How to use the Paginator Transformer (2.1
legacy document)

Table of contents

00] 0111 01, 1K TP

How to use the Paginator Transformer (2.1 legacy document)

Table of contents

O Y VT RS 3
2 PUIMPOSE. ...t nre s 3
Kl L1 0700 B E o (= o TS 3
= (=0 [T] =SSR 3
SIS < ST 3
S L]0 = e o] o 4
5.2 AAAING NBVIGALION. ...ttt b e b bbbt e e e s e b e sb e b e sbeeneeneene s 4
5.3 REAI-LITE EXAMPIES.....ceiieeeeeee et 5
5.3.1 DirectoryGenerator PagiNatioN............cccueiiuieiieiieeiie e esee e seeste et e e s e sne b s saeesneesnne e 5
5.3.2 ASYMMELTIC PAGINGLION.cueiieiteeiteeieseesteee st esteeste st e steestesseesseentesseesseeseeseesseesesneesseensennnens 6
ST I I O U1 1V =TSSR 6

6 Improving the Paginator TranSfOrMEYcccviieiieie e sre e sneene s 6
6.1 NESLEH PAGINGALTON.c.eitiiiitieieeieee ettt bbbttt et e b e b e b e nbe e b e sneeneeneens 6
L3 T = o SRR 7

(S o= o =SSR 7
LIl =0 TS SRR 7
6.2 Character-based Paginalion............ccuoiiiieie it e st e e eae e e sneennea 7
6.3 Other IMPrOVEMENES......cviiiicieee ettt e e e te e s re e se e e e s seesteeneesseenseeneesneenseeneennen 7
AL 0] 1010107 01T TSP 7
S (S Y Lo USRS 8

Page 2

How to use the Paginator Transformer (2.1 legacy document)

} This document was copied as is from the Cocoon 2.1 documentation, but has not yet been fully reviewed or moved to its new home. (

1. Overview

This How-To describes the how to use Cocoon's Paginator Transformer component. Y ou can consider
it a'FilterTransformer' on pagination steroids. The Paginator Transformer filters specific data and
counts pages as it transforms SAX events. It implements pagination rules based on easy-to-configure
pagesheet documents.

2. Purpose

X SLT-based approaches to pagination are problematic. First of al, it's somewhat complex to define
the necessary declarative logicin XSLT. Additionally, an XSLT solution israrely reusable across
different pagination use cases. These problems spurred the creation of the Paginator Transformer. Y ou
can quickly add pagination capabilities to your webapp once you have configured a simple few rules
within a single configuration file, the pagesheet.

The Paginator Transformer works quite nicely for use casesinvolving afew tens of pages and, of
course, for static generation of any number of pages. However, the Transformer must process an entire
file before it can extract even asingle page. Therefore, you are strongly advised against using it for
books or other large documents on dynamic sites. Nevertheless, its output is cacheable. Thus, if the
same page is requested, then the document will be reprocessed by the Transformer only when it has
changed.

3. Intended Audience

Cocoon users who need pagination capabilities for their web documents. This includes frustrated users
who aretired of implementing complex, X SL T-based approaches to pagination.

4. Prerequisites

Make sure you have the version 2.1 or greater of Cocoon. The Paginator Transformer component
source is located in the core area.

During the build process, the necessary configuration details for the Paginator Transformer component
are automatically copied to cocoon.xconf of cocoon.war. This means that you don't need to manually
configure cocoon.xconf. However, if you are adding the paginator samples to Cocoon webapp that was
not generated by the above build command, add the following snippet to your cocoon.xconf file,
located in the WEB-INF directory of your deployed webapp.

Version 2.1;

<paginator class="org.apache.cocoon.transformation.pagination.Paginator"
role="org.apache.cocoon.transformation.pagination.Paginator" logger="core.paginator"/> />

Samplefiles, not directly related to this How-To, are also copied during the build process to Cocoon
webapp at webapp/samples/paginator. Y ou can access them in your web browser using the following
URI:

http://localhost:8888/samples/paginator/

5. Steps

Page 3

How to use the Paginator Transformer (2.1 legacy document)

Let's start with asimple example.

