XSP Internals (2.1 legacy document)

Table of contents

O] 011 01 1K

XSP Internals (2.1 legacy document)

Table of contents

1 0 U 4
2 Markup-t0-Code TranSfOrMELTON.cc.ererieiei ettt ss e 4
3 XSP aN0 COCOON GENEIGIOIS.eiueeteeiesiiesieeteaseesseeaesseesseessesseesseesessesssesnsessesssesssesnesssesssesesssesssens 4
3.1 SErVEr PageS GENEIELON PIOXYuuiiiuieiiiiieisieeessiesssiresssseesssseesssassssesssssesssssesssssessnssesssssessnsensssnes 4
3.2 XSP Generators and Compiled LanQUAaGES...........ccveeeieerieeieieesie e sieesieseesee e see e sseseesneenne s 5
4 The Programming LangUAQgE PrOCESSON.........c.cieeieriereerieeiesieesteesaesseesseeessseessessesseessessssssessesnsenns 6
4.1 Filenames and ENCOOING.........oouiririeiiriiiieieie sttt e e nnenn b nne s 6
4.2 LOBAING PrOQIaIMIS.......ccueeiieieietesteste sttt e ettt sse e se e e et e s e s e e ebenb e e bt ese e e e e e b e nrenneebenreens 6
4.3 UNIOBAING PrOGIaIMS.......coiiiieiiecie ettt te e e et sae e st e e e aaeebeesseeenbeesaeeenseesseeenseesseeenns 7
4.4 INSLANtiBLING PIrOGIrAMIS.....cuiiieiieiie ettt et e e s reeste et e s seesbeeseesaeesseensesneensesneesseensesnnens 7
4.5 SOUICE EXTENSIONS......uiitiiiieiieiesie sttt sttt s bbbt bt e st et et et et e naenbenrenns 7
R O Te (S o 0171 o S 7
4.7 SENG QUOLING. ...ttt ettt sttt sttt e st bbbt st e ae e e e e e b e seeebesbeebeebe e e e e e s e nbeneenbeneeas 8
5 COMPIHE LANGUAGES.......ceueeueeueeteieite sttt ettt sttt sse s se s ss e sesbeabesb e e seene e e et e nneabenbeenenneeneenes 8
5.1 ODJECE EXIENSIONS......cccuiiiiieiiie it sttt ettt et s ee et e e esa e e sse e sate e beeesteeaseesateebeeenseeaneesnseenreeannis 8
5.2 ObjeCt Program LOAOING.........cccueiuieiieiieieeitesee sttt ste et este e te e sreesse e e e sse e sesnsesseesseennesneesens 8
5.3 Program COMPIBLION.ccceieeieeieiie et et e st e e e e st te e s e te e e s e e seeseeseesseensesseesseenseaneensens 8
o3 o 0]] = £ 8
5.4.1 COMPIEN EITOFS....c.eiieieiieeeete ettt bbbttt et e e b bbb s 9
5.4.2 JAVA COMPITEIS.....ecieeieeeete ettt b et b e b bt eb e e bt eb e e ae e e et e b e nb e beebeeneene e 9
5.4.3 Other COMPIIEIS......cioiie et s e e s r e et e e s e e e teesaeeeseesaeeereans 9
5.5 Object Program UNlOadiNg............cceiieiiiieeiece ettt s re e sne s 9
5.6 The COCOON ClaSS LOBOETcciiuiriiriiriieieiesie sttt sttt sttt sae bbb 10
6 INLErPreted LANQUAGES.ccvecveeieeeeiteeieeiesteete e e ste e e sseesteeseesaeesseessesseeseeneesseenseensesseensesnenssennsenns 10
7 The Markup LangUagE PrOCESSOccuiuiiteriireeieeieseeste st sie st sesee st sse b s s e eneesnennesnas 11
7.1 MarKUD ENCOING.cveeieeiieeeiestest sttt b et b e e e e e nnennenre s 11
7.2 The LOQICSNEEL CIBSS......ccveecicee e et et e e e e e reeenes 12
7.3 NAMEA LOGICSNEELS.......oeeieicie ittt et e sae et e s e e ereeteeneesreeneeneenreenns 12
7.4 LOQICSNEEt COUE GENETBLOIS........ccueeveeeeesteeiesee st ete et e steeae s e s teeseeaseesteeeesseesseanaesseesseeneesneenseans 12
7.5 Markup Language DEfINITION.ccviriieieceseesie sttt e e eee e e sreenesneens 13
8 The XSP Markup LaNQUAGE........cc.ooiriiiiriieieeiee ettt st 13
8.1 MarKUP ENCOING.cuerieeiieieietest sttt b e bbbt e e e e e srenne e 14
8.2 DOCUMENT PrEOIOCESSING.veeteeiurieiteeereesteesteesteeeeeesseesseeesteesseeeseesseeeteesseeeseesseesnseesseeaseessns 14
8.3 DEPENENCY TIACKING. ... ecueeiteiieiteeiteeie et e st e e et e st e et e e ste et e sseesseesseeneesseesesseesseenseeneesseenseeneenns 14
8.4 XSP BUIltIN LOGICSNEELS.......ccvieiiieiecieeie ettt sttt e s e st nae e e s e eaeeneesreenennnens 14

