
.

SRecord

Reference Manual

Peter Miller
millerp@canb.auug.org.au

.

This document describes SRecord version 1.8
and was prepared 30 April 2001.

This document describing the SRecord program, and the SRecord program itself, are
Copyright © 1998, 1999, 2000, 2001 Peter Miller; All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE.See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if
not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111,
USA.

0

Table of Contents(SRecord) Table of Contents(SRecord)

The README file 1
Release Notes 4
The BUILDING file 7

srec_cat(1) manipulateeprom load files 11
srec_cmp(1) comparetwo eprom load files for equality. 19
srec_info(1) informationabout eprom load files. 25
srec_lic(1) GNUGeneral Public License. 30
srec_ascii_hex(5) Ascii-Hex file format 36
srec_intel(5) IntelHexadecimal object file format specification. 37
srec_mos_tech(5) MOSTechnologies file format 44
srec_motorola(5) MotorolaS-Record hexadecimal file format 45
srec_tektronix(5) Tektronix hexadecimal file format 47
srec_tektronix_extended(5) Tektronix Extended hexadecimal file format 49
srec_ti_tagged(5) Texas Instruments Tagged file format 51
srec_wilson(5) wilsonfile format 53

Reference Manual SRecord iii

Table of Contents(SRecord) Table of Contents(SRecord)

srec_info(1) 25 srec info - information about eprom load files

srec_ascii_hex(5) 36 srec ascii hex - Ascii-Hex file format

srec_ascii_hex(5) 36 srec ascii hex - Ascii-Hex file format

srec_cat(1) 11 srec cat - manipulate eprom load files

srec_cmp(1) 19 srec cmp - compare two eprom load files for

equality

srec_cmp(1) 19 srec cmp - compare two eprom load files for equality

srec_cat(1) 11 srec cat - manipulate eprom load files

srec_info(1) 25 srec info - information about eprom load files

srec_cmp(1) 19 srec cmp - compare two eprom load files for equality

srec_cmp(1) 19 srec cmp - compare two eprom load files for equality

srec_tektronix_extended(5) 49 srec tektronix extended - Tektronix Extended hexadecimal

file format

srec_tektronix_extended(5) 49 srec tektronix extended - Tektronix Extended hexadecimal file format

srec_ascii_hex(5) 36 srec ascii hex - Ascii-Hex file format

srec_mos_tech(5) 44 srec mos tech - MOS Technologies file format

srec_motorola(5) 45 srec motorola - Motorola S-Record

hexadecimal

file format

srec_tektronix(5) 47 srec tektronix - Tektronix hexadecimal file format

srec_tektronix_extended(5) 49 srec tektronix extended - Tektronix

Extended hexadecimal

file format

srec_ti_tagged(5) 51 srec ti tagged - Texas Instruments Tagged file format

srec_wilson(5) 53 srec wilson - wilson file format

srec_intel(5) 37 srec intel - Intel Hexadecimal object file format specification

srec_cat(1) 11 srec cat - manipulate eprom loadfiles

srec_info(1) 25 srec info - information about eprom loadfiles

srec_cmp(1) 19 srec cmp - compare two eprom load files for equality

srec_cmp(1) 19 srec cmp - compare two eprom load files for equality

srec_ascii_hex(5) 36 srec ascii hex - Ascii-Hex file format

srec_mos_tech(5) 44 srec mos tech - MOS Technologies file format

srec_motorola(5) 45 srec motorola - Motorola S-Record

hexadecimal file

format

srec_tektronix(5) 47 srec tektronix - Tektronix hexadecimal file format

srec_tektronix_extended(5) 49 srec tektronix extended - Tektronix

Extended hexadecimal file

format

srec_ti_tagged(5) 51 srec ti tagged - Texas Instruments Tagged

file

format

srec_wilson(5) 53 srec wilson - wilson file format

srec_intel(5) 37 srec intel - Intel Hexadecimal object file format specification

srec_ascii_hex(5) 36 srec ascii hex - Ascii-Hex file format

srec_ascii_hex(5) 36 srec ascii hex - Ascii- Hex file format

srec_motorola(5) 45 srec motorola - Motorola S-Record hexadecimal file format

srec_tektronix(5) 47 srec tektronix - Tektronix hexadecimal file format

srec_tektronix_extended(5) 49 srec tektronix extended - Tektronix

Extended

hexadecimal file format

srec_intel(5) 37 srec intel - Intel Hexadecimal object file format specification

Reference Manual SRecord iv

Table of Contents(SRecord) Table of Contents(SRecord)

srec_info(1) 25 srec info - information about eprom load files

srec_info(1) 25 srec info - information about eprom load files

srec_ti_tagged(5) 51 srec ti tagged - Texas Instruments Tagged file format

srec_intel(5) 37 srec intel - Intel Hexadecimal object file format

specification

srec_intel(5) 37 srec intel - Intel Hexadecimal object file format

specification

srec_cat(1) 11 srec cat - manipulate eprom load files

srec_info(1) 25 srec info - information about eprom load files

srec_cmp(1) 19 srec cmp - compare two eprom load files for equality

srec_cat(1) 11 srec cat - manipulate eprom load files

srec_mos_tech(5) 44 srec mos tech - MOS Technologies file format

srec_mos_tech(5) 44 srec mos tech - MOS Technologies file format

srec_motorola(5) 45 srec motorola - Motorola S-Record hexadecimal

file format

srec_motorola(5) 45 srec motorola - Motorola S-Record hexadecimal file format

srec_intel(5) 37 srec intel - Intel Hexadecimal object file format specification

srec_motorola(5) 45 srec motorola - Motorola S- Record hexadecimal file format

srec_intel(5) 37 srec intel - Intel Hexadecimal object file

format

specification

srec_ascii_hex(5) 36 srec ascii hex - Ascii-Hex file format

srec_cat(1) 11 srec cat - manipulate eprom load files

srec_cmp(1) 19 srec cmp - compare two eprom load files for

equality

srec_info(1) 25 srec info - information about eprom load

files

srec_intel(5) 37 srec intel - Intel Hexadecimal object file

format specification

srec_mos_tech(5) 44 srec mos tech - MOS Technologies file

format

srec_motorola(5) 45 srec motorola - Motorola S-Record

hexadecimal file format

srec_tektronix(5) 47 srec tektronix - Tektronix hexadecimal file

format

srec_tektronix_extended(5) 49 srec tektronix extended - Tektronix

Extended hexadecimal file format

srec_ti_tagged(5) 51 srec ti tagged - Texas Instruments Tagged

file format

srec_wilson(5) 53 srec wilson - wilson file format

srec_motorola(5) 45 srec motorola - Motorola S-Record hexadecimal file format

srec_ti_tagged(5) 51 srec ti tagged - Texas Instruments Tagged file

format

srec_ti_tagged(5) 51 srec ti tagged - Texas Instruments Tagged file format

srec_mos_tech(5) 44 srec mos tech - MOS Technologies file format

srec_mos_tech(5) 44 srec mos tech - MOS Technologies file format

Reference Manual SRecord v

Table of Contents(SRecord) Table of Contents(SRecord)

srec_tektronix(5) 47 srec tektronix - Tektronix hexadecimal file

format

srec_tektronix_extended(5) 49 srec tektronix extended - Tektronix Extended

hexadecimal file format

srec_tektronix_extended(5) 49 srec tektronix extended - Tektronix Extended hexadecimal file format

srec_tektronix(5) 47 srec tektronix - Tektronix hexadecimal file format

srec_ti_tagged(5) 51 srec ti tagged - Te xas Instruments Tagged file format

srec_ti_tagged(5) 51 srec ti tagged - Texas Instruments Tagged file

format

srec_cmp(1) 19 srec cmp - compare two eprom load files for equality

srec_wilson(5) 53 srec wilson - wilson file format

srec_wilson(5) 53 srec wilson - wilson file format

Reference Manual SRecord vi

Read Me(SRecord) Read Me(SRecord)

NAME

RSecord − manipulate EPROM load files

DESCRIPTION

TheSRecord package is a collection of powerful tools for manipulating EPROM load files.

I wrote SRecord because when I was looking for programs to manipulate EPROM load files, I could not

find very many. The ones that I could find only did a few of the things I needed.SRecord is written in

C++ and polymorphism is used to provide the file format flexibility and arbitrary filter chaining.Adding

more file formats and filters is relatively simple.

The File Formats
The SRecord package understands a number of file formats:

Ascii-Hex

The ascii-hex format is understood for both reading and writing.(Also known as the ascii-

space-hex format.)

Binary Binaryfiles can both be read and written.

C It is also possible to write a C array declaration which contains the data.This can be useful

when you want to embed download data into another program.This format cannot be read.

Intel TheIntel hexadecimal format is understood for both reading and writing.(Also known as the

Intel MCS-86 Object format.)

MOS Technology

The MOS Technology hexadecimal format is understood for both reading and writing.

Motorola S-Record

The Motorola hexadecimal S-Record format is understood for both reading and writing.(Also

known as the Exorciser, Exormacs or Exormax format.)

Tektronix (Extended)

The Tektronix hexadecimal format and the Tektronix Extended hexadecimal format are both

understood for both reading and writing.

Te xas Instruments Tagged

The Tektronix hexadecimal format is understood for both reading and writing.(Also known as

the TI-tagged or TI-SDSMAC format.)

Wilson TheWilson format is understood for both reading and writing.This mystery format was added

for a mysterious type of EPROM writer.

The Tools
The primary tools of the package aresrec_catandsrec_cmp. All of the tools understand all of the file

formats, and all of the filters.

srec_cat Thesrec_catprogram may be used to catenate (join) EPROM load files, or portions of EPROM

load files, together. Because it understands all of the input and output formats, it can also be

used to convert files from one format to another.

srec_cmp

Thesrec_cmpprogram may be use to compare EPROM load files, or portions of EPROM load

files, for equality.

Reference Manual SRecord 1

Read Me(SRecord) Read Me(SRecord)

srec_info

Thesrec_infoprogram may be used to print summary information about EPROM load files.

The Filters
TheSRecord package is made more powerful by the concept ofnput filters. Wherever an input file may

be specified, filters may also be applied to that input file.The following filters are available:

checksum

Thechecksumfilter may be used to insert the checksum of the data (bitnot, negative or positive)

into the data.

byte swap

Thebyte swapfilter may be used to swap pairs of add and even bytes.

CRC Thecrc filters may be used to insert a CRC into the data.

crop Thecropfilter may be used to isolate an input address range, or ranges, and discard the rest.

exclude Theexcludefilter may be used to exclude an input address range, or ranges, and keep the rest.

fill The fill filter may be used to fill any holes in the data with a nominated value.

length Thelengthfilter may be used to insert the data length into the data.

maximum

Themaximumfilter may be used to insert the maximum data address into the data.

minimum

Theminimumfilter may be used to insert the minimum data address into the data.

offset Theoffsetfilter may be used to offset the address of data records, both forwards and backwards.

split Thesplit filter may be used to split EPROM images for wide data buses or other memory

striping schemes.

unsplit Theunsplitfilter may be reverse the effects of the split filter.

More than one filter may be applied to each input file.Different filters may be applied to each input file.

All filters may be applied to all file formats.

ARCHIVE SITE

The latest version ofSRecord is available on the Web from:

URL: http://www.canb.auug.org.au/˜millerp/srecord/

File: srecord.html # the SRecord page

File: srecord-1.8.README # Description, from the tar file

File: srecord-1.8.lsm # Description, LSM format

File: srecord-1.8.spec # RedHat package specification

File: srecord-1.8.tar.gz #the complete source

File: srecord-1.8.pdf # Reference Manual

This Web page also contains a few other pieces of software written by me.Please have a look if you are

interested.

SRecord is also carried bysunsite.unc.edu in its Linux archives. You will be able to find SRecord

on any of i ts mirrors.

URL: ftp://sunsite.unc.edu/pub/Linux/apps/circuits/

Reference Manual SRecord 2

Read Me(SRecord) Read Me(SRecord)

File: srecord-1.8.README # Description, from the tar file

File: srecord-1.8.lsm # Description, LSM format

File: srecord-1.8.spec # RedHat package specification

File: srecord-1.8.tar.gz #the complete source

File: srecord-1.8.pdf # Reference Manual

This site is extensively mirrored around the world, so look for a copy near you (you will get much better

response).