5.1. Simple Example

Suppose you have an XML file, document.xml, as follows.

<?xml version="1.0"?> <images> <image /> <image /> <image /> <image /> <image />
<image /> <image /> </images>

First, you need to write a pagesheet. Just as a stylesheet contains instructions for an xslt processor, a
pagesheet contains instructions for the paginator filter. Here is the pagesheet dtd.

<IELEMENT pagesheet (items?, rules)*> <IATTLIST pagesheet xmins CDATA #IMPLIED>
<IELEMENT items (group)> <!ELEMENT group EMPTY > <IATTLIST group name CDATA
#IMPLIED element CDATA #IMPLIED > <IELEMENT rules (link?, count?)*> <IELEMENT link
EMPTY > <IATTLIST link type (unit | range) #REQUIRED num CDATA #REQUIRED >
<IELEMENT count EMPTY > <IATTLIST count type (element | char) #REQUIRED num
CDATA #REQUIRED name CDATA #IMPLIED namespace CDATA #IMPLIED >

Let's say you want to paginate document.xml content based on arule of three <image> elements per
page. Here's a sample pagesheet, images.xml, which does just that.

<?xml version="1.0"?> <pagesheet xmIns="http://apache.org/cocoon/paginate/1.0"> <rules>
<count type="element" name="image" num="3" /> </rules> </pagesheet>

Y ou process a source file through a pagesheet filter in a sitemap snippet like this:

<map:match pattern="page(*)"> <map:generate src="document.xml"/> <map:transform
src="pagesheets/images.xml" type="paginator"> <map:parameter name="page" value="{1}"/>
</map:transform> <map:serialize type="xml"/> </map:match>

Accessing the URI for page one, page(1) yields:

<?xml version="1.0" encoding="UTF-8" ?> <images
xmins:page="http://apache.org/cocoon/paginate/1.0"> <image /> <image /> <image />
<page:page current="1" total="3" current-uri="/cocoon/samples/paginator/page(1)"
clean-uri="/cocoon/samples/paginator/page" /> </images>

Clearly the above XML could have been transformed into something more meaningful. Note that the
transformer must process all pages to obtain the value of total. Currently, there is no way to avoid this.

5.2. Adding Navigation

Given the Paginator's a full-blown pagesheet language, there's even more we can accomplish, most
importantly, navigation.

As an example, consider the following pagesheet, images2.xml.

<?xml version="1.0"?> <pagesheet xmIns="http://apache.org/cocoon/paginate/1.0"> <items>
<group name="item" element="images" /> </items> <rules> <rules> <count type="element"
name="image" num="3"/> <link type="unit" num="1"/> </rules> </rules> </pagesheet>

The pagesheet rules demonstrate that the transformer understands how the page was encoded in the
given URI request, i.e., that parentheses surround the value of page. They also reveal that the
transformer can provide navigation links to available pages, in this case, plus or minus one position.

DS: In the above paragraph, you say the transformer understand how the page was
encoded. How? | don't see the evidence until the snippet produced below.

In your sitemap.xmap file, if you change the pagesheet source to images2.xml as follows:

Page 4

How to use the Paginator Transformer (2.1 legacy document)

<map:match pattern="page(*)"> <map:generate src="document.xml" /> <map:transform
src="pagesheets/images2.xml" type="paginator"> <map:parameter name="page" value="{1}"
/> </map:transform> <map:serialize type="xml" /> </map:match>

processing the same page(1) request yields the following (pretty-printed for this document):

<?xml version="1.0"?> <images xmlns:page="http://apache.org/cocoon/paginate/1.0">
<image /> <image /> <image /> <page:page current="1" total="3"
current-uri="/cocoon/samples/paginator/page(1)"
clean-uri="/cocoon/samples/paginator/page"> <page:link type="next"
uri="/cocoon/samples/paginator/page(2)" page="2" /> </page:page> </images>

This result demonstrates:

» Page 0 does not exist, so no <page:link> is created for a previous page.
» Page 2 exists, so <page:link> is created, along with
» avalue of "next" for its type attribute (useful for visualization), and
» avalue of page(2) for its URI attribute (useful for linking without X SLT-specific logic)

Note that the URI is re-encoded using the same parentheses pattern, page(2).

