Write a Custom Generator (2.1 legacy
document)

Table of contents

00] 011101, 4 KSR

Write a Custom Generator (2.1 legacy document)

Table of contents

I 1 1 0o [Tox £ o o O S 3
I U 0701 PSPPI PR 3
28 11 01070 = | S 3
1.3 INEENAEA AUGIENCE.....c.eeiiieiieieeieie sttt et bbb be s e st e e e eeneesbenbenreas 3
N 1 =0 [(=SS 3

28 0 Y/ 1 o N 1 o 4
2.1 SIMPLE EXAMPIE.....eeeeieete ettt bbbttt e et et e b e bt bt st et e e e r b nre s 4

20 VA (ol ([0 ST 4
2.1.2 RUNNING ThE SAMIPIE.... oottt e b e e ae e re e e reenreeenes 5
22 A LESSTIIVIA EXAMPIE.....cc.ei ettt et e e ae e ene s 5
22 I 0 0]] [o= o I = SRR 6
2.2.2 INBW CONCEPDES.eeiutieteeeieesieesie e st e st ste e st e e s be e s aeessesssteesbeesaseesbeeeabeeabeeenseenseesnteesbeeenseenseennseenns 7
2.2.3 A LBSSON. ..ttt ettt bt b ettt a e et e e Rt e e e aE e e e hE e e e Re e e e ne e e e ne e e nne e e nneeenreeas 8
2.3 IMOVING Ol bttt e bbbt Rt e ae e e e b e b e e bt e Rt eb e eh e e e e e e nenrennenre s 8
2.3.1 The Employee SQL Example REWOIKEd.............couviiieiii i 8
232 COMPIE ANA TESL... .o e e et et ee e e re et e s seesteensesneenneensesnnenrens 9
2.3.3 INEW CONCEPLS.eeiveie ittt sttt e e st e e st e e sb e e e st e e e aase e e nabeeebaeesbeeesabeeenareeennns 9

Page 2

Write a Custom Generator (2.1 legacy document)

} This document was copied as is from the Cocoon 2.1 documentation, but has not yet been fully reviewed or moved to its new home. (

1. Introduction

This Tutorial describes the steps necessary to write a basic Cocoon generator. Starting with a quick
"Hello World" example and progressing to slightly more involved examples should give a good start to
those whose applications call for extending Cocoon with a custom generator.

The intention isto provide:

» thebasicsof creating SAX eventsin a C2 generator

« alittle understanding of the Avalon container contract asiit relatesto C2 generators

« alittle understanding of the factors that would influence the decision about which xxxGenerator to
extend

1.1. Purpose

The flexibility to extend the basic "Out of the box™ functionality of Cocoon will be an important
feature for Cocoon's viability as a broadly used application framework. Though the documentation on
"Extending Cocoon"” (at least at this writing) seems to have a hard time imagining applications for
custom generators outside of the bizarre, | imagine several scenarios which could call for it:

» A datasource as yet undeveloped in Cocoon (e.g. event logs)

» Database driven applications for which XSP is either too awkward or holds too many performance
guestions. The need for high scalability will drive some (such as myself) to seek optimization in
custom generators that just do not seem reasonable to expect out of the auto-generated code that
X SPs produce. The current Performance Tips documentation seemsto lead in this direction.

» Customized control over the caching behaviour if not provided for by other means.

1.2. Important

There are other options that should be considered before settling on a new generator. One notable
consideration is the option of writing a Source that would fit your needs. See this discussion from the
mailing list for an introduction to the idea. Of course, XSP should be considered - | have not seen any
performance comparisons that quantify the benefit that can be had from a custom generator. Finally, be
sure you understand the purpose and capabilities of all current standard Generators, as well asthosein
the scratchpad (for instance, there is a TextParserGenerator in the scratchpad at the moment which

may be configurable enough to process the event log need mentioned above). Cocoon isarapidly
developing technology that may have anticipated your need. Because the documentation lags behind
development, you may find more by examining the source directory and searching the mail archives
for applicable projects.

