Cocoon Forms: Template Transformer (2.1
legacy document)

Table of contents

00] 0111 01, 1K TP

Cocoon Forms: Template Transformer (2.1 legacy document)

Table of contents

I 1 1 0o [Tox £ o o O S 3
1.1 Where the forms transformer looks for the form instance object............ccooevireieieniiesiceee, 3
2 Forms transformer €l emMent FEfEIENCE........ocei it s 3
2.1 FEFOMMLEMIPIALE. ...t r e s r e re e reene s 3
2 811 o (o T SRS 4
pRe N L1V (o T = o 4
20 o] 11 1B 7= 1 o o o RSSO 5
2.5 Working with repeaters: ft:repeater-widget, ft:repeater-widget-label, ft:repeater-size................ 5

Page 2

Cocoon Forms: Template Transformer (2.1 legacy document)

} This document was copied as is from the Cocoon 2.1 documentation, but has not yet been fully reviewed or moved to its new home. (

1. Introduction

The FormsTemplateTransformer (simply "forms transformer” from now on) makes it possible to
define the layout for your form without having to write a separate XSLT for each form. If you prefer to
do everything with XSLT, you have also the option of using the FormsGenerator. In general we
recommend to use the forms transformer though.

The basic principleisthat the forms transformer will replace any <ft:widget id="xyz"/> elementsiit
encounters by the XML representation of the corresponding widgets. These ft:widget elements can be
embedded in e.g. aHTML layout. So after passing this template through the forms transformer you'll
end up with HTML with here and there a piece of XML describing awidget. This XML description
contains all state information of the widget: its value, validation errors, selection-list dataif any, and so
on. These widget-XML-descriptions will then typically be translated to HTML by an XSLT. This
XSLT isthen however not form-specific, asit simply needs to know how to translate individual
widgetsto HTML, and does not have to create the complete page layout. CForms contains just such an
XSLT so you don't have to write it yourself (except if you need to do heavy customisation). The image
below illustrates this process.

Forms Template Transformer illustration.

1.1. Wheretheformstransformer looksfor the form instance object

Each time the forms transformer encounters a ft:form-template el ement (see further on), it will try to
retrieve a CForms form instance object. It looks for it in the following locations:

1. if the ft:form-template element has alocation attribute, then the value of that attribute will be
evaluated as a JXPath expression. The result of this expression should be the form object.

2. if aparameter called "attribute-name” was supplied to the forms transformer in the sitemap, then
the forms transformer will try to find the form in the request attribute with that name. (request
attributes are a temporary storage area that exists for the duration of one request and is often used
to communicate objects between different sitemap components such as actions and transformers)

3. finaly, the forms transformer will look if a CForms form was supplied from a flowscript using the
key "CocoonFormslnstance”.

If the form is not found at any of these |ocations, an exception is thrown.

2. Formstransformer element reference

The elements to which the forms transformer reacts are al in the "ft" (Forms Template) namespace,
which isidentified by the following URI:
http://apache.org/cocoon/forms/1.0#template

These will generally be replaced by elementsin the "fi" (Forms Instance) namespace, which is
identified by the following URI:

http://apache.org/cocoon/forms/1.0#instance
2.1. ft:form-template

The ft:form-template element is always required; all other ft:* elements should occur inside a
ft:form-template element. As described earlier, when the forms transformer encounters the

Page 3

formsgenerator.html

Cocoon Forms: Template Transformer (2.1 legacy document)

ft:form-template element it will try to look up the form instance object.
ft:form-template elements may not be nested.

The ft:form-template will by default copy over all attributes appearing on it, except for one attribute
called "location”, and it will also take special care of the action attribute.

The action attribute can contain JXPath expressions. As with the X TemplateGenerator, these JX Path
expressions must be embedded inside #{ and }. By allowing the use of JXPath expressions, you can
embed dynamic data in the action attribute. One of the most common uses is to embed the continuation
id (if you're using flowscript), for example:

<ft:form-template action="#{$cocoon/continuation/id}.continue" ...

The following objects are available in the JXPath context via the cocoon object: continuation, requests,
session and parameters. The context of the JXPath expression is the map passed on from the flowscript

(if any).

The location attribute, if present, is used to retrieve the form instance object. The value of the location
attribute should be a JXPath expression, and is executed in the same context as the JX Path expressions
embedded in the action attribute.

For example, if your form object is stored in the session using the key "myform", then following
expression in the location attribute can be used to retrieveit:
<ft:form-template location="getAttribute($session, 'myform")" ...

If you'd like to retrieve the key "myform” from a parameters specified in the sitemap, say one called
"sessionattr”, then the following can be used:

<ft:form-template location="getAttribute($session, getParameter($parameters, 'sessionattr'))"

As mentioned before, ft:form-template elements cannot be nested, but you can have multiple
ft:form-template elements on one page. Together with the location attribute, this can be used to handle
multiple forms occuring on one template.

2.2. ft:widget

The ft:widget element is replaced by the forms transformer by the XML representation of a widget.
Which widget is specified by the id attribute. The ft:widget element can contain a fi:styling element
containing parameters to influence the styling process (the XSLT). The forms transformer will simply
copy the fi:styling element over to its output.

For example:

<ft:widget id="pass"> <fi:styling type="password"/> <ft:widget/>

will be replaced by:

<fi:field id="pass"> [... label, validation errors, ...] <fi:styling type="password"/> </fi:field>

Note: it is not recommended to use the older approach, i.e. without the fi:styling element, anymore,
since support for it will be dropped at some point in the future.

2.3. ft:widget-label

The ft:widget-label element will be replaced by the forms transformer with the label of a certain
widget (specified by an id attribute). The label will not be wrapped in another element.

Page 4

Cocoon Forms: Template Transformer (2.1 legacy document)

2.4. ft:continuation-id

The ft:continuation-id element will be replaced by the forms transformer by:
<fi:continuation-id> ID-of-the current-continuation </fi:continuation-id>
This might be useful for embedding the continuation ID in a hidden form field, for example.

2.5. Working with repeaters. ft:repeater-widget, ft:repeater-widget-label, ft:repeater-size

The ft:repeater-widget element is similar to the ft:widget element but provides special treatment for
repeaters. The content of the ft:repeater-widget element will be used as atemplate to generate each of
the rows of the repeater.

The ft:repeater-widget-label element is used to retrieve the label of awidget contained by arepeater. It
requires two attributes: id (identifying the repeater) and widget-id (identifying the widget in the
repeater).

The ft:repeater-size element inserts an element <fi:repeater-size id="..." size="..."/> containing the size
(number of rows) of the repeater.

For an example of how this all fits together, take alook at the samples included in the forms block.

1. Comments
add your comments

Page 5

	1 Comments

