
02 Mai 2009

Serge Emmanuel Pagop
IT-Architect & Senior Consultant
innoQ Deutschland GmbH

serge.pagop@innoq.com

Wo initiates JBoss DNA?

2

Randall Hauch has been working with metadata and
repositories for most of his career. He is the project lead for
JBoss DNA and a Principal Software Engineer at JBoss, a
division of Red Hat.

Agenda

• JCR and JBoss DNA JCR in general
• JBoss DNA JCR sample code examples
• JBoss DNA architecture in a standalone & JEE

App.
• JBoss DNA and Federation
• JBoss DNA Connector framework
• JBoss DNA Sequencing

3

Content Repositories

• Provide
– Hierarchical graph-based storage
– Flexible/extensible schema (as needed)
– Versioning, events, and access control
– Search and query
– Metadata
– Multiple persistence choices

4

• Used for
– websites and content-based

applications
– content management
– document storage
– multi-media files

• Standard Java API for content repositories
– “Content Repository API for Java” (a.k.a. “JCR”)

• javax.jcr

• Access content while hiding persistence layer
• Offer best features of different layers

JSR-170 (and JSR-283)

5

content repositories

events
versioning

search
unstructured

file systems

locking

stream

hierarchy

access control

databases

intergrity

txns

structure

query
write

read

Who uses JCR?

... and many more
6

content repository

node

property

Repository model

7

[root]

workspace

00

01 02

01::c 03

a

c d

b

ef

g

Primary JCR interfaces

JCR
Repository

Workspace*

Node*

Property*

Node Type*

Mixin
*

Property Type*
*

Item

Session
*

8

More JCR concepts

• Nodes
– have names, including same-name siblings
– are referenced by path of names from root

• Namespaces
– isolate names of nodes, properties, node types, and mixins

• Events
– allow sessions to observe changes in content
– can be filtered by change type or location

• Versioning
– of nodes and subgraphs as they change
– policy defined on each node by adding mixin

(“mix:versionable” or “mix:simpleVersionable”)

9

More JCR concepts

• Searching
– enables full-text search
– can use special functions and XPath-like criteria

• Querying
– is via SQL-like grammar
– will change in JCR 2.0 to allow other grammars

• Security
– can leverage JAAS
– will improve in JCR 2.0 with better access controls

• Transactions
– relies upon JTA and JTS

10

DNA-JCR supported features (L1)

11

➡ Accessing the repository
✓ JAAS authentication (IDTrust)

➡ Namespaces
✓ Session Remapping

➡ Reading content
✓ Traversal Access
✓ Direct Access
✓ Same-Name Siblings
✓ Multi-Value Properties
✓ All Property Types Supported
✓ Property Type Conversion

➡ Exporting content
✓ System view export to XML
✓ Document view export to XML

➡ Node Types
✓ Inheritance Among NodeTypes
✓ Discovering available NodeTypes
✓ Discovering NodeTypes of a

Node
✓ Discovering NodeType definition
✓ Property Constraints
✓ Automatic Item Creation
✓ Predefined NodeTypes
✓ Custom NodeType Registration

Namespaces
✓ Session Remapping

DNA-JCR supported features (L2)

12

➡ Writing content
✓ Create/Update/Delete Nodes
✓ Create/Update/Delete

Properties (through parent
nodes)

✓ Moving (but not copying yet)
✓ Adding/Removing Mixins

➡ Importing content
✓ System View Import
✓ Document View Import

➡ Workspace
✓ Create/Delete (delete is more

DNA specific)
✓ Clone Workspace (DNA specific)

Create a Repository

13

Create an in-memory repository source ...
InMemoryRepositorySource source = ... ; // specific impl.

Create a connection factory ...
RepositoryConnectoryFactory factory = ... ; // specific impl.

Set up the execution context ...
ExecutionContext context = ... ; // specific impl.

Make sure the path to the namespaces exists ...
Graph graph = Graph.create(source, context) // specific impl.
graph.create(“/jcr:system”).and.create(“/jcr:system/dna:namespaces”);

Create a JCR repository ...
Repository repository =

new JcrRepository(context, factory,”My Repos.”) ... // specific impl.

Commentary
- Getting a hold of Repository instances is implementation dependent

Create and close a Session

Repository repository = ... // okay, it’s impl. dependent

Ok, we already get the repository instance ...

