
Authentication Framework (2.1 legacy
document)

Table of contents

1 Comments..13

Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

Table of contents

1 Introduction... 3

2 Sitemap-Components.. 3

3 Protecting Documents... 3

3.1 The Authentication handler.. 4

3.2 The Configuration of a Handler..4

3.3 Protecting Documents...4

3.4 The redirect-to document..5

4 Authenticating a User..5

4.1 The Login Process.. 5

4.2 The authentication resource.. 6

4.2.1 Using a URI as the authentication resource... 6

4.2.2 Using a Java class as the authentication resource.. 7

4.3 Logging out...7

5 User Management..7

5.1 Getting information from the context... 8

5.2 Setting information in the context.. 8

6 Application Management.. 8

6.1 Configuring an Application.. 8

6.2 Configuring the resources...9

6.3 Getting, setting and saving application information...9

7 Module Management...9

8 User Administration.. 10

8.1 Getting Roles.. 10

8.2 Getting Users.. 10

8.3 Creating a new role... 11

8.4 Creating a new user...11

8.5 Changing information of a user.. 11

8.6 Delete a user..11

8.7 Delete a role.. 11

9 Configuration Summary.. 11

10 Pipeline Patterns.. 11

10.1 Single protected document..11

10.2 Multiple protected documents...12

10.3 Controlling the Application Flow... 12

10.4 Session Handling...13

Authentication Framework (2.1 legacy document)

Page 2
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

Warning:
This document was copied as is from the Cocoon 2.1 documentation, but has not yet been fully reviewed or moved to its new home.

1. Introduction

One central point in building a web application is authentication and authorization. The Cocoon
authentication framework is a flexible module for authentication, authorization and user management.
A user can be legitimated using any information available via any source, e.g. an existing database,
LDAP or the file system. With this mechanism it is very easy to use an exisiting user
management/authentication system within Cocoon.

The basic concept of the authentication framework is to protect documents generated by Cocoon. By
document we refer to the result of a request to Cocoon, this can either be the result of a pipeline or of a
reader defined in the sitemap.

A document is protected by a so called (authentication) handler. A document is associated to a defined
handler to be protected. A user can only request this document if he is authenticated against this
handler.

A handler can be used to protect several documents in the same way. If a user is authenticated he can
access all these documents. It is possible to use different handlers, to product documents in different
ways.

The use of the authentication framework and its components is described in the following chapters.

As you will see, the user management of the authentication framework is very flexible. You
can design your application without taking into account, which backend is used for the user
management. This can be the file-system, a SQL database, an XML database, a LDAP
directory, just anything. Simply by developing the authentication resource, you can connect to
any system. And another advantage is the flexible switching between user databases. You
can for example use the file-system for the development process and switch than later on to
a LDAP system on the production system. This can be done by simply changing the
authentication resource. If you test this resource on your production system, you don't have
to test your whole application again. (Although in general this might be a good idea...).

2. Sitemap-Components

The authentication Framework adds some actions to the sitemap: the auth-protect action, the
auth-login action, the auth-logout action and the auth-loggedIn action. The authentication-manager
gets the configuration for the authentication framework and the actions controle the pipelines. The
auth-login and the auth-logout action control the authentication whereas the auth-loggedIn action
controls the application flow.

Overview

3. Protecting Documents

One feature of the framework is the user authentication. A document can be accessible for everyone or
it can be protected using this framework. The process of requesting a document can be described as
follows:

1. The user request a document (original document).
2. The authentication framework checks if this document is protected. If no protection is specified,

the response to the request is this original document.

Authentication Framework (2.1 legacy document)

Page 3
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

3. If the document is protected, the framework checks, if the user is authenticated to view it.
4. If the user is authenticated, the response is the original document. If not the framework redirects to

a special redirect-to document. This redirect-to document is freely configurable and can for
example contain information about the unauthorized access and in addition a login form.

5. Using the login form an authentication resource can be called with the corresponding user
information (e.g. user id and password). This authentication resource uses the framework for the
authentication process.

6. In case of a successful authentication the framework can redirect to the original document (or to
any configured start document).

7. If the authentication fails another document is invoked by the framework displaying information to
the user.

This process is only one example for a use-case of the framework. It can be configured for any
authentication scheme. All resources are freely configurable.

3.1. The Authentication handler

The basic object for authentication is the so called (authentication) handler. It controlles the access to
the documents. Each document in the sitemap can be related to exactly one authentication handler. All
documents belonging to the same handler are protected in the same way. If a user has access to the
handler, the user has the same access rights for all documents of this handler.