FTP by EMail
For those of you without Web or FTP access, I recommend the use of an ftp-by-email server. Here is a

list of a few (there may be more):

ftpmail@cs.uow.edu.au Australia

ftpmail@ftp.uni-stuttgart.de Germany

ftpmail@grasp.insa-lyon.fr France

ftpmail@doc.ic.ac.uk GreatBritain

ftpmail@ieunet.ie Ireland

ftpmail@sunsite.unc.edu USA

ftpmail@ftp.uu.net USA

In general, you can get a help message about how to use each system by sending email with a subject of

"help" and a message body containing just the word "help".

BUILDING SRECORD

Full instructions for building SRecord may be found in theBUILDING file included in this distribution.

It is also possible to build SRecord on Windows using the Cygwin (www.cygwin.org) environment.

Instructions are in theBUILDING file, including how to get native Windows binaries.

COPYRIGHT

srecord version 1.8

Copyright © 1998, 1999, 2000, 2001 Peter Miller; All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without

ev en the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,

write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.

It should be in theLICENSEfile included with this distribution.

AUTHOR

Peter Miller E-Mail: millerp@canb.auug.org.au

/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual SRecord 3

Read Me(SRecord) Read Me(SRecord)

RELEASE NOTES

This section details the various features and bug fixes of the various releases.For excruciating and

complete detail, and also credits for those of you who have generously sent me suggestions and bug

reports, see theetc/CHANGES.*files.

Version 1.8
• There is a new ‘‘unfill’ ’ fi lter, which may be used to perform the reverse effect of the ‘‘fill’ ’ fi lter.

• There is a new bit-wise NOT filter, which may be used to invert the data.

• A couple of bugs have been fixed in the CRC filters.

Version 1.7
• The documentation is now in PDF format. This was in order to make it more accessible to a wider

range of people.

• There is a new srec_cat --address-lengthoption, so that you can set the length of the address fields in

the output file.For example, if you always want S3 data records in a Motorola hex file, use --address-

length=4. Thishelps when talking to brain-dead EPROM programmers which do not fully implement the

format specification.

• There is a new --multipleoption to the commands, which permits an input file to contain multiple

(contradictory) values for some memory locations.The last value in the file will be used.

• A problem has been fixed which stopped SRecord from building under Cygwin.

• A bug has been fixed in the C array output.It used to generate invalid output when the input had holes

in the data.

Version 1.6
• A bug has been fixed in the C array output.(Holes in the input caused an invalid C file to be produced.)

• There is are new CRC input filters, both 16-bit and 32-bit, both big and little endian.

• There is a new VHDL output format.

• There are new checksum filters: in addition to the existing one’s complement (bitnot) checksum filter,

there are now neg ative and positive checksum filters.

• The checksum filters are now able to sum over 16-bit and 32-bit values, in addition to the existing byte

sums.

• Thesrec_cmpprogram now has a--verboseoption, which gives more information about how the two

inputs differ.

Version 1.5

Reference Manual SRecord 4

Read Me(SRecord) Read Me(SRecord)

• There is now a command line option to guess the input file format; all of the tools understand this

option.

• The ‘‘MOS Technologies’’ fi le format is now understood for reading and writing.

• The ‘‘Tektronix Extended’’ fi le format is now understood for reading and writing.

• The ‘‘Texas Instruments Tagged’’ fi le format is now understood for reading and writing.(Also known

as the TI-Tagged or SDSMAC format.)

• The ‘‘ascii-hex’’ fi le format is now understood for reading and writing.(Also known as the ascii-space-

hex format.)

• There is a new byte swapinput filter, allowing pairs of odd and even input bytes to be swapped.

• The ‘‘wilson’’ fi le format is now understood for reading and writing.This mystery format was added

for a mysterious type of EPROM writer.

• Thesrec_catprogram now has a-data-only option, which supresses all output except for the data

records. Thishelps when talking to brain-dead EPROM programmers which barf at anything but data.

• There is a new -Line-Lengthoption for thesrec_catprogram, allowing you to specify the maximum

width of output lines.

Version 1.4
• SRecord can now cope with CRLF sequences in Unix files.This was unfortunately common where the

file was generated on a PC, but SRecord was being used on Unix.

Version 1.3
• A bug has been fixed which would cause the crop and exclude filters to dump core sometimes.

• A bug has been fixed where binary files were handled incorrectly on Windows NT (acually, any system

in which text files aren’t the same as binary files).

• There are three new data filters.The --OR filter, which may be used to bit-wise OR a value to each data

byte; the --AND filter, which may be used to bit-wise AND a value to each data byte; and the

--eXclusive-OR filter, which may be used to bit-wise XOR a value to each data byte.

Version 1.2

Reference Manual SRecord 5

Read Me(SRecord) Read Me(SRecord)

• This release includes file format man pages.The web page also includes a PostScript reference manual,

containing all of the man pages.

• The Intel hex format now has full 32-bit support.

• The Tektronix hex format is now supported (only the 16-bit version, Extended tektronix hex is not yet

suppported).

• There is a new split filter, useful for wide data buses and memory striping, and a complementaryunsplit

filter to reverse it.

Version 1.1
First public release.

Reference Manual SRecord 6

Build(SRecord) Build(SRecord)

NAME

SRecord − manipulate EPROM load files

SPACE REQUIREMENTS

You will need about 3MB to unpack and build theSRecord package. Your milage may vary.

BEFORE YOU START

There are a few pieces of software you may want to fetch and install before you proceed with your

installation of SRecord.

GNU Groff

The documentation for theSRecord package was prepared using the GNU Groff package (version

1.14 or later).This distribution includes full documentation, which may be processed into

PostScript or DVI files at install time − if GNU Groff has been installed.

GCC You may also want to consider fetching and installing the GNU C Compiler if you have not done

so already. This is not essential.SRecord was developed using the GNU C++ compiler, and the

GNU C++ libraries.

The GNU FTP archives may be found atftp.gnu.org , and are mirrored around the world.

SITE CONFIGURATION

TheSRecordpackage is configured using theconfigureprogram included in this distribution.

Theconfigureshell script attempts to guess correct values for various system-dependent variables used

during compilation, and creates theMakefileandinclude/config.h files. It also creates a shell script

config.statusthat you can run in the future to recreate the current configuration.

Normally, you justcd to the directory containingSRecord’s source code and then type

% ./configure

...lots of output...

%
If you’re usingcshon an old version of System V, you might need to type

% sh configure

...lots of output...

%
instead to prevent cshfrom trying to executeconfigure itself.

Runningconfigure takes a minute or two. Whileit is running, it prints some messages that tell what it is

doing. If you don’t want to see the messages, runconfigureusing the quiet option; for example,

% ./configure --quiet

%

To compile theSRecordpackage in a different directory from the one containing the source code, you must

use a version ofmake that supports theVPATH variable, such asGNU make. cd to the directory where you

want the object files and executables to go and run theconfigurescript. configureautomatically checks for

the source code in the directory thatconfigure is in and in.. (the parent directory).If for some reason

configure is not in the source code directory that you are configuring, then it will report that it can’t find the

source code.In that case, runconfigurewith the option--srcdir= DIR, whereDIR is the directory that

contains the source code.

By default,configurewill arrange for themake installcommand to install theSRecordpackage’s files in

/usr/local/bin, and /usr/local/man. There are options which allow you to control the placement of these

Reference Manual SRecord 7

Build(SRecord) Build(SRecord)

files.

--prefix= PA TH

This specifies the path prefix to be used in the installation.Defaults to/usr/localunless otherwise

specified.

--exec-prefix= PA TH

You can specify separate installation prefixes for architecture-specific files files.Defaults to

${prefix} unless otherwise specified.

--bindir= PA TH

This directory contains executable programs.On a network, this directory may be shared

between machines with identical hardware and operating systems; it may be mounted read-only.

Defaults to${exec_prefix}/binunless otherwise specified.

--mandir= PA TH

This directory contains the on-line manual entries.On a network, this directory may be shared

between all machines; it may be mounted read-only. Defaults to${prefix}/manunless otherwise

specified.

configure ignores most other arguments that you give it; use the--help option for a complete list.

On systems that require unusual options for compilation or linking that theSRecord package’s configure

script does not know about, you can giveconfigure initial values for variables by setting them in the

environment. InBourne-compatible shells, you can do that on the command line like this:

$ CXX=’g++ -traditional’ LIBS=-lposix ./configure

...lots of output...

$
Here are themakevariables that you might want to override with environment variables when running

configure.

Variable: CXX

C++ compiler program.The default isc++ .

Variable: CPPFLAGS

Preprocessor flags, commonly defines and include search paths.Defaults to empty. It is common

to useCPPFLAGS=-I/usr/local/include to access other installed packages.

Variable: INSTALL

Program to use to install files.The default isinstall if you have it, cpotherwise.

Variable: LIBS

Libraries to link with, in the form-l foo -l bar. Theconfigurescript will append to this, rather

than replace it.It is common to useLIBS=-L/usr/local/lib to access other installed

packages.

If you need to do unusual things to compile the package, the author encourages you to figure out how

configurecould check whether to do them, and mail diffs or instructions to the author so that they can be

included in the next release.

Reference Manual SRecord 8

Build(SRecord) Build(SRecord)

BUILDING SRECORD

All you should need to do is use the

% make

...lots of output...

%
command and wait. Whenthis finishes you should see a directory calledbin containing three files:

srec_cat, srec_cmpandsrec_info.

srec_cat srec_catprogram is used to manipulate and convert EPROM load files.For more information,

seesrec_cat(1).

srec_cmp
Thesrec_cmpprogram is used to compare EPROM load files.For more information, see

srec_cmp(1).

srec_info
Thesrec_infoprogram is used to print information about EPROM load files.For more

information, seesrec_info(1).

If you have GNU Groff installed, the build will also create aetc/reference.psfile. Thiscontains the

README file, this BUILDING file, and all of the man pages.

You can remove the program binaries and object files from the source directory by using the

% make clean

...lots of output...

%
command. To remove all of the above files, and also remove theMakefileandinclude/config.h and

config.statusfiles, use the

% make distclean

...lots of output...

%
command.

The fileetc/configure.in is used to createconfigureby a GNU program calledautoconf. You only need to

know this if you want to regenerateconfigureusing a newer version ofautoconf.

Windows NT
It is possible to build SRecord on MS Windows platforms, using the Cygwin system (see

www.cygwin.org , it’s free). Thisprovides the ‘‘porting layer’’ necessary to run Unix programs on

Windows. Thebuild process is exactly as described above.

If you want to make ‘‘native binaries’’ (i.e. ones which work outside Cygwin) there is one extra step you

need after running edit theMakefilefile, and add-mno-cygwin to the end of theCXX=g++ line.

Once built, Windows (Cygwin) binaries should test in the same way as described in the next section.

TESTING SRECORD

TheSRecord package comes with a test suite.To run this test suite, use the command

% make sure

...lots of output...

Passed All Tests

%

Reference Manual SRecord 9

Build(SRecord) Build(SRecord)

The tests take a few seconds each, with a few very fast, and a couple very slow, but it varies greatly

depending on your CPU.

If all went well, the message

Passed All Tests

should appear at the end of the make.

INSTALLING SRECORD

As explained in theSITE CONFIGURATION section, above, theSRecord package is installed under the

/usr/localtree by default. Usethe--prefix= PA TH option toconfigure if you want some other path.

More specific installation locations are assignable, use the--help option toconfigure for details.

All that is required to install theSRecord package is to use the

% make install

...lots of output...

%
command. Controlof the directories used may be found in the first few lines of theMakefilefile and the

other files written by theconfigurescript; it is best to reconfigure using theconfigurescript, rather than

attempting to do this by hand.

GETTING HELP

If you need assistance with theSRecord package, please do not hesitate to contact the author at

Peter Miller <millerp@canb.auug.org.au>

Any and all feedback is welcome.

When reporting problems, please include the version number given by the

% srec_cat -version

srecord version 1.8.D001

...warranty disclaimer...

%
command. Pleasedo not send this example; run the program for the exact version number.

COPYRIGHT

srecord version 1.8

Copyright © 1998, 1999, 2000, 2001 Peter Miller; All rights reserved.

TheSRecord package is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. Seethe GNU General Public License for more details.

It should be in theLICENSEfile included with this distribution.

