The Multiplex Subsystem of
the JBoss Remoting Project

Ron Sigal

July 4, 2006
Copyright © 2005 Ron Sigal

1. Introduction.

The Multiplex subsystem of the JBoss Remoting Project (referred to herein on occasion ssmply as “Muliplex”)
supports the multiplexing of multiple data streams over a single network connection, based on a reimplementation
of the following classes from j ava. net :

1. Socket

2. Server Socket

3. Socket | nput St ream

4. Socket Qut put St ream

and the following classes from j avax. net :
1. SocketFactory

2. ServerSocket Fact ory

Itismotivated by circumstancesin which the number of available portson asystemisrestricted by afirewall or other
considerations. Since the Remoting project is the principal client of Multiplex, we illustrate multiplexing primarily
in the context of a Remoting application. Remoting supports two modes of client-server communication: (1) method
calls from client to server, with a synchronous response, and (2) client requests for an asynchronous callback from
the server. The usua need for separate ports to support both synchronous and asynchronous modes is obviated by
the Multiplexing subsystem.

2. The Prime Scenario.

The typical application of multiplexing in the Remoting context is illustrated by the Prime Scenario, in which a
client requiring both synchronous and asynchronous responses from a server isbehind afirewall and hasonly asingle
port at its disposal. Without the restriction to a single port, we would have the situation in Figure 1, which requires
no multiplexing. With the restriction, we have the Prime Scenario, asin Figure 2.

JBoss July 4, 2006 1

The Multiplex Subsystem of the JBoss Remoting Project

‘ key:
®—_ - &
callbacks I + - port
O— -]
method calls ‘ & - socket
client server

Figure 1. Method calls and callbacks with no port restrictions.

—d -method c:

o 1 callbacks 1 / +— -callback s

— e—

cr——

'“,//"7 Tmethod calls T ‘\:‘\ + - port

® -socket
client server

O -virtual soc
Figure 2. Method calls and callbacks in the Prime Scenario.

Multiplexing is supported primarily by the concept of the virtual socket, implemented by the vi r t ual Socket class.
Vi rtual Socket isasubclassof j ava. i 0. Socket , and supportsthe full socket API. Asisthe casewith actual sockets,
virtual sockets are created in one of two ways:

1. aconstructor (or factory) call onaclient, or
2. acdl totheaccept () method of aserver socket on aserver.
Accordingly, the other principal Multiplex concept isthe virtual server socket, implemented by two classes:

1. MasterServer Socket , and

JBoss July 4, 2006 2

The Multiplex Subsystem of the JBoss Remoting Project

2. Virtual Server Socket .

These are both subclasses of j ava. i 0. Ser ver Socket , and both implement the full server socket API. Since virtua
sockets areimplemented on the foundation of actual sockets, and the creation of actual socketsrequiresaserver socket,
we need the support of actual server sockets in the creation of virtual sockets. It isthe role of Mast er Ser ver Socket

to provide that support. The accept () method of Mast er Server Socket calls super. accept () to create an actual
socket which isthen wrapped in amechani sm which supports one or more virtual sockets. Every Muliplex application
requiresat least oneMast er Ser ver Socket , and the Prime Scenario requiresexactly one. Figure 3illustratesthe process
inwhich avirtual socket v1 connectsto aMast er Ser ver Socket , which creates and returns areference to anew virtual
socket v2.

- port
O——o— return v2
_ -I-|—|_|_ -
o _ socket
reque st connection - virtual socks
- MasterServe
client server .
—p= -creates

Figure 3. Setting up a synchronous connection.

In Figure 3 we have a connection between v1 and v2, which can support synchronous communication but which
offers nothing not provided by actual sockets. The support of multiplexed callbacks, however, requires the use of
the other virtual server socket class, Vi rt ual Server Socket . Unlike Mast er Ser ver Socket , Vi rt ual Ser ver Socket

does not depend on superclass facilities, but rather it uses an ordinary client socket, with which implementsits own
version of the accept () method, able to create any number of virtual sockets, all of which share a single port with
the vi rt ual Server Socket . It is important to understand how its use of an actual socket determines the nature of a
Vi rt ual Server Socket . Unlike aserver socket, a client socket must be connected to another socket to function, and a
Vi rt ual Server Socket hasthe same property. It followsthat avi r t ual Ser ver Socket can process requests from just
one host, the host to which its actual socket is connected.

The role of the vi rtual Server Socket isillustrated in Figure 4. A constructor (or factory method, which calls a
constructor) iscalled on the server to create virtual socket v3 to support callbacks. The constructor sends aconnection
requesttothevi rt ual Server Socket ontheclient, which creates new virtual socket v4 and sendsback to v3 areference
to v4. At this point the Prime Scenario is set up.

JBoss July 4, 2006 3

The Multiplex Subsystem of the JBoss Remoting Project

- port

request conne ction
——— o

-~ - - virtual soc
raturn v4 v

- MasterSer

- real socket

- VirtualSen

client - creates

Figure 4. Adding an asynchronous connection to Figure 3.

3. Virtual socket groups.

In order to understand the creation of structures like the Prime Scenario and others described below, it isimportant to
understand the concept of avirtual socket group. A virtual socket group is a set of virtual sockets, and zero or one
Vi rt ual Server Socket S, sharing a single actual socket. We say that the socket group is based on its actual socket.
Depending on the state of its underlying actual socket and the nature of its peer socket group, if any, a socket group
may be in one of three states. Let G be a socket group based on actual socket S. Then G may be

1. bound: Sisbound but not connected, or

2. connected: Sisconnected to socket S and the socket group based on S doesnot containavi r t ual Ser ver Socket ,
or

3. joinable: Sisconnected to socket S and the socket group based on S does contain a Vi rt ual Ser ver Socket .

