
SQL Transformer (2.1 legacy document)

Table of contents

1 Comments..7

Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

Table of contents

1 Introduction... 3

2 Basic functionality...3

3 Advanced functionality... 4

3.1 Substitution... 4

3.2 Ancestors.. 5

3.3 in- and out-parameters.. 5

4 Combined with other transformers..6

4.1 Filtertransformer... 6

4.2 WriteDOMSessionTransformer..6

4.3 ReadDOMSessionTransformer...7

SQL Transformer (2.1 legacy document)

Page 2
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

Warning:
This document was copied as is from the Cocoon 2.1 documentation, but has not yet been fully reviewed or moved to its new home.

1. Introduction

The purpose of the SQLTransformer is to query a database and translate the result to XML. To retrieve
the information from the database, you are not restricted to use simple SQL statements (e.g. select,
insert, update), it is also possible to use stored procedures. In combination with other transformers (e.g.
FilterTransformer), this one can be very powerful.

• Name: sql
• Class: org.apache.cocoon.transformation.SQLTransformer
• Cacheable: no

2. Basic functionality

To be able to query a database, we need XML that describes exactly what we want to do. The general
structure of this input XML is as follows:

<page> <execute-query xmlns="http://apache.org/cocoon/SQL/2.0"> <query> <!-- here
comes the SQL statement or stored procedure --> </query> </execute-query> </page>
Nothing prevents you from putting other XML around the execute-query element. Any element not in
the SQL namespace will stay untouched. The format of the SQL statement or the stored procedure is
exactly the same as if you would call it directly from java with a prepared statement or a callable
statement.

The query element has the following optional attributes:

1. name: Naming a query implicates naming the corresponding rowset (see below). When you have a
sequence of queries you want to execute, it can be handy give them a name. To process the
retrieved data of a certain query, you can use another transformer to check the name of the rowset
and to execute the necessary business logic on it.
usage: <query name="myName">

2. isstoredprocedure: When you want to use stored procedures, you have to explicitly add this
attribute to the query element. By default, the transformer assumes that you want to execute a SQL
statement.
usage: <query isstoredprocedure="true">

Here is an example of how the input XML might look like:

<page> <title>Hello</title> <content> <para>This is my first Cocoon page filled with sql
data!</para> <execute-query xmlns="http://apache.org/cocoon/SQL/2.0"> <query
name="department"> select id,name from department_table </query> </execute-query>
</content> </page>
You can use the file generator to retrieve the XML from the filesystem. To invoke the
SQLTransformer you have to add following to the sitemap:

<map:transform type="sql"> <map:parameter name="use-connection" value="personnel"/>
<map:parameter name="show-nr-of-rows" value="true"/> <map:parameter
name="clob-encoding" value="UTF-8"/> </map:transform>
The use-connection parameter defines which connection, defined under the datasources element in
cocoon.xconf, the SQLTransformer has to use to retrieve the data.

SQL Transformer (2.1 legacy document)

Page 3
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

The show-nr-of-rows instructs the transformer to count the number of rows in the resultset explicitly
and to set the result as attribute to the rowset element. This attribute is only useful in combination with
a sql statement, not with stored procedures. If a stored procedure returns a resultset and you want to
know how many rows it contains, you have to count the number of rows in another transformer or your
stored procedure has to return it also (last solution is the best one).

The clob-encoding parameter defines what encoding should be used in getting content from CLOB
columns.

The output XML will look as follows:

<page> <title>Hello</title> <content> <para>This is my first Cocoon page filled with sql
data!</para> <rowset nrofrows="2" name="department"
xmlns="http://apache.org/cocoon/SQL/2.0"> <row> <id>1</id>
<name>Programmers</name> </row> <row> <id>2</id> <name>Loungers</name> </row>
</rowset> </content> </page>
If you use this in combination with the simple-sql2html.xsl stylesheet,

<map:transform src="stylesheets/simple-sql2html.xsl"/>
you will get a more visually attractive page.

See below for a more in depth example with stored procedures.

By now you should be able to use the SQLTransformer, but there are some more options you might
find useful...

3. Advanced functionality

3.1. Substitution

Sometimes you need more information before you can execute a query, e.g. the name of the user that is
currently logged on your site. This information is only available at runtime and hence can only be
substituted in the query when available.

