Sendmail Logicsheet (2.1 legacy
document)

Table of contents

00 ] 0111 01, 1K TP




Sendmail Logicsheet (2.1 legacy document)

Table of contents

DTS ] o 1 o] o RO U USSR TPTPPRORPN 3
P2 == o [PPSR 3
SEXAMPIE COUR. ...t e st e et e e e b e e e b e e b e e ear e e be e eareenteeenreereeanns 3
4 ElEMENES REFEIENCE. ... .oiiiiie ettt sttt b e bttt et et et e be st e s beebeeneenes 4
3 L | ST PRRR 5

Page 2



Sendmail Logicsheet (2.1 legacy document)

} This document was copied as is from the Cocoon 2.1 documentation, but has not yet been fully reviewed or moved to its new home. (

1. Description

The Sendmail logicsheet (taglib) isa X SP logicsheet that wraps XML tags around the operation of
sending an email message. Specifically, the Sendmail logicsheet provides an XML interface to the
primary methods of the Java Mail API for sending an internet mail including the ability to attach any
binary datafilesto the message (see the Java Mail API ) for more information.

The Sendmail logicsheet is an alternative to the Sendmail action.

2. Usage

As an XSP logicsheet, the Sendmail logicsheet can only be used in an XSP page. It may be helpful to
be familiar with X SP before working with this (or any) logicsheet.

Since the Sendmail logicsheet is not activated in the default Cocoon setup, a couple of steps must be
taken before an email can be send.

First of all Cocoon must have been compiled with the required Java Mail API libraries. The libraries
mail.jar from the Java Mail distribution and the library activation.jar from the Java Activation
Framework have to be copied to the location lib/local of Cocoon's source distribution. Cocoon must
then be recompiled.

Before the Sendmail logicsheet can be used, some setup in cocoon.xconf is required. See, if the
following fragment is already existing.

<builtin-logicsheet> <parameter name="prefix" value="sendmail"/> <parameter name="uri"
value="http://apache.org/cocoon/sendmail/1.0"/> <parameter name="href"
value="resource://org/apache/cocoon/components/language/markup/xsp/java/sendmail.xsl"/>
</builtin-logicsheet>

If it is not present, it is easiest to simply locate the entry xsp-response for the Response |ogicsheet and
put the above fragment before the <builtin-logicsheet> of the Response |ogicsheet entry. This can
either be done before recompilation or later, when Cocoon is already deployed. If done later, Cocoon
must be reloaded.

To use the Sendmail logicsheet, you must first declare the sendmail namespace, mapping it to the uri
http: //apache.org/cocoon/sendmail/1.0. These steps will result in code like this:

<xsp:page language="java" xmlns:xsp="http://apache.org/xsp"
xmins:sendmail="http://apache.org/cocoon/sendmail/1.0"> ... </xsp:page>

Y ou may then use any of the elementsin the sendmail namespace described in the Elements Reference
section below.

3. Example Code

The following code shows an example of using the Sendmail logicsheet. A HTML form is used, to
post information about updated documentation to some imaginary mailing list. The XSP pageis
invoked from aHTML form like this.

<form action="/cocoon/xsp/mail/send-a-mail" method="post" enctype="multipart/form-data">
<input type="text" name="subject" size="56" /> ... <input type="text" name="url1" size="56" />

Page 3


http://java.sun.com/products/javamail/
../actions/sendmail-action.html
xsp.html
sendmail.html#elements

Sendmail Logicsheet (2.1 legacy document)

.. <input type="text" name="urll" size="56" /> ... <input type="file" name="uploaded_file1"
size="56" /> ... <input type="file" name="uploaded_file2" size="56" /> ... <textarea
name="changes" rows="5" cols="72"> </textarea> ... </form>

Since the form allows to attach upto two arbitrary files, it isimportant, that
enctype="multipart/form-data’ is used. Thisisthe X SP code, that is invoked:

