
2

ActivationFramework 2

2.1 ORBD

2.1.1 Introduction

The ORBD (Object Request Broker Daemon) is used to provide support for the

clients to transparently locate and invoke on the persistent objects on servers in

the CORBA environment. The persistent servers while publishing the

persistent object references in the Naming Service, include the Port Number of

the ORBD in the object reference instead of the Port Number of the Server. The

inclusion of ORBD port number in the object reference for persistent object

references have following advantages:

• The object reference in the naming service remains independent of the

server life cycle. For Example, the object reference could be published by

the server in the Naming Service, when it is first installed, and then

independent of how many times the server is started or shutdown, the

ORBD will always return the correct object reference to the invoking client.

• The client needs to lookup the object reference in the Naming Service only

once, and can keep re-using this reference independent of the changes

introduced due to server life cycle.

The Default Port Number allocated to the ORBD by the Sun’s ORB is 1049. The

user or the administrator can always change this default port number by

passing the property com.sun.CORBA.activaton.Port to the JVM using -D flag.

2.1.2 Design

When ORBD is started up, it creates the following objects:

• Bootstrap Name Server Object: The persistent servers publish their object

references in this Naming Service. The clients can in turn contact this

Naming Service for looking up the object references. The advantage of

providing this Bootstrap Naming Service as part of the ORBD is that the

user doesn’ t need to start an additional Naming Service process for

publishing and resolving object references. The Port Number for the

Bootstrap Name Server is passed to the ORBD, the client, and server process

via property org.omg.CORBA.ORBInitialPort.

• Repository Object: This object provides interface for the persistent servers

to register their Server Definition, e.g., Server Name, Server Program Name,

classpath, and various flags or properties that need to be passed into the
VERSION BOOK TITLE—RELEASE DATE 5

Sun Proprietary: Need-To-Know

2

server process or the JVM when the server is launched. The repository is

persistent, i.e., the server definition(s) registered with the repository is

stored in a file, so that it is available to ORBD in case it goes down and

comes back up again. The Repository Object also provides an interface to

the external tool, called the servertool, to register, unregister, and list server

information.

• Locator Object: This object is used by the ORBD for: (a). starting up a

server if it is not running; (b). locating the listener endpoint associated with

a specific ORB in a server; (c). throwing a LocationForwardException with

the correct IOR to the invoking client. The Locator Object is also used by

the servertool to obtain: (a). a list of endpoints of a specific type associated

with all ORBs in a server; (b). all endpoints associated with a specific ORB

in a server.

• Activator Object: This object is used by the servertool to manage the server

lifecycle. For example, the servertool provides commands to: (a).

activate/startup a server; (b). shutdown the server; (c). unregister/uninstall

the server.

Internally, both activator and locator objects share the same implementation

and copy of the ServerManagerImpl. The ORBD creates above objects and

publishes them with the Initial Naming Service. The servertool or any other

process, e.g., the server process can resolve these references and call

appropriate methods to register or obtain the desired information. The ORBD

layout is as shown in Figure 1.

Bootstrap Naming
Service Object

Repository Object

Server
Definition
Table

Locator Interface Activator Interface

Server Table
Keeps Server State, ORBId
mapping, Endpoint Info.

Server Manager Object

ORBD Process

Figure 1: ORBD Composition
6 BOOK TITLE—RELEASE DATE VERSION

Sun Proprietary: Need-To-Know

2

2.1.3 ORBD JVM Properties

The ORBD process accepts following JVM properties. Their definition and

purpose is explained.

• com.sun.CORBA.POA.ORBPersistentServerPort: specifies the listener port

for ORBD. The default value for this port is 1049. This port number is

added to the port field of the persistent IORs.

• com.sun.CORBA.Activation.DbDir: specifies the base where the ORBD

persistent storage directory orb.db is created. In the current model, the

user.dir system property is retrieved, added to DbDir, and the file orb.db is

created in that path.

• com.sun.CORBA.ORBPersistentServerId: used to specify the server id to

be assigned to this ORBD.

