product_id"/>

</composite-element>
</list>

</class>

<class name="Product" table="products">
<id name="id">

<generator class="native"/>
</id>
<property name="serialNumber"/>

</class>

</hibernate-mapping>

customers, orders, line_items and products hold customer, order, order line item and product data respect-
ively. line_items also acts as an association table linking orders with products.

create table customers (
id BIGINT not null generated by default as identity,
name VARCHAR(255),
primary key (id)

)

create table orders (
id BIGINT not null generated by default as identity,
customer_id BIGINT,
date TIMESTAMP,
primary key (id)

)

create table line_items (
line_number INTEGER not null,

Example: Various Mappings

Hibernate 3.0.5 197

order_id BIGINT not null,
product_id BIGINT,
quantity INTEGER,
primary key (order_id, line_number)

)

create table products (
id BIGINT not null generated by default as identity,
serialNumber VARCHAR(255),
primary key (id)

)

alter table orders
add constraint ordersFK0 foreign key (customer_id) references customers

alter table line_items
add constraint line_itemsFK0 foreign key (product_id) references products

alter table line_items
add constraint line_itemsFK1 foreign key (order_id) references orders

24.4. Miscellaneous example mappings

These examples are all taken from the Hibernate test suite. You will find many other useful example mappings
there. Have a look at the src folder of the Hibernate distribution.

TODO: put words around this stuff

24.4.1. "Typed" one-to-one association

<class name="Person">
<id name="name"/>
<one-to-one name="address"

cascade="all">
<formula>name</formula>
<formula>'HOME'</formula>

</one-to-one>
<one-to-one name="mailingAddress"

cascade="all">
<formula>name</formula>
<formula>'MAILING'</formula>

</one-to-one>
</class>

<class name="Address" batch-size="2"
check="addressType in ('MAILING', 'HOME', 'BUSINESS')">

<composite-id>
<key-many-to-one name="person"

column="personName"/>
<key-property name="type"

column="addressType"/>
</composite-id>
<property name="street" type="text"/>
<property name="state"/>
<property name="zip"/>

</class>

24.4.2. Composite key example

<class name="Customer">

<id name="customerId"
length="10">
<generator class="assigned"/>

Example: Various Mappings

Hibernate 3.0.5 198

</id>

<property name="name" not-null="true" length="100"/>
<property name="address" not-null="true" length="200"/>

<list name="orders"
inverse="true"
cascade="save-update">

<key column="customerId"/>
<index column="orderNumber"/>
<one-to-many class="Order"/>

</list>

</class>

<class name="Order" table="CustomerOrder" lazy="true">
<synchronize table="LineItem"/>
<synchronize table="Product"/>

<composite-id name="id"
class="Order$Id">

<key-property name="customerId" length="10"/>
<key-property name="orderNumber"/>

</composite-id>

<property name="orderDate"
type="calendar_date"
not-null="true"/>

<property name="total">
<formula>

(select sum(li.quantity*p.price)
from LineItem li, Product p
where li.productId = p.productId

and li.customerId = customerId
and li.orderNumber = orderNumber)

</formula>
</property>

<many-to-one name="customer"
column="customerId"
insert="false"
update="false"
not-null="true"/>

<bag name="lineItems"
fetch="join"
inverse="true"
cascade="save-update">

<key>
<column name="customerId"/>
<column name="orderNumber"/>

</key>
<one-to-many class="LineItem"/>

</bag>

</class>

<class name="LineItem">

<composite-id name="id"
class="LineItem$Id">

<key-property name="customerId" length="10"/>
<key-property name="orderNumber"/>
<key-property name="productId" length="10"/>

</composite-id>

<property name="quantity"/>

<many-to-one name="order"
insert="false"

Example: Various Mappings

Hibernate 3.0.5 199

update="false"
not-null="true">

<column name="customerId"/>
<column name="orderNumber"/>

</many-to-one>

<many-to-one name="product"
insert="false"
update="false"
not-null="true"
column="productId"/>

</class>

<class name="Product">
<synchronize table="LineItem"/>

<id name="productId"
length="10">
<generator class="assigned"/>

</id>

<property name="description"
not-null="true"
length="200"/>

<property name="price" length="3"/>
<property name="numberAvailable"/>

<property name="numberOrdered">
<formula>

(select sum(li.quantity)
from LineItem li
where li.productId = productId)