Each authentication handler needs the following mandatory configuration:

• A unique name.
• The authentication resource: A Cocoon pipeline trying to authenticate a user. (We will see later on,

that there are more possibilities than using a pipeline).
• The redirect-to document: This document is displayed when a not authorized user tries to access a

protected document.

3.2. The Configuration of a Handler

So let's have a look at the configuration. A handler can be configured in the sitemap. It is a so-called
component configuration for the authentication manager. This configuration takes place in the
map:pipelines section of a sitemap:

<map:sitemap> ...component definitions... <map:pipelines>
<map:component-configurations> <authentication-manager> <handlers> <handler
name="portalhandler"> <redirect-to uri="cocoon:/sunspotdemoportal"/> <authentication
uri="cocoon:raw:/sunrise-authuser"/> </handler> </handlers> </authentication-manager>
</map:component-configurations> <map:pipeline> ... document pipelines following here:
Using a unique name for each handler (only alphabetical characters and digits are allowed for the
handler name), the framework manages different handlers. So various parts of the sitemap can be
protected in different ways.

A handler is inherited to a sub sitemap. Each sub sitemap can define its own handlers. These handlers
are only available to the sub sitemap (and of course to its sub sitemaps). However, it is not possible to
redefine (overwrite) a previously defined handler in a sub sitemap.

3.3. Protecting Documents

A document can be protected by associating it to a defined handler. This is done by using the
auth-protect action and the handler parameter:

Authentication Framework (2.1 legacy document)

Page 4
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

<map:match pattern="protectedresource"> <map:act type="auth-protect"> <map:parameter
name="handler" value="portalhandler"/> <map:generate src="source/resource.xml"/>
<map:serialize type="xml"/> </map:act> </map:match>
If this document is requested, the action checks if the user is authenticated against the defined handler.
If not, the action automatically redirects to the redirect-to document configured in the handler. (In the
example above this is the pipeline defined by cocoon:/sunspotdemoportal.

If the user is authenticated, the commands inside the map:act will be execute and the user gets the
document itself.

So, the auth-protect action must be included in the pipeline of the document. It gets the handler
information as a parameter. If the pipeline does not use the auth-protect action or the parameter
handler is missing, the document is accessible by any user.

You will see learn later on how to efficiently protect several documents with a handler.

3.4. The redirect-to document

If the requested document is not accessible to the user, the authentication framework redirects to the
configured redirect-to document. This document is a mandatory configuration of the authentication
handler as we have seen above.

This redirect-to document is an unprotected pipeline in the sitemap. For tracking which document was
originally requested by the user, the redirect-to pipeline gets the request parameter resource with that
value. In addition all parameters specified inside the redirect-to tag of the handler configuration are
passed to the pipeline as well.

For example, the redirect-to document can contain a form for the user authentication. This form should
invoke the real authentication process that is described below. However, the document you show when
an unauthorized access is made, can be controlled by you by defining this redirect-to document.

4. Authenticating a User

Usually, the redirect-to document of a handler contains a form for the user to authenticate. But of
course, you are not limited to this. No matter how the redirect-to document looks like, the user has
"somewhere" the abilitiy to authenticate, so in most cases the user has a form where he can enter his
information (e.g. user name and password). You have to write a pipeline presenting this form to the
user. When the form is submitted, the authentication process has to be started inside the authentication
framework. As a submit of a form invokes a request to Cocoon, a pipeline in the sitemap is triggered.
We refer to this pipeline with login pipeline.

4.1. The Login Process

The authentication process is started by invoking the auth-login action. So, the login pipeline has to
contain this action:

<map:match pattern="login"> <map:act type="auth-login"> <map:parameter name="handler"
value="portalhandler"/> <map:parameter name="parameter_userid"
value="{request-param:name}"/> <map:parameter name="parameter_password"
value="{request-param:password}"/> <map:redirect-to uri="authentication-successful"/>
</map:act> <!-- authentication failed: --> <map:generate src="auth_failed.xml"/>
<map:transform src="tohtml.xsl"/> <map:serialize/> </map:match>
The auth-login action uses the handler parameter to call the authentication resource of this handler.

Authentication Framework (2.1 legacy document)

Page 5
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

This authentication resource needs to know the information provided by the user, e.g. in the form. For
each piece of information an own parameter is created. The name of this parameter has to start with
"parameter_". So in the example above, the authentication resource gets two parameters: userid and
password. As the values of these parameters were sent by a form they need to be passed on to the
authentication resource. If you use "{request-param:...}" for the value of a parameter, the auth-login
action will pass the actual value of that request parameter to the authentication resource (by using the
input modules concept of Cocoon).

