Parent Service Manager (2.1 legacy
document)

Table of contents

00] 0111 01, 1K TP

Parent Service Manager (2.1 legacy document)

Table of contents

1 Parent SEIVICE MANAGETc.ceeeeeierieete ettt sttt e b b st bt e bt e e e e et e b e sbesbenbeenenneennas 3
1.1 Step 1: Creating a configuration ODJECL............coiiiririieeeeieee e 3
1.2 SteP 2: WIHEE the SEIVICE MANGOESeeiuie ettt estee et st et e s e e be e s aeenbe e s e e e sbeeeaneenbeeanneereas 4
1.3 Step 3: Tell Cocoon to USe the SErVICE MANAJESccveieeiecee e ereas 4
1.4 Step 4: USE the COMPONENL........cciiiieiieieeie sttt e e s e e e e s seesseeaesneesreensesneesneennens 4

Page 2

Parent Service Manager (2.1 legacy document)

} This document was copied as is from the Cocoon 2.1 documentation, but has not yet been fully reviewed or moved to its new home. (

1. Parent Service Manager

When using Apache Cocoon it is sometimes neccessary to obtain components from other sources than
the user.rolesfile, or preferable to have a common component manager for several web applications.

The pattern chosen for Cocoon is the dynamic loading of a service manager class. Theinitiaization
parameter parent-service-manager in web.xml specifies a class that will be loaded, instantiated and
used as a parent service manager for Cocoon's serivce manager.

The recommended procedure is for the class, when it isinitialized, to create a delegate in the form of
an CocoonServiceManager, configure it by looking up a Configuration object via INDI, and delegate
any regueststo it.

In order to provide away to pass parameters to the parent service manager class (the class specified in
parent-service-manager), Cocoon will instantiate the class via the constructor that takes a single String
argument, passing anything to the right of the first '/ in the parameter value to the constructor.
Subsequently Cocoon examines whether the class implements

org.apache.avalon.framework.logger.L ogEnabled and/or
org.apache.avalon.framework.activity.Initializable and calls setLogger and/or initialize, as appropriate.
The instance is then used as a parent service manager.

Since that didn't make much sensein itself, let'slook at the sample.

The goal is to define a component that can give us the time of day and let it be managed by a parent
Service manager.

So, first we need to put a Configuration object into JINDI, and then grab that object, use it to configure
an CocoonServiceManager, and pass on any requests to that manager.

1.1. Step 1: Creating a configuration object

WeEe'll do thisthe quick and dirty way. The static initializer of aclasswill create a Configuration
instance with a single role and bind it to org/apache/cocoon/samples/parentcm/ParentCM Configration.

The following code was taken from org/apache/cocoon/samples/parentcm/Configurator.java

public class Configurator { static { try { // // Create a new role. // DefaultConfiguration config =
new DefaultConfiguration("roles"”, "); DefaultConfiguration timeComponent = new
DefaultConfiguration(“role”, "roles"); timeComponent.addAttribute("name”, Time.ROLE);
timeComponent.addAttribute("default-class”, TimeComponent.class.getName());
timeComponent.addAttribute("shorthand", "samples-parentcm-time");
config.addChild(timeComponent); // // Bind it - get an initial context. // Hashtable environment
= new Hashtable(); environment.put(Context.INITIAL_CONTEXT_FACTORY,
MemoryInitialContextFactory.class.getName()); initialContext = new
InitialContext(environment); // // Create subcontexts and bind the configuration. // Context ctx
= initialContext.createSubcontext("org"); ctx = ctx.createSubcontext("apache"); ctx =
ctx.createSubcontext("cocoon”); ctx = ctx.createSubcontext("samples”); ctx =
ctx.createSubcontext("parentcm™); ctx.rebind("ParentCMConfiguration", config); } catch
(Exception e) { e.printStackTrace(System.err); } } }

Page 3

Parent Service Manager (2.1 legacy document)

To make sure the static initializer runs we make Cocoon force-load the class by making a change to the
web.xml file:

<init-param> <param-name>load-class</param-name> <param-value> <!-- For IBM
WebSphere: com.ibm.servlet.classloader.Handler --> <!-- For Database Driver: -->
@database-driver@ <!-- For parent ServiceManager sample: This will cause the static
initializer to run, and thus the Configuration object to be created and bound. -->
org.apache.cocoon.samples.parentcm.Configurator </param-value> </init-param>

1.2. Step 2: Writethe service manager

Now that the configuration object is sitting there waiting for us, let's craft the component manager.
Please see the file org/apache/cocoon/samples/parentcm/ParentServiceM anager.java for an example. It
Istoo much to pastein here.

1.3. Step 3: Tell Cocoon to use the service manager

Change the web.xml file to:

<init-param> <param-name>parent-service-manager</param-name>
<param-value>org.apache.cocoon.samples.parentcm.ParentServiceManager/(remove this
line break) org/apache/cocoon/samples/parentcm/ParentCMConfiguration</param-value>
</init-param>

Cocoon will now do the following: First, it will split the parameter value at the first slash, in this case
ending up with the strings "org.apache.cocoon.sampl es.parentcm.ParentServiceM anager” and
"org/apache/cocoon/sampl es/parentcm/ParentCM Configuration™. The first string is the class to
instantiate. The second is the parameter that will be passed to the constructor.

Next, Cocoon |oads the component manager class and uses reflection to find a constructor that will
accept asingle String argument. Upon finding one, it instantiates the class in amanner similar to:

ServiceManager cm = new org.apache.cocoon.samples.parentcm.ParentServiceManager(
"org/apache/cocoon/samples/parentcm/ParentCMConfiguration™);

After this Cocoon checks whether the parent service manager class implements Initializable and/or
LogEnabled. Since the ParentServiceM anager class implements both, Cocoon does the following (with
simplification):

((LogEnabled) cm).enableLogging(logger); ((Initializable) cm).initialize();

Finaly, the instance is used as parent service manager of Cocoon's own service manager.

1.4. Step 4: Usethe component

Cocoon components can now use the ServiceManager given to them by Cocoon to look up the
component managed by the parent service manager:

The following code was taken from org/apache/cocoon/samples/parentcm/Generator.java

public void setup(SourceResolver resolver, Map objectModel, String src, Parameters par)
throws ProcessingException, SAXException, IOException { Time timeGiver = null; try {
timeGiver = (Time) manager.lookup(Time.ROLE); this.time = timeGiver.getTime (); } catch
(ServiceException ce) { throw new ProcessingException ("Could not obtain current time.",
ce); } finally { manager.release(timeGiver); } }

And that concludes the tour. A parent service manager was initialized with a configuration obtained
viaJNDI and its components used by a Cocoon generator.

Page 4

Parent Service Manager (2.1 legacy document)

1. Comments
add your comments

Page 5

	1 Comments

