
AppTools Documentation
Release 3.1.0

Enthought

December 12, 2008

CONTENTS

1 Application Scripting Framework 1
1.1 Framework Concepts . 1
1.2 Limitations . 2
1.3 API Overview . 2
1.4 Implementing Application Scripting . 4

2 Permissions Framework - Introduction 7
2.1 Framework Concepts . 7
2.2 Framework APIs . 8
2.3 What Do I Need to Reimplement? . 8
2.4 Deploying Alternative Managers . 9
2.5 Using the Default Storage Implementations . 9

3 Application API 11
3.1 Defining Permissions . 11
3.2 Applying Permissions . 12
3.3 Authenticating the User . 13
3.4 Getting and Setting User Data . 14
3.5 Integrating Management Actions . 14
3.6 Writing SecureProxy Adapters . 14

4 Default Policy Manager Data API 17
4.1 Overview of IPolicyStorage . 17

5 Default User Manager Data API 19
5.1 Overview of IUserStorage . 19
5.2 Overview of IUserDatabase . 19

6 Preferences 21

7 The Basic Preferences Mechanism 23
7.1 Strings, Glorious Strings . 25

8 Preferences and Types 27

9 Scoped Preferences 29
9.1 Accessing a particular scope . 30

10 Further Reading 31

i

11 Preferences in Envisage 33

12 Automatic script recording 35
12.1 The scripting API . 35

13 Undo Framework 39
13.1 Framework Concepts . 39
13.2 API Overview . 40

ii

CHAPTER

ONE

APPLICATION SCRIPTING
FRAMEWORK

The Application Scripting Framework is a component of the Enthought Tool Suite that provides developers with an
API that allows traits based objects to be made scriptable. Operations on a scriptable object can be recorded in a script
and subsequently replayed.

The framework is completely configurable. Alternate implementations of all major components can be provided if
necessary.

1.1 Framework Concepts

The following are the concepts supported by the framework.

• Scriptable Type

A scriptable type is a sub-type of HasTraits that has scriptable methods and scriptable traits. If a scriptable
method is called, or a scriptable trait is set, then that action can be recorded in a script and subsequently replayed.

If the __init__() method is scriptable then the creation of an object from the type can be recorded.

Scriptable types can be explicitly defined or created dynamically from any sub-type of HasTraits.

• Scriptable API

The set of a scriptable type’s scriptable methods and traits constitutes the type’s scriptable API.

The API can be defined explicitly using the scriptable decorator (for methods) or the Scriptable wrap-
per (for traits).

For scriptable types that are created dynamically then the API can be defined in terms of one or more types or
interfaces or an explicit list of method and trait names. By default, all public methods and traits (ie. those whose
name does not begin with an underscore) are part of the API. It is also possible to then explicitly exclude a list
of method and trait names.

• Scriptable Object

A scriptable object is an instance of a scriptable type.

Scriptable objects can be explicitly created by calling the scriptable type. Alternatively a non-scriptable object
can be made scriptable dynamically.

• Script

A script is a Python script and may be a recording or written from scratch.

If the creation of scriptable objects can be recorded, then it may be possible for a recording to be run directly by
the Python interpreter and independently of the application that made the recording. Otherwise the application
must run the script and first create any scriptable objects refered to in the script.

1

AppTools Documentation, Release 3.1.0

• Binding

A script runs in a namespace which is, by default, empty. If the scriptable objects refered to in a script are not
created by the script (because their type’s __init__() method isn’t scriptable) then they must be created by
the application and added to the namespace. Adding an object to the namespace is called binding.

Scriptable objects whose creation can be recorded will automatically bind themselves when they are created.

It also possible to bind an object factory rather than the object itself. The factory will be called, and the object
created, only if the object is needed by the script when it is run. This is typically used by plugins.

The name that an object is bound to need bear no relation to the object’s name within the application. Names
may be dotted names (eg. aaa.bbb.ccc) and appropriate objects representing the intermediate parts of such
a name will be created automatically.

An event is fired whenever an object is bound (or when a bound factory is invoked). This allows other objects
(eg. an embedded Python shell) to expose scriptable objects in other ways.

• Script Manager

A script manager is responsible for the recording and subsequent playback of scripts. An application has a single
script manager instance which can be explicitly set or created automatically.

1.2 Limitations

In the current implementation scriptable Trait container types (eg. List, Dict) may only contain objects corresponding
to fundamental Python types (eg. int, bool, str).

1.3 API Overview

This section gives an overview of the API implemented by the framework. The complete API documentation is
available as endo generated HTML.

The example application demonstrates some the features of the framework.

1.3.1 Module Level Objects

get_script_manager() The application’s script manager is returned. One will be created automatically if
needed.

set_script_manager(script_manager) The application’s script manager will be set to
script_manager replacing any existing script manager.

scriptable This is a decorator used to explicitly mark methods as being scriptable. Any call to a scriptable method
is recorded. If a type’s __init__() method is decorated then the creation of the object will be recorded.

Scriptable This is a wrapper for a trait to explicitly mark it as being scriptable. Any change to the value of the
trait will be recorded. Simple reads of the trait will not be recorded unless unless the value read is bound to
another scriptable trait or passed as an argument to a scriptable method. Passing has_side_effects=True
when wrapping the trait will ensure that a read will always be recorded.

create_scriptable_type(script_type, name=None, bind_policy=’auto’, api=None, includes=None, excludes=None, script_init=True)
This creates a new type based on an existing type but with certain methods and traits marked as being scriptable.
Scriptable objects can then be created by calling the type.

script_type is the existing, non-scriptable, type. The new type will be a sub-type of it. The api,
includes and excludes arguments determine which methods and traits are made scriptable. By default, all
public methods and traits (ie. those whose name does not begin with an underscore) are made scriptable.

2 Chapter 1. Application Scripting Framework

https://svn.enthought.com/enthought/browser/AppTools/trunk/examples/appscripting/

AppTools Documentation, Release 3.1.0

The name and bind_policy arguments determine how scriptable objects are bound when they are created.
name is the name that an object will be bound to. It defaults to the name of script_type with the first
character forced to lower case. name may be a dotted name, eg. aaa.bb.c.

bind_policy determines what happens if an object is already bound to the name. If it is auto then a
numerical suffix will be added to the name of the new object. If it is unique then an exception will be raised.
If it is rebind then the object currently bound to the name will be unbound.

api is a class or interface (or a list of classes or interfaces) that is used to provide the names of the methods and
traits to be made scriptable. The class or interface effectively defines the scripting API.

If api is not specified then includes is a list of method and trait names that are made scriptable.

If api and includes are not specified then excludes is a list of method and trait names that are not made
scriptable.

If script_init is set then the __init__() method is made scriptable irrespective of the api, includes
and excludes arguments.

If script_init is not set then objects must be explicitly bound and name and bind_policy are ignored.

make_object_scriptable(obj, api=None, includes=None, excludes=None) This takes an
existing unscriptable object and makes it scriptable. It works by calling create_scriptable_type()
on the the objects existing type and replacing that existing type with the new scriptable type.

See the description of create_scriptable_type() for an explanation of the api, includes and
excludes arguments.

