
LibDsk v1.2.1

John Elliott

23rd January 2008

Abstract

LibDsk is a library intended to give transparent access to floppy drives and to
the “disc image files” used by emulators to represent floppy drives.

This library is free software, released under the GNU Library GPL. See COPY-
ING for details.

1

Contents
1 Introduction 5

1.1 About this document . 5
1.2 About LibDsk . 5
1.3 What’s new? . 5
1.4 Terms and definitions . 6

2 Supported file formats 7

3 Architecture 8
3.1 Logical and physical sectors . 8

3.1.1 DSK_GEOMETRY in detail 8

4 LibDsk Function Reference 10
4.1 dsk_open: Open an existing disc image 10
4.2 dsk_creat: Create a new disc image 10
4.3 dsk_close: Close a drive or disc image 10
4.4 dsk_dirty: Read the dirty flag . 11
4.5 dsk_pread, dsk_lread : Read a sector 11
4.6 dsk_pwrite, dsk_lwrite: Write a sector 11
4.7 dsk_pcheck, dsk_lcheck: Verify sectors on disc against memory . . . 11
4.8 dsk_pformat, dsk_lformat: Format a disc track 12
4.9 dsk_apform, dsk_alform: Automatic format 12
4.10 dsk_psecid, dsk_lsecid: Read a sector ID. 12
4.11 dsk_ptrackids, dsk_ltrackids: Identify sectors on track. 13
4.12 dsk_rtread: Reserved. 13
4.13 dsk_xread, dsk_xwrite: Low-level reading and writing 13

4.13.1 dsk_xread(), dsk_xwrite(): Deleted data 14
4.14 dsk_ltread, dsk_ptread, dsk_xtread 14
4.15 dsk_lseek, dsk_pseek . 15
4.16 dsk_drive_status . 15
4.17 dsk_dirty: Has drive been written to? 15
4.18 dsk_getgeom: Guess disc geometry 16
4.19 dg_*geom : Initialise disc geometry from boot sector 16
4.20 dg_stdformat : Initialise disc geometry from a standard LibDsk format. 16
4.21 dsk_*_forcehead: Override disc head 18
4.22 dsk_*_option: Set/get driver option 18
4.23 dsk_option_enum: Get list of driver options 19
4.24 dsk_*_comment: Set comment for disc image 19
4.25 dsk_type_enum . 19
4.26 dsk_comp_enum . 19
4.27 dsk_drvname, dsk_drvdesc . 19
4.28 dsk_compname, dsk_compdesc . 19
4.29 dg_ps2ls, dg_ls2ps, dg_pt2lt, dg_lt2pt 20
4.30 dsk_strerror: Convert error code to string 20
4.31 dsk_reportfunc_set / dsk_reportfunc_get 20
4.32 dsk_set_retry / dsk_get_retry . 21
4.33 dsk_get_psh . 21
4.34 Structure: DSK_FORMAT . 21

2

4.35 LibDsk errors . 21
4.36 Miscellaneous . 22

5 Initialisation files 22
5.1 libdskrc format . 22

5.1.1 libdskrc example . 23
5.2 Locating libdskrc . 24

5.2.1 UNIX . 24
5.2.2 Win32 . 24
5.2.3 Win16 . 24
5.2.4 DOS . 24

6 Reverse CP/M-FS (rcpmfs) backend 24
6.1 In Use . 25
6.2 rcpmfs initialisation file . 25
6.3 Bugs . 25

7 The CopyQM file format 26
7.1 Introduction . 26
7.2 Header . 26
7.3 CRC . 27
7.4 Image comment . 27
7.5 Image data . 27

8 LibDsk under Windows 27
8.1 Windows 3.x . 27
8.2 Windows 4.x (95, 98 and ME) . 27
8.3 Windows NT (NT 3.x, NT 4.x, 2000, XP) without ntwdm driver . . . 28
8.4 Windows 2000 and XP with ntwdm driver 28
8.5 General comments on programming floppy access for Windows . . . 28

8.5.1 The Win16 driver. 28
8.5.2 The Win32c driver. 28
8.5.3 The Win32 driver. 28
8.5.4 The ntwdm driver. 28
8.5.5 Other floppy APIs . 29

8.6 LDSERVER . 29
8.6.1 Compiling LDSERVER . 29
8.6.2 Using LDSERVER . 29
8.6.3 Important Security Warning 29

8.7 LibDsk and COM . 29
8.7.1 General points . 30
8.7.2 Library . 30
8.7.3 Geometry . 30
8.7.4 Disk . 31
8.7.5 IReporter . 32

9 LibDsk RPC system 32
9.1 The ’serial’ driver . 33

9.1.1 Servers for the serial driver 33
9.2 The ’fork’ driver . 34

3

10 Writing new drivers 34
10.1 The driver header . 34
10.2 The driver source file . 35
10.3 Driver functions . 36

10.3.1 dc_open . 36
10.3.2 dc_creat . 36
10.3.3 dc_close . 36
10.3.4 dc_read . 36
10.3.5 dc_write . 37
10.3.6 dc_format . 37
10.3.7 dc_getgeom . 37
10.3.8 dc_secid . 37
10.3.9 dc_xseek . 37
10.3.10 dc_xread, dc_xwrite . 38
10.3.11 dc_status . 38
10.3.12 dc_tread . 38
10.3.13 dc_xtread . 38
10.3.14 dc_option_enum . 38
10.3.15 dc_option_set, dc_option_get 38
10.3.16 dc_trackids . 39
10.3.17 dc_rtread . 39

11 Adding new compression methods 39
11.1 Driver header . 39
11.2 Driver implementation . 39
11.3 Compression functions . 40

11.3.1 cc_open . 40
11.3.2 cc_creat . 41
11.3.3 cc_commit . 41
11.3.4 cc_abort . 41

12 Adding new remote transports. 41
12.1 Driver header . 41
12.2 Driver implementation . 41
12.3 Remote communication functions 42

12.3.1 rc_open . 42
12.3.2 rc_close . 43
12.3.3 rc_call . 43

A DQK Files 43

B LibDsk with cpmtools 44

C DSK / EDSK recording mode extension 44

4

1 Introduction

1.1 About this document
This document only covers LibDsk – the library – itself. For information on the ex-
ample utilities supplied with LibDsk (apriboot, dskform, dsktrans, dskid, dskdump,
dskscan, dskutil and md3serial) see their respective manual pages.

1.2 About LibDsk
LibDsk is a library for accessing floppy drives and disc images transparently. It cur-
rently supports the following disc image formats:

• Raw “dd if=foo of=bar” images;

• Raw images in logical filesystem order;

• CPCEMU-format .DSK images (normal and extended);

• MYZ80-format hard drive images;

• CFI-format disc images, as produced by FDCOPY.COM under DOS and used to
distribute some Amstrad system discs;

• ApriDisk-format disc images, used by the utility of the same name under DOS.

• NanoWasp-format disc images, used by the eponymous emulator.

• Disc images created by the Sydex imaging programs Teledisk and CopyQM
(read only in both cases).

• The floppy drive under Linux;

• The floppy drive under Windows. Windows support is a complicated subject -
see section 8 below.

• The floppy drive (and hard drive partitions) under DOS.

LibDsk also supports compressed disc images in the following formats:

• Squeeze (Huffman coded)

• GZip (Deflate)

• BZip2 (Burrows-Wheeler; support is read-only)

1.3 What’s new?
For full details, see the file ChangeLog.

• Should now compile out of the box on FreeBSD.

• A bugfix to the rcpmfs driver should allow it to simulate a CP/M 2 filesystem as
well as CP/M 3.

• Added two new drivers: “teledisk” and “logical”.

5

• Changes by Ramlaid <www.ramlaid.com> to the DSK and NTWDM drivers to
improve compatibility, and another fix to stop file handles leaking.

• Added a new driver: “int25”. This allows the DOS version to run on Apricot
PCs (which do not have an IBM-compatible BIOS) and to access hard drive
partitions.

• Bugfix in the Linux floppy driver, which could cause “No data” errors logging in
certain disc formats.

• Bugfix in the rcpmfs driver: Files saved to user 1 no longer go to user 0.

• Enhanced the ApriDisk driver to handle disc images that start with a ’creator’
block.

• Enhanced the rcpmfs driver to deal with truncation of existing files.

• Added initial support for ’multiple/weak’ sectors in the ’dsk’ driver. LibDsk can
read such sectors, but not write them (they get written as normal sectors).

• Bug fix: Don’t leak file handles in the ’dsk’ driver.

• The internal RPC system has been expanded to allow operation over a serial line.

• The Win32 (VC++ 6) version now includes an ATL project to present LibDsk as
a COM object.

• ’ntwdm’ driver added by Simon Owen.

• dsk_dirty() function added by Philip Kendall.

• LibDsk now reads a ’libdskrc’ file (section 5.1) at startup; this can contain addi-
tional format definitions.

• An experimental read-only driver to handle CopyQM disc images (written by
Per Ola Ingvarsson, who also documented the file format - section 7).

• Experimental support for an ’rcpmfs’ driver (section 6) which presents directo-
ries as CP/M disk images.

• DSK files now store density and recording mode.

• LibDsk can now retry failed reads/writes/formats.

• Extra functions have been added to support disc images that contain comments.

• Extra functions have been added for display of messages from LibDsk.

• A driver has been added for the disc image files used by the ApriDisk utility.

• The parameter order of the example utilities has been made less rigid.

1.4 Terms and definitions
In this document, I use the word CYLINDER to refer to a position on a floppy disc, and
TRACK to refer to the data within a cylinder on one side of the disc. For a single-sided
disc, these are the same; for a double-sided disc, there are twice as many tracks as
cylinders.

6

2 Supported file formats
The following disc image file formats are supported by LibDsk.

“dsk” : Disc image in the DSK format used by CPCEMU. The format of a .DSK file
is described in the CPCEMU documentation.

“edsk” : Disc image in the extended CPCEMU DSK format.

“raw” : Raw disc image - as produced by “dd if=/dev/fd0 of=image”. On
systems other than Linux, DOS or Windows, this is also used to access the host
system’s floppy drive.

“logical” : Raw disc image in logical filesystem order. Previous versions of LibDsk
could generate such images (for example, by using the now-deprecated-logical
option to dsktrans) but couldn’t then write them back or use them in emulators.

“floppy” : Host system’s floppy drive (under Linux, DOS or Windows).

“int25” : Hard drive partition under DOS. Also used for the floppy drive on Apricot
PCs.

“ntwdm” : Enhanced floppy support under Windows 2000 and XP, using an additional
kernel-mode driver.

“myz80” : MYZ80 hard drive image, which is nearly the same as “raw” but has a 256
byte header.