Page 2

XSP Internals (2.1 legacy document)

9 The DOM-XSP Markup LanNQUABOE.ccceerueiiesiieieeeesieetesseesteesesseessesssesseesseessesseessesssesssessesnees 14
10 TNE Program GENEIGLOT.........cc.eeeeieierte ettt ettt bbb ie e e e e nb e s b e sbesbesae s e e e e e e e e nsenne e 15
10.1 Program REPOSITONYooueiuiriiriiriesieeiieeeee sttt sttt sttt st sb b sae e e e e s e s e beneesne e 15
Ol (oo =g T = (0= o] oo TR 16
11 NAMEA COMPONENES.eeeiireeitie it eeee e et et e st e st e e st e e e e sseeebeesaeeeseesseeanseesseeasseesseeenseessesanseesneeas 16
12 X SP Sitemap CONfiQUIALION..........cciuieieeieiie ettt st e e e e sae e e saeereeseesreene e 16

Page 3

XSP Internals (2.1 legacy document)

} This document was copied as is from the Cocoon 2.1 documentation, but has not yet been fully reviewed or moved to its new home. (

1. Index

This document presents Apache Cocoon's dynamic markup language framework and its use in
implementing X SP:

M arkup-to-code Transformation

XSP and Cocoon Generators

The Programming L anguage Processor
Compiled L anguages

Interpreted L anguages

The Markup L anguage Processor

The XSP Markup L anguage

The DOM-XSP Markup Langquage
The Program Generator

Named Components

X SP Sitemap Configuration

2. Markup-to-code Transfor mation

XSP is based on a general-purpose markup-to-code transformation engine built around three key
abstractions:

« Dynamic Markup Language. An namespace-qualified XML vocabulary providing code
embedding directives. An associated dynamic markup language processor transforms static
markup interspersed with code embedding directives into an equivalent source program string
written in atarget programming language. Upon execution, the generated program will rebuild the
original XML document as augmented by dynamic content emitted by the embedded code.

e Programming Language. A procedural language in which the dynamic markup processor
generates source code from an input XML document. Its associated programming language
processor is responsible for compiling, loading and executing the generated code within the
boundaries of its calling environment.

» Program Generator. A component that integrates markup and programming language processors
to build and execute markup-generating programs derived from XML documents. Beyond this
"glue" role, this component is responsible for persistently storing generated programs as well as
automatically rebuilding them should their source XML documents change on disk after program
generation.

Despite its particular usage for XSP, ProgramGenerator is not restricted to run in a server
pages environment.

3. XSP and Cocoon Generators

Asarule, XSP pages are trandated into Cocoon Generator's.

3.1. Server Pages Generator Proxy

Generator's created by X SP are invoked exclusively through ServerPagesGenerator, a proxy that uses
Cocoon's ProgramGenerator component to |oad pages and subsequently delegates actual SAX event
generation to them.

Page 4

../../apidocs/org/apache/cocoon/components/language/generator/ProgramGenerator.html
../../apidocs/org/apache/cocoon/generation/Generator.html
../../apidocs/org/apache/cocoon/generation/ServerPagesGenerator.html

XSP Internals (2.1 legacy document)

The terms Generator and ProgramGenerator are somewhat confusing. Here, Generator
refers to a Cocoon org.apache.cocoon.generation.Generator instance responsible for the
initial feeding of Cocoon's SAX pipeline. ProgramGenerator, on the other hand, refers to a
Cocoon component responsible for building and executing programs derived from XML
documents containing dynamic markup:
org.apache.cocoon.components.language.generator.ProgramGenerator

ServerPagesGenerator attempts to cope with anot unlikely possibility: premature termination of
proxied generator execution. "Premature” here means that the invoked generator may return after
starting one or more SAX events but without properly ending them.

While this not an expected scenario in "manual” SAX programming, server pages may well need to
terminate in the middle of document production:

<page> <title>For Your Eyes Only</title> <xsp:logic> if
(request.getParameter("pet").equals("Cheetah")) { <p> Hey, you're not Tarzan! </p> [***
Unclosed SAX events here! ***/ return; } </xsp:logic> <!-- Multi-racial Jane affair description
follows --> . . . </page>

The server pages generator proxy is defined in the sitemap as follows:

. .. <map:generator name="serverpages"
src="org.apache.cocoon.generation.ServerPagesGenerator"/> . . . <map:pipelines>
<map:pipeline> . . . <map:match pattern="/samples/*.xsp"> <map:generate
type="serverpages" src="../samples/documents/{1}.xsp"> <!-- <parameter
name="markup-language" value="xsp"/> <parameter name="programming-language"
value="java"/> --> </map:generate> <map:transform type="xslt"
src="../samples/stalemates/simple-page.xsl"/> <map:serialize type="html"
mime-type="text/html"/> </map:match> . . . </map:pipeline> </map:pipelines>

Note that parameters markup-language and programming-language default to xsp and java
respectively.

The complete X SP sitemap configuration is explained below.

3.2. XSP Generatorsand Compiled Languages

For the Java language (and other compiled languages like Rhino Javascript), X SP pages are trand ated
into classes extending AbstractServerPage . This class, in turn, extends ComposerGenerator , which
givesit access to commonly used components such as parser or cocoon itself (typically used as
EntityResolver for request URI'S).