1.3.2 ScriptManager

The ScriptManager class is the default implementation of the IScriptManager interface.

bind_event This event is fired whenever an object is bound or unbound. The event’s argument implements the
IBindEvent interface.

recording This trait is set if a script is currently being recorded. It is updated automatically by the script manager.

script This trait contains the text of the script currently being recorded (or the last recorded script if one is not
being currently recorded). It is updated automatically by the script manager.

script_updated This event is fired whenever the script trait is updated. The event’s argument is the script
manager.

bind(self, obj, name=None, bind_policy=’unique’, api=None, includes=None, excludes=None)
This method makes an object scriptable and binds it to a name. See the description of
create_scriptable_type() for an explanation of the api, includes, excludes, name and
bind_policy arguments.

bind_factory(self, factory, name, bind_policy=’unique’, api=None, includes=None, excludes=None)
This method binds an object factory to a name. The factory is called to create the object (and make it scriptable)
only when the object is needed by a running script. See the description of create_scriptable_type()
for an explanation of the name and bind_policy arguments.

run(self, script) This method runs a script in a namespace containing all currently bound objects. script
is any object that can be used by Python’s exec statement including a string or a file-like object.

run_file(self, file_name) This method runs a script in a namespace containing all currently bound objects.
file_name is the name of a file containing the script.

start_recording(self) This method starts the recording of a script.

stop_recording(self) This method stops the recording of the current script.

1.3. API Overview 3

AppTools Documentation, Release 3.1.0

1.3.3 IBindEvent

The IBindEvent interface defines the interface that is implemented by the object passed when the script manager’s
bind_event is fired.

name This trait is the name being bound or unbound.

obj This trait is the obj being bound to name or None if name is being unbound.

1.3.4 StartRecordingAction

The StartRecordingAction class is a canned PyFace action that starts the recording of changes to scriptable
objects to a script.

1.3.5 StopRecordingAction

The StopRecordingAction class is a canned PyFace action that ends the recording of changes to scriptable
objects to a script.

1.4 Implementing Application Scripting

The key part of supporting application scripting is to design an appropriate scripting API and to ensure than the
application itself uses the API so that changes to the data can be recorded. The framework provides many ways
to specify the scripting API. Which approach is appropriate in a particular case will depend on when it is a new
application, or whether scripting is being added to an existing application, and how complex the application’s data
model is.

1.4.1 Static Specification

A scripting API is specified statically by the explicit use of the scriptable decorator and the Scriptable trait
wrapper. For example:

from enthought.appscripting.api import scriptable, Scriptable
from enthought.traits.api import HasTraits, Int, Str

class DataModel(HasTraits):

foo = Scriptable(Str)

bar = Scriptable(Int, has_side_effects=True)

@scriptable
def baz(self):

pass

def weeble(self)
pass

Create the scriptable object. It’s creation won’t be recorded because
__init__() isn’t decorated.
obj = DataModel()

4 Chapter 1. Application Scripting Framework

AppTools Documentation, Release 3.1.0

These will be recorded.
obj.foo = ’’
obj.bar = 10
obj.baz()

This will not be recorded.
obj.weeble()

This won’t be recorded unless ’f’ is passed to something that is
recorded.
f = obj.foo

This will be recorded because we set ’has_side_effects’.
b = obj.bar

1.4.2 Dynamic Specification

A scripting API can also be specified dynamically. The following example produces a scriptable object with the same
scriptable API as above (with the exception that has_side_effects cannot be specified dynamically):

from enthought.appscripting.api import create_scriptable_type
from enthought.traits.api import HasTraits, Int, Str

class DataModel(HasTraits):

foo = Str

bar = Int

def baz(self):
pass

def weeble(self)
pass

Create a scriptable type based on the above.
ScriptableDataModel = create_scriptable_type(DataModel, excludes=[’weeble’])

Now create scriptable objects from the scriptable type. Note that each
object has the same type.
obj1 = ScriptableDataModel()
obj2 = ScriptableDataModel()

Instead we could bypass the type and make the objects themselves scriptable as follows:

from enthought.appscripting.api import make_object_scriptable
from enthought.traits.api import HasTraits, Int, Str

class DataModel(HasTraits):

foo = Str

bar = Int

def baz(self):

1.4. Implementing Application Scripting 5

AppTools Documentation, Release 3.1.0

pass

def weeble(self)
pass

Create unscriptable objects.
obj1 = DataModel()
obj2 = DataModel()

Now make the objects scriptable. Note that each object has a different
type, each a sub-type of ’DataModel’.
make_object_scriptable(obj1, excludes=[’weeble’])
make_object_scriptable(obj2, excludes=[’weeble’])

With a more sophisticated design we may choose to specify the scriptable API as an interface as follows:

from enthought.appscripting.api import make_object_scriptable
from enthought.traits.api import HasTraits, Int, Interface, Str

class DataModel(HasTraits):

foo = Str

bar = Int

def baz(self):
pass

def weeble(self)
pass

class IScriptableDataModel(Interface):

foo = Str

bar = Int

def baz(self):
pass

Create an unscriptable object.
obj = DataModel()

Now make the object scriptable.
make_object_scriptable(obj, api=IScriptableDataModel)

1.4.3 Scripting __init__()

Making a type’s __init__() method has advantages and disadvantages. It means that the creation of scriptable
objects will be recorded in a script (along with the necessary import statements). This means that the script can be
run independently of your application by the standard Python interpreter.

The disadvantage is that, if you have a complex data model, with many interdependencies, then defining a complete
and consistent scripting API that allows a script to run independently may prove difficult. In such cases it is better to
have the application create and bind the scriptable objects itself.

6 Chapter 1. Application Scripting Framework

CHAPTER

TWO

PERMISSIONS FRAMEWORK -
INTRODUCTION

The Permissions Framework is a component of the Enthought Tool Suite that provides developers with the facility to
limit access to parts of an application unless the user is appropriately authorised. In other words it enables and disables
different parts of the GUI according to the identity of the user.

The framework includes an API to allow it to be integrated with an organisation’s existing security infrastructure, for
example to look users up in a corporate LDAP directory.

The framework is completely configurable. Alternate implementations of all major components can be provided if
necessary. The default implementations provide a simple local filesystem user database and allows roles to be defined
and assigned to users.

The framework does not provide any facility for protecting access to data. It is not possible to implement such
protection in Python and using the file security provided by a typical operating system.

2.1 Framework Concepts

The following are the concepts supported by the framework.

• Permission

A permission is the basic tool that a developer uses to specify that access to a part of the application should
be restricted. If the current user has the permission then access is granted. A permission may be attached to a
PyFace action, to an item of a TraitsUI view, or to a GUI toolkit specific widget. When the user is denied access,
the corresponding GUI control is disabled or completely hidden.

• User

Each application has a current user who is either authorised or unauthorised. In order to become authorised a
user must identify themselves and authenticate that identity.

An arbitrary piece of data (called a blob) can be associated with an authorised user which (with user manager
support) can be stored securely. This might be used, for example, to store sensitive user preferences, or to
implement a roaming profile.

• User Manager

The user manager is responsible for authorising the current user and, therefore, defines how that is done. It also
provides information about the user population to the policy manager. It may also, optionally, provide the ability
to manage the user population (eg. add or delete users). The user manager must either maintain a persistent
record of the user population, or interface with an external user database or directory service.

