Space Details

Key:

Name:

Description:

Creator (Creation Date):
Last Modifier (Mod. Date):

XW
XWork

plightbo (Apr 18, 2004)
plightbo (Apr 25, 2004)

Available Pages

. XWork @

Documentation

. Basics

. Components

. Configuration
. Logging

. Core Concepts

. Dependencies

. Interceptors

. DefaultWorkflowInterceptor
. Preparelnterceptor
e ValidationInterceptor

. Introduction
. Localization
. Ognl

. Release Notes - 1.0.1
. Release Notes - 1.0.2
. Release Notes - 1.0.3
. Release Notes - 1.0.4
. Release Notes - 1.0.5

e Type Conversion

. Null Property Access
e Type Conversion Error Handling
« Type Conversion In Collections
. Upgrading from 1.0
. Upgrading from 1.0.1
e« Upgrading from 1.0.2
« Upgrading from 1.0.3
. Upgrading from 1.0.4
+ Validation Framework
. Building a Validator
. Generic Object Validation
e« Sample Validation Rules

Document generated by Confluence on Dec 12, 2004 12:35

Page 1

e Standard Validators
e XWork layers
. Press Releases

. 1.0.1 Press Release

. 1.0.2 Press Release

. 1.0.3 Press Release

. 1.0.4 Press Release

« About

Document generated by Confluence on Dec 12, 2004 12:35 Page 2

Basics

This page last changed on Jun 03, 2004 by unkyaku.

Actions

Actions are the basic unit of execution...

The Action Interface

The basic interface which all XWork actions must implement. It provides several
standard return values like SUCCESS and INPUT, and only contains one method:

publicString execute() throws Exception;

In general, Actions should simply extend ActionSupport, which provides a default
implementation for the most common actions.

ActionContext

The ActionContext provides access to the execution environment in the form of named
objects during an Action invocation. A new ActionContext is created for each
invocation allowing developers to access/modify these properties in a thread safe
manner. The ActionContext makes a number of properties available that are typically
set to appropriate values by the framework. In WebWork 2 for example, the
ActionContext session map wraps an underlying HttpSession object. This allows access
to environment specific properties without tying the core framework to a specific
execution environment.

The ActionContext is acquired through the static ActionContext.getContext() method.
The ActionContext is a thread local variable and thus the properties of the
ActionContext will be relative to the current request thread. The ActionContext has
several methods for commonly used properties as well as get() and set() methods
which can be used for application specific properties.

Document generated by Confluence on Dec 12, 2004 12:35 Page 3

Building a Validator

This page last changed on Jun 03, 2004 by unkyaku.

Validators implement the com.opensymphony.xwork.validator.Validator interface

publicinterface Validator {
voi d set Def aul t Message(String nessage);

String getDefaul t Message() ;
String get Message(Ohj ect object);
voi d set MessageKey(String key);

String get MessageKey();

/**

* This nethod will be called before validate with a non-null Vali dator Cont ext.
* @ar am val i dat or Cont ext

*/

voi d set Val i dat or Cont ext (Val i dat or Cont ext val i dat or Cont ext) ;

Val i dat or Cont ext get Val i dat or Cont ext () ;

/**
* The validation inplenentation nmust guarantee that setValidatorContext
* will be called with a non-null ValidatorContext before validate is call ed.
* @ar am obj ect
* @hrows ValidationException
*/
voi d val i dat e(Obj ect object) throws Validati onExcepti on;

FieldValidators implement com.opensymphony.xwork.validator.FieldValidator,
which extends Validator:

publicinterface FieldValidator extends Validator {

/**

* Sets the field name to validate with this FieldValidator
* @aram fiel dNanme

*/

voi d setFi el dNane(String fiel dNane);

/**

* @eturn the field name to be validated
*/

String getFiel dNane();

If you want to be able to use the "short-circuit" attribute, you should also implement
com.opensymphony.xwork.validator.ShortCircuitableValidator.

Document generated by Confluence on Dec 12, 2004 12:35 Page 4

Validators and FieldValidators can extend base classes
com.opensymphony.xwork.validator.validators.ValidatorSupport and
com.opensymphony.xwork.validator.validators.FieldValidatorSupport to get
the base message and short-circuiting behavior, and will only need to implement
validate(Action action).

The Support classes provide the functionality to use the message key and default
message to get the localied message body and the parsing of the message body to
provide for parameterized messages. Implementations of the Validator Interface which
do not extend the Support base classes should provide this functionality as well for
consistency.

The ValidatorContext set into the Validator is an interface which extends both
ValidationAware and LocaleAware and is used for looking up message texts and
settting errors. When validators are called from the ValidationInterceptor, a
DelegatingValidatorContext is created which delegates these calls to the Action if it
implements these interfaces. If the Action does not implement LocaleAware, a
LocaleAwareSupport instance is created which uses the Action's class to look up
resource bundle texts, if available. If the action does not implement ValidationAware,
an implementation which simply logs the validation errors is created and delegated to.
When calling the validation framework from outside the ValidationInterceptor, any
ValidatorContext implementation can be passed in.

Validator classes may define any number of properties using the usual getX() setX()
naming convention and have those properties set using <param
name="x">foo</param> elements below the <validator> element. The values of
these properties may then be used in the validate() method to parameterize the

validation. Validators which extend the Support classes may also use the

Obj ect getFi el dval ue(String nane, Action action)

method to get the field value of a named property from an Action.

Document generated by Confluence on Dec 12, 2004 12:35 Page 5

Components

This page last changed on Jun 25, 2004 by unkyaku.

Overview

XWork provides the ComponentManager interface (and a corresponding
implementation in the DefaultComponentManager class) to allow a design pattern
known as Inversion of Control (or IoC for short) to be applied to your actions or
other arbitrary objects. In a nutshell, the IoC pattern allows a parent object (in this
case XWork's ComponentManager instance) to control a client object (usually an
action, but it could be any object that implements the appropriate enabler).

You may also want to look at WW:Components to see how WW2 uses XWork's IoC

architecture.

Why IoC?

So why is IoC useful? It means that you can develop components (generally services
of some sort) in a top-down fashion, without the need to build a registry class that the
client must then call to obtain the component instance.

Traditionally when implementing services you are probably used to following steps
similar to these:

Write the component (eg an ExchangeRateService)

Write the client class (eg an XWork action)

Write a registry class that holds the component object (eg Registry)

Write code that gives the component object to the registry (eg

Registry.registerService(hew MyExchangeRateService()))

5. Use the registry to obtain the service from your client class (eg
ExchangeRateService ers = Registry.getExchangeRateService())

6. Make calls to the component from the client class (eg String baseCurrencyCode =

ers.getBaseCurrency())

s

Using IoC, the process is reduced to the following:

1. Write the component class (eg an ExchangeRateService)

2. Register the component class with XWork (eg
componentManager.addEnabler(MyExchangeRateService, ExchangeRateAware))

3. Write the client class, making sure it implements the enabling interface (eg an
XWork action that implements ExchangeRateAware)

Document generated by Confluence on Dec 12, 2004 12:35 Page 6

http://wiki.opensymphony.com//display/WW/Components

4. Access the component instance directly from vyour client action (eg String
baseCurencyCode = ers.getBaseCurrency())

XWork takes care of passing components through to enabled action classes or other
components.

Some other benefits that IoC can provide include:

e A component describes itself. When you instantiate a component, you can easily
determine what dependencies it requires without looking at the source or using
trial and error.

e Dependencies can be discovered easily using reflection. This has many benefits
ranging from diagram generation to runtime optimization (by determining in
advance which components will be needed to fufill a request and preparing them
asyncronously, for example).

e Avoids the super-uber-mega-factory pattern where all the components of the app
are held together by a single class that is directly tied back to other domain
specific classes, making it hard to 'just use that one class'.

e Adheres to Law of Demeter. Some people think this is silly, but in practise I've
found it works much better. Each class is coupled to only what it actually uses
(and it should never use too much) and no more. This encourages smaller
responsibility specific classes which leads to cleaner design.

e Allows context to be isolated and explicitly passed around. ThreadLocals may be
ok in a web-app, but they aren't well suited for high concurrency async
applications (such as message driven applications).

Configuration - xwork.xml

The ComponentInterceptor class is used to apply the IoC pattern to XWork actions (ie,
to supply components to actions). The Componentlnterceptor should be declared in
the <interceptors> block of xwork.xml as follows:

<i nt ercept or nanme="conponent"
cl ass="com opensynphony. xwor k. i nt er cept or. conponent . Conponent | nt erceptor"/ >

You should ensure that any actions that are to be supplied with components have this
interceptor applied. (See XW:Interceptors for information on how to apply interceptors

to actions.)

If you want to apply IoC to objects other than actions or other components, you will
need to use the ComponentManager object directly.

Document generated by Confluence on Dec 12, 2004 12:35 Page 7

Writing Component Classes

The actual component class can be virtually anything you like. The only constraints on
it are that it must be a concrete class with a default constructor so that XWork can
create instances of it as required. Optionally, a component may implement the
Initializable and/or Disposable interfaces so it will receive lifecycle events just after it
is created or before it is destroyed. Simply:

public class MyConponent inplenents Intializable, Disposable {
public void init () {
//do initialization here
}

public void dispose() {
//do any cl ean up necessary before garbage collection of this conponent
}

Component Dependencies

One feature that is not immediately obvious is that it is possible for components to
depend on other components. For example if the ExchangeRateService described
above depended on a Configuration component, XWork will pass the Configuration
component through to the ExchangeRateService instance after ExchangeRateService
is instantiated. Note that XWork automatically takes care of initializing the
components in the correct order, so if A is an action or component that depends on B
and C, and B depends on C and if A, B, and C have not been previously instantiated,
the ComponentManager will in the following order:

Instantiate C and call it's init() method if it implements Initializable.
Instantiate B, then using the enabler method, set C to be used by B
Call B's init() method, if it implements Intitializable.

Set B using B's enabler method to be used by A.

il

And so on and so forth. Of course, if there are instances of B or C that would be
reused in this case, those instances would be passed using the enabler method rather
than a new instance.

Writing Enablers

An enabler should consist of just a single method that accepts a single parameter. The
parameter class should either be the component class that is to be enabled, or one of
the component's superclasses. XWork does not care what the name of the enabler's
method is.

Document generated by Confluence on Dec 12, 2004 12:35 Page 8

Here is an example of what the ExchangeRateAware enabler might look like:

publici nterface ExchangeRat eAware {
public voi d set ExchangeRat eSer vi ce(ExchangeRat eSer vi ce exchangeRat eSer vi ce) ;
}

Note that typically an enabler would be an interface, however there is nothing to
prevent you from using a class instead if you so choose.

Writing "Enabler-aware" Actions

All an action needs to do is implement the relevant enabler interface. XWork will then
call the action's enabler method just prior to the action's execution. As a simple
example:

public class M/Action extends ActionSupport inplenments ExchangeRat eAware {
ExchangeRat eServi ce ers;

public voi d set ExchangeRat eSer vi ce(ExchangeRat eServi ce exchangeRat eServi ce) {
ers = exchangeRat eServi ce;

}

publicString execute() throws Exception {
Systemout. println("The base currency is " + ers.getBaseCurrency());

}

If you have an object that is not an action or another component, you must explictly
tell XWork to supply any enabled components to your object by calling
componentManager.initializeObject(enabledObject);

Using an external reference resolver

You can also use an external reference resolver in XWork, i.e., references that will be
resolved not by XWork itself. One such example is using an external resolver to
integrate XWork with the Spring Framework

You just need to write an external reference resolver and then tell XWork to use it in
the package declaration:

Document generated by Confluence on Dec 12, 2004 12:35 Page 9

http://www.springframework.org

<package
name="def aul t"
ext er nal Ref erenceResol ver="com at | assi an. xwor k. ext . Spri ngSer vl et Cont ext Ref er enceResol ver" >

Now, to use external references you do something like this:

<external -ref nanme="foo">Foo</external -ref>

Where the name attribute is the setter method name and Foo is the reference to
lookup.