Credentials credentials = ... ; // JAAS Credentials
String workspaceName = "My Repository";
Session session = repository.login(credentials, workspaceName);
try {

// Use the session to access the repository content
} finally {

if (session != null) session.logout();
}

Create, close a Session

Commentary
- Other credential options (e.g., using JAAS) are implementation dependent
- Creating sessions (or “connections”) requires knowledge of credentials,

making pooling difficult

14

Work with content

Node root = session.getRootNode();
Node node = root.getNode("autos/sports cars/Toyota/2008/
Prius");

Getting nodes by path

for (NodeIterator iter = node.getNodes(); iter.hasNext();) {
 Node child = (Node) iter.nextNode();
 // Do something fun
}

Getting the children of a node

Node ford = root.addNode("autos/sports cars/Ford");
Node ford08 = ford.addNode("2008");
Node volt = root.addNode("autos/sports cars/
Chevy").addNode("2010").addNode("Volt",”car”);

Creating nodes

ford08.addMixin("car:year");
ford08.removeMixin("car:year");

Mixins

Commentary
- Unfortunately JCR doesnʼt use generics
- Cannot create node if parent doesnʼt exist

15

Work with content

Property property = node.getProperty("engineSize”);
String[] engineSize = null;
// Must call either 'getValue()' or 'getValues()' depending upon # of values!
if (property.getDefinition().isMultiple()) {
 Value[] jcrValues = property.getValues();
 engineSize = new String[jcrValues.length];
 for (int i = 0; i < jcrValues.length; i++) {
 engineSize[i] = jcrValues[i].getString();
 }
} else {
 engineSize = new String[] {property.getValue().getString()};
}

Reading a property

Property property = node.getProperty("engineSize”);
property.setValue("V4 Hybrid”);
// Or set directly via the node
node.setProperty("mpgCity”,48);

Setting a property

Commentary
- Getting the property values could be way less verbose
- But Value does have methods to get the values in the Java types I want

16

Work with content (continued)

for (PropertyIterator iter = node.getProperties(); iter.hasNext();) {
 Property property = (Property) iter.nextProperty();
 // Same as before
}

Reading all properties

for (PropertyIterator iter = node.getProperties("jcr:*|*Mpg”); iter.hasNext();) {
 Property property = iter.nextProperty();
 // Same as before
}

Reading some properties

node.accept(new ItemVisitor() {
 public void visit(Property property) throws RepositoryException {
 // Do something with the property
 }
 public void visit(Node node) throws RepositoryException {
 // Do something with the node
 }
});

Visiting nodes and properties

Commentary
- Again, generic iterators would simplify things

17

Davidʼs rules for content modeling
http://wiki.apache.org/jackrabbit/DavidsModel

• Rule #1: Data First, Structure Later. Maybe.
• Rule #2: Drive the content hierarchy,

don't let it happen.
• Rule #3: Workspaces are for clone(), merge()

and update().
• Rule #4: Beware of Same Name Siblings.
• Rule #5: References considered harmful.
• Rule #6: Files are Files are Files.
• Rule #7: ID's are evil.

18

JBoss DNA ecosystem

JBoss DNA

• New JCR implementation that
– looks and behaves like a regular JCR repository
– unifies content from a variety of systems
– extracts the most benefit from the content

• So whatʼs different?
– where the content is stored (lots of places)
– federation!
– use of existing best-of-breed technology

• cache, clustering, persistence, deployment
– enterprise-class repositories
– micro-repository for embedded use

20

JBoss DNA architecture

JBoss DNA
Unified
Repository

Connectors

Standalone Application

Analyses

Views

Configuration

Sequencers
JBoss Cache

JBoss Security
JBoss Txns

Microcontainer

ecosystem

Repository RDBMS
Data

RDBMS
Schema

LDAP Issues
(JIRA,...)

SCM
(SVN,Git,...)

Maven Config
Files

MetaMatrix
MMR

Hibernate

21

File System

JBoss DNA architecture

JBoss DNA
Unified
Repository

Connectors

Application ServerWeb Browser

IDE

WebDAV

REST Apps

MetaMatrix
Designer

Analyses

Views

Configuration

Sequencers

WebDAV

HTTP

Remote

JBoss Cache
JBoss Security

JBoss Txns
Microcontainer

ecosystem

Repository RDBMS
Data

RDBMS
Schema

LDAP Issues
(JIRA,...)

SCM
(SVN,Git,...)