AUTHOR

Peter Miller E-Mail: millerp@canb.auug.org.au

/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual SRecord 10

srec_cat(1) srec_cat(1)

NAME

srec_cat − manipulate eprom load files

SYNOPSIS

srec_cat[option...] filename...

srec_cat -Help
srec_cat -VERSion

DESCRIPTION

Thesrec_catprogram is used to assemble the given input files into a single output file.The use of filters

(see below) allows significant manipulations to be performed by this command.

A warning will be emitted for each address wich is redundantly se to the same value. Afatal error will be

issued if any address is set with contradictory values. To supress this behaviour, use an−exclude −within
filter.

INPUT FILE SPECIFICA TIONS

Input files may be qualified in a number of ways: you may specify their format and you may specify filters

to apply to them.An input file specification looks like this:

filename[format][filter ...]

ThefilenameThe filename may be specified as a file name, or the special name ‘‘-’ ’ which is understood to

mean the standard input.

File Formats
Theformat is specified by the argumentafter the file name.The format defaults to Motorola S-Record if

not specified.The format specified are:

−Ascii-Hex
This option says to use the Ascii-Hex format to read the file.Seesrec_ascii_hex(5) for a

description of this file format.

−Binary
This option says the file is a raw binary file, and should be read literally. (May also be written

−Raw.)

−Guess This option may be uased to ask srec_cat to guess the input format.This is slower than

specifying an explicit format, as it may open and close the file a number of times.

−Intel This option says to use the Intel hex format to read the file.Seesrec_intel(5) for a description of

this file format.

−MOS_Technologies
This option says to use the Mos Technologies format to read the file.Seesrec_mos_tech(5) for a

description of this file format.

−Motorola
This option says to use the Motorola S-Record format to read the file.(May also be written −S-

Record.) Seesrec_motorola(5) for a description of this file format.

−Tektronix
This option says to use the Tektronix hex format to read the file.Seesrec_tektronix(5) for a

description of this file format.

Reference Manual SRecord 11

srec_cat(1) srec_cat(1)

−Tektronix_Extended
This option says to use the Tektronix extended hex format to read the file.See

srec_tektronix_extended(5) for a description of this file format.

−Texas_Instruments_Tagged
This option says to use the Texas Instruments Tagged format to read the file.See

srec_ti_tagged(5) for a description of this file format.

−WILson
This option says to use the wilson format to read the file.Seesrec_wilson(5) for a description of

this file format.

Input Filters
You may specify zero or morefilters to be applied.Filters are applied in the order the user specifies.

−Big_Endian_Checksum_BitNotaddress[nbytes[width]]

This filter may be used to insert the one’s complement checksum of the data into the data, most

significant byte first.The data is literaly summed; if there are duplicate bytes, this will produce

an incorrect result, if there are holes, it will be as if they were filled with zeros.If the data

already contains bytes at the checksum location, you need to use an exclude filter, or this will

generate errors.You need to apply and crop or fill filters before this filter. The value will be

written with the most significant byte first.The number of bytes of resulting checksum defaults

to 4. The width (the width in bytes of the values being summed) defaults to 1.

−Big_Endian_Checksum_Negativeaddress[nbytes[width]]

This filter may be used to insert the two’s complement (negative) checksum of the data into the

data. Otherwisesimilar to the above.

−Big_Endian_Checksum_Positiveaddress[nbytes[width]]

This filter may be used to insert the simple checksum of the data into the data.Otherwise similar

to the above.

−Little_Endian_Checksum_BitNot address[nbytes[width]]

This filter may be used to insert the one’s complement (bitnot) checksum of the data into the data,

least significant byte first.Otherwise similar to the above.

−Little_Endian_Checksum_Negativeaddress[nbytes[width]]

This filter may be used to insert the two’s complement (negative) checksum of the data into the

data. Otherwisesimilar to the above.

−Little_Endian_Checksum_Negativeaddress[nbytes[width]]

This filter may be used to insert the simple checksum of the data into the data.Otherwise similar

to the above.

−Byte_Swap
This filter may be used to swap pairs of odd and even bytes.

−Big_Endian_CRC16address

This filter may be used to insert an industry standard 16-bit CRC checksum of the data into the

data. Two bytes, big-endian order, are inserted at the address given. Holesin the input data are

ignored. Bytesare processed in ascending address order (not in the order they appear in the

input).

Reference Manual SRecord 12

srec_cat(1) srec_cat(1)

−Big_Endian_CRC16address

As above, except little-endian order.

−Big_Endian_CRC32address

This filter may be used to insert an industry standard 32-bit CRC checksum of the data into the

data. Four bytes, big-endian order, are inserted at the address given. Holesin the input data are

ignored. Bytesare processed in ascending address order (not in the order they appear in the

input).

−Big_Endian_CRC32address

As above, except little-endian order.

−Crop address-range

This filter may be used to isolate a section of data, and discard the rest.

−Excludeaddress-range

This filter may be used to exclude a section of data, and keep the rest.The is the logical

complement of the−Crop filter.

−Fill value address-range

This filter may be used to fill any gaps in the data with bytes equal tovalue. The fill will only

occur in the address range given.

−UnFill value[min-run-length]

This filter may be used to create gaps in the data with bytes equal tovalue. You can think of it as

reversing the effects of the−Fill filter. The gaps will only be created if the are at leastmin-run-

lengthbytes in a row (defaults to 1).

−AND value

This filter may be used to bit-wise AND avalueto every data byte.This is useful if you need to

clear bits.Only existing data is altered, no holes are filled.

−eXclusive-OR value

This filter may be used to bit-wise XOR avalueto every data byte.This is useful if you need to

invert bits. Only existing data is altered, no holes are filled.

−OR value

This filter may be used to bit-wise OR avalueto every data byte.This is useful if you need to set

bits. Onlyexisting data is altered, no holes are filled.

−NOT This filter may be used to bit-wise NOT the value of every data byte.This is useful if you need to

invert the data.Only existing data is altered, no holes are filled.

−Big_Endian_Lengthaddress[nbytes]

This filter may be used to insert the length of the data (high water minus low water) into the data.

This includes the length itself.If the data already contains bytes at the length location, you need

to use an exclude filter, or this will generate errors.The value will be written with the most

significant byte first.The number of bytes defaults to 4.

−Little_Endian_Length address[nbytes]

As above, howev er the value will be written with the least significant byte first.

−Big_Endian_MAXimum address[nbytes]

This filter may be used to insert the maximum address of the data (high water

+ 1) into the data.This includes the maximum itself.If the data already contains bytes at the

Reference Manual SRecord 13

srec_cat(1) srec_cat(1)

given address, you need to use an exclude filter, or this will generate errors.The value will be

written with the most significant byte first.The number of bytes defaults to 4.

−Little_Endian_MAXimum address[nbytes]

As above, howev er the value will be written with the least significant byte first.

−Big_Endian_MINimum address[nbytes]

This filter may be used to insert the minimum address of the data (low water) into the data.This

includes the minimum itself.If the data already contains bytes at the given address, you need to

use an exclude filter, or this will generate errors.The value will be written with the most

significant byte first.The number of bytes defaults to 4.

−Little_Endian_MINimum address[nbytes]

As above, howev er the value will be written with the least significant byte first.

−OFfsetnbytes

This filter may be used to offset the addresses by the given number of bytes.No data is lost, the

addresses will wrap around in 32 bits, if necessary.

−SPlit multiple[offset[width]]

This filter may be used to split the input into a subset of the data, and compress the address range

so as to leave no gaps. Thisuseful for wide data buses and memory striping.Themultiple is the

bytes multiple to split over, theoffsetis the byte offset into this range (defaults to 0), thewidth is

the number of bytes to extract (defaults to 1) within the multiple.In order to leave no gaps, the

output addresses are (width / multiple) times the input addresses.

−Un_SPlit multiple[offset[width]]

This filter may be used to reverse the effects of the split filter. The arguments are identical.Note

that the address range is expanded (multiple/ width) times, leaving holes between the stripes.

Addr ess Ranges
There are three ways to specify an address range:

minimum maximum

If you specify two number on the command line (decimal, octal and hexadecimal are understood,

using the C conventions) this is an explicit address range.The minimum is inclusive, the

maximum is exclusive (one more then the last address).If the maximum is given as zero then the

range extends to the end of the address space.

−Within input-specification

This says to use the specified input file as a mask.The crop region includes all the places the

specified input has data, and holes where it has holes.The input specification need not be just a

file name, it may be anything any other input specification can be.

−OVER input-specification

This says to use the specified input file as a mask.The crop region extends from the minimum to

the maximum address used by the input, and fills any holes. Theinput specification need not be

just a file name, it may be anything any other input specification can be.

In addition, all of these methods may be used, and used more than once, and the results will be added

together.

Reference Manual SRecord 14

srec_cat(1) srec_cat(1)

OPTIONS

The following options are understood:

−Output filename[format]

This option may be used to specify the output file to be used.The special file name ‘‘-’ ’ i s

understood to mean the standard output.Output defaults to the standard output if this option is

not used.

Theformatmay be specified as:

−Ascii_Hex
An Ascii-Hex file will be written. (Seesrec_ascii_hex(5) for a description of this file

format.)

−Binary
A raw binary file will be written.

−C-Array identifier

A C array declaration will be written.The identifier is the name of the variable to be

defined.

−WILson
A wilson format file will be written.(Seesrec_wilson(5) for a description of this file

format.)

−Intel An Intel hex format file will be written.(Seesrec_intel(5) for a description of this file

format.)

−MOS_Technologies
An Mos Technologies format file will be written.(Seesrec_mos_tech(5) for a

description of this file format.)

−Motorola
A Motorola S-Record file will be written.(Seesrec_motorola(5) for a description of

this file format.)This is the default.

−Tektronix
A Tektronix hex format file will be written.(Seesrec_tektronix(5) for a description of

this file format.)

−Tektronix_Extended
A Tektronix extended hex format file will be written.(Seesrec_tektronix_extended(5)

for a description of this file format.)

−Texas_Instruments_Tagged
A TI-Tagged format file will be written.(Seesrec_ti_tagged(5) for a description of this

file format.)

−VHdl [bytes-per-word [name]]

A VHDL format file will be written.Thebytes-per-word defaaults to one, thename

defaults toeprom . Theetc/x_defs_pack.vhdfile in the source distribution contains an

example ROM definitions pack for the type-independent output.

Reference Manual SRecord 15

srec_cat(1) srec_cat(1)

−Address_Lengthnumber

This option many be used to specify the minimum number of bytes to be used in the output to

represent an address (padding with leading zeros if necessary).This helps when talking to brain-

dead EPROM programmers which do not fully implement the format specification.

−Data_Only
This option may be used to suppress all output except data fields.This helps when talking to

brain-dead EPROM programmers which do not fully implement the format specification.

-Line_Length number

This option may be used to limit the length of the output lines to at mostnumberP characters.

(Not meaningful for binary file format.)Defaults to something less than 80 characters,

depending on the format.

−MULTiple
Use this option to permit a file to contain multiple (contradictory) values for some memory

locations. Awarning will be printed.The last value in the file will be used.The default is for

this condition to be a fatal error.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case

letters and underscores (_) are optional.You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,

case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the-Help option. The

argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood.Since all option names forsrec_catare long, this means

ignoring the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS

Thesrec_catcommand will exit with a status of 1 on any error. Thesrec_catcommand will only exit with

a status of 0 if there are no errors.

EXAMPLES

Thesrec_catcommand is very powerful, due to the ability to combine the the input filters in almost

unlimited ways.

Converting File Formats
The simplest case is converting files from Intel hex format to Motorola S-Record format:

srec_cat intel-file -intel -o srec-file

Converting the other was is just as simple:

srec_cat srec-file -o intel-file -intel

In each case, the default format is Motorola S-Record format, so it does not need to be specified.

Cropping the Data
A common activity is to crop your data to match your EPROM location. Your linker may add other junk

that you are not interested in,e.g. at the RAM location.In this example, there is a 1MB EPROM at the

2MB boundary:

srec_cat infile -crop 0x200000 0x300000 -o outfile

Reference Manual SRecord 16

srec_cat(1) srec_cat(1)

The lower bound is inclusive, the upper bound is exclusive.

Addr ess Offset
Just possibly, you have a moronic EPROM programmer, and it barfs if the eprom doesn’t start at zero.

Rather than butcher the linker command file, just offset the addresses:

srec_cat infile -crop 0x200000 0x300000 -offset -0x200000 -o outfile

This example also demonstrates how the input filters may be chained together.