For more details and sample code about this integration, take a look at the javadocs
to the com.opensymphony.xwork.config.ExternalReferenceResolver class
(unfortunately unavailable online) and at XW-122

-Chris

Document generated by Confluence on Dec 12, 2004 12:35 Page 10

http://jira.opensymphony.com/secure/ViewIssue.jspa?key=XW-122

Configuration

This page last changed on Dec 12, 2004 by plightbo.

o xwork.xml
e Logging

xwork.xml

XWork is configured through the use of a file named xwork.xml in the root of the
classpath which conforms to the DTD. This file defines the action, interceptor, and
result configurations and mappings. The following is a sample xwork.xml file; it's a
condensed version of the one used in the XWork test cases. It's a long example, but it
exhibits all the major configuration possibilites:

<! DOCTYPE xwork PUBLIC "-// QpenSynphony Group// XW\r k
1.0//EN'""http://ww. opensynphony. com xwor k/ xwor k- 1. 0. dt d" ><xwor k><package
nane="def aul t"><resul t-types><resul t-type nanme="chai n"

cl ass="com opensynphony. xwor k. Acti onChai nResul t "/ ></resul t-types><i nt ercept or s><i nt er cept or

name="ti ner"

cl ass="com opensynphony. xwor k. i nt ercept or. Ti ner | nt er cept or "/ ><i nt er cept or
nanme="1| ogger"

cl ass="com opensynphony. xwor k. i nt er cept or. Loggi ngl nt er cept or "/ ><i nt er cept or
name="chai n"

cl ass="com opensynphony. xwor k. i nt er cept or . Chai ni ngl nt er cept or "/ ><i nt er cept or
name="par ans"

cl ass="com opensynphony. xwor k. i nt er cept or. Par anet er sl nt er cept or "/ ><i nt er cept or
nane="st ati c- par ans"

cl ass="com opensynphony. xwor k. i nt er cept or. St ati cPar anet er sl nt er cept or "/ ><i nt er cept or
name="test" class="com opensynphony. xwor k. Test | nt er cept or " ><par am

name="f 00" >expect edFoo</ par an></ i nt er cept or ><i nt er cept or - st ack

nanme="def aul t St ack" ><i nt erceptor-ref nane="static-parans"/><interceptor-ref
name="par ans"/ ></i nt er cept or - st ack><i nt er cept or - st ack
name="debugSt ack" ><i nterceptor-ref name="tiner"/><interceptor-ref

name="| ogger "/ ></int ercept or - st ack></i nt er cept or s><gl obal -resul t s><resul t
name="1 ogi n" type="chai n"><param

name="act i onName" >l ogi n</ par an»</ r esul t ></ gl obal -resul t s><acti on name="Foo"

cl ass="com opensynphony. xwor k. Si npl eAct i on" ><par am nanme="f 00" >17</ par ank<par am
name="bar " >23</ par anp<resul t name="success" type="chai n"><par am

nanme="act i onNane" >Bar </ par an></r esul t ><i nt er cept or - r ef
nanme="debugSt ack"/><i ntercept or-ref name="defaul t St ack"/></acti on><acti on name="Bar"
cl ass="com opensynphony. xwor k. Si npl eAct i on" ><par am nanme="f 00" >17</ par ank<par am
name="bar " >23</ par anmp</ acti on><acti on nane="Test | nt er cept or Par ant

cl ass="com opensynphony. xwor k. Si npl eAct i on"><i nt er ceptor-ref name="test" ><param
nanme="expect edFoo" >expect edFoo</ par ank</ i nt er cept or - r ef ></ acti on><acti on
nane="Test | nt er cept or Par anOverri de"

cl ass="com opensynphony. xwor k. Si npl eAct i on"><i nt er cept or-ref name="t est" ><param
nanme="f 00" >f 00123</ par ank<par am

nanme="expect edFoo" >f 00123</ par an</ i nt er cept or - r ef ></ act i on></ package><package
name="bar" extends="defaul t" namespace="/f oo/ bar"><i nt er cept or s><i nt er cept or - st ack
nanme="bar Def aul t St ack" ><i nt ercept or-ref nane="debugStack"/><interceptor-ref
name="def aul t St ack"/ ></i nt er cept or - st ack></i nt er cept or s><acti on nanme="Bar"

cl ass="com opensynphony. xwor k. Si npl eAct i on" ><i nt er cept or - r ef

nanme="bar Def aul t St ack"/ ></ acti on><acti on nanme="Test | nt er cept or Par am nheri t ance"
cl ass="com opensynphony. xwor k. Si npl eActi on" ><i ntercept or-ref nane="test"><param

Document generated by Confluence on Dec 12, 2004 12:35 Page 11

nane="expect edFoo" >expect edFoo</ par ane</ i nt er cept or - r ef ></ act i on></ package><package
nane="abstract Package" nanmespace="/abstract" abstract="true"><action nane="test"

cl ass="com opensynphony. xwor k. Si npl eAct i on"/ ></ package><package
nane="nonAbstr act Package" extends="abstractPackage"

nanespace="/ nonAbstract"/ ><package nane="rmnul ti pl el nheritance"

ext ends="def aul t, abst r act Package, bar" namespace="mul ti pl el nheritance"><acti on
nane="test Mul ti pl el nheritance" class="com opensynphony. xwor k. Si npl eActi on"><resul t
nane="success" type="chai n"><param

name="act i onNane" >f oo</ par an></r esul t ><i nt er cept or - r ef

name="bar Def aul t St ack"/ ></ acti on></ package><i ncl ude file="includeTest.xm "/ ></xwor k>

xwork.xml elements

Package

The package element has one required attribute, "name", which acts as the key to
later reference this package. The "extends" attribute is optional and allows one
package to inherit the configuration of one or more previous packages including all
interceptor, interceptor-stack, and action configurations. Note that the configuration
file is processed sequentially down the document, so the package referenced by an
"extends" should be defined above the package which extends it. The "abstract"
optional attribute allows you to make a package abstract, which will allow you to
extend from it without the action configurations defined in the abstract package
actually being available at runtime. (see above for example)

Attribute Required Description
name yes key to for other packages to
reference
extends no inherits package behavior of

the package it extends

namespace no see #Namespace

abstract no declares package to be
abstract (no action
configurations required in
package)

Namespace

Document generated by Confluence on Dec 12, 2004 12:35 Page 12

The optional namespace attribute warrants its own discussion section. The nhamespace
attribute allows you to segregate action configurations into namespaces, so that you
may use the same action alias in more than one namespace with different classes,
parameters, etc. This is in contrast to Webwork 1.x, where all action names and
aliases were global and could not be re-used in an application. The default

namespace, which is "" (an empty string) is used as a "catch-all" namespace, so if an
action configuration is not found in a specified namespace, the default namespace will
also be searched. This allows you to have global action configurations outside of the
"extends" hierarchy, as well as to allow the previous Webwork 1.x behavior by not
specifying namespaces. It is also intended that the namespace functionality can be
used for security, for instance by having the path before the action name be used as
the namespace by the Webwork 2.0 ServletDispatcher, thus allowing the use of J2EE

declarative security on paths to be easily implemented and maintained. (see above for
example)

Result-Type

Result types define classes and map them to names to be referred in the action
configuration results. This serves as a shorthand name-value pair for these classes.

Interceptors

Interceptors also serve as a name-value pairing for referring to specific Interceptor
classes by a shorthand name where we use interceptor-ref elements, such as in
Interceptor stacks and action configurations.

Interceptor-Stack

The interceptor-stack element allows you to assign a name for later referencing via
interceptor-ref to an ordered list of interceptors. This allows you to create standard
groups of interceptors to be used in a certain order. The interceptor stack name/value
pairs are stored in the same map as the interceptor definitions, so anywhere you use
an interceptor-ref to refer to an interceptor you may also refer to an interceptor stack.

Interceptor Parameterization

Interceptors are instantiated and stored at the ActionConfig level, i.e. there will be
one instance per action configured in xwork.xml. These Interceptor instances may be

Document generated by Confluence on Dec 12, 2004 12:35 Page 13

parameterized at either the declaration level, where you map an Interceptor class to a
name to be referenced later, like so:

<i nterceptor name="test" class="com opensynphony. xwor k. Test | nt er cept or " >
<par am nanme="f 00" >expect edFoo</ par am>
</interceptor>

or at the interceptor-ref level, either inside an interceptor-stack or in an action
declaration, like so:

<interceptor-ref name="test">
<par am name="expect edFoo" >expect edFoo</ par an>
</interceptor-ref>

Although it is allowed by the DTD, parameters applied to interceptor-refs which refer
to interceptor-stack elements will NOT be applied, and will cause a warning message.

Global-results

The global results allows you to define result mappings which will be used as defaults
for all action configurations and will be automatically inherited by all action
configurations in this package and all packages which extend this package.

Action

The action element allows the mapping of names to action classes. These names are
used, along with the namespace described above, to retrieve the action config from
the configuration. The action may also be parameterized by using the param
elements, as above, which will set parameters into the Action at execution (with the
help of the StaticParameterslInterceptor).

When defining actions, sometimes you actually don't need any class, but rather are
just putting in a placeholder for accessing interceptors and results. You can use
ActionSupport for a simple action that has all of the XWork features but doesn't
actually do anything. In fact, rather than defining your action class, if you leave it
empty it defaults to ActionSupport.

<action nane="foo">

Document generated by Confluence on Dec 12, 2004 12:35 Page 14

</ acti on>

The action may also have one or more results mapped to string return codes, such as
"success", "error", or "input", which are the default 3 return states for actions,
although ANY return string may be used and mapped to a result. The result, which is
mapped to a result class by the "type" attribute which refers to the result-type name
defined above, may also be parameterized by using the param element.

There is one shortcut when defining results, as a lot of the time a result will have only
one parameter (which is often a location to redirect to (when using XWork in the web
sense)).

Here is the long form of a result with a single location parameter:

<result name="test">
<par am nanme="| ocat i on" >f 0o0. j sp</ par an>
</resul t>

and this is the 'shortcut' form:

<result nanme="test">fo00.jsp</result>

Note that this shortcut only works when there is a single parameter for the result and
the result has defined what its default parameter is.

If your result name is "success", then you can take this shortcut even further by just
doing:

<resul t >success. j sp</resul t >

E Tip: using the action class shorthand and the result shortcuts, you can do

something as simple as this to define an XWork front-end to a result:

<action nane="foo">
<resul t>f 0o. j sp</resul t>
</ acti on>

The action may also define one or more interceptor refs to either interceptors or
interceptor stacks to be applied before and after the action execution (see the section

Document generated by Confluence on Dec 12, 2004 12:35 Page 15

on Interceptors below). The ordering of these interceptor refs determines the order in
which they will be applied.

Includes - using multiple configuration files

The xwork.xml configuration file may be broken up into several files, each with its own
set of package declarations, by using the <include> element zero or more times at
the bottom of your xwork.xml file, like so:

<include file="includeTest.xm "/>

These files will be processed, in order, in the same manner as the main xwork.xml,
thus may have all of the same structures, including the <include> element. Although
it is, therefore, possible to have packages in configuration files listed later in an
include element extend packages defined in an earlier included file, it is not
recommended. It should be considered best practice, in the case of using multiple
configuration files, to declare default packages meant to be extended in the xwork.xml
and to have no dependencies between sub-configuration files.

Configuration Providers

XWork configuration is handled through «classes which implement the
ConfigurationProvider interface. The default implementation is the
XmlConfigurationProvider class. You can either create a new provider by implementing
the ConfigurationProvider interface or you can extend the XmlConfigurationProvider
class. The XmlConfigurationProvider class includes a protected method called
getInputStream() which is called to acquire the configuration InputStream which is
expected to be an XML data stream. The default implementation looks for a file called
xwork.xml in the class path but by overriding the getInputStream() method you can
pull configuration data from any source.

Custom configuration providers must be registered with the ConfigurationManager
before they will be used to load configuration data. If no custom configuration
providers are registered then the default configuration provider is used. If any custom
configuration providers are registered then the default configuration provider will no
longer be used (although you could add a new instance of it yourself to include it in

Document generated by Confluence on Dec 12, 2004 12:35 Page 16

the list of providers which is searched). To add a configuration provider just call the
ConfigurationManager.addConfigurationProvider() method with the custom
configuration provider as the argument.

Document generated by Confluence on Dec 12, 2004 12:35 Page 17

Core Concepts

This page last changed on Jun 02, 2004 by plightbo.

XWork Core Concepts

XWork is based on a number of core concepts that helps to explain how the
framework works. The core concepts can be broken down into two parts: Architecture
Concepts and Terminology.

Architecture Concepts

e Explain Command Driven Architecture (in general)
e Explain the implementation in XWork

Terminology

Actions

Actions are classes that get invoked in response to a request, execute some code and
return a Result. Actions implement at a minimum a single method, execute(), that
defines the entry point called by the framework. This method allows developers to
define a unit of work that will be executed each time the Action is called.

ActionContext

The ActionContext provides access to the execution environment in the form of named
objects during an Action invocation. A new ActionContext is created for each
invocation allowing developers to access/modify these properties in a thread safe
manner. The ActionContext makes a number of properties available that are typically
set to appropriate values by the framework. In WebWork 2 for example, the
ActionContext session map wraps an underlying HttpSession object. This allows access
to environment specific properties without tying the core framework to a specific
execution environment. For more information, see ActionContext in Basics.

Document generated by Confluence on Dec 12, 2004 12:35 Page 18

Interceptors

In XWork, Interceptors are objects that dynamically intercept Action invocations. They
provide the developer with the opportunity to define code that can be executed before
and/or after the execution of an action. They also have the ability to prevent an action
from executing. Interceptors provide developers a way to encapulate common
functionality in a re-usable form that can be applied to one or more Actions. See
Interceptors for further details.

Stacks

To handle the case where developers want to apply more than a single Interceptor to
an Action, Stacks have been introduced. Stacks are an ordered list of Interceptors
and/or other Stacks that get applied when an Action is invoked. Stacks centralize the
declaration of Interceptors and provide a convenient way to configure mutiple actions.

Results

Results are string constants that Actions return to indicate the status of an Action
execution. A standard set of Results are defined by default: error, input, login, none
and success. Developers are, of course, free to create their own Results to indicate
more application specific cases.

Result Types

Result Types are classes that determine what happens after an Action executes and a
Result is returned. Developers are free to create their own Result Types according to
the needs of their application or environment. In WebWork 2 for example, Servlet and
Velocity Result Types have been created to handle rendering views in web
applications.

Packages

Document generated by Confluence on Dec 12, 2004 12:35 Page 19

Packages are a way to group Actions, Results, Result Types, Interceptors and Stacks
into a logical unit that shares a common configuration. Packages are similiar to
objects in that they can be extended and have individual parts overridden by "sub"
packages.

ValueStack

The ValueStack is a stack implementation built on top of an OGNL core. The OGNL
expression language can be used to traverse the stack and retrieve the desired object.
The OGNL expression language provides a number of additional features including:
automatic type conversion, method invocation and object comparisons. For more
information, see the OGNL Website.