Althoughitis possible for a socket to be neither bound nor connected, we do not consider asocket group to exist until
its underlying socket is at least bound to alocal address. A connected or joinable socket group is said to be visible,
and a bound socket group isinvisible. A socket group is characterized by the pair of addresses

(local Address, remoteAddress)

where these are the local and remote addresses of the actual socket underlying the socket group. local Address may
take the specia form (*, port), where the wildcard value “*” denotes any hostname by which the local host is known.

JBoss July 4, 2006 4

The Multiplex Subsystem of the JBoss Remoting Project

Depending on the state of the socket group, remoteAddress may have the special value undefined, indicating that a
connection has not yet been established.

There are two ways of creating anew virtual socket group or of joining an existing socket group: through a binding
action or aconnecting action. A binding action is either

1. acdltoany of thevirtual Server Socket constructors other than the default constructor (i.e., those with a port
parameter), or

2. acdl toabind() methodin Vvirtual Socket Of Vi rtual Server Socket .
A connecting action belongs to one of five categories:

1. acadl toany virtual Socket Or Virtual Server Socket constructor that requires a remote address (note that
unlikej ava. net . Ser ver Socket , Vi rt ual Ser ver Socket hasasuch a constructor),

2. acal toaconnect () method (again, Vi rt ual Ser ver Socket hasanonstandard connect () method),
3. acadl toVirtual Server Socket . accept (),

4, acadl toMaster Server Socket . accept (), Of

5. acall toMast er Server Socket . accept Ser ver Socket Connect i on().

Each binding action has an associated local address, and each connecting action has an associated remote address
and an optional local address. For binding actions, and connecting actions in the first two categories, the addresses
are given explicitly in the method call. For acall to vi rt ual Ser ver Socket . accept (), the addresses are those of the
socket group to which the server socket belongs, and for the two Mast er Ser ver Socket methods, the addresses are
those of the actual socket they create.

Depending on their associated local and remote addresses and on the socket groups that exist at the time of the action,
a binding or connecting action may have the effect of creating a new socket group or adding a new member to an
existing socket group. The rules are straightforward, but there is one source of possible confusion, the accidental
connection problem discussed below, that must be guarded against. Let V be avirtual socket or virtual server socket
undergoing either a binding or connecting action.

1. binding action rule: If there are visible socket groups whose local address matches the action's local address,
then V joins one of them chosen at random. Otherwise, a new bound socket group is created and V joinsiit.

2. connecting action rule:
a. Foractionsinthefirst two categories, whereVisavi rt ual Socket (respectively, avi rtual Server Socket):
i. If the action has aremote address but no local address:

A. If there are any joinable (resp., connected) socket groups with a matching remote address, then
V joins one of them chosen at random.

B. If thereare no such socket groups, an attempt is made to connect to amast er Ser ver Socket at the
remote address, and if the attempt succeeds, a new socket group is created and V joinsit.

ii. If the action has both alocal address and a remote address:

JBoss July 4, 2006 5

The Multiplex Subsystem of the JBoss Remoting Project

A. If thereisajoinable (resp., connected) socket group with matching addresses, then V joinsit

B. Otherwisg, if the local address (in particular, its port) is currently in use, the action resultsin a
| OExcepti on.

C. Otherwise, anew socket group G is created and bound to the local address. Then an attempt is
made to connect to a Mast er Ser ver Socket at the remote address, and if the attempt succeeds,
Vijoins G.

b. Forvirtual Server Socket . accept () cals, thenew virtual socket joinsthe socket group to which the server
socket belongs.

C. For master Server Socket . accept () cals, anew socket group is created with the new virtual socket asits
first member.

d. For MasterServerSocket . accept Server Socket Connection() cals, a new socket group with zero
membersis created.

NOTES:

1

A bound socket group is inaccessible to the connect action rules (which is why it is called "invisible"). The
reason isto avoid asituation in which onevirtual socket "highjacks" another virtual socket's group. Suppose that
virtual socket v1 bindsitself to ("localhost”, 5555), but before it gets a chance to connect to ("www.jboss.com”,
6666), virtual socket v2 bindsto ("localhost", 5555) and then connects to ("www.ibm.com", 7777). Then when
vl tries to connect to ("www.jboss.com”, 6666), the attempt fails. This situation cannot occur because at the
moment when v2 does its bind, v1's socket group isinvisible and v2 is forced to create it own socket group.

The connecting actionrulesaredifferent for vi r t ual Socket and Vi rt ual Ser ver Socket (Specifically, theformer
can join only joinable socket groups, while the later can join connected socket groups) because vi r t ual Socket
needs a Vi rt ual Ser ver Socket tO create a peer virtual socket for it to connect to, and a Vi r t ual Ser ver Socket
does not need such a peer.

N.B. It is important to understand a possible side effect of a binding action. When V joins a socket group
through abinding action, it is possible that the group is already connected. In this case, a subsequent connecting
action (in particular, acall to connect ()) to any address other than the socket group's remote addressisinvalid,
leading to an | Cexcepti on with the message "socket is aready connected.". This is caled the accidental
connection problem, and it is avoidable. Both Vi rt ual Socket and Vi rt ual Server Socket have constructors
and nonstandard versions of the connect () which accept both local and remote addresses. These treat binding
and connecting as a single atomic process.

The socket group rules are illustrated in the following two sections.

4. Coding the Prime Scenario.

In order to set up the Prime Scenario, the following steps are necessary (the socket names conform to Figure 4):

1

2.

On the server, create aMast er Ser ver Socket and bind it to port P.

On the client, create avirtual socket v1 and connect it to port P.