The default user manager uses password based authorisation.

7

AppTools Documentation, Release 3.1.0

The user manager persists its data in a user database. The default user manager provides an API so that different
implementations of the user database can be used (for example to store the data in an RDBMS, or to integrate
with an existing directory service). A default user database is provided that pickles the data in a local file.

• Policy Manager

The policy manager is responsible for assigning permissions to users and for determining the permissions as-
signed to the current user. To do this it must maintain a persistent record of those assignments.

The default policy manager supplied with the framework uses roles to make it easier for an administrator to
manage the relationships between permissions and users. A role is defined as a named set of permissions, and a
user may have one or more roles assigned to them.

The policy manager persists its data in a policy database. The default policy manager provides an API so that
different implementations of the policy database can be used (for example to store the data in an RDBMS). A
default policy database is provided that pickles the data in a local file.

• Permissions Manager

The permissions manager is a singleton object used to get and set the current policy and user managers.

2.2 Framework APIs

The APIs provided by the permissions framework can be split into the following groups.

• Application API

This part of the API is used by application developers.

• Policy Manager API

This is the interface that an alternative policy manager must implement. The need to implement an alternative is
expected to be very rare and so the API isn’t covered further. See the definition of the IPolicyManager interface
for the details.

• Default Policy Manager Data API

This part of the API is used by developers to store the policy’s persistent data in a more secure location (eg. on
a remote server) than that provided by the default implementation.

• User Manager API

This is the interface that an alternative user manager must implement. The need to implement an alternative is
expected to be very rare and so the API isn’t covered further. See the definition of the IUserManager interface
for the details.

• Default User Manager Data API

This part of the API is used by developers to store the user database in a more secure location (eg. on a remote
server) than that provided by the default implementation.

The complete API documentation is available as endo generated HTML.

2.3 What Do I Need to Reimplement?

The architecture of the permissions framework comprises several layers, each of which can reimplemented to meet the
requirements of a particular environment. Hopefully the following questions and answers will clarify what needs to
be reimplemented depending on your environment.

Q: Do you want to use roles to group permissions and assign them to users?

8 Chapter 2. Permissions Framework - Introduction

https://svn.enthought.com/enthought/browser/AppTools/trunk/enthought/permissions/i_policy_manager.py
https://svn.enthought.com/enthought/browser/AppTools/trunk/enthought/permissions/i_user_manager.py

AppTools Documentation, Release 3.1.0

A: If yes then use the supplied PolicyManager, otherwise provide your own IPolicyManager implementation.

Q: Do you want users to be authenticated using a password?

A: If yes then use the supplied UserManager, otherwise provide your own IUserManager implementation.

Q: Does the IUser interface allow you to store all the user specific information you need?

A: If yes then use the supplied UserDatabase, otherwise provide your own IUserDatabase implementation.

Q: Do you want to store your user accounts as pickled data in a local file?

A: If yes then use the supplied default, otherwise provide UserDatabase with your own IUserStorage implemen-
tation.

Q: Do you want to store your policy data (ie. roles and role assignments) as pickled data in a local file?

A: If yes then use the supplied default, otherwise provide PolicyManager with your own IPolicyStorage imple-
mentation.

2.4 Deploying Alternative Managers

The permissions framework will first try to import the different managers from the
enthought.permissions.external namespace. The default managers are only used if no alternative
was found. Therefore, alternative managers should be deployed as an egg containing that namespace.

Specifically the framework looks for the following classes:

PolicyManager from enthought.permissions.external.policy_manager

PolicyStorage from enthought.permissions.external.policy_storage

UserDatabase from enthought.permissions.external.user_database

UserManager from enthought.permissions.external.user_manager

UserStorage from enthought.permissions.external.user_storage

The example server is such a package that provides PolicyStorage and UserStorage implementations that use an XML-
RPC based server to provide remote (and consequently more secure) policy and user databases.

2.5 Using the Default Storage Implementations

The default policy and user managers both (again by default) persist their data as pickles in local files called
ets_perms_policydb and ets_perms_userdb respectively. By default these are stored in the application’s
home directory (ie. that returned by ETSConfig.application_home).

Note that this directory is normally in the user’s own directory structure whereas it needs to be available to all users of
the application.

If the ETS_PERMS_DATA_DIR environment variable is set then its value is used instead.

The directory must be writeable by all users of the application.

It should be restated that the default implementations do not provide secure access to the permissions and user data.
They are useful in a cooperative environment and as working examples.

2.4. Deploying Alternative Managers 9

AppTools Documentation, Release 3.1.0

10 Chapter 2. Permissions Framework - Introduction

CHAPTER

THREE

APPLICATION API

This section provides an overview of the part of the ETS Permissions Framework API used by application developers.
The Permissions Framework example demonstrates the API in use. An application typically uses the API to do the
following:

• define permissions

• apply permissions

• user authentication

• getting and setting user data

• integrate management actions.

3.1 Defining Permissions

A permission is the object that determines the user’s access to a part of an application. While it is possible to apply
the same permission to more than one part of an application, it is generally a bad idea to do so as it makes it difficult
to separate them at a later date.

A permission has an id and a human readable description. Permission ids must be unique. By convention a dotted
notation is used for ids to give them a structure. Ids should at least be given an application or plugin specific prefix to
ensure their uniqueness.

Conventionally all an applications permissions are defined in a single permissions.py module. The following is
an extract of the example’s permissions.py module:

from enthought.permissions.api import Permission

Add a new person.
NewPersonPerm = Permission(id=’ets.permissions.example.person.new’,

description=u"Add a new person")

Update a person’s age.
UpdatePersonAgePerm = Permission(id=’ets.permissions.example.person.age.update’,

description=u"Update a person’s age")

View or update a person’s salary.
PersonSalaryPerm = Permission(id=’ets.permissions.example.person.salary’,

description=u"View or update a person’s salary")

11

https://svn.enthought.com/enthought/browser/AppTools/trunk/examples/permissions/application/

AppTools Documentation, Release 3.1.0

3.2 Applying Permissions

Permissions are applied to different parts of an applications GUI. When the user has been granted a permission then
the corresponding part of the GUI is displayed normally. When the user is denied a permission then the corresponding
part of the GUI is disabled or completely hidden.

Permissions can be applied to TraitsUI view items and to any object which can be wrapped in a SecureProxy.

3.2.1 TraitsUI View Items

Items in TraitsUI views have enabled_when and visible_when traits that are evaluated to determine if the item
should be enabled or visible respectively. These are used to apply permissions by storing the relevant permissions
in the model so that they are available to the view. The enabled_when and visible_when traits then simply
reference the permission’s granted trait. The granted trait automatically reflects whether or not the user currently
has the corresponding permission.

In order for the view to be correctly updated when the user’s permissions change (ie. when they become authenticated)
the view must use the SecureHandler handler. This handler is a simple sub-class of the standard Traits Handler
class.