Components

XWork provides the ComponentManager interface (and a corresponding
implementation in the DefaultComponentManager class) to apply a design pattern
known as Inversion of Control (or IoC for short). In a nutshell, the IoC pattern
allows a parent object (in this case XWork's ComponentManager instance) to control a
client object (usually an action, but it could be any object that implements the
appropriate enabler). See Components for further details.

Document generated by Confluence on Dec 12, 2004 12:35 Page 20

http://ognl.org/

DefaultWorkflowInterceptor

This page last changed on Jun 26, 2004 by unkyaku.

<i nterceptor name="wor kf| ow'
cl ass="com opensynphony. xwor k. i nt er cept or . Def aul t Wr kf | ow nt erceptor"/ >

This interceptor implements the workflow that was found in ActionSupport in
WebWork 1.x. The following workflow steps are applied before the rest of the
Interceptors and the Action are executed, and may short-circuit their execution:

1. If the Action implements com.opensymphony.xwork.Validateable, the
validate() method is called on it, to allow the Action to execute any validation
logic coded into it.

2. If the Action implements com.opensymphony.xwork.ValidationAware the
hasErrors() method is called to check if the Action has any registered error
messages (either Action-level or field-level). If the ValidationAware Action has any
errors, Action.INPUT ("input") is returned without executing the rest of the
Interceptors or the Action.

3. If the execution did not short-circuit in the step above, the rest of the
Interceptors and the Action are executed by calling invocation.invoke()

Document generated by Confluence on Dec 12, 2004 12:35 Page 21

Dependencies

This page last changed on Aug 26, 2004 by plightbo.

Dependencies are split into runtime and compile time dependencies.

e Runtime dependencies are stored in CVS in the lib/core directory.
e Compile time dependencies are stored in CVS in the lib/build directory.

You can see all the dependenies as well as their version numbers by looking at the
libraries.txt file located in each directory.

Document generated by Confluence on Dec 12, 2004 12:35 Page 22

Documentation

This page last changed on Dec 12, 2004 by plightbo.

Overview

e Introduction
° What is Xwork?
° How does Webwork 2.0 relate to Xwork?

Reference Guide

e Core Concepts: Terminology and an introduction to XWork
o XWork layers

e Configuration: xwork.xml

* Oanl

e [ocalization

e Type Conversion

e Interceptors

e Validation Framework

e Components: Inversion of Control

XWork Versions

e Current Release

° Release Notes

- Release Notes - 1.0.5

Release Notes - 1.0.4
Release Notes - 1.0.3
Release Notes - 1.0.2
Release Notes - 1.0.1

° Dependencies
e Upgrading from previous versions

° Upgrading from 1.0.4

° Upgrading from 1.0.3

° Upgrading from 1.0.2

° Upgrading from 1.0.1

° Upgrading from 1.0

Document generated by Confluence on Dec 12, 2004 12:35 Page 23

Documentation Tasks Remaining

Merge XWork specific docs from WebWork. In particular:
° config docs

Description for all interceptors

Beef up Basics

Make sure we document ActionChaining somewhere

Document generated by Confluence on Dec 12, 2004 12:35 Page 24

Generic Object Validation

This page last changed on Jun 03, 2004 by unkyaku.

XWork's validation framework is not just limited to Actions. It can be used to validate
virtually any object. Once you've set up your validator config file (validators.xml)
and your validation rules (ClassName-validation.xml), all it takes are a couple lines
of code:

String context = null;
Val i dat or Cont ext cont ext = new Del egati ngVal i dat or Cont ext (obj ect ToVal i dat e) ;
Act i onVal i dat or Manager . val i dat e(obj ect ToVal i date, null, context);

This will cause any errors to be logged (where it gets logged to depends on how
commons-logging is configured).

Ideally, you would either implement your own ValidatorContext to handle how error
messages are logged and evaluated, or have your objects that are to be evaluated
implement ValidationAware, TextProvider and/or LocaleProvider.

Matthew Payne has a JUnit demo of this at
http://www.sutternow.com/index.do?post=51fe0c00fc17aec500fc33f6bb8e006e.

Document generated by Confluence on Dec 12, 2004 12:35 Page 25

http://www.sutternow.com/index.do?post=51fe0c00fc17aec500fc33f6bb8e006e

Interceptors

This page last changed on Aug 18, 2004 by unkyaku.

Overview
Preparelnterceptor
ValidationInterceptor
DefaultWorkflowInterceptor

Overview

Interceptors allow you to define code to be executed before and/or after the execution
of an action. They are defined outside the action class, yet have access to the action
and the action execution environment at runtime, allowing you to encapsulate
cross-cutting code and provide separation of concerns.

Interceptors are given the ActionInvocation object at runtime, and may do whatever
processing needed, then forward processing to the rest of the ActionInvocation, which
will either call the next Interceptor or the Action, if there are no more Interceptors,
and do whatever post-processing needed.

Interceptors may also decide to short-circuit processing and return whatever result
string desired WITHOUT forwarding processing, thus keeping the Action from
executing. This ability should be used with caution, however, as any data loading or
processing expected to be done by the Action will not happen.

Here is the invoke() method from ActionInvocation, which calls the Interceptors and
the Action:

publicString invoke() throws Exception {
if (executed) {
thrownew I |1 egal St at eException("Acti on has al ready executed");
}

if (interceptors.hasNext()) {
Interceptor interceptor = (Interceptor) interceptors.next();
result = interceptor.intercept(this);
} else {
result = action.execute();
executed = true;

}

return result;

It may not be immediately apparent how the rest of the Interceptors and the Action

Document generated by Confluence on Dec 12, 2004 12:35 Page 26

come to be called from the code snippet. For this we need to look at the Interceptor
implementation in AroundInterceptor:

publicString intercept(Actionlnvocation invocation) throws Exception {
bef ore(i nvocati on);

result = invocation.invoke();
after(invocation);

return result;

Here we can see that the Interceptor calls back into the ActionInvocation.invoke() to
tell the ActionInvocation to continue down the chain and eventually executes the
Action. It is here that the Interceptor can decide not to forward to the rest of the
Interceptors and the Action, and choose instead to return a return code.

It is also important to know what the AroundInterceptor is doing when you extend it
to implement your own Interceptors.

The AroundInterceptor defines a base class for interceptor implementations. It
delegates calls to subclasses, which must implement the abstract methods before()
and after(). The before() call is first called, then the rest of the ActionInvocation is
called and the String result is saved (and is available to the Interceptor
implementation during the after() method). Finally, the after() method is called and
the result is returned.

E Note that all Interceptor implementations must be threadsafe.

Utility Interceptors

The TimerlInterceptor and Logginglnterceptor are provided as simple examples and
utilities.

e The LoggingInterceptor simply logs before and after executing the rest of the
ActionInvocation.

e The TimerInterceptor times the execution of the remainder of the
ActionInvocation.
The TimerlInterceptor does not extend AroundInterceptor because it needs to
keep some state (the start time) from before the rest of the execution.
Interceptors must be stateless, so it is impossible to save this in an instance field.
It is a good rule of thumb to say that if your interceptor needs to maintain
information from the beginning to the end of the interceptor call, it should

Document generated by Confluence on Dec 12, 2004 12:35 Page 27

implement Interceptor directly, not subclass AroundInterceptor. Here is the code
for intercept() in TimerInterceptor:

publicString intercept(Actionlnvocation dispatcher) throws Exception {

long startTine = SystemcurrentTimeM I 1is();

String result = dispatcher.invoke();

| ong executionTinme = SystemcurrentTimreMIlis() - startTine;

| og.info("Processed action " + dispatcher.getProxy().getActionName() + " in
' + executionTine + "ns.");

return result;

It is important to remember to call invoke() on the ActionInvocation if you directly
implement Interceptor, otherwise the rest of the Interceptors and the Action will not
be executed.

Parameter Interceptors - populating your
Action

The StaticParametersinterceptor and Parametersinterceptor populate your Action
fields during the ActionInvocation execution.

e The StaticParametersInterceptor applies the parameters defined in the Action
configuration with the <param> elements.

e The ParametersInterceptor populates the Action with the parameters passed in
as part of the request.

The StaticParametersinterceptor should be applied before the Parameterslnterceptor
so that the static parameters may be set as the defaults and overridden by the
request parameters.

ModelDrivenInterceptor - choosing your model

Normally, the StaticParameterInterceptor and the ParametersInterceptor apply
themselves directly to the Action. Using the ModelDrivenInterceptor, you can specify
an alternate object to have the parameters applied to instead.

Consider the following Action:

public class AddContact Action inplements Action {

Document generated by Confluence on Dec 12, 2004 12:35 Page 28

privateString narmne;
privateString addr;
privateString city;

public void setName(String nane) { this.nane = nane ; }
public void setAddr(String addr) { this.addr = addr ; }
public void setGity(String city) { this.city = city ; }

publicString execute() ({
Cont act contact = new Contact();
cont act . set Nanme(nane) ;
cont act . set Addr (addr) ;
contact.setGity(city);

// save contact information here

We can see that our action will be populated with name, addr, and city parameters if
they are passed in. In the execute we copy these values to a contact object and save
the contact.

Here's the ModelDriven interface:

publici nterface Mdel Driven {
publ i cOoj ect get Model ();
}

Let's apply the ModelDriven interface to Action above:

public class AddContact Action inplements Action, Model Driven {
private Contact contact = new Contact();

publ i cOoj ect getModel () { returnthis.contact ; }

public void execute() {
/[l save the contact information
}

}

Now the Parametersinterceptor and the StaticParametersinterceptor will be applied
directly to our Contact so when execute gets called, this.contact will already be
populated with all the information we need. Neat, huh?

Behavior similar to model driven can be achieved just using the parameter
interceptor. For example, rather than implementing ModelDriven, we could have
written:

public class AddContact Action inplements Action {
private Contact contact = new Contact();

Document generated by Confluence on Dec 12, 2004 12:35 Page 29

public Contact getContact { returnthis.contact ; }

public void execute() {
[/l save the contact information
}
}

The difference between this Action and the previous ModelDriven action is twofold:

e Using the ModelDriven action, we can reference our parameters name, addr, and
city. Also, the Model (Contact) will be pushed onto the ValueStack so we'll have
Contact and AddContactAction on the value stack

e When not using the ModelDriven action, we need to reference our parameters as
contact.name, contact.addr, and contact.city.

One potential drawback when using ModelDriven actions is that if you need to access
some parameters in order to load the model for the ModelDriven action, you will need
to call the Parametersinterceptor and/or the StaticParametersinterceptor twice
(before and after the ModelDrivenInterceptor). The first time sets all parameters on
the Action, the second time sets all parameters on the model.

ChainingInterceptor

The ChainingInterceptor populates the Action it is being applied to with the results
of the previous action. When actions are chained together, the action being chained
FROM is on the ValueStack when the next action is called. This means that when the
next ActionProxy is executed, the action that is being chained TO will be placed onto
the valuestack, but the old action will also be there, just down one level. This
interceptor works by traversing the ValueStack to find the parameters of any objects
there and sets them onto the final action.

Document generated by Confluence on Dec 12, 2004 12:35 Page 30

Introduction

This page last changed on Jun 03, 2004 by plightbo.

XWork is a generic command pattern framework.

The Purpose:

e To create a generic, reusable, and extensible command pattern framework not
tied to any particular usage.

Features:

e Flexible and customizable configuration based on a simple Configuration interface

e Core command pattern framework which can be customized and extended
through the use of interceptors to fit any request / response environment

e Built in type conversion and action property validation using Ognl

e Powerful validation framework based on runtime attributes and a validation
interceptor

How does XWork relate to Webwork

Webwork 2.0+ is built on top of XWork and provides web-specific features that allow
you to quickly build web applications using XWork's command pattern and interceptor

framework.

Document generated by Confluence on Dec 12, 2004 12:35 Page 31

Localization

This page last changed on Jul 13, 2004 by unkyaku.

Any action can indicate that it supports localization by implementing
com.opensymphony.xwork.TextProvider. To access a localized message, simply use
one of the various getText() method calls.

The default implementation for this is com.opensymphony.xwork.TextProviderSupport,
which in turn relies on com.opensymphony.xwork.util.LocalizedTextUtil. Any Action
that extends com.opensymphony.xwork.ActionSupport will automatically gain
localization support via TextProviderSupport.

In this implementation, when you attempt to look up a message, it attempts to do the
following:

e Look for the message in the Action's class hierarchy.
° Look for the message in a resource bundle for the class
° If not found, look for the message in a resource bundle for any interface
implemented by the class
° If not found, get the super-class and repeat from the first sub-step unless the
super-class is Object

¢ If not found and the Action is a ModelDriven Action, then look for the message in
the model's class hierarchy (repeat sub-steps listed above).

e If not found, look for the message in a child property. This is determined by
evaluating the message key as an OGNL expression. For example, if the key is
user.address.state, then it will attempt to see if "user" can be resolved into an
object. If so, repeat the entire process fromthe beginning with the object's class
and address.state as the message key.

o If not found, look for the message in the Action's package hierarchy.

o If still not found, look for the message in the default resource bundles.

Default Resource Bundles.

It is possible to register default resource bundles with XWork via
LocalizedTextUtil.addDefaultResourceBundle().

Message lookup in the default resource bundles is done in reverse order of their

Document generated by Confluence on Dec 12, 2004 12:35 Page 32

registration (i.e. the first resource bundle registered is the last to be searched).

By default, one default resource bundle name is registered with LocalizedTextUtil -
"com/opensymphony/xwork/xwork-messages" - which is bundled with the XWork jar
file to provide system-level message texts.

