
Basic Technique

by Thomas Mahler, Jakob Braeuchli, Armin Waibel

Table of contents

1 Mapping 1:1 associations...2

1.1 1:1 auto-xxx setting... 4

2 Mapping 1:n associations...5

2.1 1:n auto-xxx setting... 8

3 Mapping m:n associations..8

3.1 Manual decomposition into two 1:n associations..9

3.2 Support for Non-Decomposed m:n Mappings.. 12

3.3 m:n auto-xxx setting.. 14

4 Setting Load, Update, and Delete Cascading...15

4.1 auto-retrieve setting... 16

4.2 Link references.. 17

5 Using Proxy Classes.. 18

5.1 Using Dynamic Proxies...22

5.2 Using a Single Proxy for a Whole Collection... 23

5.3 Using a Proxy for a Reference...24

5.4 Customizing the proxy mechanism... 25

6 Type and Value Conversions... 26

Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

1. Mapping 1:1 associations

As a sample for a simple association we take the reference from an article to its
productgroup.
This association is navigable only from the article to its productgroup. Both classes are
modelled in the following class diagram. This diagram does not show methods, as only
attributes are relevant for the O/R mapping process.

1:1 association

The association is implemented by the attribute productGroup. To automatically maintain
this reference OJB relies on foreignkey attributes. The foreign key containing the groupId
of the referenced productgroup is stored in the attribute productGroupId. To avoid
FK attribute in persistent object class see section about anonymous keys
(../../docu/guides/advanced-technique.html#anonymous-keys) .

This is the DDL of the underlying tables:

CREATE TABLE Artikel
(

Artikel_Nr INT NOT NULL PRIMARY KEY,
Artikelname VARCHAR(60),
Lieferanten_Nr INT,
Kategorie_Nr INT,
Liefereinheit VARCHAR(30),
Einzelpreis FLOAT,
Lagerbestand INT,
BestellteEinheiten INT,
MindestBestand INT,
Auslaufartikel INT

)

CREATE TABLE Kategorien
(

Kategorie_Nr INT NOT NULL PRIMARY KEY,
KategorieName VARCHAR(20),

Basic Technique

Page 2
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../docu/guides/advanced-technique.html#anonymous-keys

Beschreibung VARCHAR(60)
)

To declare the foreign key mechanics of this reference attribute we have to add a
reference-descriptor to the class-descriptor of the Article class. This descriptor contains the
following information:

• The attribute implementing the association (name="productGroup") is
productGroup.

• The referenced object is of type (
class-ref="org.apache.ojb.broker.ProductGroup")
org.apache.ojb.broker.ProductGroup.

• A reference-descriptor contains one or more foreignkey elements. These elements define
foreign key attributes. The element

<foreignkey field-ref="productGroupId"/>
contains the name of the field-descriptor describing the foreignkey fields. The
FieldDescriptor with the name "productGroupId" describes the foreignkey attribute
productGroupId:

<field-descriptor
name="productGroupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"

/>

See the following extract from the repository.xml file containing the Article ClassDescriptor:

<!-- Definitions for org.apache.ojb.ojb.broker.Article -->
<class-descriptor

class="org.apache.ojb.broker.Article"
proxy="dynamic"
table="Artikel"

>
<extent-class class-ref="org.apache.ojb.broker.BookArticle" />
<extent-class class-ref="org.apache.ojb.broker.CdArticle" />
<field-descriptor

name="articleId"
column="Artikel_Nr"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="articleName"
column="Artikelname"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="supplierId"
column="Lieferanten_Nr"

Basic Technique

Page 3
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

jdbc-type="INTEGER"
/>
<field-descriptor

name="productGroupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"

/>
...

<reference-descriptor
name="productGroup"
class-ref="org.apache.ojb.broker.ProductGroup"

>
<foreignkey field-ref="productGroupId"/>

</reference-descriptor>
</class-descriptor>

This example provides unidirectional navigation only. Bidirectional navigation may be added
by including a reference from a ProductGroup to a single Article (for example, a sample
article for the productgroup). To accomplish this we need to perform the following steps:

1. Add a private Article attribute named sampleArticle to the class ProductGroup.
2. Add a private int attribute named sampleArticleId to the ProductGroup class

representing the foreign key. To avoid FK attribute in persistent object class see section
about anonymous keys (../../docu/guides/advanced-technique.html#anonymous-keys) .