AbstractServerPage implements org.apache.arch.Modifiable. Thisistested by ProgramGenerator to
assert whether the page has been invalidated as aresult of files it depends on having changed on disk.
Thesefiles are typically |ogicsheets and template files included by means of XInclude.

As of this writing, XInclude support is still unimplemented but will be based on Donald Ball's
(possibly extended) XincludeTransformer.

AbstractServerPage implements Modifiable by means of two static variables: dateCreated and
dependencies (a, possibly empty, array of File's pointing to logicsheets and other filesincluded during
the code generation stage).

AbstractServerPage a so provides a boolean hasContentChanged() method that is tested by
ServerPagesGenerator to assert whether dynamic content should not be regenerated for agiven
request. The default implementation unconditionally returns true, but can be overridden by X SP pages
based on their interpretation of the Cocoon request object. Thisis an experimental feature that will

Page 5

../../apidocs/org/apache/cocoon/components/language/generator/ProgramGenerator.html
http://www.mozilla.org/rhino/
../../apidocs/org/apache/cocoon/generation/AbstractServerPage.html
../../apidocs/org/apache/cocoon/generation/ComposerGenerator.html
mailto:balld.at.webslingerZ.com
../../apidocs/org/apache/cocoon/transformation/XIncludeTransformer.html

XSP Internals (2.1 legacy document)

become meaningful only when a SAX-event caching mechanism is added to Cocoon.

Finally, AbstractServerPage also provides a number of utility methods used to shorten the generation
of SAX events not requiring a namespace.

4. The Programming L anguage Pr ocessor

A Cocoon's ProgrammingL anguage processor exposes the following methods:

» load. Load aprogram from afile in a given directory, compiling it, if necessary, using agiven
encoding.

instantiate Create a new instance of a previously loaded program

unload Discard a previously loaded program performing any necessary cleanup
getSourceExtension Return the canonical source file extension used by this programming language
getCodeFormatter Return an (optional) instance of CodeFormatter used to beautify source code
written in this programming language

e quoteString Escape a string constant according to the programming language rules

A default implementation (AbstractProgramminglL anguage) is provided that extends
org.apache.arch.named.AbstractNamedComponent and retrieves language-rel ated sitemap parameters.

4.1. Filenames and Encoding
load and unload are passed afile/directory pair used to locate the program.

The baseDirectory should be an absolute pathname pointing to the top-level directory (also known as
repository) containing the program file.

The filename is a path, relative to the baseDirectory, pointing to the program file.

Source program filenames are built by concatenating the repository's baseDirectory name, the given
filename, the dot extension separator and the language-specific source or object extensions. The
cross-platform File.separator is used to ensure portability.

The filename must not contain any source or object extension. It may, though, contain
subdirectories depending on its position within the repository tree. Also, programming
languages must define a source extension even when their actual compilers/interpreters do
not enforce this. This is also true of object extensions for compiled languages. Furthermore,
the dot character is always used as the extension separator.

Finally, the (optional) encoding argument specifies the how the source program file contents are
encoded. This argument can be null to specify the platform's default encoding.

4.2. Loading Programs

Currently, programs returned by the load operation are "plain” Java Object's and are not required to
implement any interface or to extend any particular class.

This may change in the future so that the loaded program may be required to provide
dependency information (for automatic reloading) as well as source code information (for
debugging purposes).

Compiled programs attempt to locate the object program first. If found, it'sloaded in a
language-specific way and then returned to the calling environment. Failing that, the sourcefileis
located and the language-specific compiler isinvoked prior to actua program loading.

Page 6

../../apidocs/org/apache/cocoon/components/language/programming/ProgrammingLanguage.html
../../apidocs/org/apache/cocoon/components/language/programming/CodeFormatter.html
../../apidocs/org/apache/cocoon/components/language/programming/AbstractProgrammingLanguage.html

XSP Internals (2.1 legacy document)

Of course, it isan error for the source program file not to exist as a readable, regular operating system
file.

4.3. Unloading Programs

When a previously loaded program is no longer needed (or becomes "outdated" as explained below)
the language processor may need to perform cleanup actions, such as releasing memory or (in the case
of Java-like compiled languages) reinstantiating the class |oader.

L oaded programs may become outdated as a consequence of events external to the programming
language processor. In a server pages environment, thisis the result of the source XML document (or
any of thefilesit depends on) having changed on disk.

The base class AbstractProgrammingL anguage implements this method as final to delete the unloaded
source program file and delegate actual unloading to method doUnload.

Method doUnload is not defined as abstract in order to relieve interpreted subclasses from having to
implement an empty method when no cleanup is required.

Currently, only the program object is being passed to unload. It may be possible for some
interpreted languages to also require knowing what file the program was originally loaded
from. In this case, instantiation should take place through the program object itself, rather
than through the language processor (see Program Instantiation below)

4.4. Instantiating Programs

The program object returned by load must act as an factory capable of creating program instance
objects on demand.

Currently, instantiation is performed by the language processor given a previously loaded program.

Compiled programs use alanguage-specified class |oader to create a new program instance.