1.3. Intended Audience

This Tutorial isaimed at users who have developed an understanding of the basics of Cocoon and have
aneed to begin extending it for their own purposes, or desire a deeper understanding of what goes on
under the hood.

1.4. Prerequisites

Page 3

../developing/extending.html
../performancetips.html
http://marc.theaimsgroup.com/?t=102571404500001&r=1&w=2
http://cocoon.apache.org/community/mail-archives.html

Write a Custom Generator (2.1 legacy document)

Generator developers should have:

» Read Cocoon Concepts, aswell as Extending Cocoon , and the broad overview of Avalon, the
framework upon which Cocoon is built.

« Aninstaled version of Cocoon if you want to follow the examples yourself (obviously).

» A good understanding of Java.

o JavaSDK (1.2 or later) "installed".

2. Diving In

Let us start with asimple "Hello World" example:

2.1. Simple Example

Our goal will beto build the following document (or, more to the point, the SAX events that would
correspond to this document).

<example>Hello World!</example>
An example of code that will send the correct SAX events down the pipeline:

import org.apache.cocoon.generation.AbstractGenerator; import
org.xml.sax.helpers.Attributesimpl; import org.xml.sax.SAXException; public class
HelloWorldGenerator extends AbstractGenerator { Attributesimpl emptyAttr = new
AttributesImpl(); /** * Override the generate() method from AbstractGenerator. * It simply
generates SAX events using SAX methods. * | haven't done the comparison myself, but this *
has to be faster than parsing them from a string. */ public void generate() throws
SAXException { // the org.xml.sax.ContentHandler is inherited // through
org.apache.cocoon.xml.AbstractXMLProducer contentHandler.startDocument();

contentHandler.characters("Hello World!".toCharArray(),0, "Hello World!".length());

contentHandler.endElement("™,"example”, "example"); contentHandler.endDocument(); } }

So, the basic points are that we extend AbstractGenerator, override its generate() method, call the
relevant SAX methods on the contentHandler (inherited from AbstractGenerator) to start, fill and end
the document. For information on the SAX api, see www.saxproject.org

A performance tip might be to keep an empty instance of Attributesimpl around to reuse for
each element with no attributes. Also, the characters(char[] chars, int start, int end) begs to
be overloaded with a version like characters(String justPutTheWholeThingln) that handles
the conversion to a character array and assumes you want from beginning to end, as is done
in org.apache.cocoon.generation.AbstractServerPage. If you are not using namespaces, it is
easy to imagine overloaded convenience implementations of the other SAX methods as well.
You will probably want to set up a convenient BaseGenerator with helpers like this and
extend it for your real Generators.

2.1.1. What to Extend?

How did we choose to extend AbstractGenerator? Generators are defined by the
org.apache.cocoon.generation.Generator interface. The only direct implementation of this of interest to
us is AbstractGenerator, which gives abasic level of functionality. Another option would have been
ServiceableGenerator, which would give us the added functionality of implenting the Avalon interface
Serviceable , which would signal the container that handles al the components including our generator
to give us a handle back to the ServiceManager during the startup of the container. If we needed to
lookup a pooled database connection, or some other standard or custom Cocoon component, thisis

Page 4

../userdocs/concepts/index.html
../developing/extending.html
../developing/avalon.html
http://www.saxproject.org/

Write a Custom Generator (2.1 legacy document)

what we would do. Most of the out of the box Generators extend ServiceableGenerator. Other abstract
Generators you may choose to extend include the poorly named (IMHO) ServletGenerator , and
AbstractServerPage . While these both introduce functionality specific to their eventual purpose - the
JSP and X SP generators, they do make a convenient starting place for many other Generators.

2.1.2. Running The Sample

In order to run this sample, you will need to compile the code, deploy it into the cocoon webapp, and
modify the sitemap to declare our generator and allow accessto it viaa pipeline.