JBoss July 4, 2006 6

The Multiplex Subsystem of the JBoss Remoting Project

3. Let Q bethe port on the client to which v1 is bound. Create a Vi rt ual Server Socket on the client, bind it to
Q, and connect it to P.

4. Onthe server, create avirtual socket v3 and connect it to port Q.

The Prime Scenario provides an example of creating socket groups. In step 2, a socket group G1 is created on the
client through the construction of v1. It enters the connected state, bound to an arbitrary port Q on the client and
connected to port P on the server. In step 3 a Vi rt ual Server Socket joins G1 by way of binding to Q on the client
and connecting to P on the server. In fact, the socket group rules imply that it is enough to bind the server socket
to port Q. Connecting it to P on the server occurs as a side effect of the binding action. Finally, step 4 adds virtual
socket v4 to G1. While G1 is being built on the client, a socket group G2 is being built on the server. Step 2 results
in the creation of G2, along with its first member, a new virtual socket, v2, returned by the accept () method of the
Mast er Ser ver Socket . Step 4 adds a second member, v3, to G2.

See Listing 1 and Listing 2 for a simple example of coding these steps. Variants of these samples may be found in
the directory /org/jboss/remoting/samples/multiplex.

5. More general scenarios.

Although Multiplex was motivated by the Prime Scenario, it can al so support other connection structures. We describe
two alternativesin this section.

5.1. The N-socket scenario.

The N-socket scenario demonstrates that a socket group is not restricted to just two virtual sockets. It aso
demonstrates that a Vi rt ual Server Socket does not depend on the prior existence of a connected virtual socket.
As long as it has access to a Mast er Ser ver Socket ready to accept a connection, it can get started. In fact, the
Mast er Ser ver Socket . accept () method will silently accept a connection from a Vi rt ual Server Socket whileitis
waiting for aconnection request from avirtual socket, but theaccept Ser ver Socket Connect i on() methodisdesigned
specifically to accept a connection request from avi r t ual Ser ver Socket .

The connection structure of the N-socket scenario isdepicted in Figure 5 (for N = 3), and the code for asimple client
and server isgiven in Listing 3 and Listing 4. In the example a socket group with 3 elements is constructed on the
server. It is created with the call

server Socket . accept Ser ver Socket Connecti on()

which creates an actual socket and a socket group which, though it has no members, is connected to a
Vi rt ual Server Socket onthe client. The next three lines,

Socket socket 1
Socket socket 2
Socket socket 3

new Virtual Socket (“l ocal host”, 5555);
new Virtual Socket (“l ocal host”, 5555);
new Virtual Socket (“l ocal host”, 5555);

JBoss July 4, 2006 7

The Multiplex Subsystem of the JBoss Remoting Project

populate the socket group with three virtual sockets. On the client there is a socket group with four members, first
created with the call

server Socket . connect (connect Addr ess) ;

and then further populated by the three subsequent lines

server Socket . accept () ;
server Socket . accept ()
server Socket . accept () ;

Socket socket 1
Socket socket 2
Socket socket 3

Variants of the N-Socket Scenario client and server may be found in the directory /org/jboss/remoting/samples/
multiplex.

key:
—L - port

@ - real socke

0 - virtual soi

o 1
f@l - MasterSe

al{ - VirtualSel

client server g -cleates

Figure5. The connection structure in the N-Socket Scenario.

5.2. The Symmetric Scenario.

The connection structureinthe Symmetric Scenario consists of socket groups on two hosts, each of which containsa
Vi rt ual Server Socket and somenumber of virtual sockets. The scenarioisnot truly symmetric, since each connection

JBoss July 4, 2006 8

The Multiplex Subsystem of the JBoss Remoting Project

structure has to begin with a connection request to a Mast er Ser ver Socket , but once that happens the “client” and
“server” areidentical, as depicted in Figure 6d. Once the line

server Socket . connect (addr ess) ;

on the client (see Listing 5) and the line

int port = nss.accept Server Socket Connection();

on the server (see Listing 6) are executed, the client has a socket group characterized by the address pair

((*, 5555), (“localhost*, 7777))

and consisting of a Vi rt ual Server Socket , and the server has a socket group with zero members characterized by
the address pair

((“localhost*, 7777), (“localhost”, 5555)).

(See Figure 6a.) And once theline

vVss. connect (address);

is executed on the server, the new Vi rt ual Ser ver Socket joins the server's socket group, as shown in Figure 6b.
After thelines

Socket virtual Socket1l = new Virtual Socket (“l ocal host”, port);

and

Socket virtual Socketl = vss. accept();

JBoss July 4, 2006 9

The Multiplex Subsystem of the JBoss Remoting Project

are executed on the client and server, respectively, each socket group has a new virtual socket (see Figure 6c), and
finally, after the lines

Socket virtual Socket2 = new Virtual Socket (“l ocal host”, 5555);

and

Socket virtual Socket2 = server Socket. accept();

are executed on the server and client, respectively, each socket group has a second virtual socket (see Figure 6d).

—L - port

@ - real socket

‘),

St {3 -virtual socke
(@) - MasterServe
E:H.}"x

L®# - \VittualServe

client server __g= -creates

Figure 6a. The connection structure in the Symmetric Scenario: stage 1.

JBoss July 4, 2006 10

The Multiplex Subsystem of the JBoss Remoting Project

—L - port

@ - real socket

G - virtual socket

‘@1 - MasterServerSe

SR

Eaill™
e

..s'-';'-.g_‘l
@) - VirtualServerSc

.h:'\-rr..ﬂ'

client server g -cCreates

Figure 6b. The connection structure in the Symmetric Scenario: stage 2.

—L - port

@ - real socket

G - virtual socket

P o |
= f@) - MasterServer:
g

'fil"__’.f - VinualServers
- '_I-"

client server g -creates

Figure 6¢. The connection structure in the Symmetric Scenario: stage 3.