</formula>
</property>

</class>

24.4.3. Content based discrimination

<class name="Person"
discriminator-value="P">

<id name="id"
column="person_id"
unsaved-value="0">
<generator class="native"/>

</id>

<discriminator
type="character">
<formula>

case
when title is not null then 'E'
when salesperson is not null then 'C'
else 'P'

end
</formula>

</discriminator>

<property name="name"
not-null="true"
length="80"/>

<property name="sex"
not-null="true"
update="false"/>

Example: Various Mappings

Hibernate 3.0.5 200

<component name="address">
<property name="address"/>
<property name="zip"/>
<property name="country"/>

</component>

<subclass name="Employee"
discriminator-value="E">

<property name="title"
length="20"/>

<property name="salary"/>
<many-to-one name="manager"/>

</subclass>

<subclass name="Customer"
discriminator-value="C">

<property name="comments"/>
<many-to-one name="salesperson"/>

</subclass>

</class>

24.4.4. Associations on alternate keys

<class name="Person">

<id name="id">
<generator class="hilo"/>

</id>

<property name="name" length="100"/>

<one-to-one name="address"
property-ref="person"
cascade="all"
fetch="join"/>

<set name="accounts"
inverse="true">
<key column="userId"

property-ref="userId"/>
<one-to-many class="Account"/>

</set>

<property name="userId" length="8"/>

</class>

<class name="Address">

<id name="id">
<generator class="hilo"/>

</id>

<property name="address" length="300"/>
<property name="zip" length="5"/>
<property name="country" length="25"/>
<many-to-one name="person" unique="true" not-null="true"/>

</class>

<class name="Account">
<id name="accountId" length="32">

<generator class="uuid.hex"/>
</id>

<many-to-one name="user"

Example: Various Mappings

Hibernate 3.0.5 201

column="userId"
property-ref="userId"/>

<property name="type" not-null="true"/>

</class>

Example: Various Mappings

Hibernate 3.0.5 202

Chapter 25. Best Practices

Write fine-grained classes and map them using <component>.
Use an Address class to encapsulate street, suburb, state, postcode. This encourages code reuse and
simplifies refactoring.

Declare identifier properties on persistent classes.
Hibernate makes identifier properties optional. There are all sorts of reasons why you should use them. We
recommend that identifiers be 'synthetic' (generated, with no business meaning).

Identify natural keys.
Identify natural keys for all entities, and map them using <natural-id>. Implement equals() and hash-

Code() to compare the properties that make up the natural key.

Place each class mapping in its own file.
Don't use a single monolithic mapping document. Map com.eg.Foo in the file com/eg/Foo.hbm.xml. This
makes particularly good sense in a team environment.

Load mappings as resources.
Deploy the mappings along with the classes they map.

Consider externalising query strings.
This is a good practice if your queries call non-ANSI-standard SQL functions. Externalising the query
strings to mapping files will make the application more portable.

Use bind variables.
As in JDBC, always replace non-constant values by "?". Never use string manipulation to bind a non-
constant value in a query! Even better, consider using named parameters in queries.

Don't manage your own JDBC connections.
Hibernate lets the application manage JDBC connections. This approach should be considered a last-resort.
If you can't use the built-in connections providers, consider providing your own implementation of
org.hibernate.connection.ConnectionProvider.

Consider using a custom type.
Suppose you have a Java type, say from some library, that needs to be persisted but doesn't provide the ac-
cessors needed to map it as a component. You should consider implementing org.hibernate.UserType.
This approach frees the application code from implementing transformations to / from a Hibernate type.

Use hand-coded JDBC in bottlenecks.
In performance-critical areas of the system, some kinds of operations might benefit from direct JDBC. But
please, wait until you know something is a bottleneck. And don't assume that direct JDBC is necessarily
faster. If you need to use direct JDBC, it might be worth opening a Hibernate Session and using that JDBC
connection. That way you can still use the same transaction strategy and underlying connection provider.

Understand Session flushing.
From time to time the Session synchronizes its persistent state with the database. Performance will be af-
fected if this process occurs too often. You may sometimes minimize unnecessary flushing by disabling
automatic flushing or even by changing the order of queries and other operations within a particular trans-
action.

In a three tiered architecture, consider using detached objects.
When using a servlet / session bean architecture, you could pass persistent objects loaded in the session

Hibernate 3.0.5 203

bean to and from the servlet / JSP layer. Use a new session to service each request. Use Session.merge()

or Session.saveOrUpdate() to synchronize objects with the database.

