
Portal Syndication with Web Services and
Cocoon (2.1 legacy document)

Table of contents

1 Comments..7

Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

Table of contents

1 What Is Web Syndication?.. 3

2 Going beyond RSS with Web Services...3

2.1 Web Services Experience Language (WSXL)..3

2.2 Web Services Inspection Language (WSIL).. 3

2.3 Web Services for Remote Portals (WSRP)...3

2.4 Web Services for Interactive Applications... 4

3 Apache Cocoon... 4

4 Web Services Proxy to the rescue... 5

5 Conclusion...6

5.1 Have more questions?...7

Portal Syndication with Web Services and Cocoon (2.1 legacy document)

Page 2
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

Warning:
This document was copied as is from the Cocoon 2.1 documentation, but has not yet been fully reviewed or moved to its new home.

1. What Is Web Syndication?

Web Site Syndication has gained popularity as more and more web sites cross reference each other,
not only by a single hyperlink, but also by embedding parts of their content. The idea was pioneered by
Netscape with their Rich Site Summary (RSS) (http://www.oasis-open.org/cover/rss.html) XML
format. RSS was developed in early 1999 to populate Netscape's My Netscape portal with external
newsfeeds ("channels"). Since then RSS has taken on a life of its own and now thousands of Web sites
use RSS as a "what's new" mechanism to drive traffic their way.

The current RSS 1.0 standard is an application of Resource Description Framework (RDF)
(http://www.w3.org/TR/rdf-schema/). RDF is a framework for describing and interchanging metadata.
The RDF framework is extensible and allows adding new types of entities. It also gives meaning to
resources to enable automated processing of Web resources.

RSS is unarguably an example of an organically grown and widely accepted standard. For long it was
not endorsed by any of the popular standards committees. Even so it quickly became popular and
found a large number of creative uses. Lately though it has reached its limits. There is a demand for
more advanced portal syndication which RSS cannot satisfy.

2. Going beyond RSS with Web Services

Latest generation web portals demand more than simply posting cross linked news stories from RSS.
Embedding and personalizing rich content and behavior from remote portals is becoming necessity.
Limited success has been achieved through complex and sophisticated backend integration via
proprietary or Web Services compliant protocols. Recognizing the growing demand, influential
organizations have attempted to develop new languages such as:

2.1. Web Services Experience Language (WSXL)

(http://www.webservices.org/index.php/article/articleview/345/)

"WSXL is a Web services centric component model for interactive Web applications. WSXL is designed
to achieve two main goals: enable businesses to distribute Web applications through multiple revenue
channels and enable new services or applications to be created by leveraging existing applications
across the Web."

2.2. Web Services Inspection Language (WSIL)

(http://www.webservices.org/index.php/article/articleview/85/)

"The specification allows a Web services provider to publish a WS-Inspection (WSIL) document which
lists the services on offer and their corresponding WSDL (Web services description language) files.
The convention is that the WSIL document should be called "inspection.wsil" and be located at a
common entry point to the web site. This paves the way for future Web services "crawlers" to locate
and parse WSIL documents for Web service search engines."

2.3. Web Services for Remote Portals (WSRP)

Portal Syndication with Web Services and Cocoon (2.1 legacy document)

Page 3
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

http://www.oasis-open.org/cover/rss.html
http://www.w3.org/TR/rdf-schema/
http://www.webservices.org/index.php/article/articleview/345/
http://www.webservices.org/index.php/article/articleview/85/

(http://www.oasis-open.org/committees/wsrp/)

"Defining an XML and Web services standard that will allow the plug-n-play of visual, user-facing
Web services with portals or other intermediary Web applications"

2.4. Web Services for Interactive Applications

(http://www.oasis-open.org/committees/wsia/)

"Create an XML and web services centric framework for interactive web applications. The designs
must achieve two main goals: enable businesses to distribute web applications through multiple
revenue channels, and enable new services or applications to be created by leveraging existing
applications across the Web."

While these efforts are certainly worthwhile and promising, it will most likely take years before they
pass the filters of real life use before they can claim widespread adoption. All of them ask for a thick
infrastructure layer to support implementations. While possible, it is unlikely that mainstream
deployment will be achieved instantly.

Not all is lost though. Fortunately, there is way to satisfy a large portion of the syndication
requirements by applying already established technologies and tools. We will illustrate the architecture
of a possible solution using an open source framework for XML Publishing - Apache Cocoon.