JBoss July 4, 2006 11

The Multiplex Subsystem of the JBoss Remoting Project

- port

- real socke!

- virtual soc

- MasterSer

- VirtualSer

client server R

Figure 6d. The connection structure in the Symmetric Scenario: stage 4.

6. Factories.

In addition to virtual sockets and virtual server sockets, Multiplex also implements the two factories associated with
sockets: the socket factory and the server socket factory. vi r t ual Socket Fact ory extendsj avax. net . Socket Fact ory
and reimplements all of its methods. Vi r t ual Ser ver Socket Fact ory extendsj avax. net . Ser ver Socket Fact ory and
reimplements al of its methods (though the backlog parameter is ignored). These two classes make it possible
for a section of code to be completely unaware that it is using virtual sockets instead of actual sockets. The only
configuration involved in the use of these factories is the need to tell Vi rt ual Server Socket Fact ory whether it is
running on a client or a server, which tells it whether to create Vi r t ual Ser ver Socket S Or Mast er Ser ver Socket S,
respectively. That notification is performed by the methodsset ond i ent () and set onSer ver () . SeeListing 7 for an
illustration of the idiomatic use of these classes, where the method useFact ori es() refers only to the parent classes
Socket Fact ory and Ser ver Socket Fact ory.

7. Configuration.

The Multiplex system may be used without any external configuration, but it exposes several parameters which may
be set to adjust its behavior, and possibly performance. They affect the following classes:

MultiplexingM anager : The central Multiplex class, Ml tipl exi ngManager
wraps a rea socket. It is responsible for creating an
environment, including multiple threads, which alow
a single socket to be shared by multiple streams of
communication. Note that the mul ti pl exi ngManager

JBoss July 4, 2006 12

The Multiplex Subsystem of the JBoss Remoting Project

is the implementation of the concept of "virtual
socket group.” A virtual socket group is supported
by exactly one Miltipl exi ngManager, and each
Mul ti pl exi ngManager supports exactly one virtual
socket group.

OutputMultiplexor: Qut put Mul ti pl exor has two roles. (1) It is called
by Ml ti pl exi ngQut put St reamto queue an array of
bytes to be sent to a virtual socket at the other
end of a connection. (2) It contains the inner class
Qutput Thread, which takes byte arrays from the
gueue and writes them, along with appropriate header
information, to the actual socket.

InputMultiplexor: I nput Mul ti pl exor contains two inner classes,
Ml ti G oupl nput Thr ead and
Si ngl eGroupl nput Thread, which are responsible
for demultiplexing the virtua streams on
the actual connection and directing the bytes
to the appropriate Ml tipl exi ngl nput St r eans.
Mul ti Groupl nput Thr ead can process all NIO sockets
in its VM. Since some socket factories, notably
SSL socket factories, do not create NIO sockets,
Si ngl eGr oupl nput Thread exists to process a single
non-NIO socket.

These parameters may be passed to the appropriate classes by putting them in a configuration Hashmap, using the
keys given in org. j boss. renmoting. transport. mul ti pl ex. Ml ti pl ex, and passing the map to a Vi rt ual Socket ,
a Mast er Ser ver Socket, OF @ Vi rtual Server Socket . It may be passed either through a constructor or a call to
set Confi guration() . Note, however, that the parameters have an effect only when amul ti pl exi ngManager isfirst
created, or to say the same thing differently, when a binding or connecting action leads to the creation of a virtual
socket group. When a socket or server socket joins an existing socket group, or if set Confi gurati on() iscalled after
abinding or connection action creates anew Ml ti pl exi ngManager , the configuration map will have no effect.

7.1. Configuring MultiplexingManager.

Two aspects of the behavior of Ml ti pl exi ngManager may be configured.

1. When a Ml tipl exi ngManager is created and it finds no other mul ti pl exi ngManagers in the JVM, it
starts up severa static threads. One of these threads periodically wakes up and monitors the existence of
Ml ti pl exi ngManager Sinthe VM. If it wakes up two timesin arow and finds no mul ti pl exi ngManager Sin
the VM, it shuts down the other static threads.

2. Whenthelast virtual socket supported by a particular Mil ti pl exi ngManager closes, the Ml ti pl exi ngManager
will negotiate with its peer at the other end of the connection for permission to shut down, which will bewithheld
only if avirtual socket is being opened at the other end.

The following parameters affect the behavior of mul ti pl exi ngManager :

JBoss July 4, 2006 13

The Multiplex Subsystem of the JBoss Remoting Project

Name (in | Default value Description
org.jboss.remating.transport.multiplex.Multiplex)

STATIC_THREADS MONITOR| BEERIrG¥eC Determines how often the
monitor thread wakes up to
look for the existence of
Mul ti pl exi ngManagersS in the
JVM.

SHUTDOWN_REQUEST_TIM ECBITU0 msec When a Miltipl exi ngManager
reguests permission fromitsremote
peer to shut down, it will time out
if it does not receive areply within
this period of time.

SHUTDOWN_REFUSALS MAXIMUM: When a Ml tipl exi ngManager
requests permission from its remote
peer to shut down, it will take
"no" for an answer this many times
before it assumes something is
wrong and goes ahead and shuts
down.

SHUTDOWN_MONITOR_PERIOIDO0 msec When a Miltiplexi ngManager
requests permission from its remote
peer to shut down, it creates
a TinerTask which periodicaly
wakes up to see if and how the
remote peer has responded. This
parameter determines the period.