3. Add a column SAMPLE_ARTICLE_ID INT to the table Kategorien.
4. Add a FieldDescriptor for the foreignkey attribute to the ClassDescriptor of the Class

ProductGroup:

<field-descriptor
name="sampleArticleId"
column="SAMPLE_ARTICLE_ID"
jdbc-type="INTEGER"

/>
1. Add a ReferenceDescriptor to the ClassDescriptor of the Class ProductGroup:

<reference-descriptor
name="sampleArticle"
class-ref="org.apache.ojb.broker.Article"

>
<foreignkey field-ref="sampleArticleId""/>

</reference-descriptor>

Note:
When using primitive primary key fields, please pay attention on how OJB manage null for primitive PK/FK
(../../docu/faq.html#primitiveNull)

1.1. 1:1 auto-xxx setting

General info about the auto-xxx and proxy attributes can be found here

Basic Technique

Page 4
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../docu/guides/advanced-technique.html#anonymous-keys
../../docu/faq.html#primitiveNull

auto-retrieve
See here

auto-update

• none On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced object will NOT be updated by
default.The reference will not be inserted or updated, the link to the reference (foreign
key value to the reference) on the main object will not be assigned automatically. The
user has to link the main object and to store the reference before the main object to avoid
violation of referential integrity.

• link On updating or inserting of the main object with
PersistenceBroker.store(...), the FK assignment on the main object was
done automatic. OJB reads the PK from the referenced object and sets these values as FK
in main object. But the referenced object remains untouched. If no referenced object is
found, the FK will be nullified. (On insert it is allowed to set the FK without populating
the referenced object)

• object On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced object will be stored first, then
OJB does the same as in link.

• false Is equivalent to link.
• true Is equivalent to object.

auto-delete

• none On deleting an object with PersistenceBroker.delete(...) the
referenced object will NOT be touched.

• link Is equivalent to none.
• object On deleting an object with PersistenceBroker.delete(...) the

referenced object will be deleted too.
• false Is equivalent to none.
• true Is equivalent to object.

2. Mapping 1:n associations

We will take a different perspective from the previous exmaple for a 1:n association. We will
associate multiple Articles with a single ProductGroup. This association is navigable only
from the ProductGroup to its Article instances. Both classes are modelled in the following
class diagram. This diagram does not show methods, as only attributes are relevant for the
O/R mapping process.

Basic Technique

Page 5
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

1:n association

The association is implemented by the Vector attribute allArticlesInGroup on the
ProductGroup class. As in the previous example, the Article class contains a foreignkey
attribute named productGroupId that identifies an Article's ProductGroup. The Database
table are the same as above.

To declare the foreign key mechanics of this collection attribute we must add a
CollectionDescriptor to the ClassDescriptor of the ProductGoup class. This descriptor
contains the following information:

1. The attribute implementing the association (name="allArticlesInGroup")
2. The class of the elements in the collection (

element-class-ref="org.apache.ojb.broker.Article")
3. The name of field-descriptor of the element class used as foreign key attributes are

defined in inverse-foreignkey elements:

<inverse-foreignkey field-ref="productGroupId"/>
This is again pointing to the field-descriptor for the attribute productGoupId in class
Article.

4. optional attributes to define the sort order of the retrieved collection:
orderby="articleId" sort="DESC".