For compiled languages, it is possible to guarantee that a generated program implements a
given interface or extends a given class. For interpreted languages, though, it may be
necessary to pass an additional prototype object to load as to ensure that created instances
conform to a given Java type expected behavior.

4.5. Sour ce Extensions

All languages are required to return a source extension. This extension is used to locate source files for
subsequent interpretation or compilation.

4.6. Code Formatting

Programming languages may provide a CodeFormatter instance used by code generators to beautify
source code.

Interface CodeFormatter exposes a single method: formatCode. formatCode takes as arguments a
String containing the source code to be beautified and an encoding to be preserved during string
conversions.

Code formatters can be associated with a programming language by specifying a code-formatter
parameter in its sitemap configuration:

<parameter name="code-formatter"

Page 7

../../apidocs/org/apache/cocoon/components/language/programming/CodeFormatter.html

XSP Internals (2.1 legacy document)

value="org.apache.cocoon.components.language.programming.java.JstyleFormatter"/>
Currently, Jstyle is being used for Java source formatting. This open source project appears
to be stagnated and lacks advanced formatting options present in other (unfortunately, not
open-sourced) products like Jindent.

4.7. String Quoting

Method quoteString applies the programming language string constant escaping rules to its input
argument.

This method exists to assist markup language code generators in escaping Text XML nodes.

5. Compiled Languages

Compiled languages extend the ProgrammingL anguage abstraction by introducing the notions of
compilation and object extension.

A base implementation (CompiledProgramminglL anguage) is provided that adds the following
protected variables and abstract/overridable methods:

» Variable compilerClass. Used to create instances of the language's compiler.

» Variable deleteSources. Used to state whether intermediate source files should be deleted after
successful compilation

» Method getObjectExtension. Used to build object filenames

» Method loadProgram. Used to perform actual program load after source and (possibly) object files
have been located

» Method doUnload. Used to perform cleanup after program unloading

Object files are not required to be Java class files. It's up the the compiled programming
language processor to handle object files.

Compiled programming languages must specify their preferred compiler as a sitemap parameter:

<component-instance name="java"
class="org.apache.cocoon.components.language.programming.java.JavaLanguage™"> . . .
<parameter name="compiler"
value="org.apache.cocoon.components.language.programming.java.Jikes"/> . . .
</component-instance>

5.1. Object Extensions

All compiled languages are required to return a source extension. This extension is used to locate
object files for subsequent loading.

5.2. Object Program Loading

Concrete compiled programming languages must implement the abstract method |loadProgram to
actually load an object program resulting from compilation.

5.3. Program Compilation

Compilation is delegated to a sitemap-specified LanguageCompiler instance, as explained below.

5.4. Compilers

Page 8

http://astyle.sourceforge.net/
http://www.jindent.com/
../../apidocs/org/apache/cocoon/components/language/programming/CompiledProgrammingLanguage.html

XSP Internals (2.1 legacy document)

Interface LanguageCompiler defines the initialization and behavior for all compilers.

Methods exposed by thisinterface are:

setFile. Used to specify the source file to be compiled. This should be an absolute filename
setSource. Used to specify the directory where dependent source files (if any) are stored
setDestination. Used to specify the directory where the generated object files should be placed
setClasspath. Used to specify the class loading path used by the compiler. While thisoption is
named after Java's classpath system variable, its semantics are language-independent

» setEncoding. Used to specify the encoding used by the input source file

» compile. The compiler's workhorse (boolean)

» getErrors. Used to retrieve alist of compilation error messages should compilation fail

5.4.1. Compiler Errors

Error message producer by the compiler must be collected and massaged by the LanguageCompiler in
order to wrap each of them as a CompilerError instance.

Class CompilerError exposes the following methods:

getFile. Returns the program filename originating the error

isError. Asserts whether the error is a server error or smply awarning

getStartLine. Returns the starting line of the offending code

getStartColumn. Returns the starting column (within the starting line) of the offending code
getEndLine. Returns the ending line of the offending code

getEndColumn. Returns the ending column (within the ending line) of the offending code
getMessage. Returns the actual error message text

5.4.2. Java Compilers

For the Java language, 2 pluggable compilers are available:

» Javac. A wrapper to Sun's builtin compiler
o Jikes. A wrapper to IBM's Jikes compiler

Both of these compilers are based on AbstractJavaCompiler.

5.4.3. Other Compilers

Since Rhino Javascript provides its own, only compiler (jsc), class JavascriptLanguage doesn't use the
compiler classinitialized by CompiledProgrammingL anguage.

5.5. Object Program Unloading

CompiledProgrammingL anguage extends the default implementation provided by
AbstractProgrammingL anguage by deleting the object program file and delegating actual unloading to
the doUnload method.

Method doUnload provides an empty default implementation that can be overridden by derived
compiled languages should unloading cleanup be actually required.

For Java-based compiled languages (i.e., those using class files as their object format, unloading
implies reinstantiating their class |oader such that it "forgets" about previously loaded classes thus
becoming able to refresh class files updates since their last oad.

