
ORB Notes

Ken Cavanaugh

Version 0.4

Abstract

Comprehensive documentation on the Sun Java ORB.

Contents

1 Starting Points 1
1.1 Changes for the GlassFish-CORBA project . 1
1.2 ORB Development procedures . 1
1.3 Workspace Structure and Builds . 2

1.3.1 docs . 2
1.3.2 ORB source . 3
1.3.3 ORB Renaming . 5
1.3.4 ORB Build Files . 5

1.3.4.1 Building the ORB . 5
1.3.4.2 Structure of the build �les . 6

1.3.5 tests . 6
1.3.6 libraries . 7

1.4 ORB Developer Tests . 7
1.4.1 Test Suites . 7
1.4.2 debugging tests . 10

1.5 ORB SQE Tests . 10
1.6 Thoughts on Middleware goals . 10
1.7 ORB Coding Practices . 12
1.8 Supporting JDK and App Server . 15

2 The ORB Class 16
2.1 Inheritance Structure . 16
2.2 ORB SPI structure . 16
2.3 ORB Initialization . 18

2.3.1 The Con�guration Framework . 18
2.3.1.1 DataCollector . 19
2.3.1.2 Operation . 21
2.3.1.3 PropertyParser . 22
2.3.1.4 Base Classes for Parsing Properties . 23

2.3.2 Details of ORB.init . 25
2.3.2.1 The ORB con�gurator . 25

2.3.3 Initializing the ORB in the App Server . 27
2.4 ORB Shutdown . 27

3 Dispatch Path Overview 28

4 Presentation 29
4.1 Stubs and Skeletons . 29
4.2 Data types . 29

5 Encoding 30
5.1 Repository IDs . 30

2

6 Protocol 31
6.1 Subcontract IDs . 31
6.2 IORs . 31
6.3 Service Contexts . 31
6.4 GIOP Message Representation . 31

7 Transport 32

8 Other Aspects of the ORB 33
8.1 Object Adapters . 33
8.2 The RequestDispatcherRegistry . 33
8.3 Encoding Details . 33
8.4 ORB Logging . 33
8.5 ORB Monitoring . 33
8.6 ORB versioning . 33
8.7 ORBD and Server Activation . 33

8.7.1 current model . 33
8.7.2 ideas for using ORT . 33

8.8 Portable Interceptors . 33
8.9 RMI-IIOP Implementation . 33
8.10 Resolvers . 33
8.11 Name Services . 33
8.12 ORB and App Server Integration . 33

9 Utilities 34
9.1 Fast Object Copying . 34
9.2 Dynamic Code Generation . 34
9.3 Useful utilities . 34
9.4 FSM Framework . 34
9.5 Graph Utilities . 34
9.6 JDK 5 Speci�c Utilities . 34
9.7 Timing Framework . 34

10 Living with our legacy 35
10.1 Testing Principles . 35
10.2 Benchmarking . 35
10.3 FOLB Support . 35
10.4 HWLB Support . 35

11 Compilers 36
11.1 New rmic iiop backend . 36
11.2 idlj . 36

12 Future Directions 37
12.1 Embedded Languages . 37
12.2 Components . 37
12.3 Fast Marshalling . 37
12.4 Security . 37
12.5 Better handling of Invocation Info . 37

3

Chapter 1

Starting Points

1.1 Changes for the GlassFish-CORBA project

Much of this document re�ects policies and procedures that have been in place for some time, and so do
not completely re�ect the changes brought about by putting the CORBA source code out on java.net. I
am updating this, but discussions about TeamWare and Sun-internal �le systems clearly do not re�ect the
di�erences found in developing using CVS on java.net.

Note that all CORBA development has been done in the past using TeamWare. GlassFish-CORBA
must use CVS, since that's mostly what's available on java.net. The TeamWare and CVS repositories will be
synchronized automatically using a CVS-TeamWare bidirectional bridge, but that is not yet fully operational
(as of this writing).

1.2 ORB Development procedures

Over the years, we have established a fairly successful development methodology for working on the ORB.
Any piece of work from a minor bug�x to a major new subsystem iterates over the same stages one or more
times. I'll discuss this brie�y here, but the details will appear below.

1. Discuss or document the design. This can take many forms, ranging from an informal discussion to a
written document. Written documents have in the past been done in many di�erent formats, including
email, text �les, FrameMaker documents, StarO�ce documents, HTML, XML and DocBook, and
LATEX (about the only thing none of us have used seems to be Word!). Going forward, all of these are
still viable in di�erent ways, but I'd really like to make sure that we capture all of the design e�orts
into our documentation collection. This is currently either in <ws>/docs in the CORBA workspace or
at the CORBA web site at /java/j2ee/CORBA. In the future, everything should be in the workspace,
with the web site linking to the workspace. I plan to make this document a major component of the
documentation process (probably with the help of latextohtml and similar tools).

2. Develop the code. This include writing both the code to implement the change and the code to test it.
Bugs need a test that fails before the change is made, and that passes after the change. All tests must
be incorporated somewhere in the CORBA test suites (see 1.4.1 on page 7) so that they can be run
automatically. Test execution speed is important, so make the test as fast as possible. Please follow
the principles discussed in 1.6 on page 10 and in 1.7 on page 12.

3. Verify that nothing has been broken by the change. This requires running all of the CORBA test
suites, and �xing any problems that show up (see 1.4.2 on page 10 for help on debugging tests).

4. Prepare a webrev for a code review. The webrev tool is available on SWAN in /java/devtools/share/bin.
Read the comments in this kshell script for details. (TBD: what tools should we use for CVS?)

1

5. Have at least 1 (and preferably more) developer from the GlassFish-CORBA team review the changes.
Make any necessary corrections from the review, and re-review if necessary.

TBD: Currently we conduct all code reviews in real time, usually via phone conference (since this has
been a distributed team for a long time). We need to investigate this in the open source world, and
�nd a more scalable method that works asynchronously.

1.3 Workspace Structure and Builds

The workspace is divided into a number of directories. The current structure will change somewhat after
I �nish work on another putback that restructures the workspace to simplify its organization and remove
obsolete junk.

Directories Purpose Coming Changes

ant contains version of ant we
use

deleted_�les contains removed �les for
TeamWare

Not present in CVS

build created during build process
docs contains ORB docs will eventually contain all

ORB docs (moves to www in
CVS)

freezepoint snapshots of ORB for app
server releases

Only in TeamWare, not in
CVS

lib jar �les needed to build
ORB

experimental (coming) contains experimental code
not delivered anywhere at
present (and not present in
CVS)

make contains ant build �le,
gnumake �les

nbproject contains NetBeans support
to treat workspace as a
project

optional source �les that go int
optorbcomp.jar (not JDK)

experimental code moves to
experimental

src main ORB source code

test main ORB test source test12, values, and values2
are moved under here

test12, values, values2 more ORB tests for the IBM
test suite

contents moved under test

tools IOR parser eventually pull into main
source code

Note that deleted_�les has gotten rather large: it contains about half the number of �les in the ORB.
Generally when you are using the workspace, if you do not plan to delete any �les, you don't need to bring
over deleted_�les.

1.3.1 docs

There are quite a few �les here. This will eventually include all of the useful �les from /java/j2ee/CORBA.
Most of the doc �les in the current workspace are useless, with one important exception: the eea1 directory.

2

These are Everett Anderson's notes on the design and implementation of the GIOP layer, and are still quite
useful. This also documents the RMI-IIOP stream format version 2 implementation.

1.3.2 ORB source

Generally, most ORB implementation source packages have two parts: an interface de�ned in an spi package,
and an implementation in an impl package. We will generally discuss these together.

