Using and Implementing Matchers and
Selectors (2.1 legacy document)

Table of contents

00] 0111 01, 1K TP

Using and Implementing Matchers and Selectors (2.1 legacy document)

Table of contents

I 1o L1 o i oo VSO 3
2 SOWhat are the AiffErENCES?.........ee e re e re e 3
R U LS o Y= (o L= OSSP 4
S T aTo IS 1= ok (0] S 4
5 Write Your Own MatChers and SElECLONS.........ocueiieiieecece et 5

Bl IMTBICRIEIS......ee ettt bbb b b e b bRttt b b e ae e 5

A = (] £SO SS 5

Page 2

Using and Implementing Matchers and Selectors (2.1 legacy document)

} This document was copied as is from the Cocoon 2.1 documentation, but has not yet been fully reviewed or moved to its new home. (

1. Introduction

Matchers and selectors are sitemap components. They are used to determine the flow, the other
components involved and their ordering of the request processing. One particular matcher you're
probably familiar with, is the WildcardURIMatcher. That is the one that determines the (sub-)pipeline
in the welcome example. But there are many more matchers supplied with Apache Cocoon, one
matches the requested URI on regular expressions, others match the client's hostname, existence of
parameters and so on.

Thereisaso anumber of selectors supplied with Cocoon. Selectors test a generally ssmple boolean
expression and allow to select on roughly the same things as matchers would. There is a selector on the
client's hostname, on the client's browser etc.

To make things even more complicated, actions have very similar properties. Y ou can nest other
sitemap elements in an action and those are included in the processing only if the action completes
successfully.

2. So what arethe differences?

The basic structure of a selector is that of a case, switch or if-elseif-...-el seif-else statement in
programming languages while matchers and actions compare more to aif statement. In addition
selectors don't communicate the basis for their decision to the embedded elements, just select the next
part(s) of the pipeline. Matchers and actions, however, add a new map to the environment that can be
used for the further processing in the sub pipeline.

Y ou've already come across this feature on the example sitemap: The value matched by the
WildcardURIMatcher is used to determine the filename docs/samples/xsp/{ 1} .xsp. Here { 1}
represents the value that is stored in the environmental map with the key 1. The name of the key is
arbitrary and set by the matcher. If you had supplied a more complex pattern, there would be others.
For example <map:match pattern="*/*/* /* [report.html"> would result in keys 1, 2, 3, and 4 being
defined, corresponding to the *sin the pattern.

BTW you cannot access those maps from your X SP. Use parameters to the generator to explicitly send
them. On your X SP you can access them through an object called parameters. Example

<map:match pattern="*/*/*/*/report.html"> <map:generate type="serverpages"
src="docs/getPostcodeData.xsp"> <parameter name="postcode" value="{1}{2} {3K{4}"/>
</map:generate> <map:transform src="stylesheets/html/report.xsl"/> <map:serialize/>
</map:match>

On your XSP do

<xsp:expr>parameters.getParameter("postcode")</xsp:expr>

Generally, one could say that selectors are better suited if the decisions has few easily distinguishable

cases, the map feature is not needed and the decision occurs later in the pipeline. Their implementation
should be lightweight and so is their integration in the compiled sitemap.

Matchers are often the very first element in a pipeline. They direct the processing based on more
complex decision process. They are general purpose but more costly than selectors.

Actions should be used to "do" something, not to chose between different sub pipelines. That should

Page 3

Using and Implementing Matchers and Selectors (2.1 legacy document)

be done only, if an error occurred and you cannot continue the regular pipeline. Of course thisisa
fuzzy criterion and using an action to choose between exactly two sub pipelinesis avery common task
i.e. for authentication. Also, often actions have no nested elements and the further processing is not
affected by the result of the action.

3. Using Matchers

Like every other sitemap component, matchers need to be declared in the sitemap:

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0"> <map:components> ...
<map:matchers default="wildcard"> <map:matcher name="wildcard"
src="org.apache.cocoon.matching.WildcardURIMatcher"/> ... <map:matcher
name="next-page" src="org.apache.cocoon.matching.WildcardRequestParameterMatcher">
<map:parameter name="parameter-name" value="next-state"/> </map:matcher>
</map:matchers> ... </map:components> <map:resources/> <map:pipelines/>
</map:sitemap>

Matchers are given a short name (e.g, "wildcard") and of course the name of the JAVA class that
implements the matcher. In addition, parameters can be defined as well.

