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Wo initiates JBoss DNA?
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Randall Hauch has been working with metadata and 
repositories for most of his career. He is the project lead for 
JBoss DNA and a Principal Software Engineer at JBoss, a 
division of Red Hat. 



Agenda

• JCR and JBoss DNA JCR in general
• JBoss DNA JCR sample code examples
• JBoss DNA architecture in a standalone & JEE 

App.
• JBoss DNA and Federation
• JBoss DNA Connector framework
• JBoss DNA Sequencing
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Content Repositories

• Provide
– Hierarchical graph-based storage
– Flexible/extensible schema (as needed)
– Versioning, events, and access control
– Search and query
– Metadata
– Multiple persistence choices
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• Used for
– websites and content-based 

applications
– content management
– document storage
– multi-media files



• Standard Java API for content repositories
– “Content Repository API for Java” (a.k.a. “JCR”)

• javax.jcr

• Access content while hiding persistence layer 
• Offer best features of different layers

JSR-170 (and JSR-283)
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Who uses JCR?

... and many more
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Primary JCR interfaces

JCR
Repository

Workspace*

Node*

Property*

Node Type*

Mixin
*

Property Type*
*

Item

Session
*
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More JCR concepts

• Nodes
– have names, including same-name siblings
– are referenced by path of names from root

• Namespaces
– isolate names of nodes, properties, node types, and mixins

• Events
– allow sessions to observe changes in content
– can be filtered by change type or location

• Versioning
– of nodes and subgraphs as they change
– policy defined on each node by adding mixin 

(“mix:versionable” or “mix:simpleVersionable”)
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More JCR concepts

• Searching
– enables full-text search
– can use special functions and XPath-like criteria

• Querying
– is via SQL-like grammar
– will change in JCR 2.0 to allow other grammars

• Security
– can leverage JAAS
– will improve in JCR 2.0 with better access controls

• Transactions
– relies upon JTA and JTS
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DNA-JCR supported features (L1)
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➡ Accessing the repository
✓ JAAS authentication (IDTrust)

➡ Namespaces
✓ Session Remapping

➡ Reading content
✓ Traversal Access
✓ Direct Access
✓ Same-Name Siblings
✓ Multi-Value Properties
✓ All Property Types Supported
✓ Property Type Conversion

➡ Exporting content
✓ System view export to XML
✓ Document view export to XML

➡ Node Types
✓ Inheritance Among NodeTypes
✓ Discovering available NodeTypes
✓ Discovering NodeTypes of a 

Node
✓ Discovering NodeType definition
✓ Property Constraints
✓ Automatic Item Creation
✓ Predefined NodeTypes 
✓ Custom NodeType Registration 

Namespaces
✓ Session Remapping



DNA-JCR supported features (L2)

12

➡ Writing content
✓ Create/Update/Delete Nodes
✓ Create/Update/Delete 

Properties (through parent 
nodes)

✓ Moving (but not copying yet)
✓ Adding/Removing Mixins

➡ Importing content
✓ System View Import
✓ Document View Import

➡ Workspace
✓ Create/Delete (delete is more 

DNA specific)
✓ Clone Workspace (DNA specific)



Create a Repository
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Create an in-memory repository source ...
InMemoryRepositorySource source = ... ; // specific impl.

Create a connection factory ...
RepositoryConnectoryFactory factory = ... ;  // specific impl.

Set up the execution context ...
ExecutionContext context = ... ;  // specific impl.

Make sure the path to the namespaces exists ...
Graph graph =  Graph.create(source, context)  // specific impl.
graph.create(“/jcr:system”).and.create(“/jcr:system/dna:namespaces”);

Create a JCR repository ...
Repository repository = 

new JcrRepository(context, factory,”My Repos.”) ...  //  specific impl.

Commentary
- Getting a hold of Repository instances is implementation dependent



Create and close a Session

Repository repository = ...  // okay, it’s impl. dependent

Ok, we already get the repository instance ...