In a two tiered architecture, consider using long persistence contexts.
Database Transactions have to be as short as possible for best scalability. However, it is often neccessary to
implement long running application transactions, a single unit-of-work from the point of view of a user.
An application transaction might span several client request/response cycles. It is common to use detached
objects to implement application transactions. An alternative, extremely appropriate in two tiered architec-
ture, is to maintain a single open persistence contact (session) for the whole lifecycle of the application
transaction and simply disconnect from the JDBC connection at the end of each request and reconnect at
the beginning of the subsequent request. Never share a single session across more than one application
transaction, or you will be working with stale data.

Don't treat exceptions as recoverable.
This is more of a necessary practice than a "best" practice. When an exception occurs, roll back the Trans-

action and close the Session. If you don't, Hibernate can't guarantee that in-memory state accurately rep-
resents persistent state. As a special case of this, do not use Session.load() to determine if an instance
with the given identifier exists on the database; use Session.get() or a query instead.

Prefer lazy fetching for associations.
Use eager fetching sparingly. Use proxies and lazy collections for most associations to classes that are not
likely to be completely held in the second-level cache. For associations to cached classes, where there is an
a extremely high probability of a cache hit, explicitly disable eager fetching using lazy="false". When an
join fetching is appropriate to a particular use case, use a query with a left join fetch.

Use the open session in view pattern, or a disciplined assembly phase to avoid problems with unfetched data.
Hibernate frees the developer from writing tedious Data Transfer Objects (DTO). In a traditional EJB ar-
chitecture, DTOs serve dual purposes: first, they work around the problem that entity beans are not serializ-
able; second, they implicitly define an assembly phase where all data to be used by the view is fetched and
marshalled into the DTOs before returning control to the presentation tier. Hibernate eliminates the first
purpose. However, you will still need an assembly phase (think of your business methods as having a strict
contract with the presentation tier about what data is available in the detached objects) unless you are pre-
pared to hold the persistence context (the session) open across the view rendering process. This is not a lim-
itation of Hibernate! It is a fundamental requirement of safe transactional data access.

Consider abstracting your business logic from Hibernate.
Hide (Hibernate) data-access code behind an interface. Combine the DAO and Thread Local Session pat-
terns. You can even have some classes persisted by handcoded JDBC, associated to Hibernate via a User-

Type. (This advice is intended for "sufficiently large" applications; it is not appropriate for an application
with five tables!)

Don't use exotic association mappings.
Good usecases for a real many-to-many associations are rare. Most of the time you need additional inform-
ation stored in the "link table". In this case, it is much better to use two one-to-many associations to an in-
termediate link class. In fact, we think that most associations are one-to-many and many-to-one, you should
be careful when using any other association style and ask yourself if it is really neccessary.

Prefer bidirectional associations.
Unidirectional associations are more difficult to query. In a large application, almost all associations must
be navigable in both directions in queries.

Best Practices

Hibernate 3.0.5 204

	HIBERNATE - Relational Persistence for Idiomatic Java
	Table of Contents
	Preface
	Chapter 1. Quickstart with Tomcat
	1.1. Getting started with Hibernate
	1.2. First persistent class
	1.3. Mapping the cat
	1.4. Playing with cats
	1.5. Finally

	Chapter 2. Introduction to Hibernate
	2.1. Preface
	2.2. Part 1 - The first Hibernate Application
	2.2.1. The first class
	2.2.2. The mapping file
	2.2.3. Hibernate configuration
	2.2.4. Building with Ant
	2.2.5. Startup and helpers
	2.2.6. Loading and storing objects

	2.3. Part 2 - Mapping associations
	2.3.1. Mapping the Person class
	2.3.2. A unidirectional Set-based association
	2.3.3. Working the association
	2.3.4. Collection of values
	2.3.5. Bi-directional associations
	2.3.6. Working bi-directional links

	2.4. Summary

	Chapter 3. Architecture
	3.1. Overview
	3.2. Instance states
	3.3. JMX Integration
	3.4. JCA Support

	Chapter 4. Configuration
	4.1. Programmatic configuration
	4.2. Obtaining a SessionFactory
	4.3. JDBC connections
	4.4. Optional configuration properties
	4.4.1. SQL Dialects
	4.4.2. Outer Join Fetching
	4.4.3. Binary Streams
	4.4.4. Second-level and query cache
	4.4.5. Query Language Substitution
	4.4.6. Hibernate statistics

