
Wine User Guide

Wine User Guide

Table of Contents
1. Introduction ...1

Overview / About ...1
Purpose of this document and intended audience ..1
Burning questions and comments..1
Content overview / Steps to take...1

What is Wine? ...2
Windows and Linux ...2
What is Wine, and how can it help me? ..2
Wine capabilities ...2

Other, often "Enhanced" Wine offerings ...3
Alternatives to Wine you might want to consider ..5

VMWare ...5
Win4Lin..5

Basic Wine Requirements..5
System requirements..5

2. Getting Wine..7
How to download Wine? ..7

Which Wine form should I pick?..7
Getting a Wine package...8

Debian Linux...8
Linux Red Hat, Mandrake, SUSE, and Slackware ...9
FreeBSD..9
Other systems..10

Getting Wine source code ...10
Getting Wine Source Code from the official archives..................................10
Getting Wine Source Code from CVS..11
Updating the Wine CVS tree...12
Updating Wine with a Patch ...12

3. Compiling the Wine Source..15
Compiling Wine..15

Requirements ..15
Space required...15
Common problems...15

4. Installing or uninstalling Wine..17
Installing or uninstalling Wine packages..17

Debian Linux...17
Linux Red Hat, Mandrake, SUSE and other distributions using RPM.....17

Installing or uninstalling a Wine source code tree ..18
5. Configuring Wine ...19

What are the requirements of a fully working Windows environment?19
Easy configuration helper programs ...19

WineSetupTk ...19
wineinstall..20

Verification of correct configuration..20
The Wine Configuration File ..20

Configuration File Introduction ...20
Creating Or Modifying The Configuration File ...21
What Does It Contain? ...21
What If It Doesn’t Work? ...27

Disc Drives, Serial and Parallel Ports ..27
Extremely Important Prerequisites ..28
Short Introduction ..28
Windows Directory Structure ...28
The dosdevices Directory ..29
File system settings in the [wine] section..29
More detailed explanation about file system differences30

iii

Installing Wine Without Windows...31
Installing Wine Using An Existing Windows Partition As Base................32
Dealing With FAT/VFAT Partitions...32
Drive labels and serial numbers ...35

The Registry ..36
The default registry ..36
Using a Windows registry ...36
The Registry...36
Registry structure ...36
Wine registry data files ..37
System administration ...37
The [registry] section..38

DLL configuration..39
Introduction...39
Introduction To DLL Sections ...39
DLL Overrides ..40
System DLLs..43
Missing DLLs ..43
Fetching native DLLs from a Windows CD..44

Configuring the graphics driver (x11drv, ttydrv etc.)...44
Configuring the x11drv graphics driver ...44
Configuring the ttydrv graphics driver...46

Setting the Windows and DOS version value..46
How to configure the Windows and DOS version value Wine should

return ..47
Dealing with Fonts ...47

Fonts ...47
Setting up a TrueType Font Server ...50

Printing in Wine..51
Printing...51
The Wine PostScript Driver...52

SCSI Support ...53
Windows requirements..54
Linux requirements ..54
Notes...54

Using ODBC..55
Using a Unix ODBC system with Wine...55
Using Windows ODBC drivers ..55

6. Running Wine ...57
Basic usage: applications and control panel applets...57
How to run Wine..57
Explorer-like graphical Wine environments ..58
Wine Command Line Options..58

--help...58
--version ...58

Environment variables ..58
WINEDEBUG=[channels] ...58

wineserver Command Line Options ...60
-d<n>...60
-h ...60
-k[n]...61
-p[n] ..61
-w ..61

Setting Windows/DOS environment variables...61
Text mode programs (CUI: Console User Interface) ...61

Configuration of CUI executables ..63

iv

7. Troubleshooting / Reporting bugs...67
What to do if some program still doesn’t work? ...67

Verify your wine configuration ..67
Use different windows version settings ..67
Use different startup paths..67
Fiddle with DLL configuration...67
Check your system environment ! ...67
Use different GUI (Window Manager) modes ...67
Check your app !...67
Check your Wine environment !...67
Reconfigure Wine..68
Check out further information..68
Debug it!...68

How To Report A Bug ...69
All Bug Reports...69
Crashes ...69

Glossary ..73

v

vi

Chapter 1. Introduction

Overview / About

Purpose of this document and intended audience
This document, called the Wine User Guide, is supposed to be both an easy installa-
tion guide and an extensive reference guide. Thus while it completely explains how
to install and configure Wine, it also tries to document all configuration features and
support areas of the Wine environment as a whole.

It tries to target both the new Wine user, by offering a step by step approach, and the
experienced Wine user, by offering the reference material mentioned above.

Burning questions and comments
If during reading this document there is something you can’t figure out, or think
could be explained better, or that should have been included, please immediately
mail to the wine-devel1, or post a bug report to Wine’s Bugzilla2 to let us know how
this document can be improved. Remember, Open Source is "free as in free speech,
not as in free beer": it can only work in the case of very active involvement of its
users!

Note that I can’t say that I’m too impressed with the amount of feedback about this Guide that
we have received so far since I added this paragraph many months ago...

Content overview / Steps to take
This section will try to give you a complete overview of how to go all the way to
a fully working Wine installation by following this Guide. We strongly recommend
following every single relevant step of this Guide, since you might miss important
information otherwise.

First, we start by explaining what Wine is and mentioning everything else that’s use-
ful to know about it (that’s covered in this very chapter that you’re reading a part of
right now).

In order to be able to use Wine, you need to obtain a copy of its files first. That’s
the purpose of the next chapter, Getting Wine: it tries to show you how Wine can be
installed on your particular system (i.e. which installation methods are available in
your case), and then it explains the various methods: either getting Wine via a binary
package file suited for your particular system, or getting it via a Wine source code
archive file, or getting the most current Wine development source code via CVS.

Once you got your copy of Wine, you might need to follow the next chapter Com-
piling if you decided to get Wine source code. Otherwise, the next chapter Installing
Wine will explain the methods to use to install the Wine binary files to some location
on your system.

Once Wine is installed on your system, the next chapter Configuring Wine will focus
on the available configuration methods for Wine to set up a proper Wine/Windows
environment with all its requirements: there are either graphical (e.g. WineSetupTk)
or text mode (wineinstall) configuration helper applications available that will fully
configure the Wine environment for you. And for those people who dislike a fully
automated installation (maybe because they really want to know what they’re doing),
we’ll describe how to manually set up a complete Wine environment configuration.

1

Chapter 1. Introduction

Once the configuration of the Wine environment is done, the next chapter Running
Wine will show you how to run Windows programs with Wine and how to satisfy
the more specific requirements of certain Windows programs.

In case you run into trouble, the chapter Troubleshooting / Reporting bugs will list
and explain some common troubleshooting and debugging methods.

What is Wine?

Windows and Linux
Many people have faced the frustration of owning software that won’t run on their
computer. With the recent popularity of Linux3, this is happening more and more
often because of differing operating systems. Your Windows software won’t run on
Linux, and your Linux software won’t run in Windows.

A common solution to this problem is to install both operating systems on the same
computer, as a “dual boot” system. If you want to write a document in MS Word,
you can boot up in Windows; if you want to run GnuCash, the GNOME financial
application, you can shut down your Windows session and reboot into Linux. The
problem with this is that you can’t do both at the same time. Each time you switch
back and forth between MS Word and GnuCash, you have to reboot again. This can
get tiresome quickly.

Life would be so much easier if you could run all your applications on the same sys-
tem, regardless of whether they are written for Windows or for Linux. On Windows,
this isn’t really possible, yet. 4 However, Wine makes it possible to run native Win-
dows applications alongside native Linux applications on any Unix-like system. You
can share desktop space between MS Word and GnuCash, overlapping their win-
dows, iconizing them, and even running them from the same launcher.

What is Wine, and how can it help me?
Wine is a UNIX implementation of the win32 Windows libraries, written from scratch
by hundreds of volunteer developers and released under an Open Source license
(think of it as a Windows compatibility layer for Linux and other similar operating
systems). Anyone can download and read through the source code, and fix bugs
that arise. The Wine community is full of richly talented programmers who have
spent thousands of hours of personal time on improving Wine so that it works well
with the win32 Application Programming Interface (API), and keeps pace with new
developments from Microsoft.

Wine can run Windows applications in two discrete ways: as pre-compiled Windows
binaries (your average off-the-shelf program package e.g. available on CD), or as na-
tively compiled X11 (X-Window System)6 applications (via the part of Wine that’s
called Winelib). If you’re interested in compiling the source code of a Windows pro-
gram you wrote, then please refer to the Winelib User’s Guide instead, which ex-
plains this particular topic. This Wine Users Guide however will focus on running
standard Windows applications using Wine.

Wine capabilities
Now that we’re done with the boring introductory babble, let us tell you what Wine
is able to do/support:

2

Chapter 1. Introduction

• Support for running Win32 (Win 95/98, NT/2000/XP), Win16 (Win 3.1) and DOS
programs

• Optional use of external vendor DLLs (e.g. original Windows DLLs)

• X11-based graphics display (remote display to any X terminal possible), text mode
console

• Desktop-in-a-box or mixable windows

• Pretty advanced DirectX support for games

• Good support for sound, alternative input devices

• Printing: PostScript interface driver (psdrv) to standard Unix PostScript print ser-
vices

• Modems, serial devices are supported

• Winsock TCP/IP networking

• ASPI interface (SCSI) support for scanners, CD writers, ...

• Unicode support, relatively advanced language support

• Wine debugger and configurable trace logging messages

Other, often "Enhanced" Wine offerings
There are a number of offerings that are derived from the standard Wine codebase in
some way or another.

Some of these are commercial products from companies that actively contribute to
Wine.

These products often try to stand out or distinguish themselves from Wine, e.g. by
offering greater compatibility or much easier and flexible configuration than your
average standard Wine release. As such it is often a good idea to shell out some bucks
for the commercial versions, especially since these companies contribute a lot of code
to Wine, and plus, I’m sure they’ll be happy about your support...

Table 1-1. Various Wine offerings

Product Description Distribution form

ReWind7 ReWind is a Wine version
derived from the old BSD
licensed Wine tree (it’s the
"completely free" BSD
license fork of the
currently LGPL’ed Wine).
Due to its BSD license it
can’t incorporate some
Wine patches that get
licensed under the more
restrictive (or: protective)
LGPL license by their
authors.

Free, Open Source: BSD
license

3

Chapter 1. Introduction

Product Description Distribution form

CodeWeavers CrossOver
Office7

CrossOver Office allows
you to install your favorite
Windows productivity
applications in Linux,
without needing a
Microsoft Operating
System license. CrossOver
includes an easy to use,
single click interface,
which makes installing a
Windows application
simple and fast.

Commercial

CodeWeavers CrossOver
Office Server Edition7

CrossOver Office Server
Edition allows you to run
your favorite Windows
productivity applications
in a distributed thin-client
environment under Linux,
without needing Microsoft
Operating System licenses
for each client machine.
CrossOver OfficeServer
Edition allows you to
satisfy the needs of
literally hundreds of
concurrent users, all from
a single server.

Commercial

CodeWeavers CrossOver
Plugin7

CrossOver Plugin lets
you use many Windows
plugins directly from your
Linux browser. In
particular CrossOver fully
supports QuickTime,
Shockwave Director,
Windows Media Player
6.4, Word Viewer, Excel
Viewer, PowerPoint
Viewer, and more...

Commercial; Demo
version available

CodeWeavers Wine
preview7

The Wine preview is a
usually slightly older
Wine release that’s been
tested as extra stable. It
includes the graphical
installer winesetuptk,
allowing for easy
configuration.

Free, Open Source: LGPL
license

4

Chapter 1. Introduction

Product Description Distribution form

TransGaming
Technologies WineX7

WineX is a Wine version
derived from the old BSD
licensed Wine tree, with
currently better support
for Direct3D and DirectX
software than standard
Wine, and with added
copy protection support
for multiple types of copy
protection e.g. used in
games.

Commercial; free CVS
download7 of reduced
version (no copy
protection support etc.)

Alternatives to Wine you might want to consider
We’ll mention some alternatives (or we could also say: competitors) to Wine here that
might come in handy if Wine is not usable for the program or job you want it to do,
since these alternatives usually provide better Windows compatibility.

VMWare
VMWare7 is a software package to emulate an additional machine on your PC. In
other words, it establishes a virtual machine that can be used to run any kind of
Intel x86 compatible operating system in parallel to your currently running operating
system. Thus you could use Linux and at the same time run Windows 98 in a virtual
machine on the same screen.

Sounds nice, doesn’t it? Well, there are some drawbacks, of course... First, VMWare is
pretty expensive, and second, you need a licensed copy of the operating system you
want to run. Third, since VMWare is a virtual machine, it’s quite slow. Wine doesn’t
have any of these limitations, but unfortunately this also means that you will not
have the relatively good compatibility of a real original Windows system if you use
Wine.

Win4Lin
Win4Lin8 by NeTraverse allows you to run a special version of Win98 in Linux. Com-
pared to VMWare, this has the advantage that it’s faster, but you still have the license
fees.

Basic Wine Requirements
This section only mentions the most basic system requirements of Wine, in order to
ease your Wine "purchasing decision" ;-) For an up-to-date much more detailed list
of requirements for compiling and/or installing Wine, please read the REQUIRE-
MENTS section of the README9 file, which is also available in the main directory of
a Wine source code tree.

In case of a binary Wine package, these Wine requirements will probably be fulfilled
automatically by the package installation process; if you want to have a look at the
detailed requirements nevertheless (which definitely can’t hurt!), then I’d like to men-
tion that the README file can also frequently be found in the documentation files
directory of a Wine package.

5

Chapter 1. Introduction

System requirements
In order to run Wine, you generally need the following:

• A computer ;-)

Wine: only PCs >= i386 are supported at the moment.

Winelib: selected other platforms are supported, but can be tricky.

• A UNIX-like operating system such as Linux, *BSD, Solaris x86, ReactOS, Cygwin

• >= 32MB of RAM. Everything below is pretty much unusable. >= 96 MB is needed
for "good" execution.

• An X11 window system (XFree86 etc.). Wine is prepared for other graphics display
drivers, but writing support is not too easy. The text console display driver (ttydrv)
is nearly usable, so you don’t necessarily have to install X11 if you don’t need it for
the programs you intend to run (in other words: mainly for text mode programs).

Notes
1. mailto:wine-devel@winehq.org

2. http://bugs.winehq.org/

3. http://www.tldp.org/FAQ/Linux-FAQ/index.html

4. Technically, if you have two networked computers, one running Windows and
the other running Linux, and if you have some sort of X server software running
on the Windows system, you can export Linux applications onto the Windows
system. A free X server is available at

5. http://xfree86.cygwin.com/
. However, this doesn’t solve the problem if you only own one computer system.

5. http://xfree86.cygwin.com/

6. http://www.xfree86.org/#whatis

7. http://www.vmware.com

8. http://www.win4lin.com

9. http://www.winehq.org/source/README

6

Chapter 2. Getting Wine

If you decided that you can use and want to use Wine (e.g. after having read the
introductory chapter), then as a first step you need to find a good compatible Wine
version that you like and that works on your system, and after you found one, the
next step is to transfer its files to your system somehow. This chapter is here to tell
you what you need to take care of in order to successfully accomplish these two steps.

How to download Wine?
There are three different methods of how the files belonging to Wine may be brought
(downloaded) to your system:

• Getting a single Wine package file (specifically adapted to your particular system),
which contains various binary files of Wine

• Getting a single compressed archive file (usually .tar.gz), which contains all source
code files of a standard Wine release version

• Downloading from a CVS server, which contains the very latest development
source code files of Wine

Which Wine form should I pick?
Now that we told you about the different Wine distribution methods available, let’s
discuss the advantages and disadvantages of the various methods.

Wine distribution methods

Wine package file

Intended user level: Beginner to Advanced

Using Wine package files is easy for three reasons: They install everything else
that’s needed for their operation, they usually preconfigure a lot, and you don’t
need to worry about compiling anything or so. You can get the official wine
packages from the sourceforge.net Wine download page1

Wine source code via archive file

Intended user level: Advanced to Expert

A Wine source code archive file can be used if you want to compile your own
standard Wine release. By using differential patch files to newer Wine versions,
you can easily upgrade your outdated Wine directory. However, as you need
to manually download patch files and you’re only able to download the most
current standard Wine release, this is not necessarily the best method to use.
The only advantage a Wine source archive has is that it is a standard Wine re-
lease with less development "quirks" than current CVS code. Except for that,
CVS source code is much preferred and almost as easy.

Wine source code via CVS checkout

Intended user level: Advanced to Expert/Developer

The Wine CVS checkout offers the best way to take part in bleeding edge Wine
capabilities and development, since you’ll be able to download every single CVS

7

Chapter 2. Getting Wine

commit even beyond the last official Wine release. As upgrading a Wine CVS
checkout tree to the latest version is very easy, this is a recommended method of
installing Wine. Plus, by carefully following the instructions in this Guide, you’ll
be able to gain the very best Wine environment compatibility (instead of falling
victim to package maintainers who fail to follow some instructions in the Wine
Packagers Guide).

To summarize, the "best" way to install Wine is to download Wine source code via
CVS to get the newest code (which might be unstable!). Then you could easily com-
pile and install the Wine files manually. The final configuration part (writing the
configuration file and setting up the drive environment) could then be handled by
WineSetupTk. All in all the best way to go, except for the about 500MB of disk space
that you’ll need.

With source code archive files, you have the advantage that you’re running standard
release versions, plus you can update to newer versions via patch files that we release.
You won’t have the newest code and the flexibility offered by CVS, though.