See the following extract from the repository.xml file containing the ProductGoup
ClassDescriptor:

<!-- Definitions for org.apache.ojb.broker.ProductGroup -->
<class-descriptor

class="org.apache.ojb.broker.ProductGroup"
table="Kategorien"

>
<field-descriptor

name="groupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

Basic Technique

Page 6
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

/>
<field-descriptor

name="groupName"
column="KategorieName"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="description"
column="Beschreibung"
jdbc-type="VARCHAR"

/>
<collection-descriptor

name="allArticlesInGroup"
element-class-ref="org.apache.ojb.broker.Article"
orderby="articleId"
sort="DESC"

>
<inverse-foreignkey field-ref="productGroupId"/>

</collection-descriptor>
</class-descriptor>

With the mapping shown above OJB has two possibilities to load the Articles belonging to a
ProductGroup:

1. loading all Articles of the ProductGroup immediately after loading the ProductGroup.
This is done with two SQL-calls: one for the ProductGroup and one for all Articles.

2. if Article is a proxy (using proxy classes), OJB will only load the keys of the Articles
after the ProductGroup. When accessing an Article-proxy OJB will have to materialize it
with another SQL-Call. Loading the ProductGroup and all it's Articles will thus produce
n+2 SQL-calls: one for the ProductGroup, one for keys of the Articles and one for each
Article.

Both approaches have their benefits and drawbacks:

• A. is suitable for a small number of related objects that are easily instantiated. It's
efficient regarding DB-calls. The major drawback is the amount of data loaded. For
example to show a list of ProductGroups the Articles may not be needed.

• B. is best used for a large number of related heavy objects. This solution loads the objects
when they are needed ("lazy loading"). The price to pay is a DB-call for each object.

Further down a third solution using a single proxy for a whole collection will be presented to
circumvent the described drawbacks.

OJB supports different Collection types to implement 1:n and m:n associations. OJB detects
the used type automatically, so there is no need to declare it in the repository file. But in
some cases the default behaviour of OJB is undesired. Please read here for more information
(../../docu/guides/advanced-technique.html#which-collection-type) .

Note:
When using primitive primary key fields, please pay attention on how OJB manage null for primitive PK/FK

Basic Technique

Page 7
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../docu/guides/advanced-technique.html#which-collection-type
../../docu/faq.html#primitiveNull

(../../docu/faq.html#primitiveNull)

2.1. 1:n auto-xxx setting

General info about the auto-xxx and proxy attributes can be found here.

auto-retrieve
See here

auto-update

• none On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced objects are NOT updated by
default. The referenced objects will not be inserted or updated, the referenced objects
will not be linked (foreign key assignment on referenced objects) to the main object
automatically. The user has to link and to store the referenced objects after storing the
main object to avoid violation of referential integrity.

• link On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced objects are NOT updated by
default. The referenced objects will not be inserted or updated, but the referenced objects
will be linked automatically (FK assignment) the main object.

• object On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced objects will be linked and
stored automatically.

• false Is equivalent to link.
• true Is equivalent to object.

auto-delete

• none On deleting an object with PersistenceBroker.delete(...) the
referenced objects are NOT touched. This may lead to violation of referential integrity if
the referenced objects are childs of the main object. In this case the referenced objects
have to be deleted manually first.

• link Is equivalent to none.
• object On deleting an object with PersistenceBroker.delete(...) the

referenced objects will be deleted too.
• false Is equivalent to none.
• true Is equivalent to object.

3. Mapping m:n associations

OJB provides support for manually decomposed m:n associations as well as an automated
support for non decomposed m:n associations.

Basic Technique

Page 8
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

3.1. Manual decomposition into two 1:n associations

Have a look at the following class diagram:

m:n association
We see a two classes with a m:n association. A Person can work for an arbitrary number of
Projects. A Project may have any number of Persons associated to it.
Relational databases don't support m:n associations. They require to perform a manual
decomposition by means of an intermediary table. The DDL looks like follows:

CREATE TABLE PERSON (
ID INT NOT NULL PRIMARY KEY,
FIRSTNAME VARCHAR(50),
LASTNAME VARCHAR(50)

);

CREATE TABLE PROJECT (
ID INT NOT NULL PRIMARY KEY,
TITLE VARCHAR(50),
DESCRIPTION VARCHAR(250)

);