To pass this information to the SQL statement, the input XML has to look like this:

<page xmlns:sql="http://apache.org/cocoon/SQL/2.0"> <execute-query
xmlns="http://apache.org/cocoon/SQL/2.0"> <query> select id,name from employee_table
where name = '<sql:substitute-value sql:name="username"/>' </query> </execute-query>
</page>
The substitution is done by the SQLTransformer before it executes the query (before it calls the
method prepareStatement!). For this, the transformer has to be given the necessary values via the
sitemap (as parameter):

<map:transform type="sql"> <map:parameter name="use-connection" value="personnel"/>
<map:parameter name="show-nr-of-rows" value="true"/> <map:parameter name="username"
value="Stefano Mazzocchi"/> </map:transform>
Whenever the transformer encounters a substitute-value element for which the attribute name contains
the value username, it will replace this element with the value Stefano Mazzocchi.

The output XML will be as follow:

<page xmlns:sql="http://apache.org/cocoon/SQL/2.0"> <rowset nrofrows="1"
xmlns="http://apache.org/cocoon/SQL/2.0"> <row> <id>2</id> <name>Stefano

SQL Transformer (2.1 legacy document)

Page 4
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

Mazzocchi</name> </row> </rowset> </page>
It is also possible to use substitution in combination with stored procedures.

3.2. Ancestors

This functionality is best described by a simple example.

Take following input XML:

<page xmlns:sql="http://apache.org/cocoon/SQL/2.0"> <execute-query
xmlns="http://apache.org/cocoon/SQL/2.0"> <query name="department"> select id,name
from department_table </query> <execute-query> <query name="employee"> select id,name
from employee_table where department_id = <ancestor-value sql:name="id" sql:level="1"/>
</query> </execute-query> </execute-query> </page>
The first query will retrieve all id's and name's from the department_table table. For each id that comes
from the department_table, the second query, in which the ancestor-value element will be replaced by
the id, will be executed. The above example will be transformed to the following XML:

<page xmlns:sql="http://apache.org/cocoon/SQL/2.0"> <rowset nrofrows="2"
name="department" xmlns="http://apache.org/cocoon/SQL/2.0"> <row> <id>1</id>
<name>Programmers</name> <rowset nrofrows="2" name="employee"> <row> <id>1</id>
<name>Donald Ball</name> </row> <row> <id>2</id> <name>Stefano Mazzocchi</name>
</row> </rowset> </row> <row> <id>2</id> <name>Loungers</name> <rowset nrofrows="1"
name="employee"> <row> <id>3</id> <name>Pierpaolo Fumagalli</name> </row>
</rowset> </row> </rowset> </page>

3.3. in- and out-parameters

Stored procedures can return data as a parameter. To make use of this functionality in java, you have to
register these parameters as out parameters. Since this information is application specific, the
SQLTransformer uses reflection to retrieve the data in the right format. For this, an extra element is
needed in the input XML:

<out-parameter sql:nr="1" sql:name="code" sql:type="java.sql.Types.INTEGER"/>
where:

1. nr: The targeted parameter number that will return data of a certain type.
2. type: The type of data that will be returned (defined in java.sql.Types or in database specific

drivers, e.g. oracle.jdbc.driver.OracleTypes). Once the stored procedure returns data in the
parameters, the stored procedure tries to process them. If the returned parameter is an instance of
ResultSet, it will be translated to XML as we saw before. In all the other situations the
SQLTransformer will convert the parameter to a string.

This is an example of how to call an oracle stored procedure and process it with the SQLTransformer:

<page xmlns:sql="http://apache.org/cocoon/SQL/2.0"> <execute-query
xmlns="http://apache.org/cocoon/SQL/2.0"> <query isstoredprocedure="true"
name="namesearch"> begin QUICK_SEARCH.FIND_NAME('<sql:substitute-value
sql:name="username"/>',?,?,?); end; </query> <out-parameter sql:nr="1" sql:name="code"
sql:type="java.sql.Types.INTEGER"/> <out-parameter sql:nr="2" sql:name="nrofrows"
sql:type="java.sql.Types.INTEGER"/> <out-parameter sql:nr="3" sql:name="resultset"
sql:type="oracle.jdbc.driver.OracleTypes.CURSOR"/> </execute-query> </page>
The SQLTransformer will create 3 elements, respectively code, nrofrows and resultset under the
element namesearch. Since the type oracle.jdbc.driver.OracleTypes.CURSOR corresponds to a

SQL Transformer (2.1 legacy document)

Page 5
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

ResultSet, a rowset element will be created, containing all the data of the resultset. It is also possible to
use an in-parameter element, e.g. <in-parameter sql:nr="1" sql:value="1"/>. This functionality is only
provided to be complete, because it is available in Java itself. You can also use the in-parameter in
combination with a SQL statement. Used in combination with an out-parameter, a ?-parameter can be
an in-parameter and an out-parameter at the same time.

