
Using SDL_bgi

Although SDL_bgi is almost perfectly compatible with the original BGI library, a
few minor differences were introduced to take advantage of modern SDL graphics.
You don’t want a slow library!

Compiling programs

To compile a program (GNU/Linux):

$ gcc -o program program.c -lSDL_bgi -lSDL2

To compile a program (MSYS2 + mingw-w64):

$ gcc -o program.exe program.c -lmingw32 -L/mingw64/bin \
-lSDL_bgi -lSDL2main -lSDL2 # -mwindows

The -mwindows creates a window-only program, i.e. a terminal is not started.

Most old programs that use the original BGI library should compile unmodified.
For instance,

int gd = DETECT, gm;
initgraph (&gd, &gm, "");

will open an 800x600 window, mimicking SVGA graphics. Very basic dos.h and
conio.h are provided in the test/ directory; they’re good enough to compile
the original bgidemo.c (not provided: it’s not FOSS) unmodified. Please note
that non-BGI functions such a gotoxy() are not implemented.

To specify the window size, you can use the new SDL driver:

gd = SDL;
gm = <mode>;

where <mode> can be one of the following:

VGA 640x480
SDL_640x480 640x480
SVGA 800x600
SDL_800x600 800x600
SDL_1024x768 1024x768
SDL_1152x900 1152x900
SDL_1280x1024 1280x1024
SDL_1366x768 1366x768
SDL_FULLSCREEN fullscreen

You may want to use initwindow(int width, int height) instead.

1



SDL_bgi.h defines the _SDL_BGI_H constant. You may check for its presence
and write programs that employ SDL_bgi extensions; please have a look at the
test program fern.c.

Screen update

The only real difference between the original BGI and SDL_bgi is the way
the screen is refreshed. In BGI, every graphics element drawn on screen was
immediately displayed. This was a terribly inefficient way of drawing stuff: the
screen should be refreshed only when the drawing is done. For example, in SDL2
this action is performed by SDL_RenderPresent().

You can choose whether to open the graphics system using initgraph(), which
toggles BGI compatibility and forces a screen refresh after every graphics com-
mand, or using initwindow() that leaves you in charge of refreshing the screen
when needed, using the new function refresh(). The second method is much
faster and is preferable.

As a tradeoff between performance and speed, a screen refresh is also per-
formed by getch(), kbhit(), and delay(). Functions sdlbgifast(void) and
sdlbgislow(void) are also available. They trigger fast and slow mode, respec-
tively.

Documentation and sample BGI programs are available at this address: http:
//www.cs.colorado.edu/~main/cs1300/doc/bgi/ Nearly all programs can be
compiled with SDL_bgi.

Avoid slow programs

This is possibly the slowest SDL_bgi code one could write:

while (! event ()) {
putpixel (random(x), random(y), random(col));
refresh ();

}

This code, which plots pixels until an event occurs (mouse click or key press),
is extremely inefficient. First of all, calling event() is relatively expensive;
secondly, refreshing the screen after plotting a single pixel is insane. You should
write something like this:

counter = 0;
stop = 0;
while (! stop) {

putpixel (random(x), random(y), random(col));
if (1000 == ++counter) {

if (event())

2

http://www.cs.colorado.edu/~main/cs1300/doc/bgi/
http://www.cs.colorado.edu/~main/cs1300/doc/bgi/


stop = 1;
refresh ();
counter = 0;

}
}

In general, you should use kbhit(), mouseclick() and event() sparingly,
because they’re slow.

Differences

• The following functions may be called but do nothing:

_graphfreemem - unneeded
_graphgetmem - unneeded
installuserdriver - it makes no sense in SDL
installuserfont - should I implement it for SDL_ttf?
registerbgidriver - it makes no sense in SDL
registerbgifont - it makes no sense in SDL
setgraphbufsize - unneeded

• setpalette() only affects future drawing. That is, you can’t get a “rotat-
ing palette animation” as in Turbo C.

• an 8x8 bitmap font is included, and it’s the only one font. Changes to
other BGI fonts (e.g. TRIPLEX_FONT, and others) have no effect: consider
using SDL_ttf!

• key presses may not be detected correctly during a delay().

Additions

Some functions and macros have been added to add functionality and provide
compatibility with other BGI implementations (namely, Xbgi and WinBGIm).

