001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 package org.apache.commons.math.analysis.interpolation; 018 019 import java.io.Serializable; 020 021 import org.apache.commons.math.MathException; 022 import org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm; 023 024 /** 025 * Implements the <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html"> 026 * Neville's Algorithm</a> for interpolation of real univariate functions. For 027 * reference, see <b>Introduction to Numerical Analysis</b>, ISBN 038795452X, 028 * chapter 2. 029 * <p> 030 * The actual code of Neville's evalution is in PolynomialFunctionLagrangeForm, 031 * this class provides an easy-to-use interface to it.</p> 032 * 033 * @version $Revision: 799857 $ $Date: 2009-08-01 09:07:12 -0400 (Sat, 01 Aug 2009) $ 034 * @since 1.2 035 */ 036 public class NevilleInterpolator implements UnivariateRealInterpolator, 037 Serializable { 038 039 /** serializable version identifier */ 040 static final long serialVersionUID = 3003707660147873733L; 041 042 /** 043 * Computes an interpolating function for the data set. 044 * 045 * @param x the interpolating points array 046 * @param y the interpolating values array 047 * @return a function which interpolates the data set 048 * @throws MathException if arguments are invalid 049 */ 050 public PolynomialFunctionLagrangeForm interpolate(double x[], double y[]) 051 throws MathException { 052 return new PolynomialFunctionLagrangeForm(x, y); 053 } 054 }