Filling the Blanks
It is possible to fill the blanks where our data does not lie.The simplest example of this fills the entire

EPROM:

srec_cat infile -fill 0x00 0x200000 0x300000 -o outfile

This example fills the holes, if any, with zeros.You must specify a range - with a 32-bit address space,

filling everything generateshuge load files.

If you only want to fill the gaps in your data, and don’t want to fill the entire EPROM, try:

srec_cat infile -fill 0x00 -over infile -o outfile

This example demonstrates the fact that wherever an address range may be specified, the−over and

−within options may be used.

Unfilling the Blanks
It is common to need to ‘‘unfill’ ’ an eprom image after you read it out of a chip.Usually, it will have had

all the holes filled with 0xFF (areas of the EPROM you don’t program show as 0xFF when you read them

back).

To get rid of all the 0xFF bytes in the data, use this filter:

srec_cat infile -unfill 0xFF -o outfile

This will get rid ofall the 0xFF bytes, including the ones you actually wanted in there.There are two ways

to deal with this.First, you can specify a minimum run length to the un-fill:

srec_cat infile -unfill 0xFF 5 -o outfile

This says that runs of 1 to 4 bytes of 0xFF are OK, and that a hole should only be created for runs of 5 or

more 0xFF bytes in a row. The second method is to re-fill over the intermediate gaps:

srec_cat outile -fill 0xFF -over outfile -o outfile2

Which method you choose depends on your needs, and the shape of the data in your EPROM. You may

need to combine both techniques.

Splitting an Image
If you have a 16-bit data bus, but you are using two 8-bit EPROMs to hold your firmware, you can generate

the even and odd images by using the −SPlit filter. Assuming your firmware is in thefirmware.hex file, use

the following:

srec_cat firmware.hex -split 2 0 -o firmware.even.hex

srec_cat firmware.hex -split 2 1 -o firmware.odd.hex

This will result in the two necessary EPROM images.Note that the output addresses are divided by the

split multiple, so if your EPROM images are at a particular offset (say 0x10000, in the following example),

you need to remove the offset, and then replace it...

srec_cat firmware.hex \

-offset -0x10000 -split 2 0 \

-offset 0x10000 -o firmware.even.hex

srec_cat firmware.hex \

-offset -0x10000 -split 2 1 \

Reference Manual SRecord 17

srec_cat(1) srec_cat(1)

-offset 0x10000 -o firmware.odd.hex

Note how the ability to apply multiple filters simplifies what would otherwise be a much longer script.

A second use for the −SPlit filter is memory striping.In this example, the hardware requires that 512-byte

blocks alternate between 4 EPROMs. Generatingthe 4 images would be done as follows:

srec_cat firmware.hex -split 0x800 0x000 0x200 -o firmware.0.hex

srec_cat firmware.hex -split 0x800 0x200 0x200 -o firmware.1.hex

srec_cat firmware.hex -split 0x800 0x400 0x200 -o firmware.2.hex

srec_cat firmware.hex -split 0x800 0x600 0x200 -o firmware.3.hex

The unsplit filter may be used to reverse the effects of the split filter. Note that the address range is

expanded leaving holes between the stripes.By using all the stripes, the complete input is reassembled,

without any holes. For example, to reverse our previous 16-bit data bus example, use the following

command:

srec_cat -o firmware.hex \

firmware.even.hex -unsplit 2 0 \

firmware.odd.hex -unsplit 2 1

COPYRIGHT

srec_catversion 1.8

Copyright © 1998, 1999, 2000, 2001 Peter Miller;

All rights reserved.

Thesrec_catprogram comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat

-VERSion License’ command. Thisis free software and you are welcome to redistribute it under certain

conditions; for details use the ’srec_cat -VERSion License’ command.

AUTHOR

Peter Miller E-Mail: millerp@canb.auug.org.au

/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual SRecord 18

srec_cmp(1) srec_cmp(1)

NAME

srec_cmp − compare two eprom load files for equality

SYNOPSIS

srec_cmp[option...] filename...

srec_cmp -Help
srec_cmp -VERSion

DESCRIPTION

Thesrec_cmpprogram is used to compare two eprom load files for equality. This comparison is performed

irrespective of the load order of the data in each of the files.

INPUT FILE SPECIFICA TIONS

Input files may be qualified in a number of ways: you may specify their format and you may specify filters

to apply to them.An input file specification looks like this:

filename[format][filter ...]

ThefilenameThe filename may be specified as a file name, or the special name ‘‘-’ ’ which is understood to

mean the standard input.

File Formats
Theformat is specified by the argumentafter the file name.The format defaults to Motorola S-Record if

not specified.The format specified are:

−Ascii-Hex
This option says to use the Ascii-Hex format to read the file.Seesrec_ascii_hex(5) for a

description of this file format.

−Binary
This option says the file is a raw binary file, and should be read literally. (May also be written

−Raw.)

−Guess This option may be uased to ask srec_cmp to guess the input format.This is slower than

specifying an explicit format, as it may open and close the file a number of times.

−Intel This option says to use the Intel hex format to read the file.Seesrec_intel(5) for a description of

this file format.

−MOS_Technologies
This option says to use the Mos Technologies format to read the file.Seesrec_mos_tech(5) for a

description of this file format.

−Motorola
This option says to use the Motorola S-Record format to read the file.(May also be written −S-

Record.) Seesrec_motorola(5) for a description of this file format.

−Tektronix
This option says to use the Tektronix hex format to read the file.Seesrec_tektronix(5) for a

description of this file format.

−Tektronix_Extended
This option says to use the Tektronix extended hex format to read the file.See

srec_tektronix_extended(5) for a description of this file format.

Reference Manual SRecord 19

srec_cmp(1) srec_cmp(1)

−Texas_Instruments_Tagged
This option says to use the Texas Instruments Tagged format to read the file.See

srec_ti_tagged(5) for a description of this file format.

−WILson
This option says to use the wilson format to read the file.Seesrec_wilson(5) for a description of

this file format.

Input Filters
You may specify zero or morefilters to be applied.Filters are applied in the order the user specifies.

−Big_Endian_Checksum_BitNotaddress[nbytes[width]]

This filter may be used to insert the one’s complement checksum of the data into the data, most

significant byte first.The data is literaly summed; if there are duplicate bytes, this will produce

an incorrect result, if there are holes, it will be as if they were filled with zeros.If the data

already contains bytes at the checksum location, you need to use an exclude filter, or this will

generate errors.You need to apply and crop or fill filters before this filter. The value will be

written with the most significant byte first.The number of bytes of resulting checksum defaults

to 4. The width (the width in bytes of the values being summed) defaults to 1.

−Big_Endian_Checksum_Negativeaddress[nbytes[width]]

This filter may be used to insert the two’s complement (negative) checksum of the data into the

data. Otherwisesimilar to the above.

−Big_Endian_Checksum_Positiveaddress[nbytes[width]]

This filter may be used to insert the simple checksum of the data into the data.Otherwise similar

to the above.

−Little_Endian_Checksum_BitNot address[nbytes[width]]

This filter may be used to insert the one’s complement (bitnot) checksum of the data into the data,

least significant byte first.Otherwise similar to the above.

−Little_Endian_Checksum_Negativeaddress[nbytes[width]]

This filter may be used to insert the two’s complement (negative) checksum of the data into the

data. Otherwisesimilar to the above.

−Little_Endian_Checksum_Negativeaddress[nbytes[width]]

This filter may be used to insert the simple checksum of the data into the data.Otherwise similar

to the above.

−Byte_Swap
This filter may be used to swap pairs of odd and even bytes.

−Big_Endian_CRC16address

This filter may be used to insert an industry standard 16-bit CRC checksum of the data into the

data. Two bytes, big-endian order, are inserted at the address given. Holesin the input data are

ignored. Bytesare processed in ascending address order (not in the order they appear in the

input).

−Big_Endian_CRC16address

As above, except little-endian order.

Reference Manual SRecord 20

srec_cmp(1) srec_cmp(1)

−Big_Endian_CRC32address

This filter may be used to insert an industry standard 32-bit CRC checksum of the data into the

data. Four bytes, big-endian order, are inserted at the address given. Holesin the input data are

ignored. Bytesare processed in ascending address order (not in the order they appear in the

input).

−Big_Endian_CRC32address

As above, except little-endian order.

−Crop address-range

This filter may be used to isolate a section of data, and discard the rest.

−Excludeaddress-range

This filter may be used to exclude a section of data, and keep the rest.The is the logical

complement of the−Crop filter.

−Fill value address-range

This filter may be used to fill any gaps in the data with bytes equal tovalue. The fill will only

occur in the address range given.

−UnFill value[min-run-length]

This filter may be used to create gaps in the data with bytes equal tovalue. You can think of it as

reversing the effects of the−Fill filter. The gaps will only be created if the are at leastmin-run-

lengthbytes in a row (defaults to 1).

−AND value

This filter may be used to bit-wise AND avalueto every data byte.This is useful if you need to

clear bits.Only existing data is altered, no holes are filled.

−eXclusive-OR value

This filter may be used to bit-wise XOR avalueto every data byte.This is useful if you need to

invert bits. Only existing data is altered, no holes are filled.

−OR value

This filter may be used to bit-wise OR avalueto every data byte.This is useful if you need to set

bits. Onlyexisting data is altered, no holes are filled.

−NOT This filter may be used to bit-wise NOT the value of every data byte.This is useful if you need to

invert the data.Only existing data is altered, no holes are filled.

−Big_Endian_Lengthaddress[nbytes]

This filter may be used to insert the length of the data (high water minus low water) into the data.

This includes the length itself.If the data already contains bytes at the length location, you need

to use an exclude filter, or this will generate errors.The value will be written with the most

significant byte first.The number of bytes defaults to 4.

−Little_Endian_Length address[nbytes]

As above, howev er the value will be written with the least significant byte first.

−Big_Endian_MAXimum address[nbytes]

This filter may be used to insert the maximum address of the data (high water

+ 1) into the data.This includes the maximum itself.If the data already contains bytes at the

given address, you need to use an exclude filter, or this will generate errors.The value will be

written with the most significant byte first.The number of bytes defaults to 4.

Reference Manual SRecord 21

srec_cmp(1) srec_cmp(1)

−Little_Endian_MAXimum address[nbytes]

As above, howev er the value will be written with the least significant byte first.

−Big_Endian_MINimum address[nbytes]

This filter may be used to insert the minimum address of the data (low water) into the data.This

includes the minimum itself.If the data already contains bytes at the given address, you need to

use an exclude filter, or this will generate errors.The value will be written with the most

significant byte first.The number of bytes defaults to 4.

−Little_Endian_MINimum address[nbytes]

As above, howev er the value will be written with the least significant byte first.

−OFfsetnbytes

This filter may be used to offset the addresses by the given number of bytes.No data is lost, the

addresses will wrap around in 32 bits, if necessary.

−SPlit multiple[offset[width]]

This filter may be used to split the input into a subset of the data, and compress the address range

so as to leave no gaps. Thisuseful for wide data buses and memory striping.Themultiple is the

bytes multiple to split over, theoffsetis the byte offset into this range (defaults to 0), thewidth is

the number of bytes to extract (defaults to 1) within the multiple.In order to leave no gaps, the

output addresses are (width / multiple) times the input addresses.

−Un_SPlit multiple[offset[width]]

This filter may be used to reverse the effects of the split filter. The arguments are identical.Note

that the address range is expanded (multiple/ width) times, leaving holes between the stripes.

Addr ess Ranges
There are three ways to specify an address range:

minimum maximum

If you specify two number on the command line (decimal, octal and hexadecimal are understood,

using the C conventions) this is an explicit address range.The minimum is inclusive, the

maximum is exclusive (one more then the last address).If the maximum is given as zero then the

range extends to the end of the address space.

−Within input-specification

This says to use the specified input file as a mask.The crop region includes all the places the

specified input has data, and holes where it has holes.The input specification need not be just a

file name, it may be anything any other input specification can be.

−OVER input-specification

This says to use the specified input file as a mask.The crop region extends from the minimum to

the maximum address used by the input, and fills any holes. Theinput specification need not be

just a file name, it may be anything any other input specification can be.

In addition, all of these methods may be used, and used more than once, and the results will be added

together.

Reference Manual SRecord 22

srec_cmp(1) srec_cmp(1)

OPTIONS

The following options are understood:

-Help
Provide some help with using thesrec_cmpprogram.