About binary package files: not sure. There’s about a zillion reasons to not like them
as much as you’d think: they may be outdated, they may not include "everything",
they are not optimized for your particular environment (as opposed to a source com-
pile, which would guess and set everything based on your system), they frequently
fail to provide a completely configured Wine environment. On the plus side: they’re
pretty easy to install and they don’t take as much space as a full-blown source code
compile. But that’s about it when it comes to their advantages. So I’d say they are
OK if you want to have a quick way to have a test run of Wine, but for prolonged
Wine use, configuring the environment on your own is probably better. Eventually
this will change (we’ll probably do some packaging efforts on our own at some time),
but at the current explosive rate of Wine development, staying as close as possible to
the actual Wine development that’s going on is the way to go.

If you are running a distribution of Linux or some other system that uses packages
to keep track of installed software, you should be in luck: A prepackaged version
of Wine should already exist for your system. The following sections will tell you
how to find the latest Wine packages and get them installed. You should be care-
ful, though, about mixing system packages between different distributions, and even
from different versions of the same distribution. Often a package will only work on
the distribution which it has been compiled for. We’ll cover Debian Linux, Red Hat,
Mandrake, SUSE and Slackware Linux, FreeBSD, and other distributions.

If you’re not lucky enough to have a package available for your operating system,
or if you’d prefer a newer version of Wine than already exists as a package, you
will need to download the Wine source code and compile it yourself on your own
machine. Don’t worry, it’s not too hard to do this, especially with the many helpful
tools that come with Wine. You don’t need any programming experience to compile
and install Wine, although it might be nice to have some minor UNIX administrative
skills. Working from the source is covered in the Wine Developer’s Guide. The main
problem with externally maintained package files is that they lack a standard config-
uration method, and in fact they often fail to configure Wine’s Windows environment
properly (which is outlined in the Wine Packagers Guide).

Getting a Wine package

Debian Linux
In most cases on a Debian system (or any other distribution that uses packages that
use the file name ending .deb, for that matter), you can download and install Wine
with a single command, as root:

8

Chapter 2. Getting Wine

apt-get install wine

apt-get will connect to a Debian archive across the Internet (thus, you must be online),
then download the Wine package and install it on your system. End of story. You
might first need to properly update your package setup, though, by using an editor
as root to add an entry to /etc/apt/sources.list to point to an active package
server and then running apt-get update.

Once you’re done with that step, you may skip the Wine installation chapter, since
apt-get has not only downloaded, but also installed the Wine files already. Thus you
can now go directly to the Configuration section.

However, if you don’t want to or cannot use the automatic download method for
.deb packages that apt-get provides, then please read on.

Of course, Debian’s pre-packaged version of Wine may not be the most recent re-
lease. If you are running the stable version of Debian, you may be able to get a
slightly newer version of Wine by grabbing the package from the so-called "unsta-
ble" Debian distribution, although this may be a little risky, depending on how far
the unstable distribution has diverged from the stable one. You can find a list of Wine
binary packages for the various Debian releases using the package search engine at
www.debian.org2.

If you downloaded a separate .deb package file (e.g. a newer Wine release as stated
above) that’s not part of your distribution and thus cannot be installed via apt-get,
you must use dpkg instead. For instructions on how to do this, please proceed to the
Installation section.

Linux Red Hat, Mandrake, SUSE, and Slackware
Red Hat, Mandrake, SUSE and Slackware users can download a wine binary from
the sourceforge.net Wine download page3

FreeBSD
In order to use Wine you need to build and install a new kernel with options
USER_LDT, SYSVSHM, SYSVSEM, and SYSVMSG.

If you want to install Wine using the FreeBSD port system, run in a terminal:

$ su -
cd /usr/ports/emulators/wine/
make
make install
make clean

This process will get wine source from the Internet, then download the Wine package
and install it on your system.

If you want to install Wine from the FreeBSD CD-ROM, run in a terminal:

$ su -
mount /cdrom
cd /cdrom/packages/All
pkg_add wine_.X.X.X.tgz

These FreeBSD install instructions completely install the Wine files on your system;
you may then proceed to the Configuration section.

9

Chapter 2. Getting Wine

You can also download a FreeBSD package of wine from the sourceforge.net Wine
download page4

Other systems
The first place you should look if your system isn’t specifically mentioned above
is the WineHQ Download Page5. This page lists many assorted archives of binary
(precompiled) Wine files.

You could also try to use Google6 to track down miscellaneous distribution packages.

Getting Wine source code
If you are going to compile Wine (instead of installing binary Wine files), either to use
the most recent code possible or to improve it, then the first thing to do is to obtain a
copy of the source code. We’ll cover how to retrieve and compile the source releases
from the official archives, and also how to get the cutting edge up-to-the-minute fresh
Wine source code from CVS (Concurrent Versions System).

Once you have downloaded Wine source code according to the instructions below,
there are two ways to proceed: If you want to manually install and configure Wine,
then go to the Compiling section. If instead you want automatic installation, then
go straight to the Configuration section to make use of wineinstall to automatically
install and configure Wine.

You may also need to know how to apply a source code patch to your version of
Wine. Perhaps you’ve uncovered a bug in Wine, reported it to the Wine Bugzilla7 or
the Wine mailing list8, and received a patch from a developer to hopefully fix the bug.
We will show you how to safely apply the patch and revert it if it doesn’t work.

Getting Wine Source Code from the official archives
The safest way to grab the source is from one of the official archives. An up to date
listing is in the ANNOUNCE9 file in the Wine distribution (which you would have if
you already downloaded it). Here is a list of servers carrying Wine:

• ftp://ftp.ibiblio.org/pub/Linux/ALPHA/wine/development/ 10

• sourceforge.net download page 11

The official releases are tagged by date with the format "Wine-YYYYMMDD.tar.gz".
Your best bet is to grab the latest one.

I’d recommend placing the Wine archive file that you chose into the directory where
you intend to extract Wine. In this case, let’s just assume that it is your home directory.

Once you have downloaded a Wine archive file, we need to extract the archive file.
This is not very hard to do. First switch to the directory containing the file you just
downloaded. Then extract the source in a terminal with (e.g.):

$ tar xvzf wine- 20030115 .tar.gz

Just in case you happen to get a Wine archive that uses .tar.bz2 extension instead
of .tar.gz : Simply use tar xvjf in that case instead.

Since you now have a fully working Wine source tree by having followed the steps
above, you’re now well-prepared to go to the Wine installation and configuration
steps that follow.

10

Chapter 2. Getting Wine

Getting Wine Source Code from CVS
This part is intended to be quick and easy, showing the bare minimum of what is
needed to download Wine source code via CVS. If you’re interested in a very ver-
bose explanation of CVS or advanced CVS topics (configuration settings, CVS mirror
servers, other CVS modules on WineHQ, CVSWeb, ...), then please read the full CVS
chapter in the Wine Developer’s Guide.

CVS installation check

First you need to make sure that you have cvs installed. To check whether this is the
case, please run in a terminal:

$ cvs

If this was successful, then you should have gotten a nice CVS "Usage" help output.
Otherwise (e.g. an error "cvs: command not found") you still need to install a CVS
package for your particular operating system, similar to the instructions given in the
chapters for getting and installing a Wine package on various systems.

Downloading the Wine CVS tree

Once CVS is installed, you can now do a login on our CVS server and checkout
(download) the Wine source code. First, let’s do the server login, to connect to the
US server:

$ export CVSROOT=:pserver:cvs@cvs.winehq.org:/home/wine
$ cvs login

To connect to the EU server:

$ export CVSROOT=:pserver:cvs@rhlx01.fht-esslingen.de:/home/wine
$ cvs login

If cvs successfully connects to the CVS server, then you will get a "CVS password:"
prompt. Simply enter "cvs" as the password (the password is case sensitive: no capital
letters!).

After login, we are able to download the Wine source code tree. Please make sure
that you are in the directory that you want to have the Wine source code in (the Wine
source code will use the subdirectory wine/ in this directory, since the subdirectory
is named after the CVS module that we want to check out). We assume that your
current directory might be your user’s home directory. To download the Wine tree
into the subdirectory wine/ , run:

$ cvs -z3 checkout wine

Downloading the CVS tree might take a while (some minutes to few hours), depend-
ing on your connection speed. Once the download is finished, you should keep a
note of which directory the newly downloaded wine/ directory is in, by running
pwd (Print Working Directory):

$ pwd

Later, you will be able to change to this directory by running:

$ cd <some_dir >

11

Chapter 2. Getting Wine

where <some_dir> is the directory that pwd gave you. By running

$ cd wine

you can now change to the directory of the Wine CVS tree you just downloaded. Since
you now have a fully working Wine source tree by having followed the steps above,
you’re now well-prepared to go to the Wine installation and configuration steps that
follow.

Updating the Wine CVS tree
After a while, you might want to update your Wine CVS tree to the current version.
Before updating the Wine tree, it might also be a good idea to run make uninstall as
root in order to uninstall the installation of the previous Wine version.

To proceed with updating Wine, simply cd to the Wine CVS tree directory, then run,
if you’re using the US server:

$ make distclean
$ cvs update -PAd

The make distclean part is optional, but it’s a good idea to remove old build and
compile configuration files before updating to a newer Wine version. Once the CVS
update is finished, you can proceed with installing Wine again as usual.

Updating Wine with a Patch
If you got Wine source code (e.g. via a tar archive file), you have the option of ap-
plying patches to the source tree to update to a newer Wine release or to fix bugs
and add experimental features. Perhaps you’ve found a bug, reported it to the Wine
mailing list12, and received a patch file to fix the bug. You can apply the patch with
the patch command, which takes a streamed patch from stdin :

$ cd wine
$ patch -p0 <../patch_to_apply.diff

To remove the patch, use the -R option:

$ patch -p0 -R <../patch_to_apply.diff

If you want to do a test run to see if the patch will apply successfully (e.g., if the patch
was created from an older or newer version of the tree), you can use the --dry-run
parameter to run the patch without writing to any files:

$ patch -p0 --dry-run <../patch_to_apply.diff

patch is pretty smart about extracting patches from the middle of a file, so if you save
an email with an inlined patch to a file on your hard drive, you can invoke patch on

12

Chapter 2. Getting Wine

it without stripping out the email headers and other text. patch ignores everything
that doesn’t look like a patch.

The -p0 option to patch tells it to keep the full file name from the patch file. For
example, if the file name in the patch file was wine/programs/clock/main.c .
Setting the -p0 option would apply the patch to the file of the same name i.e.
wine/programs/clock/main.c . Setting the -p1 option would strip off the first
part of the file name and apply the patch to programs/clock/main.c . The -p1
option would be useful if you named your top level wine directory differently than
the person who sent you the patch. For the -p1 option patch should be run from the
top level wine directory.

Notes
1. http://sourceforge.net/project/showfiles.php?group_id=6241

2. http://www.debian.org

3. http://sourceforge.net/project/showfiles.php?group_id=6241

4. http://sourceforge.net/project/showfiles.php?group_id=6241

5. http://www.winehq.org/download/

6. http://www.google.com/search?q=wine+package+download

7. http://bugs.winehq.org

8. mailto:wine-devel@winehq.org

9. http://www.winehq.org/source/ANNOUNCE

10. ftp://ftp.ibiblio.org/pub/Linux/ALPHA/wine/development/

11. http://sourceforge.net/project/showfiles.php?group_id=6241&package_id=77449

12. mailto:wine-devel@winehq.org

13

Chapter 2. Getting Wine

14

Chapter 3. Compiling the Wine Source

How to compile wine, and problems that may arise...

In case you downloaded Wine source code files, this chapter will tell you how to
compile it into binary files before installing them. Otherwise, please proceed directly
to the Installation chapter to install the binary Wine files.

Compiling Wine

Requirements
For an up-to-date list of software requirements for compiling Wine and instructions
how to actually do it, please see the README1 file, which is also available in the main
directory of a Wine source code tree.

Space required
You also need about 400 MB of available disk space for compilation. The compiled
libwine.so binary takes around 5 MB of disk space, which can be reduced to about 1
MB by stripping (’strip wine’). Stripping is not recommended, however, as you can’t
submit proper crash reports with a stripped binary.

Common problems
If you get a repeatable sig11 compiling shellord.c, thunk.c or other files, try compiling
just that file without optimization (removing the -Ox option from the GCC command
in the corresponding Makefile).

Notes
1. http://www.winehq.org/source/README

15

Chapter 3. Compiling the Wine Source

16

Chapter 4. Installing or uninstalling Wine

A standard Wine distribution form (which you probably downloaded according to
chapter Getting Wine) includes quite a few different programs, libraries and config-
uration files. All of these must be set up properly for Wine to work well. In order
to achieve this, this chapter will guide you through the necessary steps to get the
Wine files installed on your system. It will not deal with how to get Wine’s Windows
environment configured; that’s what the next chapter will talk about.

When installing Wine, you should make sure that it doesn’t happen to overwrite a
previous Wine installation (as this would cause an overwhelming amount of annoy-
ing and fatal conflicts); uninstalling any previous Wine version (as explained in this
chapter) to avoid this problem is recommended.

Installing or uninstalling Wine packages
Now that you have downloaded the Debian or RPM or whatever Wine package file,
probably via the instructions given in the previous chapter, you may be wondering
"What in the world do I do with this thing?". This section will hopefully be able to
put an end to your bewildered questioning, by giving detailed install instructions for
all sorts of well-known package types.

Debian Linux
In case you haven’t downloaded and automatically installed the Wine package file
via apt-get as described in the Getting Wine section, you now need to use dpkg to
install it. Switch to the directory you downloaded the Debian .deb package file to.
Once there, type these commands, adapting the package file name as required:

$ su -
Password:
cd /home/user
dpkg -i wine_ 0.0.20030115-1 .deb

(Type the root password at the "Password:" prompt)

You may also want to install the wine-doc package, and if you are using Wine from
the 2.3 distribution (Woody), the wine-utils package as well.

Uninstalling an installed Wine Debian package can be done by running:

dpkg -l|grep wine

The second column of the output (if any) of this command will indicate the installed
packages dealing with "wine". The corresponding packages can be uninstalled by
running:

dpkg -r <package_name >

where <package_name> is the name of the Wine-related package which you want
to uninstall.

Linux Red Hat, Mandrake, SUSE and other distributions using
RPM
Most distributions provide a graphical tool for installing RPM packages, you can use
it by simply clicking (Or double clicking, depending on your system settings) on the

17

Chapter 4. Installing or uninstalling Wine

RPM. If you don’t have a graphical RPM manager installed, using a shell, switch to
the directory where you downloaded the RPM package file to. Once there, type this
one command as root, adapting the package file name as required:

rpm -ivh wine- 20031212.i386 .rpm

You may also want to install the wine-devel package.

If you’ve installed wine graphically, you can uninstall it using your graphical RPM
manager (Gnorpm, Kpackage, Yast, Mandrake Control Center and so on), alterna-
tively, uninstalling a installed Wine RPM package can be done from a shell, by run-
ning:

rpm -qa|grep -i wine

This command will indicate the installed packages dealing with "wine". The corre-
sponding packages can be uninstalled by running:

rpm -e <package_name >

where <package_name> is the name of the Wine-related package which you want
to uninstall.

Installing or uninstalling a Wine source code tree
If you are in the directory of the Wine version that you just compiled (e.g. by having
run make depend && make), then you may now install this Wine version by running
as root:

make install

This will copy the Wine binary files to their final destination in your system. You can
then proceed to the Configuration chapter to configure the Wine environment.

If instead you want to uninstall the currently installed Wine source code version, then
change to the main directory of this version and run as root:

make uninstall

18

Chapter 5. Configuring Wine

Now that you hopefully managed to successfully install the Wine program files, this
chapter will tell you how to configure the Wine environment properly to run your
Windows programs.

First, we’ll give you an overview about which kinds of configuration and program
execution aspects a fully configured Windows environment has to fulfill in order
to ensure that many Windows programs run successfully without encountering any
misconfigured or missing items. Next, we’ll show you which easy helper programs
exist to enable even novice users to complete the Wine environment configuration in
a fast and easy way. The next section will explain the purpose of the Wine configu-
ration file, and we’ll list all of its settings. After that, the next section will detail the
most important and unfortunately most difficult configuration part: how to config-
ure the file system and DOS drive environment that Windows programs need. In the
last step we’ll tell you how to establish a working Windows registry base. Finally, the
remaining parts of this chapter contain descriptions of specific Wine configuration
items that might also be of interest to you.

What are the requirements of a fully working Windows
environment?

A Windows installation is a very complex structure. It consists of many different parts
with very different functionality. We’ll try to outline the most important aspects of it.

• Registry. Many keys are supposed to exist and contain meaningful data, even in a
newly-installed Windows.

• Directory structure. Applications expect to find and/or install things in specific
predetermined locations. Most of these directories are expected to exist. But unlike
Unix directory structures, most of these locations are not hardcoded, and can be
queried via the Windows API and the registry. This places additional requirements
on a Wine installation.

• System DLLs. In Windows, these usually reside in the system (or system32) direc-
tory. Some Windows programs check for their existence in these directories before
attempting to load them. While Wine is able to load its own internal DLLs (.so
files) when the program asks for a DLL, Wine does not simulate the presence of
non-existent files.

While the users are of course free to set up everything themselves, the Wine team
will make the automated Wine source installation script, tools/wineinstall , do
everything we find necessary to do; running the conventional configure && make
depend && make && make install cycle is thus not recommended, unless you
know what you’re doing. At the moment, tools/wineinstall is able to create a
configuration file, install the registry, and create the directory structure itself.

Easy configuration helper programs
Managing the Wine configuration file settings can be a difficult task, sometimes too
difficult for some people. That’s why there are some helper applications for easily
setting up an initial wine configuration file with useful default settings.

WineSetupTk
WineSetupTk is a graphical Wine configuration tool with incredibly easy handling
of Wine configuration issues, to be used for configuring the Wine environment after
having installed the Wine files. It has been written by CodeWeavers in 2000 as part

19

Chapter 5. Configuring Wine

of a host of other efforts to make Wine more desktop oriented, and updated in 2003
by Vincent Béron, Alex Pasadyn and Ivan Leo Puoti.