Now, without changing anything, requesting page(2) yields the following (pretty-printed for this
document):

<?xml version="1.0"?> <images xmins:page="http://apache.org/cocoon/paginate/1.0">
<image /> <image /> <image /> <page:page current="2" total="3"
current-uri="/cocoon/samples/paginator/page(2)"
clean-uri="/cocoon/samples/paginator/page"> <page:link type="prev"
uri="/cocoon/samples/paginator/page(1)" page="1" /> <page:link type="next"
uri="/cocoon/samples/paginator/page(3)" page="3" /> </page:page> </images>

And requesting page(3) yields the following.

<?xml version="1.0"?> <images xmlns:page="http://apache.org/cocoon/paginate/1.0">
<image /> <page:page current="3" total="3" current-uri="/cocoon/samples/paginator/page(3)
clean-uri="/cocoon/samples/paginator/page"> <page:link type="prev"
uri="/cocoon/samples/paginator/page(2)" page="2" /> </page:page> </images>

Note only one <image>. The original document, images.xml, only contained seven <image> elements.
three for page one, three for page two, but only one for page three. Thus, the result here is the modulo
(or remainder) of the division.

5.3. Real-Life Examples

Here are afew pagesheets examples which are a bit more complex.

5.3.1. DirectoryGenerator Pagination

Here's an example of paginating the contents of a directory using the DirectoryGenerator.

<?xml version="1.0"?> <pagesheet xmlns="http://apache.org/cocoon/paginate/1.0"> <rules>
<count type="element" name="file" namespace="http://apache.org/cocoon/directory/2.0"
num="16" /> <link type="unit" num="2" /> <link type="range" value="5" /> </rules>
</pagesheet>

Therules state:
1. paginate 16 files per page

Page 5

How to use the Paginator Transformer (2.1 legacy document)

2. providelinksto +/- 1 and +/- 2 pages (when available)
3. providelinksto +/- 5 (when available)

So, suppose we have a directory with 300 files. If we request page 10, the generated page will be:

<?xml version="1.0"?> <dir:directory> <dir:file ... /> [other 15 dir:file] <page:page
xmlns:page="http://apache.org/cocoon/paginate/1.0" current="10" total="19"
current-uri="dir(10)" clean-uri="dir" > <page:range-link page="5" type="prev" uri="page(5)" />
<page:link page="8" type="prev" uri="page(8)" /> <page:link page="9" type="prev"
uri="page(9)" /> <page:link page="11" type="next" uri="page(11)" /> <page:link page="12"
type="next" uri="page(12)" /> <page:range-link page="15" type="next" uri="page(15)" />
</page:page> </dir:directory>

5.3.2. Asymmetric pagination

We aso have the ability to indicate different rules for each page, for example:

<?xml version="1.0"?> <pagesheet xmlns="http://apache.org/cocoon/paginate/1.0"> <rules
page="1"> <count type="element" name="b" num="5" /> <link type="unit" num="1" />
</rules> <rules> <count type="element" name="b" num="10" /> <link type="unit" num="2" />
</rules> </pagesheet>

5.3.3. Count types

The Paginator Transformer was designed to count. However, it's up to you to define what needsto be
counted, either XML elements or characters (not yet implemented). By supplying values to the
attributes of <count> in the pagesheet, you can specify exactly what needs to be counted.