“cfi” : Compressed floppy image, as produced by FDCOPY.COM under DOS. Its
format is described in cfi.html.

“qm” : Disc images created by Sydex’s CopyQM. This is a read-only driver.

“teledisk” : Disc images created by Sydex’s TeleDisk. This is a read-only driver.

“nanowasp” : Disc image in the 400k Microbee format used by the NanoWasp emula-
tor. This is similar to “raw”, but the tracks are stored in a different order. LibDsk
also applies a sector skew so that the sectors are read/written in the logical order.
Strictly speaking, it should not do this (when libdsk is used with cpmtools, cpm-
tools is the one that does the skewing) but cpmtools cannot handle the skewing
scheme used by the Microbee format.

“apridisk”: Disc image in the format used by the ApriDisk utility. The format is
described in apridisk.html.

“rcpmfs”: Reverse CP/M filesystem. A directory is made to appear as a CP/M disk.
This is an experimental system and should be approached with caution.

“remote”: Remote LibDsk server, most likely at the other end of a serial line.

7

3 Architecture
LibDsk is composed of a fixed core (files named dsk*.c) and a number of drivers
(files named drv*.c). When you open an image or a drive (using dsk_open()
or dsk_creat()) then a driver is chosen. This driver is then used until it’s closed
(dsk_close()).

Each driver is identified by a name. To get a list of available drivers, use dsk_type_enum().
To get the driver that is being used by an open DSK image, use dsk_drvname() or
dsk_drvdesc().

3.1 Logical and physical sectors
LibDsk has two models of disc geometry. One is as a linear array of “logical” sectors -
for example, a 720k floppy appears as 1440 512-byte sectors numbered 0 to 1439. The
other locates each sector using a (Cylinder, Head, Sector) triple - so on the 720k floppy
described earlier, sectors would run from (0,0,1) to (79,1,9).

Internally, all LibDsk drivers are written to use the Cylinder/Head/Sector model.
For those calls which take parameters in logical sectors, LibDsk uses the information
in a DSK_GEOMETRY structure to convert to C/H/S. DSK_GEOMETRY also contains
information such as the sector size and data rate used to access a given disc.

Those functions which deal with whole tracks (such as the command to format a
track) use logical tracks and (cylinder,head) pairs instead. To initialise a DSK_GEOMETRY
structure, either:

• call dsk_getgeom() to try and detect it from the disc; or

• call dg_stdformat() to select one of the “standard” formats that LibDsk
knows about; or

• call dg_dosgeom() / dg_cpm86geom() / dg_pcwgeom() / dg_aprigeom()
to initialise it from a copy of a DOS / CP/M86 / PCW / Apricot boot sector; or

• Set all the members manually.

3.1.1 DSK_GEOMETRY in detail

typedef struct
{

dsk_sides_t dg_sidedness; /* This describes the logical sequence of tracks
on the disc - the order in which their host system reads them. This will only be
used if dg_heads is greater than 1 (otherwise all the methods are equivalent)
and you are using functions that take logical sectors or tracks as parameters. It
will be one of:

SIDES_ALT The tracks are ordered Cylinder 0 Head 0; C0H1; C1H0; C1H1;
C2H0; C2H1 etc. This layout is used by most PC-hosted operating systems,
including DOS and Linux. Amstrad’s 8-bit operating systems also use this
ordering.

SIDES_OUTBACK The tracks go out to the edge on Head 0, and then back in
on Head 1 (so Cylinder 0 Head 0 is the first track, while Cylinder 0 Head
1 is the last). This layout is used by Freek Heite’s 144FEAT driver (for
CP/M-86 on the PC) but I have not seen it elsewhere.

8

SIDES_OUTOUT The tracks go out to the edge on Head 0, then out again on
Head 1 (so the order goes C(last)H0, C0H1, C1H1, ..., C(last)H1). This
ordering is used by Acorn-format discs.

*/

dsk_pcyl_t dg_cylinders; /* The number of cylinders this disc has. Usually
40 or 80. */

dsk_phead_t dg_heads; /* The number of heads (sides) the disc has. Usually
1 or 2. */

dsk_psect_t dg_sectors; /* The number of sectors per track. */

dsk_psect_t dg_secbase; /* The first physical sector number. Most systems
start numbering their sectors at 1; Acorn systems start at 0, and Amstrad CPCs
start at 65 or 193. */

size_t dg_secsize; /* Sector size in bytes. Note that several drivers rely on
this being a power of 2. */

dsk_rate_t dg_datarate; /* Data rate. This will be one of:

RATE_HD High-density disc (1.4Mb or 1.2Mb)

RATE_DD Double-density disc in 1.2Mb drive (ie, 360k disc in 1.2Mb drive)

RATE_SD Double-density disc in 1.4Mb or 720k drive

RATE_ED Extra-density disc (2.8Mb) */

dsk_gap_t dg_rwgap; /* Read/write gap length */

dsk_gap_t dg_fmtgap; /* Format gap length */

int dg_fm; /* Set to nonzero to use FM (single density) recording mode. Not all
PC floppy controllers support this mode; the National Semiconductor PC87306
and the Future Domain TMC series SCSI controllers can at least read FM discs.
The BBC Micro used FM recording for its 100k and 200k DFS formats. The
Windows / DOS floppy drivers do not support FM recording. */

int dg_nomulti; /* Set to nonzero to disable multitrack mode. This only affects
attempts to read normal data from tracks containing deleted data (or vice versa).
*/

int dg_noskip; /* Set to nonzero to disable skipping deleted data when searching
for non-deleted data (or vice versa). */

} DSK_GEOMETRY;

9

4 LibDsk Function Reference

4.1 dsk_open: Open an existing disc image

dsk_err_t dsk_open(DSK_PDRIVER *self, const char *filename, const char *type, const char *compress)

Enter with:

• “self” is the address of a DSK_PDRIVER variable (treat it as a handle to a drive
/ disc file). On return, the variable will be non-null (if the operation succeeded)
or null (if the operation failed).

• “filename” is the name of the disc image file. On DOS and Windows, “A:” and
“B:” refer to the two floppy drives. On Apricot MS-DOS, “0:” and “1:” refer to
the floppy drives.

• “type” is NULL to detect the disc image format automatically, or the name of a
LibDsk driver to force that driver to be used. See dsk_type_enum() below.

• “compress” is NULL to auto-detect compressed files, or the name of a LibDsk
compression scheme. See dsk_comp_enum().

Returns: A dsk_err_t,which will be 0 (DSK_ERR_OK) if successful, or a negative
integer if failed. See dsk_strerror(). The error DSK_ERR_NOTME means either
that no driver was able to open the disc / disc image (if “type” was NULL) or that the
requested driver could not open the file (if “type” was not NULL).

Standard LibDsk drivers are listed in section 2.
Compression schemes are:

“sq” : Huffman (squeezed). The reason for the inclusion of this system is to support
.DQK images (see appendix A).

“gz” : GZip (deflate). This will only be present if libdsk was built with zlib support.

“bz2” : BZip2 (Burrows-Wheeler compression). This support is currently read-only,
and will only be present if LibDsk was built with bzlib support.

4.2 dsk_creat: Create a new disc image

dsk_err_t dsk_creat(DSK_PDRIVER *self, const char *filename, const char *type)

In the case of floppy drives, this acts exactly as dsk_open(). For image files, the file
will be deleted and recreated. Parameters and results are as for dsk_open(), except
that “type” cannot be NULL (it must specify the type of disc image to be created) and
if “compress” is NULL, it means that the file being created should not be compressed.

4.3 dsk_close: Close a drive or disc image
dsk_err_t dsk_close(DSK_PDRIVER *self)

Pass the address of an opaque pointer returned from dsk_open() / dsk_creat().
On return, the drive will have been closed and the pointer set to NULL.

10

4.4 dsk_dirty: Read the dirty flag
int dsk_dirty(DSK_PDRIVER self)

This function returns non-zero if the disc has been modified since it was inserted into
the drive, and zero if it has not been modified.

4.5 dsk_pread, dsk_lread : Read a sector

dsk_err_t dsk_pread(DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_pcyl_t cylinder, dsk_phead_t head, dsk_psect_t sector)
dsk_err_t dsk_lread(DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_lsect_t sector)

These functions read a single sector from the disc. There are two of them, depending
on whether you are using logical or physical sector addresses.

Enter with:

• “self” is a handle to an open drive / image file.

• “geom” points to the geometry for the drive.

• “buf” is the buffer into which data will be loaded.

• “cylinder”, “head” and “sector” (dsk_pread) or “sector” (dsk_lread) give
the location of the sector.

Returns:

• If successful, DSK_ERR_OK. Otherwise, a negative DSK_ERR_* value.

• If the driver cannot read sectors, DSK_ERR_NOTIMPL will be returned.

4.6 dsk_pwrite, dsk_lwrite: Write a sector

dsk_err_t dsk_pwrite(DSK_PDRIVER self, const DSK_GEOMETRY *geom, const void *buf, dsk_pcyl_t cylinder, dsk_phead_t head, dsk_psect_t sector)
dsk_err_t dsk_lwrite(DSK_PDRIVER self, const DSK_GEOMETRY *geom, const void *buf, dsk_lsect_t sector)

As dsk_pread / dsk_lread, but write their buffers to disc rather than reading them from
disc. If the driver cannot write sectors, DSK_ERR_NOTIMPL will be returned.

4.7 dsk_pcheck, dsk_lcheck: Verify sectors on disc against mem-
ory

dsk_err_t dsk_pcheck(DSK_PDRIVER self, const DSK_GEOMETRY *geom, const void *buf, dsk_pcyl_t cylinder, dsk_phead_t head, dsk_psect_t sector)
dsk_err_t dsk_lcheck(DSK_PDRIVER self, const DSK_GEOMETRY *geom, const void *buf, dsk_lsect_t sector)

As dsk_pread / dsk_lread, but rather than reading their buffers from disc, they
compare the contents of their buffers with the data already on the disc. If the data
match, the functions return DSK_ERR_OK. If there is a mismatch, they return DSK_ERR_MISMATCH.
In case of error, other DSK_ERR_* values are returned. If the driver cannot read sec-
tors, DSK_ERR_NOTIMPL will be returned.

11

4.8 dsk_pformat, dsk_lformat: Format a disc track

dsk_err_t dsk_pformat(DSK_PDRIVER self, DSK_GEOMETRY *geom, dsk_pcyl_t cylinder, dsk_phead_t head, const DSK_FORMAT *format, unsigned char filler)
dsk_err_t dsk_lformat(DSK_PDRIVER self, DSK_GEOMETRY *geom, dsk_ltrack_t track, const DSK_FORMAT *format, unsigned char filler)

Enter with:

• “self” is a handle to an open drive / image file.