If you’re using Debian, simply install the WineSetupTk package (as root):

apt-get install winesetuptk

If you’re using another distribution, you can get WineSetupTk from the source-
forge.net Wine download page1

wineinstall
wineinstall is a small configuration tool residing as tools/wineinstall in a Wine
source code tree. It has been written to allow for an easy and complete compila-
tion/installation of Wine source code for people who don’t bother with reading heaps
of very valuable and informative documentation ;-)

Once you have successfully extracted the Wine source code tree, change to the main
directory of it and then run (as user):

$./tools/wineinstall

Doing so will compile Wine, install Wine and configure the Wine environment (either
by providing access to a Windows partition or by creating a properly configured no-
windows directory environment).

Verification of correct configuration
TODO: After you have finished configuring Wine you can verify your Wine config-
uration by running winecfg. This functionality will be added to winecfg in the near
future.

Please check out the configuration documentation below to find out more about
Wine’s configuration, or proceed to the Troubleshooting chapter.

The Wine Configuration File
This section is meant to contain both an easy step-by-step introduction to the Wine
configuration file (for new Wine users) and a complete reference to all Wine configu-
ration file settings (for advanced users).

Configuration File Introduction
The Wine configuration file is the central file to store configuration settings for Wine.
This file (which is called config) can be found in the sub directory .wine/ of your
user’s home directory (directory /home/user/). In other words, the Wine configura-
tion file is ~/.wine/config . Note that since the Wine configuration file is a part of the
Wine registry file system, this file also requires a correct "WINE REGISTRY Version 2"
header line to be recognized properly, just like all other Wine registry text files (just in
case you decided to write your own registry file from scratch and wonder why Wine
keeps rejecting it).

The settings available in the configuration file include:

• Directory settings

20

Chapter 5. Configuring Wine

• Port settings

• The Wine look and feel

• Wine’s DLL usage

• Wine’s multimedia drivers and DLL configuration

Creating Or Modifying The Configuration File
If you just installed Wine for the first time and want to finish Wine installation by
configuring it now, then you could use our sample configuration file config (which
can be found in the directory documentation/samples/ of the Wine source code
directory) as a base for adapting the Wine configuration file to the settings you want.
First, I should mention that you should not forget to make sure that any previous
configuration file at ~/.wine/config has been safely moved out of the way instead
of simply overwriting it when you will now copy over the sample configuration file.

If you don’t have a pre-existing configuration file and thus need to copy over our
sample configuration file to the standard Wine configuration file location, do in a
terminal:

$ mkdir ~/.wine/
$ cp dir_to_wine_source_code /documentation/samples/config ~/.wine/config

Otherwise, simply use the already existing configuration file at ~/.wine/config .

Now you can start adapting the configuration file’s settings with an editor according
to the documentation below. Note that you should only change configuration file set-
tings if wineserver is not running (in other words: if your user doesn’t have a Wine
session running), otherwise Wine won’t use them - and even worse, wineserver will
overwrite them with the old settings once wineserver quits!!

What Does It Contain?
Let’s start by giving an overview of which sections a configuration file may contain,
and whether the inclusion of the respective section is needed or only recommended
("recmd").

Section Name Needed? What it Does

[wine] yes General settings for Wine

[DllOverrides] recmd Overrides defaults for
DLL loading

[x11drv] recmd Graphics driver settings

[fonts] yes Font appearance and
recognition

[ppdev] no Parallelport emulation

[spooler] no Print spooling

[ports] no Direct port access

[Debug] no What to do with certain
debug messages

[Registry] no Specifies locations of
windows registry files

21

Chapter 5. Configuring Wine

Section Name Needed? What it Does

[programs] no Programs to be run
automatically

[Console] no Console settings

[Clipboard] no Interaction for Wine and
X11 clipboard

[afmdirs] no Postscript driver settings

[WinMM] yes Multimedia settings

[AppDefaults] no Overwrite the settings of
previous sections for
special programs

Now let’s explain the configuration file sections in a detailed way.

The [wine] Section

The [wine] section of the configuration file contains all kinds of general settings for
Wine.

"Windows" = "c:\\windows"
"System" = "c:\\windows\\system"
"Temp" = "c:\\temp"
"Path" = "c:\\windows;c:\\windows\\system;c:\\blanco"
"ShowDirSymlinks" = "1"

For a detailed description of drive layer configuration and the meaning of these pa-
rameters, please look at the Disc Drives, Serial and Parallel Ports section.

"GraphicsDriver" = "x11drv|ttydrv"

Sets the graphics driver to use for Wine output. x11drv is for X11 output, ttydrv is for
text console output. WARNING: if you use ttydrv here, then you won’t be able to run
a lot of Windows GUI programs (ttydrv is still pretty "broken" at running graphical
apps). Thus this option is mainly interesting for e.g. embedded use of Wine in web
server scripts. Note that ttydrv is still very lacking, so if it doesn’t work, resort to
using "xvfb", a virtual X11 server. Another way to run Wine without display would
be to run X11 via Xvnc, then connect to that VNC display using xvncviewer (that way
you’re still able to connect to your app and configure it if need be).

"Printer" = "off|on"

Tells wine whether to allow printing via printer drivers to work. This option isn’t
needed for our built-in psdrv printer driver at all. Using these things are pretty alpha,
so you might want to watch out. Some people might find it useful, however. If you’re
not planning to work on printing via windows printer drivers, don’t even add this to
your wine configuration file (It probably isn’t already in it). Check out the [spooler]
and [parallelports] sections too.

"ShellLinker" = "wineshelllink"

This setting specifies the shell linker script to use for setting up Windows icons in
e.g. KDE or Gnome that are given by programs making use of appropriate shell32.dll
functionality to create icons on the desktop/start menu during installation.

"SymbolTableFile" = "wine.sym"

22

Chapter 5. Configuring Wine

Sets up the symbol table file for the wine debugger. You probably don’t need to fiddle
with this. May be useful if your wine is stripped.

The [DllOverrides] Section

The format for this section is the same for each line:

<DLL>{, <DLL>, <DLL>...} = <FORM>{,<FORM>,<FORM>...}

For example, to load built-in KERNEL pair (case doesn’t matter here):

"kernel,kernel32" = "builtin"

To load the native COMMDLG pair, but if that doesn’t work try built-in:

"commdlg,comdlg32" = "native, builtin"

To load the native COMCTL32:

"comctl32" = "native"

Here is a good generic setup (As it is defined in config that was included with your
wine package):

[DllOverrides]
"rpcrt4" = "builtin, native"
"oleaut32" = "builtin, native"
"ole32" = "builtin, native"
"commdlg" = "builtin, native"
"comdlg32" = "builtin, native"
"ver" = "builtin, native"
"version" = "builtin, native"
"shell" = "builtin, native"
"shell32" = "builtin, native"
"shfolder" = "builtin, native"
"shlwapi" = "builtin, native"
"shdocvw" = "builtin, native"
"lzexpand" = "builtin, native"
"lz32" = "builtin, native"
"comctl32" = "builtin, native"
"commctrl" = "builtin, native"
"advapi32" = "builtin, native"
"crtdll" = "builtin, native"
"mpr" = "builtin, native"
"winspool.drv" = "builtin, native"
"ddraw" = "builtin, native"
"dinput" = "builtin, native"
"dsound" = "builtin, native"
"opengl32" = "builtin, native"
"msvcrt" = "native, builtin"
"msvideo" = "builtin, native"
"msvfw32" = "builtin, native"
"mcicda.drv" = "builtin, native"
"mciseq.drv" = "builtin, native"
"mciwave.drv" = "builtin, native"
"mciavi.drv" = "native, builtin"
"mcianim.drv" = "native, builtin"
"msacm.drv" = "builtin, native"
"msacm" = "builtin, native"
"msacm32" = "builtin, native"
"midimap.drv" = "builtin, native"
; you can specify programs too
"notepad.exe" = "native, builtin"
; default for all other DLLs

23

Chapter 5. Configuring Wine

"*" = "native, builtin"

Note: If loading of the libraries that are listed first fails, wine will just go on by using the
second or third option.

The [fonts] Section

This section sets up wine’s font handling.

"Resolution" = "96"

Since the way X handles fonts is different from the way Windows does, wine uses a
special mechanism to deal with them. It must scale them using the number defined in
the "Resolution" setting. 60-120 are reasonable values, 96 is a nice in the middle one.
If you have the real windows fonts available , this parameter will not be as important.
Of course, it’s always good to get your X fonts working acceptably in wine.

"Default" = "-adobe-times-"

The default font wine uses. Fool around with it if you’d like.

OPTIONAL:

The Alias setting allows you to map an X font to a font used in wine. This is good
for apps that need a special font you don’t have, but a good replacement exists. The
syntax is like so:

"AliasX" = "[Fake windows name],[Real X name]" <,optional "masking" section>

Pretty straightforward. Replace "AliasX" with "Alias0", then "Alias1" and so on. The
fake windows name is the name that the font will be under a windows app in wine.
The real X name is the font name as seen by X (Run "xfontsel"). The optional "mask-
ing" section allows you to utilize the fake windows name you define. If it is not used,
then wine will just try to extract the fake windows name itself and not use the value
you enter.

Here is an example of an alias without masking. The font will show up in windows
apps as "Google".

"Alias0" = "Foo,--google-"

Here is an example with masking enabled. The font will show up as "Foo" in windows
apps.

"Alias1" = "Foo,--google-,subst"

For more information check out the Fonts chapter.

The [spooler] and [ports] Sections

The [spooler] section will inform wine where to spool print jobs. Use this if you want
to try printing. Wine docs claim that spooling is "rather primitive" at this time, so it
won’t work perfectly. It is optional. The only setting you use in this section works to

24

Chapter 5. Configuring Wine

map a port (LPT1, for example) to a file or a command. Here is an example, mapping
LPT1 to the file out.ps :

"LPT1:" = "out.ps"

The following command maps printing jobs to LPT1 to the command lpr. Notice the
|:

"LPT1:" = "|lpr"

The [ports] section is usually useful only for people who need direct port access for
programs requiring dongles or scanners. If you don’t need it, don’t use it!

"read" = "0x779,0x379,0x280-0x2a0"

Gives direct read access to those IO’s.

"write" = "0x779,0x379,0x280-0x2a0"

Gives direct write access to those IO’s. It’s probably a good idea to keep the values of
the read and write settings the same. This stuff will only work when you’re root.

The [Debug], [Registry], and [programs] Sections

[Debug] is used to include or exclude debug messages, and to output them to a file.
The latter is rarely used. These are all optional and you probably don’t need to add or remove
anything in this section to your config. (In extreme cases you may want to use these
options to manage the amount of information generated by WINEDEBUG=+relay)

"File" = "/blanco"

Sets the logfile for wine. Set to CON to log to standard out. This is rarely used.

"SpyExclude" = "WM_SIZE;WM_TIMER;"

Excludes debug messages about WM_SIZEand WM_TIMERin the logfile.

"SpyInclude" = "WM_SIZE;WM_TIMER;"

Includes debug messages about WM_SIZEand WM_TIMERin the logfile.

"RelayInclude" = "user32.CreateWindowA;comctl32.*"

Include only the listed functions in a WINEDEBUG=+relay trace. This entry is ig-
nored if there is a RelayExclude entry.

"RelayExclude" = "RtlEnterCriticalSection;RtlLeaveCriticalSection"

Exclude the listed functions in a WINEDEBUG=+relay trace. This entry overrides any
settings in a RelayInclude entry. If neither entry is present then the trace includes
everything.

In both entries the functions may be specified either as a function name or as a mod-
ule and function. In this latter case specify an asterisk for the function name to in-
clude/exclude all functions in the module.

[Registry] can be used to tell wine where your old windows registry files exist. This
section is completely optional and useless to people using wine without an existing
windows installation.

25

Chapter 5. Configuring Wine

"UserFileName" = "/dirs/to/user.reg"

The location of your old user.reg file.

[programs] can be used to say what programs run under special conditions.

"Default" = "/program/to/execute.exe"

Sets the program to be run if wine is started without specifying a program.

"Startup" = "/program/to/execute.exe"

Sets the program to automatically be run at startup every time.

The [WinMM] Section

[WinMM] is used to define which multimedia drivers have to be loaded. Since those
drivers may depend on the multimedia interfaces available on your system (OSS,
ALSA... to name a few), it’s needed to be able to configure which driver has to be
loaded.

The content of the section looks like:

[WinMM]
"Drivers" = "wineoss.drv"
"WaveMapper" = "msacm.drv"
"MidiMapper" = "midimap.drv"

All the keys must be defined:

• The "Drivers" key is a ’;’ separated list of modules name, each of them containing a
low level driver. All those drivers will be loaded when MMSYSTEM/WINMM is
started and will provide their inner features.

• The "WaveMapper" represents the name of the module containing the Wave Map-
per driver. Only one wave mapper can be defined in the system.

• The "MidiMapper" represents the name of the module containing the MIDI Map-
per driver. Only one MIDI mapper can be defined in the system.

The [Network] Section

[Network] contains settings related to networking. Currently there is only one value
that can be set.

UseDnsComputerName

A boolean setting (default: Y) that affects the way Wine sets the
computer name. The computer name in the Windows world is the
so-called NetBIOS name. It is contained in the ComputerName in the registry entry
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\ComputerName\ComputerName .

If this option is set to "Y" or missing, Wine will set the NetBIOS name to the Unix
host name of your computer, if necessary truncated to 31 characters. The Unix
hostname is the output of the shell command hostname, up to but not includ-
ing the first dot (’.’). Among other things, this means that Windows programs
running under Wine cannot change the NetBIOS computer name.

26

Chapter 5. Configuring Wine

If this option is set to "N", Wine will use the registry value above to set the Net-
BIOS name. Only if the registry entry doesn’t exist (usually only during the first
wine startup) it will use the Unix hostname as usual. Windows programs can
change the NetBIOS name. The change will be effective after a "reboot", i.e. after
restarting Wine.

The [AppDefaults] Section

The section is used to overwrite certain settings of this file for a special program with
different settings. [AppDefaults] is not the real name of the section. The real name
consists of the leading word AppDefaults followed by the name of the executable
the section is valid for. The end of the section name is the name of the corresponding
"standard" section of the configuration file that should have some of its settings over-
written with the program specific settings you define. The three parts of the section
name are separated by two backslashes.

Currently wine supports overriding selected settings within the sections [DllOver-
rides], [x11drv], [version] and [dsound] only.

Here is an example that overrides the normal settings for a program:

;; default settings
[x11drv]
"Managed" = "Y"
"Desktop" = "N"

;; run install in desktop mode
[AppDefaults\\install.exe\\x11drv]
"Managed" = "N"
"Desktop" = "800x600"

What If It Doesn’t Work?
There is always a chance that things will go wrong. If the unthinkable
happens, report the problem to Wine Bugzilla2, try the newsgroup
comp.emulators.ms-windows.wine, or the IRC channel #WineHQ found on
irc.freenode.net, or connected servers. Make sure that you have looked over this
document thoroughly, and have also read:

• README

• http://www.winehq.org/trouble/

If indeed it looks like you’ve done your research, be prepared for helpful suggestions.
If you haven’t, brace yourself for heaving flaming.

27

Chapter 5. Configuring Wine

Disc Drives, Serial and Parallel Ports

Extremely Important Prerequisites
If you’re planning to include access to a CD-ROM drive in your Wine configuration
on Linux, then make sure to add the “unhide” mount option to the CD-ROM file sys-
tem entry in /etc/fstab , e.g.:

/dev/cdrom /cdrom iso9660 ro,noauto,users,unhide 0 0

Several Windows program setup CD-ROMs or other CD-ROMs chose to do such
braindamaged things as marking very important setup helper files on the CD-ROM
as “hidden”. That’s no problem on Windows, since the Windows CD-ROM driver by
default displays even files that are supposed to be “hidden”. But on Linux, which
chose to hide “hidden” files on CD by default, this is FATAL! (the programs will sim-
ply abort with an “installation file not found” or similar error) Thus you should never
forget to add this setting.

Short Introduction
Windows applications refer to disc drives by letters such as A: , B: and C: , and to
serial and parallel ports by names such as COM1: and LPT1: .

You need to tell Wine how to interpret these. You do so by specifying the Unix file
system nodes and devices that Wine should map them onto, as described later in this
section.

You can map a Windows fixed disc drive onto any node in your Unix file system -
this need not be the root node of a drive. For example, you could map your Windows
drive C: onto your Unix directory /usr/share/wine-C . Then the Windows folder
C:\Windows\Fonts would be at /usr/share/wine-C/Windows/Fonts in your Unix
file system.

Make sure that you have assigned drive letters for directories that will cover all the
items Wine needs to access. These include the programs that you run, the data files
they need and the Wine debugger (in case anything goes wrong).

It is best to use a number of drive letters, and map them onto directories that cover
small sections of the file system containing the files that Wine will need to access.
This is safer than simply assigning a single drive letter to the Unix root directory
/, which would allow Windows applications to access the whole of your Unix file
system (subject, of course, to Unix permissions). If one of them misbehaved, or if you
accidentally installed a virus, this might leave you vulnerable.

For replaceable media, such as floppy discs and CD-ROMs, you should map Win-
dows drive letters onto the mount points for these drives in your Unix file system -
for example /mnt/floppy or /mnt/cdrom .

If your applications access serial and parallel ports directly, you should map these
onto the corresponding Unix devices - for example /dev/ttyS0 and /dev/lp0 .

Windows Directory Structure
Here’s the fundamental layout that Windows programs and installers expect and
that we thus need to configure properly in Wine. Without it, they seldomly oper-
ate correctly. If you intend to use a no-windows environment (not using an existing
Windows partition), then it is recommended to use either WineSetupTk’s or wine-
install’s capabilities to create an initial windows directory tree, since creating a di-
rectory structure manually is tiresome and error-prone.

C:\ Root directory of primary disk drive

28

Chapter 5. Configuring Wine

Windows\ Windows directory, containing .INI files,
accessories, etc.