The following extract from the example shows a default view of the Person object that enables the age item
when the user has the UpdatePersonAgePerm permission and shows the salary item when the user has the
PersonSalaryPerm permission:

from enthought.permissions.api import SecureHandler
from enthought.traits.api import HasTraits, Int, Unicode
from enthought.traits.ui.api import Item, View

from permissions import UpdatePersonAgePerm, PersonSalaryPerm

class Person(HasTraits):
"""A simple example of an object model"""

Name.
name = Unicode

Age in years.
age = Int

Salary.
salary = Int

Define the default view with permissions attached.
age_perm = UpdatePersonAgePerm
salary_perm = PersonSalaryPerm

traits_view = View(
Item(name=’name’),
Item(name=’age’, enabled_when=’object.age_perm.granted’),
Item(name=’salary’, visible_when=’object.salary_perm.granted’),
handler=SecureHandler)

12 Chapter 3. Application API

AppTools Documentation, Release 3.1.0

3.2.2 Wrapping in a SecureProxy

Any object can have permissions applied by wrapping it in a SecureProxy object. An adapter is used that manages
the enabled and visible states of the proxied object according to the current user’s permissions. Otherwise the proxy
behaves just like the object being proxied.

Adapters are included for the following types of object:

• PyFace actions

• PyFace widgets FIXME: TODO

• Qt widgets

• wx widgets

See Writing SecureProxy Adapters for a description of how to write adapters for other types of objects.

The following extract from the example shows the wrapping of a standard PyFace action and the application of the
NewPersonPerm permission:

from enthought.permissions.api import SecureProxy

from permissions import NewPersonPerm

...

def _new_person_action_default(self):
"""Trait initializer."""

Create the action and secure it with the appropriate permission.
act = Action(name=’New Person’, on_perform=self._new_person)
act = SecureProxy(act, permissions=[NewPersonPerm])

return act

A SecureProxy also accepts a show argument that, when set to False, hides the object when it becomes disabled.

3.3 Authenticating the User

The user manager supports the concept of the current user and is responsible for authenticating the user (and subse-
quently unauthorising the user if required).

The code fragment to authenticate the current user is:

from enthought.permissions.api import get_permissions_manager

get_permissions_Manager().user_manager.authenticate_user()

Unauthorising the current user is done using the unauthenticate_user() method.

As a convenience two PyFace actions, called LoginAction and LogoutAction, are provided that wrap these two
methods.

As a further convenience a PyFace menu manager, called UserMenuManager, is provided that contains all the user
and management actions (see below) in the permissions framework. This is used by the example.

The user menu, login and logout actions can be imported from enthought.permissions.action.api.

3.3. Authenticating the User 13

AppTools Documentation, Release 3.1.0

3.4 Getting and Setting User Data

The user manager has a user trait that is an object that implements the IUser interface. It is only valid once the
user has been authenticated.

The IUser interface has a blob trait that holds any binary data (as a Python string). The data will be read when the
user is authenticated. The data will be written whenever it is changed.

3.5 Integrating Management Actions

Both policy and user managers can provide actions that provide access to various management functions. Both have
a management_actions trait that is a list of PyFace actions that invoke appropriate dialogs that allow the user to
manage the policy and the user population appropriately.

User managers also have a user_actions trait that is a list of PyFace actions that invoke appropriate dialogs that
allow the user to manage themselves. For example, the default user manager provides an action that allows a user to
change their password.

The default policy manager provides actions that allows roles to be defined in terms of sets of permissions, and allows
users to be assigned one or more roles.

The default user manager provides actions that allows users to be added, modified and deleted. A user manager that
integrates with an enterprise’s secure directory service may not provide any management actions.

All management actions have appropriate permissions attached to them.

3.6 Writing SecureProxy Adapters

SecureProxy will automatically handle most of the object types you will want to apply permissions to. However
it is possible to implement additional adapters to support other object types. To do this you need to implement a
sub-class of AdapterBase and register it.

Adapters tend to be one of two styles according to how the object’s enabled and visible states are changed. If the
states are changed via attributes (typically Traits based objects) then the adapter will cause a proxy to be created for
the object. If the states are changed via methods (typically toolkit widgets) then the adapter will probably modify the
object itself. We will refer to these two styles as wrapping adapters and patching adapters respectively.

The following gives a brief overview of the AdapterBase class:

proxied This instance attribute is a reference to the original object.

register_adapter(adapter, type, type, ...) This is a class method that is used to register your
adapter and one or more object types that it handles.

adapt() This is a method that should be reimplemented by patching adapters. (The default implementation will
cause a proxy to be created for wrapping adapters.) This is where any patching of the proxied attribute is
done. The object returned will be returned by SecureProxy() and would normally be the patched object -
but can be any object.

setattr(name, value) This method should be reimplemented by wrapping adapters to intercept the setting
of relevant attributes of the proxied object. The default implementation should be used as the fallback for
irrelevant attributes.

get_enabled() This method must be reimplemented to return the current enabled state.

set_enabled(value) This method must be reimplemented to set the enabled state to the given value.

14 Chapter 3. Application API

AppTools Documentation, Release 3.1.0

update_enabled(value) This method is called by your adapter to set the desired value of the enabled state.
The actual state set will depend on the current user’s permissions.

get_visible() This method must be reimplemented to return the current visible state.

set_visible(value) This method must be reimplemented to set the visible state to the given value.

update_visible(value) This method is called by your adapter to set the desired value of the visible state. The
actual state set will depend on the current user’s permissions.

The AdapterBase class is defined in adapter_base.py.

The PyFace action adapter is an example of a wrapping adapter.

The PyQt widget adapter is an example of a patching adapter.

3.6. Writing SecureProxy Adapters 15

https://svn.enthought.com/enthought/browser/AppTools/trunk/enthought/permissions/adapter_base.py
https://svn.enthought.com/enthought/browser/AppTools/trunk/enthought/permissions/adapters/pyface_action.py
https://svn.enthought.com/enthought/browser/AppTools/trunk/enthought/permissions/adapters/qt4_widget.py

AppTools Documentation, Release 3.1.0

16 Chapter 3. Application API

CHAPTER

FOUR

DEFAULT POLICY MANAGER DATA API

This section provides an overview of the part of the ETS Permissions Framework API used by developers who want
to store a policy manager’s persistent data in a more secure location (eg. a remote server) than that provided by the
default implementation.

The API is defined by the default policy manager which uses roles to make it easier to assign permissions to users. If
this API isn’t sufficiently flexible, or if roles are inappropriate, then an alternative policy manager should be imple-
mented.

The API is fully defined by the IPolicyStorage interface. The default implementation of this interface stores the policy
database as a pickle in a local file.

4.1 Overview of IPolicyStorage

The IPolicyStorage interface defines a number of methods that must be implemented to read and write to the policy
database. The methods are designed to be implemented using simple SQL statements.

In the event of an error a method must raise the PolicyStorageError exception. The string representation of the
exception is used as an error message that is displayed to the user.

17

https://svn.enthought.com/enthought/browser/AppTools/trunk/enthought/permissions/default/i_policy_storage.py
https://svn.enthought.com/enthought/browser/AppTools/trunk/enthought/permissions/default/i_policy_storage.py

AppTools Documentation, Release 3.1.0

18 Chapter 4. Default Policy Manager Data API

CHAPTER

FIVE

DEFAULT USER MANAGER DATA API

This section provides an overview of the part of the ETS Permissions Framework API used by developers who want to
store a user database in a more secure location (eg. a remote server) than that provided by the default implementation.