−MULTiple
Use this option to permit a file to contain multiple (contradictory) values for some memory

locations. Awarning will be printed.The last value in the file will be used.The default is for

this condition to be a fatal error.

-VERSion
Print the version of thesrec_cmpprogram being executed.

-Verbose
This option may be used to obtain more information about how and where the two files differ.

Please note that this takes longer, and the output can be voluminous.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case

letters and underscores (_) are optional.You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,

case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the-Help option. The

argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood.Since all option names forsrec_cmpare long, this means

ignoring the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS

Thesrec_cmpcommand will exit with a status of 1 on any error. Thesrec_cmpcommand will only exit

with a status of 0 if there are no errors.

EXAMPLE

A common use for thesrec_cmpcommand is to verify that a particular signature is present in the code.In

this example, the signature is in a file called‘‘signature’’, and the EPROM image is in a file called ‘‘image’’.

We assume they are both Motorola S-Record format, although this will work for all formats:

srec_cmp signature image -crop -within signature

The signature need not be at the start of memory, nor need it be one single contiguous piece of memory. In

the above example, the portions of the image which have the same address range as the signature are

compared with the signature.

COPYRIGHT

srec_cmpversion 1.8

Copyright © 1998, 1999, 2000, 2001 Peter Miller;

All rights reserved.

Thesrec_cmpprogram comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cmp

-VERSion License’ command. Thisis free software and you are welcome to redistribute it under certain

conditions; for details use the ’srec_cmp -VERSion License’ command.

Reference Manual SRecord 23

srec_cmp(1) srec_cmp(1)

AUTHOR

Peter Miller E-Mail: millerp@canb.auug.org.au

/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual SRecord 24

srec_info(1) srec_info(1)

NAME

srec_info − information about eprom load files

SYNOPSIS

srec_info [option...] filename...

srec_info -Help
srec_info -VERSion

DESCRIPTION

Thesrec_infoprogram is used to obtain input about eprom load files.It reads the files specified, and then

presents statistics about them.These statistics include: the file header if any, the start address if any, and

the address ranges covered by the data if any.

INPUT FILE SPECIFICA TIONS

Input files may be qualified in a number of ways: you may specify their format and you may specify filters

to apply to them.An input file specification looks like this:

filename[format][filter ...]

ThefilenameThe filename may be specified as a file name, or the special name ‘‘-’ ’ which is understood to

mean the standard input.

File Formats
Theformat is specified by the argumentafter the file name.The format defaults to Motorola S-Record if

not specified.The format specified are:

−Ascii-Hex
This option says to use the Ascii-Hex format to read the file.Seesrec_ascii_hex(5) for a

description of this file format.

−Binary
This option says the file is a raw binary file, and should be read literally. (May also be written

−Raw.)

−Guess This option may be uased to ask srec_info to guess the input format.This is slower than

specifying an explicit format, as it may open and close the file a number of times.

−Intel This option says to use the Intel hex format to read the file.Seesrec_intel(5) for a description of

this file format.

−MOS_Technologies
This option says to use the Mos Technologies format to read the file.Seesrec_mos_tech(5) for a

description of this file format.

−Motorola
This option says to use the Motorola S-Record format to read the file.(May also be written −S-

Record.) Seesrec_motorola(5) for a description of this file format.

−Tektronix
This option says to use the Tektronix hex format to read the file.Seesrec_tektronix(5) for a

description of this file format.

−Tektronix_Extended
This option says to use the Tektronix extended hex format to read the file.See

srec_tektronix_extended(5) for a description of this file format.

Reference Manual SRecord 25

srec_info(1) srec_info(1)

−Texas_Instruments_Tagged
This option says to use the Texas Instruments Tagged format to read the file.See

srec_ti_tagged(5) for a description of this file format.

−WILson
This option says to use the wilson format to read the file.Seesrec_wilson(5) for a description of

this file format.

Input Filters
You may specify zero or morefilters to be applied.Filters are applied in the order the user specifies.

−Big_Endian_Checksum_BitNotaddress[nbytes[width]]

This filter may be used to insert the one’s complement checksum of the data into the data, most

significant byte first.The data is literaly summed; if there are duplicate bytes, this will produce

an incorrect result, if there are holes, it will be as if they were filled with zeros.If the data

already contains bytes at the checksum location, you need to use an exclude filter, or this will

generate errors.You need to apply and crop or fill filters before this filter. The value will be

written with the most significant byte first.The number of bytes of resulting checksum defaults

to 4. The width (the width in bytes of the values being summed) defaults to 1.

−Big_Endian_Checksum_Negativeaddress[nbytes[width]]

This filter may be used to insert the two’s complement (negative) checksum of the data into the

data. Otherwisesimilar to the above.

−Big_Endian_Checksum_Positiveaddress[nbytes[width]]

This filter may be used to insert the simple checksum of the data into the data.Otherwise similar

to the above.

−Little_Endian_Checksum_BitNot address[nbytes[width]]

This filter may be used to insert the one’s complement (bitnot) checksum of the data into the data,

least significant byte first.Otherwise similar to the above.

−Little_Endian_Checksum_Negativeaddress[nbytes[width]]

This filter may be used to insert the two’s complement (negative) checksum of the data into the

data. Otherwisesimilar to the above.

−Little_Endian_Checksum_Negativeaddress[nbytes[width]]

This filter may be used to insert the simple checksum of the data into the data.Otherwise similar

to the above.

−Byte_Swap
This filter may be used to swap pairs of odd and even bytes.

−Big_Endian_CRC16address

This filter may be used to insert an industry standard 16-bit CRC checksum of the data into the

data. Two bytes, big-endian order, are inserted at the address given. Holesin the input data are

ignored. Bytesare processed in ascending address order (not in the order they appear in the

input).

−Big_Endian_CRC16address

As above, except little-endian order.

Reference Manual SRecord 26

srec_info(1) srec_info(1)

−Big_Endian_CRC32address

This filter may be used to insert an industry standard 32-bit CRC checksum of the data into the

data. Four bytes, big-endian order, are inserted at the address given. Holesin the input data are

ignored. Bytesare processed in ascending address order (not in the order they appear in the

input).

−Big_Endian_CRC32address

As above, except little-endian order.

−Crop address-range

This filter may be used to isolate a section of data, and discard the rest.

−Excludeaddress-range

This filter may be used to exclude a section of data, and keep the rest.The is the logical

complement of the−Crop filter.

−Fill value address-range

This filter may be used to fill any gaps in the data with bytes equal tovalue. The fill will only

occur in the address range given.

−UnFill value[min-run-length]

This filter may be used to create gaps in the data with bytes equal tovalue. You can think of it as

reversing the effects of the−Fill filter. The gaps will only be created if the are at leastmin-run-

lengthbytes in a row (defaults to 1).

−AND value

This filter may be used to bit-wise AND avalueto every data byte.This is useful if you need to

clear bits.Only existing data is altered, no holes are filled.

−eXclusive-OR value

This filter may be used to bit-wise XOR avalueto every data byte.This is useful if you need to

invert bits. Only existing data is altered, no holes are filled.

−OR value

This filter may be used to bit-wise OR avalueto every data byte.This is useful if you need to set

bits. Onlyexisting data is altered, no holes are filled.

−NOT This filter may be used to bit-wise NOT the value of every data byte.This is useful if you need to

invert the data.Only existing data is altered, no holes are filled.

−Big_Endian_Lengthaddress[nbytes]

This filter may be used to insert the length of the data (high water minus low water) into the data.

This includes the length itself.If the data already contains bytes at the length location, you need

to use an exclude filter, or this will generate errors.The value will be written with the most

significant byte first.The number of bytes defaults to 4.

−Little_Endian_Length address[nbytes]

As above, howev er the value will be written with the least significant byte first.

−Big_Endian_MAXimum address[nbytes]

This filter may be used to insert the maximum address of the data (high water

+ 1) into the data.This includes the maximum itself.If the data already contains bytes at the

given address, you need to use an exclude filter, or this will generate errors.The value will be

written with the most significant byte first.The number of bytes defaults to 4.

Reference Manual SRecord 27

srec_info(1) srec_info(1)

−Little_Endian_MAXimum address[nbytes]

As above, howev er the value will be written with the least significant byte first.

−Big_Endian_MINimum address[nbytes]

This filter may be used to insert the minimum address of the data (low water) into the data.This

includes the minimum itself.If the data already contains bytes at the given address, you need to

use an exclude filter, or this will generate errors.The value will be written with the most

significant byte first.The number of bytes defaults to 4.

−Little_Endian_MINimum address[nbytes]

As above, howev er the value will be written with the least significant byte first.

−OFfsetnbytes

This filter may be used to offset the addresses by the given number of bytes.No data is lost, the

addresses will wrap around in 32 bits, if necessary.

−SPlit multiple[offset[width]]

This filter may be used to split the input into a subset of the data, and compress the address range

so as to leave no gaps. Thisuseful for wide data buses and memory striping.Themultiple is the

bytes multiple to split over, theoffsetis the byte offset into this range (defaults to 0), thewidth is

the number of bytes to extract (defaults to 1) within the multiple.In order to leave no gaps, the

output addresses are (width / multiple) times the input addresses.

−Un_SPlit multiple[offset[width]]

This filter may be used to reverse the effects of the split filter. The arguments are identical.Note

that the address range is expanded (multiple/ width) times, leaving holes between the stripes.

Addr ess Ranges
There are three ways to specify an address range:

minimum maximum

If you specify two number on the command line (decimal, octal and hexadecimal are understood,

using the C conventions) this is an explicit address range.The minimum is inclusive, the

maximum is exclusive (one more then the last address).If the maximum is given as zero then the

range extends to the end of the address space.

−Within input-specification

This says to use the specified input file as a mask.The crop region includes all the places the

specified input has data, and holes where it has holes.The input specification need not be just a

file name, it may be anything any other input specification can be.

−OVER input-specification

This says to use the specified input file as a mask.The crop region extends from the minimum to

the maximum address used by the input, and fills any holes. Theinput specification need not be

just a file name, it may be anything any other input specification can be.

In addition, all of these methods may be used, and used more than once, and the results will be added

together.

Reference Manual SRecord 28

srec_info(1) srec_info(1)

OPTIONS

The following options are understood:

-Help
Provide some help with using thesrec_infoprogram.

−MULTiple
Use this option to permit a file to contain multiple (contradictory) values for some memory

locations. Awarning will be printed.The last value in the file will be used.The default is for

this condition to be a fatal error.

-VERSion
Print the version of thesrec_infoprogram being executed.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case

letters and underscores (_) are optional.You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,

case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the-Help option. The

argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood.Since all option names forsrec_infoare long, this means

ignoring the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS

Thesrec_infocommand will exit with a status of 1 on any error. Thesrec_infocommand will only exit

with a status of 0 if there are no errors.

COPYRIGHT

srec_infoversion 1.8

Copyright © 1998, 1999, 2000, 2001 Peter Miller;

All rights reserved.

Thesrec_infoprogram comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_info

-VERSion License’ command. Thisis free software and you are welcome to redistribute it under certain

conditions; for details use the ’srec_info -VERSion License’ command.

AUTHOR

Peter Miller E-Mail: millerp@canb.auug.org.au

/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual SRecord 29

GPL(GNU) FreeSoftware Foundation GPL(GNU)

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is

not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.By contrast,

the GNU General Public License is intended to guarantee your freedom to share and change free

software--to make sure the software is free for all its users.This General Public License applies to most of

the Free Software Foundation’s software and to any other program whose authors commit to using it.

(Some other Free Software Foundation software is covered by the GNU Library General Public License

instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price.Our General Public Licenses are

designed to make sure that you have the freedom to distribute copies of free software (and charge for this

service if you wish), that you receive source code or can get it if you want it, that you can change the

software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask

you to surrender the rights.These restrictions translate to certain responsibilities for you if you distribute

copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the

recipients all the rights that you have. You must make sure that they, too, receive or can get the source

code. Andyou must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives

you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is

no warranty for this free software. Ifthe software is modified by someone else and passed on, we want its

recipients to know that what they hav eis not the original, so that any problems introduced by others will

not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents.We wish to avoid the danger that

redistributors of a free program will individually obtain patent licenses, in effect making the program

proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use

or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GPL 30

GPL(GNU) FreeSoftware Foundation GPL(GNU)

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright

holder saying it may be distributed under the terms of this General Public License.The "Program", below,

refers to any such program or work, and a "work based on the Program" means either the Program or any

derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either

verbatim or with modifications and/or translated into another language.(Hereinafter, translation is included

without limitation in the term "modification".)Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are

outside its scope.The act of running the Program is not restricted, and the output from the Program is

covered only if its contents constitute a work based on the Program (independent of having been made by

running the Program).Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any

medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright

notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of

any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty

protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on

the Program, and copy and distribute such modifications or work under the terms of Section 1 above,

provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the

date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived

from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under

the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when

started running for such interactive use in the most ordinary way, to print or display an announcement

including an appropriate copyright notice and a notice that there is no warranty (or else, saying that

you provide a warranty) and that users may redistribute the program under these conditions, and

telling the user how to view a copy of this License.(Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on the Program is not required to

print an announcement.)