7.2. Configuring OutputMultiplexor

When cut put Mul ti pl exor IS passed some bytesby amul ti pl exi ngQut put St r eam it storesthem in aMessage data
structure drawn from a pool of unused Messages and puts the Message on a queue. When the cut put Thr ead gets the
Message from the queue, it transmits some or all of its content, according to a set of fairness constraints. If the entire
contents are not exhausted, the Message is returned to the queue.

The following parameters affect the behavior of cut put Mul ti pl exor:

Name (in | Default value Description
org.jboss.remating.transport.multiplex.Multiplex)

OUTPUT_MESSAGE_POOL_SIZH?24 This determines the maximum size
of the pool of Messages. If the
pool is empty when a transmission
request is received, a new Message
will be created, but when amessage
has been emptied, it will bereturned

JBoss July 4, 2006 14

The Multiplex Subsystem of the JBoss Remoting Project

to the pool only if the pool has
fewer than the maximum number of
elements. Otherwise, the Message
will be discarded.

OUTPUT_MESSAGE_SIZE:

256 bytes

This is the initial capacity of the
Byt eAr r ayQut put St r eamthat holds
the contents of aMessage.

OUTPUT_MAX_CHUNK_SIZE:

OUTPUT_MAX_TIME_SLICE:

2048 bytes

500 msec

This
of bytes
Qut put Thr ead
wite() cal.

determines the number
transmitted by the
with a single

Qut put Thr ead Will process asingle
virtual stream for this long before
moving on to another stream.

OUTPUT_MAX_DATA_SLICE:

2048 * 8 bytes

7.3. Configuring InputMultiplexor.

The following parameters affect the behavior of | nput Mil ti pl exor :

Name (in
org.jboss.remoting.transport.multipl

INPUT_BUFFER_SIZE:

Default value
ex. Multiplex)

4096 bytes

Qut put Thread will transmit this
many bytes for a single virtua
stream before moving on to another
stream.

Description

Determines the size of the structure
that holds bytes read from the
real socket. The structure is a
Byt eBuf f er for NIO sockets and a
byte array for non-NIO sockets.

INPUT_MAX_ERRORS:

Both Ml ti G oupl nput Thread and
Si ngl eG oupl nput Thread count
the number of non-fatal errors
experienced on the socket(s) they
manage. When this limit has been
exceeded for a given socket, they
will close the socket and throw an
exception.

8. Performance.

It should come as no surprise that the classes in Muliplex perform more slowly than their non-virtual counterparts,
since the multiplexing of data streams requires extra work. Multiplex uses two classes to perform input

JBoss July 4, 2006

15

The Multiplex Subsystem of the JBoss Remoting Project

and output multiplexing: Ml tipl exi ngl nput Stream and Ml ti pl exi ngQut put Stream which are returned by
the Vi rtual Socket methods get I nput Stream() and get Qut put Strean(), respectively. These classes subclass
java.io.lnputStreamand java.io. Qut put St reamand reimplement all of their methods. Tests show that input/
output by these classes is roughly four to five times slower than input/output by their counterpart classes used by
actual sockets, j ava. net . Socket | nput St ream and j ava. net . Socket Qut put St ream This information is gathered
from multiple runs of three tests:

bareinput: compares the transmission of bytes from a
Socket Qut put St reamto aMuil ti pl exi ngl nput St ream
with the transmission of bytes from a
Socket Qut put St r eamtO a Socket | nput St r eam

bar e output: compares the transmission of bytes from a
Mul ti pl exi ngQut put St r eamtO & Socket | nput St r eam
with the transmisson of bytes from a
Socket Qut put St r eamtO a Socket | nput St r eam

socket input/output: compares the transmission of bytes
from a MiltiplexingQutputStream to a
Ml ti pl exi ngl nput Stream with the transmission
of bytes from a SocketQutputStream to a

Socket | nput Stream

Each of these tests was run 10 times, transmitting 100,000 bytes each time. Table 1 gives the factor by which the
virtual socket version of each test was slower than the actual socket version.

Table 1. Factors by which virtual socket input/output isslower than actual socket input/output.

bareinput bare output socket input/output
minimum: 2.25 1.63 3.19
mean: 3.50 2.80 477
maximum: 4.42 4.67 8.58

9. APIs

Oneof thedesign goalsof Multiplex isto make virtual socketsand their related classes asindistinguishable as possible
from their real counterparts. There are two areasin which Multiplex is detectibly different.

1. Theuseof thetwotypesof virtual server sockets entailsan extradegree of complexity in setting up amultiplexed
connection.

2. There are performance differences.

On the other hand, the virtual classes implement complete APIs, so that once a connection is established, a
Vi rt ual Socket , for example, can be passed to amethod in place of asocket and will demonstrate the same behavior.
Similarly, Ml ti pl exi ngl nput St reans and Ml ti pl exi ngQut put St reans are functionaly indistinguishable from
Socket | nput St r eans and Socket Qut put St r eans.

JBoss July 4, 2006 16

The Multiplex Subsystem of the JBoss Remoting Project

It may be useful, however, to be aware of some implementational differences between the two sets of classes. The
public methods in the virtual classes can be placed in five categories.

1. methodsimplemented directly by the class
2. methods inherited from the real superclass
3. methods implemented by delegation to the underlying real socket

4. methods whose behavior is essentialy null (though they may throw an 1 Cexcept i on if called on aclosed virtual
socket)

5. methods which have no counterpart in the real class

Categories 3, 4, and 5 are particularly informative. Methods in category 3 can be used to fine tune a multiplexed
connection by, for example, adjusting buffer sizes. Note that a method such as set Recei veBuf f er Si ze() may be
called on any virtual socket in a socket group with the same effect as calling it on any other virtual socket in the
same group. Methods in category 4 represent behavior that is not relevant to virtual sockets, and methods in category
5 represent behavior that is specific to the special nature of multiplexed connections. The category 5 version of

Vi rt ual Socket . connect (),

connect (Socket Addr ess renpt eAddr ess, Socket Address | ocal Address, int tineout)

exists to effect an atomic binding/connecting action to avoid the accidental connection problem discussed in
the section on virtual socket groups. The notion of connection is irrelevant to ordinary server sockets, but
Vi rt ual Server Socket has methods

connect (Socket Addr ess renpt eAddr ess, Socket Address | ocal Address, int timeout)

and i sConnect ed() because a connection must be established before accept () can function.