• org.omg.CORBA.ORBInitialPort: this property is used to specify the

listener for the bootstrap Name server.

2.2 Server Activation
A server can be activated or launched as explained below.

• Locate: When a client invokes on the persistent object reference containing

the ORBD port-number, if the server is not already running, the ORBD

launches or activates the appropriate server.

• ServerTool: The user can register a new server definition, or startup an

existing server using this external tool.

ORBD

Repository
Activator

Locator

ServerTool

Server

1. Register -- returns serverId

2. Activate

ServerTable

3. Add Entry

4. Exec Server

5. Return

RegisterEndpoints

update server Info

Asynchronous
calls

Figure 2: Server Registration and Activation via Server Tool

Server Def
Table

1 a. add
VERSION BOOK TITLE—RELEASE DATE 7

Sun Proprietary: Need-To-Know

2

2.2.1 Server Activation via Server Tool

As shown in Figure 2, the user uses the register command in the server tool for

registering the server definition with the ORBD. The ServerTool, first calls

register() on the Repository to add the server definition to the Server Definition

Table. If a new entry is created, a server id is returned to the servertool,

otherwise an error of “Already Exists” is returned to the tool. The servertool

then calls activate() on the Activator Object. The Activator retrieves the server

definition information from the Repository, updates its server table, and

launches the server, and returns. The Server once it is activated/launched,

calls registerEndpoints() on the Locator Object to register its endpoint(s) and

ORB information (ORBName and its mapping) with the ORBD.

Incase, the server has been deactivated, it can be reactivated by using

servertool startup command. In this case the steps 2 thru 5 are followed from

Figure 2. As explained before, the server during its startup process will

register its endpoint and ORB information with the ORBD.

2.2.2 Server Activation via Method Invocation

The Server Activation during the method invocation on ORBD is depicted in

Figure 3. For this to work, the server definition should have already been

registered with the ORBD - Repository. When a client invokes on a persistent

object reference, the call is directed to the ORBD. The ORB runtime in ORBD

while processing the request, checks the ServerId in the ObjectKey portion of

the IOR (Interoperable Object Reference), against the ORBD’s ServerId. Since

these two ServerIds are different, the BadServerIdHandler, registered with the

ORBD is invoked. The default BadServerIdHandler, looks up the endpoint

information corresponding the ServerId and ORBid in the Server Table. If the

server is not active, the server is activated, and the information registered by

the server is retrieved, and used to form the correct IOR for the client.

Client

Activator

Locator

ServerTable

1. invoke
2. Locate Server

3. Exec Server

4. registerEndpoints

5. update Info

6. Endpoint
and ORB info

7. new IOR

Figure 3: Server Activation during Method Invocation
8 BOOK TITLE—RELEASE DATE VERSION

Sun Proprietary: Need-To-Know

2

The application programmers can also register their own BadServerIdHandler

class with the ORB using the property

com.sun.CORBA.POA.ORBBadServerIdHandlerClass.

2.2.3 Server Anatomy

The Application Programmers can structurally organize their server as shown

in Figure 4.

The main() method is executed each time a server is activated. Therefore, this

section should contain the code that can be executed any number of times. For

example, it could retrieve some server state during each activation.

public class AppServer {

 public static void main() {

public static void uninstall() {

 // put code that must be executed during each time a
 // a server is started. Example is retrieving some
 // information from the database, etc.

 wait(); // for processing Client Requests
}

public static void install() {

 // this piece of code is executed when the server is first
 // registered and activated. This could be a some code to
 // do some initialization, that needs to be done only once,
 // e.g., creating and publishing Object References into the
 // Namespace.
}

 // this piece of code is executed when a server is
 // unregistered from the Repository. This could be some
 // piece of code to cleanup the specific objects or data.

}

public static void shutdown() {
 // this piece of code is executed when the ORB is shutdown.
 // This code could contain logic to call a shutdown on each
 // of the ORBs created by the User Application.
}

Figure 4: The Structural organization of the Server Code
VERSION BOOK TITLE—RELEASE DATE 9

Sun Proprietary: Need-To-Know

2

The install() method is executed only during server initialization. For

example, this method could contain the code to initialize the ORBs and to

create and publish object references in the Namespace. This server method is

invoked by the ORB Server Activation Framework, when the server is first

registered and activated.