Example

Given a ModelDriven Action called BarnAction where getModel() returns a Horse
object, and the Horse object has the following class structure:

interface acne.test. Ani nal

class acne.test. Ani mal I npl i npl enments Ani mal ;

interface acne.test. Quadraped extends Ani nal;

cl ass acne. test. Quadrapedl npl extends Ani mal inpl enents Quadraped;
class acne.test. Horse extends Quadrapedl npl ;

Then the localization system will attempt to look up the message in the following
resource bundles in this order:

acne. test. BarnActi on. properties
acne. test. Horse. properties

acne. t est. Quadr apedl npl . properties
acne. t est. Quadr aped. properties
acne. test. Ani mal | npl . properties
acne. test. Ani mal . properties

acne. t est. package. properties

acne. package. properties

Message Key Interpolation

When looking for the message, if the key indexes a collection (e.g. user.phone[0])
and a message for that specific key cannot be found, the general form will also be
looked up (i.e. user.phone[*]).

Message Interpolation

If a message is found, it will also be interpolated. Anything within ${...} will be
treated as an OGNL expression and evaluated as such.

Document generated by Confluence on Dec 12, 2004 12:35 Page 33

Logging

This page last changed on Jun 05, 2004 by unkyaku.

Logging in XWork is handled by Commons-Logging. If Log4] is present in the

classpath, logging tasks will be passed through to Log4].

The logger names are the class hames. The pattern used is:

Log | og = LogFactory. get Log(Thi sd ass. cl ass);

For details on configuring commons-logging,
http://jakarta.apache.org/commons/logging/guide.html#Configuration.

Document generated by Confluence on Dec 12, 2004 12:35

see

Page 34

http://jakarta.apache.org/commons/logging
http://jakarta.apache.org/commons/logging/guide.html#Configuration

Null Property Access

This page last changed on Jun 24, 2004 by unkyaku.

Null property access is a unique feature to XWork that allows object graphs to be
created at runtime, saving you the headache of having to pre-initialize them.

Simple object graphs

The feature is quite simple: only during the ParametersInterceptor (for WebWork this
would be when http parameters are applied to an action), if an expression being set,
such as "document.title", results in a NullPointerException, XWork will attempt to
create the null object and try again. So in this case, if "document" is null, WebWork
will construct a new Document object so that setting the title will succeed.

This is very useful because it reduces the amount of flattening (and unflattening) you
are required to do in your action classes when displaying and setting data from web
pages. Rather, you can usually represent the complete object graph by just naming
your input fields with well thought-out names (like "document.title").

Collections, Lists and Maps

XWork extends this feature even further by offering special support for Collections,
Lists and Maps. If you are providing input for one of these interfaces, XWork can be
told what type of objects they will hold and automatically populate them accordingly.
What this means is that if you refer to "children[0].name", XWork will automatically
create a new List to hold the children and also add an empty Child object to that list,
so that setting a name on the expression "children[0].name" will work correctly. The
same goes for maps.

For this to work you must tell the converters what the objects in the List or Map will
be. You do this by specifying "Collection_property = com.acme.Collectionltem" in the
conversion properties file. So if you have an action that has a "children" property that
should be filled with Child objects, YourAction-conversion.properties should contain:

Col I ection_children = cone. acne. Child

For the purposes of conversion, WebWork considers Collections and Lists to be the
same. If the "children" property was declared to be a Collection, a List would be
created and used.

Document generated by Confluence on Dec 12, 2004 12:35 Page 35

Custom Objects

Advanced users who need to instantiate custom objects will want to extend
com.opensymphony.xwork.ObjectFactory and override the buildBean(Class)
method. The default implementation is rather trivial:

publ i cCbj ect buil dBean(Cl ass clazz) throws Exception {
return clazz. new nstance();

}

Once you have your own custom ObjectFactory, you'll need to let XWork know to use
it. You do this by calling ObjectFactory.setObjectFactory(yourObjFactory).

Document generated by Confluence on Dec 12, 2004 12:35 Page 36

Ognl

This page last changed on Jul 19, 2004 by unkyaku.

OGNL is the Object Graph Navigation Language - see http://www.ognl.org for the full

documentation of OGNL. In this document we will only show the additional language
features that are provided on top of the base OGNL EL.

XWork-specific Language Features

The ValueStack

The biggest addition that XWork provides on top of OGNL is the support for the
ValueStack. While OGNL operates under the assumption there is only one "root",
XWork's ValueStack concept requires there be many "roots".

For example, suppose we are using standard OGNL (not using XWork) and there are
two objects in the OgnlContext map: "foo" -> foo and "bar" -> bar and that the foo
object is also configured to be the single root object. The following code illustrates
how OGNL deals with these three situations:

#f 00. bl ah // returns foo. getBl ah()
#bar . bl ah // returns bar. get Bl ah()
bl ah /'l returns foo.getBlah() because foo is the root

What this means is that OGNL allows many objects in the context, but unless the
object you are trying to access is the root, it must be prepended with a namespaces
such as @bar. XWork, however, is a little different...

In XWork, the entire ValueStack is the root object in the context. But rather than
having your expressions get the object you want from the stack and then get
properties from that (ie: peek().blah), XWork has a special OGNL PropertyAccessor
that will automatically look at the all entries in the stack (from the top down) until it
finds an object with the property you are looking for.

For example, suppose the stack contains two objects: Animal and Person. Both objects
have a "name" property, Animal has a "species" property, and Person has a "salary"
property. Animal is on the top of the stack, and Person is below it. The follow code
fragments help you get an idea of what is going on here:

Document generated by Confluence on Dec 12, 2004 12:35 Page 37

http://www.ognl.org

speci es /1 call to aninal.get Species()
sal ary /1 call to person.getSalary()
nane /1 call to aninal.getNane() because animal is on the top

In the last example, there was a tie and so the animal's name was returned. Usually
this is the desired effect, but sometimes you want the property of a lower-level object.
To do this, XWork has added support for indexes on the ValueStack. All you have to
do is:

[0]. nane /1 call to aninal.getNanme()
[1]. name /1 call to person.getNanme()

Note that the ValueStack is essentially a List. Calling [1] on the stack returns a
sub-stack beginning with the element at index 1. It's only when you call methods on
the stack that your actual objects will be called. Said another way, let's say I have a
ValueStack that consists of a model and an action ([model, action]). Here's how the
following OGNL expressions would resolve:

[0] /1 a ConpoundRoot object that contains our stack, [nmpdel, action]
[1] /| anot her ConpoundRoot that contains only [action]
[0].toString() // calls toString() on the first object in the Val ueStack
/'l (excluding the ConpoundRoot) that supports the toString() nethod
[1].foo [// call getFoo() on the first object in the ValueStack starting fromaction
/1 (excluding the ConpoundRoot) that supports a getFoo() nethod

Accessing static properties

OGNL supports accessing static properties as well as static methods. As the OGNL
docs point out, you can explicetly call statics by doing the following:

@one. package. d assName @00 _PROPERTY
@one. package. O assNane@oneMet hod()

However, XWork allows you to avoid having to specify the full package name and call
static properties and methods of your action classes using the "vs" (short for

ValueStack) prefix:

@ s @00 _PROPERTY
@s@onmeMet hod()

@s1@00 PROPERTY
@sl1l@onmeMet hod()

Document generated by Confluence on Dec 12, 2004 12:35 Page 38

@s2@AR_PROPERTY
@s2@onmeC her Met hod()

The important thing to note here is that if the class name you specify is just "vs", the
class for the object on the top of the stack is used. If you specify a number after the
"vs" string, an object's class deeper in the stack is used instead.

The top keyword

XWork also adds a new keyword - top - that can be used to access to first object in
the ValueStack.

Document generated by Confluence on Dec 12, 2004 12:35 Page 39

Preparelnterceptor

This page last changed on Jun 27, 2004 by unkyaku.

<i nterceptor name="prepare"
cl ass="com opensynphony. xwor k. i nt er cept or. Preparel nterceptor"/>

This interceptor watches for Actions that implement
com.opensymphony.xwork.Preparable and calls the prepare() method on it.

Document generated by Confluence on Dec 12, 2004 12:35 Page 40

Release Notes - 1.0.1

This page last changed on Dec 12, 2004 by plightbo.

XWork 1.0.1

Key Changes

e Introduction of an ObjectFactory that provides for easy integration to libraries like

Spring and Pico

e Added actionMessages support - just like errorMessages but not counted as an

error

e Major performance improvements with Ognl 2.6.5

Changelog

OpenSymphony JIRA(19 issues)

T

Key

Summary

EJ

XW-188

Correct logging level in

DefaultActionInvocation.invo

keAction(.

B

XW-183

NPE thrown when trying to

set a sub-property of a

property that doesnt exist

XW-182

NPE thrown by

LocalizedTextUtil.findText

XW-167

XWorkBasicConverter

conversion from Date to

String is not localized

XW-166

[Patch] Improve support for

ModelDriven interface

XW-165

[PATCH]
VisitorFieldValidator not

setting fieldError correctly

E

XW-164

[PATCH] TypeConverter

Document generated by Confluence on Dec 12, 2004 12:35

Page 41

http://jira.opensymphony.com/secure/IssueNavigator.jspa?&pid=10050&fixfor=21213&sorter/field=issuekey&sorter/order=DESC&tempMax=25&reset=true&
http://jira.opensymphony.com/browse/XW-188
http://jira.opensymphony.com/browse/XW-188
http://jira.opensymphony.com/browse/XW-188
http://jira.opensymphony.com/browse/XW-188
http://jira.opensymphony.com/browse/XW-183
http://jira.opensymphony.com/browse/XW-183
http://jira.opensymphony.com/browse/XW-183
http://jira.opensymphony.com/browse/XW-183
http://jira.opensymphony.com/browse/XW-183
http://jira.opensymphony.com/browse/XW-182
http://jira.opensymphony.com/browse/XW-182
http://jira.opensymphony.com/browse/XW-182
http://jira.opensymphony.com/browse/XW-182
http://jira.opensymphony.com/browse/XW-167
http://jira.opensymphony.com/browse/XW-167
http://jira.opensymphony.com/browse/XW-167
http://jira.opensymphony.com/browse/XW-167
http://jira.opensymphony.com/browse/XW-167
http://jira.opensymphony.com/browse/XW-166
http://jira.opensymphony.com/browse/XW-166
http://jira.opensymphony.com/browse/XW-166
http://jira.opensymphony.com/browse/XW-166
http://jira.opensymphony.com/browse/XW-165
http://jira.opensymphony.com/browse/XW-165
http://jira.opensymphony.com/browse/XW-165
http://jira.opensymphony.com/browse/XW-165
http://jira.opensymphony.com/browse/XW-165
http://jira.opensymphony.com/browse/XW-164
http://jira.opensymphony.com/browse/XW-164

should check class hierarchy

for conversion properties

@ XW-163

[PATCH] Added some

javadocs to Interceptors

XW-162

TypeConverter created by

ObjectFactory

XW-161

Replaceable ObjectFactory

for creating framework

objects to allow easier

integration with IoC

containers

[A] XW-160

Add infinite recursion

detection to the

ChainingInterceptor

XW-159

XWork build is broken

[2]|[2)

XW-158

Email and URL Validators

adding error messages for

empty fields

@ XW-157

Further Optimize Validator

Lookup in
ActionValidatorManager

XW-156

add actionMessages support

[2]] [+

XW-155

NPE thrown when invalid

method is looked up

|E| XW-117

Additional methods to

determine if errors using

JSTL

Add localization support to

XWorkConverter

Investigate using runtime

attributes to configure

interceptors

Document generated by Confluence on Dec 12, 2004 12:35

Page 42

http://jira.opensymphony.com/browse/XW-164
http://jira.opensymphony.com/browse/XW-164
http://jira.opensymphony.com/browse/XW-163
http://jira.opensymphony.com/browse/XW-163
http://jira.opensymphony.com/browse/XW-163
http://jira.opensymphony.com/browse/XW-163
http://jira.opensymphony.com/browse/XW-162
http://jira.opensymphony.com/browse/XW-162
http://jira.opensymphony.com/browse/XW-162
http://jira.opensymphony.com/browse/XW-162
http://jira.opensymphony.com/browse/XW-161
http://jira.opensymphony.com/browse/XW-161
http://jira.opensymphony.com/browse/XW-161
http://jira.opensymphony.com/browse/XW-161
http://jira.opensymphony.com/browse/XW-161
http://jira.opensymphony.com/browse/XW-161
http://jira.opensymphony.com/browse/XW-161
http://jira.opensymphony.com/browse/XW-160
http://jira.opensymphony.com/browse/XW-160
http://jira.opensymphony.com/browse/XW-160
http://jira.opensymphony.com/browse/XW-160
http://jira.opensymphony.com/browse/XW-160
http://jira.opensymphony.com/browse/XW-159
http://jira.opensymphony.com/browse/XW-159
http://jira.opensymphony.com/browse/XW-159
http://jira.opensymphony.com/browse/XW-158
http://jira.opensymphony.com/browse/XW-158
http://jira.opensymphony.com/browse/XW-158
http://jira.opensymphony.com/browse/XW-158
http://jira.opensymphony.com/browse/XW-158
http://jira.opensymphony.com/browse/XW-157
http://jira.opensymphony.com/browse/XW-157
http://jira.opensymphony.com/browse/XW-157
http://jira.opensymphony.com/browse/XW-157
http://jira.opensymphony.com/browse/XW-157
http://jira.opensymphony.com/browse/XW-156
http://jira.opensymphony.com/browse/XW-156
http://jira.opensymphony.com/browse/XW-156
http://jira.opensymphony.com/browse/XW-155
http://jira.opensymphony.com/browse/XW-155
http://jira.opensymphony.com/browse/XW-155
http://jira.opensymphony.com/browse/XW-155
http://jira.opensymphony.com/browse/XW-117
http://jira.opensymphony.com/browse/XW-117
http://jira.opensymphony.com/browse/XW-117
http://jira.opensymphony.com/browse/XW-117
http://jira.opensymphony.com/browse/XW-117
http://jira.opensymphony.com/browse/XW-56
http://jira.opensymphony.com/browse/XW-56
http://jira.opensymphony.com/browse/XW-56
http://jira.opensymphony.com/browse/XW-56
http://jira.opensymphony.com/browse/XW-23
http://jira.opensymphony.com/browse/XW-23
http://jira.opensymphony.com/browse/XW-23
http://jira.opensymphony.com/browse/XW-23
http://jira.opensymphony.com/browse/XW-23

Release Notes - 1.0.2

This page last changed on Dec 12, 2004 by plightbo.