The ORB source code is divided into several parts:

src/solaris Useless and should be removed.

src/share/classes This contains the main part of the source code. It can be further divided into:

org OMG standard CORBA APIs

javax OMG standard RMI-IIOP APIs

sun/rmi rmic compiler

sun/corba CORBA Bridge class, which isolates ORB dependencies on non-public JDK APIs

com/sun/corba/se Main body of ORB source code (automatically renamed to ee package for app
server build)

GiopIDL IDL �les for GIOP protocol de�nitions

PortableActivationIDL Old ideas for ORBD rewrite; to be removed

experimental/portableactivation Part of ORBD rewrite; to be removed

impl/spi The main part of the ORB implementation

activation ORBD

copyobject Object copier code (not the fast version)

corba(impl) Implementation of OMG CORBA APIs (but not org.omg.CORBA.ORB)

dynamicany Dynamic Any support

encoding Input and output streams for CDR and JSG (Java Serialization for GIOP: Ram's
work, conceptually similar to BEA T3). PEPt encoding level code.

extension(spi) Some AS-speci�c CORBA policies used by EJB for creating POAs.

interceptors(impl) Portable Interceptor implementation

io(impl) Most of the hard part of GIOP (closely related to Java serialization, but not JSG)

ior How we represent IORs

javax(impl) RMI-IIOP implementation

legacy Some AS-speci�c extensions to interceptors and some connection management support

logging Logging infrastructure used by generated log wrappers

monitoring ORB monitoring framework

oa Object Adapters. This includes:

poa(impl) The Portable Object Adapter implementation

toa(impl) Simple OA used for orb.connect/disconnect (JDK 1.2) and old RMI-IIOP
support

rfm The ReferenceFactoryManager, used to enable suspend/resume of ORB processing
for dynamic recon�guration. Used to support dynamic FOLB in AS9.

*.java The OA SPI.

orb The implementation of the ORB class, and associated con�guration framework. The
con�guration code should really be moved into a utility library.

orbutil Utilities not related to RMI-IIOP. This includes:

closure Simple closure support used in a few places

3

fsm Finite State Machine library used in the POA to support ActiveObjectMap entry
semantics. Should be more widely used in ORB (e.g. connection management).
Supports much of the UML state model (but not nested states, and not petri-net
style operations)

generic Some useful utilities related to Java 5 generic (generic Pair, various kinds of
generic function classes)

proxy Utilities related to simplify construction of InvocationHandlers for java.lang.re�ect.Proxy.

template Some sketches of ideas for a general template mechanism I worked on a while
ago. Should either be experimental or deleted (generally I'd use codegen now)

threadpool The ORB threadpool implementation that is shared with the app server
(should revisit this in light of JDK 5 executors).

timer ORB timing facility

.java(impl) There are a large number of Java classes de�ned here as well. ORBConstants
is very commonly used in the ORB and App server and should be moved to an SPI
package.

presentation PEPt presentation level code

protocol PEPt protocol level code

resolver Internal classes used to support string to object reference conversion

servicecontext Internal representation of GIOP ServiceContexts.

transport PEPt transport level code

txpoa TSIdenti�cationImpl, which is used to connect the ORB and the transaction service.

util low-level code mostly related to RMI-IIOP.

internal Old (JDK 1.4 and earlier) ORB and JNI library related classes that we maintain for
backward compatibility.

org/omg Various mostly CSIv2 related protocol de�nitions (we compile the CSIv2 IDL in the
ORB so that the app server CSIv2 implementation can use it).

pept The PEPt 1.0 code used in the ORB.

com/sun/org/omg Some not quite standard OMG classes that were still in �ux in the CORBA 2.4.1
timeframe (these are internal only, so this doesn't matter much now)

com/sun/tools/corba/se A number of tools:

idl The idl compiler

jmk The tool used to validate .jmk �les against the contents of the source directories

logutil The source code for the jschemeutil.jar library

optional/src/share/classes/com/sun/corba/se The optional classes used only in the app server

org Contains the ASM and BCEL code used in the ORB (and renamed for delivery into the app
server). Note that I plan to remove the BCEL code in the near future.

impl/spi Contains a number of modules:

codegen The runtime byte code generator library.

copyobject Two versions of the re�ective copyobject code.

folb The AS9 IIOP failover and loadbalancing code.

relation(EXPERIMENTAL) Complete support for binary relations (in the mathematical
sense) as �rst class Java objects.

component(EXPERIMENTAL) My current work on a Java component system

plugin(impl.only) ORB Hardware loadbalancing support

presentation(impl.only) fast copyobject code

Note: the EXPERIMENTAL packages will be moved from optional to experimental in the future.

4

1.3.3 ORB Renaming

Most of the ORB is packaged under the com.sun.corba.se package. A version of the ORB code exists in this
package (or in a slightly di�erent version) in every JDK since 1.2. We also deliver the ORB code to the Sun
application server (now project GlassFish). To avoid possibly collisions between the classes in the JDK and
the classes in GlassFish, we rename all the �les in the ORB to the com.sun.corba.ee package.

This rename is done automatically using a collection of scripts and make�le targets (TBD: make this
work purely from ant). Until very recently, it was necessary to rename the workspace before building or
running tests. The rename is incremental and fairly quick for small changes (IF you are using a fast local �le
system), but takes several minutes for a fresh copy of the source. Of course, the rename also interferes with
the standard edit-compile-test-debug cycle. I have a build environment built around vim that gets around
this problem, but it is di�cult to impossible to deal with renaming with any IDE that I know of.

The rename is no longer necessary for development in GlassFish-CORBA. Here all that is required is an
ant build, from NetBeans, standalone, or from any other tool a developer might care to use. The only time
a rename is required is when the jar �les are created that are delivered to GlassFish for integration in the
app server.

1.3.4 ORB Build Files

The ORB can be built either with ant or gnumake. We may at some point remove all make�le support, if
we can use the Ant build in the JDK. For now, both build systems must be maintained.

1.3.4.1 Building the ORB

The ORB can only be fully built using gnumake, but most of the build can also be done with ant, which is
generally what we prefer today. The ORB builds as part of the JDK, so here we just focus on the app server
speci�c build. You MUST use JDK 5 or later.

Assume <ws> is the ORB workspace. The basic build sequence is:

1. cd <ws>/make

2. gnumake -f Make�le.corba renameonly

3. cd <ws>/build/rename/ee/make

4. gnumake -f Make�le.corba buildall (debugall for debug build, or just set DEBUG_CLASSFILES to
true)

5. gnumake -f Make�le.corba buildoptional

6. gnumake -f Make�le.corba releaseforappserveronly (for AS delivery: not needed for testing

7. gnumake -f Make�le.corba verifyall (to run all tests)

An alternative sequence using ant explicitly:

1. cd <ws>/make

2. gnumake -f Make�le.corba renameonly

3. cd <ws>/build/rename/ee/make

4. ant build

5. gnumake -f Make�le.corba verifyall (to run all tests) (or ant test, in GlassFish-CORBA)

5

I generally use a script to automate this. It is also possible to do a build from NetBeans. It used to be
necessary to rename in order to build and run the tests, but that has been �xed in the GlassFish-CORBA
project.

Another small note: it is possible to generate JavaDocs for the CORBA SPI. To do this, simply go to
the make directory in the renamed version of the workspace, and run �ant javadoc�. The resulting JavaDocs
may then be accessed from <ws>/build/rename/ee/build/release/docs/index.html (exercise for the reader:
�x all of the JavaDoc warnings that show up). It should also be possible to create the SPI javadocs without
renaming, and the NetBean project supports this as well.

1.3.4.2 Structure of the build �les

Let's look at the ant �les �rst. There are several .xml �les, all included in build.xml:

build.xml the main �le

jscheme.xml Ant targets for running jscheme and generating log wrappers

src-idl.xml Ant targets for generating java from idl for the main ORB code

test-idl.xml Ant targets for generating java from idl for the ORB tests

test-rmic.sml Ant targets for generating stub and skeletons using rmic for the ORB tests

test.xml Ant targets for running the ORB tests (currently only in GlassFish-CORBA)

Support for gnumake includes:

Make�le.corba The main make�le

com,sun,org Trees containing make�les for all of the ORB packages. This partly mirrors the structure of
the source packages, but unfortunately the correspondence is not exact.

common Other make�les included in Make�le.corba

minclude All of the .jmk �les. These EXACTLY re�ect the structure of the source code, but must be
maintained by hand. These �les are essential for the operation of the gnumake build. The contents
are checked against the actual source �les on each build, and any discrepancies are treated as errors.
The .jmk �les must be updated every time a Java source �le is added, deleted, or moved in the
src/share/classes packages. Note that the tests and the optional classes are not included here. This
added complexity exists solely to support building CORBA as part of the JDK, and will be revisited
in the future.