The uninstall() method is executed only when the server is unregistered from

the Repository. This method could contain the code to delete Objects installed

by this server in the Namespace. For example, when the server definition is

deleted from the Repository, the object references created by the deleted server

become unusable, and should be cleaned up from the Namespace.

The shutdown() method is called to shutdown the server. The server which

has been shutdown can be re-activated again. The typical application

programmer implementation of this method will be to shutdown each of the

ORBs associated with this server.

Note: There were a few discussions on overriding the shutdown semantics
provided by the JDK1.3 and above. The install(), uninstall() and shutdown
methods are optional for the Application Server writers. The Application
programmers can write the whole server logic in the main method, this way
their applications will stay portable across multiple ORBs.

2.3 Server Tool
The Server Tool provides the ease of use interface for the application

programmers to register, unregister, startup, and shutdown a server. In

addition to above four commands other commands are provided to obtain

various statistical information about the server. The Server Tool commands

and their brief function is disussed below.

2.3.1 Register Server

This command is used to register a new server defintion with the

Implementation Repository. The information passed to this command

includes: (a). server class name; (b). server name; (c). classpath to the server

class; (d). any arguments to be passed to the server; and (e). any flags to be

passed to the Java VM.

If the defintion is not in the Implementation Repository, a new entry is created

with the supplied information, and the server is activated or launched. In case

of an error, an appropriate exception is thrown.

The syntax for this command is:

register -server <server class name> -applicationName <alternate server
name> -classpath <classpath to server> -args <args to server> -vmargs
<args to server Java VM>
10 BOOK TITLE—RELEASE DATE VERSION

Sun Proprietary: Need-To-Know

2

2.3.2 Unregister Server

This command is used to delete a server’s definition from the Implementation

Repository. Given the server id or server name (passed during server

registration), the server tool: (a). contacts the Activator Object to shutdown the

server, and delete its information from its server table; and (b). contacts the

Implementation Repository to delete the server definition. The syntax for this

command is:

unregister [-serverid <server id> | -applicationName <name>]

where server id is obtained after the server is registered, and applicationName

is the alternate server name provided to the registration command.

2.3.3 Locate Server

This command is used to locate the endpoints of a particular type for all ORBs

created by the Server. If a server is not already running, then it is activated.

The syntax for this command is:

locate [-serverid <server id> | -applicationName <name>] [-endpointType
<endpointType>]

If an endpointType is not specified, then the Plain/non-protected endpoint

associated with each ORB in a server is returned.

2.3.4 Locate Server For An ORB

This command is used to locate all the endpoints registered by a specific ORB

of a Server. If a server is not already running, then it is activated. The syntax

for this command is:

locateperorb [-serverid <server id> | -applicationName <name>] [-orbid
<ORB name>]

If an orbid is not specified, then the default value of ““ is assigned to the orbid.

If there are any ORBs created with an orbid of empty string, then all the ports

registered by it are returned, otherwise an error message is returned.

2.3.5 ORB Id Mapping

This command is used to list the integer mapping for the ORBIds. The ORBIds

are the string name for the ORB created by the Server. When a server

initializes an ORB with a particular ORBId, an integer mapping for that

particular ORBId is obtained. This integer mapping that is put into the object

key, to help in locating the correct ORB in the server during requests on the

ORBD. If the server is not already running, then it is activated. The syntax for

this command is:

orblist [-serverid <server id> | -applicationName <name>]
VERSION BOOK TITLE—RELEASE DATE 11

Sun Proprietary: Need-To-Know

2

2.3.6 Get Server ID

This command is used to retrieve the server id corresponding to the server

application name from the Implementation Repository. The syntax for this

command is:

getserverid [-applicationName <name>]

2.3.7 List of Servers in the Implementation Repository

This command is used to retrieve information about all servers registered with

the ORBD, and whose definition is present in the Implementation Repository.