XWork 1.0.2

Key Changes

Added an xwork-default.xml configuration file that can be used as a standard
starting place for non-web related XWork deploys (such as in Quartz)

Localized text for collections can now be referenced in the form
someArray[*].someField, where * provides a "catch-all" for any index element
Text retrieved using the default TextProvider now looks attempts to look for
messages in the property files of child objects (if applicable) if none can be found.
Field-level validation can be short-circuited, meaning that you can stop the
validation chain right away if you wish. See Validation Framework for details.
Simple type conversion, such as int and float, now use the Locale. This will
cause the correct use of "," and "." depending on the locale.

Much improved handling for type conversion of elements in collections.

Changelog

OpenSymphony JIRA(15 issues)

T

Key Summary

Ej

XW-210 Make default type
conversion message a

localized text that can be

overidden

XW-205 missing xwork 1.0.2 dtd in
jar and website and typo in

ValidationInterceptor

XW-204 TextProvider.getText()
should look in child property

files

E

XW-203 Add "trim" parameter to
string validators

Document generated by Confluence on Dec 12, 2004 12:35 Page 43

http://jira.opensymphony.com/secure/IssueNavigator.jspa?&pid=10050&fixfor=21372&sorter/field=issuekey&sorter/order=DESC&tempMax=25&reset=true&
http://jira.opensymphony.com/browse/XW-210
http://jira.opensymphony.com/browse/XW-210
http://jira.opensymphony.com/browse/XW-210
http://jira.opensymphony.com/browse/XW-210
http://jira.opensymphony.com/browse/XW-210
http://jira.opensymphony.com/browse/XW-210
http://jira.opensymphony.com/browse/XW-205
http://jira.opensymphony.com/browse/XW-205
http://jira.opensymphony.com/browse/XW-205
http://jira.opensymphony.com/browse/XW-205
http://jira.opensymphony.com/browse/XW-205
http://jira.opensymphony.com/browse/XW-204
http://jira.opensymphony.com/browse/XW-204
http://jira.opensymphony.com/browse/XW-204
http://jira.opensymphony.com/browse/XW-204
http://jira.opensymphony.com/browse/XW-204
http://jira.opensymphony.com/browse/XW-203
http://jira.opensymphony.com/browse/XW-203
http://jira.opensymphony.com/browse/XW-203
http://jira.opensymphony.com/browse/XW-203

[e] XW-202

Integer and Float

conversion dont work in

CVS HEAD

[e] XW-200

i18n broken when the name

of the text to find starts

with a property exposed by

the action

[A] XW-195

Add interface XWorkStatics

which contains

XWork-related constants

from WebWorkStatics

[A] XW-194

Patch to help

LocalizedTextUtil deal with

messages for indexed fields

collections

@ XW-193

InstantiatingNullHandler

and Typeconversion fails

@ XW-192

Create a version 1.0.2 of

the XWork validation DTD

with short circuit

@ XW-191

Type conversion

improvement.

[A] XW-190

Provide a
xwork-default.xml.

[A] XW-189

Improve
ActionValidationManager's

short circuit behaviour

|E| XW-179

Optimise OgnlUtil.copy

method

XW-172

XWorkBasicConverter

doesn't care about the

current locale

Document generated by Confluence on Dec 12, 2004 12:35

Page 44

http://jira.opensymphony.com/browse/XW-202
http://jira.opensymphony.com/browse/XW-202
http://jira.opensymphony.com/browse/XW-202
http://jira.opensymphony.com/browse/XW-202
http://jira.opensymphony.com/browse/XW-202
http://jira.opensymphony.com/browse/XW-200
http://jira.opensymphony.com/browse/XW-200
http://jira.opensymphony.com/browse/XW-200
http://jira.opensymphony.com/browse/XW-200
http://jira.opensymphony.com/browse/XW-200
http://jira.opensymphony.com/browse/XW-200
http://jira.opensymphony.com/browse/XW-195
http://jira.opensymphony.com/browse/XW-195
http://jira.opensymphony.com/browse/XW-195
http://jira.opensymphony.com/browse/XW-195
http://jira.opensymphony.com/browse/XW-195
http://jira.opensymphony.com/browse/XW-195
http://jira.opensymphony.com/browse/XW-194
http://jira.opensymphony.com/browse/XW-194
http://jira.opensymphony.com/browse/XW-194
http://jira.opensymphony.com/browse/XW-194
http://jira.opensymphony.com/browse/XW-194
http://jira.opensymphony.com/browse/XW-194
http://jira.opensymphony.com/browse/XW-193
http://jira.opensymphony.com/browse/XW-193
http://jira.opensymphony.com/browse/XW-193
http://jira.opensymphony.com/browse/XW-193
http://jira.opensymphony.com/browse/XW-192
http://jira.opensymphony.com/browse/XW-192
http://jira.opensymphony.com/browse/XW-192
http://jira.opensymphony.com/browse/XW-192
http://jira.opensymphony.com/browse/XW-192
http://jira.opensymphony.com/browse/XW-191
http://jira.opensymphony.com/browse/XW-191
http://jira.opensymphony.com/browse/XW-191
http://jira.opensymphony.com/browse/XW-191
http://jira.opensymphony.com/browse/XW-190
http://jira.opensymphony.com/browse/XW-190
http://jira.opensymphony.com/browse/XW-190
http://jira.opensymphony.com/browse/XW-190
http://jira.opensymphony.com/browse/XW-189
http://jira.opensymphony.com/browse/XW-189
http://jira.opensymphony.com/browse/XW-189
http://jira.opensymphony.com/browse/XW-189
http://jira.opensymphony.com/browse/XW-189
http://jira.opensymphony.com/browse/XW-179
http://jira.opensymphony.com/browse/XW-179
http://jira.opensymphony.com/browse/XW-179
http://jira.opensymphony.com/browse/XW-179
http://jira.opensymphony.com/browse/XW-172
http://jira.opensymphony.com/browse/XW-172
http://jira.opensymphony.com/browse/XW-172
http://jira.opensymphony.com/browse/XW-172
http://jira.opensymphony.com/browse/XW-172

Release Notes - 1.0.3

This page last changed on Dec 12, 2004 by plightbo.

XWork 1.0.3

Key Changes

e Fixed critical problem where xwork-validator-1.0.dtd wasn't in the distribution.

Changelog

OpenSymphony JIRA(1 issues)

T Key Summary

[e] XW-214 xwork-validator-1.0.dtd not
in xwork.jar

Document generated by Confluence on Dec 12, 2004 12:35 Page 45

http://jira.opensymphony.com/secure/IssueNavigator.jspa?&pid=10050&fixfor=21390&sorter/field=issuekey&sorter/order=DESC&tempMax=25&reset=true&
http://jira.opensymphony.com/browse/XW-214
http://jira.opensymphony.com/browse/XW-214
http://jira.opensymphony.com/browse/XW-214
http://jira.opensymphony.com/browse/XW-214

Release Notes - 1.0.4

This page last changed on Dec 12, 2004 by plightbo.

XWork 1.0.4 Release Notes

Key Changes

This release primarily involves a few internal tweaks and API convenience methods. It
is backwards compatible with 1.0.3 and should have no impact when upgrading.

Changelog

OpenSymphony JIRA(5 issues)

T

Key

Summary

XW-240

Added convenience

methods to
ComponentManager

XW-220

OgnlValueStack.findValue

doesnt use custom

converter when converting

to String.class

XW-219

xwork.xml should allow no

namespaces

XW-215

upload newest xwork jars to

ibiblio servers

XW-174

ObjectFactory requires

same action to return same

classname

Document generated by Confluence on Dec 12, 2004 12:35

Page 46

http://jira.opensymphony.com/secure/IssueNavigator.jspa?&pid=10050&fixfor=21394&sorter/field=issuekey&sorter/order=DESC&tempMax=25&reset=true&
http://jira.opensymphony.com/browse/XW-240
http://jira.opensymphony.com/browse/XW-240
http://jira.opensymphony.com/browse/XW-240
http://jira.opensymphony.com/browse/XW-240
http://jira.opensymphony.com/browse/XW-240
http://jira.opensymphony.com/browse/XW-220
http://jira.opensymphony.com/browse/XW-220
http://jira.opensymphony.com/browse/XW-220
http://jira.opensymphony.com/browse/XW-220
http://jira.opensymphony.com/browse/XW-220
http://jira.opensymphony.com/browse/XW-220
http://jira.opensymphony.com/browse/XW-219
http://jira.opensymphony.com/browse/XW-219
http://jira.opensymphony.com/browse/XW-219
http://jira.opensymphony.com/browse/XW-219
http://jira.opensymphony.com/browse/XW-215
http://jira.opensymphony.com/browse/XW-215
http://jira.opensymphony.com/browse/XW-215
http://jira.opensymphony.com/browse/XW-215
http://jira.opensymphony.com/browse/XW-174
http://jira.opensymphony.com/browse/XW-174
http://jira.opensymphony.com/browse/XW-174
http://jira.opensymphony.com/browse/XW-174
http://jira.opensymphony.com/browse/XW-174

Release Notes - 1.0.5

This page last changed on Dec 12, 2004 by plightbo.

XWork 1.0.5 Release Notes

Key Changes

Moderate security vulnerability resolved

Configuration defaults to ActionSupport for the action if you don't define a class
Configuration defaults to "success" for the result if you don't define a name
Minor fixes for i18n-related issues

Migration Notes

Version Description Old Code New Code
1.0.4 and below Parameters
interceptor behavior
changed
Changelog
OpenSymphony JIRA(6 issues)
T Key Summary
[e] XW-254 Security problem with
Parametersinterceptor
XW-244 Default action class and
result name
[A] XW-241 Allow ObjectFactory impls
that support Actions without
no-arg constructors
[e] XW-225 Whitespace in xml
configuration
[e] XW-224 XMLConfigurationProvider

Document generated by Confluence on Dec 12, 2004 12:35

Page 47

http://jira.opensymphony.com/secure/IssueNavigator.jspa?&pid=10050&fixfor=21420&sorter/field=issuekey&sorter/order=DESC&tempMax=25&reset=true&
http://jira.opensymphony.com/browse/XW-254
http://jira.opensymphony.com/browse/XW-254
http://jira.opensymphony.com/browse/XW-254
http://jira.opensymphony.com/browse/XW-254
http://jira.opensymphony.com/browse/XW-244
http://jira.opensymphony.com/browse/XW-244
http://jira.opensymphony.com/browse/XW-244
http://jira.opensymphony.com/browse/XW-244
http://jira.opensymphony.com/browse/XW-241
http://jira.opensymphony.com/browse/XW-241
http://jira.opensymphony.com/browse/XW-241
http://jira.opensymphony.com/browse/XW-241
http://jira.opensymphony.com/browse/XW-241
http://jira.opensymphony.com/browse/XW-225
http://jira.opensymphony.com/browse/XW-225
http://jira.opensymphony.com/browse/XW-225
http://jira.opensymphony.com/browse/XW-225
http://jira.opensymphony.com/browse/XW-224
http://jira.opensymphony.com/browse/XW-224

should not fail if it cannot

load a result type

@ XW-222 OgnlException while setting
property 'fieldName'

Document generated by Confluence on Dec 12, 2004 12:35 Page 48

http://jira.opensymphony.com/browse/XW-224
http://jira.opensymphony.com/browse/XW-224
http://jira.opensymphony.com/browse/XW-222
http://jira.opensymphony.com/browse/XW-222
http://jira.opensymphony.com/browse/XW-222
http://jira.opensymphony.com/browse/XW-222

Sample Validation Rules

This page last changed on Jul 16, 2004 by unkyaku

In this example, we have an Action that attempts to fill the values of a User object.
The first validation file would be for a a simple Action that had a "user" property. The
second validation file is for the exact same Action if it had implemented the
ModelDriven interface and exposed the User object via getModel() instead of
getUser(). Both of them uses the VisitorFieldValidator to use the User object's own
validation rules to validate the User object, which can be found in the third validation
file.

Notice that the short-circuit attribute of the field-validator element is used in several
places to prevent subsequent validators from running. This is useful in preventing
multiple error messages when one will do. For example, if the value provided for the
User's startDate cannot be parsed as a date, display the appropriate message and
don't even bother checking that it is in the correct range.