1.3.5 tests

The ORB has many tests in several di�erent test suites (docs/TestCases.sxc gives some details of the contents
and the numbers of test cases in the test suites, from a rough manual count). The test suites are:

ibm Old RMI-IIOP tests created by IBM. These are the lowest quality, hardest tests to deal with.

corba The bulk of our developer tests. Covers all areas of the ORB to some degree.

pi The Portable Interceptor tests.

naming Test for the name services.

mantis Tests speci�cally for bug �xes made to JDK 1.4.1.

hopper Tests speci�cally for bug �xes made to JDK 1.4.2.

copyobject Tests for the various object copiers. Can also be used as a timing test for streams, which will
likely be very important to us.

simpleperf A simple performance test mainly for colocated calls.

6

1.3.6 libraries

There are a number of libraries in the lib directory. These are all used either for building or testing.

ejb-2_1-api.jar Needed for codegen test

ir.idl Old and obsolete interface repository �le (should be deleted)

javatest.jar Old version of Sun's JavaTest framework: not currently used; should probably be deleted

jcov.jar Used for gathering coverage information during test runs when that option is enabled

jdom.jar JDom implementation used in (I think) Harold's generic RPC message test (XML-RPC in ORB
framework)

jmxri.jar An early version of JMX (pre-JDK 5) used in a test: may be able to get rid of this

jscheme.jar Scheme interpreter used for generating log wrapper source �les

jschemelogutil.jar Some simple utilities used with JScheme (source is in the workspace)

junit.jar JUnit, used for some of the ORB tests

kawa.jar Another Scheme in Java implementation (called kawa) that is also used for XQuery processing,
which I used once for generating a new CORBA schedule from the XML version of the jxproject
schedule

orb.idl A standard IDL �le for some standard de�nitions (not really used)

rt.idl IDL for the CodeBase interface (part of the SendingContext module; used to enable access to another
VM's typing information for RMI-IIOP)

xalan.jar Apache xalan, used in a test

xerces.jar Apache xerces, used in a test

1.4 ORB Developer Tests

1.4.1 Test Suites

The ORB developer tests are found in the directories test and optional/test. The make�le for running the
tests is in test/make/Make�le, but the test suites can also be run from make/Make�le.corba. This table
gives a brief overview of the available test suites:

7

Suite Name Test File Make�le.corba
Target

test/Make�le
Target

ant target in
GlassFish-
CORBA

Purpose

all - verifyall test runs all test suites
IBM test/

AllTests.txt
verifyonly verifybuild test-rmi-iiop Old IBM tests

corba corba/
CORBATests.txt

verifyonly_
corba

verifybuild_
corba

test-corba Most of the newer
tests

pi pi/
PITests.txt

verifyonly_
pi

verifybuild_
pi

test-pi Portable
Interceptors tests

copyobject corba/
CopyObjectTests.txt

verifyonly_
copyobject

verifybuild_
copyobject

test-copyobject copyobject test

naming naming/
NamingTests.txt

verifyonly_
naming

verifybuild_
naming

test-naming naming tests

hopper hopper/
HopperTests.txt

verifyonly_
hopper

verifybuild_
hopper

test-hopper Bug�xes for JDK
1.4.1

mantis mantis/
MantisTests.txt

verifyonly_
mantis

verifybuild_
mantis

test-mantis Bug�xes for JDK
1.4.2

simpleperf performance/
Tests.txt

verifyonly_
perftest

perftest test-perf co-located call
performance test

All of the tests can be run either from <ws>/make or from <ws>/test/make, using the appropriate
targets. The output of the tests (stdout and stderr) are redirected to log �les. These log �les are located in
<ws>/test/make/gen, under the package name of the individual tests in the test suite. Note that running
a test suite �rst empties <ws>/test/make/gen, so you cannot currently run all test suites and look at all
failures. However, most of the tests of interest are in the corba test suite, so making those pass �rst is usually
all that is needed. This is not always the case, particularly if you are working on the RMI-IIOP code (which
is tested in the IBM test suite). These tests are also descibed brie�y in <ws>/docs/TestCases.sxc, which is
a spreadsheet that roughly counts the number of test cases in each test in each test suite.

Note that the names of the target will change in the near future. The tests will also be made to run from
ant, which is essential to fully utilizing NetBeans for ORB development.

Each of the tests in the test suite starts one or more Controllers. A Controller is simply a class that
controls a component of a test. For example, many of the tests have 3 controllers: a Client, a Server, and
ORBD (which is used mainly for name service, as few tests actually exercise server activation).

Adding a new test is simple: just create a new package for testing, write the test, and add it to the
appropriate test �le. There is a document that is somewhat helpful in the workspace at

test/src/share/classes/corba/framework/package.html

Especially read the section on the Controller classes, as that is really the heart of the test framework.
However, the document is old, and somewhat out of date. You should consider the following additions and
changes since the document was written:

• You can use JUnit for tests. Simple write a JUnit test, and then wrap it with a simple test class that
extends corba.framework.CORBATest. In fact, ANY program can be included in the CORBA test
framework this way. All that is needed is for the embedded test to indicate success by returning 0, and
failure by return a positive value in a System.exit() call.

The following tests currently use JUnit:

• corba/copyobject (this is the most complex example of what can be done with JUnit)

• corba/dynamicrmiiiop

• corba/stubserialization

• corba/misc (this is a good test to use a simple example)

• corba/messagetrace

8

• Similarly, you can also use TestNG for tests. The corba/timer and corba/mixedorb tests both use
TestNG.

• Make�les are not needed. The ant build takes care of everything. However, the ant build needs to be
updated if new tests that require IDL or RMIC are needed.

• You can write tests that use RMI-IIOP without needing rmic. To do this, just use dynamic RMI-IIOP.
For an example of how to do this, look at the corba/rfm test. Basically you just need to use the
PresentationManager API for a couple of things (access to the repository ID and to create a Tie), and
you also need to make sure that dynamic RMI-IIOP is enabled. A renamed test will automatically run
under dynamic RMI-IIOP, but if the test is NOT renamed (and this will be the case after the migration
to GlassFish, at least for pure ORB development), you need to add the following static initializer to
the test code:

static {

System.setProperty(ORBConstants.USE_DYNAMIC_STUB_PROPERTY, �true�) ;

}

• Conversion status info is out of date in the document: ignore this section.

• Debugging is better. The document mentions the RDebugExec controller (and also ODebugExec, but
the omniscient debugger has not been tested or updated in years. See http://www.lambdacs.com/debugger/debugger.html
for more information).

• Default ORB class has changed. We now use com.sun.corba.se.impl.orb.ORBImpl.

• There are two security policy �les available for running the tests. The default test.policy �le simply sets
up the needed permissions for all of the tests and the ORB. The more �ne grained test.policy.secure
�le sets up more restrictive permissions for the tests, while giving more powerful permissions to
the ORB code in the build and optional/build directories. Which policy �le is used is set in the
test/make/Make�le in the DEFINES macro.

Setting the more secure policy �le is useful to work on ensuring that the ORB has doPrivileged blocks
around all operations that have security implications. It is known that the ORB is at least somewhat
de�cient in this area, but we have not taken the time to thoroughly address this issue.