These requirements apply to the modified work as a whole.If identifiable sections of that work are not

derived from the Program, and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those sections when you distribute them as

separate works. Butwhen you distribute the same sections as part of a whole which is a work based on the

Program, the distribution of the whole must be on the terms of this License, whose permissions for other

licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;

rather, the intent is to exercise the right to control the distribution of derivative or collective works based on

the Program.

GNU GPL 31

GPL(GNU) FreeSoftware Foundation GPL(GNU)

In addition, mere aggregation of another work not based on the Program with the Program (or with a work

based on the Program) on a volume of a storage or distribution medium does not bring the other work under

the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or

executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be

distributed under the terms of Sections 1 and 2 above on a medium customarily used for software

interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no

more than your cost of physically performing source distribution, a complete machine-readable copy

of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a

medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source

code. (Thisalternative is allowed only for noncommercial distribution and only if you received the

program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it.For an

executable work, complete source code means all the source code for all modules it contains, plus any

associated interface definition files, plus the scripts used to control compilation and installation of the

executable. However, as a special exception, the source code distributed need not include anything that is

normally distributed (in either source or binary form) with the major components (compiler, kernel, and so

on) of the operating system on which the executable runs, unless that component itself accompanies the

executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then

offering equivalent access to copy the source code from the same place counts as distribution of the source

code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this

License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will

automatically terminate your rights under this License.However, parties who have received copies, or

rights, from you under this License will not have their licenses terminated so long as such parties remain in

full compliance.

5. You are not required to accept this License, since you have not signed it.However, nothing else grants

you permission to modify or distribute the Program or its derivative works. Theseactions are prohibited by

law if you do not accept this License.Therefore, by modifying or distributing the Program (or any work

based on the Program), you indicate your acceptance of this License to do so, and all its terms and

conditions for copying, distributing or modifying the Program or works based on it.

GNU GPL 32

GPL(GNU) FreeSoftware Foundation GPL(GNU)

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically

receives a license from the original licensor to copy, distribute or modify the Program subject to these terms

and conditions.You may not impose any further restrictions on the recipients’ exercise of the rights

granted herein.You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not

limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)

that contradict the conditions of this License, they do not excuse you from the conditions of this License.If

you cannot distribute so as to satisfy simultaneously your obligations under this License and any other

pertinent obligations, then as a consequence you may not distribute the Program at all.For example, if a

patent license would not permit royalty-free redistribution of the Program by all those who receive copies

directly or indirectly through you, then the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance

of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to

contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free

software distribution system, which is implemented by public license practices.Many people have made

generous contributions to the wide range of software distributed through that system in reliance on

consistent application of that system; it is up to the author/donor to decide if he or she is willing to

distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this

License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by

copyrighted interfaces, the original copyright holder who places the Program under this License may add an

explicit geographical distribution limitation excluding those countries, so that distribution is permitted only

in or among countries not thus excluded. Insuch case, this License incorporates the limitation as if written

in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License

from time to time.Such new versions will be similar in spirit to the present version, but may differ in detail

to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this

License which applies to it and "any later version", you have the option of following the terms and

conditions either of that version or of any later version published by the Free Software Foundation. Ifthe

Program does not specify a version number of this License, you may choose any version ever published by

the Free Software Foundation.

GNU GPL 33

GPL(GNU) FreeSoftware Foundation GPL(GNU)

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions

are different, write to the author to ask for permission.For software which is copyrighted by the Free

Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.Our

decision will be guided by the two goals of preserving the free status of all derivatives of our free software

and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR

THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.THE ENTIRE RISK AS TO

THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULDTHE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

ARISING OUT OF THE USE OR INABILITY T O USE THE PROGRAM (INCLUDING BUT NOT

LIMITED TO LOSS OF DAT A OR DAT A BEING RENDERED INACCURATE OR LOSSES

SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE

WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GPL 34

GPL(GNU) FreeSoftware Foundation GPL(GNU)

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way

to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program.It is safest to attach them to the start of each source

file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright"

line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) 19yyname of author

This program is free software; you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation; either version 2 of the License,

or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. Seethe GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,

write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’. This is free

software, and you are welcome to redistribute it under certain conditions; type ‘show c’ f or details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public

License. Ofcourse, the commands you use may be called something other than ‘show w’ and ‘show c’;

they could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a

"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yo yodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes

passes at compilers) written by James Hacker.

signature of Ty Coon,1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs.If

your program is a subroutine library, you may consider it more useful to permit linking proprietary

applications with the library. If this is what you want to do, use the GNU Library General Public License

instead of this License.

GNU GPL 35

srec_ascii_hex(5) srec_ascii_hex(5)

NAME

srec_ascii_hex − Ascii-Hex file format

DESCRIPTION

This format is also known as theAscii-Space-Hex format. If you know who invented this format, please let

me know. If you have a better or more complete description, I’d like to know that, too.

The file startes with a Crontrol-B character (0x02).

Each data byte is represented as 2 hexadecimal characters, and is separated by white space from all other

data bytes.

The address for data bytes is set by using a sequence of$Annnn, characters, wherennnnis the

4-character ascii representation of the address.The comma is required.There is no need for an address

record unless there are gaps. Implicitly, the file starts a address 0 if no address is set before the first data

byte.

The file ends with a Control-C character (0x03).

Size Multiplier
In general, binary data will expand in sized by approximately 3.0 times when represented with this format.

EXAMPLE

Here is an example ascii-hex file. It contains the data ‘‘Hello, World’’ to be loaded at address 0x1000.

ˆB $A1000,

48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 0A ˆC

COPYRIGHT

srec_catversion 1.8

Copyright © 1998, 1999, 2000, 2001 Peter Miller;

All rights reserved.

Thesrec_catprogram comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat

-VERSion License’ command. Thisis free software and you are welcome to redistribute it under certain

conditions; for details use the ’srec_cat -VERSion License’ command.

AUTHOR

Peter Miller E-Mail: millerp@canb.auug.org.au

/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual SRecord 36

srec_intel(5) srec_intel(5)

NAME

srec_intel − Intel Hexadecimal object file format specification

DESCRIPTION

This format is also known as theIntel MCS-86 Objectformat.

This document describes the hexadecimal object file format for the Intel 8-bit, 16-bit, and 32-bit

microprocessors. Thehexadecimal format is suitable as input to PROM programmers or hardware

emulators.

Hexadecimal object file format is a way of representing an absolute binary object file in ASCII.Because

the file is in ASCII instead of binary, it is possible to store the file is non-binary medium such as paper-tape,

punch cards, etc.; and the file can also be displayed on CRT terminals, line printers, etc..The 8-bit

hexadecimal object file format allows for the placement of code and data within the 16-bit linear address

space of the Intel 8-bit processors.The 16-bit hexadecimal format allows for the 20-bit segmented address

space of the Intel 16-bit processors.And the 32-bit format allows for the 32-bit linear address space of the

Intel 32-bit processors.

The hexadecimal representation of binary is coded in ASCII alphanumeric characters.For example, the

8-bit binary value 0011-1111 is 3F in hexadecimal. To code this in ASCII, one 8-bit byte containing the

ASCII code for the character ’3’ (0011-0011 or 0x33) and one 8-bit byte containing the) ASCII code for

the character ’F’ (0100-0110 or 0x46) are required.For each byte value, the high-order hexadecimal digit

is always the first digit of the pair of hexadecimal digits.This representation (ASCII hexadecimal) requires

twice as many bytes as the binary representation.

A hexadecimal object file is blocked into records, each of which contains the record type, length, memory

load address and checksum in addition to the data.There are currently six (6) different types of records that

are defined, not all combinations of these records are meaningful, however. The record are:

• Data Record (8-, 16-, or 32-bit formats)

• End of File Record (8-, 16-, or 32-bit formats)

• Extended Segment Address Record (16- or 32-bit formats)

• Start Segment Address Record (16- or 32-bit formats)

• Extended Linear Address Record (32-bit format only)

• Start Linear Address Record (32-bit format only)

General Record Format

Data ChecksumRecord

Mark

Record

Length

Load

Offset

Record

Type

Record Mark.

Each record begins with a Record Mark field containing 0x3A, the ASCII code for the colon

(‘‘:’ ’) character.

Record Length

Each record has a Record Length field which specifies the number of bytes of information or data

which follows the Record Type field of the record.This field is one byte, represented as two

hexadecimal characters.The maximum value of the Record Length field is hexadecimal ’FF’ or

255.

Reference Manual SRecord 37

srec_intel(5) srec_intel(5)

Load Offset

Each record has a Load Offset field which specifies the 16-bit starting load offset of the data

bytes, therefore this field is only used for Data Records.In other records where this field is not

used, it should be coded as four ASCII zero characters (‘‘0000’’ or 0x30303030). Thisfield is

two byte, represented as four hexadecimal characters.

Record Type

Each record has a Record Type field which specifies the record type of this record.The Record

Type field is used to interpret the remaining information within the record.This field is one byte,

represented as two hexadecimal characters.The encoding for all the current record types are:

0 Data Record

1 End of File Record

2 Extended Segment Address Record

3 Start Segment Address Record

4 Extended Linear Address Record

5 Start Linear Address Record

Data Eachrecord has a variable length Data field, it consists of zero or more bytes encoded as pairs of

hexadecimal digits.The interpretation of this field depends on the Record Type field.

Checksum

Each record ends with a Checksum field that contains the ASCII hexadecimal representation of

the two’s complement ofthe 8-bit bytes that result from converting each pair of ASCII

hexadecimal digits to one byte of binary, from and including the Record Length field to and

including the last byte of the Data field.Therefore, the sum of all the ASCII pairs in a record

after converting to binary, from the Record Length field to and including the Checksum field, is

zero.

Extended Linear Address Record
(32-bit format only)

ChecksumRecord

Mark

(‘‘:’ ’)

Record

Length (2)

Load

Offset (0)

Record

Type (4)

ULBA

(2 bytes)

The 32-bit Extended Linear Address Record is used to specify bits 16-31 of the Linear Base Address

(LBA), where bits 0-15 of the LBA are zero.Bits 16-31 of the LBA are referred to as the Upper Linear

Base Address (ULBA). Theabsolute memory address of a content byte in a subsequent Data Record is)

obtained by adding the LBA to an offset calculated by adding the Load Offset field of the containing Data

Record to the index of the byte in the Data Record (0, 1, 2, ...n). Thisoffset addition is done) modulo 4G

(i.e. 32-bits from 0xFFFFFFFF to 0x00000000) results in wrapping around from the end to the beginning of

the 4G linear address defined by the LBA. Thelinear address at which a particular byte is loaded is

calculated as:

(LBA + DRLO + DRI) MOD 4G

where:

DRLO is the Load Offset field of a Data Record.

DRI is the data byte index within the Data Record.

When an Extended Linear Address Record defines the value of LBA, it may appear anywhere within a

Reference Manual SRecord 38

srec_intel(5) srec_intel(5)

32-bit hexadecimal object file. This value remains in effect until another Extended Linear Address Record

is encountered.The LBA defaults to zero until an Extended Linear Address Record is encountered.The

contents of the individual fields within the record are:

Record Mark

This field contains 0x3A, the hexadecimal encoding of the ASCII colon (‘‘:’ ’) character.

Record Length

The field contains 0x3032, the hexadecimal encoding of the ASCII characters ‘‘02’’, which is the

length, in bytes, of the ULBA data information within this record.

Load Offset

This field contains 0x30303030, the hexadecimal encoding of the ASCII characters ‘‘0000’’,

since this field is not used for this record.

