Simple Forms (2.1 legacy document)

Table of contents

O] 1 1 1K




Simple Forms (2.1 legacy document)

Table of contents

I 1 1 0o [ Tox £ o o O S 3
2 FOMM HANAITNG. ..ttt b bbbttt e e et et e bbbt e ae e e e e ens 3
2.1 The COMMON GPPIOACK. ... .eeiuiietie ettt ee et e e re e s e et e e sae e e beesaeeebeesaeeeaseesseeenseesneeenseesneeenreas 3
2.2 The Session Framework apPrOaCh...........cuecieiicie et 4

Page 2



Simple Forms (2.1 legacy document)

} This document was copied as is from the Cocoon 2.1 documentation, but has not yet been fully reviewed or moved to its new home. (

1. Introduction

This chapter describes the (simple) form handling approach of the session framework.
Cocoon provides several approaches for form handling. This chapter explains one of them.

2. Form Handling

To get feedback or information from a user, forms are commonly used to present input field in the
browser. The usual approach for form handling in web application consists of two steps. The first
request presents the form to the user. This form initiates a second request that processes the form
values.

Cocoon supports this two step process, in addition Cocoon offers a single step approach.

2.1. The common approach

The common approach consists of two steps or of creating two resources. The first resource defines the
form: All input fields are declared, each gets a unique name. This form invokes the second resource.

This resource uses the session transformer to get the values provided by the user. The values are added
by the browser to the parameters of the request. So using the request context and getxml, the values can
be fetched.

If you want to create aform with two values - forename and surname of the user, you could generate a
base xml file with the information about this form:

<page> <form> <action>form-handling-page</action> <input name="forename" type="text"/>
<input name="surname" type="text"/> </form> </page>

A stylesheet can transform thisinto valid html. The action tag indicates that the "form-handling-page’
should be invoked by submitting the values.

The "form-handling-page” is a pipeline which is declared in the sitemap and uses the session
transformer. It could also read the following xml:

<page xmlIns:session="http://apache.org/cocoon/session/1.0"> <forename> <session:getxml
context="request" path="/parameter/forename"/> </forename> <surname> <session:getxml|
context="request" path="/parameter/surname"/> </surname> </page>

Asthe form values are appended to the request, getxml with specifying the path (which isthe
parameter name used for the input field) inserts the value submitted by the user into the xml stream.

If you want to write the information in a session context, you must wrap the whole xml inside a
setxml:

<page xmins:session="http://apache.org/cocoon/session/1.0"> <session:setxml
context="userdata" path="/user"> <forename> <session:getxml| context="request"
path="/parameter/forename"/> </forename> <surname> <session:getxml context="request"
path="/parameter/surname"/> </surname> </session:setxml> </page>

The user datais now stored inside the session context "userdata’, so the context has the following
content:

Page 3



Simple Forms (2.1 legacy document)

<user> <forename>Walter</forename> <surname>Walterson</surname> </user>

2.2. The Session Framework approach

The previous chapter showed the common approach for handling form values. It forces the user to
create two resources for asingle form handling.

Cocoon offers an advanced approach. Only one single resource is created. This resources contains the
information about the input fields used and in addition the information about where the submitted
values should be stored inside the session.

The example from the previous chapter could look like this:

<page xmins:session="http://apache.org/cocoon/session/1.0"> <session:form
name="myform"> <session:action>the-next-page</session:action> <session:content>
<session:inputxml name="forename" type="text" context="userdata" path="/user/forename"/>
<session:inputxml name="surname" type="text" context="userdata" path="/user/surname"/>
</session:content> </session:form> </page>

The form tag starts the form definition. The name attribute is required to distinct between different
forms on the same page. The action tag defines the url invoked by the form and the content tag
describes the content of the form: its input fields.

The inputxml tag tells Cocoon that the following request contains form values which should be stored
in the specified context under the given path. The session transformer transforms by removing the
namespace and the context attribute:

<page xmins:session="http://apache.org/cocoon/session/1.0"> <form
action="the-next-page"> <inputxml name="forename" type="text"/> <inputxml
name="surname" type="text"/> </form> </page>

A stylesheet can now generate the appropriate html (or any other format). The main differenceis, that
the resource invoked by submitting the values has not to care about the form as Cocoon maintains the
form handling. The only prerequisit is that a session for the current user and a session context to store
the information exists.

The Cocoon approach allows a very easy way of form handling where the resource which creates the
form also handles the form.

For editing values - if the context already contains information about the user - inputxml inserts the
current value inside the tag. So the xml streamed would after a second run would look like this:

<page xmlns:session="http://apache.org/cocoon/session/1.0"> <form
action="the-next-page"> <inputxml name="forename" type="text">Walter</inputxml>
<inputxml name="surname" type="text">Walterson</inputxml> </form> </page>

Like getxml it is aso possible to provide default values for the input field, if the context does not
contain any information:

<session:inputxml name="forename" context="userdata" path="/user/forename">
Defaultname </session:inputxml>

But as always there is one drawback with this approach as well, you have to put the
session-form-manager action somewhere so that it is called when the form values are submitted. As
this action does no harm, it can simply be put as the first action in your main sitemap:

<map:act type="session-form-manager"/>

1. Comments

Page 4



Simple Forms (2.1 legacy document)

add your comments

Page 5



	1 Comments