The syntax for the command is:

list

In response to this command, the server id, server name, and the

corresponding server application name for each server in the Implementation

Repository is retrieved and displayed to the user.

2.3.8 List of Active Servers

This command is used to retrieve the information about all active servers on a

machine. The active servers are the one’s which have been launched by the

Activator and as still running. The syntax for this command is:

listactive

In response to this command, the server id, server name, and the

corresponding server application name for each active server is retrieved and

displayed to the user.

2.3.9 List Application Names

This command is used to list the application names for all the servers that are

currently registered with the ORBD. The syntax for this command is:

listappnames

2.3.10 Start Server

This command is used to startup or activate the server. If the server is not

running, this command will launch the server. In case the server is already up

and running an error message is returned to the user. The syntax for this

command is:

startup [-serverid <server id> | -applicationName <name>]

In case of errors, an appropriate error message is returned to the user.
12 BOOK TITLE—RELEASE DATE VERSION

Sun Proprietary: Need-To-Know

2

2.3.11 Shutdown Server

This command is used to shutdown the active server. During the execution of

this command, the the shutdown() method defined in the server application

program is also invoked to shutdown the server process appropriately. The

syntax for this command is:

shutdown [-serverid <server id> | -applicationName <name>]

2.3.12 Help

The help command is used to list all the commands available to the server thru

the server tool. The syntax for this command is:

help

2.3.13 Quit

This command is used to quit out of the server tool. The syntax for this

commnad is:

quit

Note: The current ServerTool version also provides three commands to list
the poa name to poa id mapping, poa id to poa name mapping, and the list
all poa names and ids registered so far. In the current architecture, since this
mapping is stored as part of the ORBD object, they are available.
Eventually, we will eliminate the POAIdMapper Object from ORBD, and
move it to the POAORB (TBD by Ken Cavanaugh). When that happens, we
need to remove these three commands from the ServerTool.

2.4 Example Code
This section provides an example client and server code that would work with

the current Server Activation Framework.

2.4.1 Example IDL File

module examples {

interface policy_2

{

long increment();

};

};
VERSION BOOK TITLE—RELEASE DATE 13

Sun Proprietary: Need-To-Know

2

2.4.2 Example Server Program

package examples;

import java.util.Properties;

import org.omg.CORBA.Object;

import org.omg.CORBA.*;

import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextHelper;

import org.omg.CORBA.ORBPackage.InvalidName;

import org.omg.PortableServer.POAManagerPackage.AdapterInactive;

import org.omg.PortableServer.POAPackage.InvalidPolicy;

import org.omg.PortableServer.POAPackage.AdapterAlreadyExists;

import org.omg.PortableServer.POAPackage.WrongPolicy;

import org.omg.PortableServer.POAPackage.ServantAlreadyActive;

import org.omg.PortableServer.POAPackage.ServantNotActive;

import org.omg.PortableServer.*;

import org.omg.PortableServer.POAPackage.AdapterAlreadyExists;

import org.omg.PortableServer.POAManagerPackage.AdapterInactive;

import org.omg.PortableServer.IdAssignmentPolicyValue;

import org.omg.PortableServer.ThreadPolicyValue;

import org.omg.PortableServer.LifespanPolicyValue;

import org.omg.PortableServer.IdUniquenessPolicyValue;

import org.omg.PortableServer.ServantRetentionPolicyValue;

import org.omg.PortableServer.RequestProcessingPolicyValue;

import org.omg.PortableServer.ImplicitActivationPolicyValue;

import org.omg.CORBA.Policy;

import org.omg.PortableServer.Servant;

class policy2_servantA extends policy_2POA

{

14 BOOK TITLE—RELEASE DATE VERSION

Sun Proprietary: Need-To-Know

2

private int countValue;

public policy2_servantA()

{

countValue = 0;

}

/**

* Implementation of the servant object.

* The funtion intakes no parameter

* and returns an int value incremented by one.