One matcher may be defined as default matcher, so whenever a matcher appears in the sitemap without
explicit type specification it will be assumed that it is of the default type.

In a pipeline use the matcher like this

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0"> <map:components/>
<map:resources/> <map:pipelines> <map:pipeline> <map:match pattern="*"> <map:generate
type="serverpages" src="test/{1}.xsp"/> <map:transform
src="stylesheets/dynamic-page2html.xsl"/> <map:serialize/> </map:match> </map:pipeline>
</map:pipelines> </map:sitemap>

Matchers can be nested:

<map:match type="sessionstate" pattern="edit*"> <!-- here you could insert parameters for
the above matcher --> <map:parameter name="attribute-name" value="__ sessionstate"/>
<map:match type="next-page" pattern="ok*"> <!-- do something here, eg. database updates
--> <map:call resource="simple-pagel"/> </map:match> <map:match type="next-page"
pattern="delete*'> <!-- do something different here, eg. database deletions --> <map:call
resource="simple-pagel"/> </map:match> </map:match>

4. Using Selectors

As said above, selectors are very similar to matchers. Again, you need to declare selectorsin the
sitemap.xmap

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0"> <map:components> ...
<map:selectors default="browser"> <map:selector name="browser"
src="org.apache.cocoon.selection.BrowserSelector"> <browser name="explorer"
useragent="MSIE"/> <browser name="lynx" useragent="Lynx"/> <browser hame="netscape"
useragent="Mozilla"/> </map:selector> <map:selector name="parameter"
src="org.apache.cocoon.selection.ParameterSelector"/> </map:selectors> ...
</map:components> <map:resources/> <map:pipelines/> </map:sitemap>

Their useisabit different to matchers, though:

<map:sitemap xmins:map="http://apache.org/cocoon/sitemap/1.0"> <map:components/>
<map:resources/> <map:pipelines> <map:pipeline> <map:match pattern="*"> <map:generate

Page 4

Using and Implementing Matchers and Selectors (2.1 legacy document)

type="serverpages" src="test/{1}.xsp"/> <map:select type="browser"> <!-- you could insert
parameters here as well --> <map:when test="explorer"> <map:transform
src="stylesheets/w3c-2-msie.xsl"/> </map:when> <map:when test="lynx"> <map:transform
src="stylesheets/dynamic-page2html-text.xsl"/> <map:serialize/> </map:when> <map:when
test="netscape"> <map:transform src="stylesheets/ns4.xsl"/> </map:when> <map:otherwise>
<map:transform src="stylesheets/w3c.xsl"/> </map:otherwise> </map:select>
<map:transform src="stylesheets/dynamic-page2html.xsl"/> <map:serialize/> </map:match>
</map:pipeline> </map:pipelines> </map:sitemap>

Obvioudly, this could have been done with matchers as well. Decide on yourself, what appears clearer
to you in a specific situation.

5. Write Your Own Matchersand Selectors

5.1. Matchers

Since the basic structure and the assumptions are very similar, we look first at matchers and point out
the differences to selectors at the end.

Matchers need to implement the org.apache.cocoon.matching.Matcher interface. See javadocs for
more details, see also example matchers included in the distribution.

If you would like to do global configuration for your matcher, it has to implement the
org.apache.avalon.framework.configuration.Configurable interface.

Local configuration parameters are avalon parameters and thus can be easily read and used with the
generated matcher method.

If the matcher returns not null, the match was successful and the nested sub pipeline is executed.
Components in sub pipeline can access the matching result through the returned map.

The easiest way to write your own matcher would be to base it upon
org.apache.cocoon.matching.WildcardURIMatcher and override the getM atchString method with your
own.

5.2. Selectors

Selectors and selector factories differ from their matcher counter parts only in the fact that selectors
return boolean values rather than maps. Thus when a selector returns true the nested elements will be
included in the processing, otherwise they are not included. Since no map is returned, no additional
information may be passed to those elements.

For selectors, the last argument reads param instead of parameters.

1. Comments
add your comments

Page 5

	1 Comments

