
Error Handling (2.1 legacy document)

Table of contents

1 Comments..6

Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

Table of contents

1 Error Handling...3

1.1 ExceptionSelector... 3

1.2 XPathExceptionSelector... 3

1.3 Error Handler Hierarchy... 4

Error Handling (2.1 legacy document)

Page 2
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

Warning:
This document was copied as is from the Cocoon 2.1 documentation, but has not yet been fully reviewed or moved to its new home.

1. Error Handling

During the execution of a Cocoon pipeline exceptions may occur within the involved components like
generators, transformers etc. There are two possibilities to deal with them: The one would be not to
handle them explicitly in the sitemap, which causes them to be logged and a default Cocoon error page
to be displayed in the browser. The second is to define an error handling by using the sitemap tag
<map:handle-errors>. Therein you are able to define any pipeline, that is executed in case of an
exception occurred and displays an appropriate page.

1.1. ExceptionSelector

The ExceptionSelector allows to realize conditional error handling within <map:handle-errors>-tags
depending on the type of the occurred exception. Each exception is configured centrally at the selector
in the sitemap by associating a symbolic name to its class.

Furthermore it is possible to define, what exceptions are to be "unrolled". This means, that if an
exception has been rethrown embedded in another exception, this original exception can be considered
for choosing the correct error handling.

Example:

<map:selector name="exception" src="org.apache.cocoon.selection.ExceptionSelector">
<exception name="processing" class="ProcessingException" unroll="true"/> <exception
name="sax" class="SAXException"/> <exception name="application"
class="ApplicationException"/> </map:selector> ... <map:pipeline> <map:match
pattern="resource"> ... </map:match> <map:handle-errors> <map:select type="exception">
<map:when test="processing">...</map:when> <map:when test="sax">...</map:when>
<map:when test="application">...</map:when> </map:select> </map:handle-errors>
</map:pipeline>
Let's consider the following nested exceptions to occur:

1. ProcessingException (ApplicationException): The ProcessingException is unrolled, so the error
pipeline for "application" will be executed.

2. ProcessingException (ValidationException): Since ValidationException is not configured at all
and therefore unknown, the ProcessingException is not unrolled even if unrolling is enabled.
Therefore the pipeline for "processing" will be executed.

3. SAXException (ApplicationException): The unrolling is not enabled for SAXException, so the
pipeline for "sax" will be executed.

Please notice that the selector configuration is processed from top to bottom and stops at the first
matching exception. Therefore the most specific classes must be configured first. This behaviour is the
same as with Java catch statements.

1.2. XPathExceptionSelector

The XPathExceptionSelector is an extension to the standard selector described above. It adds the
possibility to configure additional conditions for each exception type by using JXPath expressions, that
operate on the exception object. This configuration is also done centrally at the selector in the sitemap,
where symbolic names are defined for all specific error situations.

Error Handling (2.1 legacy document)

Page 3
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

Example:

<map:selector name="exception"
src="org.apache.cocoon.selection.XPathExceptionSelector"> <exception name="Denied"
class="AuthenticationFailure"> <xpath name="PasswordWrong" test="authCode=10"/>
<xpath name="PasswordExpired" test="errorCode=11"/> <xpath name="AccessForbidden"
test="errorCode>11"/> </exception> </map:selector> ... <map:pipeline> <map:match
pattern="login"> ... </map:match> <map:handle-errors> <map:select type="exception">
<map:when test="PasswordWrong">...</map:when> <map:when
test="PasswordExpired">...</map:when> <map:when
test="AccessForbidden">...</map:when> <map:when test="Denied">...</map:when>
<map:otherwise>...</map:otherwise> </map:select> </map:handle-errors> </map:pipeline>
In this example the exception AuthenticationFailure is configured under name "Denied". Additionally
three further conditions "PasswordWrong", "PasswordExpired" and "AccessForbidden" are defined by
using JXPath expressions. Therefore instances of AuthenticationFailure are expected to have methods
getAuthCode() and getErrorCode(). Now the error handler defined for resource "login" has five
branches: If situation "PasswordWrong" occurs, which means that an AuthenticationFailure exception
with auth code 10 has been thrown, the first error pipeline is executed. If the error code equals to 11
the second pipeline is executed, if it is greater that 11 the third one and all other AuthenticationFailure
errors are handled by the fourth one. In any other error situation the fifth branch would be chosen.

Please notice that the selector stops when it finds the first JXPath expression in the configuration that
matches:

Example:

<map:selector name="exception"
src="org.apache.cocoon.selection.XPathExceptionSelector"> <exception name="application"
class="ApplicationException"> <xpath name="error3" test="errorCode>3"/> <xpath
name="error6" test="errorCode>6"/> </exception> </map:selector> ... <map:pipeline>
<map:match pattern="processForm"> ... </map:match> <map:handle-errors> <map:select
type="exception"> <map:when test="error6">...</map:when> <!-- handler 1 --> <map:when
test="error3">...</map:when> <!-- handler 2 --> </map:select> </map:handle-errors>
</map:pipeline>
If an ApplicationException with error code 9 occurs, handler 2 is executed since error situation
"error3" is configured before "error6" at the selector even if the expression for "error6" also evaluates
to "true".