2.1.2.1. Compile

Save this source as HelloWorldGenerator.java and compile it using

javac -classpath %PATH_TO_JARS%\cocoon.jar;%PATH_TO_JARS%\xml-apis.jar
HelloWorldGenerator.java

Unfortunately for me, the exact name of your cocoon and xml-apisjars may vary with exactly which
distribution, or CV S version you are using, since the community has taken to appending dates or
versions at the end of the jar name to avoid confusion. Be sure to find the correct name on your system
and substitute it in the classpath. Also, you have severa options on where to find jars. If you have a
source version that you built yourself, you may want to point to lib\core\ for them. If you have only the
binary version, you can find them in WEB-INF\lib\

2.1.2.2. Deploy
Simply copy the classfile into the %TOMCAT_HOM E%\webapps\cocoon\WEB-INF\classes
directory

If memory serves me, there have been occasional classloading problems in the past that may
affect classloading. If your compiled classes are not recognized in the classes directory, try
jar-ing them up and place them in WEB-INF\lib\ instead. That is probably where your real
generators would go anyway - with a whole package of all your custom classes in one jar.

2.1.2.3. Sitemap Modifications

Y ou need to do two things: in the map:generators section, add an element for your class:
<map:generator name="helloWorld" src="HelloWorldGenerator"/>
Then add a pipeline to sitemap.xmap which uses it:

... <map:match pattern="heyThere.xml"> <map:generate type="helloWorld"/> <map:serialize
type="xml"/> </map:match> ...

And finally, our creation should be available at http://|ocal host:8080/cocoon/hey There.xml

Depending on your exact setup, you may need to restart Tomcat (or whatever your servlet container is)
to get there.

Notice that the <?xml version="1.0" encoding="UTF-8"?> declaration was added for us by the
xml serializer at the beginning. If you need to modify this, the generator is not the appropriate
place. The default encoding of UTF-8 could be overridden with iso-8859-1 for example by
specifying an <encoding>is0-8859-1</encoding> child parameter inside the declaration for
the xml serializer in your sitemap.

2.2. A LessTrivial Example

Page 5

Write a Custom Generator (2.1 legacy document)

Moving on to alesstrivial example, we will take some information out of the Request, and construct a
dlightly more involved document. This time, our goal will be the following document:

<doc> <uri>...</uri> <params> <param value="...">...</param> ... </params> <date>..</date>
</doc>

The values of course will be filled in from the request, and will depend on choices we make |ater.

import org.apache.cocoon.generation.AbstractGenerator; import
org.xml.sax.helpers.AttributesImpl; import org.xml.sax.SAXException; // for the setup()
method import org.apache.cocoon.environment.SourceResolver; import java.util.Map; import
org.apache.avalon.framework.parameters.Parameters; import
org.apache.cocoon.ProcessingException; import java.io.lOException; // used to deal with the
request parameters. import org.apache.cocoon.environment.ObjectModelHelper; import
org.apache.cocoon.environment.Request; import java.util. Enumeration; import java.util.Date;
public class RequestExampleGenerator extends AbstractGenerator { // Will be initialized in
the setup() method and used in generate() Request request = null; Enumeration
paramNames = null; String uri = null; // We will use attributes this time. Attributesimpl myAttr
= new Attributesimpl(); Attributesimpl emptyAttr = new Attributesimpl(); public void
setup(SourceResolver resolver, Map objectModel, String src, Parameters par) throws
ProcessingException, SAXException, IOException { super.setup(resolver, objectModel, src,
par); request = ObjectModelHelper.getRequest(objectModel); paramNames =
request.getParameterNames(); uri = request.getRequestURI(); } /** * Implement the
generate() method from AbstractGenerator. */ public void generate() throws SAXException {
contentHandler.startDocument(); contentHandler.startElement("", "doc", "doc", emptyAttr); //
<uri> and all following elements will be nested inside the doc element
contentHandler.startElement(™, "uri”, "uri", emptyAttr);
contentHandler.characters(uri.toCharArray(),0,uri.length()); contentHandler.endElement("",
"uri", "uri"); contentHandler.startElement("", "params”, "params"”, emptyAttr); while
(paramNames.hasMoreElements()) { // Get the name of this request parameter. String param
= (String)paramNames.nextElement(); String paramValue = request.getParameter(param); //
Since we've chosen to reuse one Attributesimpl instance, // we need to call its clear() method
before each use. We // use the request.getParameter() method to look up the value //
associated with the current request parameter. myAttr.clear();
myAttr.addAttribute("","value","value"," ,paramValue); // Each <param> will be nested inside
the containing <params> element. contentHandler.startElement("", "param", "param",
myAttr); contentHandler.characters(param.toCharArray(),0,param.length());
contentHandler.endElement("","param”, "param"); } contentHandler.endElement("","params”,
"params"); contentHandler.startElement("™, "date", "date", emptyAttr); String dateString =
(new Date()).toString();
contentHandler.characters(dateString.toCharArray(),0,dateString.length());
contentHandler.endElement("", "date", "date"); contentHandler.endElement("","doc", "doc");
contentHandler.endDocument(); } public void recycle() { super.recycle(); this.request = null;
this.paramNames = null; this.parNames = null; this.uri = null; } }

