Advanced Control Flow (2.1 legacy
document)

Table of contents

00 ] 0111 01, 1K TP




Advanced Control Flow (2.1 legacy document)

Table of contents

O | 1T oo TN = V- T TSRS S PP 3
I 100 PR 3
1.2 BEAN PrOPEITIES. ...ttt et e e et e et e e eae e et e e e ae e e te e eaee e beeaneeereeeneeeans 3
(RC I D)/ 7= o T Lol @0 1 410 1 K= 1 Lo o 3

e T I 0 1T 10 =4 o 3

Page 2



Advanced Control Flow (2.1 legacy document)

} This document was copied as is from the Cocoon 2.1 documentation, but has not yet been fully reviewed or moved to its new home. (

1. Calling Java

Y ou can easily call Java code from your Flowscripts, for example:
var map = new java.util. HashMap(); map.put(“foo", "bar");

1.1. Imports
Classes in packages under java are accessible directly in your scripts.

Note that classes under java.lang are not automatically imported, however:

var n = new java.lang.Integer(3);

All other java packages and classes are accessible under the property Packages:

var tree = new Packages.javax.swing.JTree();

Y ou can get the effect of Javaimports using the importPackage() and importClass() functions:

In Java: In JavaScript:

import foo.*; importPackage(Packages.foo);

import foo.Bar; importClass(Packages.foo.Bar);
Example:

importPackage(java.util); var set = new TreeSet();

1.2. Bean Properties

If your Java classes have getters and setters you can access them as properties in JavaScript:
var d = new java.util.Date(); d.year = 2003; // same effect as d.setYear(2003);

1.3. Dynamic Compilation

Cocoon includes an embedded Java compiler that can dynamically compile Java source files and load
and execute the resulting classes at runtime. During development you can take advantage of this
capability to rapidly develop, test, and debug your applications. The Cocoon source resolver is used to
locate sourcefiles.

Example:

/I Cause com.xyz.MyClass to be compiled and loaded:
importClass(Packages.com.xyz.MyClass); var obj = new MyClass("foo", 123); // call a
constructor obj.someMethod(); // call a method

1.3.1. Configuration

Y ou control this behavior by specifying configuration properties in the cocoon.xconf file located in the
WEB-INF/ directory of your application. These properties are located in the component-instance
element under flow-interpreters whose name attribute has the value "javascript”. The following
properties may be set:

Page 3



Property:

reload-scripts

check-time

classpath

Example:

Advanced Control Flow (2.1 legacy document)

Description:

Determines whether Cocoon should attempt to
detect changes to source files and reload them.
This applies to both JavaScript and Java source
files

Specifies an interval in milliseconds after which
Cocoon will check for changes to source files
(ignored if reload-scripts is false or unspecified)

A semicolon separated list of URL's that will be
searched for Java source files

<flow-interpreters default="javascript" logger="flow"> <!-- FOM (Flow Object Model) -->
<component-instance class="org.apache.cocoon.components.flow.
javascript.fom.FOM_JavaScriptinterpreter" name="javascript">
<load-on-startup>resource://org/apache/cocoon/components/
flow/javascript/fom/fom_system.js</load-on-startup> <reload-scripts>true</reload-scripts>
<check-time>4000</check-time> <classpath>file:C:/dev/ImyPackages;src/java</classpath>
<debugger>enabled</debugger> </component-instance> </flow-interpreters>

1. Comments
add your comments

Page 4



	1 Comments