Page 9

../../apidocs/org/apache/cocoon/components/language/programming/LanguageCompiler.html
../../apidocs/org/apache/cocoon/components/language/programming/CompilerError.html
../../apidocs/org/apache/cocoon/components/language/programming/java/AbstractJavaCompiler.html
http://www.mozilla.org/rhino/

XSP Internals (2.1 legacy document)

Thisis acommonly-used workaround for the (somewhat buggy) standard Java class loader, which
doesn't provide for an explicit method for reloading class files.

5.6. The Cocoon Class L oader

To circumvent standard Java class |oaders limitation, Cocoon provides a simple customized class
loader (RepositoryClassl oader) that features:

» A directory-based extensible classpath that can grow at execution time
» Classreloading by means of reinstantiation

RepositoryClassL oader extends java.lang.ClassL oader adding an addDirectory method that adds the
directory pointed to by its String argument to itslocal classpath.

Access to protected RepositoryClassL oader classis proxied through interface Classl oaderM anager.
This interface exposes the following methods:

» addDirectory. Passed to the proxied RepositoryClassL oader
» |loadClass. Passed to the proxied RepositortyClassL oader
» reinstantiate. Used to discard the previous class loader and create a new one

Class Classl oaderM anagerlmpl implements ClassL oaderManager in a singleton-like fashion that
ensures that only one instance of this class |oader exists, thus ensuring the reinstantiation mechanism
works properly.

The class loader can be specified in the sitemap on a per-language basis:

<component-instance name="java"
class="org.apache.cocoon.components.language.programming.java.JavaLanguage™> . . .
<parameter name="class-loader"
value="org.apache.cocoon.components.classloader.ClassLoaderManagerimpl"/>
</component-instance>

Alternatively, the class loader can be specified in the sitemap as a global component:

<component role="class-loader"
class="org.apache.cocoon.components.classloader.ClassLoaderManagerimpl"/>

6. Interpreted Languages

Interpreted languages for which a Java-based interpreter exists are supported by means of IBM's
outstanding Bean Scripting Framework (BSF).

Currently, BSF supports:

MozillaRhino

NetRexx

Jacl

JPython

VBScript (Win32 only)

JScript (Win32 only)

PerlScript (Win32 only)

BML (Not applicable to server pages)
LotusXSL (Not applicable to server pages)

Interpreted language support is still unimplemented!
While BSF is extremely easy to use and very stable, there's still a challenge in writing

Page 10

../../apidocs/org/apache/cocoon/components/classloader/RepositoryClassLoader.html
../../apidocs/org/apache/cocoon/components/classloader/ClassLoaderManager.html
../../apidocs/org/apache/cocoon/components/classloader/ClassLoaderManagerImpl.html
http://www.alphaworks.ibm.com/tech/bsf

XSP Internals (2.1 legacy document)

code-generation logicsheets for each of this languages; this task requires familiarity with XSP
internals, XSLT and, above all, the programming language at hand...Despite being supported
by BSF, Rhino Javascript is separately supported by Cocoon as a compiled language in
order to take advantage of automatic class reloading and persistent class file storage.Since
ProgramGenerator clients will typically require that program instances implement a given
interface or extend a given class, method instantiate in interface ProgrammingLanguage may
need to be augmented with a prototype interface that can be used by each language
processor to ensure that the program instance can act as a Java object of the given type.

7. The Markup L anguage Processor

A Cocoon's Markupl anguage processor exposes the following methods:

» getEncoding. Return the encoding to be used in program generation and compilation or null to use
the platform's default encoding

» generateCode. Given aDOM Document written in a given markup language, generate an
equivalent program in a given programming language)

A base markup language processor implementation is provided in class AbstractM arkupl anguage.
This class extends org.apache.arch.named.AbstractNamedComponent to set the markup language's
associated namespace using the following required parameters.

» prefix. The markup language's namespace prefix

« uri. The markup language's namespace URI

<component-instance name="xsp"
class="org.apache.cocoon.components.language.markup.xsp.XSPMarkupLanguage">
<parameter name="prefix" value="xsp"/> <parameter name="uri"
value="http://apache.org/xsp"/> </component-instance>

AbstractM arkupL anguage adds a number of abstract/overridable methods that must be implemented
by concrete markup language processors:

» preprocessDocument. Augment the input DOM Document to prepare it for smpler, faster
logi csheet-based code generation

» getLogicsheets. Return the list of logicsheets declared in the input document according to the
syntax of the markup language at hand

» addDependency. Add a dependency on an external file. Thisis used to inform the concrete markup
language processor about XML documents included by means of XInclude as well as any
intervening logicsheet

AbstractMarkupLanguage is currently tied to logicsheets as the only means of generating
source code. While logicsheets provide a very powerful means for code generation, good
design dictates that the actual code generation mechanism should be decoupled from the
dynamic markup language abstraction.The current code generation strategy is DOM-based.
In principle, this is adequate because document preprocessing may need random access to
document nodes. Code generation is being reconsidered, however, to overcome this and
make it possible to reuse Cocoon's SAX-based filtering pipeline.

7.1. Markup Encoding

All markup languages must provide away to declare the XML document's encoding so that it is
preserved during code generation, beautifying and compilation.

Thisisrequired for proper i18n support, where the default encoding usually replaces "exotic"
characters with question marks.