• There are several environment variables that are useful to set while running tests (see test/make/Make�le
for more details):

STATIC_STUB when set to 1, forces the use of static RMI-IIOP

DYNAMIC_STUB when set to 1, forces the use of dynamic RMI-IIOP

BCEL_COPYOBJECT when set to 1, uses the BCEL version of the fast object copier (experimental)

JAVA_SERIALIZATION when set to 0, use CDR instead of JSG (JSG is experimental, but
enabled by default in the workspace only)

DEBUGGER can be set as follows:

1 Set ORBDebugForkedProcess=true (for IBM tests), and run tests so that a JPDA-compliant
debugger can be attached

2 Run tests under OptimizeIt

3 Run tests withc -Djcov=true for coverage analysis

9

1.4.2 debugging tests

To debug a test, you need to know the name of the controller(s) to which you need to attach a debugger.
Controllers are normally created by the methods createORBD, createClient, and createServer. The default
names of the controllers are ORBD, Client, and Server, respectively. The createClient and createServer
methods can also take a second argument (the �rst is the class name of the test program) that gives a
speci�c name for the controller.

Given the name of the controller(s) to debug, simply add the argument

-rdebug XXX,YYY

for controllers XXX and YYY (for example) to the end of the test �le argument that starts the test.
ORB debug �ags can also be passed into a test. To do this, add the argument

-orbtrace XXX:f1,f2;YYY:f3

where the argument is a semi-colon separated. Each element of this list starts with a controller name,
followed by a comma separated list of ORB debug �ag names (see com.sun.corba.se.spi.orb.ORB for the
current list).

It is also possible to change the log levels so that ORB log information can be displayed on the console (or
anywhere else, depending on the log system con�guration). This follows the usual log system mechanisms.
The ORB logger names are discussed in 8.4 on page 33.

1.5 ORB SQE Tests

Sony Manuel maintains a large collection of CORBA SQE tests in /java/idl/ws/rip/RIP_TEST_MASTER.
Read the �le DTF_RTM_README.html in this workspace for details (and contact Sony as well). These
test are not currently available in GlassFish-CORBA.

We should look at creating a tighter integration between the CORBA dev tests and the SQE tests at
some point. In particular, I'd like to have the POA and INS tests run automatically as part of the CORBA
dev test cycle.

1.6 Thoughts on Middleware goals

Middleware is a rather complex kind of software to build well. It spans many parts of the computer science
discipline, including compilers, operating systems, and network communications. Middleware tends to be
complex, long-lived software, and there are many di�erent ways to build it. Our goal in developing the ORB
has been to develop very �exible and high-performance middleware while maintaining a clear (if complex)
architecture that can be easily composed, ultimately out of re-usable modules. One way to look at an
ORB is that ORB.init creates a particular middleware implementation that is specialized to the needs of an
application. For example, the behavior of the default ORB in the JDK is rather di�erent from that of the
ORB in the app server, even though both share >95% of the same code.

At least the following dimensions must be considered in order to build e�ective middleware:

Flexibility. Middleware has been changing constantly since Nelson invented RPC around 1980 or so. Much
of Harold's work on PEPt has been devoted to dealing e�ectively with this aspect of middleware
construction. The following elements often vary indendently of each other:

Presentation. By this we mean the kinds of data types that may be passed between a client and
server (roles here, as any given software entity often acts in both roles), and the APIs and other
structures used to collect these kinds of data together.

Examples of data types include the IDL data model from CORBA, the Java data model from
RMI, XML schema, ASN.1, SUN RPC, MIME types, and many others.

There are broadly speaking two ways to view the API question: either the system uses some
sort of Proxy to make a remote call �look like� a call to an abstraction (method call, procedure

10

call, SmallTalk message send, etc) or the API provides an explicit representation of a request
or message that a program can set up with data and then send (CORBA dynamic invocation,
Message Oriented Middleware, and others).

Encoding. Given a structure containing the data from the presentation layer, it needs to be converted
from an in memory representation to some representation suitable for transmitting across some
serial medium like a TCP connection. This is usually referred to as marshalling and unmarshalling
the data, and is often the most expensive operation that middleware performs. In fact, I believe
this is the most signi�cant challenge for middleware of all types as network hardware increases in
speed.

Protocol. This is related to but distinct from encoding. Here we are concerned about the kinds
of messages that clients and servers exchange. This is mainly about message framing, headers,
various kinds of meta-data associated with requests, and the distributed state machines involved
in protocol design.

Transport. Ultimately, some mechanism must be used to transmit data from the client to the server.
This can include network protocols, shared memory mechanisms, Solaris doors, and direct calls
within the same address space that bypass all such mechanisms (in which case the protocol and
encoding are much simpli�ed as well).

Performance. Everyone always wants middleware to perform as quickly as possible. This is quite a
challenge. First, there are many aspects to performance, including:

Latency. How long does it take to send messages of various types? What about short vs. very long
messages?

Throughput. How many request per second can be sent through the system? This often con�icts
with latency. For example, a front end concentrator can help to pump more data through, at the
cost of increased latency due to any extra hop (e.g. NTTWest's use of a hardware load balancer).

Creating Endpoints. Object-Oriented remoting systems like CORBA create, marshal, and unmarshal
endpoints (IORs in CORBA) constantly, and the performance of such operations is quite signi�cant.

Today, our latency is poor (except for co-located RMI-IIOP calls, which are highly optimized), our
throughput is OK (and this is NIO select related), and the IOR handling is pretty good, although
much more is possible.

We need to follow a number of strategies for improving performance:

• Cache when appropriate. The ORB caches lots of information, especially related to class-speci�c
information for marshalling and handling stubs and skeletons.

• Don't do it if you don't need it. For example, interceptors are expensive, so don't pay overhead for them
if none are installed. A bad example is that the encoding currently computes two indices instead of one,
and checks to see whether to marshal little- or big-endian on every primitive marshalling operation.
These are areas that we should investigate soon.

This is particularly important for systems that have extreme �exibility.

• Precompute where possible (really a form of caching). A good example of this is the use of IOR
templates to make endpoint (IOR) construction very fast. Creating a POA creates an IOR template,
and creating an IOR from an IOR template is almost a trivial construction.

• Avoid data copying. This is one of the main areas of important for transport optimization. For example,
this is where use of direct ByteBu�ers can help performance (which we do today).

• Consider runtime code generation. We have started to do this already for dynamic RMI-IIOP. I also
have been experimenting with doing this for fast object copying, and marshalling is another candidate.

11

• Instrument the code so that performance can be understood. We have started to add internal instrumentation
for this, and I think we will expand on this approach. Sometime the most appropriate tool is an external
tool like OptimizeIt, but both approaches have their advantages. Note that applying OptimizeIt to an
ORB test is easy: see 1.4.1 on page 7.

Reliability. Middleware is usually used in places that need to run continuously (like the app server). This
again implies a number of considerations:

Avoid Memory Leaks. This has been an issue for the ORB mainly in caching class related data.
We have had to make careful use of soft and weak references in a number of places to handle this.
Extreme care is needed to avoid leaking direct ByteBu�ers, which generally must be pooled to
achieve acceptable performance.

Build Clean Code. This is why we have a strong emphasis on programming to interfaces. Another
important aspect of this is only write a piece of code once, and then reuse it.

Use Test Driven Development. By this I mean that anyone producing a module of code must also
produce a set of unit tests (and other tests as needed) to validate the correctness of the module.
This also means that as much as possible, bug �xes require a test that fails, and a �x that makes
the test pass, and the test must be incorported into the automated build.

1.7 ORB Coding Practices

• Use comments wisely. Some guidelines:

• Don't document the obvious. If the code is clear, it should speak for itself. If the code is not
clear, try to make it clear. If you can't, then comment about its operation.

• Try to choose meaningful names to reduce the need for comments.

• DO document global issues that span more than one method/class/package. These are the most
important comments to include.

• Always document public methods (there should be NO public data members, except possibly for
some static constants). Follow the standards for using JavaDoc.