SampleAction-validation.xml:

<val i dat ors><field nane="user"><field-validator type="required"
short-circuit="true"><nmessage>You nmust provide a

user. </ nessage></fi el d-val i dat or ><fi el d-val i dat or type="vi sitor"><param
name="cont ext " >anot her Cont ext </ par anP<nmessage>user :

</ message></fi el d-val i dat or ></fi el d></val i dat or s>

SampleModelDrivenAction-validation.xml:

<val i dat ors><fi el d nane="nodel "><fi el d-val i dator type="visitor"><param
name="appendPr ef i x" >f al se</ par anp<nessage /></fi el d-validator></fiel d></vali dators>

User-validation.xml:

<val i dat or s><fi el d nane="user Nane"><fi el d-val i dator type="requiredstring"
short-circuit="true"><message>You nust enter an

user nane. </ nessage></fi el d-val i dat or ><fi el d-val i dat or type="stri ngl engt h"><param
name="m nLengt h" >3</ par ank<par am nanme="maxLengt h" >10</ par anr<nmessage>User name nust
be between ${m nLength} and ${mexLength} characters

| ong. </ message></fiel d-validator></field><field name="enuil "><fiel d-validator
type="enmui | "><nessage>You nust enter a valid enai

addr ess. </ message></fi el d-val i dator></fiel d><fiel d nane="honepage" ><fi el d-val i dat or
type="url" short-circuit="true"><nmessage>You nust enter a valid

URL. </ message></fi el d-val i dator><fi el d-validator type="fiel dexpressi on"><param
nanme="expr essi on" >honepage. i ndexX (' opensynphony. com) == -1</paranr<nessage>Pl| ease
provi de an OpenSynphony website</nessage></field-validator></field><field
nanme="age" ><fi el d-val i dat or type="int"><param nanme="m n">0</ par an><par am
nanme="max" >100</ par anm><nmessage>Not a valid

age! </ nessage></fiel d-validator></field><field name="startDate"><fiel d-validator
type="conversion" short-circuit="true"><validator type="start Date"><message>Coul d

Document generated by Confluence on Dec 12, 2004 12:35 Page 49

not convert input to a valid date.</nmessage></fiel d-validator><field-validator
type="dat e" ><par am name="ni n" >12/ 22/ 2002</ par ank<par am

name="max" >12/ 25/ 2002</ par an><nessage>The date nust be between 12-22-2002 and
12- 25-2002. </ nessage></fi el d-val i dat or ></fi el d></val i dat or s>

Document generated by Confluence on Dec 12, 2004 12:35 Page 50

Standard Validators

This page last changed on Jul 16, 2004 by unkyaku.

These are the standard validators that come with XWork:

e #RequiredFieldValidator

e #RequiredStringValidator

e #StringlLengthFieldValidator
e #EmailValidator

e #URLValidator

e #IntRangeFieldValidator

o #DateRangeFieldValidator
e #ConversionErrorFieldValidator
e #ExpressionValidator

o #FieldExpressionValidator
o #VisitorFieldValidator

All the example XML validation rule snippets below have been put together into one
big example here.

RequiredFieldValidator

This validator checks that a field is non-null.

Example:

<val i dators><fiel d nane="user"><fiel d-validator type="required"><nmessage>You nust
enter a value for user.</nessage></field-validator></field></validators>

RequiredStringValidator

This validator checks that a String field is not empty (i.e. non-null with a length > 0).

Document generated by Confluence on Dec 12, 2004 12:35 Page 51

Parameter Required Default Notes

trim no true Boolean property.
Determines whether
the String is
trimmed before
performing the
length check.

Example:

<val i dat or s><fi el d nane="user Nane" ><fi el d-val i dat or
type="requiredstring"><message>You nust enter an
user name. </ nessage></fi el d-val i dat or ></ fi el d></val i dat or s>

StringLengthFieldValidator

This validator checks that a String field is of the right length. It assumes that the field
is a String.

Parameter Required Default Notes

trim no true Boolean property.
Determines whether
the String is
trimmed before
performing the
length check.

minLength no Integer property.
The minimum length
the String must be.

maxLength no Integer property.
The maximum
length the String can
be.

If neither minLength nor maxLength is set, nothing will be done.

Example:

<val i dat ors><fi el d nane="user Nane"><fi el d-val i dat or type="stringl ength"><param
name="m nLengt h" >3</ par ank<par am nane="maxLengt h" >10</ par anr<nmessage>User name nust

Document generated by Confluence on Dec 12, 2004 12:35 Page 52

be between ${ni nLength} and ${maxLength} characters
| ong. </ nessage></fi el d-val i dat or ></fi el d></ val i dat or s>

EmailValidator

This validator checks that a field is a valid e-mail address if it contains a non-empty

String.

Example:

<val i dators><field nane="enuni | "><fiel d-validator type="enuil"><message>You nust
enter a valid enmmil address. </ nessage></fiel d-validator></field></validators>

URLValidator

This validator checks that a field is a valid URL.

Example:

<val i dat or s><fi el d nane="honepage" ><fi el d-val i dator type="url"><nmessage>You mnust
enter a valid URL. </ nessage></field-validator></field></validators>

IntRangeFieldValidator

This validator checks that a numeric field has a value within a specified range.

Parameter Required Default Notes

min no Integer property.
The minimum the

number must be.

max no Integer property.
The maximum

number can be.

If neither min nor max is set, nothing will be done.

Example:

Document generated by Confluence on Dec 12, 2004 12:35 Page 53

<val i dators><fiel d nane="age"><fi el d-val i dator type="int"><param
nane="m n">0</ par ank<par am nane="nmax" >100</ par anp<nessage>Not a valid
age! </ nessage></fi el d-val i dator></fi el d></val i dat or s>

DateRangeFieldValidator

This validator checks that a date field has a value within a specified range.

Parameter Required Default Notes

min no Date property. The
minimum the date
must be.

max no Date property. The
maximum date can
be.

If neither min nor max is set, nothing will be done.

Example:

<val i dators><fiel d nane="start Dat e"><fi el d-val i dat or type="date"><param

nanme="m n">12/ 22/ 2002</ par ank<par am nanme="nax" >12/ 25/ 2002</ par anr<nessage>The date
must be between 12-22-2002 and

12- 25-2002. </ nessage></fi el d-val i dat or></fi el d></val i dat or s>

ConversionErrorFieldValidator

This validator checks if there are any conversion errors for a field and applies them if
they exist. See Type Conversion Error Handling for details.

Example:

<val i dat ors><fiel d nane="start Dat e"><fi el d-val i dat or
type="conver si on" ><nessage>Coul d not convert input to a valid
dat e. </ nessage></fi el d-val i dat or ></fi el d></ val i dat or s>

ExpressionValidator

Document generated by Confluence on Dec 12, 2004 12:35 Page 54

This validator uses an OGNL expression to perform its validation. The error message

will be added to the action if the expression returns false when it is evaluated against
the value stack.

Parameter Required Default Notes

expression yes An OGNL expression

that returns a

boolean value.

Example:

<val i dat or type="expressi on"><param nane="expressi on">f oo > bar </ par anr<nessage
def aul t ="Foo nust be greater than Bar. Foo = ${foo}, Bar = ${bar}."/></validator>

FieldExpressionValidator

This validator uses an OGNL expression to perform its validation. The error message

will be added to the field if the expression returns false when it is evaluated against
the value stack.

Parameter Required Default Notes

expression yes An OGNL expression

that returns a

boolean value.

Example:

<val i dat ors><fi el d nane="honepage"><fi el d-validator type="fiel dexpression"><param
name="expressi on" >honepage. i ndexX (' opensynphony. com) == -1</paranp<nessage>P| ease
provi de an OpenSynphony website</nmessage></fiel d-validator></fiel d></val i dators>

VisitorFieldValidator

The validator allows you to forward validation to object properties of your action using
the objects own validation files. This allows you to use the ModelDriven development
pattern and manage your validations for your models in one place, where they belong,
next to your model classes. The VisitorFieldValidator can handle either simple Object
properties, Collections of Objects, or Arrays.

The error message for the VisitorFieldValidator will be appended in front of validation
messages added by the validations for the Object message.

Document generated by Confluence on Dec 12, 2004 12:35 Page 55

Parameter

Required

Default

Notes

context

no

action alias

Determines the
context to use for
validating the Object
property. If not
defined, the context
of the Action
validation is
propogated to the
Object property
validation. In the
case of Action
validation, this
context is the Action
alias.

appendPrefix

no

true

Determines whether
the field name of
this field validator
should be prepended
to the field name of
the visited field to
determine the full
field name when an
error occurs. For
example, suppose
that the bean being
validated has a
"name" property. If
appendPrefix is true,
then the field error
will be stored under
the field
"bean.name". If
appendPrefix is
false, then the field
error will be stored
under the field

Document generated by Confluence on Dec 12, 2004 12:35

Page 56

"name".

F 1f you are using
the
VisitorFieldValidator
to validate the model
from a ModelDriven
Action, you should
set appendPrefix to
false unless you are
using "model.name"
to reference the
properties on your
model.

Example:

<val i dat or s><fi el d nane="user"><fiel d-val i dator type="visitor"><param
name="cont ext " >anot her Cont ext </ par anp<nmessage>user :
</ message></fi el d-val i dat or ></fi el d></val i dat or s>

Here we see the context being overridden in the validator mapping, so the action alias
context will not be propogated.

ModelDriven example:

<val i dat ors><fi el d nane="nodel "><fi el d-val i dator type="visitor"><param
name="appendPr ef i x" >f al se</ par anp<nessage /></fi el d-validator></fiel d></vali dators>

This will use the model's validation rules and any errors messages will be applied
directly (nothing is prefixed because of the empty message).

Document generated by Confluence on Dec 12, 2004 12:35 Page 57

Type Conversion

This page last changed on Jul 21, 2004 by unkyaku

e Overview
e Null Property Access
e Type Conversion Error Handling

Type conversion allows you to easily convert objects from one class to another.
Whenever XWork attempts to get or set a property on an Action or object and the
Class of the value to be get/set is not what is expected, XWork will try to convert it to
the correct class.

A common use case is when submitting forms on the web, where we are usually
converting to and from String classes. A good example is date conversion. Let's
suppose we have the following classs:

public class Foo inplenents Action {
private Date date;
public void setDate(Date date) { this.date = date ; }
publicString execute() {
/'l do work here

}
}

XWork's type converter would allow us to pass in the String "07/08/2003" and have it
be automatically converted to a Date object that's been set to July 8, 2003.

XWork already supports basic type conversion, but you can also use your own type
converters. To define a custom type converter, you'll need to perform the following
steps:

e Create your custom type converter object by implementing ognl.TypeConverter or
extending ognl.DefaultTypeConverter

e Define your conversion rules in a file named className-conversion.properties
or add the appropriate entry to xwork-conversion.properties

Defining Conversion Rules

Conversion rules can be defined at both the class level as well as the application level.
Class-specific conversion rules
To define a class-specific conversion rules, create a file named

Document generated by Confluence on Dec 12, 2004 12:35 Page 58

className-conversion.properties. The syntax for these files are:

property = full.class.nane. of.converter
Col | ection_property = full.class. nane
Map_property = full.cl ass. name

This file defines the type converter to use for properties of an Action or object. If a
property is a Collection (List only) or Map, you can also specify the type of elements in
the Collection/Map. Please note that there are some issues to consider when working
with type conversion in collections.

When looking for a type converter, XWork will search up the class hierarchy and
directly implemented for conversion rules. Given the following class hierarchy:

interface Aninal;

class Animal Il npl inplenments Aninal;

i nterface Quadraped extends Ani nmal ;

cl ass Quadrapedl npl extends Animal |l npl inplenments Quadraped;

XWork will look for a conversion rule in the following files in the following order:

Quadr apedl npl - conver si on. properties
Quadr aped- conver si on. properties

Ani mal | npl - conver si on. properties
Ani mal - conver si on. properties

Application-wide conversion rules

To define application-wide conversion rules, create a file named
xwork-conversion.properties and place it in the root classpath. The syntax for this
file is:

full.class.nanme = full.class. nane. of . converter

Whenever XWork sees any classes listed in this file, it will use the specified converter
to convert values to that class.

When looking up a default converter, XWork will search up the class hierarchy to find
the appropriate converter. Given the class hierarchy above, XWork will look for a
conversion rule for the class in the following order:

Quadr aped! npl
Ani mal | npl

Document generated by Confluence on Dec 12, 2004 12:35 Page 59

An Example

To use the Contact example (where Contact is a persistent object), let's say we have
the following Action:

public class AddContact Action inplenments Action {
private Contact contactl;
private Contact contact?2;
public void setContact1(Contact contact) { this.contactl
public void setContact?2(Contact contact) { this.contact?2

contact; }
contact; }

publicString execute() { ...}

What we're expecting from the UI is for contact to be "1", the primary key of the
contact. We want the type converter to convert the string "1" to the Contact with a
contactld of 1. Likewise, we'd like the converter to be able to reverse the operation.
When displayed, a Contact object should print out its contactld as a String.

The first step is to create our custom TypeConverter:

public class ContactConverter extends ognl.Default TypeConverter {
publ i cObj ect convert Val ue(Map ognl Cont ext, Object value, Cass toType) {

if(toType == String.class) {
Contact contact = (Contact)val ue;
returnnewSt ri ng(contact.getContactld());

} elseif(toType == Contact.class) {
Integer id = newi nteger((String)val ue);
Sessi on session .../l get a Hibernate Session
Cont act cont act (Cont act) sessi on. | oad(Cont act. cl ass, id);
return contact;

}

returnnull;

}
}

The next part is to bind our ContactConverter to the previous AddContactAction. T'll
bind the ContactConverter to the AddContactAction by creating a file called
AddContactAction-conversion.properties that's in the same directory as the
AddContactAction class.

I would then populate the properties file as follows:

contactl
cont act 2

com acne. Cont act Converter
com acne. Cont act Convert er

Document generated by Confluence on Dec 12, 2004 12:35 Page 60

Now, when XWork attempts to populate your object from parameters, you'll be given
the actual instances of Contact from your database.