• “geom” points to the geometry for the drive. The formatter may modify this if
(for example) it’s asked to format track 41 of a 40-track drive.

• “cylinder” / “head” (dsk_pformat) or “track” (dsk_lformat) give the lo-
cation of the track to format.

• “format” should be an array of (geom->dg_sectors) DSK_FORMAT struc-
tures. These structures must contain sector headers for the track being formatted.
For example, to format the first track of a 720k disc, you would pass in an array
of 9 such structures: { 0, 0, 1, 512 }, { 0, 0, 2, 512, } ..., { 0, 0, 9, 512 }

• “filler” should be the filler byte to use. Currently the Win32 driver ignores this
parameter. If the driver cannot format tracks, DSK_ERR_NOTIMPL will be
returned.

Note that when formatting a .DSK file that has more than one head, you must format
cylinder 0 for each head before formatting other cylinders.

4.9 dsk_apform, dsk_alform: Automatic format

dsk_err_t dsk_apform(DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_pcyl_t cylinder, dsk_phead_t head, unsigned char filler)
dsk_err_t dsk_alform(DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_ltrack_t track, unsigned char filler)

These function calls behave as dsk_pformat() and dsk_lformat() above, ex-
cept that the sector headers are automatically generated. This saves time and trouble
setting up sector headers on discs with standard layouts such as DOS, PCW or Linux
floppies. If the driver cannot format tracks, DSK_ERR_NOTIMPL will be returned.

4.10 dsk_psecid, dsk_lsecid: Read a sector ID.

dsk_err_t dsk_psecid(DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_pcyl_t cylinder, dsk_phead_t head, DSK_FORMAT *result)
dsk_err_t dsk_lsecid(DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_ltrack_t track, DSK_FORMAT *result)

Read a sector ID from the given track. This can be used to probe for discs with oddly-
numbered sectors (eg, numbered 65-74). Enter with:

• “self” is a handle to an open drive / image file.

• “geom” points to the geometry for the drive.

• “cylinder” / “head” (dsk_psecid) or “track” (dsk_lsecid) give the loca-
tion of the track to read the sector from.

12

• “result” points to an uninitialised DSK_FORMAT structure.

On return:

• If successful, the buffer at “result” will be initialised with the sector header
found, and DSK_ERR_OK will be returned.

• If the driver cannot provide this functionality (for example, the Win32 driver
under NT), DSK_ERR_NOTIMPL will be returned.

Note that the DOS, Win16 and Win32 (under Win9x) drivers implement a limited ver-
sion of this call, which will work on normal DOS / CP/M86 / PCW discs and CPC
discs. However it will not be usable for other purposes.

4.11 dsk_ptrackids, dsk_ltrackids: Identify sectors on track.

dsk_err_t dsk_ptrackids(DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_pcyl_t cylinder, dsk_phead_t head, dsk_psect_t *count, DSK_FORMAT **result)
dsk_err_t dsk_ltrackids(DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_ltrack_t track, dsk_psect_t *count, DSK_FORMAT **result)

These functions are intended to read all the sector IDs from a track, in order, and
(preferably) starting at the index hole. If they succeed, ’result’ will point at an array
of DSK_FORMAT structures describing the sectors found. This array will have been
allocated with dsk_malloc() and should be freed with dsk_free().

4.12 dsk_rtread: Reserved.

dsk_err_t dsk_rtread(DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_pcyl_t cylinder, dsk_phead_t head, int reserved);

This function is reserved for future expansion. The intention is to use it for diagnos-
tic read commands (such as reading the raw bits from a track). Currently it returns
DSK_ERR_NOTIMPL.

4.13 dsk_xread, dsk_xwrite: Low-level reading and writing

dsk_err_t dsk_xread(DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_pcyl_t cylinder, dsk_phead_t head, dsk_pcyl_t cyl_expected, dsk_phead_t head_expected, dsk_psect_t sector, size_t sector_len, int *deleted);
dsk_err_t dsk_xwrite(DSK_PDRIVER self, const DSK_GEOMETRY *geom, const void *buf, dsk_pcyl_t cylinder, dsk_phead_t head, dsk_pcyl_t cyl_expected, dsk_phead_t head_expected, dsk_psect_t sector, size_t sector_len, int deleted);

dsk_xread() and dsk_xwrite() are extended versions of dsk_pread() and dsk_pwrite().
They allow the caller to read/write sectors whose sector ID differs from the physical
location of the sector, or to read/write deleted data.. The “cylinder” and “head” argu-
ments specify where to look; the “cyl_expected” and “head_expected” are the values
to search for in the sector header.

These functions are only supported by the CPCEMU driver, the Linux floppy driver
and the NTWDM floppy driver. Other drivers will return DSK_ERR_NOTIMPL. Un-
less you are emulating a floppy controller, or you need to read discs that contain deleted
data or misnumbered sectors, it should not be necessary to call these functions.

13

4.13.1 dsk_xread(), dsk_xwrite(): Deleted data

The “deleted” argument is used if you want to read or write sectors that have been
marked as deleted. In dsk_xwrite(), this is a simple value; pass 0 to write normal
data, or 1 to write deleted data. In dsk_xread(), pass the address of an integer
containing 0 (read normal data) or 1 (read deleted data). On return, the integer will
contain:

• If the requested data type was read: 0

• If the other data type was read: 1

• If the command failed: Value is meaningless.

Passing NULL acts the same as passing a pointer to 0.
The opposite type of data will only be read if you set geom->dg_noskip to

nonzero. Some examples:

geom->dg_noskip deleted Data on disc Results *deleted becomes
0 -> 0 Normal DSK_ERR_OK 0
0 -> 0 Deleted DSK_ERR_NODATA ??
0 -> 1 Deleted DSK_ERR_NODATA ??
1 -> 0 Normal DSK_ERR_OK 0
1 -> 0 Deleted DSK_ERR_OK 1
1 -> 1 Normal DSK_ERR_OK 1
1 -> 1 Deleted DSK_ERR_OK 0

4.14 dsk_ltread, dsk_ptread, dsk_xtread

dsk_err_t dsk_ltread(DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_ltrack_t track)
dsk_err_t dsk_ptread(DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_pcyl_t cylinder, dsk_phead_t head)
dsk_err_t dsk_xtread(DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_pcyl_t cylinder, dsk_phead_t head, dsk_pcyl_t cyl_expected, dsk_phead_t head_expected)

These functions read a track from the disc, using the FDC’s “READ TRACK” com-
mand. There are three of them - logical, physical and extended physical.

If the driver does not support this functionality, LibDsk will attempt to simulate it
using multiple sector reads.

Enter with:

• “self” is a handle to an open drive / image file.

• “geom” points to the geometry for the drive.

• “buf” is the buffer into which data will be loaded.

• “cylinder” and “head” (dsk_ptread,dsk_xtread) or “track” (dsk_ltread)
give the location of the track to read.

• (dsk_xtread) “cyl_expected” and “head_expected” are used as the values to
search for in the sector headers.

14

Returns:

• If successful, DSK_ERR_OK. Otherwise, a negative DSK_ERR_* value.

• (dsk_xtread() only) If the driver does not support extended sector reads/writes,
then DSK_ERR_NOTIMPL will be returned.

4.15 dsk_lseek, dsk_pseek

dsk_err_t dsk_lseek(DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_ltrack_t track)
dsk_err_t dsk_pseek(DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_pcyl_t cylinder, dsk_phead_t head)

Seek to a given cylinder. Only the CPCEMU driver, the Linux floppy driver and the
NTWDM floppy driver support this; other drivers return DSK_ERR_NOTIMPL. You
should not normally need to call these functions. They have been provided to support
programs that emulate a uPD765A controller.

4.16 dsk_drive_status

dsk_err_t dsk_drive_status(DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_phead_t head, unsigned char *result)

Get the drive’s status (ready, read-only etc.). The byte “result” will have one or more
of the following bits set:

DSK_ST3_FAULT: Drive fault

DSK_ST3_RO: Read-only

DSK_ST3_READY: Ready

DSK_ST3_TRACK0: Head is over track 0

DSK_ST3_DSDRIVE: Drive is double-sided

DSK_ST3_HEAD1: Current head is head 1, not head 0. Usually this just depends on
the value of the “head” parameter to this function.

Which bits will be “live” depends on which driver is in use, but the most trustwor-
thy will be DSK_ST3_READY and DSK_ST3_RO. This function will never return
DSK_ERR_NOTIMPL; if the facility is not provided by the driver, a default version
will be used.

4.17 dsk_dirty: Has drive been written to?
int dsk_dirty(DSK_PDRIVER self);

This returns zero if the disc has not been written to since it was opened, nonzero if it
has.

15

4.18 dsk_getgeom: Guess disc geometry

dsk_err_t dsk_getgeom(DSK_PDRIVER self, DSK_GEOMETRY *geom)

This attempts to determine the geometry of a disc (number of cylinders, tracks, sectors
etc.) by loading the boot sector. It understands DOS, Apricot, CP/M-86 and PCW
boot sectors. If the geometry could be guessed, then “geom” will be initialised and
DSK_ERR_OK will be returned. If no guess could be made, then DSK_ERR_BADFMT
will be returned. Other values will result if the disc could not be read.

Some drivers (in particular the MYZ80 driver, and the Win32 driver under NT) only
support certain fixed disc geometries. In this case, the geometry returned will reflect
what the driver can use, rather than what the boot sector says.

4.19 dg_*geom : Initialise disc geometry from boot sector

dsk_err_t dg_dosgeom(DSK_GEOMETRY *self, const unsigned char *bootsect)
dsk_err_t dg_pcwgeom(DSK_GEOMETRY *self, const unsigned char *bootsect)
dsk_err_t dg_cpm86geom(DSK_GEOMETRY *self, const unsigned char *bootsect)
dsk_err_t dg_aprigeom(DSK_GEOMETRY *self, const unsigned char *bootsect)

These functions are used by dsk_getgeom(), but can also be called independently.
Enter them with:

• “self” is the structure to initialise;

• “bootsect” is the boot sector to initialise the structure from.

Returns DSK_ERR_BADFMT if the sector does not contain a suitable disc specifica-
tion, or DSK_ERR_OK otherwise.

dg_dosgeom will check for a PC-DOS boot sector.

dg_pcwgeom will check for an Amstrad PCW boot sector.

dg_cpm86geom will check for a CP/M-86 boot sector.

dg_aprigeom will check for an Apricot DOS boot sector.