	4.5. Logging
	4.6. Implementing a NamingStrategy
	4.7. XML configuration file
	4.8. J2EE Application Server integration
	4.8.1. Transaction strategy configuration
	4.8.2. JNDI-bound SessionFactory
	4.8.3. Automatic JTA and Session binding
	4.8.4. JMX deployment

	Chapter 5. Persistent Classes
	5.1. A simple POJO example
	5.1.1. Declare accessors and mutators for persistent fields
	5.1.2. Implement a no-argument constructor
	5.1.3. Provide an identifier property (optional)
	5.1.4. Prefer non-final classes (optional)

	5.2. Implementing inheritance
	5.3. Implementing equals() and hashCode()
	5.4. Dynamic models

	Chapter 6. Basic O/R Mapping
	6.1. Mapping declaration
	6.1.1. Doctype
	6.1.2. hibernate-mapping
	6.1.3. class
	6.1.4. id
	Generator
	Hi/lo algorithm
	UUID algorithm
	Identity columns and sequences
	Assigned identifiers
	Primary keys assigned by triggers

	6.1.5. composite-id
	6.1.6. discriminator
	6.1.7. version (optional)
	6.1.8. timestamp (optional)
	6.1.9. property
	6.1.10. many-to-one
	6.1.11. one-to-one
	6.1.12. natural-id
	6.1.13. component, dynamic-component
	6.1.14. properties
	6.1.15. subclass
	6.1.16. joined-subclass
	6.1.17. union-subclass
	6.1.18. join
	6.1.19. key
	6.1.20. column and formula elements
	6.1.21. import
	6.1.22. any

	6.2. Hibernate Types
	6.2.1. Entities and values
	6.2.2. Basic value types
	6.2.3. Custom value types

	6.3. SQL quoted identifiers
	6.4. Metadata alternatives
	6.4.1. Using XDoclet markup
	6.4.2. Using JDK 5.0 Annotations

	Chapter 7. Collection Mapping
	7.1. Persistent collections
	7.2. Collection mappings
	7.2.1. Collection foreign keys
	7.2.2. Collection elements
	7.2.3. Indexed collections
	7.2.4. Collections of values and many-to-many associations
	7.2.5. One-to-many associations

	7.3. Advanced collection mappings
	7.3.1. Sorted collections
	7.3.2. Bidirectional associations
	7.3.3. Ternary associations
	7.3.4. Using an <idbag>

	7.4. Collection examples

	Chapter 8. Association Mappings
	8.1. Introduction
	8.2. Unidirectional associations
	8.2.1. many to one
	8.2.2. one to one
	8.2.3. one to many

	8.3. Unidirectional associations with join tables
	8.3.1. one to many
	8.3.2. many to one
	8.3.3. one to one
	8.3.4. many to many

	8.4. Bidirectional associations
	8.4.1. one to many / many to one
	8.4.2. one to one

	8.5. Bidirectional associations with join tables
	8.5.1. one to many / many to one
	8.5.2. one to one
	8.5.3. many to many

	Chapter 9. Component Mapping
	9.1. Dependent objects
	9.2. Collections of dependent objects
	9.3. Components as Map indices
	9.4. Components as composite identifiers
	9.5. Dynamic components

	Chapter 10. Inheritance Mapping
	10.1. The Three Strategies
	10.1.1. Table per class hierarchy
	10.1.2. Table per subclass
	10.1.3. Table per subclass, using a discriminator
	10.1.4. Mixing table per class hierarchy with table per subclass
	10.1.5. Table per concrete class
	10.1.6. Table per concrete class, using implicit polymorphism
	10.1.7. Mixing implicit polymorphism with other inheritance mappings

	10.2. Limitations

	Chapter 11. Working with objects
	11.1. Hibernate object states
	11.2. Making objects persistent
	11.3. Loading an object
	11.4. Querying
	11.4.1. Executing queries
	Iterating results
	Queries that return tuples
	Scalar results
	Bind parameters
	Pagination
	Scrollable iteration
	Externalizing named queries

	11.4.2. Filtering collections
	11.4.3. Criteria queries
	11.4.4. Queries in native SQL

	11.5. Modifying persistent objects
	11.6. Modifying detached objects
	11.7. Automatic state detection
	11.8. Deleting persistent objects
	11.9. Replicating object between two different datastores
	11.10. Flushing the Session
	11.11. Transitive persistence
	11.12. Using metadata