Page 11

../../apidocs/org/apache/cocoon/components/language/markup/MarkupLanguage.html
../../apidocs/org/apache/cocoon/components/language/markup/AbstractMarkupLanguage.html

XSP Internals (2.1 legacy document)

Ideally, it should be possible to determine the source XML document's encoding from its
declaring <?xml?> processing instruction. Unfortunately, XML parsers (both DOM and SAX)
don't seem to provide access to it, thus forcing server pages authors to redundantly specify it.

7.2. The L ogicshest class

A logicsheet isan XML filter used to trandate user-defined dynamic markup into equivalent code
embedding directives for a given markup language.

Logicsheetslie at the core of XSP's promise to separate logic from content and presentation: they
make dynamic content generation capabilities available to content authors not familiar with (and not
interested in) programming.

For a detailed description of logicsheets, see L ogicsheet Concepts.

Logicsheets are represented in class Logicsheet. This class exposes the following methods:

» setlnputSource. Set the InputSource pointing to the XSLT stylesheet to be used for dynamic tag
transformation
« apply. Apply the stylesheet to a given document

L ogicsheet takes care of preserving all namespaces defined in the input document. Thisis necessary
when multiple logicsheets are applied and multiple namespaces are used in the input document.

Currently, Logicsheet is a concrete class. It should be redefined as an interface in order to
decouple it from the use of XSLT stylesheets. Again, while stylesheets are the "obvious" way
to implement logicsheets, a user-supplied XML filter may also be used in some cases. The
current implementation uses an ugly hack where a Xalan stylesheet processor is used to
perform the transformation without an intervening stylesheet processor wrapping abstraction.

7.3. Named L ogicsheets

Asexplained in Logicsheet Concepts, logicsheets are typically associated with a single object type
whose methods it wraps to make them available as markup commands.

Markup commands related to a given object type are grouped under a single namespace.

Class NamedL ogicsheet extends L ogicsheet to associate it with a namespace. This class exposes the
following additional methods:

setPrefix. To set the logicsheet's namespace prefix
getPrefix. To retrieve the logicsheet's namespace prefix
setUri. To set the logicsheet's namespace URI

getUri. To retrieve the logicsheet's namespace URI

Named logicsheets are used as builtin logicsheets by AbstractMarkupL anguage to prel oad |ogicsheets
and make them accessible to dynamic XML documents without explicit declaration.

This feature relieves page authors from the need to explicitly declare commonly used logicsheetsin
their documents. Builtin logicsheets are automatically applied if the document declares their same
namespace URI.

The current AbstractMarkupLanguage implementation wrongly binds named logicsheets
based on their namespace prefix instead of their URI!

7.4. Logicsheet Code Generators

Page 12

logicsheet-concepts.html
../../apidocs/org/apache/cocoon/components/language/markup/Logicsheet.html
logicsheet-concepts.html#logicsheet-object
../../apidocs/org/apache/cocoon/components/language/markup/NamedLogicsheet.html

XSP Internals (2.1 legacy document)

L ogicsheets trandlate dynamic tags to equivalent code-embedding directives expressed in the markup
language at hand. They do not, however, actually emit the final source code program.

Code generation as such (i.e., the final production of a string containing a source program written in a
programming language) is the responsibility of class L ogicsheetCodeGenerator.

Class L ogicsheetCodeGenerator exposes the following methods:

» addLogicsheet. Add alogicsheet to the generator's logicsheet list. Logicsheets are applied in the
order of their addition.

» generateCode. Return a string containing a source program resulting from successively applying
added |ogicshesets.

Though "regular” 1ogicsheets as such do not emit source code, L ogicsheetCodeGenerator expects its
last stylesheet to produce a single element containing only atext node.

Thisfinal, programming language-specific logicsheet is responsible for actually expanding
code-embedding directives into source code.

For each supported target programming language, markup languages must provide a core logicsheet.

LogicsheetCodeGenerator is currently implemented as a class. It should be defined as an
interface in order to the decouple the code generator abstraction from its logicsheet-based
implementation. This would allow for alternative code-generation strategies to be plugged.

7.5. Markup Language Definition

Markup languages are defined in the sitemap as follows:

<component-type name="markup-language"> <component-instance name="xsp"
class="org.apache.cocoon.components.language.markup.xsp.XSPMarkupLanguage">
<parameter name="prefix" value="xsp"/> <parameter name="uri"
value="http://apache.org/xsp"/> <target-language name="java"> <parameter
name="core-logicsheet"
value="resource://org/apache/cocoon/components/language/markup/xsp/java/xsp.xsl"/>
<builtin-logicsheet> <parameter name="prefix" value="xsp-request"/> <parameter name="uri"
value="http://apache.org/xsp/request/2.0"/> <parameter name="href"
value="resource://org/apache/cocoon/components/language/markup/xsp/java/request.xsl"/>
</builtin-logicsheet> <builtin-logicsheet> <parameter name="prefix" value="xsp-response"/>
<parameter name="uri" value="http://apache.org/xsp/response/2.0"/> <parameter
name="href"
value="resource://org/apache/cocoon/components/language/markup/xsp/java/request.xsl"/>
</builtin-logicsheet> </target-language> </component-instance> </component-type>

Here, the markup language prefix and uri are defined together with one or more supported
programming languages.