Credentials credentials = ... ; // JAAS Credentials
String workspaceName = "My Repository";
Session session = repository.login(credentials, workspaceName);
try {

// Use the session to access the repository content
} finally {

if ( session != null ) session.logout();
}

Create, close a Session

Commentary
- Other credential options (e.g., using JAAS) are implementation dependent
- Creating sessions (or “connections”) requires knowledge of credentials, 

making pooling difficult
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Work with content

Node root = session.getRootNode();
Node node = root.getNode("autos/sports cars/Toyota/2008/
Prius");

Getting nodes by path

for (NodeIterator iter = node.getNodes(); iter.hasNext();) {
    Node child = (Node) iter.nextNode();
    // Do something fun
}

Getting the children of a node

Node ford = root.addNode("autos/sports cars/Ford");
Node ford08 = ford.addNode("2008");
Node volt = root.addNode("autos/sports cars/
Chevy").addNode("2010").addNode("Volt",”car”);

Creating nodes

ford08.addMixin("car:year");
ford08.removeMixin("car:year");

Mixins

Commentary
- Unfortunately JCR doesnʼt use generics
- Cannot create node if parent doesnʼt exist
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Work with content

Property property = node.getProperty("engineSize”);
String[] engineSize = null;
// Must call either 'getValue()' or 'getValues()' depending upon # of values!
if (property.getDefinition().isMultiple()) {
    Value[] jcrValues = property.getValues();
    engineSize = new String[jcrValues.length];
    for (int i = 0; i < jcrValues.length; i++) {
        engineSize[i] = jcrValues[i].getString();
    }
} else {
    engineSize = new String[] {property.getValue().getString()};
}

Reading a property

Property property = node.getProperty("engineSize”);
property.setValue("V4 Hybrid”);
// Or set directly via the node
node.setProperty("mpgCity”,48);

Setting a property

Commentary
- Getting the property values could be way less verbose
- But Value does have methods to get the values in the Java types I want
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Work with content (continued)

for (PropertyIterator iter = node.getProperties(); iter.hasNext();) {
    Property property = (Property) iter.nextProperty();
    // Same as before
}

Reading all properties

for (PropertyIterator iter = node.getProperties("jcr:*|*Mpg”); iter.hasNext();) {
    Property property = iter.nextProperty();
    // Same as before
}

Reading some properties

node.accept( new ItemVisitor() {
    public void visit(Property property) throws RepositoryException {
        // Do something with the property
    }
    public void visit(Node node) throws RepositoryException {
        // Do something with the node
    }
});

Visiting nodes and properties

Commentary
- Again, generic iterators would simplify things
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Davidʼs rules for content modeling
http://wiki.apache.org/jackrabbit/DavidsModel

• Rule #1: Data First, Structure Later. Maybe.
• Rule #2: Drive the content hierarchy, 

don't let it happen.
• Rule #3: Workspaces are for clone(), merge() 

and update().
• Rule #4: Beware of Same Name Siblings.
• Rule #5: References considered harmful.
• Rule #6: Files are Files are Files.
• Rule #7: ID's are evil.
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JBoss DNA ecosystem



JBoss DNA

• New JCR implementation that
– looks and behaves like a regular JCR repository
– unifies content from a variety of systems
– extracts the most benefit from the content

• So whatʼs different?
– where the content is stored (lots of places)
– federation!
– use of existing best-of-breed technology

• cache, clustering, persistence, deployment
– enterprise-class repositories
– micro-repository for embedded use
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JBoss DNA architecture
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File System



JBoss DNA architecture
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File System



Configuring JBoss DNA

• Configuration repository
– contains content describing the components
– observed so updates are reflected in components
– just a regular repository

• Enables clustering
– Processes use the same configuration repository
– Add and remove processes as required

• Repository management
– One repository containing configurations for multiple repositories
– Manage configuration simply as content (edit, copy, etc.)
– Versioning supports rolling back to previous configuration
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Federation Use Cases

• Unify content in multiple external systems
– Content still managed in current system of record
– Benefits of a single repository

• Local caching repository
– Remote repository is the master
– Application wants a local copy/cache of data it uses

• Images, large files for web content
– Store in JCR (versioning, events, auditing, access control)
– Copy latest to file system (direct access by web server)

• Segregating data by type
– Images in one repository, user info in another, etc.
– Application still uses one repository

