Clinclude Transformer (2.1 legacy
document)

Table of contents

00] 0111 01, 1K TP

Clinclude Transformer (2.1 legacy document)

Table of contents

O T 10T [I =0 o = S 3
2 Including External XML (SIMPIE)......cc.oiiiiiieeeieresie et 4
3 Including External XML (80VanCed).........ccuioiiiiiiiiic st 4
@ o U 4
SO0 110 8 =1 o) S 6

Page 2

Cinclude Transformer (2.1 legacy document)

} This document was copied as is from the Cocoon 2.1 documentation, but has not yet been fully reviewed or moved to its new home. (

1. Cinclude Transfor mer

This transformer includes XML in the current stream and acts therefore as akind of (dynamic) content
aggregation. Two forms are supported by the transformer: one verbose and flexible approach, and a
simple approach. We will first discuss the simple approach and the more flexible is mentioned in the
next chapter. In addition the cinclude transformer provides a caching mechanism (for the smple
include form).

Thistransformer triggers for the element include in the namespace
"http://apache.org/cocoon/include/1.0". The src attribute contains the url which points to an xml
resource which isincluded instead of the element. With the attributes element, ns and prefix itis
possible to specify an element which surrounds the included content.

« Name: cinclude
» Class: org.apache.cocoon.transformation.ClncludeTransformer
« Cacheable: no.

A simple example might help to use the ClncludeTransfomer effectively:

Add the CincludeTransformer to the components in your sitemap.xmap

... <map:components> ... <map:transformers default="xslt"> ... <map:transformer
name="cinclude" src="org.apache.cocoon.transformation.CincludeTransformer"/> ...

Next definein your pipeline to use the ClncludeTransformer

<map:match pattern="cinc/simple-cinc"> <map:generate src="cinc/simple-cinc.xml"/>
<map:transform type="cinclude"/> <map:transform
src="stylesheets/page/simple-page2html.xsl"/> <map:serialize/> </map:match>

In this example pipeline it assumed that simple-cinc.xml contains the include element. Beside defining
the include element it defines the namespace URI "http://apache.org/cocoon/include/1.0". This helps
the CIncludeTransformer to find the tag to get replaced by the xml content referenced viathe src
attribute. The simple-cinc.xml may look like this:

<?xml version="1.0" encoding="UTF-8"?> <page
xmins:cinclude="http://apache.org/cocoon/include/1.0"> <title>Hello</title> <content>
<para>This is my first Cocoon page!</para> <cinclude:include src="include.xml"
element="included"/> </content> </page>

Next you should define the include.xml file which isincluded. A ssimple include.xml might look like
this:.

<?xml version="1.0"?> <p> | am included by CincludeTransformer. | come
from "include.xml". </p>

Now finally we have everything put together the xml content after the ClncludeTransformer
processing will look like this:

<?xml version="1.0" encoding="UTF-8"?> <page
xmins:cinclude="http://apache.org/cocoon/include/1.0"> <title>Hello</title> <content>
<para>This is my first Cocoon page!</para> <included> <p> | am included
by CincludeTransformer. | come from "include.xml". </p> </included> </content> </page>

Page 3

Clinclude Transformer (2.1 legacy document)

2. Including External XML (simple)

One feature of the cinclude transformer (thisis currently not supported by the caching cinclude
transformer) isincluding XML from external sources, e.g. filesor froman HTTP server. The
cincludesincludexml tag starts including of XML:

<cinclude:includexml> <!-- Include XML from HTTP server -->
<cinclude:src>http://external.news.com/flashnews.xml</cinclude:src> </cinclude:includexml|>

Thiswould be asimple way of "get"ting XML data from an external site. Using thismethod it isalso
possible to pass parametersin the url - just as you would in a"get" sent from a browser.

<cinclude:includexml> <!I-- Include XML from HTTP server -->
<cinclude:src>http://external.news.com/flashnews.xml?id=1234&myname=matthew</cinclude:src>
</cinclude:includexml>

If the external XML isnot valid or not available, the transformer signals an error to the pipeline and
the document containing the include command is not available.

For this purpose the ignoreErrors attribute can be used:
<cinclude:includexml ignoreErrors="true"> ... </cinclude:includexml>

3. Including External XML (advanced)

The above section shows you how to include XML data from an external source such asan HTTP
server using the simple "get" method supplied in the HTTP protocol. For more advanced uses you will
wish to be able to send "Post" or other HTTP methods to the server. In addition you may want to
actually send XML datato the server - just as you would using an HTML form. The format of this
resource is slightly more complicated:

<?xml version="1.0"?> <data xmlns:cinclude="http://apache.org/cocoon/include/1.0">
<cinclude:includexml> <cinclude:src>http://itsunshine/tamino/blah</cinclude:src>
<cinclude:configuration> <cinclude:parameter> <cinclude:name>method</cinclude:name>
<cinclude:value>POST</cinclude:value> </cinclude:parameter> </cinclude:configuration>
<cinclude:parameters> <cinclude:parameter> <cinclude:name>message</cinclude:name>
<cinclude:value>Hi there</cinclude:value> </cinclude:parameter> <cinclude:parameter>
<cinclude:name>_Process</cinclude:name>
<cinclude:value><name>matti</name><age>36</age></cinclude:value>
</cinclude:parameter> </cinclude:parameters> </cinclude:includexml> </data>

Letslook at the tags. The tag cinclude:src defines the address of the resource we want to access and
then comes alist of (optional) connection-specific parameters (enclosed in the cinclude:configuration
tag). In this example the HTTP-method ("POST") is passed into the connection. The format of these
parameters is discussed next.