The <count> element has two required and two optional attributes. The required attributes are:

» typethe method of counting the paginator should perform, either elements or characters. When
element is specified, the transformer counts startElement() SAX events. When charsis specified
(currently not implemented), the transformer counts the primitive data type char.

e num anumber which how many times counted item (element or chars) must be present within the
transformed page.

Optional attributes (when type="element" is specified) are:

« name the name of the element, without any namespace prefix
« namespace the URI of the namespace. If not specified, the default namespace is used.

6. Improving the Paginator Transfor mer

The PaginatorTransformer was developed, initialy, to paginate a directory listing. It works great when
it paginates by counting elements, particularly elements which contain similar amounts of content to
be displayed on pages. With documents, for example, it could paginate by counting sections or
subsections. However, bear in mind that this approach does not always guarantee visually-balanced
web pages.

6.1. Nested Pagination

Furthermore, simply counting elementsis not always simple. Consider the following:
<?xml version="1.0"?> <a> <a> <a>

Let's say you want to paginate using one per page. What should the transformed pages |ook like?
Here's afew possible outcomes. Which oneis the best?

Page 6

How to use the Paginator Transformer (2.1 legacy document)

6.1.1. Page 1
<?xml version="1.0"?> <a> <a> <a/>

6.1.2. Page 2
<?xml version="1.0"?> <a> <a> <a/>

6.1.3. Page 3
<?xml version="1.0"?> <a> <a> <a>

It appears the current code is buggy somewhere. With deep nesting as in this example, some SAX
events are lost. This creates a non-well-formed SAX stream which chokes subsequent transformers,
such as XSLT, which may be sensitive to well-formedness.

Does the above might look like a mental exercise to you? Perhaps, but consider the structure of
Cocoon Project's Document DTD 1.1. which includes nested <section> elements. Similar problems
will emerge when paginating these documents based on this dtd. It'sisn't clear whether the solution
adopted above is meaningful or not for areal-world pagination. Suggestions on this are welcome.

6.2. Character-based Pagination

Given the need to visually balance pages, a counting method for characters was added, even though it
isn't implemented yet. Counting by charactersis especially difficult when you think about the
algorithms that perform chunking.

Assume you have a document like this:
<p>this is some text that happens to be chuncked</p> "

Suppose that paginating by counting the chars results in a chunking point indicated by the caret above
(between the letters u and n). Ending a page at that position resultsin XML that is not well-formed as
well astruncated words. Even if you find away to provide well-formed XML, you still must deal with
word-break issues. Therefore, we need away to produce well-formed XML by continuing until the
first 'block-level' element is encountered, for example, <p> in this case. However, this means that the
pagesheet must contain alist of such 'block-delimiting’ elements. Currently, the Pagesheet parser and
object model does not support this notion.

Conclusion? Pagination at the char level is not trivial and will require alittle bit of additional work on
the transformer.

6.3. Other Improvements

One possible way to improve the concept is to count by XPath results. For example, you may want to
count <section> elements included in other <section> elements. Another way to improve the design is
to allow booleans to be used within counting rules. For example, you could count <session> AND
<chapter> elements. Most likely, XPath will help here as well.

7. Comments

Got an idea how to improve the Paginator Transformer? Post it to the cocoon-dev mailing list. Care to
comment on this How-To? Help keep this document relevant by passing along any constructive
feedback to the cocoon-docs mailing list.

Page 7

mailto:dev.at.cocoon.apache.org?subject=Paginator:
mailto:docs.at.cocoon.apache.org?subject=Paginator:

How to use the Paginator Transformer (2.1 legacy document)

8. Revisions

06-06-02: Content originally posted to cocoon-dev by Stefano Mazzocchi.
06-26-02: Edited and structured by Diana Shannon. Scratchpad samples also added.
06-27-02: Scratchpad samples revised by Stefano Mazzocchi.

1. Comments
add your comments

Page 8

	1 Comments

