Cocoon Forms: Binding Framework (2.1
legacy document)

Table of contents

00] 011101, 4 KSR

Cocoon Forms: Binding Framework (2.1 legacy document)

Table of contents

I 110 PSPPSR PPRPTRRN 3
2 What does abinding file 100K [TKE?.........c.o e 3
3 Quick reference of supported binding elemMENtS...........ccooiii i 3
4 Detailed reference of biNding ElemMENES...........coveiiiii e 4
I o Il A (2 [T (= 1o o R 4
4.2 TDICOMEEXI. ...ttt bt bbbt h ettt e bt bbb e e neas 5
Tl 1 0= [1= RSP 5
R oI 00 (= = = TP U USSP ST PPPOP 6
S 1 o 07 < PSSR 6
G 34 o =011 SRS 7
A7 TDISEL-EIITDULE. ..ottt ettt e et naenre 8
A8 TDIHEIEIE MOttt ettt b e b n e 8
e 1 0= g 00 (O 8
420 ThINSEIT-DEAN. ... e 9
411 T SIMPIE-TEPEALENcceeeciee ettt e et e et e e s ae e e beeaseeebeesreeenbeesneeereesnneans 9
R N = (V7= S o] o OSSR 9
B ol (] PSSP 10

Page 2

Cocoon Forms: Binding Framework (2.1 legacy document)

} This document was copied as is from the Cocoon 2.1 documentation, but has not yet been fully reviewed or moved to its new home. (

1. Intro

Likely you will want to use CFormsto "edit stuff", such as the properties of a bean or datafrom an
XML document (we'll simply use the term object to refer to either of these). This supposes that before
you show the form, you copy the data from the object to the form, and after the form has been
validated, you copy the data in the form back to the object. To avoid having to write actual code for
this, abinding framework is available.

The same illustration as in the introduction, but now extended with the binding, can be viewed here.

The basic definition of abinding is as follows (if you don't know Java, just ignore this):

public interface Binding { public void loadFormFromModel(Widget frmModel, Object
objModel); public void saveFormToModel(Widget frmModel, Object objModel); }

A binding can work with any object and can perform the binding in any possible way. Currently one
implementation is available, based on JXPath. JXPath allows to address data in both beans and XML
documents using X Path expressions, so this binding implementation can be used both with beans and
XML documents. The rest of this document will focus on this implementation.

The binding is configured using an XML file. This XML file contains elements in the fb namesspace
(Forms Binding):
http://apache.org/cocoon/forms/1.0#binding

2. What does a binding file look like?

To give you an idea of what abinding file looks like, below a very simple example is shown.

<fb:context xmIns:fb="http://apache.org/cocoon/forms/1.0#binding" path="/" > <fb:value
id="firstname" path="firstName"/> <fb:value id="lastname" path="lastName"/> <fb:value
id="email" path="email"/> </fb:context>

Theid attribute identifies the widget. The path attribute is the address of the items in the target object
(aJavabean or an XML document). The paths can be arbitrary JX Path expressions.

[Convention] Let's cal all elementsin the fb namespace "binding elements’. They all cause a
binding-related action to be performed.

The fb:context element changes the JXPath context to the specified path. The path expressions on the
binding elements occuring inside the context element will then be evaluated in this context, thus
relative to the path specified on the fb:context element.

The fb:value element is used to bind the value of awidget.

The binding framework can do much more than what is shown in the simple example above, so read
on for more meat.

3. Quick reference of supported binding elements

fb:* common settings for all | direction not applicable, see
bindings specific elements

Page 3

images/forms_schema_withbinding.png
http://jakarta.apache.org/commons/jxpath/index.html
http://www.w3.org/TR/xpath
http://jakarta.apache.org/commons/jxpath/apidocs/org/apache/commons/jxpath/JXPathContext.html

Cocoon Forms: Binding Framework (2.1 legacy document)