Record Type

This field contains 0x3034, the hexadecimal encoding of the ASCII character ‘‘04’’, which

specifies the record type to be an Extended Linear Address Record.

ULBA This field contains four ASCII hexadecimal digits that specify the 16-bit Upper Linear Base

Address value. Thevalue is encoded big-endian (most significant digit first).

Checksum

This field contains the check sum on the Record Length, Load Offset, Record Type, and ULBA

fields.

Extended Segment Address Record
(16- or 32-bit formats)

ChecksumRecord

Mark

(‘‘:’ ’)

Record

Length (2)

Load

Offset (0)

Record

Type (2)

USBA

(2 bytes)

The 16-bit Extended Segment Address Record is used to specify bits 4-19 of the Segment Base Address

(SBA), where bits 0-3 of the SBA are zero.Bits 4-19 of the SBA are referred to as the Upper Segment

Base Address (USBA). Theabsolute memory address of a content byte in a subsequent Data Record is)

obtained by adding the SBA to an offset calculated by adding the Load Offset field of the containing Data

Record to the index of the byte in the Data Record (0, 1, 2, ...n). Thisoffset addition is done modulo 64K

(i.e. 16-bits from 0xFFFF to 0x0000 results in wrapping around from the end to the beginning of the 64K

segment defined by the SBA. Theaddress at which a particular byte is loaded is calculated as:

SBA + ((DRLO + DRI) MOD 64K)

where:

DRLO is the LOAD OFFSET field of a Data Record.

DRI is the data byte index within the Data Record.

When an Extended Segment Address Record defines the value of SBA, it may appear anywhere within a

16-bit hexadecimal object file.This value remains in effect until another Extended Segment Address

Record is encountered.The SBA defaults to zero until an Extended Segment Address Record is

encountered.

The contents of the individual fields within the record are:

Reference Manual SRecord 39

srec_intel(5) srec_intel(5)

Record Mark

This field contains 0x3A, the hexadecimal encoding of the ASCII colon (‘‘:’ ’) character.

Record Length

The field contains 0x3032, the hexadecimal encoding of the ASCII characters ’02’, which is the

length, in bytes, of the USBA data information within this record.

Load Offset

This field contains 0x30303030, the hexadecimal encoding of the ASCII characters ’0000’, since

this field is not used for this record.

Record Type

This field contains 0x3032, the hexadecimal encoding of the ASCII character ‘‘02’’, which

specifies the record type to be an Extended Segment Address Record.

USBA This field contains four ASCII hexadecimal digits that specify the 16-bit Upper Segment Base

Address value. Thefield is encoded big-endian (most significant digit first).

Checksum

This field contains the check sum on the Record length, Load Offset, Record Type, and USBA

fields.

Data Record
(8-, 16- or 32-bit formats)

Data ChecksumRecord

Mark

(‘‘:’ ’)

Record

Length

Load

Offset

Record

Type

The Data Record provides a set of hexadecimal digits that represent the ASCII code for data bytes that

make up a portion of a memory image.The method for calculating the absolute address (linear in the 8-bit

and 32-bit case and segmented in the 16-bit case) for each byte of data is described in the discussions of the

Extended Linear Address Record and the Extended Segment Address Record.

The contents of the individual fields within the record are:

Record Mark

This field contains 0x3A, the hexadecimal encoding of the ASCII colon (‘‘:’ ’) character.

Record Length

The field contains two ASCII hexadecimal digits that specify the number of data bytes in the

record. Themaximum value is 255 decimal.

Load Offset

This field contains four ASCII hexadecimal digits representing the offset from the LBA (see

Extended Linear Address Record see Extended Segment Address Record) defining the address

which the first byte of the data is to be placed.

Record Type

This field contains 0x3030, the hexadecimal encoding of the ASCII character ‘‘00’’, which

specifies the record type to be a Data Record.

Data Thisfield contains pairs of ASCII hexadecimal digits, one pair for each data byte.

Reference Manual SRecord 40

srec_intel(5) srec_intel(5)

Checksum

This field contains the check sum on the Record Length, Load Offset, Record Type, and Data

fields.

Start Linear Addr ess Record
(32-bit format only)

ChecksumRecord

Mark

(‘‘:’ ’)

Record

Length (4)

Load

Offset (0)

Record

Type (5)

EIP

(4 bytes)

The Start Linear Address Record is used to specify the execution start address for the object file.The value

given is the 32-bit linear address for the EIP register. Note that this record only specifies the code address

within the 32-bit linear address space of the 80386.If the code is to start execution in the real mode of the

80386, then the Start Segment Address Record should be used instead, since that record specifies both the

CS and IP register contents necessary for real mode.

The Start Linear Address Record can appear anywhere in a 32-bit hexadecimal object file.If such a record

is not present in a hexadecimal object file, a loader is free to assign a default start address.

The contents of the individual fields within the record are:

Record mark

This field contains 0x3A, the hexadecimal encoding of the ASCII colon (‘‘:’ ’) character.

Record length

The field contains 0x3034, the hexadecimal encoding of the ASCII characters ‘‘04’’, which is the

length, in bytes, of the EIP register content within this record.

Load Offset

This field contains 0x30303030, the hexadecimal encoding of the ASCII characters ‘‘0000’’,

since this field is not used for this record.

Record Type

This field contains 0x3035, the hexadecimal encoding of the ASCII character ‘‘05’’, which

specifies the record type to be a Start Linear Address Record.

EIP Thisfield contains eight ASCII hexadecimal digits that specify the 32-bit EIP register contents.

The field is encoded big-endian (most significant digit first).

Checksum

This field contains the check sum on the Record length, Load Offset, Record Type, and EIP

fields.

Start Segment Address Record
(16- or 32-bit formats)

ChecksumRecord

Mark

(‘‘:’ ’)

Record

Length (4)

Load

Offset (0)

Record

Type (3)

CS (2 bytes) IP (2 bytes)

The Start Segment Address Record is used to specify the execution start address for the object file.The

value given is the 20-bit segment address for the CS and IP registers. Notethat this record only specifies

the code address within the 20-bit segmented address space of the 8086/80186.The Start Segment Address

Record can appear anywhere in a 16-bit hexadecimal object file.If such a record is not present in a

hexadecimal object file, a loader is free to assign a default start address.

Reference Manual SRecord 41

srec_intel(5) srec_intel(5)

The contents of the individual fields within the record are:

Record Mark

This field contains 0x3A, the hexadecimal encoding of the ASCII colon (‘‘:’ ’) character.

Record Length

The field contains 0x3034, the hexadecimal encoding of the ASCII characters ‘‘04’’, which is the

length, in bytes, of the CS and IP register contents within this record.

Load Offset

This field contains 0x30303030, the hexadecimal encoding of the ASCII characters ‘‘0000’’,

since this field is not used for this record.

Record Type

This field contains 0x3033, the hexadecimal encoding of the ASCII character ’03’, which

specifies the record type to be a Start Segment Address Record.

CS Thisfield contains four ASCII hexadecimal digits that specify the 16-bit CS register contents.

The field is encoded big-endian (most significant digit first).

IP Thisfield contains four ASCII hexadecimal digits that specify the 16-bit IP register contents.The

field is encoded big-endian (most significant digit first).

Checksum

This field contains the check sum on the Record length, Load Offset, Record Type, CS, and IP

fields.

End of File Record
(8-, 16-, or 32-bit formats)

Record

Mark

(‘‘:’ ’)

Record

Length (0)

Load

Offset (0)

Record

Type (1)

Checksum (0xFF)

The End of File Record specifies the end of the hexadecimal object file.

The contents of the individual fields within the record are:

Record mark

This field contains 0x3A, the hexadecimal encoding of the ASCII colon (‘‘:’ ’) character.

Record Length

The field contains 0x3030, the hexadecimal encoding of the ASCII characters ‘‘00’’. Sincethis

record does not contain any Data bytes, the length is zero.

Load Offset

This field contains 0x30303030, the hexadecimal encoding of the ASCII characters ‘‘0000’’,

since this field is not used for this record.

Record Type

This field contains 0x3031, the hexadecimal encoding of the ASCII character ‘‘01’’, which

specifies the record type to be an End of File Record.

Checksum

This field contains the check sum an the Record Length, Load Offset, and Record Type fields.

Since all the fields are static, the check sum can also be calculated statically, and the value is

0x4646, the hexadecimal encoding of the ASCII characters ‘‘FF’’.

Reference Manual SRecord 42

srec_intel(5) srec_intel(5)

Size Multiplier
In general, binary data will expand in sized by approximately 2.3 times when represented with this format.

EXAMPLE

Here is an example Intel hex file. It contains the data ‘‘Hello, World’’ to be loaded at address 0.

:0D00000048656C6C6F2C20576F726C640AA1

:00000001FF

REFERENCE

This information comes (very indirectly) fromMicroprocessors and Programmed Logic, Second Edition,

Kenneth L. Short, 1987, Prentice-Hall, ISBN 0-13-580606-2.

COPYRIGHT

srec_catversion 1.8

Copyright © 1998, 1999, 2000, 2001 Peter Miller;

All rights reserved.

Thesrec_catprogram comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat

-VERSion License’ command. Thisis free software and you are welcome to redistribute it under certain

conditions; for details use the ’srec_cat -VERSion License’ command.

AUTHOR

Peter Miller E-Mail: millerp@canb.auug.org.au

/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Derivation
This manual page is derived from a file marked as follows:

Intel Hexadecimal Object File Format Specification; Revision A, 1/6/88

Disclaimer: Intel makes no representation or warranties with respect to the contents hereof and specifically

disclaims any implied warranties of merchantability or fitness for any particular purpose.Further, Intel

reserves the right to revise this publication from time to time in the content hereof without obligation of

Intel to notify any person of such revision or changes.The publication of this specification should not be

construed as a commitment on Intel’s part to implement any product.

Reference Manual SRecord 43

srec_mos_tech(5) srec_mos_tech(5)

NAME

srec_mos_tech − MOS Technologies file format

DESCRIPTION

The Mos Technologies format allows binary files to be uploaded and downloaded between between a

computer system (such as a PC, Macintosh, or workstation) and an emulator or evaluation board for

microcontrollers and microprocessors.

The Lines
Each line consists of 5 fields.These are the length field, address field, data field, and the checksum.The

lines always start with a semicolon (;) character.

The Fields

; Length Address Data Checksum

Length Therecord length field is a 2 character (1 byte) field that specifies the number of data bytes in the

record.

Address Thisis a 2-byte address that specifies where the data in the record is to be loaded into memory.

Data Thedata field contains the executable code, memory-loadable data or descriptive information to

be transferred.

Checksum

The checksum is an 2-byte field that represents the least significant two byte of the the sum of the

values represented by the pairs of characters making up the record’s length, address, and data

fields.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

EXAMPLE

Here is an example MOS Technologies format file.It contains the data ‘‘Hello, World’’ to be loaded at

address 0.

S110000048656C6C6F2C20576F726C640A9D

;00

COPYRIGHT

srec_catversion 1.8

Copyright © 1998, 1999, 2000, 2001 Peter Miller;

All rights reserved.

Thesrec_catprogram comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat

-VERSion License’ command. Thisis free software and you are welcome to redistribute it under certain

conditions; for details use the ’srec_cat -VERSion License’ command.

AUTHOR

Peter Miller E-Mail: millerp@canb.auug.org.au

/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual SRecord 44

srec_motorola(5) srec_motorola(5)

NAME

srec_motorola − Motorola S-Record hexadecimal file format

DESCRIPTION

This format is also known as theExorciser, Exormacsor Exormaxformat.

Motorola’s S-record format allows binary files to be uploaded and downloaded between two computer

systems. Thistype of format is widely used when transferring programs and data between a computer

system (such as a PC, Macintosh, or workstation) and an emulator or evaluation board for Motorola

microcontrollers and microprocessors.

The Lines
Most S-Record file contain only S-Record lines (see the next section), which always start with a capital S

character. Some systems generate various ‘‘extensions’’ which usually manifest as lines which start with

something else.These ‘‘extension’’ l ines may or may not break other systems made by other vendors.

Caveat emptor.

The Fields
The S-record format consists of 5 fields. These are the type field, length field, address field, data field, and

the checksum.The lines always start with a capital S character.

S Type RecordLength Address Data Checksum

Type Thetype field is a 1 character field that specifies whether the record is an S0, S1, S2, S3, S5, S7,

S8 or S9 field.