• Program to interfaces. Most of the ORB is built this way. There are a number of characteristics of
this design:

• Use of the factory pattern. Factories in the ORB are generally classes in spi packages which
contain only static methods for accessing factories, or standard instances of particular interfaces.
These classes should end in the name �Default(s)� or �Factory�.

• new is only used to create instances of interfaces inside the factory classes. This makes it much
easier to re-use code, and to isolate the client from caching vs. creation decisions.

• Initialization drives call �ow. That is, in order to understand what really happens at runtime,
you must know how the ORB initialization set up the concrete instances behind the interfaces.
Similarly, in order to understand the dispatch cycle, you must understand how the IOR is created
and marshalled (especially if we ever do a Solaris doors transport again).

• Avoid magic strings and numbers. If you need a constant, put it in ORBConstants, since it will either
need to be con�gurable or else referencable in more than one place in most cases.

• Generally use only SPI classes (but note ORBConstants is in impl). Generally an ORB implementation
class is free to use any required spi class, but should avoid using implementation classes outside of its
own package.

• The ORB object instance is central. It is the repository for all runtime ORB data. It drives
the con�guration of the runtime ORB. Everything that the ORB provides is accessible from the
com.sun.corba.se.spi.orb.ORB class.

12

• Access the ORB either as org.omg.CORBA.ORB or as com.sun.corba.se.spi.ORB. There are other
ORB classes, but never program to them.

• Use the CORBA ORB for code that may be shared with other ORB implementations. This is
mainly an issue in the RMI-IIOP code and the value handler, which are used by some third party
ORBs. If you need the ORB SPI, provide code that handles the CORBA ORB case as well.

• ORB extensions should be created as IDL local interfaces, and made accessible through a resolve_initial_references
call. We have not followed this principal in the past as much as we should have, and the result is that
there are too many methods in spi.orb.ORB. An alternative here is to use dependency injection from
a component framework, but that's a separate topic (and paper).

• Read �E�ective Java� (if you haven't already). Josh Bloch's book is full of some very good advice that
should almost always be followed.

• Try to avoid complex constructors, or classes with many constructors. This makes the code confusing
and hard to use.

• Try to complete instance initialization in the constructor. If this is not possible, check whether the
instance is in a good state before continuing with the body of a method.

• Some ideas on error handling:

• Design code to fail fast. That is, if there is a problem in the code, fail sooner, so that the
problem is correctly reported, rather than letting it propagate through the system until it's hard
to determine what happened. Examples of this include use of assert, and the ORB's use of
INTERNAL SystemExceptions to report consistency failures.

• Use exception chaining when reporting errors. The log wrappers make this easy to do.

• Use system exceptions to report errors. We have a pretty good log wrapper mechanism that
makes this easy to do: always use it. The only exception here is in ORB independent libraries
(like codegen). Here, just use standard Java exceptions.

• Prefer unchecked exceptions in most cases. This has been a raging debate for a long time in the
Java community. I think checked exceptions are occasionally useful, but often more trouble than
they are worth. A good rule of thumb is that if the only thing an application is going to do is
pass the exception on to another layer, it should be unchecked. Writing code that catches a series
of checked exceptions and handles each through a standard reporting mechanism is wasteful and
annoying, and does nothing for the readability of the code.

• Avoid import xxx.* Careful organization of import lists is a great aid to �guring out how classes are
coupled together. The ORB rules that should be followed for import lists are:

1. Arrange packages from the general to the speci�c. For example, put java.* �rst, then org.omg.*
�rst, �nally internal com.sun.corba.se.spi.* classes.

2. Within a package, arrange classes in alphabetical order.

3. Separate di�erent package imports with a blank line.

4. If you have an IDE that can do this for you, use it.

• Be very careful with import static xxx.* It is occasionally very useful (for example, for calling all the
static methods like _class, _method, _if etc. in the codegen library). But using it for all statics could
lead to much confusion.

• Names are very important

• Interfaces have descriptive noun phrases (e.g. LocalClientRequestDispatcher)

• Implementations of interfaces end in �Impl� (e.g. JIDLLocalCRDImpl)

13

• Try to avoid abbreviations (but not if the name is too long)

• Limit names to 7 nouns (and I think we break this one once or twice

• Multiple implementations should look like <InterfaceName><Characteristic>Impl or <Characteristic><InterfaceName>Impl

• Abtract base classes should look like <InterfaceName>Base

• Factory interfaces usually look like <InterfaceName>Factory

• Follow the standard Java naming conventions (except for IDL generated methods)

• Prefer short methods (and let HotSpot do its job). Some of the code in the ORB (e.g. CDR streams)
has badly violated this rule, resulting in many cut-and-paste sections of nearly identical code. This is
a testing, debugging, and understanding nightmare.

• Pay attention to cohesion and coupling. A class should do one thing that can be crisply articulated,
as should a method. A class should use a minimum of other classes to get its job done.

• Either prevent inheritance or design for it. Harold and I have often been in con�ict on this one. There is
some code in the ORB in which the data members are private instead of protected. This is occasionally
helpful (for example, in some of the HWLB plugin code), but is an open door to maintenance headaches.
If a �eld or method is protected, you are really saying that no invoker can call this, but a subclass can,
and a subclass can override this method. What are the constraints on subclasses in this case? Such
design decisions should be documented in the code.

• Use shallow inheritance hierarchies. We commonly use the interface/abstract base class/several concrete
classes pattern to facilitate code reuse across implementation variations. There are a few places (e.g.
local client request dispatchers, some of the POAPolicyMediator code) that do this for two (perhaps
more?) layers, but that should be rare.

• Don't bother making methods �nal for optimization, as this is not helpful. Final is semantic: it means
that no subclass can override this method.

• Utility classes (those that only contain static methods) must be �nal and have a empty private no-args
constructor. This prevents all instantiation and subclasses of utility classes.

• Consider making most local data �nal. This is unusual, but actually quite useful, since most local data
is initialized and then referenced in the method. Parameters should always be �nal, as assigning to a
parameter is poor style.

• Never use public data members in classes (except for static �nal). Be careful with protected and default
access for data members.

• Avoid non-constant static data members in classes. Sometimes they are necessary, in which case
concurrency protection is usually required.

• Use JDK 5 (and convert old code to use it). The new language extensions help to make for more
readable code. I have converted some of the code, but not all.

• Design for testability. Make sure that classes have an interface that supports testability: if some
internal state is established that needs to be veri�ed, then there must be an interface to access the
state. Leaving code for testing in the product code is acceptable, but make sure it does not a�ect any
critical performance issues.

• Design for concurrency.

• Make sure you know whether instances of a class may be used from more than one thread
concurrently. If so, use locking.

• NEVER assume that it is safe to access ANY data without either locking or declaring it to be
volatile. Don't break this rule for stats counters under the assumption that it will only be o� a
little (this isn't true in complex SMP servers with large caches).

14

• Make use of the Java 5 concurrency utilities. These are very well designed to solve a number of
hard problems.

• If you need to wait on more than one condition, use the java.concurrent.util.locks package,
particularly ReentrantLock and Condition.

• Use a lock hiearchy to avoid deadlocks if multiple locks are required in a thread of control.

• Be aware of the potential for locking hot spots on Sun's SMP servers (and especially Niagra these
days). This frequently is a single lock that every request dispatched through the ORB must acquire
at some point. Again, Java 5 has some very useful utilities to help (such as ConcurrentHashMap).

• Do NOT put Class instance into Maps as values or keys directly or indirectly. Pinning a Class object in
a Map will prevent the Class from being garbage collected, which will prevent that Class's ClassLoader,
and all other Classes loaded by the ClassLoader from being garbage collected. This has led to massive
memory leaks in the App Server on several occasions.

The solution here is to use WeakHashMap (for Classes in keys) or SoftCache (for Classes in values) as
need. Grep the source code for examples.

1.8 Supporting JDK and App Server

The main body of the ORB code (that is, most of the contents of the src directory) must be delivered
into both the JDK and the app server without change (other than the automatic rename). This has some
interesting implications:

1. Use extension, not variation. Never create an app server and a JDK version of the same class. Instead,
refactor the class so that there is a common base in the core that can be extended, either through
inheritance or composition.