We dso include in category 5 one of Vi rt ual Ser ver Socket 's honstandard constructors, with the signature

Vi rt ual Server Socket (| net Socket Addr ess renpt eAddr ess, | net Socket Address | ocal Addr ess,

which calls the two-address form of connect () .

The public methods of the main Multiplex classes are categorized in Table 2 and Table 3. The only inherited methods
among the classeslisted in Table 2 are found in Mast er Ser ver Socket , and we omit an explicit listing of them.

JBoss July 4, 2006 17

i nt

The Multiplex Subsystem of the JBoss Remoting Project

Note. The constructors of Vi rt ual Ser ver Socket that take a backlog parameter ignore its value. The same istrue for
methods of Vi rt ual Ser ver Socket Factory.

JBoss July 4, 2006 18

rR&Rlitiplex Subsystem of'tA&(IBoss Remoting Proje

nétoSt ring()

connect () cl ose()

Table 2. Categories of public methodsin the primary public Multiplex classes

get | nput St ream() get SoTi nmeout ()

get Qut put St ream() i sBound()

get SoTi neout () i sC osed()

i sC osed() set SoTi meout ()
category 1
i sConnect ed() toString()
i sl nput Shut down()
i sCut put Shut down()
set SoTi meout ()
shut downl nput ()
shut downQut put ()
toString()
get | net Addr ess() get | net Addr ess()
get KeepAlive()/ get Local Port ()
set KeepAlive()
get Local Addr ess() get Local Socket Addr ess()
get Local Port () get Recei veBuf fer Si ze()
/
set Recei veBufferSi ze()
get Local Socket Addr ess() get ReuseAddr ess()/
set ReuseAddr ess()
get Port ()
get Recei veBuf fer Si ze()
/
category 3

set Recei veBuf fer Si ze()
get Renpt eSocket Addr ess()

get ReuseAddress()/
set ReuseAddr ess()

get SendBuf fer Si ze() /
set SendBuf f er Si ze()

get SOLi nger ()/
set SCOLi nger ()

BThis version of connect () is nonsBRHAERNGRE i @49 oth a local and remote address. It binds to a

address in asingle atomic action.

set TCPNoDel ay()

getTrafficC ass()/

local address and connects to a re)

mote

JBoss July 4, 2006

set TrafficCd ass()

19

The Multiplex Subsystem of the JBoss Remoting Project

bThis constructor is nonstandard in that it has both a local and remote address. It binds to a local address and connects to a remote address in

asingle atomic action.

Table 3. Categories of public methodsin the other public Multiplex classes

Mul ti pl exi ngl nput Steann pl exi ngQut put |Stirctamal Ser ver Sock et Varctt waillySocket Fact o
avai |l abl e() cl ose() creat eServer Socket|(gr eat eSocket ()
cl ose() wite() get Def aul t () get Defaul t ()
category 1
ski p()
read()
mar k()
category 2 mar kSupport ed()
reset()
category 4 flush()
isOndient()
i sOnServer ()
category 5
setOnd i ent ()
set OnSer ver ()
10. Issues.

Please post issuesand bugstohttp: //jira.jboss. comjiral browse/ JBREM 91.

11. Listings.

Listing 1. Client for Prime Scenario example.

public class PrinmeScenari oExanpl eCl i ent
{

public void runPrimeScenario()

{

try {
// Create a Virtual Socket and connect it to MasterServer Socket .

Socket v1 = new Virtual Socket ("l ocal host", 5555);

/1 Do some asynchronous input in a separate thread.
new AsynchronousThread(vl).start();

/1 Do some synchronous conmuni cati on.

JBoss July 4, 2006

20

The Multiplex Subsystem of the JBoss Remoting Project

bj ect Qut put St ream oos = new Cbj ect Qut put St rean(v1. get Qut put Strean

00s. witeObject(new Integer(3));
Integer i1l = (Integer) ois.readObject();

Listing 2. Server for Prime Scenario example.

public class PrineScenari oExanpl eServer

{

public void runPrineScenario()

{

try {

oj ect I nput Stream oi s = new bj ect | nput Strean(vl. getlnputStrean());

vl. close();
}
catch (Exception e) {}
}
cl ass AsynchronousThread extends Thread
{
private Socket virtual Socket;
Asynchr onousThr ead(Socket virtual Socket)
{
this.virtual Socket = virtual Socket;
}
public void run()
{
try {
/1l Create a Virtual Server Socket that shares a port wth virtual
/1 (Note that it will be connected by virtue of joining a conne
Server Socket server Socket = new Virtual Server Socket (vi rtual Sock
/1l Create a Virtual Socket that shares a port with virtual Socket|.
server Socket . set SoTi meout (10000) ;
Socket v4 = server Socket.accept();
/1l Cet an object fromthe server.
v4. set SoTi neout (10000) ;
oj ect I nput Stream oi s = new bj ect | nput Strean(v4. get | nput St rean
Obj ect 0 = ois.readCbject();
server Socket . cl ose();
v4. cl ose();
}
catch (Exception e) {}
}
}
public static void main(String[] args)
{
new PrinmeScenari oExanpl eClient().runPrimeScenario();
}

1))

)

Socket .
cted socket ¢
et . get Local P

()