CREATE TABLE PERSON_PROJECT (
PERSON_ID INT NOT NULL,
PROJECT_ID INT NOT NULL,
PRIMARY KEY (PERSON_ID, PROJECT_ID)

);

This intermediary table allows to decompose the m:n association into two 1:n associations.
The intermediary table may also hold additional information. For example, the role a certain
person plays for a project:

CREATE TABLE PERSON_PROJECT (
PERSON_ID INT NOT NULL,
PROJECT_ID INT NOT NULL,
ROLENAME VARCHAR(20),
PRIMARY KEY (PERSON_ID, PROJECT_ID)

);

The decomposition is mandatory on the ER model level. On the object model level it is not
mandatory, but may be a valid solution. It is mandatory on the object level if the association

Basic Technique

Page 9
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

is qualified (as in our example with a rolename). This will result in the introduction of a
association class. A class-diagram reflecting this decomposition looks like:

m:n association

A Person object has a Collection attribute roles containing Role entries. A Project
has a Collection attribute roles containing Role entries. A Role has reference attributes
to its Person and to its Project.
Handling of 1:n mapping has been explained above. Thus we will finish this section with a
short look at the repository entries for the classes org.apache.ojb.broker.Person,
org.apache.ojb.broker.Project and org.apache.ojb.broker.Role:

<!-- Definitions for org.apache.ojb.broker.Person -->
<class-descriptor

class="org.apache.ojb.broker.Person"
table="PERSON"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="firstname"
column="FIRSTNAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="lastname"
column="LASTNAME"
jdbc-type="VARCHAR"

/>
<collection-descriptor

name="roles"
element-class-ref="org.apache.ojb.broker.Role"

>
<inverse-foreignkey field-ref="person_id"/>

</collection-descriptor>
...

</class-descriptor>

<!-- Definitions for org.apache.ojb.broker.Project -->

Basic Technique

Page 10
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

<class-descriptor
class="org.apache.ojb.broker.Project"
table="PROJECT"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="title"
column="TITLE"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="description"
column="DESCRIPTION"
jdbc-type="VARCHAR"

/>
<collection-descriptor

name="roles"
element-class-ref="org.apache.ojb.broker.Role"

>
<inverse-foreignkey field-ref="project_id"/>

</collection-descriptor>
...

</class-descriptor>

<!-- Definitions for org.apache.ojb.broker.Role -->
<class-descriptor

class="org.apache.ojb.broker.Role"
table="PERSON_PROJECT"

>
<field-descriptor

name="person_id"
column="PERSON_ID"
jdbc-type="INTEGER"
primarykey="true"

/>
<field-descriptor

name="project_id"
column="PROJECT_ID"
jdbc-type="INTEGER"
primarykey="true"

/>
<field-descriptor

name="roleName"
column="ROLENAME"
jdbc-type="VARCHAR"

/>
<reference-descriptor

name="person"

Basic Technique

Page 11
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

class-ref="org.apache.ojb.broker.Person"
>

<foreignkey field-ref="person_id"/>
</reference-descriptor>
<reference-descriptor

name="project"
class-ref="org.apache.ojb.broker.Project"

>
<foreignkey field-ref="project_id"/>

</reference-descriptor>
</class-descriptor>

3.2. Support for Non-Decomposed m:n Mappings

If there is no need for an association class at the object level (we are not interested in role
information), OJB can be configured to do the m:n mapping transparently. For example, a
Person does not have a collection of Role objects but only a Collection of Project objects
(held in the attribute projects). Projects also are expected to contain a collection of
Person objects (hold in attribute persons).

To tell OJB how to handle this m:n association the CollectionDescriptors for the Collection
attributes projects and roles need additional information on the intermediary table and
the foreign key columns pointing to the PERSON table and the foreign key columns pointing
to the PROJECT table:

Note:
OJB supports a multiplicity of collection implementations (../../docu/guides/advanced-technique.html#manageable-collection) ,
inter alia org.apache.ojb.broker.util.collections.RemovalAwareCollection and
org.apache.ojb.broker.util.collections.RemovalAwareList. By default the removal aware collections
were used. This cause problems in m:n relations when auto-update="true" or "object" and
auto-delete="false" or "none" is set, because objects deleted in the collection will be deleted on update of main
object. Thus it is recommended to use a NOT removal aware collection class in m:n relations using the collection-class
(../../docu/guides/repository.html#collection-descriptor) attribute.