<?xml version="1.0" encoding="ISO-8859-1"?> <xsp:page language="java"
xmlns:xsp="http://apache.org/xsp" xmins:xsp-request="http://apache.org/xsp/request/2.0"
xmins:sendmail="http://apache.org/cocoon/sendmail/1.0"> <email> <xsp:logic> StringBuffer
body = new StringBuffer(); body.append(" Documentation:\n---------------- \n");
body.append("URL: "); body.append(<xsp-request:get-parameter name="url1"/>);
body.append("\n"); body.append("URL: "); body.append(<xsp-request:get-parameter
name="url2"/>); body.append("\n\n"); body.append(" Changes:\n---------------- \n");
body.append(<xsp-request:.get-parameter name="changes"/>); body.append("\n\n");
</xsp:logic> <sendmail:send-mail> <sendmail:from>from address</sendmail:from>
<sendmail:to>some maillinglist address</sendmail:to>
<sendmail:subject><xsp-request.get-parameter name="subject"/></sendmail:subject> <!--
Uncomment to override defaults from cocoon.xconf
<sendmail:smtphost>localhost</sendmail:smtphost>
<sendmail:smtpuser>localhost</sendmail:smtpuser>
<sendmail:smtppassword>localhost</sendmail:smtppassword> -->
<sendmail:body><xsp:expr>body.toString()</xsp:expr></sendmail:body>
<sendmail:attachment> <sendmail:param
name="object"><xsp:expr>request.get("attachment")</xsp:expr></sendmail:param>
</sendmail:attachment> <sendmail:attachment url="context://welcome.xml|"
mime-type="text/plain” name="foo.txt"/> <sendmail:attachment url="cocoon:///"
mime-type="text/html" name="welcome.html"/> <sendmail:on-success> <p> Email
successfully sent. </p> </sendmail:on-success> <sendmail:on-error> <p style="color:red;">
An error occurred: <sendmail:error-message/> </p> </sendmail:on-error>
</sendmail:send-mail> </email> </xsp:page>

Cocoons feature to automatically disassemble the incoming request puts the uploaded files
automatically into the upload directory and the files are accessible through the uploaded file[12]
request parameters (make sure, that autosave-uploads is set to true in the WEB-INF/web.xml file of the
Cocoon context). By using <xsp:expr>request.get("reg-param™)</xsp:expr> you actually get an object
of class org.apache.cocoon.servlet.multipart.Part. The <sendmail:send-mail> fragment is replaced with
an <error> element, if an error occurs during the sending of the message.

Another noteworthy item is the formatting of the body text through a Java StringBuffer. Any
formatting, that would be placed inside the <sendmail:body> element would be lost due to the internal
workings of the Sendmail logicsheet.

4. Elements Reference

sendmail:attachment Sets the attachment for this
email. Attributes for setting
name, mime-type, or an URL
(e.g. using cocoon:-protocol!).
Parameters can be set
dynamically using
<sendmail:param/> syntax. If
an object is to be attached, it

Page 4



Sendmail Logicsheet (2.1 legacy document)

must be set this way. Use the
following expression to obtain
the correct object from the
request:
<xsp:expr>request.get('reqg-paral

mM")</XSp:expr>.

sendmail:bcc

Sets the recipients of a blind
carbon copy of the email. This
can be a list of comma
separated email addresses.

sendmail:body

Sets the body text of the
message.

sendmail:cc

Sets the recipients of a carbon
copy of this email. This can be
a list of comma separated
email addresses.

sendmail:charset

Sets the character set for
encoding the message. This
tag has only an effect, if no
attachments are send.

sendmail:from

Sets the from address of the
message.

sendmail:smtphost

The IP-address or the name of
the host, which should deliver
the email message. Better
known as the mail transfer
agent or short MTA.

sendmail:subject

Sets the subject line of the
message.

sendmail:to Sets the destination/to address
of the email message. This can
be a list of comma separated
email addresses.
5. Hint

Please read this hint, since it applies here as well.

1. Comments
add your comments

Page 5


../actions/sendmail-action.html#hint

	1 Comments