*/

public int increment()

{

return ++countValue;

}

}

class policy2_servantB extends policy_2POA

{

private int countValue;

public policy2_servantB()

{

countValue = 1000;

}

/**

* Implementation of the servant object.

* The funtion intakes no parameter

* and returns an int value incremented by one.

*/
VERSION BOOK TITLE—RELEASE DATE 15

Sun Proprietary: Need-To-Know

2

public int increment()

{

return ++countValue;

}

}

public class policy2Server

{

private static policy2_servantA acs1;

private static policy2_servantB acs2;

private static org.omg.CORBA.ORB orb1;

private static org.omg.CORBA.ORB orb2;

private static org.omg.CORBA.Object obj1;

private static org.omg.CORBA.Object obj2;

private static Integer initialized;

static {

acs1 = new policy2_servantA();

acs2 = new policy2_servantB();

initialized = new Integer(0);

}

private static final String msgPassed = “policy_2: **PASSED**”;

private static final String msgFailed = “policy_2: **FAILED**”;

public static void main(String args[])

{

try

{

initializeORBs();

// publish objects in the Namespace

publishObjects(orb1, obj1, “Object1”);

publishObjects(orb2, obj2, “Object2”);

System.out.println(“Policy_2 Server is Ready and Waiting”);
16 BOOK TITLE—RELEASE DATE VERSION

Sun Proprietary: Need-To-Know

2

java.lang.Object sync = new java.lang.Object();

synchronized(sync)

{

sync.wait();

}

} catch(Exception exp) {

exp.printStackTrace();

System.out.println(msgFailed + “\n”);

}

}

private static void initializeORBs() {

try {

if (initialized.intValue() == 0) {

orb1 = initializeORB(“suborb1”);

orb2 = initializeORB(“suborb2”);

//create the rootPOA and activate it, and publish objects in Namespace

obj1 = activatePOAs(orb1, acs1);

obj2 = activatePOAs(orb2, acs2);

initialized = new Integer(1);

}

} catch(Exception exp) {

exp.printStackTrace();

}

}

public static void publishObjects(org.omg.CORBA.ORB orb,

org.omg.CORBA.Object objRef, String Name)

{

try {

// get the root naming context

org.omg.CORBA.Object obj = orb.resolve_initial_references(“NameService”);
VERSION BOOK TITLE—RELEASE DATE 17

Sun Proprietary: Need-To-Know

2

NamingContext rootContext = NamingContextHelper.narrow(obj);

// Binding to NamingService

System.out.println(“Binding to NamingService”);

NameComponent nc = new NameComponent(Name, ““);

NameComponent path[] =

{

nc

};

rootContext.rebind(path, objRef);

} catch (Exception ex) {

System.out.println(“Error in publishObjects “ + ex);

}

}

public static org.omg.CORBA.Object activatePOAs(org.omg.CORBA.ORB orb,

Servant servantObj)

{

org.omg.CORBA.Object obj = null;

try {

POA rootPoa = (POA)orb.resolve_initial_references(“RootPOA”);

rootPoa.the_POAManager().activate();

// Create a POA

POA childpoa = null;

// create policy for the new POA.

Policy[] policy = new Policy[7];

policy[0] = rootPoa.create_id_assignment_policy(

IdAssignmentPolicyValue.SYSTEM_ID);

policy[1] = rootPoa.create_thread_policy(

ThreadPolicyValue.ORB_CTRL_MODEL);

policy[2] = rootPoa.create_lifespan_policy(

LifespanPolicyValue.PERSISTENT);
18 BOOK TITLE—RELEASE DATE VERSION

Sun Proprietary: Need-To-Know

2

policy[3] = rootPoa.create_id_uniqueness_policy(

IdUniquenessPolicyValue.UNIQUE_ID);

policy[4] = rootPoa.create_servant_retention_policy(

ServantRetentionPolicyValue.RETAIN);

policy[5] = rootPoa.create_request_processing_policy(

RequestProcessingPolicyValue.USE_ACTIVE_OBJECT_MAP_ONLY);

policy[6] = rootPoa.create_implicit_activation_policy(

ImplicitActivationPolicyValue.NO_IMPLICIT_ACTIVATION);