2. Prefer composition to inheritance.

3. Remember that the io, util, and javax code is shared between our ORB and other (non-Sun) ORBs. This
means in particular that other ORBs may be built using our ValueHandler and RMI-IIOP classes. The
main issue here is that we cannot assume that the ORB class is always com.sun.corba.se.spi.orb.ORB.
It is OK to create a specialized path for our ORB, but this must always be done with an instanceof
check, and handle the non-Sun ORB case correctly.

4. All behavior exhibited by the JDK ORB must follow the OMG speci�cations. Mostly this is CORBA
2.3.1, but we follow the semantics of later versions when errors have been corrected. For example, the
POA should basically follow the behavior documented for CORBA 3.0 at this point. Note that it is
�ne to create non-standard extensions to CORBA semantics for the app server: this is exactly what
we have done for failover and load balancing support (among others).

15

Chapter 2

The ORB Class

The ORB class is the central control point in the Sun ORB implementation. Here we will examine its
structure, the services it provides, and how it is initialized and terminated.

2.1 Inheritance Structure

The ORB class has the longest inheritance chain in the ORB. Constructing a UML diagram for this is
di�cult (because of the way this works in Java Studio Enterprise) and not very illuminating. Instead, I'll
just list the classes and their main function:

org.omg.CORBA.ORB: This is the main ORB API de�ned by the OMG.

org.omg.CORBA_2_3.ORB: This adds some methods related to value types.

com.sun.corba.se.org.omg.CORBA.ORB: This adds register_initial_reference. While the method is
an OMG standard, the Java mapping that we used for the ORB API did not include this method, so
we put it here.

com.sun.corba.se.spi.orb.ORB: This adds all of the internal SPI methods to the ORB.

com.sun.corba.se.impl.orb.ORBImpl: This is the ORB implementation.

com.sun.corba.se.internal.iiop.ORB: For backwards compatibility with JDK 1.4.

com.sun.corba.se.internal.POAORB: For backwards compatibility with JDK 1.4.

com.sun.corba.se.internal.PIORB: For backwards compatibility with JDK 1.4.

The �rst 3 classes together de�ne the standard OMG ORB API. It is split because it evolved in stages,
and we cannot add new methods to an interface that a third party may implement. Instead, we extend the
API class, allowing older ORB implementations from third parties to continue to work. The classes in the
internal package can be ignored. They are present so that any old code written with the ORBClass property
set to the class name will continue to work.

2.2 ORB SPI structure

The key part of the ORB SPI is in the com.sun.corba.se.spi.orb.ORB abstract class. This is an abstract class
because it must extend the other ORB abstract API classes de�ned by the OMG. The ORB class provides
the following operations:

• A set of debug �ags. ORB de�nes a number of public boolean data members of the form xxxDebugFlag.
These can be set to true using the ORBConstants.DEBUG_PROPERTY property. Adding new �ags
is simple: just follow the existing pattern. These �ags are accessible to any part of the ORB that uses
an ORB class instance, which is everything except RMI-IIOP and some libraries.

16

• Methods for testing for local host and server id, which is important for determining when a call is
colocated. This mechanism should be revisited in order to deal with multi-homed hosts and calls
between di�erent ORB instances (which currently are not optimized, even if the ORB instances are in
the same VM).

• Methods for manipulating the OAInvocationInfo stack. This stack contains information about the
current request on the server side. The ORB has several stacks that serve similar functions, as does the
EJB layer in the app server. This suggests an important optimization: unify the lifecycle management
of the stacks, and use a single uni�ed stack on each side (client and server) that supports extensible
data elements.

• Access to a number of managers, factories, and registries:

• CorbaTransportManager

• LegacyServerSocketManager

• PresentationManager (this is a static, as it is shared across RMI-IIOP and all ORB instances).

• PresentationManager.StubFactoryFactory (also static)

• MonitoringManager

• PIHandler, which provides all of the methods needed to support Portable Interceptors.

• ServiceContextFactoryRegistry

• RequestDispatcherRegistry, which provides many of the key objects needed for the dispatch cycle.

• ORBData, which contains all of the ORB con�guration data.

• ClientDelegateFactory, which converts a CorbaContactInfoList into a CorbaClientDelegate.

• CorbaContactInfoListFactory, which converts an IOR into a CorbaContactInfoList. The ClientDelegateFactory
and the CorbaContactInfoListFactory are the two essential objects used to prepare an endpoint
(represented by an object reference, and containing an IOR) into a form suitable for use in the
dispatch cycle.

• Resolvers for resolve_initial_references, list_initial_services, and register_initial_reference. These
are also used for string_to_object.

• Factories and related objects for IOR handling:

• TaggedComponentFactoryFinder

• Identi�ableFactoryFinder for TaggedPro�les

• Identi�ableFactoryFinder for TaggedPro�leTemplates

• ObjectKeyFactory

• WireObjectKeyTemplate

This allows us to extend the basic IOR framework with tagged component and pro�les as needed,
and also allows us to plug in a particular object key representation. The object key representation
is important for the operation of object adapters.

• ThreadPoolManager

• CopierManager

• ByteBu�erPool

• Access to the ORB Invocation Interceptor. This is a non-standard interceptor that intercepts calls
before and after the dispatch through the stub (when dynamic RMI-IIOP is used). This is currently
used in the app server for call �ow analysis, and could also be used for ORB timing points. We may
wish to consider providing a more extensible mechanism here: the current implementation supports
only one interceptor.

• Access to primitive type codes and a mapping between repository IDs and type codes.

17

• Access to the current ORB version, and a mechanism to set the ORB version for the current request
(to handle interoperability between di�erent versions of the Sun ORB).

• Access to the IOR for the FVD CodeBase object.

• Mechanisms for dealing with bad server IDs. This is only needed to support the ORBD. The mechanism
is now obsolete, as the object reference template (ORT) provides a better solution, but our current
ORBD has not been updated to use ORT.

• The notifyORB method, which is used to support the DII get_next_response mechanism.

• Support for controlling ORB shutdown so that shutdown cannot happen until all active requests have
completed.

• Access to the transient server ID, which is used for IORs for transient object references.

• Methods used by generated log wrapper classes to create log wrappers, which are used for reporting
errors and managing CORBA system exceptions.

Clearly there are a lot of methods in the ORB SPI. A better approach would be to push most of this into
the initial references mechanism, using IDL local objects. This would substantially reduce the size of the
ORB SPI. But I think we are unlikely to do this, as the impact on the existing code is probably too large.

2.3 ORB Initialization

The ORB initialization code is fairly complicated, but reasonably well structured at this point. I'll start with
a discussion of the ORB con�guration framework, then describe the ORB initialization process in moderate
detail. I'll also discuss how this is extended in the app server.

2.3.1 The Con�guration Framework

The orb packages contains a mostly general purpose framework for handling con�guration. This is divided
into several parts:

• The DataCollector, which gathers con�guration data from con�g �les, system properties and other
properties objects, and command line arguments together into a uniform Property object.

• The Operation interface and factory methods for creating Operation instances. Operation is a simple
unary function interface that returns an object. A wide variety of factory methods are provided in
OperationFactory and OperationFactoryExt, including one that composes Operations to create a new
Operation. This allows expression of fairly complex parsing methods. Many of the Operation instances
just convert a String into some other type.

• The PropertyParser and related classes that take a number of operations and combine them into a
single parser that can parse all the elements of a Property instance into a Map<String,Object> from
�eld names to values.

• Base classes that use a PropertyParser to initialize (possibly private) �elds in a con�guration object
(typically a JavaBean-like object with only read accessors). There is also a base class (ParserImplTableBase)
for constructing a PropertyParser from a table that includes default values and test data. This is used
for initializing the ORBData object that contains all of the ORB con�guration data.