Maven Config
Files

MetaMatrix
MMR

Hibernate

22

File System

Configuring JBoss DNA

• Configuration repository
– contains content describing the components
– observed so updates are reflected in components
– just a regular repository

• Enables clustering
– Processes use the same configuration repository
– Add and remove processes as required

• Repository management
– One repository containing configurations for multiple repositories
– Manage configuration simply as content (edit, copy, etc.)
– Versioning supports rolling back to previous configuration

23

Federation Use Cases

• Unify content in multiple external systems
– Content still managed in current system of record
– Benefits of a single repository

• Local caching repository
– Remote repository is the master
– Application wants a local copy/cache of data it uses

• Images, large files for web content
– Store in JCR (versioning, events, auditing, access control)
– Copy latest to file system (direct access by web server)

• Segregating data by type
– Images in one repository, user info in another, etc.
– Application still uses one repository

• Segregating data by region/owner
– Multiple repositories structured similarly
– Each region owns its data, but reads other regionsʼ data

24

Federation and integration

Retry time
Expiry time
Refresh time
Minimum TTL
Authoritative

Retry time
Expiry time
Refresh time
Minimum TTL
Authoritative

Node information is cached,
using source-specific cache
guidelines

Repository Single,
integrated
graph
composed in
real time

25

Federated Vehicles content

26

Example: Federation configuration

27

Configure Repository Service

28

Connector framework

• RepositorySource
– represents a connectable external system
– creates connections
– a JavaBean thatʼs analogous to JDBC DataSource

• RepositoryConnection
– represents a connection to a source
– process requests by translating to source language
– adapts content changes into events

• RepositoryService
– manages RepositorySource instances
– maintains pools of connections for each source
– can reflect whatʼs defined in a configuration repository

29

JBoss DNA connectors

• In-memory
– simple transient repository

• Federated connector
– Merges content from multiple other sources
– Each projects its content into “federated” repository
– Strategies for merging nodes
– Uses another source as the cache

• JBoss Cache
– support for distribution, clustering, replication
– ability to persistent information in databases

• Connector to JPA Persistence Store
– persists graph content using JPA

30

JBoss DNA connectors

• Relational databases
– schema information (metadata)
– data

• File system connector
– expose files and directories
– store content on file system

• JCR repositories (scheduled)
• SCM systems

– SVN, CVS, Git
– maps directory structure into nt:folder and nt:file

nodes
– includes version history

• Maven repositories (scheduled)
• JNDI/LDAP (scheduled)

31

Detecting media types

• Content often includes files
• Often want correct MIME type as metadata
• Typical approaches

– map extensions
– interpret content

• JBoss DNA uses MIME type detectors
– extensions that determine MIME type given

filename and/or content
– default implementation uses the Aperture open-source

library

32

Sequencing content

Client

content

1) upload2) notify

3) execute

Repository

Sequencers

33

Configure sequencers

• Path expressions describe
– paths of content to be sequenced
– path where to put generated output

– examples:

• Register a sequencer configuration
– Name, description, classname, and path expressions

• Make available at runtime
– put sequencer implementation on the classpath
– or use a ClassLoaderFactory

inputRule => outputRule

//(*.(jpg|jpeg|gif|bmp|pcx|png))[*]/jcr:content[@jcr:data] => /images/$1
//(*.mp3)[*]/jcr:content[@jcr:data] => /mp3s/$1
//(*.(doc|ppt|xls))[*]/jcr:content[@jcr:data] => ./

34

Configure SequenceService

35

Instantiate and configure the SequencingService ...

Start the SequencingService ...

Configure SequenceService

36

... sequencers that it will use.

Configure observation service ...

observation service is started, listeners can be added

Shutting down DNA services ...

Writing your own sequencer

Implement interface

– Read the stream
– Create output structure using SequencerOutput parameter:

public interface StreamSequencer {
 /**
 * Sequence the data found in the supplied stream,
 * placing the output information into the supplied output map.
 */
 void sequence(InputStream stream, SequencerOutput output,
 ProgressMonitor progressMonitor);
}

output.setProperty(path, propertyName, propertyValue);

37

ZIP archives

Java source

Microsoft Office documents

MP3 audio files

JCR Compact Node Definition

jBPM PDL (scheduled)

Images (JPEG, GIF, BMP, PCX, PNG,
IFF, RAS, PBM, PGM, PPM & PSD)

JBoss DNA sequencers (as of 0.4)

.java

.mp3

.jpdl

.cnd

38

For more information

• Project: www.jboss.org/dna
• Downloads (0.4)

– Binary, source, documentation, examples
• JBoss Maven2 Repository

– “org.jboss.dna” group ID (several artifacts)
• Documentation

– Getting Started describes the design, the different components,
and how to use them with a trivial example application

– Reference Guide describes how JBoss DNA works internally
from a developer perspective

• Blogs: jbossdna.blogspot.com
• IRC: irc.freenode.net#jbossdna

39

Q&A