4.20 dg_stdformat : Initialise disc geometry from a standard LibDsk
format.

dsk_err_t dg_stdformat(DSK_GEOMETRY *self, dsk_format_t formatid, dsk_cchar_t *fname, dsk_cchar_t *fdesc)

Initialises a DSK_GEOMETRY structure with one of the standard formats LibDsk
knows about. Formats are:

FMT_180K: 180k, 9 512 byte sectors, 40 tracks, 1 side

FMT_200K: 200k, 10 512 byte sectors, 40 tracks, 1 side

16

FMT_CPCSYS: Amstrad CPC system format - as FMT_180K, but physical sectors
are numbered 65-73

FMT_CPCDATA: Amstrad CPC data format - as FMT_180K, but physical sectors
are numbered 193-201

FMT_720K: 720k, 9 512 byte sectors, 80 tracks, 2 sides

FMT_800K: 800k, 10 512 byte sectors, 80 tracks, 2 sides

FMT_1440K: 1.4M, 18 512 byte sectors, 80 tracks, 2 sides

FMT_160K: 160k, 8 512 byte sectors, 40 tracks, 1 side

FMT_320K: As FMT_160K, but 2 sides

FMT_360K: As FMT_180K, but 2 sides

FMT_720F: As FMT_720K, but the physical/logical sector mapping is “out-and-
back” rather than “alternate sides”. See section 3.1.1 for details.

FMT_1200F: As FMT_720F, but with 15 sectors

FMT_1440F: As FMT_720F, but with 18 sectors

FMT_ACORN160: Acorn 40 track single sided 160k (used by ADFS ’S’ format)

FMT_ACORN320: Acorn 80 track single sided 320k (used by ADFS ’M’ format)

FMT_ACORN640: Acorn 80 track double sided 640k (used by ADFS ’L’ format)

FMT_ACORN800: Acorn 80 track double sided 800k (used by ADFS ’D’ and ’E’)

FMT_ACORN1600: Acorn 80 track high density 1600k (used by ADFS ’F’ format)

FMT_BBC100 BBC micro 40 track single sided 100k (using FM encoding)

FMT_BBC200 BBC micro 80 track single sided 200k (using FM encoding)

FMT_MBEE400 Microbee 40 track double sided 400k

FMT_MGT800 MGT 80 track double sided 800k (used by MGT +D and Sam Coupé).

If the “fname” is not NULL, it will be pointed at a short name for the format (suitable
for use as a program option; see tools/dskform.c).

If the “fdesc” is not NULL, it will be pointed at a description string for the format.
With these two, it’s possible to enumerate geometries supported by the library without
keeping a separate list in your program - see tools/formnames.c for example
code that does this.

If additional formats have been specified in the libdskrc file (section 5.1), they will
be returned by this function, using format numbers starting at the last builtin format
plus 1.

17

4.21 dsk_*_forcehead: Override disc head

dsk_err_t dsk_set_forcehead(DSK_PDRIVER self, int force)
dsk_err_t dsk_get_forcehead(DSK_PDRIVER self, int *force)

(This function is deprecated; it is equivalent to dsk_set_option() / dsk_get_option()
with “HEAD” as the option name).

Forces the driver to ignore the head number passed to it and always use either side
0 or side 1 of the disc. This is used to read discs recorded on PCW / CPC / Spectrum+3
add-on 3.5" drives. Instead of the system software being programmed to use both sides
of the disc, a switch on the drive was used to set which side was being used. Thus discs
would end up with both sides saying they were head 0.

Anyway, when using dsk_set_forcehead, pass:

-1: Normal - the head passed as a parameter to other calls is used.

0: Always use side 0.

1: Always use side 1.

4.22 dsk_*_option: Set/get driver option

dsk_err_t dsk_set_option(DSK_PDRIVER self, const char *name, int value)
dsk_err_t dsk_get_option(DSK_PDRIVER self, const char *name, int *value)

Sets or gets a driver-specific numeric option.
The “name” field is the option name. If the selected driver does not support the

appropriate option, then the error DSK_ERR_BADOPT will be returned. If the option
is valid but the value requested is not, DSK_ERR_BADVAL will be returned.

The following driver options are supported by the Linux and NTWDM floppy
drivers:

HEAD Force the drive always to use one or other side of the disc, ignoring the disc
geometry. Valid values are 0 or 1 to force one or other side of the disc, -1 to
allow either.

DOUBLESTEP To support a 48tpi disc in a 96tpi drive, double all cylinder numbers.
Valid values are 1 (enable) or 0 (disable).

ST0 / ST1 / ST2 / ST3 These are the values of the floppy controller’s 4 status registers
returned by the last operation. They cannot be changed, only read.

The ’remote’ driver supports the following option (plus any options that the remote
driver supports):

REMOTE:TESTING This disables an optimisation in the remote driver, so that it
sends method calls to the remote server even if it has been asked not to. The
purpose of this is to ensure that all calls to the remote driver result in RPC packets
being sent.

18

4.23 dsk_option_enum: Get list of driver options

dsk_err_t dsk_option_enum(DSK_PDRIVER self, int idx, char **optname)

If “idx” is in the range 0 -> number of driver options, (*optname) is set to the name of
the appropriate driver option. If not, (*optname) is set to NULL.

4.24 dsk_*_comment: Set comment for disc image

dsk_err_t dsk_set_comment(DSK_PDRIVER self, const char *comment)
dsk_err_t dsk_get_comment(DSK_PDRIVER self, char **comment)

Used to get or set the comment (if any) for the current disc. Comments are only sup-
ported by the ApriDisk format; you can set a comment for other file types but it will
not be saved. The pointer passed or returned may be NULL (meaning “No comment”).

4.25 dsk_type_enum

dsk_err_t dsk_type_enum(int index, char **drvname)

If “index” is in the range 0 -> number of LibDsk drivers, (*drvname) is set to the
short name for that driver (eg: “myz80” or “raw”). If not, (*drvname) is set to NULL.

4.26 dsk_comp_enum

dsk_err_t dsk_comp_enum(int index, char **compname)

As dsk_type_enum(), but lists supported compression schemes.

4.27 dsk_drvname, dsk_drvdesc
const char *dsk_drvname(DSK_PDRIVER self)
const char *dsk_drvdesc(DSK_PDRIVER self)

Returns the driver name (eg: “myz80”) or description (eg “MYZ80 hard drive driver”)
for an open disc image.

4.28 dsk_compname, dsk_compdesc
const char *dsk_compname(DSK_PDRIVER self);
const char *dsk_compdesc(DSK_PDRIVER self);

Returns the compression system name (eg: “gz”; NULL if the disc image isn’t com-
pressed) or description (eg: “GZip compressed”) for an open disc image.

19

4.29 dg_ps2ls, dg_ls2ps, dg_pt2lt, dg_lt2pt
Convert between logical sectors and physical cylinder/head/sector addresses. Normally
these functions are called internally and you don’t need to use them.

dsk_err_t dg_ps2ls(const DSK_GEOMETRY *self, dsk_pcyl_t cyl, dsk_phead_t head, dsk_psect_t sec, dsk_lsect_t *logical)

Converts physical C/H/S to logical sector.

dsk_err_t dg_ls2ps(const DSK_GEOMETRY *self, dsk_lsect_t logical, dsk_pcyl_t *cyl, dsk_phead_t *head, dsk_psect_t *sec)

Converts logical sector to physical C/H/S.

dsk_err_t dg_pt2lt(const DSK_GEOMETRY *self, dsk_pcyl_t cyl, dsk_phead_t head, dsk_ltrack_t *logical)

Converts physical C/H to logical track.

dsk_err_t dg_lt2pt(const DSK_GEOMETRY *self, dsk_ltrack_t logical, dsk_pcyl_t *cyl, dsk_phead_t *head)

Converts logical track to physical C/H.

4.30 dsk_strerror: Convert error code to string
char *dsk_strerror(dsk_err_t err)

Converts an error code returned by one of the other LibDsk functions into a printable
string.

4.31 dsk_reportfunc_set / dsk_reportfunc_get

void dsk_reportfunc_set(DSK_REPORTFUNC report, DSK_REPORTEND repend);
void dsk_reportfunc_get(DSK_REPORTFUNC *report, DSK_REPORTEND *repend);

Used to set callbacks from LibDsk to your own code, for LibDsk to display messages
during processing that may take time. The code could be used to set the text on the
status line of your program window, for example.

typedef void (*DSK_REPORTFUNC)(const char *message);
typedef void (*DSK_REPORTEND)(void);

The first function you provide will be called when LibDsk wants to display a mes-
sage (such as “Decompressing...”). The second will be called when the processing has
finished.

20

4.32 dsk_set_retry / dsk_get_retry

dsk_err_t dsk_set_retry(DSK_PDRIVER self, unsigned int count);
dsk_err_t dsk_get_retry(DSK_PDRIVER self, unsigned int *count);

Sets the number of times that a failed read, write, check or format operation will be
attempted. 1 means “only try once, do not retry”.

4.33 dsk_get_psh
unsigned char dsk_get_psh(size_t sector_size)

Converts a sector size into the sector shift used by the uPD765A controller (eg: 128 ->
0, 256 -> 1, 512 -> 2 etc.) You should not need to use this. The reverse operation is:
sectorsize = (128 < < psh).

4.34 Structure: DSK_FORMAT
This structure is used to represent a sector header. It has four members:

fmt_cylinder: Cylinder number.

fmt_head: Head number.

fmt_sector: Sector number.

fmt_secsize: Sector size in bytes.

4.35 LibDsk errors
DSK_ERR_OK: No error.

DSK_ERR_BADPTR: A null or otherwise invalid pointer was passed to a LibDsk
routine.

DSK_ERR_DIVZERO: Division by zero: For example, a DSK_GEOMETRY is set
to have zero sectors.

DSK_ERR_BADPARM: Bad parameter (eg: if a DSK_GEOMETRY is set up with
dg_cylinders = 40, trying to convert a sector in cylinder 65 to a logical
sector will give this error).

DSK_ERR_NODRVR: Requested driver not found in dsk_open() / dsk_creat().

DSK_ERR_NOTME: Disc image could not be opened by requested driver.

DSK_ERR_SYSERR: System call failed. errno holds the reason.

DSK_ERR_NOMEM: malloc() failed to allocate memory.

DSK_ERR_NOTIMPL: Function is not implemented (eg, this driver doesn’t support
dsk_xread()).

DSK_ERR_MISMATCH: In dsk_lcheck() / dsk_pcheck(), sectors didn’t
match.

21

DSK_ERR_NOTRDY: Drive is not ready.

DSK_ERR_RDONLY: Disc is read-only.

DSK_ERR_SEEKFAIL: Seek fail.

DSK_ERR_DATAERR: Data error.

DSK_ERR_NODATA: Sector ID found, but not sector data.

DSK_ERR_NOADDR: Sector not found at all.

DSK_ERR_BADFMT: Not a valid format.