You might be wondering why we explicitly pass the request parameters on to the internal
pipeline call. Note that the authentication resource of the portalhandler is defined by
cocoon:raw. By using this, no request parameter of the original request is passed on to the
internal pipeline by default and therefore we have to define them explicitly. If you use cocoon:
then the parameters of the form are by default passed on to the authentication resource and
we could omit the parameter definition from above. But we feel that it is safer to explicitly
define them.
If the user is not already authenticated with this handler, the framework calls the authentication
resource and passes it the parameters. If this authentication is successful, the action returns a map and
the sitemap commands inside the map:act are executed. A session is created on the server (if not
already done) as well.

If the authentication fails, the action does not deliver a map and therefore the commands inside the
map:act are skipped. The error information delivered by the authentication resource is stored into the
temporary context. So you can get the information using either the session transformer or the
session-context input module.

As you can see from the example above, you are not limited in defining the information the
user has to provide. This can be either one field, two or as many fields as you need.

4.2. The authentication resource

The last chapter described the authentication process but left out details about the authentication itself.
This chapter closes this gap.

The authentication can be done by different components:

• A sitemap resource (pipeline).
• A distant resource, e.g. requested via HTTP.
• A java class.

The first two are actually similar as in both cases a URI is called. So we will talk about them in the
next chapter. Authentication using a java class is the topic of the following chapter.

4.2.1. Using a URI as the authentication resource

Using this flexible approach nearly any kind of authentication is possible (e.g. database, LDAP). The
authentication resource is another mandatory configuration of the authentication handler:

<autentication-manager> <handlers> <!-- Now follows the handlers configuration --> <handler
name="portalhandler"> <!-- The login resource --> <redirect-to
uri="cocoon:/sunspotdemoportal"/> <authentication uri="cocoon:raw:/sunrise-authuser"/>
</handler> </handlers> </autentication-manager>
If the authentication resource is a sitemap resource or a remote resource, this resource is requested by
the framework with the given parameters from the auth-login action (see previous chapter). In addition
all parameters inside the authentication tag of the handler configuration are passed to the resource. The

Authentication Framework (2.1 legacy document)

Page 6
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

response of this resource must contain valid XML conforming to the following scheme:

<authentication> <ID>Unique ID of the user in the system</ID> <role>rolename</role> <!--
optional --> <data> Any additional optional information can be supplied here. This will be
stored in the session for later retrieval </data> </authentication>
The XML is very simply, only the root element authentication and the ID element with a valid unique
ID for the user in this handler is required. Everything else is optional.

The framework checks the response of the authentication resource for the given scheme: the root node
must be named authentication and one child called ID must be present. In this case the authentication
is successfull and the framework creates an authentication session context and stores the XML inside.

The mandatory information inside this XML scheme, the ID tag, is an unique identification for the
given user inside the web application or more precisly inside this handler. The role is optional and can
for example be used for categorizing users and displaying different functionality inside the Cocoon
portal engine).

As stated, the role element is optional, you can use your own categorization and exchange it
with a roles element or a group element or leave it out, if you don't need it. In addition you
can add any other element there as well and access the information later on.
Using the data node the authentication resource can pass any information of the user into the session.
From there you can retrieve the information as long as the session is valid.

If the authentication is not successful, the resource must create an XML with the root node
authentication, but of course without the ID tag. In addition a data node can be added containing more
information about the unsuccessful attempt. This data node is then stored into the temporay context
(see previous chapter).

It is advisable to make an internal pipeline for the authentication resource. An internal
pipeline is not directly accessible by a user.

4.2.2. Using a Java class as the authentication resource

Using a class is an alternative for using a pipeline. You can define this class in the handler
configuration as an attribute authenticator of the authentication element, e.g.:

<autentication-manager> <handlers> <!-- Now follows the handlers configuration --> <handler
name="portalhandler"> <!-- The login resource --> <redirect-to
uri="cocoon:/sunspotdemoportal"/> <authentication authenticator="mypkg.MyAuthenticator"/>
</handler> </handlers> </autentication-manager>
This class must conform to the Authenticator interface. This interface provides a method that tries to
authenticate a User and delivers XML that is stored in the session on success. So, the behaviour is
similar to the pipeline.