XML document

fb:context changes the JXPath path any
context
fb:value binds the value of id, path fb:on-update,
widgets fd:convertor
fb:aggregate binds aggregatefield id, path fb:value
widgets
fb:repeater binds repeater widgets | id, parent-path, fd:convertor
row-path, (deprecated),
unigue-row-id fb:on-bind,
(deprecated), fb:on-delete-row,
unique-path fb:on-insert-row,
(deprecated) fb:unique-row
fb:unique-row specifies unique fields | none fb:unique-field
for a repeater row
fb:unique-field specifies unique field id, path fd:convertor
for a repeater row
fb:set-attribute sets an attribute to a name, value none
fixed value
fb:delete-node deletes the current none none
context node
fb:insert-node insert a node in an src, xpath piece of XML that

should be inserted

Javascript

fb:insert-bean inserts an object in a addmethod, classname | none
list-type bean property | (optional)
fb:simple-repeater binds repeater widgets | id, any
parent-path,row-path,
clear-before-load,
delete-parent-if-empty
fb:javascript write binding logic in id, path fb:load-form,

fb:save-form

fb:custom

write binding logic in
Java

id, path, class,
builderclass,factorymeth

fb:config

4. Detailed reference of binding elements

4.1. fh:*/@direction

All Bindings share the ability to have the two distinct actions they provide (i.e. load and save) been
enabled or disabled by setting the attribute direction to one of the following values:

value load active? save active?
both(default) yes yes
load yes no
save no yes

The default value 'both’ for this attribute makes its use optional .

Page 4

Cocoon Forms: Binding Framework (2.1 legacy document)

NOTE: this setting replaces the @readonly attribute that was available only on selected bindings.

4.2. fb:context

Attributes:

e path
» direction (optional)

Child elements: any

The fb:context element changes the JXPath context to the specified path. The path expressions on the
binding elements occuring inside the context element will then be evaluated in this context, thus
relative to the path specified on the fb:context element.

The fb:context element is usually used in two occasions. First of all, it is used as the root element of
the binding file; because an XML file must always have one root element, and you will usually want to
perform more than one binding action.

Secondly, you use fb:context if you need to address multiple items having a common base path. On the
one hand, this saves you on typing and helps readability, and on the other hand, this improves the
performance of the binding. To illustrate this with an example, instead of doing this:

... <fb:value id="firstname" path="info/person/firstName"/> <fb:value id="lastname"
path="info/person/lastName"/> ...
it is better to do this:

... <fb:context path="info/person"> <fb:value id="firsthame" path="firstName"/> <fb:value
id="lastname" path="lastName"/> </fb:context> ...

4.3. fb:value

Attributes:

e id

e path

» direction (optional)

Child elements;

» fb:on-update (optional)
» fd:convertor (note the fd: namespace!) (optional)

This binding element is used to bind the value of awidget.

The fb:on-update element (which itself has no attributes), can contain one or more binding elements
that will be executed if the value of the widget has changed, and thus if the object has been updated.
For example, you could use the fb:set-attribute binding to set the value of an attribute changed to true.

The fd:convertor element has the same purpose as the fd:convertor element in the form definition: it
converts between objects (numbers, dates) and strings. Thisis mostly used when binding to XML
documents. Suppose you have defined a certain widget in aform definition to have a"date”" datatype,
and you want to bind to an XML document which contains the date in the XML Schema date
representation, then you could define a convertor as follows:

<fb:value id="birthday" path="person/birthday"> <fd:convertor datatype="date"
type="formatting"> <fd:patterns> <fd:pattern>yyyy-MM-dd</fd:pattern> </fd:patterns>

Page 5

Cocoon Forms: Binding Framework (2.1 legacy document)

</fd:convertor> </fb:value>

The datatype attribute on the fd:convertor element, which you don't have to specify in the form
definition, identifies the datatype to which the convertor belongs.

4.4. fb:aggr egate

Attributes:

e id

e path

o direction

Child elements;
o fh:value e ements

The fb:aggregate element is used to bind aggregatefields. Remember that aggregatefields are a special
type of widget that groups multiple field widgets and lets the user edit their values in one textbox,
splitting the values out to the different widgets on submit based on a regexp.

The fb:aggregate binding allows to bind the values of the individual field widgets out of which an
aggregatefield widget consists. The bindings for these field widgets are specified by the fb:value child
elements.

4.5. fb:repeater

Attributes:

id

parent-path

row-path

unique-row-id (deprecated)
unique-path (deprecated)
row-path-insert (optional)
direction (optional)

Child elements:

fb:identity

fd:convertor (deprecated)
fb:on-bind
fb:on-delete-row
fb:on-insert-row

NOTE: The attributes unique-row-id and unique-path and the child element fd:convertor are
deprecated in favor of <fb:unique-row>.