Further, the following variables (declared in SDL_bgi.h) are accessible to the
programmer:

SDL_Window *bgi_window;
SDL_Renderer *bgi_renderer;
SDL_Texture *bgi_texture;

and can be used by native SDL2 functions.

• void initwindow(int width, int height) lets you open a window
specifying its size.

• void detectgraph(int *gd, int *gm) returns SDL, SDL_FULLSCREEN.

3



• void setrgbpalette(int color, int r, int g, int b) sets an addi-
tional palette containing RGB colours (up to MAXRGBCOLORS + 1). See
example in test/mandelbrot.c.

• void setrgbcolor(int col) and void setbkrgbcolor(int col) are
the RGB equivalent of setcolor(int col) and setbkcolor(int col).
col is an allocated colour entry in the RGB palette.

• COLOR(int r, int g, int b) can be used as an argument whenever a
colour value is expected (e.g. setcolor(int col) and other functions).
It’s an alternative to setrgbcolor(int col) and setbkrgbcolor(int
col). Allocating colours with setrgbpalette() and using setrgbcolor()
is much faster, though.

• IS_BGI_COLOR(int c) and IS_RGB_COLOR(int c) return 1 if the current
colour is standard BGI or RGB, respectively.

• RED_VALUE(int c), GREEN_VALUE(int c), and BLUE_VALUE(int c) re-
turn the R, G, B component of an RGB colour.

• setalpha(int col, Uint8 alpha) sets the alpha component of colour
‘col’.

• void _putpixel(int x, int y) is equivalent to putpixel(int x, int
y, int col), but uses the current drawing colour and the pixel is not
refreshed in slow mode.

• random(range) is defined as macro: rand()%range

• int getch() waits for a key and returns its ASCII code. Special keys are
also reported; please see SDL_bgi.h.

• void delay(msec) waits for msec milliseconds.

• int mouseclick(void) returns the code of the mouse button that was
clicked, or 0 if none was clicked. Mouse buttons and movement constants
are defined in SDL_bgi.h:

WM_LBUTTONDOWN
WM_MBUTTONDOWN
WM_RBUTTONDOWN
WM_WHEEL
WM_WHEELUP
WM_WHEELDOWN
WM_MOUSEMOVE

• int mousex(void) and int mousey(void) return the mouse coordinates
of the last click.

• int ismouseclick(int btn) returns 1 if the btn mouse button was
clicked.

4



• void getmouseclick(int kind, int *x, int *y) sets the x, y coordi-
nates of the last button click expected by ismouseclick().

• int getevent(void) waits for a keypress or mouse click, and returns the
code of the mouse button or key that was pressed.

• int event(void) is a non-blocking version of getevent().

• int eventtype(void) returns the type of the last event.

• void readimagefile(char *filename, int x1, int y1, int x2,
int y2) reads a .bmp file and displays it immediately (i.e. no refresh
needed).

• void sdlbgifast(void) triggers “fast mode” even if the graphics system
was opened with initgraph(). Calling refresh() is needed to display
graphics.

• void sdlbgislow (void) triggers “slow mode” even if the graphics system
was opened with initwindow(). Calling refresh() is not needed.

• void xkbhit (void) returns 1 when any key is pressed, including Shift,
Alt, etc.

• void writeimagefile(char *filename, int left, int top, int
right, int bottom) writes a .bmp file from the screen rectangle defined
by (left,top–right,bottom).

The real thing

You may want to try the online Borland Turbo C 2.01 emulator at the Internet
Archive: https://archive.org/details/msdos_borland_turbo_c_2.01.

The bgidemo.c program demonstrates the capabilities of the BGI library. You
can download it and compile it using SDL_bgi.

Bugs & Issues

Drawing in BGI compatibility (slow) mode is much slower than it should,
since SDL_UpdateTexture() doesn’t work as expected: instead of refreshing an
SDL_Rect correctly, it only works on entire textures. It looks like it’s an SDL2
bug.

Unlike the original version, kbhit() doesn’t buffer key presses.

Colours don’t have the same RGB values as the original BGI colours. But they
look better (IMHO).

Probably, this documentation is not 100% accurate. Your feedback is more than
welcome.

5

https://archive.org/details/msdos_borland_turbo_c_2.01

	Using SDL_bgi
	Compiling programs
	Screen update
	Avoid slow programs
	Differences
	Additions
	The real thing
	Bugs & Issues