The following sections will look at these parts in more detail.

18

2.3.1.1 DataCollector

ADataCollector has a rather simple interface: setParser passes a PropertyParser instance to the DataCollector,
which causes the DataCollector to gather together all con�guration data from the available data sources into
a single instance of Properties. This instance is available in the getProperties method.

The available data sources are:

• System Properties

• Applet Properties

• Contents of con�guration �les

• Command line arguments

It is perhaps not immediately obvious why a PropertyParser needs to be passed to the DataCollector. The
reason for this is that it is not always possible to simply grab every bit of information from the data sources.
But it is possible to get all con�guration information for the known property names. So the DataCollector
uses the PropertyParser to fetch information for all property names of interest.

Here is a class diagram of the DataCollector classes:

19

Note that there are 3 di�erent kinds of DataCollector. The Applet and Normal DataCollectors are used
with the corresponding ORB.init methods. The PropertyOnly DataCollector is only used internally, when
we need to create an internal full ORB instance to support certain operations on the ORB singleton. The
DataCollectorFactory class provides static methods for creating the di�erent kinds of DataCollectors.

There are a few issues here that could be revisited:

• The DataCollector framework has some internal ORB dependencies that could be removed:

• It handles some URL property names (for applets) specially.

• There is special handling for -ORBInitRef.

• The DataCollector base goes to a lot of trouble to hide some sensitive data from arbitrary access
by untrusted clients (mainly the local host name). It may be better to avoid doing this, and
instead check all access to sensitive information through the SecurityManager (if one is present).

• While the DataCollector interface is independent of the ORB, DataCollectorBase is not. It would
be cleaner to factor the ORB dependencies into another base class.

20

Fixing these issues would allow reuse of the DataCollector mechanism outside of the ORB, and provide a
somewhat cleaner implementation.

2.3.1.2 Operation

The operation interface is simply:

public interface Operation {

Object operate(Object value) ;

}

The SPI classes OperationFactory and OperationFactoryExt provide a large number of factory methods for
creating instances of the Operation interface:

• makeErrorAction(Operation op), where operate calls op and ignores any errors it may through

• indexAction(int index), where operate returns the index element of its argument, if the argument is
an array

• su�xAction, where operate returns the �rst value in a Pair<String,String> object

• valueAction, where operate returns the second value in a Pair<String,String> object

• identityAction, where operate returns its argument

• booleanAction, where operate converts its argument from a String to a Boolean

• integerAction, where operate converts its argument from a String to an Integer

• stringAction, where operate checks that its argument is a String, and returns it if it is

• classAction, where operate converts its argument from a String into a Class using ORBClassLoader.loadClass

• setFlagAction, where operate returns Boolean.TRUE

• URLAction, where operate converts its argument from a String into a URL

• integerRangeAction(int min, int max), where operate converts its argument from a String to an
integer if its argument represents an integer between min and max, otherwise throws an exception

• listAction(String sep, Operation act), where operate expects its argument to be a String of data
separated by the sep delimiter, and uses a StringTokenizer to separate the argument into a sequence
of Strings. operate then applies act to each String in the sequence, and returns the results in an array.
This is used for parsing homogeneous lists of data.

• sequenceAction(String sep, Operation[] act), where operate behaves similarly to listAction, except
that successive elements of act are applied to the sequence of Strings, instead of always using the same
Operation. This is used to process heterogeneous lists of data.

• composeAction(Operation op1, Operation op2), where operate �rst applies op1 to its argument, then
applies op2 to the result.

• mapAction(Operation op), where operate applies op to each element of its argument, which must be
an array, and returns an array of the results.

• mapSequenceAction(Operation[] op), where operate behaves similarly to mapAction, except that
successive elements of op are applied to the elements of the argument in sequence.

• convertIntegerToShort, where operate converts an Integer to a Short.

21

• convertAction(Class<?> cls), where operate constructs an instance of cls using its argument as an
argument to the constructor. Here it is assumed that cls contains a constructor that takes a single
String as an argument.

Other Operation implementations can be readily created, but this set is su�cient to handle all ORB
con�guration parsing (except for URL parsing, which is currently handled by some classes in the resolver
package). Extending this framework to handle URL parsing is relatively straightforward, but requires the
ability to handle optional data and alternate forms that is not currently present (essentially something like
ifAction(predicate, opTrue, opFalse) would probably take us in the right direction).

The other issue with this is that composing all of the actions in Java is somewhat cumbersome (take a
look at ParserTable.makeADOperation for an example). A customized language (e.g. some Lisp macros)
could make this much simpler. Combining this with annotation and code generation could reduce the ORB
con�guration implementation to something like:

@Configuration

public interface ORBData {

@Parse(�<some expression>�)

public String getORBInitialHost() ;

...

}

Pursuing this degree of automation is probably more than is justi�ed by the needs of the ORB.

2.3.1.3 PropertyParser

The DataCollector gives us a way to gather multiple sources of con�guration together into a uniform
Properties object, and the Operation framework gives us a way to parse Strings into data in many di�erent
ways. The PropertyParser ties these two mechanisms together so that we can parse all of the con�guration
data in a single operation.

A PropertyParser is basically a collection of ParserActions. There are two kinds of ParserActions:

Normal: Here the property name is found in the Properties object, and the String associated with the name
is transformed into a value.

Pre�x: Here the property name is a pre�x, and all property names that start with the pre�x are transformed
into the value.

There is a factory class (ParserActionFactory) that is used to create the two ParserActions.
A PropertyParser is initialized by call its add and addPre�x methods to add the ParserActions that are

needed in the PropertyParser. These methods return the PropertyParser so that they can be chained if
necessary. Each of these methods takes the following arguments:

propName which is the property name to which this action is applied

action which is the Operation performed by this action

�eldName which is the name in the resulting Map in which the result of the Operation is stored. This
is used later (see 2.3.1.4 on the following page) for storing the results in a con�guration object like
ORBData.

There are two other important methods in the PropertyParser. The parse method takes a Properties instance
and returns a Map from �eldNames to the parsed values. This is the main parsing method in the framework.
The iterator method returns an Iterator over the ParserActions, which can be used to �nd all of the property
names in the PropertyParser. This is used by the DataCollector to determine which properties are required.

The following diagram shows the di�erent classes used in the PropertyParser implementation:

22

2.3.1.4 Base Classes for Parsing Properties

The top of the con�guration framework includes classes that can take the Map returned from a PropertyParser
and use it to update the �elds in a class that is essentially a read-only JavaBean. This is done in ParserImplBase.
A further extension to this class in ParserImplTableBase allows the use of a table of ParserData to initialize
the Parser.

The ORB con�guration data is represented by the ORBData class. It is implemented by ORBDataParserImpl,
which extends ParserImplTableBase and uses ParserTable (essentially a large ParserData[]) to provide the

23

initialization data.
The ParserData contains the following information:

• The property name.

• The Operation used to parse the information.

• The �eld name into which the parsed con�guration data is placed.

• The default value which is used when the Properties do not contain the property name

• Test data and test value which are used to test the Operation. This is done automatically in the
corba.orbcon�g test (see testORBData()).

Instances of ParserData are created by the factory methods in ParserDataFactory. ParserData is implemented
by the NormalParserData and Pre�xParserData classes.

24

2.3.2 Details of ORB.init

Initializing an ORB from an ORB.init() call (the two versions that have arguments) requires several steps:

1. Select the ORB class that needs to be instantiated.

2. Create an instance of the class.

3. Invoke the set_parameters method on the instance.

These steps are all standard. The more interesting part is what happens in set_parameters.
set_parameters proceeds as follows:

1. Call the preInit method, which sets up most of the con�guration independent parts of the ORB (which
is not very much). This includes:

(a) Initializing a PIHandler that does nothing, so that the ORB can perform requests before PI has
been initialized (which happens near the end).

(b) Create a ThreadGroup for use by the ORB. This is complicated because of some Applet considerations:
for details, see the code.