JBoss July 4, 2006

21

The Multiplex Subsystem of the JBoss Remoting Project

/1l Create a MasterServerSocket and get a Virtual Socket.
Server Socket server Socket = new Mast er Ser ver Socket (5555) ;
server Socket . set SoTi meout (10000) ;

Socket v2 = server Socket.accept();

/1 Do some asynchronous conmuni cation in a separate thread.
Thread asynchronousThread = new AsynchronousThread(v2);

asynchronousThread. start ();

/1 Do some synchronous conmuni cati on.

oj ect I nput Stream oi s = new bj ect | nput Strean(v2. get |l nput Strean())|;

bj ect Qut put St ream oos = new Cbj ect Qut put St ream(v2. get Qut put St r ean
v2. set SoTi neout (10000) ;

bj ect o = ois.readObject();
00S. WwiteObject(0);

server Socket . cl ose();

v2.close();
}
catch (Exception e) { }
}
cl ass AsynchronousThread extends Thread
{
private Socket virtual Socket;
publ i c AsynchronousThr ead(Socket socket) throws | OException
{this.virtual Socket = socket;}
public void run()
{
try {
/1 Connect to Virtual Server Socket .
Thr ead. sl eep(2000) ;
String host Nane = virtual Socket. getl net Address(). get Host Nane() ;
int port = virtual Socket.getPort();
Socket v3 = new Virtual Socket (host Name, port);
/1 Send an object to the client.
bj ect Qut put St ream oos = new Cbj ect Qut put St ream(v3. get Qut put Str
00s. witeObject(new Integer(7));
o0os. flush();
v3. close();
}
catch (Exception e) {}
}
}
public static void main(String[] args)
{
new Pri meScenari oExanpl eServer (). runPrimeScenario();
}

)

1))

ean());

JBoss July 4, 2006

22

The Multiplex Subsystem of the JBoss Remoting Project

Listing 3. Sample client for N-socket scenario.

public class N Socket Scenari oC i ent

{
public void runN_Socket Scenari o()
{
try
{
/Il Create a Virtual Server Socket and connect it to the server.
Vi rtual Server Socket server Socket = new Virtual Server Socket (5555) ;
I net Socket Addr ess connect Address = new | net Socket Addr ess(“l ocal hos
server Socket . set SoTi meout (10000) ;
server Socket . connect (connect Addr ess) ;

/1 Accept connection requests for 3 virtual sockets.
Socket socketl1l = server Socket.accept();
Socket socket2 = server Socket.accept();
Socket socket3 = server Socket. accept();

/1 Do sone i/o.

I nput Stream i sl = socket1. getlnputStream();
Qut put Stream os1 = socket 1. get Qut put Strean() ;
I nput Stream i s2 = socket 2. get | nput Strean();
Qut put St ream 0s2 = socket 2. get Qut put St rean() ;
I nput Stream i s3 = socket 3. get | nput Strean() ;
Qut put Stream 0s3 = socket 3. get Qut put Strean() ;
osl.write(3);

os2.wite(7);

0os3. wite(11);

Systemout.println(isl.read());

Systemout. println(is2.read());

Systemout. println(is3.read());

socket 1. cl ose();
socket 2. cl ose();
socket 3. cl ose();
server Socket . cl ose();

}
catch (Exception e) {}

public static void main(String[] args)

{
new N_Socket Scenari oC ient().runN_Socket Scenari o();

Listing 4. Sample server for N-socket scenario.

public class N _Socket Scenari oServer

=

JBoss July 4, 2006

23

6666) ;

The Multiplex Subsystem of the JBoss Remoting Project

{
public void runN_Socket Scenari o()
{
try
{
/1 Create and bind a Master Server Socket .
Mast er Server Socket server Socket = new Mast er Server Socket (6666) ;
/| Accept connection request from Virtual Server Socket .
server Socket . set SoTi meout (10000) ;
server Socket . accept Ser ver Socket Connecti on();
/1 Create 3 virtual sockets
Thr ead. sl eep(2000) ;
Socket socketl = new Virtual Socket ("I ocal host", 5555);
Socket socket2 = new Virtual Socket ("l ocal host", 5555);
Socket socket3 = new Virtual Socket ("Il ocal host", 5555);
/1 Do sone i/o.
I nput Stream i sl = socket 1. getlnputStrean();
Qut put St ream os1 = socket 1. get Qut put Strean() ;
I nput Stream i s2 = socket 2. get | nput Strean() ;
Qut put Stream 0s2 = socket 2. get Qut put Strean() ;
I nput Stream i s3 = socket 3. get | nput Strean() ;
Qut put St ream 0s3 = socket 3. get Qut put Strean() ;
osl.wite(isl.read());
os2.wite(is2.read());
os3.wite(is3.read());
socket 1. cl ose();
socket 2. cl ose();
socket 3. cl ose();
server Socket . cl ose();
}
catch (Exception e) {}
}
public static void main(String[] args)
{
new N_Socket Scenari oServer (). runN_Socket Scenari o();
}
}
Listing 5. Symmetric Scenario client.
public class SymetricScenari od i ent
{
public void runSymretricScenari o()
{
try {
/] Cet a virtual socket to use for synchronizing client and server|.
Socket syncSocket = new Socket ("I ocal host", 6666);
I nput Stream i s_sync = syncSocket. getl nput Strean();

JBoss July 4, 2006

24

The Multiplex Subsystem of the JBoss Remoting Project

Qut put Stream os_sync = syncSocket . get Qut put Strean() ;

/|l Create a Virtual Server Socket and connect
/1 it to MasterServer Socket running on the server.