DSK_ERR_CHANGED: Disc has been changed unexpectedly.

DSK_ERR_ECHECK: Equipment check.

DSK_ERR_OVERRUN: Overrun.

DSK_ERR_ACCESS: Access denied.

DSK_ERR_CTRLR: Controller failed.

DSK_ERR_COMPRESS: Compressed file is corrupt.

DSK_ERR_RPC: Error in remote procedure call.

DSK_ERR_BADOPT: Driver does not support the requested option.

DSK_ERR_BADVAL: Driver does support the requested option, but the passed value
is out of range.

DSK_ERR_UNKNOWN: Unknown error

4.36 Miscellaneous
LIBDSK_VERSION is a macro, defined as a string containing the library version - eg
“1.0.0”

5 Initialisation files
In addition to its built-in library of formats, LibDsk can also load formats from one or
two external files - a systemwide file (libdskrc) and a user-specific file (.libdskrc). The
rules for how these files are found differ from platform to platform.

5.1 libdskrc format
The file format is similar to a Windows .INI file. Each format is described in a section,
which starts with the format name in square brackets (format names may not start with a
hyphen). After the format name, there are a number of lines of the form variable=value.

Anything after a semicolon or hash character is treated as a comment and ignored.
Blank lines are also ignored.

For each geometry, the entries listed below can be present. If not all the values are
present, LibDsk will use default values from its "pcw180" format. As you can see, they
correspond to members of the DSK_GEOMETRY structure.

22

description=DESC The description of the format as shown by (for example) dskform
–help.

sides=TREATMENT How a double-sided disk is handled. This can either be alt
(sides alternate – used by most PC-hosted operating systems), outback (use side
0 tracks 0-79, then side 1 tracks 79-0 – used by 144FEAT CP/M disks), or outout
(use side 0 tracks 0-79, then side 1 tracks 0-79 – used by some Acorn formats).
If the disk is single-sided, this parameter can be omitted.

cylinders=COUNT Sets the number of cylinders (usually 40 or 80).

heads=COUNT Sets the number of heads (usually 1 or 2 for single- or double- sided).

sectors=COUNT Sets the number of sectors per track.

secbase=NUMBER Sets the first sector number on a track. Usually 1; some Acorn
formats use 0.

secsize=COUNT Sets the size of a sector in bytes. This should be a power of 2.

datarate=VALUE Sets the rate at which the disk should be accessed. This is one of
HD, DD, SD or ED.

rwgap=VALUE Sets the read/write gap.

fmtgap=VALUE Sets the format gap.

fm=Y or N Sets the recording mode - Y for FM, N for MFM.

multitrack=Y or N Sets multitrack mode.

skipdeleted=Y or N Sets whether to skip deleted data.

5.1.1 libdskrc example

; This is FMT_800K as a libdskrc entry
[xcf2dd]
Description = 800k XCF2DD format
Sides = Alt
Cylinders = 80
Heads = 2
Sectors = 10
SecBase = 1
SecSize = 512
DataRate = SD
RWGap = 12
FmtGap = 23
[xcf2]
Description = 200k XCF2 format
Cylinders = 40

... etc.

23

5.2 Locating libdskrc
5.2.1 UNIX

The systemwide file is located at ${datadir}/LibDsk/libdskrc. The ${datadir} is usu-
ally /usr/local/share; you can change it with the –datadir or –prefix arguments to the
configure script.

The user-specific file is $(HOME)/.libdskrc.

5.2.2 Win32

The systemwide file is in the path specified at

HKEY_LOCAL_MACHINE\Software\jce@seasip\LibDsk\ShareDir

If this registry key is not found, LibDsk finds the path of the program that called it
(using GetModuleFileName()), and then uses “/...program path.../share/libdskrc”.

The user-specific file is in the path specified at

HKEY_CURRENT_USER\Software\jce@seasip\LibDsk\HomeDir

If this registry key is not present, the user’s “My Documents” directory is used. Either
way, the file is called .libdskrc.

5.2.3 Win16

The systemwide file is found from the location of the calling program using GetMod-
uleFileName(). There is no user-specific file.

5.2.4 DOS

The systemwide file is only searched for if the LIBDSK environment variable is set; if
it is set, it is assumed to be the name of the directory containing libdskrc. There is no
user-specific file.

6 Reverse CP/M-FS (rcpmfs) backend
The rcpmfs backend is designed to present a host directory as a read/write CP/M disk
image. This has a number of uses:

• You could construct a CP/M disk image using dsktrans directory filename .

• Conversely, you could extract the files from a CP/M disk image using dsktrans
filename directory.

• It is possible for a CP/M emulator running a genuine copy of CP/M to use LibDsk
to access files on the host system, without altering the BDOS or installing addi-
tional drivers.

rcpmfs does not work with systems that only support “8.3” format filenames; it also
needs a system call that can set the size of a file (such as truncate() under UNIX). It
therefore remains unimplemented in the DOS and Win16 versions of the library.

24

6.1 In Use
To use an rcpmfs directory in LibDsk, pass a directory name instead of a filename. Files
in the directory which match CP/M naming conventions (8.3 filenames) will appear in
the emulated disk image; if there are more files than will fit in the emulated disk,
LibDsk will stop when it reaches one that doesn’t fit. Under Windows, the ’short
filename’ is used, so files with names not matching CP/M conventions may also be
mapped with names like README~1.HTM.

CP/M has 16 user areas (some variants support 32; rcpmfs does not), and files with
the same name can exist in each area. rcpmfs represents nonzero user areas by prepend-
ing “nn..” to the filename; so if a CP/M program created a file called EXAMPLE.DAT
in user 4, this would be saved as “04..example.dat” in the underlying directory. The
double dot ensures that the resulting filename is not a valid CP/M name, and therefore
won’t conflict with any file in user 0.

rcpmfs can behave as a CP/M 2 or CP/M 3 filesystem. If the latter, it constructs a
disc label (based on the name of the directory) and turns on date/time stamping. Update
and access stamps are used, because they map nicely to the utime() system call.

6.2 rcpmfs initialisation file
For a directory to be usable by rcpmfs, it should contain a file called .libdsk.ini describ-
ing the format to use. This file is in INI format, similar to libdskrc (section 5.1). It must
contain only one section: [RCPMFS]. Within that section, the following variables may
be present:

BlockSize Size of a CP/M data block. Must be a power of 2, and at least 1024. If there
are more than 255 blocks in the CP/M filesystem, this must be at least 2048.

DirBlocks Number of blocks containing the CP/M directory.

TotalBlocks Total number of data and directory blocks.

SysTracks Number of system tracks. These will be stored in a file called .libdsk.boot.

Version CP/M version that will be accessing the filesystem - either 2 or 3. Setting it
to 2 should disable time stamps and disk labels.

Format Name of one of the LibDsk built-in or user-supplied formats, giving the geom-
etry that the simulated disk will have. Alternatively, you can specify the format
manually, using the same variable names as in libdskrc.

If there is no .libdsk.ini file present, LibDsk will assume BlockSize=1024, DirBlocks=2,
TotalBlocks=175,SysTracks=1, Version=3, Format=pcw180.

6.3 Bugs
rcpmfs is new and untried code. The following are known bugs or missing features:

• So far, rcpmfs has only been tested under the dsktrans pattern of usage (which
writes the directory and then the file space), and with fairly simple operations in
a CP/M emulator. It is not known how well it holds up under heavy use as a live
CP/M filesystem.

25

• The CP/M attributes F1-F4, passwords and permissions are not mapped. The
SYS and ARC attributes are only mapped in the Win32 version.

• Formatting (or reformatting) an rcpmfs directory writes out a new .libdsk.ini con-
taining the geometry used to do the format. However, since DSK_GEOMETRY
doesn’t contain the CP/M filesystem parameters (block size, block count, etc.)
these will be the ones previously used in that directory, and quite possibly com-
pletely wrong. It’s a much better idea to ’format’ the directory using means other
than LibDsk.

7 The CopyQM file format

7.1 Introduction
This section describes the file format of files created by CopyQM. A lot of the infor-
mation has been extracted by looking at hex-dumps of the files, so there might be some
errors in the description.

7.2 Header
The CopyQM files consist of a header, an optional comment (if indicated by the header)
followed by the tracks of the image encoded with a run length encoding scheme. The
header is 133 bytes long, see table. It always starts with {0x43, 0x51, 0x14 }, which can
be used for auto-detection of the image. All numbers have little-endian byte ordering.
When all bytes in the header are added together in a byte, the result should be zero.

Offset Size Comment
0x00 1 Always 0x43 (’C’)
0x01 1 Always 0x51 (’Q’)
0x02 1 Always 0x14
0x03 2 Sector size
0x0b 2 Total number of sectors. (DOS)
0x10 2 Number of sectors per track
0x12 2? Number of heads
0x1c 60? Description (e.g. “0K Double-Sided”)
0x58 1 Type of image. 0=blind, 1=DOS, 2=HFS
0x59 1 Density. 0=DD, 1=HD, 2=ED
0x5a 1 Number of tracks used on image
0x5b 1 Total number of tracks for image
0x5c 4 CRC for the used, unpacked tracks
0x60 11 Volume label (DOS/HFS)
0x6b 2 Creation time
0x6d 2 Creation date
0x6f 2 Length of image comment
0x71 1 Number of first sector - 1
0x74 1 Interleave. (0 for older versions of CopyQM)
0x75 1 Skew. Normally 0. Negative number for alt. sides
0x84 1 Header checksum byte

26

7.3 CRC
The CRC is calculated for the unpacked data for all tracks that are used in the image.
The CRC value is initialized with 0 and then updated using the CRC 32 polynomial
0x104C11DB7, bit reverse algorithm. Due to a feature in CopyQM (8 bit register as
an index into a 1024 byte table) all bytes must have their top two bits removed before
added to the CRC.

7.4 Image comment
The image comment follows the header. It has a variable size found in the header. The
image comment can contain \0-bytes.

7.5 Image data
The image data is run length encoded. Each run is preceded by a 16-bit length. If the
length is negative, the byte after the length is repeated -length times. If the length is
positive, it is followed by length bytes of unencoded data. It seems like a new run
of repeating or differing data is always started at each new track. Older versions of
CopyQM always alternates between runs of differing data and repeating data, even if
the length of one of them is zero.

8 LibDsk under Windows
This section mainly deals with the subject of direct floppy drive access. Other aspects
of LibDsk remain relatively consistent across Windows versions.