// create the child poa and activate it

childpoa = rootPoa.create_POA(“policy_2”, null, policy);

childpoa.the_POAManager().activate();

childpoa.activate_object((Servant)servantObj);

obj = childpoa.servant_to_reference((Servant)servantObj);

} catch (org.omg.CORBA.ORBPackage.InvalidName ex) {

} catch (org.omg.PortableServer.POAManagerPackage.AdapterInactive ex) {

} catch (org.omg.PortableServer.POAPackage.AdapterAlreadyExists ex) {

} catch (org.omg.PortableServer.POAPackage.InvalidPolicy ex) {

} catch (org.omg.PortableServer.POAPackage.WrongPolicy ex) {

} catch (org.omg.PortableServer.POAPackage.ServantAlreadyActive ex) {

} catch (org.omg.PortableServer.POAPackage.ServantNotActive ex) {

System.out.println(“Error in activate POAs “ + ex);

}

return obj;

}

public static org.omg.CORBA.ORB initializeORB(String orbId)

{

org.omg.CORBA.ORB orb = null;

try{

Properties prop = new Properties();

prop.setProperty(“org.omg.CORBA.ORBClass”,
VERSION BOOK TITLE—RELEASE DATE 19

Sun Proprietary: Need-To-Know

2

“com.sun.corba.se.internal.POA.POAORB”);

prop.setProperty(“com.sun.CORBA.ORBid”, orbId);

String[] initargs = {““};

orb = ORB.init(initargs, prop);

} catch (Exception ex) {

System.out.println(“caught Exception “ + ex);

}

return orb;

}

public static void shutdown(org.omg.CORBA.ORB orb)

{

System.out.println(“Server’s shutdown method called”);

}

public static void install(org.omg.CORBA.ORB orb)

{

// could perform server specific installation, e.g.,

// creating files, attaching to database, etc.

System.out.println(“Server’s install method called”);

}

public static void uninstall(org.omg.CORBA.ORB orb)

{

System.out.println(“Server’s uninstall method called”);

}

}

The server program here shows creation of multiple ORBs in a server process,

and creating objects in those ORBs. The clients can invoke on an object in a

particular ORB via the object reference published in the Namespace. The

install(), uninstall(), and shutdown methods should be public static void(), and

are invoked during server registration, unregistration, and shutdown.
20 BOOK TITLE—RELEASE DATE VERSION

Sun Proprietary: Need-To-Know

2

2.4.3 Example Client Program

package examples;

import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*;

import java.util.*;

public class policy2Client

{

private static final String msgPassed = “policy_2: **PASSED**”;

private static final String msgFailed = “policy_2: **FAILED**”;

public static void main(String args[])

{

try

{

Properties props = new Properties();

props.put(“org.omg.corba.ORBClass”,

System.getProperty(“org.omg.CORBA.ORBClass”));

props.setProperty(“com.sun.CORBA.ORBid”, “sunorb1”);

System.out.println(“com.sun.CORBA.ORBid “ +

props.getProperty(“com.sun.CORBA.ORBid”));

ORB orb1 = ORB.init(args, props);

props = new Properties();

props.put(“org.omg.corba.ORBClass”,

System.getProperty(“org.omg.CORBA.ORBClass”));

props.setProperty(“com.sun.CORBA.ORBid”, “sunorb2”);

ORB orb2 = ORB.init(args, props);

lookupAndInvoke(orb1, “Object1”);

lookupAndInvoke(orb2, “Object2”);

} catch(Exception exp) {

exp.printStackTrace();
VERSION BOOK TITLE—RELEASE DATE 21

Sun Proprietary: Need-To-Know

2

System.out.println(msgFailed + “\n”);

}

}

public static void lookupAndInvoke(org.omg.CORBA.ORB orb, String

ObjName) throws Exception

{

try {

System.out.println(“Looking for naming Service”);

org.omg.CORBA.Object objRef =

orb.resolve_initial_references(“NameService”);