The fb:repeater binding binds repeaters based on the concept that each row in the repeater is identified
by one or more widgets uniquely. This unique identification is necessary to know which rowsin the
repeater correspond to which objects in the target collection. Newly added rows in the repeater can
(but should not) have anull value for this identification widget(s). Typically this'these widget(s) will
not editable, so in most casesit will be an output widget. If you don't need the identification widget(s)
at the client you don't need to add them to the template at al! Y ou only have to specify
direction="load" to this/these widget(s) then. This prevents the database 1Ds from getting to the client.

Theid attribute should contain the id of the repeater.

Page 6

Cocoon Forms: Binding Framework (2.1 legacy document)

The unique-row-id attribute specifies the id of the widget appearing on each repeater row that contains
the unique identification for that row. The unique-path attribute contains the corresponding path in the
object model.

NOTE: Both attributes are deprecated. Please use <fb:identity> instead.

The parent-path and row-path attributes can best be understood when described differently for XML
documents and Javabeans.

For XML documents: If you have an XML structure like this:

<things> <thing ... /> <thing ... /> </things>

then the parent-path attribute contains the path to the containing element ("things") and the row-path
attribute contains the path to the repeating element ("thing").

For beans: if your bean has a property "things' which is a Collection [or whathever JXPath supports as
lists], then the parent-path should simply contain "." and the row-path "things".

For both beans and XML documents there is an optional attribute row-path-insert which functions just
like the row-path but is used for the nested on-insert-row binding (see below). By default the
row-path-insert just takes the value of the row-path. By explicitely setting them different one can
exploit one of the following use cases:

* (1) use xpath-predicates in the row-path (note that you can not do that on the row-path-insert)
* (2) savetheinserted rowsin adifferent target-node of the backend model.

A child element fd:convertor can be used to specify the convertor to use in case the unique-id from the
model isa String (typical for XML documents) and the matching widget inside the repeater has a
different type.

NOTE: Thiselement is deprecated at that place asit is only used in combination with the deprecated
attributes unique-row-id and unique-path. Please use <fb:identity> instead.

The three remaining child elements fb:on-bind, fb:on-delete-row, fb:on-insert-row should contain the
binding elements that have to be executed in case of these three events.

The children of the fb:on-bind element are executed when an existing repeater row is updated, or after
inserting a new row. The JXPath context is automatically changed to match the current row.

The children of the fb:on-delete-row element are executed when a repeater row has been deleted. If
you want to delete the row, then put a <fb:delete-node/> in there. Alternatively, you could also use the
fb:set-attribute binding to set e.g. an attribute status to del eted.

The children of the fb:on-insert-row are executed in case a new row has been added to the repeater.
Typically thiswill contain afb:insert-node or a fb:insert-bean binding (see the descriptions of these
binding elements for more details).

The childrens of the fb:unique-row specify the widgets appearing on each repeater row for the unique
identification of that row. Each <fb:unique-field> child specifies one widget.
4.6. fb:identity

Child elements:
» fh:value widget-bindings that make up the identity

The <fb:identity> isjust a container for the child elements specifying the bindings of the identification

Page 7

Cocoon Forms: Binding Framework (2.1 legacy document)

widgets.

The nested elements just describe regular value bindings that can declare their own convertor if
needed.

NOTE: This'identity' binding is only active in the 'load' operation, so specifying the direction="save"
IS meaningless.

4.7. fb:set-attribute

Attributes:
e pame
e vaue

» direction (optional)
Child elements: none

Set the value of the attribute specified in the name attribute to the fixed string value specified in the
value attribute.

NOTE: Thishinding is never active in the 'load’ operation, so there is no need to specify the
direction="save" to protect you model from being changed during load.

4.8. fb:delete-node

Attributes:

» direction (optional)

Child elements. none

Deletes the current context node.

NOTE: Thisbinding is never active in the 'load’ operation, so there is no need to specify the
direction="save" to protect you model from being changed during load.

4.9. fb:insert-node

Attributes:

e src(optional)

« Xxpath (optional, only in combination with src)
» direction (optional)

Child elements: the piece of XML that should be inserted
This binding element can only be used when the target object isan XML document (DOM-tree).

It inserts the content of the fb:insert-node element as child of the current context element, or, if asrc
attribute is specified, retrieves the XML from the specified source and inserts that as child of the
current context element. In thislast case, you can also supply an xpath attribute to select a specific
element from the retrieved source.

NOTE: Thisbinding is never active in the 'load’ operation, so there is no need to specify the
direction="save" to protect you model from being changed during load.

Page 8

Cocoon Forms: Binding Framework (2.1 legacy document)

4.10. fb:insert-bean

Attributes:

« addmethod
» classname (optional)
» direction (optional)

This binding element can only be used when the target object is a Javabean.