As with so many other aspects of Windows, direct access to the floppy drive is a
case of “write once - debug everywhere”1. Not only does support vary across different
systems, it varies depending on whether LibDsk was compiled with a 16-bit compiler
or a 32-bit one. This table shows the different possibilities and the resulting behaviour:

Windows Version Win16 Subsystem Win32 Subsystem
3.x Fairly good n/a

4.x (95, 98 and ME) Good but less stable Limited
NT, 2000, XP Very limited

2000, XP + ntwdm driver Good

8.1 Windows 3.x
Only the 16-bit build of LibDsk will run. The floppy support in Win16 is pretty much
the same as in DOS; there is support for discs with arbitrary numbers of tracks and
sectors, and arbitrary sector sizes. This means that LibDsk can, for example, read
Acorn ADFS floppies.

8.2 Windows 4.x (95, 98 and ME)
Both the 16-bit and 32-bit versions of LibDsk will run. The 16-bit version is more
capable, but less stable; it can read Acorn ADFS floppies, which the 32-bit version

1Originally said by Microsoft with respect to Java. Pot. Kettle. Black.

27

cannot. Unfortunately, 32-bit programs can’t link to the 16-bit version of LibDsk2, but
there is a workaround (described below) involving the use of LDSERVER.

8.3 Windows NT (NT 3.x, NT 4.x, 2000, XP) without ntwdm driver
The floppy drive can only read/write formats which are supported by the floppy driver.
This is the case using either version of LibDsk.

8.4 Windows 2000 and XP with ntwdm driver
Simon Owen’s enhancement to the Windows 2000 floppy driver can be downloaded
from <http://simonowen.com/fdrawcmd/>. Once it is installed, LibDsk (using its ’ntwdm’
driver rather than ’floppy’) has pretty much carte blanche regarding floppy formats, and
can access discs in many formats including Acorn ADFS.

8.5 General comments on programming floppy access for Win-
dows

LibDsk has four independent drivers for accessing floppies under Windows. They are:

8.5.1 The Win16 driver.

This uses INT 0x13 to do the reads and writes, just as in MSDOS. Again as in MSDOS,
there is a diskette parameter table pointed to by INT 0x1E. This table seems not to be
documented, which is perhaps why the Win16 subsystem in Windows 2000/XP doesn’t
implement it. You can, fortunately, tell if this is the case; if the first two bytes are both
0xC4, then what you have is a Windows 2000 trap rather than a diskette parameter
table.

8.5.2 The Win32c driver.

This driver uses VWIN32 services to make INT 0x13-style calls under Windows9x.
However, there is no VWIN32 call to change the diskette parameter table, which is
why the Win16 driver can do things the Win32 drivers can’t. It isn’t possible to get
round this by thunking to a 16-bit DLL either; the INT 0x1E vector is zero for 16-bit
DLLs in 32-bit processes.

8.5.3 The Win32 driver.

Windows NT gets close (but not close enough) to the UNIX idea that everything is
a file. So while in theory it would be enough to use the normal “raw” driver on
“\\.\A:“ , in practice there are a number of nasty subtleties relating to such things as
memory alignment and file locking.

8.5.4 The ntwdm driver.

This driver is a wrapper around fdrawcmd.sys, which allows commands to be issued to
the floppy controller.

2And no, the Generic Thunk isn’t good enough. I’ve tried it.

28

8.5.5 Other floppy APIs

Sydex produce a replacement floppy driver for 32-bit versions of Windows (SydexFDD)
which is not supported by LibDsk.

8.6 LDSERVER
LDSERVER is a program that makes the 16-bit LibDsk DLL available to 32-bit pro-
grams. It does this by creating a mailslot (“\\.\mailslot\LibDsk16”) and lis-
tening for messages. Each message corresponds to a LibDsk call.

The 32-bit LibDsk library checks for this mailslot and, if it finds it, uses it in pref-
erence to its own floppy support.

8.6.1 Compiling LDSERVER

A compiled version of LDSERVER is not supplied. You will need to build it yourself
from the files in the rpcserv directory; projects are provided for Microsoft Visual C++
1.5 and Borland C++ 5.0.

LDSERVER calls functions in NETAPI.DLL. If your compiler doesn’t include an
import library for this DLL, you will have to generate it using the IMPLIB tool - eg:

IMPLIB NETAPI.LIB NETAPI.DLL

or the equivalent utility for your compiler.

8.6.2 Using LDSERVER

Just run LDSERVER.EXE, and then use a 32-bit LibDsk program. The server window
shows a reference count (0 if it is idle, nonzero if LibDsk programs are using it) and
the status should change to “Active” when it is performing disc access.

LDSERVER does not shut down automatically.

8.6.3 Important Security Warning

LDSERVER is a 16-bit program, written using APIs intended for use on a local area
network. These APIs have no security support. It will happily obey commands sent
from anywhere on your network. If your computer is connected to the Internet, it
will obey commands sent to it over the Internet. A malicious attacker could use LD-
SERVER to overwrite important system files or read confidential documents.

If you have a firewall, then make sure that the NetBIOS ports 137, 138 and 139 are
blocked. If you don’t have a firewall, do not run LDSERVER while your computer is
connected to the Internet!

8.7 LibDsk and COM
If you are building the 32-bit version of LibDsk with Visual C++ 6.0, you can also build
the accompanying ’atlibdsk’ project, which builds a version of LibDsk that exports its
API through COM. This allows relatively easy use of LibDsk from languages that
support COM binding, such as Visual BASIC or .NET languages.

29

8.7.1 General points

Where LibDsk functions return a dsk_err_t, ATLIBDSK returns a COM HRESULT.
This will be S_OK for success, a general COM error (such as E_POINTER or E_INVALIDARG),
or a FACILITY_ITF error (0x8004xxxx). The low word of a FACILITY_ITF error is
the LibDsk error code, converted to a positive number (eg: 0x8004000C is FACIL-
ITY_ITF error 12, so the LibDsk error is -12, DSK_ERR_SEEKFAIL).

Sector buffers to be read/written must be passed as variants containing arrays of
bytes.

The arrays of DSK_FORMAT structures passed to dsk_lform() and dsk_pform()
are replaced by variants containing arrays of bytes - four bytes per sector to format.
The last byte is the physical sector shift (0 for 128, 1 for 256 etc.)

ATLIBDSK exports four object classes:

8.7.2 Library

This contains LibDsk functions not associated with a particular disk image. Its methods
are:

Method Equivalent LibDsk call Comments
open dsk_open Instantiates a new Disk object.
create dsk_creat Instantiates a new Disk object.

get_psh dsk_get_psh
dosgeom dg_dosgeom Instantiates a new Geometry object.

cpm86geom dg_cpm86geom Instantiates a new Geometry object.
pcwgeom dg_pcwgeom Instantiates a new Geometry object.
aprigeom dg_aprigeom Instantiates a new Geometry object.
stdformat dg_stdformat Instantiates a new Geometry object.

stdformat_count Returns the number of formats supported by stdformat
type_enum dsk_type_enum Returns TRUE if the passed index is valid, else FALSE.

comp_enum dsk_comp_enum Returns TRUE if the passed index is valid, else FALSE.
reporter dsk_reportfunc_{set,get} This is a property of type IReporter

8.7.3 Geometry

This corresponds to the DSK_GEOMETRY structure. The following properties corre-
spond to the structure members:

• sidedness

• cylinders

• heads

• sectors

• secbase

• datarate

• secsize

• rwgap

30

• fmtgap

• fm

• nomulti

• noskip

There are also five functions. Four are for logical/physical sector conversions:

• ls2ps

• lt2pt

• ps2ls

• pt2lt

and the last is stdformat(), which wraps dg_stdformat().

8.7.4 Disk

The Disk object corresponds to a LibDsk DSK_PDRIVER value. You should not create
one yourself (method calls will fail with E_POINTER) but call the ’create’ or ’open’
methods of the Library object.

Functions included are:

• get_geometry

• close

• drive_status

• pread

• lread

• xread

• pwrite

• lwrite

• xwrite

• pcheck

• lcheck

• xcheck

• pformat

• lformat

• apform

• alform

31

• ptread

• ltread

• xtread

• psecid

• lsecid

• lseek

• pseek

• option_enum

all of which are pretty similar to their LibDsk namesakes. There are also the following
properties:

• comment

• option

• retries

• drvname

• drvdesc

• compname

• compdesc

8.7.5 IReporter

IReporter is used for the LibDsk message callback. It is an interface that should be
implemented by an object in your program. Set the library’s "reporter" property to
your object; then its report() and endreport() methods will be called.

9 LibDsk RPC system
The LibDsk RPC system is designed to make disc drives on remote computers trans-
parently available to LibDsk applications. It operates on a client/server basis; LibDsk
contains a driver (called ’remote’) that can act as a client, and it can be used to imple-
ment a server.

The on-the-wire protocol is described in protocol.txt in the documentation direc-
tory.

32

9.1 The ’serial’ driver
This is designed for using LibDsk over a serial connection - say from a 3.5” computer
to a 5.25” computer. The filename specification to use at the client end is:

serial:port,baud,remotename{,remotetype{,remotecompress}}

for example:

serial:/dev/ttyS0,9600+crtscts,A:

The various parts of this filename specification are:

port The local serial port to use.

• Under Linux, this is the name of a serial port (eg /dev/ttyS0).

• Under Windows, this is likewise the name of a serial port (eg COM1:).

• Under DOS, you need to have a FOSSIL serial port driver loaded; LibDsk
was tested using ADF <http://ftp.iis.com.br/pub/simtelnet/msdos/fossil/adf_150.zip>
(or do a web search for adf_150.zip). The port is then the number assigned
by the FOSSIL driver (normally 0). Note also that ADF uses a single
fixed baud rate, so you should make sure that the rate on the command
line matches the rate that was used when ADF was loaded.

baud The speed and handshaking options. LibDsk does not allow the number of bits,
the parity or the count of stop bits to be changed; it insists on 8-bit communi-
cations with 1 stop bit and no parity. The speed is a number (300, 600, 1200
etc.) and the handshake option is “+crtscts” (to use RTS/CTS handshaking) or
“-crtscts” (not to). If neither handshake option is present, “+crtscts” is assumed.

remotename The name of the file or drive on the remote computer.

remotetype The type of the file/drive (“dsk”, “floppy” etc.).

remotecompress The compression to use on the remote computer.

9.1.1 Servers for the serial driver

One of the sample utilities supplied with LibDsk is called serslave (serslave.exe under
DOS / Windows). This is a server using the same serial protocol as above.

Launch serslave with the command:

serslave port,baud

for example:

serslave COM1:,9600+crtscts

or in DOS (again, a FOSSIL driver is required):

serslave 0,19200

I have written a similar server for CP/M systems, called AUXD. This is a separate
download from the LibDsk web page.