4. Combined with other transformers

4.1. Filtertransformer

When you query a database and it returns too many rows to process at once, you might want to take a
block of elements, process this block and ignore the rest for now. You can best compare it to a search
on Google: they only return 10 results in one time, for more results you have to click on another block
(page). It wouldn't be wise to process more than 10 elements in the pipeline if you only need to display
10 elements.

Assume that a query returns 56 row elements (by using the SQLTransformer) and that you only want
to display the first 10 elements:

Output XML from the SQLTransformer:

<rowset nrofrows="56" name="test" xmlns="http://apache.org/cocoon/SQL/2.0"> <row> <!--
db record --> </row> <row> <!-- db record --> </row> ... <row> <!-- db record --> </row>
</rowset>
By adding following lines to the sitemap, just under the SQLTransformer, you restrict the results to 10
elements in the first block:

<map:transform type="filter"> <map:parameter name="element-name" value="row"/>
<map:parameter name="count" value="10"/> <map:parameter name="blocknr" value="1"/>
</map:transform>
output XML:

<rowset nrofrows="56" name="test" xmlns="http://apache.org/cocoon/SQL/2.0"> <block
id="1"> <row> <!-- db record --> </row> <!-- total of 10 rows --> <row> <!-- db record -->
</row> </block> <block id="2"/> <block id="3"/> <block id="4"/> <block id="5"/> <block
id="6"/> </rowset>
To make it more dynamically, put something like {reqCount} and {reqBlock} in the values for count
and blocknr respectively. These can be parameters from the request and they can be passed to the
sitemap with an action.

The FilterTransformer is a standalone component; you don't need to use it in combination with the
SQLTransformer.

4.2. WriteDOMSessionTransformer

If you only use the FilterTransformer in combination with the SQLTransformer, you have to query the
database each time the user wants to see another part of the result. You can better store the result in the
session after the first request and retrieve the result from the session for the subsequent requests. This
can be done by using a selector, which checks if the data is available in the session or not.

WriteDOMSessionTransformer can build a DOM starting from a given element (which will be the root
of the DOM tree) and store it in the session. If you want to store the result of a query, you have to add
following to the sitemap:

SQL Transformer (2.1 legacy document)

Page 6
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

<map:transform type="writeDOMsession"> <map:parameter name="dom-name"
value="DBresult"/> <map:parameter name="dom-root-element" value="rowset"/>
</map:transform>
The transformer will build a DOM tree with rowset as root element and will store it in the session with
the name DBresult.

Most of the times, it is not smart to keep the output XML of the SQLTransformer in the
session. Check if it is better to do the necessary transformations first, so that you get a
smaller DOM, and then put the result in the session. You probably will be able to use the
FilterTransformer on the transformed XML also.
The WriteDOMSessionTransformer is a standalone component, you don't need to use it in
combination with the SQLTransformer.

4.3. ReadDOMSessionTransformer

Simply transforms a DOM to SAX events, which can be used further on in the pipeline. Once you
stored the result of a query in the session with the WriteDOMSessionTransformer, you can read it
again with the ReadDOMSessionTransformer:

<map:transform type="readDOMsession"> <map:parameter name="dom-name"
value="DBresult"/> <map:parameter name="trigger-element" value="users"/>
<map:parameter name="position" value="after"/> </map:transform>
In this example the SAX events, that come from the DOM tree stored in the session with name
DBresult, will be added after the users element. This means as soon that the transformer encounters the
end element users, it will start to generate SAX events from the DOM tree. There are three possible
positions, before, in and after:

1. before means that when the transformer encounters the users element, it will FIRST translate the
DOM tree to SAX events and THEN it will continue to forward the other SAX events (starting
with users).

2. in means that the transformer will forward the start element event for users and that it
IMMEDIATELY starts to generate SAX events from the DOM tree. After that, it will continue to
forward the child elements of users and then all the other elements.

3. after means that the transformer starts to generate SAX events from the DOM tree just after it has
forwarded the end element users.

The ReadDOMSessionTransformer is a standalone component, you don't need to use it in combination
with the WriteDOMSessionTransformer.

That's it,

Sven Beauprez

1. Comments
add your comments

SQL Transformer (2.1 legacy document)

Page 7
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

	1 Comments