1.3. Error Handler Hierarchy

The tag <map:handle-errors> may be attached to any <map:pipeline> or the <map:pipelines> tag of
the root sitemap or a subsitemap. Therefore it is possible to define two kinds of error handlers: A
default handler may be defined within <map:pipelines> for applying to all resources of a sitemap.
Alternatively individual handlers may be configured for sets of resources within <map:pipeline>.

Example:

<map:pipelines> <map:pipeline name="pipe1"> <map:match pattern="res1"> ...
</map:match> <map:handle-errors> <!-- this is an individual handler for pipe1 -->
</map:handle-errors> </map:pipeline> <map:pipeline name="pipe2"> <map:match
pattern="res2"> ... </map:match> </map:pipeline> <map:pipeline name="pipe3">
<map:match pattern="res3"> ... </map:match> </map:pipeline> <map:handle-errors> <!-- this
is the default handler for the whole sitemap --> </map:handle-errors> </map:pipelines>

Error Handling (2.1 legacy document)

Page 4
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

In conjunction with the ExceptionSelector resp. the XPathExceptionSelector it is possible to define a
hierarchy of error handlers for an application. The behaviour then is the following: If an error occurs
within a pipeline, Cocoon at first checks if an individual handler for this pipeline is defined. If so and it
is able to handle the error due to its selection the processing terminates. Otherwise Cocoon looks for a
default handler of the current sitemap. If one is found it is called. Now there is the same behaviour as
above: If it can handle the exception the processing terminates otherwise the searching proceeds within
the pipeline where the subsitemap is mounted. This goes on until the default handler of the root
sitemap has been considered. If an error could not be handled at all, it is processed by the Cocoon
engine in the end.

Please notice that a <map:otherwise> breaks the hierarchy since all errors will be handled on this level.
Therefore all levels above will be called never.

Example:

Root sitemap: <map:pipelines> <map:pipeline> <map:mount uri-prefix="sub" src="sub/"/>
<map:handle-errors> <map:select type="exception"> <map:when
test="resourceNotFound">...</map:when> </map:select> </map:handle-errors>
</map:pipeline> <map:handle-errors> <map:generate src="generalerror.htm"/>
<map:serialize/> </map:handle-errors> </map:pipelines> Subsitemap: <map:pipelines>
<map:pipeline> <map:match pattern="processForm"> ... </map:match> <map:handle-errors>
<map:select type="exception"> <map:when test="validation">...</map:when> </map:select>
</map:handle-errors> </map:pipeline> <map:handle-errors> <map:select type="exception">
<map:when test="application">...</map:when> </map:select> </map:handle-errors>
</map:pipelines>
Let's consider four situations concerning the above example:

1. A ValidationException occurs, because for instance the user entered an invalid value: The defined
pipeline's handler is called. Since it has a matching <map:when>-section it is able to handle such
an exception and therefore the processing is finished.

2. An ApplicationException occurs, because for instance a database connection has failed: The
pipeline's handler is not able to handle the exception, so next the subsitemap's default handler is
called. It has a matching <map:when>-section and is therefore able to handle the exception.

3. A ResourceNotFoundException occurs, because for instance some file is missing. Both the
pipeline's and the subsitemaps' handlers are not able to handle it. Now Cocoon proceeds after the
mount point of the subsitemap and finds its pipeline's handler next. It is able to handle a
ResourceNotFoundException and therefore produces the output in this case.

4. A NullPointerException occurs, because something went completely wrong in the application: All
handlers are not configured for such an exception and so the root sitemaps default handler will
apply to it showing a general error page.

When handling exceptions in error handlers one has to take care about recursion when working with
redirects. Consider the following sitemap:

Example:

<map:pipelines> <map:pipeline> <map:match pattern="resource"> ... <map:transformer
type="foo"/> ... </map:match> <map:match pattern="error"> ... <map:transformer
type="foo"/> ... </map:match> <map:handle-errors> <map:select type="exception">
<map:when test="connection"> <map:act type="redirect" src="cocoon:/error"/> </map:when>
</map:select> </map:handle-errors> </map:pipeline> </map:pipelines>
This configuration may lead to an infinite loop: Imagine to call "resource" where the FooTransformer
throws a ConnectionException, because the connection to a backend system has broken. The defined

Error Handling (2.1 legacy document)

Page 5
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

error handler will handle it and the used action internally redirects to resource "error". This resource
itself uses the FooTransformer to get some data from the backend, which of cause also causes a
ConnectionException. This is handled by the error handler, which redirects to resource "error" and so
on. Such an infinite loop may also occur when using several "nested" redirects, i.e. the error handler
redirects to a resource, which redirects to another resource, which might produce the original
exception.

When defining error handlers for an application such situation must be avoided. An easy rule would
be: An error handling routine must never redirect to a resource for which the routine itself is
responsible and which might produce the same error as just handled.

1. Comments
add your comments

Error Handling (2.1 legacy document)

Page 6
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

	1 Comments