2.2.1. Compile and Test

Save this code as RequestExampleGenerator.java and compile as before. Y ou will need to add both
avalon-framework.jar and avalon-excalibur.jar to your classpath this time. Besides finding the exact
name of the jar as described above, you may now also have to ensure that you have the version of
excalibur targeted to your jvm version - thereis currently aversion for JDK 1.4 and onefor 1.2/1.3

For your sitemap, you will need to add a definition for this generator like <map:generator

Page 6

Write a Custom Generator (2.1 legacy document)

name="requestExample" src="RequestExampleGenerator"/> and you will need a sitemap pipeline
like:

<map:match pattern="howYouDoin.xml"> <map:generate type="requestExample"/>
<map:serialize type="xml"/> </map:match>

At this point, you should be able to access the example at
http://local host:8080/cocoon/howY ouDoin.xml ?anyParam=0K & more=better

2.2.2. New Concepts

2.2.2.1. Lifecycle

First, notice that we now override the setup(...) and recycle() methods defined in AbstractGenerator.
The ServiceManager that handles the lifecycle of all servicesin Cocoon, calls setup(..) before each
new call to generate() to give the Generator information about the current request and its environment,
and calls recycle() when it is done to enable it to clean up resources as appropriate. Our example uses
only the objectModel which abstracts the Request, Response, and Context. We get areference to the
Request wrapper, and obtain an Enumeration of all the GET/POST parameters available.

The src and SourceResolver are provided to enable us to look up and use whatever source is specified
in the pipeline setup. Had we specified <map:generate type="helloWorld" src="someSourceString"/>
we would have used the SourceResolver to work with "someSourceString”, whether it be afile, or url,
etc.

We are also given a Parameters reference which we would use to obtain any parameter names and
values which are children elements of our map:generate element in the pipeline.

It may be good practice to abstract the source of your parameters so that they do not have to
come from the Request object. For instance, the following code would allow us to abstract
the origin of two parameters, paraml and param2:In RequestExampleGenerator.java, ...
String paraml = null; String param?2 = null; ... public void setup(SourceResolver resolver,
Map objectModel, String src, Parameters par) throws ProcessingException, SAXException,
IOException { ... paraml = par.getParameter("paraml"); param2 =
par.getParameter("param?2"); } and in sitemap.xmap, ... <map:match
pattern="abstractedParameters.xml"/> <map:act type="request"> <map:parameter
name="parameters" value="true"/> <map:generate type="requestExample"> <parameter
name="paraml" value="{visibleName1l}"/> <parameter name="param?2"
value="{visibleName2}'/> </map:generate> </map:act> </map:match> ...