4.3. Logging out

The logout process is triggered by the "auth-logout" action:

<map:act type="auth-logout"> <map:parameter name="handler" value="unique"/>
</map:act>
This action logs the user out of the given handler and removes all information about this handler stored
in the session.

5. User Management

Authentication Framework (2.1 legacy document)

Page 7
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

In addition to the authentication the framework manages all kinds of information belonging to the user
in XML format. For this reason the framework creates an own session context called authentication.
All information is stored in this context.

The authentication information (the "authentication" scheme retrieved from the authentication
resource) is stored in this context, so you can retrieve and change the information using the session
transformer and the usual getxml, setxml etc. commands, so we suggest you to read the session context
document.

The authentication context is only available to the session transformer if the pipeline, the
transformer is running in, is associated to the (authentication) handler. Or putting it in other
words: you have to use the auth-project action in that pipeline. Otherwise the authentication
context is not available.

5.1. Getting information from the context

Each information from within the context is gettable using an XML tag:

<session:getxml context="authentication" path="/authentication/ID"/> <!-- Get the ID -->
<session:getxml context="authentication" path="/authentication/data/username"/>
The path expression is an absolute XPath-like expression where only concrete nodes and attributes are
allowed. The session transformer replaced the tag with the value of the first node found in the context,
this can either be text or XML.

5.2. Setting information in the context

Using another tag information can be stored into the context:

<session:setxml context="authentication" path="/authentication/data/usersername"> Mr.
Sunshine </session:setxml>
Again the path is an absolute XPath-like expression where only concrete nodes and attributes are
allowed. If the requested node exists, the framework changes the value of that node. If the node does
not exists, the framework adds it to the context with the given value.

The tag is removed from the resource.

6. Application Management

A very useful feature for building and maintaining web applications is the application management. It
allows to configure different applications and to manage the user data for these applications.

6.1. Configuring an Application

A "authentication" application is related to one authentication handler, so an application is part of the
authentication handler configuration:

<autentication-manager> <handlers> <handler name="unique">redirect-to/authentication
configuration <applications> <!-- the applications for this handler --> <application
name="unique"> <load uri="loadapp"/> <!-- optional --> <save uri="saveapp"/> <!-- optional
--> </application> </applications> </handler> </handlers> </autentication-manager>
A configuration for an application consists of a unique name (only alphabetical characters and digits
are allowed for the application name) and optional load and save resources. The application
configuration can contain application specific configuration values for the various parts of the

Authentication Framework (2.1 legacy document)

Page 8
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

application, e.g. information for a portal.

On a successful authentication the framework invokes for each application of the handler the load
resource (if present). The content or result of the load resource is stored into the session context.

The user does not always visit all sides or all applications at once. So it is not necessary to load all
applications in advance when not all information is needed. Each application can specify if the data is
loaded on successful authentication or the first time needed:

....<application name="unique" loadondemand="true"/>...
The load resource gets several parameters: all values of the subnodes of the "authentication" node from
the authentication context (e.g. ID, role etc.) and the parameter "application" with the unique name of
the application. This unique name must not contain one of the characters '_', ':' or '/'.

In addition the load and save resource get all parameters specified inside the load / save tag of the
handler configuration.

6.2. Configuring the resources

For managing the application the framework needs to know to which application a resource belongs.
So in addition to the handler parameter the auth-protect action gets the application name as a second
parameter:

<map:match pattern="protectedresource"> <map:action type="auth-protect">
<map:parameter name="handler" value="unique handler name"/> <map:parameter
name="application" value="unique application name"/> <map:generate
src="source/resource.xml"/> ... </map:action> </map:match>
With this mechanism each application resource can easily access its and only its information. If a
resource has no "application" parameter it can not access information of any application.

6.3. Getting, setting and saving application information

Analogue to the access of the authentication data a resource can access its application data:

<session:getxml context="authentication" path="/application/username"/> <session:setxml
context="authentication"
path="/application/shoppingcart"><item1/><item2/></session:setxml>
The path underlies the same restrictions and rules as always, but it has to start with "/application/".

7. Module Management

In addition to the application management the framework offers a facility called module management.
It enhances the application management by the possibility to configure components for the application.
For example the Cocoon portal engine needs information about where the portal profile for the user is
retrieved from, where the layout is stored etc. Now each portal needs this information. Assuming that a
portal is an application each application needs this information. As only the portal engine itself knows
what information it needs, the module management is a standarized way for configuring such
components.