For each supported programming language, a corresponding core |logicsheet is defined asa URL
pointing to its code-generation stylesheet.

Optionally, each supported programming language may define one or more namespace-mapped builtin
logicsheets.

8. The XSP Markup Language

So far, programming and markup languages have been described in general, without explicitly

Page 13

../../apidocs/org/apache/cocoon/components/language/markup/LogicsheetCodeGenerator.html

XSP Internals (2.1 legacy document)

referring to the X SP language.

This section describes how the above described framework is used to implement XSP in particular. For
a description of logicsheet authoring requirements for XSP in Java, see XSL T L ogicsheets and XSP
for Java.

The XSP syntax is being revised to allow for the omission of the root <xsp:page> element.
This is convenient for the (typical) case in which all logic has been conveniently placed in
logicsheets so that XSP pages do not need to embed any code. In this case, there should be
no need for the <xsp:page> element.

8.1. Markup Encoding

Method getEncoding is implemented by class X SPM arkupl anguage by retrieving the attribute named
encoding in the root <xsp:page> element.

In absence of a <xsp:page> root element, the encoding will be retrieved from an attribute
named xsp:encoding present in the "user" root element.

8.2. Document Preprocessing

XSPMarkupL anguage preprocesses its input document by:

Setting the root element file-name attribute to the base filename of its input source.

Setting the root element file-path attribute to the base directory name of its input source.

Setting the root element creation-date attribute to the current system time

Escaping text nodes according to the rules dictated by the target programming language. This
excludes text nodes enclosed in <xsp:logic> and <xsp:expr> elements, as they are to be output as
code.

A feature to be added is collecting all text nodes under the document's root element and
replacing them by references to their relative index position. This will allow for the generation
of contentHandler.characters method calls that reference char arrays instead of constant
String's. In addition to saving execution time, this will result in decreased program size
because common substrings can be output by "reusing” their containing character arrays
along with their corresponding offsets and lengths.

8.3. Dependency Tracking

File dependencies passed to X SPMarkupL anguage by its AbstractM arkupL anguage superclass are
stored in top-level <xsp:dependency> elements.

These elements are used by X SP code-generation logicsheets to popul ate the File array defined by the
generated classes AbstractServerPage superclass.
8.4. XSP Builtin L ogicsheets

XSP for Java currently provides only 2 builtin logicsheets: request and response, associated with their
corresponding Cocoon counterparts.

A mechanism is needed for Cocoon to pass additional objects to XSP pages. In particular, for
the servlet execution environment, access to servlet objects is a must.

9. The DOM-XSP Markup Language
The new, SAX-based XSP version for Cocoon is not backwards compatible with its DOM-based

Page 14

logicsheet-concepts.html#java-logicsheets
logicsheet-concepts.html#java-logicsheets
../../apidocs/org/apache/cocoon/components/language/markup/xsp/XSPMarkupLanguage.html

XSP Internals (2.1 legacy document)

former salf.

In order to protect the existing DOM-based X SP code base, a"new" markup language will be added
that simply wraps existing XSP version 1 pages, postprocessing their generated documents to convert
them into SAX events.

While this solution implies additional overhead, it provides a simple path for migrating existing X SP
pages.

In addition to this straight-forward mechanism, the new, SAX-based X SP version will overload the
xspEXxpr method to accept as argument a Node expression and transform it to equivalent SAX events.

For the long run, though, developers are strongly encouraged to replace their "legacy” DOM pages and
classes with equivalent, faster SAX counterparts.
10. The Program Gener ator

The ProgramGenerator interface exposes a single load method that takes as arguments a File pointing
to asource XML document, as well as a markup and programming language name pair.

This method is responsible for locating, loading and instantiating a program derived from the given
source document. Failing this, the program is generated and stored in an external, persistent repository.

Once instantiated, the program is kept in an in-memory cache for speeding up subsequent requests.

For each request, the source XML document is checked for changes and the program instanceis
gueried for dependency changes so that the program can be automatically regenerated and rel oaded if
needed. This default behavior can be disabled by means of a sitemap parameter.

Currently, the program instance (as opposed to the program object itself) is queried for
invalidating changes. This should change as a consequence of defining a separate Program
abstraction as part of the upcoming addition of debugging support.

A default implementation of ProgramGenerator is provided that uses a FilesystemStore as repository:
ProgramGeneratorimpl.

10.1. Program Repository

FilesystemStore is an implementation of the Store interface that uses a filesystem, hierarchical
directory as its persistence mechanism.

FilesystemStore implements Store directly. A higher-level interface (PersistentStore) should
be defined to accommodate other sensible persistent storage mechanisms such as relational
databases or object databases like Ozone.

FilesystemStore expects the String representation of its key's to be filenames relative to its directory
root.

Objects returned by FilesystemStore's get method are Fil€'s pointing to their corresponding entries (or
null if their associated file doesn't exit).