NamingContext ncRef = NamingContextHelper.narrow(objRef);

System.out.println(“Getting Object Reference”);

NameComponent nc = new NameComponent(ObjName, ““);

NameComponent path[] =

{

nc

};

policy_2 Ref = policy_2Helper.narrow(ncRef.resolve(path));

int l = Ref.increment();

System.out.println(“Incremented value:” + l);

System.out.println(msgPassed + “\n”);

} catch(Exception exp) {

throw exp;

}

}

}

In this example, the client lookups the two objects created within different

ORBs in a server, and invokes on them. As expected, since the objects are

different, and have different bases for the increment method, the result is

different for each invocation.
22 BOOK TITLE—RELEASE DATE VERSION

Sun Proprietary: Need-To-Know

2

2.4.4 Makefile for the Example

JAVA_HOME=/usr/local/java/jdk1.2.2/solaris

RIP_HOME=/net/anybodys/export3/anita/rip-int-apr5/build/solaris/

NOT TO BE CHANGED

JAVA=$(JAVA_HOME)/bin/java

JAVAC=$(JAVA_HOME)/bin/javac

JDB=$(JAVA_HOME)/bin/jdb

CLASSPATH=$(RIP_HOME)/classes:.

JAVACFLAGS=-d . -classpath $(CLASSPATH)

.SUFFIXES: .class .java .java~

.java.class:

$(JAVAC) $(JAVACFLAGS) $<

EXE_FLAGS = \

-ORBInitialHost $(ORB_INITIAL_HOST) \

-ORBInitialPort $(ORB_INITIAL_PORT)

VPATH=examples

STUBDIR=examples

client = policy2Client.class

server = policy2Server.class

LD_LIBRARY_PATH=$(RIP_HOME)/lib/sparc

IOSER=$(LD_LIBRARY_PATH)/libioser12.so

IDLJ=${JAVA} -classpath ${CLASSPATH}

com.sun.tools.corba.se.idl.toJavaPortable.Compile

IDLJFLAGS=-fall -td . -verbose -i${JAVA_HOME}/lib -pkgPrefix

CosTransactions org.omg

POAFLAGS=-poa

ORB_INITIAL_PORT=1050

ORB_INITIAL_HOST=anmol.eng.sun.com

SLEEP=/usr/bin/sleep

RM=/bin/rm -rf
VERSION BOOK TITLE—RELEASE DATE 23

Sun Proprietary: Need-To-Know

2

ORB_CLASS=com.sun.corba.se.internal.POA.POAORB

ORBSINGLETON_CLASS=com.sun.corba.se.internal.corba.ORBSingleton

ORB_PROPS=-Dorg.omg.CORBA.ORBInitialHost=${ORB_INITIAL_HOST} \

-Dorg.omg.CORBA.ORBInitialPort=${ORB_INITIAL_PORT} \

-Dcom.sun.CORBA.ORBId=”sunorb”

JAVAFLAGS=$(ORB_PROPS) -classpath $(CLASSPATH)

ACTIVATION_DIR=.

ACTIVATION_PORT=1049

ORBD_CLASS=com.sun.corba.se.internal.Activation.ORBD

ORBD_PROPS=-Dcom.sun.CORBA.Activation.DbDir=$(ACTIVATION_DIR) \

-Dcom.sun.CORBA.Activaton.Port=$(ACTIVATION_PORT)

ORBD=$(JAVA) $(ORBD_PROPS) $(JAVAFLAGS) $(ORBD_CLASS)

SERVERTOOL_CLASS=com.sun.corba.se.internal.Activation.ServerTool

SERVERTOOL=$(JAVA) $(JAVAFLAGS) $(SERVERTOOL_CLASS)

all : clean build run

stubs: $(STUBDIR)/policy_2.java

build: stubs $(client) $(server)

run: register start runclient

#

Targets to compile the tests.

#

$(STUBDIR)/policy_2.java: policy2.idl

$(IDLJ) $(IDLJFLAGS) $(POAFLAGS) policy2.idl

#

Target to register the server.