The module configuration is part of the application configuration:

<autentication-manager> <handlers> <handler name="unique">redirect-to/authentication
configuration <applications> <!-- the applications for this handler --> <application
name="unique"> ... <configuration name="portal"> ...portal configuration </configuration>

Authentication Framework (2.1 legacy document)

Page 9
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

</application> </applications> </handler> </handlers> </autentication-manager>
So whenever the portal engine is asked to build the portal it can easily retrieve its configuration from
the current application by getting the module configuration named "portal".

8. User Administration

Using the framework it is possible to add new roles to the system and to add new users. For this
purpose, there are several optional entries for the authentication handler which provide the needed
functionality:

<autentication-manager> <handlers> <handler name="unique"> ...redirect-to/authentication
configuration... <!-- Optional resource for loading user information --> <load-users
uri="cocoon:raw://financeresource-sunrise-loaduser"/> <!-- Optional resource for loading
roles information--> <load-roles uri="cocoon:raw://financeresource-sunrise-roles"/> <!--
Optional resource for creating a new user --> <new-user
uri="cocoon:raw://financeresource-sunrise-newuser"/> <!-- Optional resource for creating a
new role --> <new-role uri="cocoon:raw://financeresource-sunrise-newrole"/> <!-- Optional
resource for changing user information --> <change-user
uri="cocoon:raw://financeresource-sunrise-newuser"/> <!-- Optional resource for deleting a
role --> <delete-role uri="cocoon:raw://financeresource-sunrise-delrole"/> <!-- Optional
resource for deleting a user--> <delete-user
uri="cocoon:raw://financeresource-sunrise-deluser"/> </handler> </handlers>
</autentication-manager>
The entries are described in the following subchapters. All tags can have additional parameter
definitions which are passed to the given resource, e.g:

<!-- Optional resource for deleting a user--> <delete-user
uri="cocoon:raw://financeresource-sunrise-deluser"> <connection>database</connection>
<url>db:usertable</url> </delete-user>

8.1. Getting Roles

The load-roles resource is invoked from the framework whenever it needs information about the
available roles. This resource gets the parameter "type" with the value "roles" and should deliver an
XML schema with the root node "roles" and for each role a subelement "role" with a text child of the
rolename:

<roles> <role>admin</role> <role>guest</role> <role>user</role> </roles>

8.2. Getting Users

The load-users resource is called whenever information about the available users is needed. There are
three different uses of this resource:

• Loading all users: The resource gets the parameter "type" with the value "users". It should then
deliver all users in the system.

• Loading all users of one role. The resource gets the parameters "type" with the value "users" and
"role" with the rolename.

• Load information of one user. The resource gets the parameters "type" with the value "user", "role"
with the rolename and "ID" with the authentication ID of the user.

The XML format of the resource should look like the following:

<users> <user> <ID>authentication ID</ID> <role>rolename</role> <data> ... application

Authentication Framework (2.1 legacy document)

Page 10
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

specific data ... </data> </user> <user> ... </user> ... </users>

8.3. Creating a new role

The new-role resource creates a new role in the system. It gets the parameters "type" with the value
"role" and "role" with the new rolename.

8.4. Creating a new user

The new-user resource creates a new user with a role. It gets the parameters "type" with the value
"user", "role" with the rolename and "ID" with the new ID for this user.

8.5. Changing information of a user

The change-user resources changes information of a user. It gets the parameters "type" with the value
"user", "role" with the rolename and "ID" with the ID of the user. In addition all - application specific -
information of this user is send as parameters.

8.6. Delete a user

The delete-user resource should delete a user. It gets the parameters "type" with the value "user",
"role" with the rolename and "ID" with the ID of the user.

8.7. Delete a role

The delete-role resources deletes a role. It gets the parameters "type" with the value "role" and "role"
with the rolename .

9. Configuration Summary

Here is a brief summary of the authentication handler configuration:

<autentication-manager> <handlers> <handler name="unique"> <!-- The redirect-to resource
--> <redirect-to uri="cocoon:raw://loginpage"/> <!-- Authentication resource -->
<authentication uri="cocoon:raw://authenticationresource"/> <load
uri="cocoon:raw://authenticationsaveresource"> <!-- optional parameters --> </load> <!--
optional save resource --> <save uri="cocoon:raw://authenticationsaveresource"> <!--
optional parameters --> </save> <applications> <!-- the applications for this handler -->
<application name="unique"> <!-- Loading/Saving --> <load uri="cocoon:raw://loadapp"> <!--
optional --> <!-- optional parameters --> </load> <save uri="cocoon:raw://saveapp"> <!--
optional --> <!-- optional parameters --> </save> <!-- module configurations: -->
<configuration name="portal"> ...portal configuration </configuration> </application>
</applications> </handler> </handlers> </autentication-manager>

10. Pipeline Patterns

As explained in the previous chapters, the framework uses the auth-protect action for authentication
and protecting documents. This chapter shows some common used pipeline patterns for using this
framework.