	Chapter 12. Transactions And Concurrency
	12.1. Session and transaction scopes
	12.1.1. Unit of work
	12.1.2. Application transactions
	12.1.3. Considering object identity
	12.1.4. Common issues

	12.2. Database transaction demarcation
	12.2.1. Non-managed environment
	12.2.2. Using JTA
	12.2.3. Exception handling

	12.3. Optimistic concurrency control
	12.3.1. Application version checking
	12.3.2. Long session and automatic versioning
	12.3.3. Detached objects and automatic versioning
	12.3.4. Customizing automatic versioning

	12.4. Pessimistic Locking

	Chapter 13. Interceptors and events
	13.1. Interceptors
	13.2. Event system
	13.3. Hibernate declarative security

	Chapter 14. Batch processing
	14.1. Batch inserts
	14.2. Batch updates
	14.3. Bulk update/delete

	Chapter 15. HQL: The Hibernate Query Language
	15.1. Case Sensitivity
	15.2. The from clause
	15.3. Associations and joins
	15.4. The select clause
	15.5. Aggregate functions
	15.6. Polymorphic queries
	15.7. The where clause
	15.8. Expressions
	15.9. The order by clause
	15.10. The group by clause
	15.11. Subqueries
	15.12. HQL examples
	15.13. Bulk UPDATE & DELETE Statements
	15.14. Tips & Tricks

	Chapter 16. Criteria Queries
	16.1. Creating a Criteria instance
	16.2. Narrowing the result set
	16.3. Ordering the results
	16.4. Associations
	16.5. Dynamic association fetching
	16.6. Example queries
	16.7. Projections, aggregation and grouping
	16.8. Detached queries and subqueries
	16.9. Queries by natural identifier

	Chapter 17. Native SQL
	17.1. Creating a native SQL Query
	17.2. Alias and property references
	17.3. Named SQL queries
	17.3.1. Using return-property to explicitly specify column/alias names
	17.3.2. Using stored procedures for querying
	Rules/limitations for using stored procedures

	17.4. Custom SQL for create, update and delete
	17.5. Custom SQL for loading

	Chapter 18. Filtering data
	18.1. Hibernate filters

	Chapter 19. XML Mapping
	19.1. Working with XML data
	19.1.1. Specifying XML and class mapping together
	19.1.2. Specifying only an XML mapping

	19.2. XML mapping metadata
	19.3. Manipulating XML data

	Chapter 20. Improving performance
	20.1. Fetching strategies
	20.1.1. Working with lazy associations
	20.1.2. Tuning fetch strategies
	20.1.3. Single-ended association proxies
	20.1.4. Initializing collections and proxies
	20.1.5. Using batch fetching
	20.1.6. Using subselect fetching
	20.1.7. Using lazy property fetching

	20.2. The Second Level Cache
	20.2.1. Cache mappings
	20.2.2. Strategy: read only
	20.2.3. Strategy: read/write
	20.2.4. Strategy: nonstrict read/write
	20.2.5. Strategy: transactional

	20.3. Managing the caches
	20.4. The Query Cache
	20.5. Understanding Collection performance
	20.5.1. Taxonomy
	20.5.2. Lists, maps, idbags and sets are the most efficient collections to update
	20.5.3. Bags and lists are the most efficient inverse collections
	20.5.4. One shot delete

	20.6. Monitoring performance
	20.6.1. Monitoring a SessionFactory
	20.6.2. Metrics

	Chapter 21. Toolset Guide
	21.1. Automatic schema generation
	21.1.1. Customizing the schema
	21.1.2. Running the tool
	21.1.3. Properties
	21.1.4. Using Ant
	21.1.5. Incremental schema updates
	21.1.6. Using Ant for incremental schema updates

	Chapter 22. Example: Parent/Child
	22.1. A note about collections
	22.2. Bidirectional one-to-many
	22.3. Cascading lifecycle
	22.4. Cascades and unsaved-value
	22.5. Conclusion

	Chapter 23. Example: Weblog Application
	23.1. Persistent Classes
	23.2. Hibernate Mappings
	23.3. Hibernate Code

	Chapter 24. Example: Various Mappings
	24.1. Employer/Employee
	24.2. Author/Work
	24.3. Customer/Order/Product
	24.4. Miscellaneous example mappings
	24.4.1. "Typed" one-to-one association
	24.4.2. Composite key example
	24.4.3. Content based discrimination
	24.4.4. Associations on alternate keys

	Chapter 25. Best Practices