System\ Win3.x/95/98/ME directory for common DLLs
WinNT/2000 directory for common 16-bit DLLs

System32\ WinNT/2000 directory for common 32-bit DLLs
Start Menu\ Program launcher directory structure

Programs\ Program launcher links (.LNK files) to programs
Program Files\ Application binaries (.EXE and .DLL files)

The dosdevices Directory
The dosdevices directory contains the entries that tell Wine how to map Windows
disc drive letters onto Unix file system nodes, and how to map Windows serial and
parallel ports onto Unix devices. It is located in the .wine sub-directory of your home
directory, i.e. ~/.wine/dosdevices .

The entries in the dosdevices directory are symbolic links to Unix file system nodes
and devices. You can create them by using the ln command in a Unix terminal. Al-
ternatively, many File Managers have the capability of creating symbolic links.

For example, if you have decided to map your Windows C: drive onto
/usr/share/wine-c , you could type the following (after changing to your
dosdevices directory):

ln -s /usr/share/wine-c c:

Replaceable media are a little more complicated. In addition to creating a link for the
file system on the medium, for example:

ln -s /mnt/floppy a:

you also need to create a link for the device itself. Notice that this has a double colon
after the drive letter:

ln -s /dev/fd0 a::

For serial and parallel ports, you simply create a link to the device; notice that no
colon is required after the Windows device name:

ln -s /dev/ttyS0 com1
ln -s /dev/lp0 lpt1

File system settings in the [wine] section

"Windows" = "c:\\windows"

This tells Wine and Windows programs where the Windows directory is. It is
recommended to have this directory somewhere on your configured C drive,
and it’s also recommended to just call the directory "windows" (this is the
default setup on Windows, and some stupid programs might rely on this). So in
case you chose a "Windows" setting of "c:\\windows" and you chose to set up

29

Chapter 5. Configuring Wine

a drive C e.g. at /usr/local/wine_c , the corresponding directory would be
/usr/local/wine_c/windows . Make one if you don’t already have one. No trailing
slash (not C:\\windows\)! Write access strongly recommended, as Windows
programs always assume write access to the Windows directory!

"System" = "c:\\windows\\system"

This sets up where the windows system files are. The Windows system
directory should reside below the directory used for the Windows setting.
Thus when using the example above, the system directory would be
/usr/local/wine_c/windows/system . Again, no trailing slash, and write access!

"Temp" = "c:\\temp"

This should be the directory you want your temp files stored in,
/usr/local/wine_c/temp in our example. Again, no trailing slash, and write access!!

"Path" = "c:\\windows;c:\\windows\\system;c:\\blanco"

Behaves like the PATH setting on UNIX boxes. When wine is run like wine
sol.exe , if sol.exe resides in a directory specified in the Path setting, wine will
run it (Of course, if sol.exe resides in the current directory, wine will run that one).
Make sure it always has your windows directory and system directory (For this
setup, it must have "c:\\windows;c:\\windows\\system").

"ShowDirSymlinks" = "1"

Wine doesn’t pass directory symlinks to Windows programs by default, as doing
so may crash some programs that do recursive lookups of whole subdirectory trees
whenever a directory symlink points back to itself or one of its parent directories.
That’s why we disallowed the use of directory symlinks and added this setting to
reenable ("1") this functionality. If you really need Wine to take into account sym-
linked directories, then reenable it, but be prepared for crashes in certain Windows pro-
grams when using the above method! (in other words: enabling it is certainly not
recommended)

More detailed explanation about file system differences
Windows uses a different (and inferior) way than Unix to describe the location of
files in a computer. Thus Windows programs also expect to find this different way
supported by the system. Since we intend to run Windows programs on a Unix sys-
tem, we’re in trouble, as we need to translate between these different file access tech-
niques.

Windows uses drive letters to describe drives or any other form of storage media
and to access files on them. For example, common drive names are C: for the main
Windows system partition on the first harddisk and A: for the first floppy drive.
Also, Windows uses \ (backslash) as the directory separator sign, whereas Unix uses
/ (slash). Thus, an example document on the first data partition in Windows might
be accessed by the name of D:\mywork\mydocument.txt .

So much for the Windows way of doing things.

Well, the problem is, in Unix there is no such thing as “drive letters”. Instead,
Unix chose to go the much better way of having one single uniform directory
tree (starting with the root directory /), which has various storage devices
such as e.g. harddisk partitions appended at various directory locations within
the tree (an example would be /data1/mywork , which is the first data partition
mounted/attached to a directory called data1 in the root directory / ; mywork is a
sub directory of the data partition file system that’s mounted under /data1). In

30

Chapter 5. Configuring Wine

Unix, the Windows example document mentioned above could e.g. be accessed by
the name of /data1/mywork/mydocument.txt , provided that the administrator
decided to mount (attach) the first data partition at the directory /data1 inside the
Unix directory tree. Note that in Unix, the administrator can choose any custom
partition location he wants (here, /data1), whereas in Windows the system selects
any drive letter it deems suitable for the first data partition (here, D:), and, even
worse, if there is some change in partition order, Windows automatically changes the
drive letter, and you might suddenly find yourself with a first data partition at drive
letter E: , with all the file naming and referencing confusion that entails. Thus, the
Windows way of using ever-changing drive letters is clearly inferior to the Unix way
of assigning fixed directory tree locations for every data storage medium. As we’ll
see soon, fortunately this Windows limitation of changing drive letters doesn’t affect
us in Wine at all, since we can properly map never-changing drive letters to fixed
locations inside the Unix directory tree (and even if the location of the respective
Unix directory changes, we can still simply update the Wine drive mapping to
reflect the updated location and at the same time keep the original drive letter).

OK, now that we know some theory about Windows and Unix drive and filename
mapping, it’s probably time to ask how Wine achieves the magic of mapping a Unix
directory location to a Windows drive...

Wine chose to do the following: In Wine, you don’t assign some real physical storage
medium (such as a harddisk partition or similar) to each drive letter mapping entry.
Instead, you choose certain sub directory trees inside the Unix directory tree (that
starts with /) that you would like to assign a drive letter to.

Note that for every Unix sub directory tree that you intend to start Windows pro-
grams in, it is absolutely required to have a Wine drive mapping entry:

For example, if you had a publicly writable “Windows directory space” under
/usr/mywine , then in order to be able to access this sub directory tree from Wine,
you should have a drive mapping entry that maps a certain drive letter (for
example, let’s take drive letter P:) either to /usr/mywine or /usr (to also access
any directories belonging to the parent directory) or / (to also access any directory
whatsoever on this system by this drive letter mapping). The DOS drive/directory
location to access files in /usr/mywine in Wine in these configuration cases would
then be P:\ or P:\mywine or P:\usr\mywine , respectively.

Installing Wine Without Windows
A major goal of Wine is to allow users to run Windows programs without having
to install Windows on their machine. Wine implements the functionality of the main
DLLs usually provided with Windows. Therefore, once Wine is finished, you will not
need to have Windows installed to use Wine.

Wine has already made enough progress that it may be possible to run your target
programs without Windows installed. If you want to try it, follow these steps:

1. Make a symbolic link in ~/.wine/dosdevices to the directory where you want
C: to be. Refer to the wine man page for more information. The directory to
be used for emulating a C: drive will be the base directory for some Windows
specific directories created below.

2. Within the directory to be used for C:, create empty windows , windows/system ,
windows/Start Menu , and windows/Start Menu/Programs directories.
Do not point Wine to a Windows directory full of old installations and a
messy registry. (Wine creates a special registry in your home directory, in
$HOME/.wine/*.reg . Perhaps you have to remove these files). In one line:
mkdir -p windows windows/system windows/Start\ Menu windows/Start\
Menu/Programs

3. Run and/or install your programs.

31

Chapter 5. Configuring Wine

Because Wine is not yet complete, some programs will work better with native
Windows DLLs than with Wine’s replacements. Wine has been designed to make
this possible. Here are some tips by Juergen Schmied (and others) on how to
proceed. This assumes that your C:\windows directory in the configuration file
does not point to a native Windows installation but is in a separate Unix file
system. (For instance, “C:\windows” is really subdirectory “windows” located in
“/home/ego/wine/drives/c”).

• Run the program with WINEDEBUG=+loaddll to find out which files are needed.
Copy the required DLLs one by one to the C:\windows\system directory. Do not
copy KERNEL/KERNEL32, GDI/GDI32, USER/USER32 or NTDLL. These imple-
ment the core functionality of the Windows API, and the Wine internal versions
must be used.

• Edit the “[DllOverrides]” section of ~/.wine/config to specify “native” before
“builtin” for the Windows DLLs you want to use. For more information about this,
see the Wine manpage.

• Note that some network DLLs are not needed even though Wine is looking for
them. The Windows MPR.DLL currently does not work; you must use the internal
implementation.

• Copy SHELL.DLL/SHELL32.DLL, COMMDLG.DLL/COMDLG32.DLL and
COMMCTRL.DLL/COMCTL32.DLL only as pairs to your Wine directory (these
DLLs are “clean” to use). Make sure you have these specified in the “[DllPairs]”
section of ~/.wine/config .

• Be consistent: Use only DLLs from the same Windows version together.

• Put regedit.exe in the C:\windows directory. (Office 95 imports a *.reg file
when it runs with an empty registry, don’t know about Office 97). As of now, it
might not be necessary any more to use regedit.exe, since Wine has its own regedit
Winelib application now.

• Also add winhelp.exe and winhlp32.exe if you want to be able to browse
through your programs’ help function (or in case Wine’s winhelp implementation
in programs/winhelp/ is not good enough, for example).

Installing Wine Using An Existing Windows Partition As Base
Some people intend to use the data of an existing Windows partition with Wine in
order to gain some better compatibility or to run already installed programs in a
setup as original as possible. Note that many Windows programs assume that they
have full write access to all windows directories. This means that you either have
to configure the Windows partition mount point for write permission by your Wine
user (see Dealing with FAT/VFAT partitions on how to do that), or you’ll have to
copy over (some parts of) the Windows partition content to a directory of a Unix
partition and make sure this directory structure is writable by your user. We HIGHLY
DISCOURAGE people from directly using a Windows partition with write access as a
base for Wine!! (some programs, notably Explorer, corrupt large parts of the Windows
partition in case of an incorrect setup; you’ve been warned). Not to mention that
NTFS write support in Linux is still very experimental and dangerous (in case you’re
using an NT-based Windows version using the NTFS file system). Thus we advise
you to go the Unix directory way.

Dealing With FAT/VFAT Partitions
This document describes how FAT and VFAT file system permissions work in Linux
with a focus on configuring them for Wine.

32

Chapter 5. Configuring Wine

Introduction

Linux is able to access DOS and Windows file systems using either the FAT (older
8.3 DOS filesystems) or VFAT (newer Windows 95 or later long filename filesystems)
modules. Mounted FAT or VFAT filesystems provide the primary means for which
existing programs and their data are accessed through Wine for dual boot (Linux +
Windows) systems.

Wine maps mounted FAT file systems, such as /c , to drive letters, such as “c:”, by
means of symbolic links in the dosdevices directory. Thus, in your dosdevices direc-
tory, you could type the command:

ln -s /c c:

Although VFAT filesystems are preferable to FAT filesystems for their long filename
support, the term “FAT” will be used throughout the remainder of this document
to refer to FAT filesystems and their derivatives. Also, “/c” will be used as the FAT
mount point in examples throughout this document.

Most modern Linux distributions either detect or allow existing FAT file systems to
be configured so that they can be mounted, in a location such as /c , either persistently
(on bootup) or on an as needed basis. In either case, by default, the permissions will
probably be configured so that they look like:

~>cd /c
/c> ls -l
-rwxr-xr-x 1 root root 91 Oct 10 17:58 autoexec.bat
-rwxr-xr-x 1 root root 245 Oct 10 17:58 config.sys
drwxr-xr-x 41 root root 16384 Dec 30 1998 windows

where all the files are owned by "root", are in the "root" group and are only writable
by "root" (755 permissions). This is restrictive in that it requires that Wine be run as
root in order for programs to be able to write to any part of the filesystem.

There are three major approaches to overcoming the restrictive permissions men-
tioned in the previous paragraph:

1. Run Wine as root

2. Mount the FAT filesystem with less restrictive permissions

3. Shadow the FAT filesystem by completely or partially copying it

Each approach will be discussed in the following sections.

Running Wine as root

Running Wine as root is the easiest and most thorough way of giving programs that
Wine runs unrestricted access to FAT files systems. Running wine as root also allows
programs to do things unrelated to FAT filesystems, such as listening to ports that are
less than 1024. Running Wine as root is dangerous since there is no limit to what the
program can do to the system, so it’s HIGHLY DISCOURAGED.

Mounting FAT filesystems

The FAT filesystem can be mounted with permissions less restrictive than the default.
This can be done by either changing the user that mounts the FAT filesystem or by
explicitly changing the permissions that the FAT filesystem is mounted with. The
permissions are inherited from the process that mounts the FAT filesystem. Since the

33

Chapter 5. Configuring Wine

process that mounts the FAT filesystem is usually a startup script running as root
the FAT filesystem inherits root’s permissions. This results in the files on the FAT
filesystem having permissions similar to files created by root. For example:

~>whoami
root
~>touch root_file
~>ls -l root_file
-rw-r--r-- 1 root root 0 Dec 10 00:20 root_file

which matches the owner, group and permissions of files seen on the FAT filesystem
except for the missing ’x’s. The permissions on the FAT filesystem can be changed by
changing root’s umask (unset permissions bits). For example:

~>umount /c
~>umask
022
~>umask 073
~>mount /c
~>cd /c
/c> ls -l
-rwx---r-- 1 root root 91 Oct 10 17:58 autoexec.bat
-rwx---r-- 1 root root 245 Oct 10 17:58 config.sys
drwx---r-- 41 root root 16384 Dec 30 1998 windows

Mounting the FAT filesystem with a umask of 000 gives all users complete control
over it. Explicitly specifying the permissions of the FAT filesystem when it is mounted
provides additional control. There are three mount options that are relevant to FAT
permissions: uid , gid and umask. They can each be specified when the filesystem is
manually mounted. For example:

~>umount /c
~>mount -o uid=500 -o gid=500 -o umask=002 /c
~>cd /c
/c> ls -l
-rwxrwxr-x 1 sle sle 91 Oct 10 17:58 autoexec.bat
-rwxrwxr-x 1 sle sle 245 Oct 10 17:58 config.sys
drwxrwxr-x 41 sle sle 16384 Dec 30 1998 windows

which gives "sle" complete control over /c . The options listed above can be made
permanent by adding them to the /etc/fstab file:

~>grep /c /etc/fstab
/dev/hda1 /c vfat uid=500,gid=500,umask=002,exec,dev,suid,rw 1 1

Note that the umask of 002 is common in the user private group file permission
scheme. On FAT file systems this umask assures that all files are fully accessible by
all users in the specified user group (gid).

Shadowing FAT filesystems

Shadowing provides a finer granularity of control. Parts of the original FAT filesys-
tem can be copied so that the program can safely work with those copied parts while
the program continues to directly read the remaining parts. This is done with sym-
bolic links. For example, consider a system where a program named AnApp must be
able to read and write to the c:\windows and c:\AnApp directories as well as have
read access to the entire FAT filesystem. On this system the FAT filesystem has default
permissions which should not be changed for security reasons or can not be changed

34

Chapter 5. Configuring Wine

due to lack of root access. On this system a shadow directory might be set up in the
following manner:

~>cd /
/> mkdir c_shadow
/> cd c_shadow
/c_shadow> ln -s /c_/* .
/c_shadow> rm windows AnApp
/c_shadow> cp -R /c_/{windows,AnApp} .
/c_shadow> chmod -R 777 windows AnApp
/c_shadow> perl -p -i -e ’s|/c$|/c_shadow|g’ ~/.wine/config

The above gives everyone complete read and write access to the windows and AnApp
directories while only root has write access to all other directories.

Drive labels and serial numbers
Wine can read drive volume labels and serial numbers directly from the device. This
may be useful for many Win 9x games or for setup programs distributed on CD-
ROMs that check for volume label.

What’s Supported?

File System Types Comment

FAT systems hd, floppy reads labels and serial
numbers

ISO9660 cdrom reads labels and serial
numbers (not
mixed-mode CDs yet!)

How To Set Up?

Reading labels and serial numbers just works automatically if you specify the correct
symbolic links for the devices (with double colons after the drive letters) in your
dosdevices directory. Note that the device has to exist and must be accessible by the
user running Wine if you do this, though.

If you don’t want to read labels and serial numbers directly from the device, you can
create files at the root of the drive named .windows-label and .windows-serial
respectively. These are simple ASCII files that you can create with any text editor; the
label can be set to any string you like, the serial number should be expressed as an
hexadecimal number.

Examples

Here’s a simple example of CD-ROM and floppy:

cd ~/.wine/dosdevices

ln -s /mnt/floppy a:
ln -s /dev/fd0 a::

ln -s /mnt/cdrom r:
ln -s /dev/hda1 r::

35

Chapter 5. Configuring Wine

Todo / Open Issues

• The CD-ROM label can be read only if the data track of the disk resides in the first
track and the cdrom is iso9660.

• Support for labels/serial nums WRITING.

• What about reading ext2 volume label?

The Registry
After Win3.x, the registry became a fundamental part of Windows. It is the place
where both Windows itself, and all Win95/98/NT/2000/XP/etc.-compliant applica-
tions, store configuration and state data. While most sane system administrators (and
Wine developers) curse badly at the twisted nature of the Windows registry, it is still
necessary for Wine to support it somehow.