The API is defined by the default user manager which uses password based authorisation. If this API isn’t sufficiently
flexible, or if another method of authorisation is used (biometrics for example) then an alternative user manager should
be implemented.

The API is fully defined by the IUserDatabase interface. This allows user databases to be implemented that extend the
IUser interface and store additional user related data. If the user database is being persisted in secure storage (eg. a
remote RDBMS) then this could be used to store sensitive data (eg. passwords for external systems) that shouldn’t be
stored as ordinary preferences.

In most cases there will be no requirement to store additional user related data than that defined by IUser so the
supplied UserDatabase implementation (which provides all the GUI code required to implement the IUserDatabase
interface) can be used. The UserDatabase implementation delegates the access to the user database to an object
implementing the IUserStorage interface. The default implementation of this interface stores the user database as a
pickle in a local file.

5.1 Overview of IUserStorage

The IUserStorage interface defines a number of methods that must be implemented to read and write to the user
database. The methods are designed to be implemented using simple SQL statements.

In the event of an error a method must raise the UserStorageError exception. The string representation of the
exception is used as an error message that is displayed to the user.

5.2 Overview of IUserDatabase

The IUserDatabase interface defines a set of Bool traits, all beginning with can_, that describe the capabilities of
a particular implementation. For example, the can_add_user trait is set by an implementation if it supports the
ability to add a new user to the database.

Each of these capability traits has a corresponding method which has the same name except for the can_ prefix. The
method only needs to be implemented if the corresponding traits is True. The method, for example add_user() is
called by the user manager to implement the capability.

The interface has two other methods.

The bootstrapping() method is called by the user manager to determine if the database is bootstrapping. Typ-
ically this is when the database is empty and no users have yet been defined. The permissions framework treats this
situation as a special case and is able to relax the enforcement of permissions to allow users and permissions to be

19

https://svn.enthought.com/enthought/browser/AppTools/trunk/enthought/permissions/default/i_user_database.py
https://svn.enthought.com/enthought/browser/AppTools/trunk/enthought/permissions/i_user.py
https://svn.enthought.com/enthought/browser/AppTools/trunk/enthought/permissions/default/user_database.py
https://svn.enthought.com/enthought/browser/AppTools/trunk/enthought/permissions/default/i_user_database.py
https://svn.enthought.com/enthought/browser/AppTools/trunk/enthought/permissions/default/i_user_database.py
https://svn.enthought.com/enthought/browser/AppTools/trunk/enthought/permissions/default/user_database.py
https://svn.enthought.com/enthought/browser/AppTools/trunk/enthought/permissions/default/i_user_storage.py
https://svn.enthought.com/enthought/browser/AppTools/trunk/enthought/permissions/default/i_user_storage.py
https://svn.enthought.com/enthought/browser/AppTools/trunk/enthought/permissions/default/i_user_database.py

AppTools Documentation, Release 3.1.0

initially defined.

The user_factory() method is called by the user manager to create a new user object, ie. an object that im-
plements the IUser interface. This allows an implementation to extend the IUser interface and store additional user
related data in the object if the blob trait proves insufficient.

20 Chapter 5. Default User Manager Data API

https://svn.enthought.com/enthought/browser/AppTools/trunk/enthought/permissions/i_user.py
https://svn.enthought.com/enthought/browser/AppTools/trunk/enthought/permissions/i_user.py

CHAPTER

SIX

PREFERENCES

The preferences package provides a simple API for managing application preferences. The classes in the package are
implemented using a layered approach where the lowest layer provides access to the raw preferences mechanism and
each layer on top providing more convenient ways to get and set preference values.

21

AppTools Documentation, Release 3.1.0

22 Chapter 6. Preferences

CHAPTER

SEVEN

THE BASIC PREFERENCES
MECHANISM

Lets start by taking a look at the lowest layer which consists of the IPreferences interface and its default implementation
in the Preferences class. This layer implements the basic preferences system which is a hierarchical arrangement of
preferences ‘nodes’ (where each node is simply an object that implements the IPreferences interface). Nodes in the
hierarchy can contain preference settings and/or child nodes. This layer also provides a default way to read and write
preferences from the filesystem using the excellent ConfigObj package.

This all sounds a bit complicated but, believe me, it isn’t! To prove it (hopefully) lets look at an example. Say I have
the following preferences in a file ‘example.ini’:

[acme.ui]
bgcolor = blue
width = 50
ratio = 1.0
visible = True

[acme.ui.splash_screen]
image = splash
fgcolor = red

I can create a preferences hierarchy from this file by:

>>> from enthought.preferences.api import Preferences
>>> preferences = Preferences(filename=’example.ini’)
>>> preferences.dump()

Node() {}
Node(acme) {}

Node(ui) {’bgcolor’: ’blue’, ’ratio’: ’1.0’, ’width’: ’50’, ’visible’: ’True’}
Node(splash_screen) {’image’: ’splash’, ’fgcolor’: ’red’}

The ‘dump’ method (useful for debugging etc) simply ‘pretty prints’ a preferences hierarchy. The dictionary next to
each node contains the node’s actual preferences. In this case, the root node (the node with no name) is the preferences
object that we created. This node now has one child node ‘acme’, which contains no preferences. The ‘acme’ node
has one child, ‘ui’, which contains some preferences (e.g. ‘bgcolor’) and also a child node ‘splash_screen’ which also
contains preferences (e.g. ‘image’).

To look up a preference we use:

>>> preferences.get(’acme.ui.bgcolor’)
’blue’

23

http://www.voidspace.org.uk/python/configobj.html

AppTools Documentation, Release 3.1.0

If no such preferences exists then, by default, None is returned:

>>> preferences.get(’acme.ui.bogus’) is None
True

You can also specify an explicit default value:

>>> preferences.get(’acme.ui.bogus’, ’fred’)
’fred’

To set a preference we use:

>>> preferences.set(’acme.ui.bgcolor’, ’red’)
>>> preferences.get(’acme.ui.bgcolor’)
’red’

And to make sure the preferences are saved back to disk:

>>> preferences.flush()

To add a new preference value we simply set it:

>>> preferences.set(’acme.ui.fgcolor’, ’black’)
>>> preferences.get(’acme.ui.fgcolor’)
’black’

Any missing nodes in a call to ‘set’ are created automatically, hence:

>>> preferences.set(’acme.ui.button.fgcolor’, ’white’)
>>> preferences.get(’acme.ui.button.fgcolor’)
’white’

Preferences can also be ‘inherited’. e.g. Notice that the ‘splash_screen’ node does not contain a ‘bgcolor’ preference,
and hence:

>>> preferences.get(’acme.ui.splash_screen.bgcolor’) is None
True

But if we allow the ‘inheritance’ of preference values then:

>>> preferences.get(’acme.ui.splash_screen.bgcolor’, inherit=True)
’red’

By using ‘inheritance’ here the preferences system will try the following preferences:

’acme.ui.splash_screen.bgcolor’
’acme.ui.bgcolor’
’acme.bgcolor’
’bgcolor’

24 Chapter 7. The Basic Preferences Mechanism

AppTools Documentation, Release 3.1.0

7.1 Strings, Glorious Strings

At this point it is worth mentioning that preferences are always stored and returned as strings. This is because of
the limitations of the traditional ‘.ini’ file format i.e. they don’t contain any type information! Now before you start
panicking, this doesn’t mean that all of your preferences have to be strings! Currently the preferences system allows,
strings(!), booleans, ints, longs, floats and complex numbers. When you store a non-string value it gets converted to a
string for you, but you always get a string back:

>>> preferences.get(’acme.ui.width’)
’50’
>>> preferences.set(’acme.ui.width’, 100)
>>> preferences.get(’acme.ui.width’)
’100’

>>> preferences.get(’acme.ui.visible’)
’True’
>>> preferences.set(’acme.ui.visible’, False)
>>> preferences.get(’acme.ui.visible’)
’False’

This is obviously not terribly convenient, and so the following section discusses how we associate type information
with our preferences to make getting and setting them more natural.