3. Apache Cocoon

(http://cocoon.apache.org/index.html)

"Apache Cocoon is an XML publishing framework that raises the usage of XML and XSLT
technologies for server applications to a new level. Designed for performance and scalability around
pipelined SAX processing, Cocoon offers a flexible environment based on a separation of concerns
between content, logic and style. To top this all off, Cocoon's centralized configuration system and
sophisticated caching help you to create, deploy and maintain rock-solid XML server applications".

First, let's describe a typical use case scenario: User logs in to a familiar portal and happily surfs about.
At some point the user clicks on a link which leads to a strange page. It has the portal logo, even shows
the same login id but still looks very different and unfriendly ... After some time and frustration the
user gets used to switching back and forth between the two faces of the portal ... while looking for
another provider which offers both services in a coherent graphical interface.

For those who have never had similar experience, we will give a popular example. Yahoo! Autos
(http://autos.yahoo.com/finance.html?refsrc=autos/insurance) offers an easy to use interactive catalog
of cars. However when it comes to insuring an automobile, applying for a loan or buying a car, the
web site hyperlinks to a co-branded page of another company. For example Lending Tree
(https://www.lendingtree.com/newauto/.....) will show Yahoo! Autos logo at the top of the screen,
however the rest of the page looks very different than any other Yahoo! page. All the personalization
spoils that a Yahoo! user enjoys are lost as soon as the application for a loan begins. Not only the
colors and layout are different. A login session with Yahoo! does not carry over to Lending Tree. On
top of that a pop-up window appears when switching between the two sites, which reads "You are
about to view pages over a secure connection ...". When added up these "negligible" inadequacies, lead
to an overall poor experience, which is certainly not the original intent of the Yahoo! content
producers.

Now as we have an idea of how things are not supposed to work, we will show that outsourcing
interactive components to a third party site, while preserving the look & feel of the original portal is

Portal Syndication with Web Services and Cocoon (2.1 legacy document)

Page 4
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

http://www.oasis-open.org/committees/wsrp/
http://www.oasis-open.org/committees/wsia/
http://cocoon.apache.org/index.html
http://autos.yahoo.com/finance.html?refsrc=autos/insurance
https://www.lendingtree.com/newauto/secure/ctl_borrower.asp?page=loan_selection&verb=continue&O_loan_type=LOAN_TYPE_AUTO&bp=yahooautos&source=40050&alliance=true&SITEID=&templxlname=&templxssn1=&templxssn2=&templxssn3=

still possible when done right. As we mentioned Cocoon offers a solution. Since Cocoon is a very
sophisticated framework, an indepth analysis of its features is beyond the scope of this text to cover.

4. Web Services Proxy to the rescue

The latest version of Cocoon is 2.1 and it has a new Web Service Proxy component. It is this
component which we shall focus on for the reminder of the text. To follow the rest of the article, it will
be useful (but not essential) to have a basic knowledge of Cocoon 2.

Combined with the XMLForm (which is not part of Cocoon anymore) component of Cocoon 2 and
XSLT, the Web Service Proxy component allows vendors to share interactive content with little effort.
The Web Service Proxy takes advantage of the fact that a Cocoon web application produces XML
content, which is later translated into multiple presentation formats, like HTML or WML. Once the
proxy is plugged in the Cocoon sitemap, it transparently pipes browser requests to a remote web
application and returns the response back to the sitemap for local styling. Receiving a client
independent XML format, allows the local site to pull content and style it with XSLT with the desired
Look & Feel.

Q. Ok, styling presentation is easy to understand, but how is a form submitted to the original
site?

The XMLForm component is the answer. It uses W3C XForms included in the XML content which
allows the end user to directly interact with the remote server through the embedding site. The form
markup in the XML content of an embedded page uses relative URL address for the target action,
when the end user submits, the form data is sent to the containing site, which captures the form data
and the relative URL. The Web Service Proxy then takes this information and re-submits it to the
original site. It then reads the XML response and makes it available to the sitemap for styling again.

Q. Hmm ... a typical web application maintains a user session while navigating. How is the
containing site propagating the end user session to the embedded site?

The answer is simple. The Web Service Proxy simply hooks to the end user session and automatically
starts its own session with the remote site. If the remote site requires authentication, then the developer
of the local web site has to pass the user credentials as parameters to the WebServiceProxyGenerator.

Q. What transport protocols are supported?

HTTP 1.0, HTTP 1.1, HTTPS.

Below we will illustrate the architecture of the solution with some example code and figures.

Figure 1 - Traditional Http Proxy vs Cocoon Web Service Proxy
Figure 1 - Architecture of the Web Service Proxy Solution. As opposed to a traditional proxy server,
the Web Services Proxy captures user input and allows the web site to remain coherent even when the
functionality for some of its components is delivered remotely.