10.1. Single protected document

For protecting a document with an authentication handler only the auth-protect action with the

Authentication Framework (2.1 legacy document)

Page 11
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

parameter configuration for the handler is required.

Pattern:

1. Pipeline matching
2. Using the auth-protect action for protecting

Example:

<map:match pattern="protected"> <map:act type="auth-protect"> <!-- protect the resource -->
<map:parameter name="handler" value="myhandler"/> <map:generate src="resource.xml"/>
<map:transform src="toHTML"/> <map:serialize/> </map:act> </map:match>
It is very important that the auth-protect action wrapps the real pipeline, as the pipeline is only invoked
if the action grants access. The matching must be done before the action is checked as the action
performs a redirect for this document.

10.2. Multiple protected documents

Often you want to protect a bunch of documents in the same way. One solution is to use the single
protected document pattern for each document. With the multiple protected document pattern you only
have to use the action once for all documents and not within each document pipeline.

The prerequisite for this is a common matching pattern for the documents:

1. Pipeline pattern matching
2. Using the auth-protect action for protection
3. Pipeline matching

Example:

<map:match pattern="protected-*"> <map:act type="auth-protect"> <!-- protect the resource
--> <map:parameter name="handler" value="myhandler"/> <map:match
pattern="protected-first"> <map:generate src="resource1.xml"/> <map:transform
src="toHTML"/> <map:serialize/> </map:match> <map:match
pattern="protected-second"> <map:generate src="resource2.xml"/> <map:transform
src="toHTML"/> <map:serialize/> </map:match> </map:act> </map:match>
Very important - as explained with the single document pattern - is the leading match before the action
is performed. The second match is required to check which pipeline to use.

10.3. Controlling the Application Flow

If you want to create documents which behave different wheather you are logged in or not, the
auth-loggedIn action is the component to controll your application flow. This action checks if the user
is authenticated for a given handler and calls all sitemap components inside the act tag.

<map:match pattern="startpage"> <map:act type="auth-loggedIn"> <!-- check authentication
--> <map:parameter name="handler" value="myhandler"/> <map:redirect-to
uri="loggedInStartPage"/> </map:act> <map:generate src="startpage.xml"/> <map:transform
src="toHTML"/> <map:serialize/> </map:match>
In the example above, if the user is already logged he is redirected to the loggedInStartPage document.
If he is not logged in for the given handler, the usual start page is generated.

The auth-protect action returns - if the user is logged in for the given handler - all values from the
context to the sitemap, e.g. ID, role etc. These values can be used within the other components:

<map:match pattern"protected"> <map:act type="auth-protect"> <!-- protect the resource -->

Authentication Framework (2.1 legacy document)

Page 12
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

<map:parameter name="handler" value="myhandler"/> <!-- Append the ID of the user to the
file name --> <map:generate src="resource_{ID}.xml"/> <map:transform src="toHTML"/>
<map:serialize/> </map:act> </map:match>
But the auth-loggedIn action does not give the included pipeline access to the authentication context
belonging to the handler. If you want this, you have to nest the auth-protect action inside!

<map:match pattern"start"> <map:act type="auth-loggedIn"> <!-- check authentication -->
<map:parameter name="handler" value="myhandler"/> <map:act type="auth-protect"> <!--
give access to the context --> <map:parameter name="handler" value="myhandler"/>
<map:generate src="getinfofromcontext.xml"/> <map:transform type="session"/>
<map:transform src="toHTML"/> <map:serialize/> </map:act> </map:act> </map:match>

10.4. Session Handling

If a user is authenticated the user has a session. However, care has to be taken that the session tracking
works, which means that Cocoon can detect that a follow up request of the user belongs to the same
session.

The easiest way is to use the encodeURL transformer as the last transformation step in your pipeline.
For more information about session handling, have a look in the chapter about sessions.

1. Comments
add your comments

Authentication Framework (2.1 legacy document)

Page 13
Copyright © 1999-2005 The Apache Software Foundation. All rights reserved.

session.html

	1 Comments