Then comes the list of parameters we wish to pass into the function. Each parameter defined has a
name and avalue. The value can either be text or XML.

The format of the parametersis the same as for the connection configuration.

4. Caching

Thistransformer includes XML in the current stream and acts therefore as a kind of (dynamic) content
aggregation. However, the included content might be very big or either it might take alot of timeto
fetch the content. If, in those cases, your content does not change too frequently, you can turn on

Page 4

Cinclude Transformer (2.1 legacy document)

caching for these contents.

To turn on caching, this transformer triggers for the element cached-include in the namespace
"http://apache.org/cocoon/include/1.0/caching”. The src attribute contains the url which points to an
xml resource that isincluded instead of the element. It is possible to mix the cached-include and the
include element, so only parts are cached and others are not.

A simple example might help to use the caching effectively:

First define your pipeline to use the CincludeTransformer with caching turned on; you turn on caching
by setting the expires parameter to a value greater than 0. The exact meaning of this parameter is
explained below.

<map:match pattern="cinc/simple-cinc"> <map:generate src="cinc/simple-cinc.xml"/>
<map:transform type="cinclude"> <map:parameter name="expires" value="600"/>
</map:transform> <map:transform src="stylesheets/page/simple-page2html.xsl"/>
<map:serialize/> </map:match>

In this example-pipeline it is assumed that simple-cinc.xml contains the cached-include element.
Beside defining the element it uses the namespace URI "http://apache.org/cocoon/include/1.0". This
hel ps the transformer to find the tag to get replaced by the xml content referenced viathe src attribute.
The simple-cinc.xml may look like this:

<?xml version="1.0" encoding="UTF-8"?> <page
xmins:cinclude="http://apache.org/cocoon/include/1.0"> <title>Hello</title> <content>
<para>This is my first Cocoon page!</para> <cinclude:cached-include
src="http://server/documentl.xml"/> <cinclude:cached-include
src="http://server/document2.xml"/> </content> </page>

Now finally we have everything put together the xml content after the ClncludeTransformer
processing will look like this:

<?xml version="1.0" encoding="UTF-8"?> <page
xmins:cinclude="http://apache.org/cocoon/include/1.0"> <title>Hello</title> <content>
<para>This is my first Cocoon page!</para> <documentl> CONTENT OF document 1
</documentl> <document2> CONTENT OF document 2 </document2> </content> </page>

So, of course even with caching turned on, this transformer acts like the usual cinclude transformer.
But as you can see from the example above, you can define an expires value. The fetched content is
cached for the duration of this value; in the example above the content is cached for 10 minutes. So, if
during the next 10 minutes after the first time this pipeline was processed, someone el se requests this
pipeline, the content is not fetched again from a distant server (or whereever the content is stored). It is
directly delivered from the cache. When the 10 minutes have expired, the next time the pipelineis
reguested, the content is fetched again and stored in the cache for the next 10 minutes.

Y ou can fine tune the behaviour of the transformer with several parameters.

The expires parameter defines the expiration date of the content in seconds from the time the pipeline
IS requested.

Usually the content is cached in the common store, but you can aso define a writeable/modifiable
source with the "source" parameter, e.g. "file:/c:/temp". Then the cached content is written into this
directory.

With the optional purge set to true the cache is purged which means the cached content is regarded as
invalid nevertheless if it has expired or not.

Page 5

Clinclude Transformer (2.1 legacy document)

With the optional parameter parallel the various included contents are processed (included) in parallel
rather than in a series.

With the optional parameter preemptive set to true a pre-emptive caching is activated. When aresource
is requested with pre-emptive caching, this transformer always attempts to get the content from the
cache. If the content is not in the cache, it is of course retrieved from the original source and cached. If
the cached resource has expired, it is still provided. The cache is updated by a background task. This
task has to be started beforehand.

Complete Example:

<map:match pattern="cinc/simple-cinc"> <map:generate src="cinc/simple-cinc.xml"/>
<map:transform type="cinclude"> <map:parameter name="expires" value="600"/>
<map:parameter name="purge" value="false"/> <map:parameter name="parallel"
value="true"/> <map:parameter name="preemptive" value="false"/> <map:parameter
name="source" value="file:/c:/temp"/> </map:transform> <map:transform
src="stylesheets/page/simple-page2html.xsl"/> <map:serialize/> </map:match>

5. Configuration
Besides the usual transformer configuration, this transformer requires some components. Y ou have to
add the following lines to the cocoon.xconf:

<component
class="org.apache.cocoon.transformation.helpers.DefaultincludeCacheManager"
role="org.apache.cocoon.transformation.helpers.IncludeCacheManager" logger="test"> <!--
Specify this only if you use preemptive-caching --> <parameter name="preemptive-loader-url"
value="http://localhost:8080/cocoon/loader"/> </component>

If you want to use preemptive caching, you have to specify a URI inside Cocoon that contains the
preemptive-loader action. This pipelineis automatically called, when preemptive loading is actived
and requried. It loads the content in the background.

First you have to define the action:

... <map:.components> ... <map:actions> ... <map:action name="preemptive"
src="org.apache.cocoon.transformation.helpers.PreemptiveLoaderAction"/> ...

Then you must define a pipeline containing the action. Thisis the pipeline that has to be configured in
the cocoon.xconf:

<map:match pattern="loader"> <map:act type="preemptive"></map:act> </map:match>

1. Comments
add your comments

Page 6

	1 Comments