33

9.2 The ’fork’ driver
The ’fork’ driver is used (on any system which supports the fork() system call) to send
LibDsk requests to a local program using pipes. This driver was written for testing
purposes, but may come in handy as a poor man’s plugin system. The filename speci-
fication is:

fork:program,remotename{,remotetype{,remotecompress}}

for example:

fork:./dskslave,a.dqk,dsk,sq

The various parts of this filename specification are:

program The name of the program to use; execlp() is used to launch it, so if no path
is given the user’s PATH will be searched. The program must take LibDsk calls
from its standard input and send results to its standard output.

remotename The name of the file or drive.

remotetype The type of the file/drive (“dsk”, “floppy” etc.).

remotecompress The compression to use.

An example of a server for this protocol is the example ’forkslave’ program; this is a
very simple wrapper around dsk_rpc_server() which reads RPC packets from its stan-
dard input and writes them to its standard output.

10 Writing new drivers
The interface between LibDsk and its drivers is defined by the DRV_CLASS structure.
To add a new driver, you create a new DRV_CLASS structure and add it to various
files.

10.1 The driver header
Firstly, create a header for this driver, basing it on (for example) lib/drvposix.h.
The first thing in the header (after the LGPL banner) is:

typedef struct
{

DSK_DRIVER px_super;
FILE *px_fp;
int px_readonly;
long px_filesize;

} POSIX_DSK_DRIVER;

This is where you define any variables that your driver needs to store for each disc
image. In the case of the “raw” driver, this consists of a FILE pointer to access the
underlying disc file, a “readonly” flag, and the current size of the drive image file. The
first member of this structure must be of type DSK_DRIVER.

The rest of this header consists of function prototypes, which I will come back to
later.

34

10.2 The driver source file
Secondly, create a .c file for your driver. Again, it’s probably easiest to base this on
lib/drvposix.c. At the start of this file, create a DRV_CLASS structure, such as:

DRV_CLASS dc_posix =
{

sizeof(POSIX_DSK_DRIVER),
"raw",
"Raw file driver",
posix_open,
posix_creat,
posix_close

};

The first three entries in this structure are:

• The size of your driver’s instance data;

• The driver’s name (as passed to dsk_open() / dsk_creat())

• The driver’s description string.

The remainder of the structure is composed of function pointers; the types of these
are given in drv.h. At the very least, you will need to provide the first three pointers
(*_open, *_creat and *_close); to make the driver vaguely useful, you will also need to
implement some of the others.

Once you have created this structure, edit:

• drivers.h. Add a declaration for your DRV_CLASS structure, such as

extern DRV_CLASS dc_myformat;

• drivers.inc. Insert a reference to your structure (eg: “&dc_myformat,”) in the
list. Note that order is important; the comments in drivers.inc describe how to
decide where things go.

Edit “lib/Makefile.am”. Near the top of this file is a list of drivers and their header files;
just add your .c and .h to this list.

If your driver depends on certain system headers (as all the floppy drivers do) then
you will need to add checks for these to “configure.in” and “lib/drvi.h”; then run “au-
toconf” to rebuild the configure script.

The function pointers in the DRV_CLASS structure are described in drv.h. The first
parameter to all of them (“self”) is declared as a pointer to DSK_DRIVER. In fact, it
is a pointer to the first member of your instance data structure. Just cast the pointer to
the correct type:

/* Sanity check: Is this meant for our driver? */
if (self->dr_class != &dc_posix) return DSK_ERR_BADPTR;
pxself = (POSIX_DSK_DRIVER *)self;

and you’re in business.

35

10.3 Driver functions
10.3.1 dc_open

dsk_err_t (*dc_open)(DSK_PDRIVER self, const char *filename)

Attempt to open a disc image. Entered with:

• “self” points to the instance data for this disc image (see above); it will have
been initialised to zeroes using memset().

• “filename” is the name of the image to open.

Return:

DSK_ERR_OK: The driver has successfully opened the image.

DSK_ERR_NOTME: The driver cannot handle this image. Other drivers should be
allowed to try to use it.

other: The driver cannot handle this image. No other drivers should be tried (eg: the
image was recognised by this driver, but is corrupt).

If the file has a comment, record it here using dsk_set_comment().

10.3.2 dc_creat

dsk_err_t (*dc_creat)(DSK_PDRIVER self, const char *filename)

Attempt to create a new disc image. For the “floppy” drivers, behaves exactly as
dc_open. Parameters and results are the same as for dc_open, except that DSK_ERR_NOTME
is treated like any other error.

10.3.3 dc_close

dsk_err_t (*dc_close)(DSK_PDRIVER self)

Close the disc image. This will be the last call your driver will receive for a given disc
image file, and it should free any resources it is using. Whether it returns DSK_ERR_OK
or an error, this disc image will not be used again.

10.3.4 dc_read

dsk_err_t (*dc_read)(DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_pcyl_t cylinder, dsk_phead_t head, dsk_psect_t sector)

Read a sector. Note that sector addresses passed to drivers are _always_ in C/H/S
format. This function has the same parameters and return values as dsk_pread().

36

10.3.5 dc_write

dsk_err_t (*dc_write)(DSK_PDRIVER self, const DSK_GEOMETRY *geom, const void *buf, dsk_pcyl_t cylinder, dsk_phead_t head, dsk_psect_t sector)

Write a sector. This function has the same parameters and return values as dsk_pwrite().
If your driver is read-only, leave this function pointer NULL.

10.3.6 dc_format

dsk_err_t (*dc_format)(DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_pcyl_t cylinder, dsk_phead_t head, const DSK_FORMAT *format, unsigned char filler)

Format a track. This function has the same parameters and return values as dsk_pformat().
If your driver cannot format tracks, leave this function pointer NULL.

10.3.7 dc_getgeom

dsk_err_t (*dc_getgeom)(DSK_PDRIVER self, DSK_GEOMETRY *geom)

Get the disc geometry. Leave this function pointer as NULL unless either:

1. Your disc image does not allow a caller to use an arbitrary disc geometry. The
two drivers which currently do this are the Win32 one, because Windows NT de-
cides on the geometry itself and doesn’t let programs change it; and the MYZ80
one, which has a single fixed geometry.

2. Your disc image file contains enough information to populate a DSK_GEOMETRY
completely. rcpmfs does this.

3. You want to do an extended geometry probe including a call to the default one.
The internal function dsk_defgetgeom() has been provided for this; it’s the same
as dsk_getgeom() but always uses the standard probe.

Returns DSK_ERR_OK if successful; DSK_ERR_NOTME or DSK_ERR_NOTIMPL
to fall back to the standard LibDsk geometry probe; other values to indicate failure.

10.3.8 dc_secid

dsk_err_t (*dc_secid)(DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_pcyl_t cylinder, dsk_phead_t head, DSK_FORMAT *result)

Read the ID of a random sector on a certain track/head, and put it in “result”. This
function is primarily used to test for discs in CPC format (which have oddly-numbered
physical sectors); if the disc image can’t support this (eg: the “raw” or Win32 drivers)
then leave the function pointer NULL.

10.3.9 dc_xseek

dsk_err_t (*dc_xseek)(DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_pcyl_t cylinder, dsk_phead_t head);

Seek to a given cylinder / head. For disc images, just return DSK_ERR_OK if the
cylinder/head are in range, or DSK_ERR_SEEKFAIL otherwise. For a floppy driver,
only implement this function if your FDC can perform a seek by itself.

37

10.3.10 dc_xread, dc_xwrite

dsk_err_t (*dc_xread)(DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_pcyl_t cylinder, dsk_phead_t head, dsk_pcyl_t cyl_expected, dsk_phead_t head_expected, dsk_psect_t sector, size_t bytes_to_write, int *deleted);
dsk_err_t (*dc_xwrite)(DSK_PDRIVER self, const DSK_GEOMETRY *geom, const void *buf, dsk_pcyl_t cylinder, dsk_phead_t head, dsk_pcyl_t cyl_expected, dsk_phead_t head_expected, dsk_psect_t sector, size_t bytes_to_read, int *deleted);

Read / write sector whose ID may not match its position on disc, or which is marked
as deleted. Only implement this if your disc image emulates sector IDs or your floppy
driver exposes this level of functionality. Currently it is only implemented in the Linux
and CPCEMU drivers.

10.3.11 dc_status

dsk_err_t (*dc_status)(DSK_PDRIVER self, const DSK_GEOMETRY &geom, dsk_phead_t head, unsigned char *result);

Return the drive status (see dsk_drive_status() for the bits to return). “*result” will
contain the value calculated by the default implementation; for most image file drivers,
all you have to do is set the read-only bit if appropriate.

10.3.12 dc_tread

dsk_err_t (*dc_tread)(DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_pcyl_t cylinder, dsk_phead_t head);

Read a track. You need only implement this if your floppy driver exposes the relevant
functionality; if you don’t, the library will use multiple calls to dc_read() instead. This
function has the same parameters and return values as dsk_ptread().

10.3.13 dc_xtread

dsk_err_t (*dc_xread)(DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_pcyl_t cylinder, dsk_phead_t head, dsk_pcyl_t cyl_expected, dsk_phead_t head_expected);

Read a track, with extended sector matching (sector headers on disc differ from physi-
cal location). This function has the same parameters and return values as dsk_xtread().
As with dc_tread(), you need only implement this function if your floppy driver has a
special READ TRACK command.

10.3.14 dc_option_enum

dsk_err_t (*dc_option_enum)(DSK_DRIVER *self, int idx, char **optname);

List numerical options which your driver supports. If your driver does not support any,
you need not implement this.

10.3.15 dc_option_set, dc_option_get

dsk_err_t (*dc_option_set)(DSK_DRIVER *self, const char *optname, int value);
dsk_err_t (*dc_option_get)(DSK_DRIVER *self, const char *optname, int *value);

Get or set the value of a numerical option. Again, if your driver has no settable options,
this need not be implemented.

38

10.3.16 dc_trackids

dsk_err_t (*dc_trackids)(DSK_DRIVER *self, const DSK_GEOMETRY *geom, dsk_pcyl_t cylinder, dsk_phead_t head, dsk_psect_t *count, DSK_FORMAT **result);

Read the IDs of all sectors on the specified track, preferably in the correct order and
starting at the index hole. If you leave this function pointer as NULL, LibDsk will use
a default implementation.

10.3.17 dc_rtread

dsk_err_t (*dc_rtread)(DSK_DRIVER *self, const DSK_GEOMETRY *geom, void *buf, dsk_pcyl_t cylinder, dsk_phead_t head, int reserved);

For future expansion. Leave this function pointer as NULL.

11 Adding new compression methods
Adding a new compression method is very similar to adding a driver, though you only
have to implement four functions.

To add a new driver, you create a new COMPRESS_CLASS structure and add it to
various files.

