Advanced Control Flow (2.1 legacy
document)

Table of contents

00] 0111 01, 1K TP

Advanced Control Flow (2.1 legacy document)

Table of contents

1 Tutoria; A Gentle Introduction to Cocoon CoNtrol FIOW.......coooe e, 3

Page 2

Advanced Control Flow (2.1 legacy document)

} This document was copied as is from the Cocoon 2.1 documentation, but has not yet been fully reviewed or moved to its new home. (

1. Tutorial: A GentleIntroduction to Cocoon Control Flow

In thistutorial, we will create a simple number guessing game using Cocoon's Control Flow engine.

After you have Cocoon 2.1 deployed and running, go to where you have Cocoon deployed and create a
new subdirectory named game. Cocoon's default main sitemap will automatically mount the sitemap in
the subdirectory.

Create the following sitemap.xmap in the new subdirectory:

<?xml version="1.0" encoding="UTF-8"?> <map:sitemap
xmlns:map="http://apache.org/cocoon/sitemap/1.0"> <map:components> <map:generators
default="file"> <!-- in this example we use JXTemplateGenerator to insert Flow variables in
page content --> <map:generator label="content,data" logger="sitemap.generator.jx"
name="jx" src="org.apache.cocoon.generation.JXTemplateGenerator"/> </map:generators>
<map:transformers default="xslt"/> <map:serializers default="html"/> <map:matchers
default="wildcard"/> <map:selectors default="browser"> <map:selector name="exception"
src="org.apache.cocoon.selection.XPathExceptionSelector"> <exception
name="invalid-continuation"
class="org.apache.cocoon.components.flow.InvalidContinuationException"/> <exception
class="java.lang.Throwable" unroll="true"/> </map:selector> </map:selectors>
<map:actions/> <map:pipes default="caching"/> </map:components> <map:views/>
<map:resources/> <map:action-sets/> <map:flow language="javascript"> <!-- Flow will use
the javascript functions defined in game.js --> <map:script src="flow/game.js"/> </map:flow>
<map:pipelines> <map:component-configurations> <global-variables/>
</map:component-configurations> <map:pipeline> <!-- no filename: call main() in game.js -->
<map:match pattern=""> <map:call function="main"/> </map:match> <!-- use JXtemplate to
generate page content --> <map:match pattern="*jx"> <map:generate type="jx"
src="documents/{1}.jx"/> <map:serialize type="xhtml|"/> </map:match> <!-- .kont URLs are
generated by the Flow system for continuations --> <map:match pattern="*.kont"> <map:call
continuation="{1}"/> </map:match> <!-- handle invalid continuations --> <!-- this style of
handling invalidContinuation is now deprecated: --> <!-- this URI will never be called
automatically anymore. --> <!-- see handle-errors below --> <map:match
pattern="invalidContinuation"> <map:generate src="documents/invalidContinuation.xml"/>
<map:serialize type="xml"/> </map:match> <!-- the new non-hardcoded way of handling
invalidContinuation --> <map:handle-errors> <map:select type="exception"> <map:when
test="invalid-continuation"> <map:generate src="documents/invalidContinuation.html"/>
<map:serialize type="xhtml"/> </map:when> </map:select> </map:handle-errors>
</map:pipeline> </map:pipelines> </map:sitemap>

Inside the new subdirectory, create two more directories, documents/ and flow/.

Inside documents/, you will store the "views' -- pages to send to the player. Create the file guess,jx,
which will be the page the player will enter their guess:

<?xml version="1.0"?> <html xmins:jx="http://apache.org/cocoon/templates/jx/1.0"> <head>
<title>cocoon flow number guessing game</title> </head> <body> <h1>Guess the Number
Between 1 and 10</h1> <h2>${hint}</h2> <h3>You've guessed ${guesses} times.</h3>
<form method="post" action="${cocoon.continuation.id}.kont"> <input type="text"

Page 3

Advanced Control Flow (2.1 legacy document)

name="guess"/> <input type="submit"/> </form> </body> </html>

You'll aso need a page to display when the person chooses the correct number. Name it success.jx
(Again in documents/):

<?xml version="1.0"?> <html xmins:jx="http://apache.org/cocoon/templates/jx/1.0"> <head>
<title>cocoon flow number guessing game</title> </head> <body> <h1>Success!</h1>
<h2>The number was: ${random}</h2> <h3>It took you ${guesses} tries.</h3> <p>Play again</p> </body> </htm|>

Y ou may notice some strange codes inside the files -- namely things like ${ random} and ${ guesses} .
They look like variables and they will be replaced with values when the pages are sent to the client.
Thisiswhere the X TemplateGenerator comesin.

Inside flow/ you will store the code that actually controls how this application runs. In the "MV C"
pattern the Flow isthe "Controller" and it is very powerful.