(c) Set up the transient server ID. This is currently just set to System.currentTimeInMillis.

(d) Set up the ORBVersion ThreadLocal.

(e) Initialize some locks.

(f) Initialize the various registries.

(g) Set up invocation info ThreadLocal stacks.

2. Create a DataCollector that represents the available con�guration data for use in creating this ORB
instance. ORB.init(String args, Properties props) uses the NormalDataCollector, while ORB.init(
Applet app, Properties props) uses the AppletDataCollector.

3. Call the postInit method, which handles all con�guration-dependent ORB initialization. This includes:

(a) Setting up the ORBData. This is simple: just construct con�gData using ORBDataParserImpl
and the DataCollector.

(b) Set up the debug �ags.

(c) Initialize the monitoring manager, the transport manager, and the legacy server socket manager.

(d) Set up another parser (using the Parser framework) to obtain the ORBCon�gurator. Run the
ORBCon�gurator.

(e) Set up the real PIHandler, replacing the no-op version from the beginning of the initialization
sequence.

(f) Set up the thread pool manager and the byte bu�er pool

Most of the detailed ORB initialization happens in the ORB con�gurator, which we will examine next.

2.3.2.1 The ORB con�gurator

We have two mechanisms for customizing the ORB initialization: the standard (from PI) ORBInitializer,
and the ORBCon�gurator. Why two? There really is only need for one, except for one really irritating
problem: the ORBInitializer does not provide direct access to the ORB or the ORB con�guration data (our
DataCollector). We also want to be able to have ORB extension parse con�guration properties that are not
even known in the base ORB con�guration (although we don't currently make use of this). So I chose to
create the ORBCon�gurator interface.

Looking back on this now, there is an alternative that may have been better: simply extend ORBInitInfo
with an internal SPI so that we could access the ORB directly. The current situation is the result of a spec

25

compromise: no one could agree on what operations should be allowed on an ORB instance while it's in the
process of initialization, so a facade object (ORBInitInfo) was speci�ed that sharply restricts what can be
done with the underlying ORB instance. Of course, this makes it hard to access anyone's ORB extensions
from inside an ORBInitializer.

The current ORBCon�gurator we use is replaceable, as is obvious from the use of the parser to obtain
it. For example, we could replace the current Java-code driven approach with an XML-based approach, a
Lisp-Sexpression approach, something based on the JINI con�g language (which is an interpreted simple
subset of Java), or some other mechanism. But this does not seem to be needed today.

Here is what the ORBCon�guratorImpl con�gure method does:

1. Initialize the default object copiers. This is overridden in the app server init. Object copiers are
discussed in more detail in 9.1 on page 34.

2. Initialize IOR machinery (see 6.2 on page 31 for more details). This involves:

(a) Setting up the tagged pro�le and tagged pro�le template factories.

(b) Registering the tagged component factories. This could be extended by the app server init to
include CSIv2 related tagged components, which would remove the need for using the very slow
codec APIs.

(c) Registering the ValueFactory instances for the ObjectReferenceTemplate (this is needed so that
the ORB knows how to marshal these classes, since their public interface is an abstract value
type).

(d) Register the ObjectKeyFactory.

3. Register the ClientDelegateFactory.

4. Initialize the transport. As noted in the comments, this is complicated because we support several
legacy mechanisms for initialization. The more preferred mechanism for intializing the transport
is simply to register all required Acceptor instances (but we need a better framework for creating
Acceptors easily, I suspect). But we also have the older SocketFactory mechanism, as well as a number
of even older con�guration parameters. See ?? on page ?? for a discussion about the transport design.

5. Initialize naming. This really means setting up the resolvers for resolve_initial_references and related
methods. This provides access to a name service through either the old bootstrap or the standard INS
mechanisms. Resolvers are discussed in 8.10 on page 33.

6. Initializer the service context registry. Just as in the IOR case, this could be extended by the app
server init to include CSIv2 related service contexts, again avoiding the need for using the codec APIs.

7. Initialize the request dispatcher registry. This is the central mechanism that ties all of the code together
that is needed for invoking and dispatching in the ORB. This includes:

(a) Registering ClientRequestDispatchers and ServerRequestDispatchers.

(b) Registering the special ServerRequestDispatcher used for INS (this one has no object adapter).

(c) Registering the LocalClientRequestDispatchers, which are used for co-located requests. This
includes all of the servant caching optimizations. One small note on this: we could extend the
optimizations signi�cantly to cache the servant in ALL cases, and then have the POA invalidate
the cache when necessary. Currently we assume that we are caching only in the ServantLocator
case, and we assume that the ServantLocator always returns the same instance for the same object
reference. What we have now is fully e�ective for the App Server, so there has been little incentive
to re-visit this issue.

(d) register the ServerRequestDispatcher used to handle the bootstrap mechanism.

(e) Register the ObjectAdapterFactories.

Much of this registration is driven by subcontract IDs. See 6.1 on page 31for more details.

26

8. Register the initial reference for dynamic any support.

9. Handle the psersistent server initialization.

2.3.3 Initializing the ORB in the App Server

TBD
portable interceptors
PEORBCon�gurator
The ORBManager

2.4 ORB Shutdown

The primary issue in starting up the ORB is simply to con�gure all of the data needed for running the
ORB. In contrast, shutdown must carefully control access to the ORB so that spurious errors do not occur
in requests that are in the middle of being processed.

Details TBD.

27

Chapter 3

Dispatch Path Overview

Here is a simpli�ed sequence diagram describing the overall ORB dispatch path:

(discuss
this at a high level)

The next few chapters look at this in more detail through the PEPt model.

28

Chapter 4

Presentation

4.1 Stubs and Skeletons

See mapping specs and dynamic RMI-IIOP document

4.2 Data types

IDL: basics
IDL: typecode and any
Java addtions and value types

29

Chapter 5

Encoding

impl.encoding
impl.io
impl.util

5.1 Repository IDs

30

Chapter 6

Protocol

impl.protocol
impl.protocol.giopmsgheaders

6.1 Subcontract IDs

6.2 IORs

6.3 Service Contexts

6.4 GIOP Message Representation

31

Chapter 7

Transport

The transport is responsible for handling the transfer of data to and from endpoints. Connection management
is also an important part of the transport, since we most commonly use GIOP as a protocol, and GIOP is
connection based. We also include here the logic that is used to decide which of several possible endpoints
should be used for a connection.

The client and the server roles in a CORBA request are distinct, but both are event driven: messages are
normally received by a selector thread. The client simply needs to get a connection, write the messages to
the connection, and wait for a response. The server is event driven: it responds to messages received. The
server also contains acceptors, which represent endpoints on which the server listens for new connections,

connection management
mapping endpoints to sockets
message tracing
acceptors
listener
selector

32

Chapter 8

Other Aspects of the ORB

8.1 Object Adapters

8.2 The RequestDispatcherRegistry

8.3 Encoding Details

8.4 ORB Logging

8.5 ORB Monitoring

8.6 ORB versioning

8.7 ORBD and Server Activation

8.7.1 current model

8.7.2 ideas for using ORT

8.8 Portable Interceptors

8.9 RMI-IIOP Implementation

8.10 Resolvers

8.11 Name Services

8.12 ORB and App Server Integration

33

Chapter 9

Utilities

9.1 Fast Object Copying

9.2 Dynamic Code Generation

9.3 Useful utilities

9.4 FSM Framework

9.5 Graph Utilities

9.6 JDK 5 Speci�c Utilities

9.7 Timing Framework

34

Chapter 10

Living with our legacy

10.1 Testing Principles

10.2 Benchmarking

10.3 FOLB Support

10.4 HWLB Support

35

Chapter 11

Compilers

11.1 New rmic iiop backend

11.2 idlj

36

Chapter 12

Future Directions

12.1 Embedded Languages

12.2 Components

12.3 Fast Marshalling

12.4 Security

include security document here (that I was working on for a while last summer)

12.5 Better handling of Invocation Info

37