Having said all that, I can't really recommend doing database lookups here as a best
practice. In fact, I'd say it's not such a good idea, but it does illustrate type converters
well @ Any exception thrown here will be handled as described in Type Conversion

Error Handling.

Document generated by Confluence on Dec 12, 2004 12:35 Page 61

Type Conversion Error Handling

This page last changed on Nov 11, 2004 by plightbo.

Type conversion errors are handled by the XWorkConverter whenever any Exception is
thrown by a converter during converting a value. Type conversion errors are added to
a Map stored in the ActionContext which is available via
ActionContext.getContext().getConversionErrors(). This map is a map of field name to
values which will allow you to access the original value which failed conversion.

[l Tip: Reporting type conversion errors can be done in two ways:

e On a per-field basis with the conversion validator
¢ Globally via the conversion interceptor

The default text for conversion errors isn't exactly pretty: Invalid field value for
field "xxx". You can change this by defining an i18n property named
invalid.fieldvalue.[propertyName], such as invalid.fieldvalue.foo.

There are 2 ways of automatically populating field errors with the type conversion
errors into the field errors of the Action. The first will populate all of the field errors
from the conversion errors and is implemented as an Interceptor. There are actually 2
Interceptors, one in XWork and one in WebWork which extends the one in XWork.
They differ in the implementation of the method

pr ot ect edbool ean shoul dAddError (String propertyName, Object val ue)

The XWork version always returns true, whereas the WebWork Interceptor returns

false for values of null, "", and {""}, preventing type conversion exceptions for these
common empty values from propogating to the field errors of the Action. The
WebWork version of this Interceptor has been added to the webwork-defaults.xml and
to the defaultStack defined therein.

If you choose not to use this Interceptor, you can choose to enable this on a per-field
basis by using the Validation framework with the new field validator added for this,

defined in the validators.xml file like this:

<val i dat or name="conver si on"
cl ass="com opensynphony. xwor k. val i dat or . val i dat or s. Conver si onError Fi el dval i dator"/>

This validator will look up the conversion errors and, if it finds a conversion error for
the field it is applied to, it will add the appropriate error message to the Action.

Document generated by Confluence on Dec 12, 2004 12:35 Page 62

Both of these methods use the

XWor kConvert er. get Conver si onError Message(propertyNanme, stack)

which looks up the type conversion error message for the property name as was done
previously, by looking for a message keyed by invalid.fieldvalue.[propertyName]
and using a default value if it is not found.

Document generated by Confluence on Dec 12, 2004 12:35 Page 63

Type Conversion In Collections

This page last changed on Jul 21, 2004 by unkyaku.

There is a limit to how much type conversion XWork can do automatically when it
works with collections.

Internally, XWork uses XWorkList and XWorkMap. They basically extend ArrayList and
HashMap respectively to support type conversion. Anything that gets inserted into
them are automatically converted if they're not already the required type.

In situations where the collection is null, XWork will create either an XWorkList or an
XWorkMap and set it back on to the target (see Null Property Access for details), and

everything works beautifully. However, if the collection is not null, and the collections
returned are neither an XWorkList nor an XWorkMap, there's no way type conversion
can be performed. In this case, the you want type conversion to work, you will have
to seriously consider using XWorkList or XWorkMap instead of ArrayList or HashMap.

Example

Imagine a User object that has a Collection of e-mail addresses. Now, suppose the
input is a String array ["foo@bar.com"], and the target is "emails[1]". What we'd
really like XWork to to is convert that String array into a String before inserting it into
the collection. The first thing we'd do is create a User-conversion.properties with the
line:

Col l ection_emails = java.lang. String

If User.getEmails() returns null, then XWork will create a new XWorkList and call
User.setEmails() with it. It will then add an empty string at position [0] and insert
"foo@bar.com" at position [1] (the array is automatically converted into a String).

If User.getEmails() returns something other than XWorkList, when XWork tries to set
emails[1] to ["foo@bar.com"], no type connversion will occur. In addition, if the
array is empty, ArrayList will throw an IndexOutOfBoundsException.

Document generated by Confluence on Dec 12, 2004 12:35 Page 64

Upgrading from 1.0

This page last changed on Dec 12, 2004 by plightbo.

Upgrading to XWork 1.0.1 from 1.0 involves very little work. All you need to do is
copy over the new xwork-1.0.1.jar in replace of xwork-1.0.jar and make sure that the
new Dependencies are all in place.

Document generated by Confluence on Dec 12, 2004 12:35 Page 65

Upgrading from 1.0.1

This page last changed on Dec 12, 2004 by plightbo.

Upgrading to XWork 1.0.2 from 1.0.1 involves very little work. All you need to do is
copy over the new xwork-1.0.2.jar in replace of xwork-1.0.1.jar and make sure that
the new Dependencies are all in place.

Document generated by Confluence on Dec 12, 2004 12:35 Page 66

Upgrading from 1.0.2

This page last changed on Dec 12, 2004 by plightbo.
Upgrading from 1.0.2 is as simple as dropping in the new jar. There are no new

dependencies or code changes. This release is simply a re-release of 1.0.2 with the
correct packaging.

Document generated by Confluence on Dec 12, 2004 12:35 Page 67

Upgrading from 1.0.3

This page last changed on Dec 12, 2004 by plightbo.

Upgrading to XWork 1.0.4 from 1.0.3 involves very little work. All you need to do is
copy over the new xwork-1.0.4.jar in replace of xwork-1.0.3.jar and make sure that
the new Dependencies are all in place.

Document generated by Confluence on Dec 12, 2004 12:35 Page 68

Upgrading from 1.0.4

This page last changed on Dec 12, 2004 by plightbo.

Upgrading to XWork 1.0.5 from 1.0.4 is mostly backwards compatible. However, there
is one change you should be aware of:

ParametersInterceptor changes
Parametersinterceptor has been modified to not allow any parameter names to be
used that contain any special OGNL characters, such as "#", ",", and "=". This fixes a
security hole, but if you were depending on it we recommend that you figure out an
alternative way to do what you are doing rather than depend on this vulnerability.
Upgrading to 1.0.5 fixes this issue.

Document generated by Confluence on Dec 12, 2004 12:35 Page 69

Validation Framework

This page last changed on Jul 22, 2004 by unkyaku

Overview

Standard Validators - details on validators bundled with XWork
Building a Validator

Generic Object Validation

Overview

The validation framework in XWork is designed to help you apply simple validation
rules to your Actions before they are executed.

At its core, the framework takes just about any object and a String context name for
which to validate that object. This allows you to have different validation rules for the
same class in different contexts. You can define default validation rules in the
class-level validation file (ClassName-validation.xml), and then define validation
rules which are added on top of these for a specific context
(ClassName-contextName-validation.xml). The validation rules are applied in the
order they are listed in the validation files and error messages are saved into the
Object (if it implements ValidationAware).

In the case of Action validation, which is what most XWork users will be doing, the
class name is the Action class name and the context is the Action alias.

Registering Validators

Validation rules are handled by validators, which must be registered with the
ValidatorFactory. This may either be done programmatically, wusing the
registerValidator(String name, Class clazz) static method of the ValidatorFactory, or
by adding a file named validators.xml to the root of the classpath that contains this
information. The syntax for validators.xml is:

<val i dat or s><val i dat or nanme="required"

cl ass="com opensynphony. xwor k. val i dat or. val i dat or s. Requi r edFi el dVval i dat or "/ ><val i dat or
name="r equi redstring"

cl ass="com opensynphony. xwor k. val i dat or . val i dat or s. Requi redStri ngVal i dat or "/ ><val i dat or
name="stri ngl engt h"

cl ass="com opensynphony. xwor k. val i dat or . val i dat ors. St ri ngLengt hFi el dVval i dat or "/ ><val i dat
name="int"

cl ass="com opensynphony. xwor k. val i dat or . val i dat or s. | nt RangeFi el dVval i dat or "/ ><val i dat or
name="dat e"

cl ass="com opensynphony. xwor k. val i dat or. val i dat or s. Dat eRangeFi el dVal i dat or "/ ><val i dat or

Document generated by Confluence on Dec 12, 2004 12:35 Page 70

nanme="expressi on"

cl ass="com opensynphony. xwor k. val i dat or . val i dat or s. Expr essi onVal i dat or "/ ><val i dat or
nane="fi el dexpressi on"

cl ass="com opensynphony. xwor k. val i dat or. val i dat ors. Fi el dExpr essi onVal i dat or "/ ><val i dat or
name="enai | "

cl ass="com opensynphony. xwor k. val i dat or. val i dat ors. Enai | Val i dat or "/ ><val i dat or
name="ur| "

cl ass="com opensynphony. xwor k. val i dat or. val i dat ors. URLVal i dat or "/ ><val i dat or
nanme="visitor"

cl ass="com opensynphony. xwor k. val i dat or. val i dat ors. Vi si tor Fi el dval i dat or "/ ><val i dat or
name="conver si on"

cl ass="com opensynphony. xwor k. val i dat or. val i dat ors. Conver si onError Fi el dval i dat or"/></va

Turning on Validation

The process of applying validation rules to an Action before it is executed is handled
by the ValidationInterceptor. As such, all that is required to enable validation for an
Action is to declare the ValidationInterceptor in your XWork config file and add an
interceptor-ref to it for your Action. See XW:Configuration for details on how to
construct your XWork config file. Here's a simple example:

<xwor k><package nane="exanpl e" ><i nt er cept or s><i nt ercept or nane="val i dat or"
cl ass="com opensynphony. xwor k. val i dat or. Val i dati onl nt ercept or"/></i nt er cept or s>«
nane="Foo" cl ass="com opensynphony. xwor k. Si npl eActi on" ><par am
name="f 00" >17</ par an><par am nanme="bar " >23</ par an><r esul t nane="success"
t ype="chai n" ><par am nanme="act i onNanme" >Bar </ par anm></ r esul t ><i nt er cept or - r ef
name="val i dat or "/ ></acti on></ package><xwor k>

Bear in mind that the ValidationInterceptor only performs validation. The Action will
still be executed even if there are any validation errors.

Defining Validation Rules

To define validation rules for an Action, create a file named
ActionName-validation.xml in the same package as the Action. You may also
create alias-specific validation rules which add to the default validation rules defined in
ActionName-validation.xml by creating another file in the same directory named
ActionName-aliasName-validation.xml. In both cases, ActionName is the name
of the Action class, and aliasName is the name of the Action alias defined in the
xwork.xml configuration for the Action.

The framework will also search up the inheritance tree of the Action to find validation
rules for directly implemented interfaces and parent classes of the Action. This is
particularly powerful when combined with ModelDriven Actions and the

Document generated by Confluence on Dec 12, 2004 12:35 Page 71

VisitorFieldValidator. Here's an example of how validation rules are discovered. Given
the following class structure:

e interface Animal;

¢ interface Quadraped extends Animal;

e class Animallmpl implements Animal;

e class QuadrapedImpl extends Animallmpl implements Quadraped;
e class Dog extends QuadrapedImpl;

The framework method will look for the following config files if Dog is to be validated:

Animal

Animal-aliasname
Animallmpl
Animallmpl-aliasname
Quadraped
Quadraped-aliasname
QuadrapedImpl
QuadrapedImpl-aliasname
Dog

Dog-aliasname

WoOoNOGOA~WNE

-
o

While this process is similar to what the XW:Localization framework does when finding

messages, there are some subtle differences. The most important difference is that
validation rules are discovered from the parent downwards.

Syntax for Validation Rules

Here is a sample config file containing validation rules for SimpleAction from the
Xwork test cases:

<! DOCTYPE val i dators PUBLIC "-// QpenSynphony Group//XWrk Val i dat or
1.0.2//EN'""http://ww. opensynphony. conl xwor k/ xwor k- val i dat or-1. 0. 2. dt d" ><val i dat or s><fi el d
nanme="bar " ><fi el d-val i dator type="required"><message>You nust enter a value for

bar. </ message></fi el d-val i dat or ><fi el d-val i dat or type="int"><param

name="m n" >6</ par ank<par am nane="nex" >10</ par anp<nessage>bar nust be between ${m n}
and ${max}, current value is ${bar}. </ nmessage></field-validator></field><field
nanme="dat e"><fi el d-val i dat or type="date"><param nane="m n">12/ 22/ 2002</ par an><par am
nanme="max" >12/ 25/ 2002</ par am><nessage>The date nust be between 12-22-2002 and

12- 25- 2002. </ nessage></fi el d-val i dat or></fi el d><fi el d name="f 00" ><fi el d-val i dat or
type="i nt " ><par am nanme="ni n" >0</ par anr<par am nanme="max" >100</ par ankP<nessage

key="f oo. range">Coul d not find

f oo. range! </ message></fi el d-val i dat or></fi el d><val i dat or type="expressi on"><param
name="expressi on">f oo > bar </ paranr<nessage>Foo nust be greater than Bar. Foo =
${foo}, Bar = ${bar}. </ nessage></val i dator></vali dators>

Document generated by Confluence on Dec 12, 2004 12:35 Page 72

All <validator> (and <field-validator>) elements must have a type attribute, which
refers to a name of a Validator registered with the ValidatorFactory as described
above. These elements may also have <param> elements with name and value
attributes to set arbitrary parameters into the Validator instance.

All <validator> (and <field-validator>) elements must also define one message
subelement, which defines the message that should be added to the Action if the
validator fails. By default, the message will be that contained in the body of the
message tag. The message element also has one optional attribute, key, which
specifies a message key to look up in the Action's ResourceBundles using getText()
from LocaleAware if the Action implements that interface (as ActionSupport does).
This provides for Localized messages based on the Locale of the user making the
request (or whatever Locale you've set into the LocaleAware Action). When a key is
specified, any text contained in the body of the message tag becomes the default
message if a message cannot be found for the given key.