The default registry
A Windows registry contains many keys by default, and some of them are necessary
for even installers to operate correctly. The keys that the Wine developers have found
necessary to install applications are distributed in a file called winedefault.reg . It is
automatically installed for you if you use the tools/wineinstall script in the Wine
source, but if you want to install it manually, you can do so by using the regedit tool
to be found in the programs/regedit/ directory in Wine source. winedefault.reg
should even be applied if you plan to use a native Windows registry, since Wine
needs some specific registry settings in its registry (for special workarounds for cer-
tain programs etc.). In the main Wine source code directory in a terminal, run:

$ cd programs/regedit
$./regedit ../../winedefault.reg

Using a Windows registry
If you point Wine at an existing Windows installation (by setting the appropriate
directories in ~/.wine/config , then Wine is able to load registry data from it. How-
ever, Wine will not save anything to the real Windows registry, but rather to its own
registry files (see below). Of course, if a particular registry value exists in both the
Windows registry and in the Wine registry, then Wine will use the latter. In the Wine
config file, there are a number of configuration settings in the [registry] section (see
below) specific to the handling of Windows registry content by Wine.

The Registry
The initial default registry content to be used by the Wine registry files is in the file
winedefault.reg . It contains directory paths, class IDs, and more; it must be in-
stalled before most INSTALL.EXE or SETUP.EXEapplications will work.

Registry structure
The Windows registry is an elaborate tree structure, and not even most Windows pro-
grammers are fully aware of how the registry is laid out, with its different "hives" and

36

Chapter 5. Configuring Wine

numerous links between them; a full coverage is out of the scope of this document.
But here are the basic registry keys you might need to know about for now.

HKEY_LOCAL_MACHINE

This fundamental root key (in win9x it’s stored in the hidden file system.dat)
contains everything pertaining to the current Windows installation.

HKEY_USERS

This fundamental root key (in win9x it’s stored in the hidden file user.dat)
contains configuration data for every user of the installation.

HKEY_CLASSES_ROOT

This is a link to HKEY_LOCAL_MACHINE\Software\Classes. It contains data
describing things like file associations, OLE document handlers, and COM
classes.

HKEY_CURRENT_USER

This is a link to HKEY_USERS\your_username, i.e., your personal configura-
tion.

Wine registry data files
In the user’s home directory, there is a subdirectory named .wine , where Wine will
try to save its registry by default. It saves into four files, which are:

system.reg

This file contains HKEY_LOCAL_MACHINE.

user.reg

This file contains HKEY_CURRENT_USER.

userdef.reg

This file contains HKEY_USERS\.Default (i.e. the default user settings).

wine.userreg

Wine saves HKEY_USERS to this file (both current and default user), but does
not load from it, unless userdef.reg is missing.

All of these files are human-readable text files, so unlike Windows, you can actually
use an ordinary text editor on them if you want (make sure you don’t have Wine
running when modifying them, otherwise your changes will be discarded).

FIXME: global configuration currently not implemented. In addition to these files,
Wine can also optionally load from global registry files residing in the same directory
as the global wine.conf (i.e. /usr/local/etc if you compiled from source). These
are:

wine.systemreg

Contains HKEY_LOCAL_MACHINE.

wine.userreg

Contains HKEY_USERS.

37

Chapter 5. Configuring Wine

System administration
With the above file structure, it is possible for a system administrator to configure the
system so that a system Wine installation (and applications) can be shared by all the
users, and still let the users all have their own personalized configuration. An admin-
istrator can, after having installed Wine and any Windows application software he
wants the users to have access to, copy the resulting system.reg and wine.userreg
over to the global registry files (which we assume will reside in /usr/local/etc
here), with:

cd ~/.wine
cp system.reg /usr/local/etc/wine.systemreg
cp wine.userreg /usr/local/etc/wine.userreg

and perhaps even symlink these back to the administrator’s account, to make it easier
to install apps system-wide later:

ln -sf /usr/local/etc/wine.systemreg system.reg
ln -sf /usr/local/etc/wine.userreg wine.userreg

Note that the tools/wineinstall script already does all of this for you, if you install
Wine source as root. If you then install Windows applications while logged in as root,
all your users will automatically be able to use them. While the application setup will
be taken from the global registry, the users’ personalized configurations will be saved
in their own home directories.

But be careful with what you do with the administrator account - if you do copy or
link the administrator’s registry to the global registry, any user might be able to read
the administrator’s preferences, which might not be good if sensitive information
(passwords, personal information, etc) is stored there. Only use the administrator
account to install software, not for daily work; use an ordinary user account for that.

The [registry] section
Now let’s look at the Wine configuration file options for handling the registry.

GlobalRegistryDir

Optional. Sets the path to look for the Global Registry.

LoadGlobalRegistryFiles

Controls whether to try to load the global registry files, if they exist.

LoadHomeRegistryFiles

Controls whether to try to load the user’s registry files (in the .wine subdirectory
of the user’s home directory).

LoadWindowsRegistryFiles

Controls whether Wine will attempt to load registry data from a real Windows
registry in an existing MS Windows installation.

WritetoHomeRegistryFiles

Controls whether registry data will be written to the user’s registry files. (Cur-
rently, there is no alternative, so if you turn this off, Wine cannot save the registry
on disk at all; after you exit Wine, your changes will be lost.)

38

Chapter 5. Configuring Wine

SaveOnlyUpdatedKeys

Controls whether the entire registry is saved to the user’s registry files, or only
subkeys the user have actually changed. Considering that the user’s registry will
override any global registry files and Windows registry files, it usually makes
sense to only save user-modified subkeys; that way, changes to the rest of the
global or Windows registries will still affect the user.

PeriodicSave

If this option is set to a nonzero value, it specifies that you want the registry to be
saved to disk at the given interval. If it is not set, the registry will only be saved
to disk when the wineserver terminates.

UseNewFormat

This option is obsolete. Wine now always uses the new format; support for the
old format was removed a while ago.

DLL configuration

Introduction
If your programs don’t work as expected, then it’s often because one DLL or another
is failing. This can often be resolved by changing certain DLLs from Wine built-in to
native Windows DLL file and vice versa.

A very useful help to find out which DLLs are loaded as built-in and which are
loaded as native Windows file can be the debug channel loaddll, activated via the
environment variable WINEDEBUG=+loaddll.

Introduction To DLL Sections
There are a few things you will need to know before configuring the DLL sections in
your wine configuration file.

Windows DLL Pairs

Most windows DLL’s have a win16 (Windows 3.x) and win32 (Windows 9x/NT)
form. The combination of the win16 and win32 DLL versions are called the "DLL
pair". This is a list of the most common pairs:

Win16 Win32 Native a

KERNEL KERNEL32 No!

USER USER32 No!

SHELL SHELL32 Yes

GDI GDI32 No!

COMMDLG COMDLG32 Yes

VER VERSION Yes

Notes:
a. Is it possible to use native DLL with wine? (See next section)

39

Chapter 5. Configuring Wine

Different Forms Of DLL’s

There are a few different forms of DLL’s wine can load:

native

The DLL’s that are included with windows. Many windows DLL’s can be loaded
in their native form. Many times these native versions work better than their
non-Microsoft equivalent -- other times they don’t.

builtin

The most common form of DLL loading. This is what you will use if the DLL
is too system-specific or error-prone in native form (KERNEL for example), you
don’t have the native DLL, or you just want to be Microsoft-free.

so

Native ELF libraries. Has became obsolete, ignored.

elfdll

ELF encapsulated windows DLL’s. No longer used, ignored.

DLL Overrides
The wine configuration file directives [DllDefaults] and [DllOverrides] are the subject
of some confusion. The overall purpose of most of these directives are clear enough,
though - given a choice, should Wine use its own built-in DLLs, or should it use .DLL
files found in an existing Windows installation? This document explains how this
feature works.

DLL types

native

A "native" DLL is a .DLL file written for the real Microsoft Windows.

builtin

A "built-in" DLL is a Wine DLL. These can either be a part of libwine.so , or
more recently, in a special .so file that Wine is able to load on demand.

The [DllDefaults] section

DefaultLoadOrder

This specifies in what order Wine should search for available DLL types, if the
DLL in question was not found in the [DllOverrides] section.

The [DllPairs] section

At one time, there was a section called [DllPairs] in the default configuration file, but
this has been obsoleted because the pairing information has now been embedded
into Wine itself. (The purpose of this section was merely to be able to issue warnings
if the user attempted to pair codependent 16-bit/32-bit DLLs of different types.) If
you still have this in your ~/.wine/config or wine.conf , you may safely delete it.

40

Chapter 5. Configuring Wine

The [DllOverrides] section

This section specifies how you want specific DLLs to be handled, in particular
whether you want to use "native" DLLs or not, if you have some from a real
Windows configuration. Because built-ins do not mix seamlessly with native DLLs
yet, certain DLL dependencies may be problematic, but workarounds exist in Wine
for many popular DLL configurations. Also see WWN’s [16]Status Page to figure
out how well your favorite DLL is implemented in Wine.

It is of course also possible to override these settings by explicitly using Wine’s --dll
command-line option (see the man page for details). Some hints for choosing your
optimal configuration (listed by 16/32-bit DLL pair):

krnl386, kernel32

Native versions of these will never work, so don’t try. Leave at builtin .

gdi, gdi32

Graphics Device Interface. No effort has been made at trying to run native GDI.
Leave at builtin .

user, user32

Window management and standard controls. It was possible to use Win95’s
native versions at some point (if all other DLLs that depend on it, such as com-
ctl32 and comdlg32, were also run native). However, this is no longer possible
after the Address Space Separation, so leave at builtin .

ntdll

NT kernel API. Although badly documented, the native version of this will
never work. Leave at builtin .

w32skrnl

Win32s (for Win3.x). The native version will probably never work. Leave at
builtin .

wow32

Win16 support library for NT. The native version will probably never work.
Leave at builtin .

system

Win16 kernel stuff. Will never work native . Leave at builtin .

display

Display driver. Definitely leave at builtin .

toolhelp

Tool helper routines. This is rarely a source of problems. Leave at builtin .

ver, version

Versioning. Seldom useful to mess with.

advapi32

Registry and security features. Trying the native version of this may or may not
work.

41

Chapter 5. Configuring Wine

commdlg, comdlg32

Common Dialogs, such as color picker, font dialog, print dialog, open/save dia-
log, etc. It is safe to try native .

commctrl, comctl32

Common Controls. This is toolbars, status bars, list controls, the works. It is safe
to try native .

shell, shell32

Shell interface (desktop, filesystem, etc). Being one of the most undocumented
pieces of Windows, you may have luck with the native version, should you
need it.

winsock, wsock32

Windows Sockets. The native version will not work under Wine, so leave at
builtin .

icmp

ICMP routines for wsock32. As with wsock32, leave at builtin .

mpr

The native version may not work due to thunking issues. Leave at builtin .

lzexpand, lz32

Lempel-Ziv decompression. Wine’s builtin version ought to work fine.

winaspi, wnaspi32

Advanced SCSI Peripheral Interface. The native version will probably never
work. Leave at builtin .

crtdll

C Runtime library. The native version will easily work better than Wine’s on
this one.

winspool.drv

Printer spooler. You are not likely to have more luck with the native version.

ddraw

DirectDraw/Direct3D. Since Wine does not implement the DirectX HAL, the
native version will not work at this time.

dinput

DirectInput. Running this native may or may not work.

dsound

DirectSound. It may be possible to run this native , but don’t count on it.

dplay/dplayx

DirectPlay. The native version ought to work best on this, if at all.

mmsystem, winmm

Multimedia system. The native version is not likely to work. Leave at builtin .

42

Chapter 5. Configuring Wine

msacm, msacm32

Audio Compression Manager. The builtin version works best, if you set
msacm.drv to the same.

msvideo, msvfw32

Video for Windows. It is safe (and recommended) to try native .

mcicda.drv

CD Audio MCI driver.

mciseq.drv

MIDI Sequencer MCI driver (.MID playback).

mciwave.drv

Wave audio MCI driver (.WAVplayback).

mciavi.drv

AVI MCI driver (.AVI video playback). Best to use native .

mcianim.drv

Animation MCI driver.

msacm.drv

Audio Compression Manager. Set to same as msacm32.

midimap.drv

MIDI Mapper.

wprocs

This is a pseudo-DLL used by Wine for thunking purposes. A native version of
this doesn’t exist.

System DLLs
The Wine team has determined that it is necessary to create fake DLL files to trick
many programs that check for file existence to determine whether a particular feature
(such as Winsock and its TCP/IP networking) is available. If this is a problem for
you, you can create empty files in the configured c:\windows\system directory to
make the program think it’s there, and Wine’s built-in DLL will be loaded when
the program actually asks for it. (Unfortunately, tools/wineinstall does not create
such empty files itself.)

Applications sometimes also try to inspect the version resources from the physical
files (for example, to determine the DirectX version). Empty files will not do in this
case, it is rather necessary to install files with complete version resources. This prob-
lem is currently being worked on. In the meantime, you may still need to grab some
real DLL files to fool these apps with.

And there are of course DLLs that wine does not currently implement very well (or
at all). If you do not have a real Windows you can steal necessary DLLs from, you
can always get some from one of the Windows DLL archive sites that can be found
via internet search engine. Please make sure to obey any licenses on the DLLs you
fetch... (some are redistributable, some aren’t).

43

Chapter 5. Configuring Wine

Missing DLLs
In case Wine complains about a missing DLL, you should check whether this file is
a publicly available DLL or a custom DLL belonging to your program (by searching
for its name on the internet). If you managed to get hold of the DLL, then you should
make sure that Wine is able to find and load it. DLLs usually get loaded according to
the mechanism of the SearchPath() function. This function searches directories in the
following order:

1. The directory the program was started from.

2. The current directory.

3. The Windows system directory.

4. The Windows directory.

5. The PATH variable directories.

In short: either put the required DLL into your program directory (might be ugly), or
usually put it into the Windows system directory. Just find out its directory by having
a look at the Wine configuration file variable "System" (which indicates the location
of the Windows system directory) and the associated drive entry. Note that you prob-
ably shouldn’t use NT-based native DLLs, since Wine’s NT API support is somewhat
weaker than its Win9x API support (thus leading to even worse compatibility with
NT DLLs than with a no-windows setup!), so better use Win9x native DLLs instead
or no native DLLs at all.

Fetching native DLLs from a Windows CD
The Linux cabextract utility can be used to extract native Windows .dll files from .cab
files that are to be found on many Windows installation CDs.

Configuring the graphics driver (x11drv, ttydrv etc.)
Wine currently supports several different display subsystems (graphics / text) that
are available on various operating systems today. For each of these, Wine implements
its own interfacing driver. This section explains how to select one of these drivers and
how to further configure the respective driver. Once you’re finished with that, you
can consider your Wine installation to be finished.

The display drivers currently implemented in Wine are: x11drv, which is used for
interfacing to X11 graphics (the one you’ll most likely want to use) and ttydrv (used
for text mode console apps mainly that don’t really need any graphics output). Once
you have decided which display driver to use, it is chosen with the GraphicsDriver
option in the [wine] section of ~/.wine/config .

Configuring the x11drv graphics driver

x11drv modes of operation

The x11drv driver consists of two conceptually distinct pieces, the graphics driver
(GDI part), and the windowing driver (USER part). Both of these are linked into the
libx11drv.so module, though (which you load with the GraphicsDriver option).
In Wine, running on X11, the graphics driver must draw on drawables (window inte-
riors) provided by the windowing driver. This differs a bit from the Windows model,
where the windowing system creates and configures device contexts controlled by

44

Chapter 5. Configuring Wine

the graphics driver, and programs are allowed to hook into this relationship any-
where they like. Thus, to provide any reasonable tradeoff between compatibility and
usability, the x11drv has three different modes of operation.

Managed

The default. Specified by using the Managed wine configuration file option (see
below). Ordinary top-level frame windows with thick borders, title bars, and
system menus will be managed by your window manager. This lets these pro-
grams integrate better with the rest of your desktop, but may not always work
perfectly (a rewrite of this mode of operation, to make it more robust and less
patchy, is currently being done, though, and it’s planned to be finished before
the Wine 1.0 release).

Unmanaged / Normal

Window manager independent (any running window manager is ignored com-
pletely). Window decorations (title bars, borders, etc) are drawn by Wine to look
and feel like the real Windows. This is compatible with programs that depend
on being able to compute the exact sizes of any such decorations, or that want to
draw their own. Unmanaged mode is only used if both Managed and Desktop
are set to disabled.

Desktop-in-a-Box

Specified by using the Desktop wine configuration file option (see below).
(adding a geometry, e.g. 800x600 for a such-sized desktop, or even
800x600+0+0 to automatically position the desktop at the upper-left corner of
the display). This is the mode most compatible with the Windows model. All
program windows will just be Wine-drawn windows inside the Wine-provided
desktop window (which will itself be managed by your window manager), and
Windows programs can roam freely within this virtual workspace and think
they own it all, without disturbing your other X apps. Note: currently there’s
one desktop window for every program; this will be fixed at some time.

The [x11drv] section

Managed

Wine can let frame windows be managed by your window manager. This option
specifies whether you want that by default.

Desktop

Creates a main desktop window of a specified size to display all Windows pro-
grams in. The size argument could e.g. be "800x600".

DXGrab

If you don’t use DGA, you may want an alternative means to convince the mouse
cursor to stay within the game window. This option does that. Of course, as with
DGA, if Wine crashes, you’re in trouble (although not as badly as in the DGA
case, since you can still use the keyboard to get out of X).

UseDGA

This specifies whether you want DirectDraw to use XFree86’s Direct Graphics Ar-
chitecture (DGA), which is able to take over the entire display and run the game
full-screen at maximum speed. (With DGA1 (XFree86 3.x), you still have to con-
figure the X server to the game’s requested bpp first, but with DGA2 (XFree86
4.x), runtime depth-switching may be possible, depending on your driver’s ca-
pabilities.) But be aware that if Wine crashes while in DGA mode, it may not be

45

Chapter 5. Configuring Wine

possible to regain control over your computer without rebooting. DGA normally
requires either root privileges or read/write access to /dev/mem .

DesktopDoubleBuffered

Applies only if you use the --desktop command-line option to run in a desk-
top window. Specifies whether to create the desktop window with a double-
buffered visual, something most OpenGL games need to run correctly.