7.1. Strings, Glorious Strings 25

AppTools Documentation, Release 3.1.0

26 Chapter 7. The Basic Preferences Mechanism

CHAPTER

EIGHT

PREFERENCES AND TYPES

As mentioned previously, we would like to be able to get and set non-string preferences in a more convenient way.
This is where the PreferencesHelper class comes in.

Let’s take another look at ‘example.ini’:

[acme.ui]
bgcolor = blue
width = 50
ratio = 1.0
visible = True

[acme.ui.splash_screen]
image = splash
fgcolor = red

Say, I am interested in the preferences in the ‘acme.ui’ section. I can use a preferences helper as follows:

from enthought.preferences.api import PreferencesHelper

class SplashScreenPreferences(PreferencesHelper):
""" A preferences helper for the splash screen. """

PREFERENCES_PATH = ’acme.ui’

bgcolor = Str
width = Int
ratio = Float
visible = Bool

>>> preferences = Preferences(filename=’example.ini’)
>>> helper = SplashScreenPreferences(preferences=preferences)
>>> helper.bgcolor
’blue’
>>> helper.width
100
>>> helper.ratio
1.0
>>> helper.visible
True

And, obviously, I can set the value of the preferences via the helper too:

27

AppTools Documentation, Release 3.1.0

>>> helper.ratio = 0.5

And if you want to prove to yourself it really did set the preference:

>>> preferences.get(’acme.ui.ratio’)
’0.5’

Using a preferences helper you also get notified via the usual trait mechanism when the preferences are changed (either
via the helper or via the preferences node directly:

def listener(obj, trait_name, old, new):
print trait_name, old, new

>>> helper.on_trait_change(listener)
>>> helper.ratio = 0.75
ratio 0.5 0.75
>>> preferences.set(’acme.ui.ratio’, 0.33)
ratio 0.75 0.33

If you always use the same preference node as the root of your preferences you can also set the class attribute ‘Prefer-
encesHelper.preferences’ to be that node and from then on in, you don’t have to pass a preferences collection in each
time you create a helper:

>>> PreferencesHelper.preferences = Preferences(filename=’example.ini’)
>>> helper = SplashScreenPreferences()
>>> helper.bgcolor
’blue’
>>> helper.width
100
>>> helper.ratio
1.0
>>> helper.visible
True

28 Chapter 8. Preferences and Types

CHAPTER

NINE

SCOPED PREFERENCES

In many applications the idea of preferences scopes is useful. In a scoped system, an actual preference value can be
stored in any scope and when a call is made to the ‘get’ method the scopes are searched in order of precedence.

The default implementation (in the ScopedPreferences class) provides two scopes by default:

1. The application scope

This scope stores itself in the ‘ETSConfig.application_home’ directory. This scope is generally used when setting any
user preferences.

1. The default scope

This scope is transient (i.e. it does not store itself anywhere). This scope is generally used to load any predefined
default values into the preferences system.

If you are happy with the default arrangement, then using the scoped preferences is just like using the plain old
non-scoped version:

>>> from enthought.preferences.api import ScopedPreferences
>>> preferences = ScopedPreferences(filename=’example.ini’)
>>> preferences.load(’example.ini’)
>>> p.dump()

Node() {}
Node(application) {}

Node(acme) {}
Node(ui) {’bgcolor’: ’blue’, ’ratio’: ’1.0’, ’width’: ’50’, ’visible’: ’True’}
Node(splash_screen) {’image’: ’splash’, ’fgcolor’: ’red’}

Node(default) {}

Here you can see that the root node now has a child node representing each scope.

When we are getting and setting preferences using scopes we generally want the following behaviour:

a) When we get a preference we want to look it up in each scope in order. The first scope that contains a value ‘wins’.

b) When we set a preference, we want to set it in the first scope. By default this means that when we set a preference it
will be set in the application scope. This is exactly what we want as the application scope is the scope that is persistent.

So usually, we just use the scoped preferences as before:

>>> preferences.get(’acme.ui.bgcolor’)
’blue’
>>> preferences.set(’acme.ui.bgcolor’, ’red’)

29

AppTools Documentation, Release 3.1.0

>>> preferences.dump()

Node() {}
Node(application) {}

Node(acme) {}
Node(ui) {’bgcolor’: ’red’, ’ratio’: ’1.0’, ’width’: ’50’, ’visible’: ’True’}
Node(splash_screen) {’image’: ’splash’, ’fgcolor’: ’red’}

Node(default) {}

And, conveniently, preference helpers work just the same with scoped preferences too:

>>> PreferencesHelper.preferences = ScopedPreferences(filename=’example.ini’)
>>> helper = SplashScreenPreferences()
>>> helper.bgcolor
’blue’
>>> helper.width
100
>>> helper.ratio
1.0
>>> helper.visible
True

9.1 Accessing a particular scope

Should you care about getting or setting a preference in a particular scope then you use the following syntax:

>>> preferences.set(’default/acme.ui.bgcolor’, ’red’)
>>> preferences.get(’default/acme.ui.bgcolor’)
’red’
>>> preferences.dump()

Node() {}
Node(application) {}

Node(acme) {}
Node(ui) {’bgcolor’: ’red’, ’ratio’: ’1.0’, ’width’: ’50’, ’visible’: ’True’}
Node(splash_screen) {’image’: ’splash’, ’fgcolor’: ’red’}

Node(default) {}
Node(acme) {}

Node(ui) {’bgcolor’: ’red’}

You can also get hold of a scope via:

>>> default = preferences.get_scope(’default’)

And then perform any of the usual operations on it.

30 Chapter 9. Scoped Preferences

CHAPTER

TEN

FURTHER READING

So that’s a quick tour around the basic useage of the preferences API. For more imformation about what is provided
take a look at the API documentation.

If you are using Envisage to build your applications then you might also be interested in the Preferences in Envisage
section.

31

AppTools Documentation, Release 3.1.0

32 Chapter 10. Further Reading

CHAPTER

ELEVEN

PREFERENCES IN ENVISAGE

This section discusses how an Envisage application uses the preferences mechanism. Envisage tries not to dictate too
much, and so this describes the default behaviour, but you are free to override it as desired.