Record Length

The record length field is a 2 character (1 byte) field that specifies the number of character pairs

(bytes) in the record, excluding the type and record length fields.

Address Thisis a 2-, 3- or 4-byte address that specifies where the data in the S-record is to be loaded into

memory.

Data Thedata field contains the executable code, memory-loadable data or descriptive information to

be transferred.

Checksum

The checksum is an 8-bit field that represents the least significant byte of the one’s complement

of the sum of the values represented by the pairs of characters making up the record’s length,

address, and data fields.

Record Types
S0 Thistype of record is the header record for each block of S-records.The data field may contain

any descriptive information identifying the following block of S-records.(It is commonly

‘‘ HDR’’ on many systems.) Theaddress field is normally zero.

S1 Arecord containing data and the 2-byte address at which the data is to reside.

S2 Arecord containing data and the 3-byte address at which the data is to reside.

S3 Arecord containing data and the 4-byte address at which the data is to reside.

S5 Arecord containing the number of S1, S2 and S3 records transmitted in a particular block.The

count appears in the address field.There is no data field.

S7 Atermination record for a block of S3 records.The address field may contain the 4-byte address

of the instruction to which control is passed.There is no data field.

Reference Manual SRecord 45

srec_motorola(5) srec_motorola(5)

S8 Atermination record for a block of S2 records.The address field may optionally contain the

3-byte address of the instruction to which control is passed.There is no data field.

S9 Atermination record for a block of S1 records.The address field may optionally contain the

2-byte address of the instruction to which control is passed.If not specified, the first entry point

specification encountered in the object module input will be used.There is no data field.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

EXAMPLE

Here is an example S-Record file.It contains the data ‘‘Hello, World’’ to be loaded at address 0.

S00600004844521B

S110000048656C6C6F2C20576F726C640A9D

S5030001FB

S9030000FC

COPYRIGHT

srec_catversion 1.8

Copyright © 1998, 1999, 2000, 2001 Peter Miller;

All rights reserved.

Thesrec_catprogram comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat

-VERSion License’ command. Thisis free software and you are welcome to redistribute it under certain

conditions; for details use the ’srec_cat -VERSion License’ command.

AUTHOR

Peter Miller E-Mail: millerp@canb.auug.org.au

/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual SRecord 46

srec_tektronix(5) srec_tektronix(5)

NAME

srec_tektronix − Tektronix hexadecimal file format

DESCRIPTION

The Tektronix hexadecimal file format is no longer very common.It serves a similar purpose to the

Motorola and Intel formats, usually used to transfer data into EPROM programmers.

The Lines
Most Tektronix hex files contain only Tektronix hex lines (see the next section), which always start with a

slash (‘‘/’ ’) character. There are only two types of lines − data lines and a termination line.

Data Lines
Data lines have five fields: address, length, checksum 1, data and checksum 2.The lines always start with a

slash (‘‘/’ ’) character.

/ Address Length Checksum1 Data Checksum2

Address Thisis a 4 character (2 byte) address that specifies where the data in the record is to be loaded

into memory.

Data Length

The data length field is a 2 character (1 byte) field that specifies the number of character pairs

(bytes) in the data field.This field never has a value of zero.

Checksum 1

The checksum 1 field is a 2 character (1 byte) field.Its value is the 8-bit sum of the six 4-bit

values which make up the address and length fields.

Data Thedata field contains character pairs (bytes); the number of character pairs (bytes) is indicated

by the length field.

Checksum 2

The checksum 2 field is a 2 character (1 byte) field.Its value is the least significant byte of the

sum of the values of the data field.

Termination Line
Termination lines have three fields: address, zero and checksum.The lines always start with a slash (‘‘/’ ’)

character.

/ Address Zero Checksum

Address Thisis a 4 character (2 byte) address that specifies where to begin execution.

Zero Thedata length field is a 2 character (1 byte) field of value zero.

Checksum

The checksum 1 field is a 2 character (1 byte) field.Its value is the 8-bit sum of the six 4-bit

values which make up the address and zero fields.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

Reference Manual SRecord 47

srec_tektronix(5) srec_tektronix(5)

EXAMPLE

Here is an example Tektronix hex file. It contains the data ‘‘Hello, World’’ to be loaded at address 0.

/00000D0D48656C6C6F2C20576F726C640A52

/00000000

COPYRIGHT

srec_catversion 1.8

Copyright © 1998, 1999, 2000, 2001 Peter Miller;

All rights reserved.

Thesrec_catprogram comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat

-VERSion License’ command. Thisis free software and you are welcome to redistribute it under certain

conditions; for details use the ’srec_cat -VERSion License’ command.

AUTHOR

Peter Miller E-Mail: millerp@canb.auug.org.au

/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual SRecord 48

srec_tektronix_extended(5) srec_tektronix_extended(5)

NAME

srec_tektronix_extended − Tektronix Extended hexadecimal file format

DESCRIPTION

This format allows binary files to be uploaded and downloaded between two computer systems, typically

between a computer system (such as a PC, Macintosh, or workstation) and an emulator or evaluation board

for microcontrollers and microprocessors.

The Lines
Lines always start with a percent (%) character. Each line consists of 5 fields.These are the length field,

the type field, the checksum, the address field (including address length), and the data field.

The Fields

% Length Type Checksum Address Data

Record Length

The record length field is a 2 character (1 byte) field that specifies the number of characters (not

bytes) in the record, excluding the percent, the length field, the type field and the checksum.

Type Thetype field is a 1 character field that specifies whether the record is data (6) or termination (8).

Checksum

The checksum is an 2 character (1 byte) field that represents the sum of all the nibbles on the line,

excluding the checksum.

Address Thisis a 9 character field.The first character is the address size; it is always 8. The remaining 8

chgaracters are the 4-byte address that specifies where the data is to be loaded into memory.

Data Thedata field contains the executable code, memory-loadable data or descriptive information to

be transferred.

Record Types
6 A record containing data.The data is placed at the address specified.

8 A termination record.The address field may optionally contain the address of the instruction to

which control is passed.There is no data field.

Size Multiplier
In general, binary data will expand in sized by approximately 2.5 times when represented with this format.

EXAMPLE

Here is an example Tektronix extended file.It contains the data ‘‘Hello, World’’ to be loaded at address

0x006B.

%256D980000006B48656C6C6F2C20576F726C64210A

%09819800000000

COPYRIGHT

srec_catversion 1.8

Copyright © 1998, 1999, 2000, 2001 Peter Miller;

All rights reserved.

Thesrec_catprogram comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat

-VERSion License’ command. Thisis free software and you are welcome to redistribute it under certain

conditions; for details use the ’srec_cat -VERSion License’ command.

Reference Manual SRecord 49

srec_tektronix_extended(5) srec_tektronix_extended(5)

AUTHOR

Peter Miller E-Mail: millerp@canb.auug.org.au

/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual SRecord 50

srec_ti_tagged(5) srec_ti_tagged(5)

NAME

srec_ti_tagged − Texas Instruments Tagged file format

DESCRIPTION

This format is also known as theTI-Tagged or TI-SDSMAC format.

This format allows binary files to be uploaded and downloaded between two computer systems, typically

between a computer system (such as a PC, Macintosh, or workstation) and an emulator or evaluation board

for microcontrollers and microprocessors.

The Lines
Unlike many other object formats, the lines themselves are not especially significant.The format consits of

a number oftagged fields, and lines are composed of a series of these fields.

Tag Description

* Data byte.

: End of file.

7 Address.

8 Dummy checksum (ignored).

9 Address.

B Data word.

F End of data record.

K Program identifier.

Data Byte

B n n

One byte of data.Thenn is 8-bit big-endian hexadecimal.

End of File

: CRLF

The end of data is indicated by this tag.The end of line sequence (LF on Unix systems, CRLF on PCs)

follows this tag.

Checksum

7 n n n n

The checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the first

tag character and ending with the checksum tag character (7).Thennnnis 16-bit big-endian hexadecimal.

Dummy Checksum

8 n n n n

The checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the first

tag character and ending with the checksum tag character (8).Thennnnis 16-bit big-endian hexadecimal.

Reference Manual SRecord 51

srec_ti_tagged(5) srec_ti_tagged(5)

Addr ess

9 n n n n

Addresses may be given for any data byte, but none is mandatory. The file begins at 0000 if no address is

given before the first data field.Thennnnis 16-bit big-endian hexadecimal.

Data Word

B a a b b

Tw o bytes of data.Theaaandbbare each 8-bit big-endian hexadecimal.

End of Record

F CRLF

The end of line sequence (LF on Unix systems, CRLF on PCs) is escaped using this tag.

Program Identifier

K n n n n text

The program identifier can contain a brief description of the program, or can be empty (i.e. the text portion

is optional). Thennnnlength of the field includes the ‘K’, the length and the text; it is at least 5.

Size Multiplier
In general, binary data will expand in sized by approximately 2.9 times when represented with this format.

EXAMPLE

Here is an example TI-Tagged file.It contains the data ‘‘Hello, World’’ to be loaded at address 0x0100.

K000590100B4865B6C6CB6F2CB2057B6F72B6C64*0A7F648F

:

COPYRIGHT

srec_catversion 1.8

Copyright © 1998, 1999, 2000, 2001 Peter Miller;

All rights reserved.

Thesrec_catprogram comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat

-VERSion License’ command. Thisis free software and you are welcome to redistribute it under certain

conditions; for details use the ’srec_cat -VERSion License’ command.

AUTHOR

Peter Miller E-Mail: millerp@canb.auug.org.au

/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual SRecord 52

srec_wilson.5(5) srec_wilson.5(5)

NAME

srec_wilson − wilson file format

DESCRIPTION

This is a mystery format, added to support a mysery EPROM loader used by Alan Wilson

<dvdsales@dvdlibrary.co.uk>

If you know the true name of this format, please let me know! It bears a remarkable similarity to the

Motorola S-Record format, however I can find no reference to a "compressed" Motorola format.

The Lines
Each line contains normal ASCII characters, and ‘‘high bit on’’ characters, but the ASCII control characters

are avoided (the high-bit-on con characters are not avoided). Normalline termination characters (CRLF or

LF, depending on your system) are used.

The presence of high-bit-on characters makes this format unattractive to send via email, as it must be

wrapped as a binary attachment, increasing its size.

In general, a single byte per byte is used to encode values, however some values use two bytes, according to

the following table:

Byte Value Encoding(1 or 2 chars)

0x00 .. 0x9F 0x40 .. 0xDF

0xA0 .. 0xAF 0x3A 0x30 .. 0x3A 0x3F

0xB0 .. 0xBF 0x3B 0x30 .. 0x3B 0x3F

0xC0 .. 0xCF 0x3C 0x30 .. 0x3C 0x3F

0xD0 .. 0xDF 0x3D 0x30 .. 0x3D 0x3F

oxE0 .. 0xFF 0xE0 .. 0xFF

The rest of this description, when refering to ‘‘bytes’’ means byte values encoded using the above table.

The Fields
Each line consists of 5 fields. These are the type field, length field, address field, data field, and the

checksum.

Type Record Length Address Data Checksum

Type Thetype field is a 1 character field that specifies whether the record is data (0x43), or termination

(0x47).

Record Length

The record length field is a 1 byte field that specifies the number of bytes in the record, excluding

the type and record length fields.

Address Thisis a 4-byte address that specifies where the data is to be loaded into memory.

Data Thedata field contains the executable code, memory-loadable data or descriptive information to

be transferred.

Checksum

The checksum is an 1-byte field that represents the least significant byte of the one’s complement

of the sum of the values represented by the bytes making up the length, address, and data fields.

Reference Manual SRecord 53

srec_wilson.5(5) srec_wilson.5(5)

Record Types
0x43 (#) A record containing data and the 4-byte address at which the data is to reside.

0x47 (’) A termination record.The address field may contain the 4-byte address of the instruction to

which control is passed.There is no data field.

Size Multiplier
In general, binary data will expand in sized by approximately 1.5 times when represented with this format.

COPYRIGHT

srec_catversion 1.8

Copyright © 1998, 1999, 2000, 2001 Peter Miller;

All rights reserved.

Thesrec_catprogram comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat

-VERSion License’ command. Thisis free software and you are welcome to redistribute it under certain

conditions; for details use the ’srec_cat -VERSion License’ command.

AUTHOR

Peter Miller E-Mail: millerp@canb.auug.org.au

/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual SRecord 1000