(note that it will be put in the background)

#

register:

$(SERVERTOOL) -ORBInitialPort $(ORB_INITIAL_PORT) -cmd \

register -server examples.policy2Server \
24 BOOK TITLE—RELEASE DATE VERSION

Sun Proprietary: Need-To-Know

2

-applicationName s1 \

-vmargs \

-Dorg.omg.CORBA.ORBClass=com.sun.corba.se.internal.POA.POAORB \

-Dorg.omg.CORBA.ORBInitialPort=1050 >out

grep serverid out|cut -f2 -d= >out

$(SLEEP) 2

#

Target to start the server.

(note that it will be put in the background)

#

start:

$(SERVERTOOL) -ORBInitialPort $(ORB_INITIAL_PORT) -cmd \

startup -serverid `cut -c 2,2-4 out` >out

rm -f out

$(SLEEP) 3

#

Targets to run the client.

#

runclient:

$(JAVA) -Dorg.omg.CORBA.ORBClass=${ORB_CLASS} \

-Dorg.omg.CORBA.ORBSingletonClass=${ORBSINGLETON_CLASS} \

$(JAVAFLAGS) examples.policy2Client $(EXE_FLAGS)

runserver:

$(JDB) -Dcom.sun.CORBA.POA.ORBServerId=4000 \

-Dcom.sun.CORBA.POA.ORBPersistentServerPort=1050 \

-Dcom.sun.CORBA.ORBId=sunorb \

-Dcom.sun.CORBA.activation.DbDir=$(ACTIVATION_DIR) $(JAVAFLAGS)

examples.policy2Server $(EXE_FLAGS)

runorbd: $(ORBD)
VERSION BOOK TITLE—RELEASE DATE 25

Sun Proprietary: Need-To-Know

2

clean:

$(RM) examples

$(RM) NC0 counter poaids.db servers.db logs orb.db

servertool:

$(SERVERTOOL) -help

2.4.4.1 Building the Programs

make build

This command generates the stubs and skeletons, and builds the programs.

The class files are placed under examples, in the current directory.

2.4.4.2 Executing the Programs

make runorbd

This command starts up the orbd

make servertool

This command starts up the servertool. This servertool can then be used to

startup servers, etc. The register target in the makefile can be used as a

reference for registering policy2Server with the ORBD. Once the server is

registered, the policy2Client can be executed using the command:

make runclient

The orb.db directory in the current directory contains the persistent data and

the server logs. The orb.db/logs directory contains the <serverid>.out and

<serverid>.err file for each server that is registered through servertool. The

application programmer may refer to this directory for finding out any

messages from their servers.
26 BOOK TITLE—RELEASE DATE VERSION

Sun Proprietary: Need-To-Know

2

VERSION BOOK TITLE—RELEASE DATE 27

Sun Proprietary: Need-To-Know

2

28 BOOK TITLE—RELEASE DATE VERSION

Sun Proprietary: Need-To-Know

	Activation Framework
	2.1 ORBD
	2.1.1 Introduction
	2.1.2 Design
	2.1.3 ORBD JVM Properties

	2.2 Server Activation
	2.2.1 Server Activation via Server Tool
	2.2.2 Server Activation via Method Invocation
	2.2.3 Server Anatomy

	2.3 Server Tool
	2.3.1 Register Server
	2.3.2 Unregister Server
	2.3.3 Locate Server
	2.3.4 Locate Server For An ORB
	2.3.5 ORB Id Mapping
	2.3.6 Get Server ID
	2.3.7 List of Servers in the Implementation Repository
	2.3.8 List of Active Servers
	2.3.9 List Application Names
	2.3.10 Start Server
	2.3.11 Shutdown Server
	2.3.12 Help
	2.3.13 Quit

	2.4 Example Code
	2.4.1 Example IDL File
	2.4.2 Example Server Program
	2.4.3 Example Client Program
	2.4.4 Makefile for the Example
	2.4.4.1 Building the Programs
	2.4.4.2 Executing the Programs