Asyou can see, we have also hidden the internal name from the outside world who will use
isibleNamel=foo& visibleName2=bar

2.2.2.2. Nested Elements

In this example, nested elements are created simply by nesting complete startElement()/endElement
pairs within each other. If we had alogic failure in our code and sent non-wellformed xml events down
the pipeline, nothing in our process would complain (try it!). Of course, any transformerslater in the
pipeline would behave in an unpredictable manner.

2.2.2.3. Attributes

Finally, we've introduced the use of attributes. We chose to employ one attributesimpl, clearing it
before each element. Multiple attributes for an element would simply be added by repeated callsto

Page 7

Write a Custom Generator (2.1 legacy document)

addAttribute.

2.2.3. A Lesson

Before moving on, it isworth noting that after all thiswork, there is already a generator provided with
Cocoon which does much of what we have accomplished here -
org.apache.cocoon.generation.RequestGenerator which in the default configuration is probably
available at http://local host:8080/cocoon/request

2.3. Moving On

From here, we will move on to cover handling ugly pseudo-xml (like real world html) with CDATA
blocks, employing some of the Avalon lifecycle method callbacks (Serviceable/Disposable), Database
access, and Caching.

2.3.1. The Employee SQL Example Reworked

In the samples included with Cocoon, there is an example of a SQL query using XSP and ESQL. We
will recreate part of that example below using the same HSQL database, which should be
automatically configured and populated with data in the default build. If you find that you do not have
that database set up, see the ESQL X SP sample for instructions on setting the datasource up. Do note
that this specific task is handled in the ESQL XSP examplein just afew lines of code. If your task is
really this simple, there may be no need to create your own generator.

import org.apache.cocoon.generation.ServiceableGenerator; import
org.apache.avalon.framework.service.ServiceManager; import
org.apache.avalon.framework.service.ServiceException; import
org.apache.avalon.framework.service.ServiceSelector; import
org.apache.avalon.excalibur.datasource.DataSourceComponent; import
org.apache.cocoon.environment.SourceResolver; import
org.apache.avalon.framework.parameters.Parameters; import
org.apache.cocoon.environment.ObjectModelHelper; import
org.apache.cocoon.environment.Request; import org.apache.cocoon.caching.Cacheable;
import org.apache.cocoon.caching.CacheValidity; import
org.apache.cocoon.ProcessingException; import org.xml.sax.ContentHandler; import
org.xml.sax.SAXException; import org.xml.sax.helpers.Attributesimpl; import java.sql.*;
import java.util.Map; import java.util.Date; import
org.apache.avalon.framework.activity.Disposable; public class EmployeeGeneratorExample
extends ServiceableGenerator implements Cacheable, Disposable { public void dispose() {
super.dispose(); manager.release(datasource); datasource = null; } public void recycle() {
myAittr.clear(); super.recycle(); } public void setup(SourceResolver resolver, Map
objectModel, String src, Parameters par) { // Not neeed for this example, but you would get
request // and/or sitemap parameters here. } public void service(ServiceManager manager)
throws ServiceException{ super.service(manager); ServiceSelector selector =
(ServiceSelector) manager.lookup(DataSourceComponent.ROLE + "Selector");
this.datasource = (DataSourceComponent) selector.select("personnel™); } public void
generate() throws SAXException, ProcessingException { try { Connection conn =
this.datasource.getConnection(); Statement stmt = conn.createStatement(); ResultSet res =
stmt.executeQuery(EMPLOYEE_QUERY); //open the SAX event stream
contentHandler.startDocument(); myAttr.addAttribute("™,"date","date","", (new

Date()).toString()); //open root element contentHandler.startElement(","content”,

Page 8

Write a Custom Generator (2.1 legacy document)