Figure 2 - Illustration of the data flow for a composite page
Figure 2 - Illustration of the data flow for a composite page. Some of the content is locally
constructed, the rest is obtained remotely. Finally the same styling is applied and the user facing page
appears consistent.

Now we will show a snippet of the sitemap which employs the Web Service Proxy. Notice its brevity!
The Web Service Proxy completely handles the content and navigation logic between the two portals.
Only stylesheets are additionally required to translate the remotely retrieved documents into a user
friendly format.

Portal Syndication with Web Services and Cocoon (2.1 legacy document)

Page 5
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

<?xml version="1.0"?> <map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">
<!-- =========================== Components ================== -->
<map:components> <map:generators default="file"> <map:generator name="wsproxy"
logger="sitemap.generator.wsproxy"
src="org.apache.cocoon.generation.WebServiceProxyGenerator"/> </map:generators>
</map:components> <!-- =========================== Pipelines
=================== --> <map:pipelines> <map:pipeline> <!-- Interactive Web
Application Syndication --> <map:match pattern="*"> <map:generate type="wsproxy"
label="xml"
src="http://{request:serverName}:{request:serverPort}{request:contextPath}/samples/xmlform/wizard?cocoon-view=xml"/>
<map:transform src="stylesheets/newWizard2html.xsl"/> <map:transform
src="context://samples/stylesheets/xmlform/xmlform2html.xsl"/> <map:serialize type="html"/>
</map:match> </map:pipeline> </map:pipelines> </map:sitemap>

Figure 3 - sequence diagram
Figure 3 - Above is a sequence diagram outlining the interaction between the key participants in a
syndication session.

screen shot 1
Figure 4 - Sample screenshot from a remotely enabled application as it appears standalone.

screen shot 2
Figure 5 - Sample screenshot from the same application embedded in another web application.

The content of the original XML page behind these two screenshot follows:

<?xml version="1.0"?> <document xmlns:xf="http://apache.org/cocoon/xmlform/1.0">
<xf:form id="form-feedback" view="userIdentity" action="wizard" method="GET">
<xf:caption>Personal Information</xf:caption> <error> <xf:violations class="error"/> </error>
<xf:textbox ref="firstName"> <xf:caption>First Name</xf:caption> <xf:violations
class="error"/> </xf:textbox> ... <xf:selectMany ref="role" selectUIType="listbox">
<xf:caption>Professional roles</xf:caption> <xf:item> <xf:caption>Geek</xf:caption>
<xf:value>Geek</xf:value> </xf:item> <xf:item> <xf:caption>Hacker</xf:caption>
<xf:value>Hacker</xf:value> </xf:item> ... </xf:selectMany> ... <!-- hidden model attribute -->
<xf:hidden ref="hidden"> <xf:value>true</xf:value> </xf:hidden> ... <xf:submit id="next"
class="button"> <xf:caption>Next</xf:caption> </xf:submit> </xf:form> <xf:output ref="count"
id="show_count" form="form-feedback" class="info"> <xf:caption>Visits Count</xf:caption>
</xf:output> </document>
The listing above contains markup in the XMLForm namespace. It is a presentation independent way
to specify input controls. Being XForms compliant it is easy to learn and use. The XSLT stylesheets
used to convert the XML above are very simple and will not be listed here. They can found in the
Cocoon 2.1 distribution.

5. Conclusion

The Web Service Proxy component is tightly integrated with the Cocoon framework and is particularly
convenient to use in combination with XMLForm to enable syndication of website functionality. With
the presented sample, we only scratched the service of the possible applications. It is easy to see
though for a creative mind how it can be extended in multiple directions. Although the solution we
offered is conveniently applied with Cocoon, the concepts are generally applicable outside the
framework as well. Exposing a Web Application functionality via XML is not just a "neat" feature any
more. It opens the gates to a constellation of opportunities, not possible with the classical Model-2

Portal Syndication with Web Services and Cocoon (2.1 legacy document)

Page 6
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

approach where the business logic is directly tied to a graphical output like HTML.

5.1. Have more questions?

Look at the online demo available in the Cocoon distribution in the samples:
http://{host}:{port}/{contextPath}/samples/proxy/.

Then study the source code and if you still have questions, join the cocoon users email list and ask. If
you have ideas for improvement then you are more than welcome to discuss it on the cocoon
development email list and eventually submit a patch through the Apache bug tracking system.

1. Comments
add your comments

Portal Syndication with Web Services and Cocoon (2.1 legacy document)

Page 7
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

	1 Comments