Create the following file named gamejs:

function main() { var random = Math.round(Math.random() * 9) + 1; var hint = "No hint for
you!" var guesses = 0; while (true) { cocoon.sendPageAndWait("guess.jxt", { "random" :
random, "hint" : hint, "guesses" : guesses}); var guess = parselnt(
cocoon.request.get("guess")); guesses++; if (quess) { if (guess > random) { hint = "Nope,
lower!" } else if (quess < random) { hint = "Nope, higher!" } else { break; } } }
cocoon.sendPage("success.jx", {"random" : random, "guess" : guess, "guesses" : guesses});

}

Alright, now let's follow the execution of this Flow and pipeline: The player accesses the URL
http://host/cocoon/game/ and the <map:match pattern=""> matches, and starts the pipeline.

The function main() which isreferenced in flow/game.jsis called and a new Continuation object is
created. Without getting into too much detail the state of the Javascript code is saved and can be
recalled any number of times.

We now enter the code in game.js:
A random number between 1 and 10 is chosen.

Variables containing a hint for the player and the player's current number of guesses are initialized.
The Flow now enters the while(true) loop which basically keeps the game going until the player
guesses the correct number.

We now get to the following line, where things start to get interesting:

cocoon.sendPageAndWait("guess.jxt", { "'random" : random, "hint" : hint, "guesses" :
guesses});

The Flow layer sends the contents of the URI "guess,jx" which is matched in the sitemap (see above).
We also pass an inline Javascript object, containing three key/value pairs, one named "random” which
contains the value of the variable random asinitialized above, and so on for hint and guesses. The keys
are substituted later down the line, when the X TemplateGenerator comes into play.

We could also do the following:

cocoon.sendPageAndWait("guess.jx", { "foo" : random });

In this case, the value of random would be able to be substituted in our JXTemplate, but under the
name "foo" instead -- we'd just have to make sure we have the correct keyname in our template.

The Flow Layer also does another interesting thing: it halts the execution of the Javascript! Through

Page 4

jxtemplate.html

Advanced Control Flow (2.1 legacy document)

the magic of continuations the Flow Layer is able to resume execution of the script at the exact linein
which it left off. This creates some very powerful situations with respect to web programming, and
forces the reader to think very differently about how web applications are designed.

Picking back up in the script execution, the client is sent through the pipeline matching "guess.jx".
Referring back to the sitemap, we match *.jx, and run the file through the JX TemplateGenerator,
which substitutes the keynames for the values sent from the cocoon.sendPageAndWait() function.

One thing to note is in the form which is sent back to Cocoon when the player submits the guess:
<form method="post" action="${cocoon.continuation.id}.kont">

Here, ${ cocoon.continuation.id} isresolved to a unique identifier which points to the current
continuation. One can think of this somewhat of asession ID.

When the player submits the form, it is submitted to a unique URL which contains the continuation ID,
plus".kont", which we end up matching in the sitemap:

<map:match pattern="*.kont"> <map:call continuation="{1}"/> </map:match>

When Cocoon sees aURL likethis, it attempts to restart the continuation with the specified ID and we
re-enter the Javascript code where we left off previously.

We are now back in the Javascript at the line after sendPageAndWait(). We create a new variable (an
int), which we get from the POST request that was sent by the form. Notice in the form we had <input
type="text" name="guess'/> and in the Javascript we get the request parameter by using
cocoon.request.get("guess’);.

Now we increment the player's guess count and we test to see if they guessed the correct number. If the
guess was too high, we set the hint variable telling them to guess lower, we fall through the bottom of
the while loop and we send the guess form back to the player.

If the guess was too low, we tell them to guess higher, we fall through the loop as well sending the
player the form again.

If the guess was correct, we break out of the main loop and send the player to a different view, this
time to "success.jx", and we give the template not only their number and the random number
(pointless, yes, because they were the same), but also the number of guessesto tell the player how
good or bad at guessing numbers they are.

The main point of interest in the Flow script at this point is the use of sendPage() instead of
sendPageAndWait(). sendPage() works exactly the same, except, yes, you guessed it, we don't halt
execution of code and keep processing.

At this point there's no more code |eft and the game is over and the Flow stops.

Another thing to note is the <map:handle-errors> tag in the sitemap. Previously, when a continuation
which did not exist was called, the Flow layer would automatically redirect to the URI
"invalidContinuation”. Now, the Flow layer throws an I nvalidContinuationException and you can now
handle it as described in the handle-errors tag.

And that'sit! Y ou have now just made your very first application using the Flow layer.

1. Comments
add your comments

Page 5

api.html#sendPageAndWait
api.html#sendPageAndWait

	1 Comments