If classname is specified it instantiates a new object of the type specified in the classname attribute and
calls the method specified in the addmethod attribute on the current context object with the newly
instantiated object as argument. If classnameis not specified it will just call the addmethod (e.g. if the
addmethod cresates the new instance itself).

NOTE: Thisbinding is never active in the 'load’ operation, so there is no need to specify the
direction="save" to protect you model from being changed during load.

4.11. fb:simple-repeater

Attributes:

id

parent-path (same asin fb:repeater)
row-path (same asin fb:repeater)
clear-before-load (default true)
delete-parent-if-empty (default false)
direction (optional)

Child elements: any
A simple repeater binding that will replace (i.e. delete then re-add al) its content.
Workswith XML or with JavaBeans if a JXPath factory is set on the binding context.

4.12. fb:javascript

Attributes:

e id

e path

» direction (optional)
Child e ements:

e fb:load-form

e fb:save-form

Specifies the binding using two JavaScript snippets, respectively for loading and saving the form.

Example:

<fb:javascript id="foo" path="@foo"> <fb:load-form> var appValue = jxpathPointer.getValue();
var formValue = doLoadConversion(appValue); widget.setValue(formValue); </fb:load-form>
<fb:save-form> var formValue = widget.getValue(); var appValue =
doSaveConversion(formValue); jxpathPointer.setValue(appValue); </fb:save-form>
</fb:javascript>

Page 9

Cocoon Forms: Binding Framework (2.1 legacy document)

This exampleisrather trivial and could be replaced by a simple <fb:value>, but it shows the available
variablesin the script:

» widget: the widget identified by the id attribute,
» jxpathPointer: the JXPath pointer corresponding to the path attribute,
» jxpathContext (not shown): the JXPath context corresponding to the path attribute

It's much more interesting to fill aselection list viafb:javascript as there is no built-in element for it at
the moment. Imagine your binding bean contains a collection field:

<fb:javascript id="selectionListWidget" path="objectCollection" direction="load">
<fb:load-form> var collection = jxpathPointer.getNode(); widget.setSelectionList(collection,
"id", "name") </fb:load-form> </fb:javascript>

NOTE:

» The <fb:save-form> snippet should be ommitted if the direction attribute is set to load.

» The <fb:load-form> snippet should be ommitted if the direction attribute is set to save.

» The @readonly attribute supported in early versions of this binding has been replaced by the
@direction attribute as supported now on all binding elements.

4.13. fb:custom

Attributes:

id (optional, if not provided the containing widget-context will be passed)
path (optional, if not provided "." is assumed)

direction (optional)

class (optional, if not present @builderclass and @factorymethod should be)
builderclass (optional)

factorymethod (optional)

Child elements:
» fb:config

Allows to specify your own user-defined binding to be written in Java. There are two essential modes
of operation reflected in two examples:
Example 1 - No configuration required:

<fb:custom id="custom" path="custom-value"
class="org.apache.cocoon.forms.samples.bindings.CustomValueWrapBinding"/>

This describes the classname of your user defined binding class.

Above imposes the following requirements:

1. thereisaclass CustomVaueWrapBinding available in the specified package
2. ithasadefault (i.e. no arguments) constructor
3. itisasubclass of org.apache.cocoon.forms.binding.AbstractCustomBinding

Thislast will impose the implementation of two methods:

» void doL oad(Widget widget, X PathContext context) throws BindingException;
» void doSave(Widget widget, JXPathContext context) throws BindingException;

where the available arguments are
» widget: the widget identified by theid attribute,

Page 10

Cocoon Forms: Binding Framework (2.1 legacy document)

« context: the JXPath context corresponding to the path attribute

Example 2 - with nested configuration:

<fb:custom id="config" path="config-value"
builderclass="org.apache.cocoon.forms.samples.bindings.CustomValueWrapBinding"
factorymethod="createBinding" > <fb:config prefixchar="[" suffixchar="]" /> </fb:custom>

The additional requirements to your user defined classes are now:

1. thereisabuilderclass CustomVaueWrapBinding class having a static factorymethod

2. that can (optionally) take an org.w3c.dom.Element holding it's configuration

3. and return an instance of your own user-defined binding which must be a non abstract subclass of
org.apache.cocoon.forms.binding.AbstractCustomBinding

1. Comments
add your comments

Page 11

	1 Comments