AllocSystemColors

Applies only if you have a palette-based display, i.e. if your X server is set to
a depth of 8bpp, and if you haven’t requested a private color map. It specifies
the maximum number of shared colormap cells (palette entries) Wine should
occupy. The higher this value, the less colors will be available to other programs.

PrivateColorMap

Applies only if you have a palette-based display, i.e. if your X server is set to a
depth of 8bpp. It specifies that you don’t want to use the shared color map, but
a private color map, where all 256 colors are available. The disadvantage is that
Wine’s private color map is only seen while the mouse pointer is inside a Wine
window, so psychedelic flashing and funky colors will become routine if you use
the mouse a lot.

Synchronous

To be used for debugging X11 operations. If Wine crashes with an X11 error, then
you should enable Synchronous mode to disable X11 request caching in order to
make sure that the X11 error happens directly after the corresponding X11 call
in the log file appears. Will slow down X11 output!

ScreenDepth

Applies only to multi-depth displays. It specifies which of the available depths
Wine should use (and tell Windows apps about).

Display

This specifies which X11 display to use, and if specified, will override the DIS-
PLAY environment variable.

PerfectGraphics

This option only determines whether fast X11 routines or exact Wine routines
will be used for certain ROP codes in blit operations. Most users won’t notice
any difference.

Configuring the ttydrv graphics driver
Currently, the ttydrv doesn’t have any special configuration options to set in the con-
figuration file.

Setting the Windows and DOS version value
The windows and DOS version value a program gets e.g. by calling the Windows
function GetVersion() plays a very important role: If your Wine installation for what-
ever reason fails to provide to your program the correct version value that it expects,
then the program might assume some very bad things and fail (in the worst case even
silently!). Fortunately Wine contains some more or less intelligent Windows version

46

Chapter 5. Configuring Wine

guessing algorithm that will try to guess the Windows version a program might ex-
pect and pass that one on to the program. Thus you should not lightly configure a
version value, as this will be a "forced" value and thus turn out to be rather harm-
ful to proper operation. In other words: only explicitly set a Windows version value
in case Wine’s own version detection was unable to provide the correct Windows
version and the program fails.

How to configure the Windows and DOS version value Wine
should return
The version values can be configured in the wine configuration file in the [Version]
section.

"Windows" = "<version string>"

default: none; chosen by semi-intelligent detection mechanism based on DLL
environment. Used to specify which Windows version to return to programs
(forced value, overrides standard detection mechanism!). Valid settings are e.g.
"win31", "win95", "win98", "win2k", "winxp". Also valid as an AppDefaults set-
ting (recommended/preferred use).

"DOS"="<version string>"

Used to specify the DOS version that should be returned to programs. Only takes
effect in case Wine acts as "win31" Windows version! Common DOS version set-
tings include 6.22, 6.20, 6.00, 5.00, 4.00, 3.30, 3.10. Also valid as an AppDefaults
setting (recommended/preferred use).

Dealing with Fonts

Fonts

Note: The fnt2bdf utility is included with Wine. It can be found in the tools directory.
Links to the other tools mentioned in this document can be found on wine headquarters:
http://www.winehq.org/development/

How To Convert Windows Fonts

If you have access to a Windows installation you should use the fnt2bdf utility
(found in the tools directory) to convert bitmap fonts (VGASYS.FON, SSERIFE.FON,
and SERIFE.FON) into the format that the X Window System can recognize.

1. Extract bitmap fonts with fnt2bdf.

2. Convert .bdf files produced by Step 1 into .pcf files with bdftopcf.

3. Copy .pcf files to the font server directory which is usually
/usr/lib/X11/fonts/misc (you will probably need superuser privileges). If
you want to create a new font directory you will need to add it to the font path.

4. Run mkfontdir for the directory you copied fonts to. If you are already in X you
should run xset fp rehash to make X server aware of the new fonts. You may

47

Chapter 5. Configuring Wine

also or instead have to restart the font server (using e.g. /etc/init.d/xfs restart
under Red Hat 7.1)

5. Edit the ~/.wine/config file to remove aliases for the fonts you’ve just in-
stalled.

Wine can get by without these fonts but ’the look and feel’ may be quite different.
Also, some applications try to load their custom fonts on the fly (WinWord 6.0) and
since Wine does not implement this yet it instead prints out something like;

STUB: AddFontResource(SOMEFILE.FON)

You can convert this file too. Note that .FON file may not hold any bitmap fonts and
fnt2bdf will fail if this is the case. Also note that although the above message will not
disappear Wine will work around the problem by using the font you extracted from
the SOMEFILE.FON. fnt2bdf will only work for Windows 3.1 fonts. It will not work
for TrueType fonts.

What to do with TrueType fonts? There are several commercial font tools that can
convert them to the Type1 format but the quality of the resulting fonts is far from stel-
lar. The other way to use them is to get a font server capable of rendering TrueType
(Caldera has one, there also is the free xfstt in Linux/X11/fonts on sunsite and mir-
rors, if you’re on FreeBSD you can use the port in /usr/ports/x11-servers/Xfstt .
And there is xfsft which uses the freetype library, see freetype description).

However, there is a possibility of the native TrueType support via FreeType renderer
in the future (hint, hint :-)

How To Add Font Aliases To ~/.wine/config

Many Windows applications assume that fonts included in original Windows 3.1 dis-
tribution are always present. By default Wine creates a number of aliases that map
them on the existing X fonts:

Windows font ...is mapped to... X font

"MS Sans Serif" -> "-adobe-helvetica-"

"MS Serif" -> "-bitstream-charter-"

"Times New Roman" -> "-adobe-times-"

"Arial" -> "-adobe-helvetica-"

There is no default alias for the "System" font. Also, no aliases are created for the fonts
that applications install at runtime. The recommended way to deal with this problem
is to convert the missing font (see above). If it proves impossible, like in the case with
TrueType fonts, you can force the font mapper to choose a closely related X font by
adding an alias to the [fonts] section. Make sure that the X font actually exists (with
xfontsel tool).

AliasN = [Windows font], [X font] <, optional "mask X font" flag >

Example:

Alias0 = System, --international-, subst
Alias1 = ...
...

Comments:

48

Chapter 5. Configuring Wine

• There must be no gaps in the sequence {0, ..., N} otherwise all aliases after the
first gap won’t be read.

• Usually font mapper translates X font names into font names visible to Windows
programs in the following fashion:

X font ...will show up as... Extracted name

--international-... -> "International"

-adobe-helvetica-... -> "Helvetica"

-adobe-utopia-... -> "Utopia"

-misc-fixed-... -> "Fixed"

-... ->

-sony-fixed-... -> "Sony Fixed"

-... ->

Note that since -misc-fixed- and -sony-fixed- are different fonts Wine modi-
fied the second extracted name to make sure Windows programs can distinguish
them because only extracted names appear in the font selection dialogs.

• "Masking" alias replaces the original extracted name so that in the example case
we will have the following mapping:

X font ...is masked to... Extracted name

--international-... -> "System"

"Nonmasking" aliases are transparent to the user and they do not replace extracted
names.

Wine discards an alias when it sees that the native X font is available.

• If you do not have access to Windows fonts mentioned in the first paragraph you
should try to substitute the "System" font with nonmasking alias. The xfontsel
application will show you the fonts available to X.
Alias.. = System, ...bold font without serifs

Also, some Windows applications request fonts without specifying the typeface
name of the font. Font table starts with Arial in most Windows installations,
however X font table starts with whatever is the first line in the fonts.dir .
Therefore Wine uses the following entry to determine which font to check first.

Example:

Default = -adobe-times-

Comments:

It is better to have a scalable font family (bolds and italics included) as the default
choice because mapper checks all available fonts until requested height and other at-
tributes match perfectly or the end of the font table is reached. Typical X installations
have scalable fonts in the ../fonts/Type1 and ../fonts/Speedo directories.

49

Chapter 5. Configuring Wine

How To Manage Cached Font Metrics

Wine stores detailed information about available fonts in the
~/.wine/cachedmetrics.[display] file. You can copy it elsewhere and add this
entry to the [fonts] section in your ~/.wine/config :

FontMetrics = <file with metrics >

If Wine detects changes in the X font configuration it will rebuild font metrics from
scratch and then it will overwrite ~/.wine/cachedmetrics.[display] with the new
information. This process can take a while.

Too Small Or Too Large Fonts

Windows programs may ask Wine to render a font with the height specified in points.
However, point-to-pixel ratio depends on the real physical size of your display (15",
17", etc...). X tries to provide an estimate of that but it can be quite different from
the actual size. You can change this ratio by adding the following entry to the [fonts]
section:

Resolution = <integer value >

In general, higher numbers give you larger fonts. Try to experiment with values in
the 60 - 120 range. 96 is a good starting point.

"FONT_Init: failed to load ..." Messages On Startup

The most likely cause is a broken fonts.dir file in one of your font directories. You
need to rerun mkfontdir to rebuild this file. Read its manpage for more information.
If you can’t run mkfontdir on this machine as you are not root, use xset -fp xxx to
remove the broken font path.

Setting up a TrueType Font Server
Follow these instructions to set up a TrueType font server on your system.

1. Get a freetype source archive (freetype-X.Y.tar.gz ?).

2. Read docs, unpack, configure and install

3. Test the library, e.g. ftview 20 /dosc/win95/fonts/times

4. Get xfsft-beta1e.linux-i586

5. Install it and start it when booting, e.g. in an rc-script. The manpage for xfs
applies.

6. Follow the hints given by <williamc@dai.ed.ac.uk >

7. I got xfsft from http://www.dcs.ed.ac.uk/home/jec/progindex.html. I have it
running all the time. Here is /usr/X11R6/lib/X11/fs/config :
clone-self = on
use-syslog = off
catalogue = /c/windows/fonts
error-file = /usr/X11R6/lib/X11/fs/fs-errors
default-point-size = 120
default-resolutions = 75,75,100,100

50

Chapter 5. Configuring Wine

Obviously /c/windows/fonts is where my Windows fonts on my Win95 C:
drive live; could be e.g. /mnt/dosC/windows/system for Win31.

In /c/windows/fonts/fonts.scale I have:
14
arial.ttf -monotype-arial-medium-r-normal--0-0-0-0-p-0-iso8859-1
arialbd.ttf -monotype-arial-bold-r-normal--0-0-0-0-p-0-iso8859-1
arialbi.ttf -monotype-arial-bold-o-normal--0-0-0-0-p-0-iso8859-1
ariali.ttf -monotype-arial-medium-o-normal--0-0-0-0-p-0-iso8859-1
cour.ttf -monotype-courier-medium-r-normal--0-0-0-0-p-0-iso8859-1
courbd.ttf -monotype-courier-bold-r-normal--0-0-0-0-p-0-iso8859-1
courbi.ttf -monotype-courier-bold-o-normal--0-0-0-0-p-0-iso8859-1
couri.ttf -monotype-courier-medium-o-normal--0-0-0-0-p-0-iso8859-1
times.ttf -monotype-times-medium-r-normal--0-0-0-0-p-0-iso8859-1
timesbd.ttf -monotype-times-bold-r-normal--0-0-0-0-p-0-iso8859-1
timesbi.ttf -monotype-times-bold-i-normal--0-0-0-0-p-0-iso8859-1
timesi.ttf -monotype-times-medium-i-normal--0-0-0-0-p-0-iso8859-1
symbol.ttf -monotype-symbol-medium-r-normal--0-0-0-0-p-0-microsoft-symbol
wingding.ttf -microsoft-wingdings-medium-r-normal--0-0-0-0-p-0-microsoft-symbol

In /c/windows/fonts/fonts.dir I have exactly the same.

In /usr/X11R6/lib/X11/XF86Config I have
FontPath "tcp/localhost:7100"

in front of the other FontPath lines. That’s it! As an interesting by-product of
course, all those web pages which specify Arial come up in Arial in Netscape ...

8. Shut down X and restart (and debug errors you did while setting up every-
thing).

9. Test with e.g. xlsfont | grep arial

Printing in Wine
How to print documents in Wine...

Printing
Printing in Wine can be done using the built-in Wine PostScript driver (+ ghostscript
to produce output for non-PostScript printers).

Note that at the moment WinPrinters (cheap, dumb printers that require the host
computer to explicitly control the head) will not work with their Windows printer
drivers. It is unclear whether they ever will.

Built-in Wine PostScript driver

Enables printing of PostScript files via a driver built into Wine. See below for instal-
lation instructions. The code for the PostScript driver is in dlls/wineps/ .

The driver behaves as if it were a DRV file called wineps.drv which at the moment
is built into Wine. Although it mimics a 16 bit driver, it will work with both 16 and
32 bit apps, just as win9x drivers do.

51

Chapter 5. Configuring Wine

Spooling

Spooling is rather primitive. The [spooler] section of the wine config file maps a port
(e.g. LPT1:) to a file or a command via a pipe. For example the following lines

"LPT1:" = "foo.ps"
"LPT2:" = "|lpr"

map LPT1: to file foo.ps and LPT2: to the lpr command. If a job is sent to an unlisted
port, then a file is created with that port’s name; e.g. for LPT3: a file called LPT3:
would be created.

There are now also virtual spool queues called LPR:printername, which send the
data to lpr -Pprintername. You do not need to specify those in the config file, they
are handled automatically by dlls/gdi/printdrv.c .

The Wine PostScript Driver
This allows Wine to generate PostScript files without needing an external printer
driver. Wine in this case uses the system provided PostScript printer filters, which al-
most all use ghostscript if necessary. Those should be configured during the original
system installation or by your system administrator.

Installation

Installation of CUPS printers

If you are using CUPS, you do not need to configure .ini or registry entries, every-
thing is autodetected.

Installation of LPR /etc/printcap based printers

If your system is not yet using CUPS, it probably uses LPRng or a LPR based system
with configuration based on /etc/printcap .

If it does, your printers in /etc/printcap are scanned with a heuristic whether they
are PostScript capable printers and also configured mostly automatic.

Since Wine cannot find out what type of printer this is, you need to specify a PPD file
in the [ppd] section of ~/.wine/config . Either use the shortcut name and make the
entry look like:

[ppd]
"ps1" = "/usr/lib/wine/ps1.ppd"

Or you can specify a generic PPD file that is to match for all of the remaining printers.
A generic PPD file can be found in documentation/samples/generic.ppd .

Installation of other printers

You do not need to do this if the above 2 sections apply, only if you have a special
printer.

Wine PostScript Driver=WINEPS,LPT1:

to the [devices] section and

52

Chapter 5. Configuring Wine

Wine PostScript Driver=WINEPS,LPT1:,15,45

to the [PrinterPorts] section of win.ini , and to set it as the default printer also add

device = Wine PostScript Driver,WINEPS,LPT1:

to the [windows] section of win.ini .

You also need to add certain entries to the registry. The easiest way to do this is to
customize the PostScript driver contents of winedefault.reg (see below) and use
the Winelib program programs/regedit/regedit. For example, if you have installed
the Wine source tree in /usr/src/wine , you could use the following series of com-
mands:

• cp /usr/src/wine/winedefault.reg ~

• vi ~/winedefault.reg

• Edit the copy of winedefault.reg to suit your PostScript printing requirements.
At a minimum, you must specify a PPD file for each printer.

• regedit ~/winedefault.reg

Required configuration for all printer types

You won’t need Adobe Font Metric (AFM) files for the (type 1 PostScript) fonts that
you wish to use any more. Wine now has this information built-in.

You’ll need a PPD file for your printer. This describes certain characteristics
of the printer such as which fonts are installed, how to select manual
feed etc. Adobe has many of these on its website, have a look in

ftp://ftp.adobe.com/pub/adobe/printerdrivers/win/all/5. See above for
information on configuring the driver to use this file.

To enable colour printing you need to have the *ColorDevice entry in the PPD set
to true , otherwise the driver will generate greyscale.

Note that you need not set printer=on in the [wine] section of the wine config
file, this enables printing via external printer drivers and does not affect the built-
in PostScript driver.

If you’re lucky you should now be able to produce PS files from Wine!

I’ve tested it with win3.1 notepad/write, Winword6 and Origin4.0 and 32 bit apps
such as win98 wordpad, Winword97, Powerpoint2000 with some degree of success -
you should be able to get something out, it may not be in the right place.

SCSI Support
This file describes setting up the Windows ASPI interface. ASPI is a direct link to
SCSI devices from windows programs. ASPI just forwards the SCSI commands that
programs send to it to the SCSI bus.

If you use the wrong SCSI device in your setup file, you can send completely bogus
commands to the wrong device - An example would be formatting your hard drives
(assuming the device gave you permission - if you’re running as root, all bets are off).

53

Chapter 5. Configuring Wine

So please make sure that all SCSI devices not needed by the program have their per-
missions set as restricted as possible!

Windows requirements

1. The software needs to use the "Adaptec" compatible drivers (ASPI). At
least with Mustek, they allow you the choice of using the built-in card or
the "Adaptec (AHA)" compatible drivers. This will not work any other way.
Software that accesses the scanner via a DOS ASPI driver (e.g. ASPI2DOS) is
supported, too.

2. You probably need a real windows install of the software to set the LUN’s/SCSI
id’s up correctly. I’m not exactly sure.

Linux requirements

1. Your SCSI card must be supported under Linux. This will not work
with an unknown SCSI card. Even for cheap’n crappy "scanner only"
controllers some special Linux drivers exist on the net. If you intend
to use your IDE device, you need to use the ide-scsi emulation. Read
http://www.linuxdoc.org/HOWTO/CD-Writing-HOWTO.html6 for ide-scsi

setup instructions.

2. Compile generic SCSI drivers into your kernel.

3. This seems to be not required any more for newer (2.2.x) kernels: Linux by de-
fault uses smaller SCSI buffers than Windows. There is a kernel build define
SG_BIG_BUFF (in sg.h) that is by default set too low. The SANE project rec-
ommends 130560 and this seems to work just fine. This does require a kernel
rebuild.