11.1 Driver header
This is done as for disc drivers. If you don’t need any extra variables (for example,
gzip and bzip2 compression don’t) then you don’t have to declare a new structure type
- see lib/compgz.h for an example.

11.2 Driver implementation
Secondly, create a .c file for your driver. It’s probably easiest to base this on lib/compgz.c.
At the start of this file, create a COMPRESS_CLASS structure, such as:

COMPRESS_CLASS cc_gz =
{

sizeof(COMPRESS_DATA),
"gz",
"Gzip (deflate compression)",
gz_open, /* open */
gz_creat, /* create new */
gz_commit, /* commit */
gz_abort /* abort */

};

The first three entries in this structure are:

• The size of your driver’s instance data. The GZip driver has no instance data and
so just uses COMPRESS_DATA. If it had extra data these would be in a struct
called GZ_COMPRESS_DATA, so the size here would be sizeof(GZ_COMPRESS_DATA).

39

• The driver’s name (as passed to dsk_open() / dsk_creat())

• The driver’s description string.

The remainder of the structure is composed of function pointers. The types of these are
given in drv.h. You must implement all four.

Once you have created this structure, edit:

• comp.h. Include your header.

• compress.inc. Insert a reference to your structure (eg: “&cc_myzip,”) in the list.
Note that order is important.

Edit “lib/Makefile.am”. At the bottom of this file is a list of drivers and their header
files; just add your .c and .h to this list.

If your driver depends on certain system headers (eg, the gzip one depends on
zlib.h) then you will need to add checks for these to “configure.in” and “lib/compi.h”;
then run “autoconf” to rebuild the configure script.

The function pointers in the COMPRESS_CLASS structure are described in lib/compress.h.
The first parameter to all of them (“self”) is declared as a pointer to COMPRESS_DATA.
In fact, it is a pointer to the first member of your instance data structure. Just cast the
pointer to the correct type:

/* Sanity check: Is this meant for our driver? */
if (self->cd_class != &cc_sq) return DSK_ERR_BADPTR;
sqself = (SQ_COMPRESS_DATA *)self;

and you’re in business.

11.3 Compression functions
11.3.1 cc_open

dsk_err_t (*cc_open)(COMPRESS_DATA *self)

Attempt to decompress a compressed file.

• “self” points to the instance data for this disc image.

• self->cd_cfilename is the filename of the file to decompress.

Return:

DSK_ERR_OK: The file has been decompressed.

DSK_ERR_NOTME: The file is not compressed using this driver’s method.

other: The file does belong to this driver, but it is corrupt or some other error occurred.

Two helper functions may be useful when you are writing cc_open:

dsk_err_t comp_fopen(COMPRESS_DATA *self, FILE **pfp);

40

Open the the file whose name is given at self->cd_cfilename. If successful,
*pfp will be the opened stream. If not, it will be NULL. If the file can only be opened
read-only, sets self->cd_readonly to 1.

dsk_err_t comp_mktemp(COMPRESS_DATA *self, FILE **pfp);

Create a temporary file and store its name at self->cd_ufilename. You should
use this to create the file that you decompress into.

11.3.2 cc_creat

dsk_err_t (*cc_creat)(COMPRESS_DATA *cd)

Warn the compression engine that a disc image file is being created, and when closed
it will be compressed. The filename is stored at self->cd_cfilename. Normally
this just returns DSK_ERR_OK.

11.3.3 cc_commit

dsk_err_t (*cc_commit)(COMPRESS_DATA *cd)

Compress an uncompressed file. self->cd_ufilename is the name of the file to
compress. self->cd_cfilename is the name of the output file.

11.3.4 cc_abort

dsk_err_t (*cc_abort)(COMPRESS_DATA *cd)

This is used if a file was decompressed and it’s now being closed without having been
changed. There is therefore no need to compress it again. This normally just returns
DSK_ERR_OK.

12 Adding new remote transports.
Adding a new remote transport is also very similar to adding a driver.

To add a new driver, you create a new REMOTE_CLASS structure and add it to
various files.

12.1 Driver header
This is done as for disc drivers. Create a structure based on REMOTE_DATA to hold
your class’s data – see lib/rpctios.h and lib/rpcfork.h for examples.

12.2 Driver implementation
Create a .c file for your driver. It’s probably easiest to base this on lib/rpcfork.c. At the
start of this file, create a REMOTE_CLASS structure, such as:

41

REMOTE_CLASS rpc_fork =
{

sizeof(FORK_REMOTE_DATA),
"fork",
"UNIX client using fork",
fork_open, /* open */
fork_close, /* close */
fork_call, /* perform RPC */

};

The first three entries in this structure are:

• The size of your driver’s instance data – sizeof(your_REMOTE_DATA) struc-
ture.

• The driver’s name. If the filename passed to LibDsk begins with this name fol-
lowed by a colon, then it’s assumed to be using your driver.

• The driver’s description string.

The remainder of the structure is composed of function pointers. The types of these are
given in lib/remote.h. You must implement all three.

Once you have created this structure, edit:

• lib/remall.h. Include your header.

• lib/remote.inc. Insert a reference to your structure (eg: “&rpc_fork,”) in the list.
The drivers will be tested in the order in which they appear in the file.

Edit “lib/Makefile.am”. At the bottom of this file is a list of drivers and their header
files; just add your .c and .h to this list.

If your driver depends on certain system headers (eg, the termios one depends on
termios.h) then you will need to add checks for these to “configure.in” and “lib/drvi.h”;
then run “autoconf” to rebuild the configure script.

The function pointers in the REMOTE_CLASS structure are described in lib/compress.h.
The first parameter to all of them (“pDriver”) is declared as DSK_PDRIVER; you can
extract a pointer to your instance data using the dr_remote member like this:

/* Sanity checks */
self = (FORK_REMOTE_DATA *)pDriver->dr_remote;
if (self == NULL || self->super.rd_class != &rpc_fork)

return DSK_ERR_BADPTR;

12.3 Remote communication functions
12.3.1 rc_open

dsk_err_t (*rc_open)(DSK_PDRIVER pDriver, const char *name, char *nameout)

Connect to a remote server.

• pDriver points to a DSK_DRIVER containing the pointer to your instance data.

42

• name is the filename as passed to LibDsk, starting with “driver:” and containing
any connection parameters needed.

• nameout is an output buffer with enough space to hold a string of the same length
as the input filename. If you are returning DSK_ERR_OK, it must be set to the
input filename minus any options this driver has used. For example, the “serial”
driver, given a filename like “serial:/dev/ttyS1,2400-crtscts,example.ufi,raw”would
extract its own options and return “example.ufi,raw” here.

Return:

DSK_ERR_OK: Connection established.

DSK_ERR_NOTME: The filename passed is not recognised by this driver.

other: An error such as out-of-memory occurred.

12.3.2 rc_close

dsk_err_t (*rc_close)(DSK_PDRIVER pDriver)

Close the connection to the remote server.

12.3.3 rc_call

dsk_err_t (*rc_call)(DSK_PDRIVER pDriver, unsigned char *input, int inp_len, unsigned char *output, int *out_len)

Perform a remote procedure call to the server.

input is the packet LibDsk wants to send.

inp_len is the number of bytes in the packet.

output is a buffer for the result packet.

*out_len (on entry) is the size of the result buffer.

*out_len (on return) is the number of bytes that were populated in the result buffer.

In general, this call will wrap the input in whatever framing bytes are necessary (usu-
ally including the packet length, since packets do not contain their own length), send
the packet over the wire, wait for a response, and unpack the response into ’output’.
Return DSK_ERR_TIMEOUT if the connection timed out (the ’serial’ driver waits 30
seconds) and DSK_ERR_ABORT if the user deliberately broke the connection.

A DQK Files
A DQK file is a .DSK file compressed using Richard Greenlaw’s Squeeze file format
(originally from CP/M as SQ.COM, and later built in to NSWP.COM; versions also
exist for DOS and UNIX). SQ was used in preference to more efficient compressors
such as gzip because it can be readily decoded on 8-bit and 16-bit computers.

The original reason for DQK files was software distribution. A disc image of a 180k
disc won’t fit on a 180k disc, owing to various overheads. However, the compressed

43

DQK version may fit onto such a disc, and leave room for a tool to write the DQK back
out as well.

Such a tool has been included in the “dskwrite” directory in this distribution. It
contains the following files:

• dskwrite.com: Program to write .DSK or .DQK files out to a real disc. The
.COM file works on PCs, Amstrad PCWs and Sinclair Spectrum +3s.

• dskwrite.txt: Documentation for dskwrite.

• dskwrite.z80: Z80 source for the CP/M version.

• dskwrite.asm: 8086 source for the DOS version.

• dskwrsea.com: The dskwrite distribution file - a self-extracting archive. It will
self-extract under CP/M or DOS.

Note that the files in the “dskwrite” directory are not GPLed or LGPLed. They are
public domain. You may do whatsoever you please with them.

LibDsk has been given .DQK support (use the “dsk” driver with “sq” compression)
so that .DQK files don’t have to be created and compressed in a two-state process.

B LibDsk with cpmtools
cpmtools v1.9 and later <http://www.moria.de/~michael/cpmtools/> can be configured
to use LibDsk for all disc access, thus allowing CP/M discs and emulator disc images
to be read and written.

The myz80 and nanowasp drivers use a fixed disk format; here are diskdefs entries
which can be used to read them (these are for the old diskdefs format with one line per
entry):

myz80 1024 64 128 4096 1024 1 0 3
microbee 512 80 10 2048 128 1 2 2.2

C DSK / EDSK recording mode extension
This extension was proposed by me on the comp.sys.sinclair and comp.sys.amstrad.8bit
newsgroups on 10 January 2004. It was subsequently released in ANNE 2.1.4 and
added to the formal EDSK format definition at <http://andercheran.aiind.upv.es/ am-
strad/docs/extdsk.htmlhttp://andercheran.aiind.upv.es/~amstrad/docs/
extdsk.html>.

DSK/EDSK originate on the Amstrad CPC, which ordinarily writes all its diskettes
in MFM recording mode and at the Double Density rate. However, ANNE emulates the
PcW16, which also supports the High Density rate; and the system software depends
on DD discs not being readable at the HD rate.

The extension gives meanings to two unused bytes of the DSK/EDSK “Track-Info”
block:

44

Byte 12h: Data rate.

0 Unknown

1 Single or Double Density (180k, 720k, etc.)

2 High Density (1.2M, 1.4M, etc.)

3 Extended Density (2.8M)

Byte 13h: Recording mode.

0 Unknown

1 FM

2 MFM

Existing files should have zeroes in these bytes; hence the use of 0 for Unknown.
LibDsk will guess the values in if the ones in the file are zero.

45