Envisage uses the default implementation of the ScopedPreferences class which is made available via the application’s
‘preferences’ trait:

>>> application = Application(id=’myapplication’)
>>> application.preferences.set(’acme.ui.bgcolor’, ’yellow’)
>>> application.preferences.get(’acme.ui.bgcolor’)
’yellow’

Hence, you use the Envisage preferences just like you would any other scoped preferences.

It also registers itself as the default preferences node used by the PreferencesHelper class. Hence you don’t need to
provide a preferences node explicitly to your helper:

>>> helper = SplashScreenPreferences()
>>> helper.bgcolor
’blue’
>>> helper.width
100
>>> helper.ratio
1.0
>>> helper.visible
True

The only extra thing that Envisage does for you is to provide an extension point that allows you to contribute any
number of ‘.ini’ files that are loaded into the default scope when the application is started.

e.g. To contribute a preference file for my plugin I might use:

class MyPlugin(Plugin):
...

@contributes_to(’enthought.envisage.preferences’)
def get_preferences(self, application):

return [’pkgfile://mypackage:preferences.ini’]

33

AppTools Documentation, Release 3.1.0

34 Chapter 11. Preferences in Envisage

CHAPTER

TWELVE

AUTOMATIC SCRIPT RECORDING

This package provides a very handy and powerful Python script recording facility. This can be used to:

• record all actions performed on a traits based UI into a human readable, Python script that should be able to
recreate your UI actions.

• easily learn the scripting API of an application.

This package is not just a toy framework and is powerful enough to provide full script recording to the Mayavi
application. Mayavi is a powerful 3D visualization tool that is part of ETS.

12.1 The scripting API

The scripting API primarily allows you to record UI actions for objects that have Traits. Technically the framework
listens to all trait changes so will work outside a UI. We do not document the full API here, the best place to look
for that is the enthought.scripting.recorder module which is reasonably well documented. We provide a
high level overview of the library.

The quickest way to get started is to look at a small example.

12.1.1 A tour by example

The following example is taken from the test suite. Consider a set of simple objects organized in a hierarchy:

from enthought.traits.api import (HasTraits, Float, Instance,
Str, List, Bool, HasStrictTraits, Tuple, Range, TraitPrefixMap,
Trait)

from enthought.scripting.api import (Recorder, recordable,
set_recorder)

class Property(HasStrictTraits):
color = Tuple(Range(0.0, 1.0), Range(0.0, 1.0), Range(0.0, 1.0))
opacity = Range(0.0, 1.0, 1.0)
representation = Trait(’surface’,

TraitPrefixMap({’surface’:2,
’wireframe’: 1,
’points’: 0}))

class Toy(HasTraits):
color = Str
type = Str
Note the use of the trait metadata to ignore this trait.

35

http://code.enthought.com/projects/mayavi
http://code.enthought.com/projects/tool-suite.php

AppTools Documentation, Release 3.1.0

ignore = Bool(False, record=False)

class Child(HasTraits):
name = Str(’child’)
age = Float(10.0)
The recorder walks through sub-instances if they are marked
with record=True
property = Instance(Property, (), record=True)
toy = Instance(Toy, record=True)
friends = List(Str)

The decorator records the method.
@recordable
def grow(self, x):

"""Increase age by x years."""
self.age += x

class Parent(HasTraits):
children = List(Child, record=True)
recorder = Instance(Recorder, record=False)

Using these simple classes we first create a simple object hierarchy as follows:

p = Parent()
c = Child()
t = Toy()
c.toy = t
p.children.append(c)

Given this hierarchy, we’d like to be able to record a script. To do this we setup the recording infrastructure:

from enthought.mayavi.core.recorder import Recorder, set_recorder
Create a recorder.
r = Recorder()
Set the global recorder so the decorator works.
set_recorder(r)
r.register(p)
r.recording = True

The key method here is the r.register(p) call above. It looks at the traits of p and finds all traits and nested
objects that specify a record=True in their trait metadata (all methods starting and ending with _ are ignored). All
sub-objects are in turn registered with the recorder and so on. Callbacks are attached to traits changes and these are
wired up to produce readable and executable code. The set_recorder(r) call is also very important and sets the
global recorder so the framework listens to any functions that are decorated with the recordable decorator.

Now lets test this out like so:

The following will be recorded.
c.name = ’Shiva’
c.property.representation = ’w’
c.property.opacity = 0.4
c.grow(1)

To see what’s been recorded do this:

36 Chapter 12. Automatic script recording

AppTools Documentation, Release 3.1.0

print r.script

This prints:

child = parent.children[0]
child.name = ’Shiva’
child.property.representation = ’wireframe’
child.property.opacity = 0.40000000000000002
child.grow(1)

The recorder internally maintains a mapping between objects and unique names for each object. It also stores the
information about the location of a particular object in the object hierarchy. For example, the path to the Toy instance
in the hierarchy above is parent.children[0].toy. Since scripting with lists this way can be tedious, the
recorder first instantiates the child:

child = parent.children[0]

Subsequent lines use the child attribute. The recorder always tries to instantiate the object referred to using its path
information in this manner.

To record a function or method call one must simply decorate the function/method with the recordable decorator.
Nested recordable functions are not recorded and trait changes are also not recorded if done inside a recordable
function.

Note:

1. It is very important to note that the global recorder must be set via the set_recorder method. The
recordable decorator relies on this being set to work.

2. The recordable decorator will work with plain Python classes and with functions too.

To stop recording do this:

r.unregister(p)
r.recording = False

The r.unregister(p) reverses the r.register(p) call and unregisters all nested objects as well.

12.1.2 Advanced use cases

Here are a few advanced use cases.

• The API also provides a RecorderWithUI class that provides a simple user interface that prints the recorded
script and allows the user to save the script.

• Sometimes it is not enough to just record trait changes, one may want to pass an arbitrary string or command
when recording is occuring. To allow for this, if one defines a recorder trait on the object, it is set to the
current recorder. One can then use this recorder to do whatever one wants. This is very convenient.

• To ignore specific traits one must specify either a record=False metadata to the trait definition or specify a
list of strings to the register method in the ignore keyword argument.

• If you want to use a specific name for an object on the script you can pass the script_id parameter to the
register function.

12.1. The scripting API 37

AppTools Documentation, Release 3.1.0

For more details on the recorder itself we suggest reading the module source code. It is fairly well documented and
with the above background should be enough to get you going.

38 Chapter 12. Automatic script recording

CHAPTER

THIRTEEN

UNDO FRAMEWORK

The Undo Framework is a component of the Enthought Tool Suite that provides developers with an API that imple-
ments the standard pattern for do/undo/redo commands.

The framework is completely configurable. Alternate implementations of all major components can be provided if
necessary.

13.1 Framework Concepts

The following are the concepts supported by the framework.

• Command

A command is an application defined operation that can be done (i.e. executed), undone (i.e. reverted) and
redone (i.e. repeated).

A command operates on some data and maintains sufficient state to allow it to revert or repeat a change to the
data.

Commands may be merged so that potentially long sequences of similar commands (e.g. to add a character to
some text) can be collapsed into a single command (e.g. to add a word to some text).

• Macro

A macro is a sequence of commands that is treated as a single command when being undone or redone.

• Command Stack

A command is done by pushing it onto a command stack. The last command can be undone and redone by
calling appropriate command stack methods. It is also possible to move the stack’s position to any point and the
command stack will ensure that commands are undone or redone as required.