4. Make the devices for the scanner (generic SCSI devices) - look at the SCSI
programming HOWTO at http://www.linuxdoc.org/HOWTO/SCSI-
Programming-HOWTO.html7 for device numbering.

5. I would recommend making the scanner device writable by a group. I made a
group called scanner and added myself to it. Running as root increases your
risk of sending bad SCSI commands to the wrong device. With a regular user,
you are better protected.

6. For Win32 software (WNASPI32), Wine has auto-detection in place. For Win16
software (WINASPI), you need to add a SCSI device entry for your partic-
ular scanner to ~/.wine/config. The format is [scsi cCtTdD] where "C" =
"controller" , "T" = "target" , D=LUN

For example, I set mine up as controller 0, Target 6, LUN 0.
[scsi c0t6d0]
"Device" = "/dev/sgi"

Yours will vary with your particular SCSI setup.

Notes
The biggest drawback is that it only works under Linux at the moment. The ASPI
code has only been tested with:

54

Chapter 5. Configuring Wine

• a Mustek 800SP with a Buslogic controller under Linux [BM]

• a Siemens Nixdorf 9036 with Adaptec AVA-1505 under Linux accessed via
DOSASPI. Note that I had color problems, though (barely readable result) [AM]

• a Fujitsu M2513A MO drive (640MB) using generic SCSI drivers. Formatting and
ejecting worked perfectly. Thanks to Uwe Bonnes for access to the hardware! [AM]

Using ODBC
This section describes how ODBC works within Wine and how to configure it.

The ODBC system within Wine, as with the printing system, is designed to hook
across to the Unix system at a high level. Rather than ensuring that all the windows
code works under wine it uses a suitable Unix ODBC provider, such as UnixODBC.
Thus if you configure Wine to use the built-in odbc32.dll, that Wine DLL will interface
to your Unix ODBC package and let that do the work, whereas if you configure Wine
to use the native odbc32.dll it will try to use the native ODBC32 drivers etc.

Using a Unix ODBC system with Wine
The first step in using a Unix ODBC system with Wine is, of course, to get the Unix
ODBC system working itself. This may involve downloading code or RPMs etc.
There are several Unix ODBC systems available; the one the author is used to is
unixODBC (with the IBM DB2 driver). Typically such systems will include a tool,
such as isql, which will allow you to access the data from the command line so that
you can check that the system is working.

The next step is to hook the Unix ODBC library to the wine built-in odbc32
DLL. The built-in odbc32 (currently) looks to the environment variable
LIB_ODBC_DRIVER_MANAGER for the name of the ODBC library. For example in
the author’s .bashrc file is the line:

export LIB_ODBC_DRIVER_MANAGER=/usr/lib/libodbc.so.1.0.0

If that environment variable is not set then it looks for a library called libodbc.so and
so you can add a symbolic link to equate that to your own library. For example as
root you could run the commands:

ln -s libodbc.so.1.0.0 /usr/lib/libodbc.so
/sbin/ldconfig

The last step in configuring this is to ensure that Wine is set up to run the built-in
version of odbc32.dll, by modifying the DLL configuration. This built-in DLL merely
acts as a stub between the calling code and the Unix ODBC library.

If you have any problems then you can use the debugmsg channel odbc32 to trace
what is happening. One word of warning. Some programs actually cheat a little and
bypass the ODBC library. For example the Crystal Reports engine goes to the registry
to check on the DSN. The fix for this is documented at unixODBC’s site where there
is a section on using unixODBC with Wine.

Using Windows ODBC drivers
Native ODBC drivers have been reported to work for many types of databases in-
cluding MSSQL and Oracle. In fact, some like MSSQL can only be accessed on Linux

55

Chapter 5. Configuring Wine

through a Winelib app. Rather than just copying DLL files, most ODBC drivers re-
quire a Windows-based installer to run to properly configure things such as registry
keys.

In order to set up MSSQL support you will first need to download and run the
mdac_typ.exe installer from microsoft.com. In order to configure your ODBC connec-
tions you must then run CLICONFG.EXE and ODBCAD32.EXE under Wine. You can
find them in the windows\system directory after mdac_typ runs. Compare the out-
put of these programs with the output on a native Windows machine. Some things,
such as protocols, may be missing because they rely on being installed along with the
operating system. If so, you may be able to copy missing functionality from an exist-
ing Windows installation as well as any registry values required. A native Windows
installation configured to be used by Wine should work the same way it did when
run natively.

Types successfully tested under wine:

DB Type Usefulness

MS SQL 100%

Please report any other successes to the wine-devel8 mailing list.

Notes
1. http://sourceforge.net/project/showfiles.php?group_id=6241

2. http://bugs.winehq.org/

3. http://www.winehq.org/development/

4. http://www.dcs.ed.ac.uk/home/jec/progindex.html

5. ftp://ftp.adobe.com/pub/adobe/printerdrivers/win/all/

6. http://www.linuxdoc.org/HOWTO/CD-Writing-HOWTO.html

7. http://www.linuxdoc.org/HOWTO/SCSI-Programming-HOWTO.html

8. mailto:wine-devel@winehq.org

56

Chapter 6. Running Wine

This chapter will describe all aspects of running Wine, like e.g. basic Wine invocation,
command line parameters of various Wine support programs etc.

Basic usage: applications and control panel applets
Assuming you are using a fake Windows installation, you install applications into
Wine in the same way you would in Windows: by running the installer. You can just
accept the defaults for where to install, most installers will default to "C:\Program
Files", which is fine. If the application installer requests it, you may find that Wine
creates icons on your desktop and in your app menu. If that happens, you can start
the app by clicking on them.

The standard way to uninstall things is for the application to provide an uninstaller,
usually registered with the "Add/Remove Programs" control panel applet. To
access the Wine equivalent, run the uninstaller program (it is located in the
programs/uninstaller/ directory in a Wine source directory) in a terminal:

$ uninstaller

Some programs install associated control panel applets, examples of this would be
Internet Explorer and QuickTime. You can access the Wine control panel by running
in a terminal:

$ wine control

which will open a window with the installed control panel applets in it, as in Win-
dows.

If the application doesn’t install menu or desktop items, you’ll need to run the app
from the command line. Remembering where you installed to, something like:

$ wine "c:\program files\appname\appname.exe"

will probably do the trick. The path isn’t case sensitive, but remember to include the
double quotes. Some programs don’t always use obvious naming for their directories
and EXE files, so you might have to look inside the program files directory to see what
was put where.

How to run Wine
You can simply invoke the wine command to get a small help message:

Wine 20040405
Usage: wine PROGRAM [ARGUMENTS...] Run the specified program

wine --help Display this help and exit
wine --version Output version information and exit

The first argument should be the name of the file you want wine to execute. If the
executable is in the Path parameter in the configuration file, you can simply give
the executable file name. However, if the executable is not in Path , you must give
the full path to the executable (in Windows format, not UNIX format!). For example,
given a Path of the following:

57

Chapter 6. Running Wine

[wine]
"Path"="c:\\windows;c:\\windows\\system;e:\\;e:\\test;f:\\"

You could run the file c:\windows\system\foo.exe with:

$ wine foo.exe

However, you would have to run the file c:\myapps\foo.exe with this command:

$ wine c:\\myapps\\foo.exe

(note the backslash-escaped "\" !)

For details on running text mode (CUI) executables, read the section below.

Explorer-like graphical Wine environments
If you prefer using a graphical interface to manage your files you might want to
consider using Winefile. This Winelib application comes with Wine and can be found
with the other Wine programs. It is a useful way to view your drive configuration
and locate files, plus you can execute programs directly from Winefile. Please note,
many functions are not yet implemented.

Wine Command Line Options

--help
Shows a small command line help page.

--version
Shows the Wine version string. Useful to verify your installation.

Environment variables

WINEDEBUG=[channels]
Wine isn’t perfect, and many Windows applications still don’t run without bugs un-
der Wine (but then, a lot of programs don’t run without bugs under native Windows
either!). To make it easier for people to track down the causes behind each bug, Wine
provides a number of debug channels that you can tap into.

Each debug channel, when activated, will trigger logging messages to be displayed
to the console where you invoked wine. From there you can redirect the messages
to a file and examine it at your leisure. But be forewarned! Some debug channels
can generate incredible volumes of log messages. Among the most prolific offenders
are relay which spits out a log message every time a win32 function is called, win
which tracks windows message passing, and of course all which is an alias for every
single debug channel that exists. For a complex application, your debug logs can
easily top 1 MB and higher. A relay trace can often generate more than 10 MB of
log messages, depending on how long you run the application. (As described in the

58

Chapter 6. Running Wine

Debug section of configuring wine you can modify what the relay trace reports).
Logging does slow down Wine quite a bit, so don’t use WINEDEBUGunless you really
do want log files.

Within each debug channel, you can further specify a message class, to filter out the
different severities of errors. The four message classes are: trace , fixme , warn , err .

To turn on a debug channel, use the form class+channel . To turn it off, use
class-channel . To list more than one channel in the same WINEDEBUGoption,
separate them with commas. For example, to request warn class messages in the
heap debug channel, you could invoke wine like this:

$ WINEDEBUG=warn+heap wine program_name

If you leave off the message class, wine will display messages from all four classes
for that channel:

$ WINEDEBUG=heap wine program_name

If you wanted to see log messages for everything except the relay channel, you might
do something like this:

$ WINEDEBUG=+all,-relay wine program_name

Here is a list of the debug channels and classes in Wine. More channels will be added
to (or subtracted from) later versions.

Table 6-1. Debug Channels

accel adpcm advapi animate aspi

atom avicap avifile bidi bitblt

bitmap cabinet capi caret cdrom

cfgmgr32 class clipboard clipping combo

comboex comm commctrl commdlg computername

console crtdll crypt curses cursor

d3d d3d_shader d3d_surface datetime dc

ddeml ddraw ddraw_fps ddraw_geom ddraw_tex

debugstr devenum dialog dinput dll

dma dmband dmcompos dmfile dmfiledat

dmime dmloader dmscript dmstyle dmsynth

dmusic dosfs dosmem dplay dplayx

dpnhpast driver dsound dsound3d edit

enhmetafile environ event eventlog exec

file fixup font fps g711

gdi global glu graphics header

heap hook hotkey icmp icon

imagehlp imagelist imm int int21

int31 io ipaddress iphlpapi jack

joystick key keyboard listbox listview

59

Chapter 6. Running Wine

loaddll local mapi mci mcianim

mciavi mcicda mcimidi mciwave mdi

menu menubuilder message metafile midi

mmaux mmio mmsys mmtime module

monthcal mpeg3 mpr msacm msdmo

msg mshtml msi msimg32 msisys

msrle32 msvcrt msvideo mswsock nativefont

netapi32 netbios nls nonclient ntdll

odbc ole oledlg olerelay opengl

pager palette pidl powermgnt print

process profile progress propsheet psapi

psdrv qcap quartz ras rebar

reg region relay resource richedit

rundll32 sblaster scroll seh selector

server setupapi shdocvw shell shlctrl

snmpapi snoop sound static statusbar

storage stress string syscolor system

tab tape tapi task text

thread thunk tid timer toolbar

toolhelp tooltips trackbar treeview ttydrv

twain typelib uninstaller updown urlmon

uxtheme ver virtual vxd wave

wc_font win win32 wineboot winecfg

wineconsole wine_d3d winevdm wing winhelp

wininet winmm winsock winspool wintab

wintab32 wnet x11drv x11settings xdnd

xrandr xrender xvidmode

For more details about debug channels, check out the The Wine Developer’s Guide1.

wineserver Command Line Options
wineserver usually gets started automatically by Wine whenever the first wine pro-
cess gets started. However, wineserver has some useful command line options that
you can add if you start it up manually, e.g. via a user login script or so.

-d<n>

Sets the debug level for debug output in the terminal that wineserver got started in at
level <n>. In other words: everything greater than 0 will enable wineserver specific
debugging output.

60

Chapter 6. Running Wine

-h
Display wineserver command line options help message.

-k[n]
Kill the current wineserver, optionally with signal n.

-p[n]
This parameter makes wineserver persistent, optionally for n seconds. It will prevent
wineserver from shutting down immediately.

Usually, wineserver quits almost immediately after the last wine process using this
wineserver terminated. However, since wineserver loads a lot of things on startup
(such as the whole Windows registry data), its startup might be so slow that it’s very
useful to keep it from exiting after the end of all Wine sessions, by making it persis-
tent.

-w
This parameter makes a newly started wineserver wait until the currently active
wineserver instance terminates.

Setting Windows/DOS environment variables
Your program might require some environment variable to be set properly in order to
run successfully. In this case you need to set this environment variable in the Linux
shell, since Wine will pass on the entire shell environment variable settings to the
Windows environment variable space. Example for the bash shell (other shells may
have a different syntax !):

export MYENVIRONMENTVAR=myenvironmentvarsetting

This will make sure your Windows program can access the MYENVIRONMENT-
VAR environment variable once you start your program using Wine. If you want to
have MYENVIRONMENTVAR set permanently, then you can place the setting into
/etc/profile, or also ~/.bashrc in the case of bash.

Note however that there is an exception to the rule: If you want to change the PATH
environment variable, then of course you can’t modify it that way, since this will
alter the Unix PATH environment setting. Instead, you should set the WINEPATH
environment variable. An alternative way to indicate the content of the DOS PATH
environment variable would be to change the "path" setting in the wine config file’s
[wine] section.

Text mode programs (CUI: Console User Interface)
Text mode programs are program which output is only made out of text (surprise!).
In Windows terminology, they are called CUI (Console User Interface) executables,
by opposition to GUI (Graphical User Interface) executables. Win32 API provide a
complete set of APIs to handle this situation, which goes from basic features like text

61

Chapter 6. Running Wine

printing, up to high level functionalities (like full screen editing, color support, cur-
sor motion, mouse support), going through features like line editing or raw/cooked
input stream support

Given the wide scope of features above, and the current usage in Un*x world, Wine
comes out with three different ways for running a console program (aka a CUI exe-
cutable):

• bare streams

• wineconsole with user backend

• wineconsole with curses backend

The names here are a bit obscure. "bare streams" means that no extra support of wine
is provide to map between the unix console access and Windows console access. The
two other ways require the use of a specific Wine program (wineconsole) which pro-
vide extended facilities. The following table describes what you can do (and cannot
do) with those three ways.

Table 6-2. Basic differences in consoles

Function Bare streams Wineconsole &
user backend

Wineconsole &
curses backend

How to run
(assuming
executable is called
foo.exe)

$ wine foo.exe $ wineconsole -- --backend=user foo.exe$ wineconsole foo.exe
You can also use

--backend=curses
as an option

Good support for
line oriented CUI
applications (which
print information
line after line)

Yes Yes Yes

Good support for
full screen CUI
applications
(including but not
limited to color
support, mouse
support...)

No Yes Yes

Can be run even if
X11 is not running

Yes No Yes

Implementation Maps the standard
Windows streams
to the standard
Unix streams
(stdin/stdout/stderr)

Wineconsole will
create a new
Window (hence
requiring the
USER32 DLL is
available) where all
information will be
displayed

Wineconsole will
use existing unix
console (from
which the program
is run) and with the
help of the
(n)curses library
take control of all
the terminal
surface for
interacting with the
user

62

Chapter 6. Running Wine

Function Bare streams Wineconsole &
user backend

Wineconsole &
curses backend

Known limitations Will produce
strange behavior if
two (or more)
Windows consoles
are used on the
same Un*x
terminal.

Configuration of CUI executables
When wineconsole is used, several configuration options are available. Wine (as Win-
dows do) stores, on a per application basis, several options in the registry. This let a
user, for example, define the default screen-buffer size he would like to have for a
given application.

As of today, only the USER backend allows you to edit those options (we don’t rec-
ommend editing by hand the registry contents). This edition is fired when a user
right click in the console (this popups a menu), where you can either choose from:

• Default: this will edit the settings shared by all applications which haven’t been
configured yet. So, when an application is first run (on your machine, under your
account) in wineconsole, wineconsole will inherit this default settings for the ap-
plication. Afterwards, the application will have its own settings, that you’ll be able
to modify at your will.

Properties: this will edit the application’s settings. When you’re done, with the
edition, you’ll be prompted whether you want to:

1. Keep these modified settings only for this session (next time you run the ap-
plication, you will not see the modification you’ve just made).

2. Use the settings for this session and save them as well, so that next you run
your application, you’ll use these new settings again.

Here’s the list of the items you can configure, and their meanings:

Table 6-3. Wineconsole configuration options

Configuration option Meaning

Cursor’s size Defines the size of the cursor. Three
options are available: small (33% of
character height), medium (66%) and
large (100%)

63

Chapter 6. Running Wine

Configuration option Meaning

Popup menu It’s been said earlier that wineconsole
configuration popup was triggered
using a right click in the console’s
window. However, this can be an issue
when the application you run inside
wineconsole expects the right click
events to be sent to it. By ticking control
or shift you select additional modifiers
on the right click for opening the popup.
For example, ticking shift will send
events to the application when you right
click the window without shift being
hold down, and open the window when
you right-click while shift being hold
down.

Quick edit This tick box lets you decide whether
left-click mouse events shall be
interpreted as events to be sent to the
underlying application (tick off) or as a
selection of rectangular part of the
screen to be later on copied onto the
clipboard (tick on).

History This lets you pick up how many
commands you want the console to
recall. You can also drive whether you
want, when entering several times the
same command - potentially
intertwined with others - whether you
want to store all of them (tick off) or
only the last one (tick on).

Police The Police property sheet allows you to
pick the default font for the console (font
file, size, background and foreground
color).

Screenbuffer & window size The console as you see it is made of two
different parts. On one hand there’s the
screenbuffer which contains all the
information your application puts on
the screen, and the window which
displays a given area of this screen
buffer. Note that the window is always
smaller or of the same size than the
screen buffer. Having a strictly smaller
window size will put on scrollbars on
the window so that you can see the
whole screenbuffer’s content.