Vi rt ual Server Socket server Socket = new Virtual Server Socket (5555) ;

I net Socket Addr ess address = new | net Socket Address("I ocal host",
is_sync.read();

server Socket . set SoTi meout (10000) ;

server Socket . connect (addr ess) ;

// Call constructor to create a virtual socket and nake a connecti
/'l request to the port on the server to which the |ocal Virtual Ser

/1 is connected, i.e., to the remote Virtual Server Socket .
os_sync.write(5);

is_sync.read();

int port = server Socket. get Renot ePort ();

Socket virtual Socketl = new Virtual Socket ("l ocal host", port);
I nput Stream i sl = virtual Socket 1. getl nput Strean();

Qut put Stream os1 = virtual Socket 1. get Qut put Strean() ;

/Il Create a virtual socket w th Virtual Server Socket. accept ().
Socket virtual Socket2 = server Socket.accept();

I nput Stream i s2 = virtual Socket 2. get | nput Strean() ;

Qut put St ream 0s2 = vi rtual Socket 2. get Qut put Strean() ;

/1 Do sone i/o and cl ose sockets.
osl.wite(9);
Systemout.println(isl.read());
0os2. wite(1l1);
Systemout.println(is2.read());
vi rtual Socket 1. cl ose();

vi rtual Socket 2. cl ose();
syncSocket . cl ose();

server Socket . cl ose();

}
catch (Exception e) {}
}
public static void main(String[] args)
{
new SymmetricScenarioC ient().runSynmmetricScenario();
}

777

7);

on
ver Socket

Listing 6. Symmetric Scenario server.

public class SymetricScenari oServer

{

public void runSymretricScenari o()

{

try {
/] Create ServerSocket and get synchroni zi ng socket.

Server Socket ss = new Server Socket (6666) ;

JBoss July 4, 2006

25

The Multiplex Subsystem of the JBoss Remoting Project

Socket syncSocket = ss.accept();

ss. cl ose();

I nput Stream i s_sync = syncSocket. getl nput Strean();
Qut put Stream os_sync = syncSocket . get Qut put Strean() ;

/1 Create MasterServer Socket, accept connection request fromrenotle
/1 Virtual Server Socket, and get the bind port of the |ocal actual
/1 socket to which the Virtual Server Socket is connected.
Mast er Ser ver Socket nmss = new Mast er Ser ver Socket (7777) ;
os_sync.write(3);
nes. set SoTi neout (10000) ;
int port = nss.accept Server Socket Connection();
nes. cl ose();
/1 Vit until renote Virtual ServerSocket is running, then create |jocal
/'l Virtual Server Socket, bind it to the local port to which the renote
/1 Virtual Server Socket is connected, and connect it to the renote
/1 Virtual Server Socket .
is_sync.read();
Vi rtual Server Socket vss = new Virtual Server Socket (port);
I net Socket Addr ess address = new | net Socket Address("| ocal host", 5555);
vss. set SoTi neout (5000) ;
vss. connect (address);
/1 Indicate that the |ocal Virtual ServerSocket is running.
os_sync.write(7);
/l Create a virtual socket by way of Virtual Server Socket. accept();
server Socket . set SoTi meout (10000) ;
Socket virtual Socketl = vss. accept();
I nput Stream i sl = virtual Socket 1. get | nput Strean();
Qut put Stream os1 = virtual Socket 1. get Qut put Strean() ;
/1 Call constructor to create a virtual socket and nmake a connectijon
/1 request to the renote Virtual Server Socket.
Socket virtual Socket2 = new Virtual Socket ("l ocal host", 5555);
I nput Stream i s2 = virtual Socket 2. get | nput Strean() ;
Qut put Stream 0s2 = vi rtual Socket 2. get Qut put Strean() ;
/1 Do sone i/o and cl ose sockets.
osl.wite(isl.read());
os2.wite(is2.read());
vi rtual Socket 1. cl ose();
vi rtual Socket 2. cl ose();
syncSocket . cl ose();
vss. cl ose();
}
catch (Exception e) {}
}
public static void main(String[] args)
{
new Symmetri cScenari oServer (). runSymetricScenario();
}
JBoss July 4, 2006 26

The Multiplex Subsystem of the JBoss Remoting Project

Listing 7. Sample use of Virtual Server SocketFactory and Virtual SocketFactory.
public class FactoryExanpl e
{
voi d runFact or yExanpl e()
{
Server Socket Fact ory server Socket Factory = Virtual Server Socket Factory.
((Virtual Server Socket Fact ory) server Socket Factory).set OnServer();
Socket Fact ory socket Factory = Virtual Socket Factory. get Defaul t();
useSer ver Socket Fact ory(server Socket Fact ory) ;
useSocket Fact ory(socket Fact ory);
}
voi d useServer Socket Factory(final Server Socket Factory server Socket Fact or
{
new Thread()
{
public void run()
{
try
{
Server Socket server Socket = server Socket Factory. createServer
Socket socket = server Socket.accept();
int b = socket.getlnputStrean().read();
socket . get Qut put Stream().wite(b);
socket. cl ose();
server Socket . cl ose();
}
catch (Exception e)
{
e.printStackTrace();
}
}
}.start();
}
public void useSocket Fact ory(Socket Factory socket Fact ory)
{
try
{
Thr ead. sl eep(1000);
Socket socket = socketFactory. createSocket ("l ocal host", 5555);
socket. get Qut put Stream().wite(7);
System out . println(socket.getlnputStrean().read());
socket . cl ose();
}
catch (Exception e)
{
e.printStackTrace();
}
}

get Defaul t ();

y)

Socket (5555) ;

JBoss July 4, 2006

27

The Multiplex Subsystem of the JBoss Remoting Project

public static void main(String[] args)

{
new Fact or yExanpl e() . runFact or yExanpl e() ;

}

JBoss July 4, 2006

28