If the validator fails, the validator is pushed onto the ValueStack and the message -
either the default or the locale-specific one if the key attribute is defined (and such a
message exists) - is parsed for ${...} sections which are replaced with the evaluated
value of the string between the ${ and }. This allows you to parameterize your
messages with values from the validator, the Action, or both. Here is an example of a
parameterized message:

bar nmust be between ${min} and ${max}, current value is ${bar}.

This will pull the min and max parameters from the IntRangeFieldValidator and the
value of bar from the Action.

A more complete example of the validation rules can be found here.

E Since validation rules are in an XML file, you must make sure you escape special

characters. For example, notice that in the expression validator rule above we use
">" instead of ">". Consult a resource on XML for the full list of characters that
must be escaped. The most commonly used characters that must be escaped are: &
(use &), > (user >), and < (use <).

Validator vs. Field-Validator

The <field-validator> elements are basically the same as the <validator> elements

Document generated by Confluence on Dec 12, 2004 12:35 Page 73

except that they inherit the fieldName attribute from its enclosing <field> element.
FieldValidators will have their fieldName automatically filled with the value of the
parent <field> element's fieldName attribute. The reason for this structure is to
clearly group the validators for a particular field under one element, and because the
fieldName attribute would otherwise always have to be set for all field validators.

That said, it's perfectly legal to only use validator elements without the field elements
and set the fieldName attribute for each of them. The following are effectively equal:

<field nane="bar"><fiel d-validator type="required"><message>You nmust enter a val ue
for bar.</nmessage></field-validator></field><validator type="required"><param
nanme="fi el dNane" >bar </ par ank<nessage>You nust enter a val ue for

bar. </ message></val i dat or >

Short-circuiting Validators

Beginning with XWork 1.0.1 (bundled with WebWork 2.1), it is possible to short-circuit
a stack of validators. Here is another sample config file containing validation rules
from the Xwork test cases:

<! DOCTYPE val i dators PUBLIC "-// QpenSynphony Group//XWrk Val i dat or
1.0.2//EN'""http://ww. opensynphony. conl xwor k/ xwor k- val i dat or-1. 0. 2. dt d" ><val i dat ors><fi el d
name="enmi | "><fi el d-val i dator type="required" short-circuit="true"><message>You nust
enter a value for enmil.</nmessage></field-validator><field-validator type="enail"
short-circuit="true"><message>Not a valid

e-mai |l . </ message></field-validator></field><field nane="emai | 2"><fi el d-val i dat or
type="required"><nmessage>You nust enter a value for

emui | 2. </ message></fiel d-val i dat or><fi el d-val i dator type="enuil"><message>Not a
valid e-mail 2. </ message></fi el d-val i dat or></fi el d><val i dat or
type="expressi on" ><par am

nanme="expressi on">emui | . equal s(enmi | 2) </ par ank<nmessage>Emai | not the sanme as

emui | 2</ message></ val i dat or ><val i dat or type="expressi on" short-circuit="true"><param
name="expressi on">enmi |l . startsWth(' mark') </ par anr<nmessage>Emai| does not start with
mar k</ message></ val i dat or ></ val i dat or s>

Notice that some of the <field-validator> and <validator> elements have the
short-circuit attribute set to true. Since validators are evaluated in the order they are
declared, a validator with this attribute set to true will prevent the evaluation of
subsequent validators if the validator fails, where failure is determined by the addition
of an error (action or field error depending on the type of validator) to the
ValidationContext of the object being validated.

A field-validator that gets short-circuited will only prevent other field-validators for the
same field from being evaluated. A non field-validator that gets short-circuited will
completely break out of the validation stack — no other validators will be evaluated.

As mentioned above, the framework will also search up the inheritance tree of the

Document generated by Confluence on Dec 12, 2004 12:35 Page 74

action to find default validations for interfaces and parent classes of the Action. If you
are using the short-circuit attribute and relying on default validators higher up in the
inheritance tree, make sure you don't accidentally short-circuit things higher in the
tree that you really want!

E! Upgrade Alert: The short-circuit attribute was added to the DTD in version 1.0.2.
Your validation files must use version 1.0.2 of the xwork-validation.dtd to validate
properly.

Document generated by Confluence on Dec 12, 2004 12:35 Page 75

ValidationInterceptor

This page last changed on Jun 26, 2004 by unkyaku.

<i nterceptor nane="validation"
cl ass="com opensynphony. xwor k. val i dat or. Val i dati onl nt erceptor"/>

This interceptor validates the Action it is applied to. See the documentation on the
Validation Framework for details.

Document generated by Confluence on Dec 12, 2004 12:35 Page 76

XWork

This page last changed on Jun 22, 2004 by plightbo.

XWork is a generic command pattern framework. It was split out of WebWork 1.x and
forms the core of WW:WebWork 2.0. It features:

e Flexible and customizable configuration based on a simple Configuration interface,
allowing you to use XML , programmatic, or even product-integrated configuration

e Core command pattern framework which can be customized and extended
through the use of interceptors to fit any request / response environment

e Built in type conversion and action property validation using OGNL

e Powerful validation framework based on runtime attributes and a validation
interceptor

Useful links:

e Documentation

° API Javadocs
e Press Releases
e Download Binaries
e CVS

In addition to the documentation, it might be useful to see Rickard Oberg's thoughts
on the future directions of XWork, especially as it relates to Portal development

XWork-Optional

XWork optional is a repository where optional modules for XWork may be created. Just
about anyone can get developers access to this repository and is encouraged to use
this area as a staging zone for developing projects based upon XWork. Currently a
mail dispatcher project is there which uses a mail folder to dispatch actions for
processing the emails. For download instuctions code go to
https://xwork-optional.dev.java.net/servlets/ProjectSource

Document generated by Confluence on Dec 12, 2004 12:35 Page 77

http://wiki.opensymphony.com//display/WW/WebWork
http://www.ognl.org
http://www.opensymphony.com/xwork/api
http://wiki.opensymphony.com//display/XW/Press+Releases
https://xwork.dev.java.net/servlets/ProjectDocumentList
https://xwork.dev.java.net/servlets/ProjectSource
http://wiki.opensymphony.com//display/XW/RickardXWorkThoughts
https://xwork-optional.dev.java.net/servlets/ProjectSource

XWork layers

This page last changed on Dec 06, 2004 by casey.

Overview

Xwork is a command pattern framework centralized around an Action interface. You
define action classes by implementing an Action interface, then XWork will setup and
execute your actions. XWork is most widely known from the web MVC framework
called Webwork. However, XWork can be used by itself, so its important to understand
the XWork layers and how actions are set up and executed. This section describes the
core layers within Xwork and provides a simple example of how to execute actions.

e Action Interface

e ActionProxy interface
ActionInvocation interface
ActionContext

A simple example

Actions

Actions are the basic unit of execution...
The Action Interface
The basic interface which all XWork actions must implement. It provides several

standard return values like SUCCESS and INPUT, and only contains one method:
Action. java

publicinterface Action {
publicstaticfinal Stri ng SUCCESS = "success";
publicstaticfinal String NONE = "none";
publicstaticfinal String ERROR = "error";
publicstaticfinal String INPUT = "input";
publicstaticfinal String LOGN = "l ogin";

publicString execute() throws Exception;

In general, Actions can simply extend the com.opensymphony.xwork.ActionSupport
class, which implements the Action interface and provides default behavior for the
most common actions.

Document generated by Confluence on Dec 12, 2004 12:35 Page 78

ActionProxy

Action lifecycles are maintained thru the ActionProxy interface. ActionProxy is the top
layer in the Xwork API and should be the starting point to setup and execute actions.
XWork provides a factory as an entry point to instantiate action proxies. Most of the
implementations of each xwork layer are hidden behind interfaces making it very easy
to override the default implementations for complete customization.

Example how to obtain the default impl of ActionProxy (DefaultActionProxy.java)

Act i onProxyFact ory. get Factory().creat eActi onProxy(##, #vi ewBook#, objectMp);

If I need to register my own implementation of ActionProxy, then I may do so within
the factory

cl ass Custom zedActi onProxyFactory extends Defaul t Acti onProxyFact ory{
createActionProxy(...){ returnnew Custoni zedActionProxy(...); }

}

Act i onPr oxyFact ory. set Fact ory(new Cust om zedActi onProxyFactory());
Act i onProxy proxy = ActionProxyFactory. get Factory().createActionProxy(...);

ActionInvocation

Underneath the ActionProxy layer, exists the Actionlnvocation interface.
ActionInvocation represents the execution state of an action holding the action
instance along with any interceptors that wrap before/after processing of the action.

ActionContext

ActionContext provides access to the execution environment in the form of named
objects during an Action invocation. A new ActionContext is created for each
invocation allowing developers to access/modify these properties in a thread safe
manner. The ActionContext makes a number of properties available that are typically
set to appropriate values by the framework. In WebWork 2 for example, the
ActionContext session map wraps an underlying HttpSession object. This allows access
to environment specific properties without tying the core framework to a specific
execution environment.

The ActionContext is acquired through the static ActionContext.getContext() method.

Document generated by Confluence on Dec 12, 2004 12:35 Page 79

The ActionContext is a thread local variable and thus the properties of the
ActionContext will be relative to the current request thread. The ActionContext has
several methods for commonly used properties as well as get() and set() methods
which can be used for application specific properties.

A simple example

Lets look at a simple example starting with a simple javabean.

public class Book {
String id;
String title;
Set aut hors;
public void setld(id){ this.id =id; }
public void setTitle(String title){ this.title =title; }
public void setAut hors(Set authors){ this.authors = authors; }
publicString getld(){ }
publicString getTitle{ }
public Set getAuthors{ }

}

Lets say that we need to retrieve a book object from a data source and pass it back to
the caller. We can write an action to handle this. An action in xwork is typically a very
simple class. The only requirement is that it implements the Action interface. These
days youllll see actions as simple as javabeans with an execute method (Validation,
Type conversion, and so forth can all be seperated out to provide a good separation of
concerns). The purpose of action execution is typically to provide access and
manipulation to your data. The result of the action execution is a simple string
representation that should define delegation of the action after invocation. So a result
could be a success string, a failure string, a forward string, or what ever. In our
current example, a book object can be populated in the action if found with a result of
Osuccessl] or if the book is not found then a OnotFoundOd can be returned. From
this, you can easily have a controlling object setup to return the book or possible
forward the request off to a different inventory source if the book isnJt found.
com opensynphony. xwor k. exanpl e. Vi ewBookAct i on

public class ViewBookAction inplenents Action{
Book book;
String id;

publicString execute() throws Exception{

/'l lets pretend we have a data access object that will return a book from

st or age
book = bookDAQO. fi ndByl d(id, Book.cl ass);
i f(book !'= null) return #success#,;

Document generated by Confluence on Dec 12, 2004 12:35 Page 80

return #not Found#;

}
publ i c Book getBook(){ returnthis.book; }

public setld(String id){this.id =id; }

Now that we have an action defined with a simple model, lets setup an action proxy
and execute the action.
Setting up XWork to execute the action:

/1 obtain inputs fromthe caller. For this exanple, we can just define sone dunmy
par ans.

Map paranivap = new HashMap();

par amVap. put (#i d#, #0123456789%) ;

/1l set the ActionContext paraneters
Map context = new HashMap()
cont ext . put (Acti onCont ext . PARAMETERS, par amvap) ;

/'l create an action proxy with no nanespace, action alias (defined in xwork.xm),
and a map of the context info

Acti onProxy proxy = ActionProxyFactory. get Factory().createActi onProxy(##, #vi ewBook#,
cont ext);

/'l we have the action proxy instance, lets execute it and retrieve the actionString
result = proxy.execute();
i f (#success#. equal s(result)){

Vi ewBookAction action = (Vi ewBookAction) proxy.getAction();

/1 return info back to caller or just print to screen forthis
exanpl eSystem out . println(acti on. get Book().getTitle());
} el sei f (#not Found#. equal s(resul t){

/[l forward to another inventory source
} else {

t hr ownew Runti neExcepti on(#l m | azy#);

}

Not quite done yet, we need to define some configuration in xwork.xml so XWork can
find the appropriate class to execute based on the action alias we provided within the
createActionProxy(...) method.

xwor k. xni

<xwor k>
<include file="xwork-default.xm"/>
<package nane="def aul t "ext ends="xwor k- def aul t ">
<action name="vi ewBook"
cl ass="com opensynphony. xwor k. exanpl e. Vi ewBookActi on"/ >
</ package>
</ xwor k>

Document generated by Confluence on Dec 12, 2004 12:35 Page 81

	Space Details
	Available Pages
	XWork
	Documentation
	Basics
	Components
	Configuration
	Logging

	Core Concepts
	Dependencies
	Interceptors
	DefaultWorkflowInterceptor
	PrepareInterceptor
	ValidationInterceptor

	Introduction
	Localization
	Ognl
	Release Notes - 1.0.1
	Release Notes - 1.0.2
	Release Notes - 1.0.3
	Release Notes - 1.0.4
	Release Notes - 1.0.5
	Type Conversion
	Null Property Access
	Type Conversion Error Handling
	Type Conversion In Collections

	Upgrading from 1.0
	Upgrading from 1.0.1
	Upgrading from 1.0.2
	Upgrading from 1.0.3
	Upgrading from 1.0.4
	Validation Framework
	Building a Validator
	Generic Object Validation
	Sample Validation Rules
	Standard Validators

	XWork layers

	Press Releases
	1.0.1 Press Release
	1.0.2 Press Release
	1.0.3 Press Release
	1.0.4 Press Release
	About