• Segregating data by region/owner
– Multiple repositories structured similarly
– Each region owns its data, but reads other regionsʼ data
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Federation and integration

Retry time
Expiry time
Refresh time
Minimum TTL
Authoritative

Retry time
Expiry time
Refresh time
Minimum TTL
Authoritative

Node information is cached,
using source-specific cache 
guidelines

Repository Single, 
integrated 
graph 
composed in 
real time
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Federated Vehicles content
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Example: Federation configuration
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Configure Repository Service
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Connector framework

• RepositorySource
– represents a connectable external system
– creates connections
– a JavaBean thatʼs analogous to JDBC DataSource

• RepositoryConnection
– represents a connection to a source
– process requests by translating to source language
– adapts content changes into events

• RepositoryService
– manages RepositorySource instances
– maintains pools of connections for each source
– can reflect whatʼs defined in a configuration repository
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JBoss DNA connectors

• In-memory
– simple transient repository

• Federated connector
– Merges content from multiple other sources
– Each projects its content into “federated” repository
– Strategies for merging nodes
– Uses another source as the cache

• JBoss Cache
– support for distribution, clustering, replication
– ability to persistent information in databases

• Connector to JPA Persistence Store
–  persists graph content using JPA
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JBoss DNA connectors

• Relational databases
– schema information (metadata)
– data

• File system connector
– expose files and directories
– store content on file system

• JCR repositories (scheduled)
• SCM systems

– SVN, CVS, Git
– maps directory structure into nt:folder and nt:file 

nodes
– includes version history

• Maven repositories (scheduled)
• JNDI/LDAP (scheduled)
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Detecting media types

• Content often includes files
• Often want correct MIME type as metadata
• Typical approaches

– map extensions
– interpret content

• JBoss DNA uses MIME type detectors
– extensions that determine MIME type given 

filename and/or content
– default implementation uses the Aperture open-source 

library
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Sequencing content

Client

content

1) upload2) notify

3) execute

Repository

Sequencers
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Configure sequencers

• Path expressions describe
– paths of content to be sequenced
– path where to put generated output

– examples:

• Register a sequencer configuration
– Name, description, classname, and path expressions

• Make available at runtime
– put sequencer implementation on the classpath
– or use a ClassLoaderFactory

inputRule => outputRule

//(*.(jpg|jpeg|gif|bmp|pcx|png))[*]/jcr:content[@jcr:data] => /images/$1
//(*.mp3)[*]/jcr:content[@jcr:data] => /mp3s/$1 
//(*.(doc|ppt|xls))[*]/jcr:content[@jcr:data] => ./
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Configure SequenceService
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Instantiate and configure the SequencingService ...

Start the SequencingService ...



Configure SequenceService
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... sequencers that it will use.

Configure observation service ...

observation service is started, listeners can be added

Shutting down DNA services ...



Writing your own sequencer

Implement interface

– Read the stream
– Create output structure using SequencerOutput parameter:

public interface StreamSequencer {
    /**
     * Sequence the data found in the supplied stream, 
     * placing the output information into the supplied output map.
     */
    void sequence( InputStream stream, SequencerOutput output,
                   ProgressMonitor progressMonitor );
}

output.setProperty(path, propertyName, propertyValue);
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ZIP archives

Java source

Microsoft Office documents

MP3 audio files

JCR Compact Node Definition 

jBPM PDL (scheduled)

Images (JPEG, GIF, BMP, PCX, PNG, 
IFF, RAS, PBM, PGM, PPM & PSD)

JBoss DNA sequencers (as of 0.4)

.java

.mp3

.jpdl

.cnd
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For more information

• Project:  www.jboss.org/dna
• Downloads (0.4)

– Binary, source, documentation, examples
• JBoss Maven2 Repository

– “org.jboss.dna” group ID (several artifacts)
• Documentation

– Getting Started describes the design, the different components, 
and how to use them with a trivial example application

– Reference Guide describes how JBoss DNA works internally
from a developer perspective

• Blogs:  jbossdna.blogspot.com
• IRC:  irc.freenode.net#jbossdna
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Q&A