A command stack maintains a clean state which is updated as commands are done and undone. It may be
explicitly set, for example when the data being manipulated by the commands is saved to disk.

Canned PyFace actions are provided as wrappers around command stack methods to implement common menu
items.

• Undo Manager

An undo manager is responsible for one or more command stacks and maintains a reference to the currently
active stack. It provides convenience undo and redo methods that operate on the currently active stack.

An undo manager ensures that each command execution is allocated a unique sequence number, irrespective
of which command stack it is pushed to. Using this it is possible to synchronise multiple command stacks and
restore them to a particular point in time.

39

AppTools Documentation, Release 3.1.0

An undo manager will generate an event whenever the clean state of the active stack changes. This can be used
to maintain some sort of GUI status indicator to tell the user that their data has been modified since it was last
saved.

Typically an application will have one undo manager and one undo stack for each data type that can be edited. However
this is not a requirement: how the command stack’s in particular are organised and linked (with the user manager’s
sequence number) can need careful thought so as not to confuse the user - particularly in a plugin based application
that may have many editors.

To support this typical usage the PyFace Workbench class has an undo_manager trait and the PyFace Editor
class has a command_stack trait. Both are lazy loaded so can be completely ignored if they are not used.

13.2 API Overview

This section gives a brief overview of the various classes implemented in the framework. The complete API documen-
tation is available as endo generated HTML.

The example application demonstrates all the major features of the framework.

13.2.1 UndoManager

The UndoManager class is the default implementation of the IUndoManager interface.

active_stack This trait is a reference to the currently active command stack and may be None. Typically it is set
when some sort of editor becomes active.

active_stack_clean This boolean trait reflects the clean state of the currently active command stack. It is
intended to support a “document modified” indicator in the GUI. It is maintained by the undo manager.

stack_updated This event is fired when the index of a command stack is changed. A reference to the stack is
passed as an argument to the event and may not be the currently active stack.

undo_name This Unicode trait is the name of the command that can be undone, and will be empty if there is no such
command. It is maintained by the undo manager.

redo_name This Unicode trait is the name of the command that can be redone, and will be empty if there is no such
command. It is maintained by the undo manager.

sequence_nr This integer trait is the sequence number of the next command to be executed. It is incremented
immediately before a command’s do() method is called. A particular sequence number identifies the state of
all command stacks handled by the undo manager and allows those stacks to be set to the point they were at at
a particular point in time. In other words, the sequence number allows otherwise independent command stacks
to be synchronised.

undo() This method calls the undo() method of the last command on the active command stack.

redo() This method calls the redo() method of the last undone command on the active command stack.

13.2.2 CommandStack

The CommandStack class is the default implementation of the ICommandStack interface.

clean This boolean traits reflects the clean state of the command stack. Its value changes as commands are executed,
undone and redone. It may also be explicitly set to mark the current stack position as being clean (when data is
saved to disk for example).

40 Chapter 13. Undo Framework

https://svn.enthought.com/enthought/browser/AppTools/trunk/examples/undo/

AppTools Documentation, Release 3.1.0

undo_name This Unicode trait is the name of the command that can be undone, and will be empty if there is no such
command. It is maintained by the command stack.

redo_name This Unicode trait is the name of the command that can be redone, and will be empty if there is no such
command. It is maintained by the command stack.

undo_manager This trait is a reference to the undo manager that manages the command stack.

push(command) This method executes the given command by calling its do() method. Any value returned by
do() is returned by push(). If the command couldn’t be merged with the previous one then it is saved on the
command stack.

undo(sequence_nr=0) This method undoes the last command. If a sequence number is given then all commands
are undone up to an including the sequence number.

redo(sequence_nr=0) This method redoes the last command and returns any result. If a sequence number is
given then all commands are redone up to an including the sequence number and any result of the last of these
is returned.

clear() This method clears the command stack, without undoing or redoing any commands, and leaves the stack
in a clean state. It is typically used when all changes to the data have been abandoned.

begin_macro(name) This method begins a macro by creating an empty command with the given name. The
commands passed to all subsequent calls to push() will be contained in the macro until the next call to
end_macro(). Macros may be nested. The command stack is disabled (ie. nothing can be undone or redone)
while a macro is being created (ie. while there is an outstanding end_macro() call).

end_macro() This method ends the current macro.

13.2.3 ICommand

The ICommand interface defines the interface that must be implemented by any undoable/redoable command.

data This optional trait is a reference to the data object that the command operates on. It is not used by the framework
itself.

name This Unicode trait is the name of the command as it will appear in any GUI element (e.g. in the text of an undo
and redo menu entry). It may include & to indicate a keyboard shortcut which will be automatically removed
whenever it is inappropriate.

__init__(*args) If the command takes arguments then the command must ensure that deep copies should be
made if appropriate.

do() This method is called by a command stack to execute the command and to return any result. The command
must save any state necessary for the undo() and redo() methods to work. It is guaranteed that this will
only ever be called once and that it will be called before any call to undo() or redo().

undo() This method is called by a command stack to undo the command.

redo() This method is called by a command stack to redo the command and to return any result.

merge(other) This method is called by the command stack to try and merge the other command with this one.
True should be returned if the commands were merged. If the commands are merged then other will not be
placed on the command stack. A subsequent undo or redo of this modified command must have the same effect
as the two original commands.

13.2. API Overview 41

AppTools Documentation, Release 3.1.0

13.2.4 AbstractCommand

AbstractCommand is an abstract base class that implements the ICommand interface. It provides a default imple-
mentation of the merge() method.

13.2.5 CommandAction

The CommandAction class is a sub-class of the PyFace Action class that is used to wrap commands.

command This callable trait must be set to a factory that will return an object that implements ICommand. It will be
called when the action is invoked and the object created pushed onto the command stack.

command_stack This instance trait must be set to the command stack that commands invoked by the action are
pushed to.

data This optional trait is a reference to the data object that will be passed to the command factory when it is called.

13.2.6 UndoAction

The UndoAction class is a canned PyFace action that undoes the last command of the active command stack.

13.2.7 RedoAction

The RedoAction class is a canned PyFace action that redoes the last command undone of the active command stack.

• Search Page

42 Chapter 13. Undo Framework

	Application Scripting Framework
	Framework Concepts
	Limitations
	API Overview
	Implementing Application Scripting

	Permissions Framework - Introduction
	Framework Concepts
	Framework APIs
	What Do I Need to Reimplement?
	Deploying Alternative Managers
	Using the Default Storage Implementations

	Application API
	Defining Permissions
	Applying Permissions
	Authenticating the User
	Getting and Setting User Data
	Integrating Management Actions
	Writing SecureProxy Adapters

	Default Policy Manager Data API
	Overview of IPolicyStorage

	Default User Manager Data API
	Overview of IUserStorage
	Overview of IUserDatabase

	Preferences
	The Basic Preferences Mechanism
	Strings, Glorious Strings

	Preferences and Types
	Scoped Preferences
	Accessing a particular scope

	Further Reading
	Preferences in Envisage
	Automatic script recording
	The scripting API

	Undo Framework
	Framework Concepts
	API Overview