Close on exit If it’s ticked, then the wineconsole will
exit when the application within
terminates. Otherwise, it’ll remain
opened until the user manually closes it:
this allows seeing the latest information
of a program after it has terminated.

64

Chapter 6. Running Wine

Configuration option Meaning

Edition mode When the user enter commands, he or
she can choose between several edition
modes: • Emacs: the same keybindings
as under emacs are available. For ex-
ample, Ctrl-A will bring the cursor to
the beginning of the edition line. See
your emacs manual for the details of the
commands.

• Win32: this are the standard Win-
dows console key-bindings (mainly
using arrows).

Notes
1. http://wine.codeweavers.com/docs/wine-devel/

65

Chapter 6. Running Wine

66

Chapter 7. Troubleshooting / Reporting bugs

What to do if some program still doesn’t work?
There are times when you’ve been trying everything, you even killed a cat at full
moon and ate it with rotten garlic and foul fish while doing the Devil’s Dance, yet
nothing helped to make some damn program work on some Wine version. Don’t
despair, we’re here to help you... (in other words: how much do you want to pay ?)

Verify your wine configuration
Refer to the Configuration verification section

Use different windows version settings
In several cases using different windows version settings can help.

Use different startup paths
This sometimes helps, too: Try to use both wine prg.exe and wine
x:\\full\\path\\to\\prg.exe

Fiddle with DLL configuration
Run with WINEDEBUG=+loaddll to figure out which DLLs are being used, and
whether they’re being loaded as native or built-in. Then make sure you have proper
native DLL files in your configured C:\windows\system directory and fiddle with
DLL load order settings at command line or in config file.

Check your system environment !
Just an idea: could it be that your Wine build/execution environment is broken ?
Make sure that there are no problems whatsoever with the packages that Wine de-
pends on (gcc, glibc, X libraries, OpenGL (!), ...) E.g. some people have strange fail-
ures to find stuff when using "wrong" header files for the "right" libraries !!! (which
results in days of debugging to desperately try to find out why that lowlevel function
fails in a way that is completely beyond imagination... ARGH !)

Use different GUI (Window Manager) modes
Instruct Wine via config file to use either desktop mode, managed mode or plain ugly
"normal" mode. That can make one hell of a difference, too.

Check your app !
Maybe your app is using some kind of copy protection ? Many copy protections
currently don’t work on Wine. Some might work in the future, though. (the CD-ROM
layer isn’t really full-featured yet).

Go to GameCopyWorld1 and try to find a decent crack for your game that gets rid of
that ugly copy protection. I hope you do have a legal copy of the program, though...
:-)

67

Chapter 7. Troubleshooting / Reporting bugs

Check your Wine environment !
Running with or without a Windows partition can have a dramatic impact. Configure
Wine to do the opposite of what you used to have. Also, install DCOM98 or DCOM95.
This can be very beneficial.

Reconfigure Wine
Sometimes wine installation process changes and new versions of Wine account on
these changes. This is especially true if your setup was created long time ago. Re-
name your existing ~/.wine directory for backup purposes. Use the setup process
that’s recommended for your Wine distribution to create new configuration. Use in-
formation in old ~/.wine directory as a reference. For source wine distribution to
configure Wine run tools/wineinstall script as a user you want to do the configu-
ration for. This is a pretty safe operation. Later you can remove the new ~/.wine
directory and rename your old one back.

Check out further information
There is a really good chance that someone has already tried to do the same thing as
you. You may find the following resources helpful:

• Search WineHQ’s Application Database2 to check for any tips relating to the pro-
gram. If your specific version of the program isn’t listed you may find a different
one contains enough information to help you out.

• Frank’s Corner3 contains a list of applications and detailed instructions for setting
them up. Further help can be found in the user forums.

• Google4 can be useful depending on how you use it. You may find it helpful to
search Google Groups5, in particular the comp.emulators.ms-windows.wine6

group.

• Freenode.net7 hosts an IRC channel for Wine. You can access it by using any IRC
client such as Xchat. The settings you’ll need are: server = irc.freenode.net, port =
6667, and channel = #winehq

• If you have a program that needs the Visual Basic Runtime Environment, you can
download it from this Microsoft site8

• If you know you are missing a DLL, such as mfc42, you may be able to find it at
www.dll-files.com9

• Wine’s mailing lists10 may also help, especially wine-users. The wine-devel list may
be appropriate depending on the type of problem you are experiencing. If you
post to wine-devel you should be prepared to do a little work to help diagnose
the problem. Read the section below to find out how to debug the source of your
problem.

• If all else fails, you may wish to investigate commercial versions of Wine to see if
your application is supported.

Debug it!
Finding the source of your problem is the next step to take. There is a wide spectrum
of possible problems ranging from simple configurations issues to completely unim-
plemented functionality in Wine. The next section will describe how to file a bug

68

Chapter 7. Troubleshooting / Reporting bugs

report and how to begin debugging a crash. For more information on using Wine’s
debugging facilities be sure to read the Wine Developers Guide.

How To Report A Bug
Please report all bugs along any relevant information to Wine Bugzilla11. Please,
search the Bugzilla database to check whether your problem is already reported. If it
is already reported please add any relevant information to the original bug report.

All Bug Reports
Some simple advice on making your bug report more useful (and thus more likely to
get answered and fixed):

1. Post as much relevant information as possible.

This means we need more information than a simple "MS Word crashes when-
ever I run it. Do you know why?" Include at least the following information:

• Which version of Wine you’re using (run wine -v)
• The name of the Operating system you’re using, what distribution (if any),

and what version. (i.e., Linux Red Hat 7.2)
• Which compiler and version, (run gcc -v). If you didn’t compile wine then the

name of the package and where you got it from.
• Windows version, if used with Wine. Mention if you don’t use Windows.
• The name of the program you’re trying to run, its version number, and a URL

for where the program can be obtained (if available).
• The exact command line you used to start wine. (i.e., wine "C:\Program

Files\Test\program.exe").
• The exact steps required to reproduce the bug.
• Any other information you think may be relevant or helpful, such as X server

version in case of X problems, libc version etc.

2. Re-run the program with the WINEDEBUG environment variable
WINEDEBUG=+relay option (i.e., WINEDEBUG=+relay wine sol.exe).

This will output additional information at the console that may be helpful in
debugging the program. It also slows the execution of program. There are some
cases where the bug seems to disappear when +relay is used. Please men-
tion that in the bug report.

Crashes
If Wine crashes while running your program, it is important that we have this infor-
mation to have a chance at figuring out what is causing the crash. This can put out
quite a lot (several MB) of information, though, so it’s best to output it to a file. When
the Wine-dbg> prompt appears, type quit .

You might want to try +relay,+snoop instead of +relay , but please note that
+snoop is pretty unstable and often will crash earlier than a simple +relay ! If this
is the case, then please use only +relay !! A bug report with a crash in +snoop code
is useless in most cases! You can also turn on other parameters, depending on the
nature of the problem you are researching. See wine man page for full list of the
parameters.

69

Chapter 7. Troubleshooting / Reporting bugs

To get the trace output, use one of the following methods:

The Easy Way

1. This method is meant to allow even a total novice to submit a relevant trace log
in the event of a crash.

Your computer must have perl on it for this method to work. To find out if you
have perl, run which perl. If it returns something like /usr/bin/perl , you’re
in business. Otherwise, skip on down to "The Hard Way". If you aren’t sure, just
keep on going. When you try to run the script, it will become very apparent if
you don’t have perl.

2. Change directory to <dirs to wine>/tools

3. Type in ./bug_report.pl and follow the directions.

4. Post the bug to Wine Bugzilla12. Please, search Bugzilla database to check
whether your problem is already found before posting a bug report. Include
your own detailed description of the problem with relevant information.
Attach the "Nice Formatted Report" to the submitted bug. Do not cut and paste
the report in the bug description - it is pretty big. Keep the full debug output in
case it will be needed by Wine developers.

The Hard Way

It is likely that only the last 100 or so lines of the trace are necessary to find out where
the program crashes. In order to get those last 100 lines we need to do the following

1. Redirect all the output of WINEDEBUGto a file.

2. Separate the last 100 lines to another file using tail.

This can be done using one of the following methods.

all shells:
$ echo quit | WINEDEBUG=+relay wine [other_options] program_name >& filename.out;

$ tail -n 100 filename.out > report_file

(This will print wine’s debug messages only to the file and then auto-quit. It’s
probably a good idea to use this command, since wine prints out so many debug
msgs that they flood the terminal, eating CPU cycles.)

tcsh and other csh-like shells:
$ WINEDEBUG=+relay wine [other_options] program_name |& tee filename.out;

$ tail -n 100 filename.out > report_file

bash and other sh-like shells:
$ WINEDEBUG=+relay wine [other_options] program_name 2>&1 | tee filename.out;

$ tail -n 100 filename.out > report_file

report_file will now contain the last hundred lines of the debugging output, in-
cluding the register dump and backtrace, which are the most important pieces of
information. Please do not delete this part, even if you don’t understand what it
means.

Post the bug to Wine Bugzilla13. You need to attach the output file report_file from
part 2). Along with the the relevant information used to create it. Do not cut and paste

70

Chapter 7. Troubleshooting / Reporting bugs

the report in the bug description - it is pretty big and it will make a mess of the bug
report. If you do this, your chances of receiving some sort of helpful response should
be very good.

Please, search the Bugzilla database to check whether your problem is already re-
ported. If it is already reported attach the output file report_file to the original
bug report and add any other relevant information.

Notes
1. http://www.gamecopyworld.com

2. http://appdb.winehq.org

3. http://www.frankscorner.org

4. http://www.google.com

5. http://groups.google.com

6. http://groups.google.com/groups?hl=en&lr=&ie=UTF-
8&group=comp.emulators.ms-windows.wine

7. http://www.freenode.net

8. http://www.microsoft.com/downloads/details.aspx?FamilyID=bf9a24f9-b5c5-
48f4-8edd-cdf2d29a79d5&DisplayLang=en/

9. http://www.dll-files.com/

10. http://www.winehq.org/site/forums#ml

11. http://bugs.winehq.org/

12. http://bugs.winehq.org/

13. http://bugs.winehq.org/

71

Chapter 7. Troubleshooting / Reporting bugs

72

Glossary

Binary

A file which is in machine executable, compiled form: hex data (as opposed to a
source code file).

CVS

Concurrent Versions System, a software package to manage software develop-
ment done by several people. See the CVS chapter in the Wine Developers Guide
for detailed usage information.

Distribution

A distribution is usually the way in which some "vendor" ships operating system
CDs (usually mentioned in the context of Linux). A Linux environment can be
shipped in lots of different configurations: e.g. distributions could be built to
be suitable for games, scientific applications, server operation, desktop systems,
etc.

DLL

A DLL (Dynamic Link Library) is a file that can be loaded and executed by pro-
grams dynamically. Basically it’s an external code repository for programs. Since
usually several different programs reuse the same DLL instead of having that
code in their own file, this dramatically reduces required storage space. A syn-
onym for a DLL would be library.

Editor

An editor is usually a program to create or modify text files. There are various
graphical and text mode editors available on Linux.

Examples of graphical editors are: nedit, gedit, kedit, xemacs, gxedit.

Examples of text mode editors are: joe, ae, emacs, vim, vi. In a terminal, simply
run them via:

$ editorname
filename

Environment variable

Environment variables are text definitions used in a Shell to store important sys-
tem settings. In a bash shell (the most commonly used one in Linux), you can
view all environment variables by executing:

set

If you want to change an environment variable, you could run:

73

Glossary

export MYVARIABLE=mycontent

For deleting an environment variable, use:

unset MYVARIABLE

Package

A package is a compressed file in a distribution specific format. It contains the
files for a particular program you want to install. Packages are usually installed
via the dpkg or rpm package managers.

root

root is the account name of the system administrator. In order to run programs
as root, simply open a Terminal window, then run:

$ su -

This will prompt you for the password of the root user of your system, and after
that you will be able to system administration tasks that require special root
privileges. The root account is indicated by the

#

prompt, whereas ’$’ indicates a normal user account.

Shell

A shell is a tool to enable users to interact with the system. Usually shells are text
based and command line oriented. Examples of popular shells include bash, tcsh
and ksh. Wine assumes that for Wine installation tasks, you use bash, since this
is the most popular shell on Linux. Shells are usually run in a Terminal window.

Source code

Source code is the code that a program consists of before the program is being
compiled, i.e. it’s the original building instructions of a program that tell a com-
piler what the program should look like once it’s been compiled to a Binary.

Terminal

A terminal window is usually a graphical window that one uses to execute a
Shell. If Wine asks you to open a terminal, then you usually need to click on
an icon on your desktop that shows a big black window (or, in other cases, an
icon displaying a maritime shell). Wine assumes you’re using the bash shell in a
terminal window, so if your terminal happens to use a different shell program,
simply type:

bash

74

Glossary

in the terminal window.

75

Glossary

76

	Wine User Guide
	Table of Contents
	Chapter 1. Introduction
	Overview / About
	Purpose of this document and intended audience
	Burning questions and comments
	Content overview / Steps to take

	What is Wine?
	Windows and Linux
	What is Wine, and how can it help me?
	Wine capabilities

	Other, often "Enhanced" Wine offerings
	Alternatives to Wine you might want to consider
	VMWare
	Win4Lin

	Basic Wine Requirements
	System requirements

	Chapter 2. Getting Wine
	How to download Wine?
	Which Wine form should I pick?
	Wine distribution methods

	Getting a Wine package
	Debian Linux
	Linux Red Hat, Mandrake, SUSE, and Slackware
	FreeBSD
	Other systems

	Getting Wine source code
	Getting Wine Source Code from the official archives
	Getting Wine Source Code from CVS
	CVS installation check
	Downloading the Wine CVS tree

	Updating the Wine CVS tree
	Updating Wine with a Patch

	Chapter 3. Compiling the Wine Source
	Compiling Wine
	Requirements
	Space required
	Common problems

	Chapter 4. Installing or uninstalling Wine
	Installing or uninstalling Wine packages
	Debian Linux
	Linux Red Hat, Mandrake, SUSE and other distributions using RPM

	Installing or uninstalling a Wine source code tree

	Chapter 5. Configuring Wine
	What are the requirements of a fully working Windows environment?
	Easy configuration helper programs
	WineSetupTk
	wineinstall

	Verification of correct configuration
	The Wine Configuration File
	Configuration File Introduction
	Creating Or Modifying The Configuration File
	What Does It Contain?
	The [wine] Section
	The [DllOverrides] Section
	The [fonts] Section
	The [spooler] and [ports] Sections
	The [Debug], [Registry], and [programs] Sections
	The [WinMM] Section
	The [Network] Section
	The [AppDefaults] Section

	What If It Doesn't Work?

	Disc Drives, Serial and Parallel Ports
	Extremely Important Prerequisites
	Short Introduction
	Windows Directory Structure
	The dosdevices Directory
	File system settings in the [wine] section
	More detailed explanation about file system differences
	Installing Wine Without Windows
	Installing Wine Using An Existing Windows Partition As Base
	Dealing With FAT/VFAT Partitions
	Introduction
	Running Wine as root
	Mounting FAT filesystems
	Shadowing FAT filesystems

	Drive labels and serial numbers
	What's Supported?
	How To Set Up?
	Examples
	Todo / Open Issues

	The Registry
	The default registry
	Using a Windows registry
	The Registry
	Registry structure
	Wine registry data files
	System administration
	The [registry] section

	DLL configuration
	Introduction
	Introduction To DLL Sections
	Windows DLL Pairs
	Different Forms Of DLL's

	DLL Overrides
	DLL types
	The [DllDefaults] section
	The [DllPairs] section
	The [DllOverrides] section

	System DLLs
	Missing DLLs
	Fetching native DLLs from a Windows CD

	Configuring the graphics driver (x11drv, ttydrv etc.)
	Configuring the x11drv graphics driver
	x11drv modes of operation
	The [x11drv] section

	Configuring the ttydrv graphics driver

	Setting the Windows and DOS version value
	How to configure the Windows and DOS version value Wine should return

	Dealing with Fonts
	Fonts
	How To Convert Windows Fonts
	How To Add Font Aliases To /.wine/config
	How To Manage Cached Font Metrics
	Too Small Or Too Large Fonts
	"FONTInit: failed to load ..." Messages On Startup

	Setting up a TrueType Font Server

	Printing in Wine
	Printing
	Builtin Wine PostScript driver
	Spooling

	The Wine PostScript Driver
	Installation
	Installation of CUPS printers
	Installation of LPR /etc/printcap based printers
	Installation of other printers
	Required configuration for all printer types

	SCSI Support
	Windows requirements
	Linux requirements
	Notes

	Using ODBC
	Using a Unix ODBC system with Wine
	Using Windows ODBC drivers

	Chapter 6. Running Wine
	Basic usage: applications and control panel applets
	How to run Wine
	Explorerlike graphical Wine environments
	Wine Command Line Options
	help
	version

	Environment variables
	WINEDEBUG=[channels]

	wineserver Command Line Options
	dn
	h
	k[n]
	p[n]
	w

	Setting Windows/DOS environment variables
	Text mode programs (CUI: Console User Interface)
	Configuration of CUI executables

	Chapter 7. Troubleshooting / Reporting bugs
	What to do if some program still doesn't work?
	Verify your wine configuration
	Use different windows version settings
	Use different startup paths
	Fiddle with DLL configuration
	Check your system environment !
	Use different GUI (Window Manager) modes
	Check your app !
	Check your Wine environment !
	Reconfigure Wine
	Check out further information
	Debug it!

	How To Report A Bug
	All Bug Reports
	Crashes
	The Easy Way
	The Hard Way

	Glossary
	
	Binary
	CVS
	Distribution
	DLL
	Editor
	Environment variable
	Package
	root
	Shell
	Source code
	Terminal