"content”,myAttr); String currentDept = ""; boolean isFirstRow = true; boolean moreRowsEXist
= res.next() ? true : false; while (moreRowsEXist) { String thisDept = attrFromDB(res,
"name"); if (thisDept.equals(currentDept)) { newDept(res,thisDept,isFirstRow); currentDept =
thisDept; } addEmployee(res,attrFromDB(res,"id"), attrFromDB(res,"empName")); isFirstRow
= false; if (Ires.next()) { endDept(); moreRowsEXxist = false; } } //close root element
contentHandler.endElement("™,"content","content"); //close the SAX event stream
contentHandler.endDocument(); res.close(); stmt.close(); conn.close(); } catch
(SQLException e) { throw new ProcessingException(e); } } public long generateKey() { //
Default non-caching behaviour. We will implement this later. return 0; } public CacheValidity
generateValidity() { // Default non-caching behaviour. We will implement this later. return null;
} private DataSourceComponent datasource; private Attributesimpl myAttr = new
Attributesimpl(); private String EMPLOYEE_QUERY = "SELECT department.name,
employee.id, employee.name as empName " + "FROM department, employee " + "WHERE
department.id = employee.department_id ORDER BY department.name"; private void

newDept(ResultSet res, String dept, boolean isFirstRow) throws SAXException { if
(lisFirstRow) { endDept(); } myAttr.clear(); myAttr.addAttribute("™,"name”,"name","",dept);
contentHandler.startElement("™,"dept","dept",myAttr); } private void addEmployee(ResultSet
res, String id, String name) throws SAXException { myAttr.clear();
myAttr.addAttribute("™,"id","id","",id);
contentHandler.startElement("™,"employee”,"employee", myAttr);
contentHandler.characters(name.toCharArray(),0,name.length());

attrFromDB(ResultSet res, String column) throws SQLEXxception { String value =
res.getString(column); return (res.wasNull())?"":value; } }

2.3.2. Compile and Test

To compile this, you will now need the following on your classpath: avalon-excalibur jar,
avalon-framework.jar, cocoon.jar, xml-apis.jar (using whatever names they have in your distribution).
When you compile this, you may receive some deprecation warnings. Do not worry about them - we
will discuss that later.

Totest it, copy it over to your WEB-INF\classes\ directory as before and add something like the
following to your sitemap.xmap ...

... <map:generator name="employee" src="EmployeeGeneratorExample"/> ... <map:match
pattern="employee.xml"> <map:generate type="employee"/> <map:serialize type="xml"/>
</map:match> ...

2.3.3. New Concepts

2.3.3.1. Serviceable and Disposable

We've implemented the Avalon lifecycle interfaces Serviceable and Disposable. When Cocoon starts
up (which happens when the servlet container starts up) the ServiceManager will call
service(ServiceManager m) for our component as it works its way through all the components declared
in the sitemap. The handle to ServiceManager is used to look up any other Avalon components that we
need. Lookups happen in an abstracted way using a ROL E which enables us to change out
implementations of each component without affecting previously written code. Our generator's ROLE
by the way was defined in the Generator interface.

Page 9

Write a Custom Generator (2.1 legacy document)

Similarly, when this instance of our generator is disposed of by the container, it will call the dispose()
method to allow usto clean up any resources we held on to between invocations. Note that
components can be pooled by the container. If we thought that our employee generator was going to
see alot of traffic, we might change its definition at the top of sitemap.xmap to include attributes like
pool-max="16" so that multiple overlapping requests could be serviced without alog jam.

2.3.3.2. Datasour ce

We look up our HSQL database here by its name given in cocoon.xconf. If we had multiple
datasources (say a backup development database and a live one), we could determine which one to use
based on a simple configuration parameter in sitemap.xmap. We could get at configuration parameters
using the Avalon interface Configurable.

Notice that we wait until generate() to request our connection from the pool - as we should.
The problem is that we lose the benefit of using prepared statements since they would be
destroyed when we returned the instance to the pool. At present, the implementation of
org.apache.avalon.excalibur.datasource.DataSourceComponent does not support the
pooling of statements.

2.3.3.3. Caching

open: Need more content here, or links to other docs.FIXME: This is still coming.

Introduce new code to implement Caching, discuss basic logic, and deprecation/move to Avaon. |
could use some help here from Carsten, or someone who can quickly give an overview of the changes
and plan.

1. Comments
add your comments

Page 10

	1 Comments