FilesystemStore stores Java objects according to the following rules:

» null values generate empty directories
e String values are dumped to text files
e All other Object's are serialized

Page 15

../../apidocs/org/apache/cocoon/components/language/generator/ProgramGenerator.html
../../apidocs/org/apache/cocoon/components/store/FilesystemStore.html
../../apidocs/org/apache/cocoon/components/language/generator/ProgramGeneratorImpl.html
http://www.ozone-db.org/

XSP Internals (2.1 legacy document)

10.2. Program Reloading

Unless the auto-reload sitemap option isin effect, ProgramGeneratorlmpl will check whether program
instances implement interface Modifiable in order to assert whether they should be regenerated and
rel oaded.

Method load uses its markupL anguageName and programmingL anguage arguments to retrieve the
corresponding NamedComponent instances.

In server pages mode, these parameters are set by the calling ServerPagesGenerator from parameters
passed via the sitemap <process> section.

The appropriate MarkupL anguage and ProgrammingLanguage instances are used to generate and |oad
aprogram for which an instance is created and then returned to the calling environment.

11. Named Components

In order to support pluggable markup and programming languages, a new abstraction was added to
Cocoon's arch core interfaces: org.apache.arch.named.NamedComponent.

Interface NamedComponent is simply an extension to org.apache.arch.Component that exposes a
getName() method.

NamedComponent's belong to a collection of components sharing the same Javatype and are
individually identified by a name unique within each collection.

A org.apache.arch.named.NamedComponentManager is a component responsible for storing and
locating NamedComponent instances. This interface exposes the following methods:

» getComponent. Retrieve a NamedComponent instance given its type and name.
e QetTypes. Return an Enumeration of all known NamedComponent types.
« getComponents. Return an Enumeration of all NamedComponents within a given type.

A default implementation is provided for thisinterface:
org.apache.arch.named.NamedComponentM anagerimpl.

Class org.apache.arch.named.AbstractNamedComponent provides a base implementation for
NamedComponent that extends org.apache.arch.Configurable. This class exposes the following
methods:

» setConfiguration. Retrieve named-component sitemap configuration values converting parameter
name/value pairs into Parameters passed to subclasses for easier initiaization

» setParameters. An empty method to be overridden by subclasses for parameter-based initialization

» setAdditiona Configuration. An empty method to be overridden by subclasses when
parameter-based initialization is not sufficient because there are nested configuration elementsin
the corresponding sitemap entry

» getRequiredParameter. A static convenience method that returns a named parameter as a String
throwing an Illegal ArgumentException if the parameter was not specified in the sitemap
configuration

12. XSP Sitemap Configuration
The sitemap configuration shown here is likely to change in the near future.
A (rather verbose) sitemap definition for XSP follows:

Page 16

XSP Internals (2.1 legacy document)

<component role="factory" class="org.apache.avalon.NamedComponentManagerimpl">
<component-type name="programming-language"> <component-instance name="java"
class="org.apache.cocoon.components.language.programming.java.JavaLanguage">
<parameter name="compiler"
value="org.apache.cocoon.components.language.programming.java.Javac"/> <parameter
name="code-formatter"
value="org.apache.cocoon.components.language.programming.java.JstyleFormatter"/>
<parameter name="class-loader"
value="org.apache.cocoon.components.classloader.ClassLoaderManagerimpl"/> <parameter
name="delete-sources" value="false"/> </component-instance> </component-type>
<component-type name="markup-language"> <component-instance name="xsp"
class="org.apache.cocoon.components.language.markup.xsp.XSPMarkupLanguage">
<parameter name="prefix" value="xsp"/> <parameter name="uri"
value="http://apache.org/xsp"/> <target-language name="java"> <parameter
name="core-logicsheet"
value="resource://org/apache/cocoon/components/language/markup/xsp/java/xsp.xsl"/>
<builtin-logicsheet> <parameter name="prefix" value="xsp-request"/> <parameter name="uri"
value="http://apache.org/xsp/request/2.0"/> <parameter name="href"
value="resource://org/apache/cocoon/components/language/markup/xsp/java/request.xsl"/>
</builtin-logicsheet> <builtin-logicsheet> <parameter name="prefix" value="xsp-response"/>
<parameter name="uri" value="http://apache.org/xsp/response/2.0"/> <parameter
name="href"
value="resource://org/apache/cocoon/components/language/markup/xsp/java/request.xsl"/>
</builtin-logicsheet> </target-language> </component-instance> </component-type>
</component> <component role="program-generator"
class="org.apache.cocoon.components.language.generator.ProgramGeneratorimpl">
<parameter name="repository" value="/tmp/repository"/> <parameter name="auto-reload"
value="true"/> </component> <generator name="serverpages"
class="org.apache.cocoon.generation.ServerPagesGenerator"/> <!-- <component
role="class-loader"
class="org.apache.cocoon.components.classloader.ClassLoaderManagerimpl" /> -->
<sitemap> <partition> <process uri="simple-page.xsp"
source="../samples/documents/simple-page.xsp"> <generator name="serverpages"> <!--
<parameter name="markup-language" value="xsp"/> <parameter
name="programming-language" value="java"/> --> </generator> <filter name="xslt">
<parameter name="stylesheet" value="../samples/documents/simple-page.xsl'/> </filter>
<serializer name="html|"> <parameter name="contentType" value="text/html"/> </serializer>
</process> </partition> </sitemap>

1. Comments
add your comments

Page 17

	1 Comments