Example for setting a collection class in the collection-descriptor:

collection-class="org.apache.ojb.broker.util.collections.ManageableArrayList"

An full example for a non-decomposed m:n relation looks like:

<class-descriptor
class="org.apache.ojb.broker.Person"
table="PERSON"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"

Basic Technique

Page 12
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../docu/guides/advanced-technique.html#manageable-collection
../../docu/guides/repository.html#collection-descriptor

autoincrement="true"
/>
<field-descriptor

name="firstname"
column="FIRSTNAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="lastname"
column="LASTNAME"
jdbc-type="VARCHAR"

/>
...
<collection-descriptor

name="projects"
collection-class="org.apache.ojb.broker.util.collections.ManageableArrayList"

element-class-ref="org.apache.ojb.broker.Project"
auto-retrieve="true"
auto-update="true"
indirection-table="PERSON_PROJECT"

>
<fk-pointing-to-this-class column="PERSON_ID"/>
<fk-pointing-to-element-class column="PROJECT_ID"/>

</collection-descriptor>
</class-descriptor>

<!-- Definitions for org.apache.ojb.broker.Project -->
<class-descriptor
class="org.apache.ojb.broker.Project"
table="PROJECT"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="title"
column="TITLE"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="description"
column="DESCRIPTION"
jdbc-type="VARCHAR"

/>
...
<collection-descriptor

name="persons"
collection-class="org.apache.ojb.broker.util.collections.ManageableArrayList"

element-class-ref="org.apache.ojb.broker.Person"
auto-retrieve="true"

Basic Technique

Page 13
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

auto-update="false"
indirection-table="PERSON_PROJECT"

>
<fk-pointing-to-this-class column="PROJECT_ID"/>
<fk-pointing-to-element-class column="PERSON_ID"/>

</collection-descriptor>
</class-descriptor>

That is all that needs to be configured! See the code in class
org.apache.ojb.broker.MtoNMapping for JUnit testmethods using the classes
Person, Project and Role.

Note:
When using primitive primary key fields, please pay attention on how OJB manage null for primitive PK/FK
(../../docu/faq.html#primitiveNull)

3.3. m:n auto-xxx setting

General info about the auto-xxx and proxy attributes can be found here

auto-retrieve
See here

auto-update

• none On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced objects are NOT updated by
default. The referenced objects will not be inserted or updated, the referenced objects
will not be linked (creation of FK entries in the indirection table) automatically. The user
has to store the main object, the referenced objects and to link the m:n relation after
storing of all objects. establishing the m:n relationship before storing main and referenced
objects may violate referential integrity.

• link On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced objects are NOT updated by
default. The referenced objects will not be inserted or updated, but the m:n relation will
be linked automatically (creation of FK entries in the indirection table).

Note:
Make sure that the referenced objects exist in database before storing the main object with auto-update set link to avoid
violation of referential integrity.

• object On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced objects will be linked and
stored automatically.

• false Is equivalent to link.

Basic Technique

Page 14
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../docu/faq.html#primitiveNull

• true Is equivalent to object.

auto-delete

• none On deleting an object with PersistenceBroker.delete(...) the
referenced objects are NOT touched. The corresponding entries of the main object in the
indirection table will not be removed. This may lead to violation of referential integrity
depending on the definition of the indirection table.

• link On deleting an object with PersistenceBroker.delete(...) the m:n
relation will be unlinked (all entries of the main object in the indirection table will be
removed).

• object On deleting an object with PersistenceBroker.delete(...) all
referenced objects will be deleted too.

• false Is equivalent to link.
• true Is equivalent to object.

4. Setting Load, Update, and Delete Cascading

As shown in the sections on 1:1, 1:n and m:n mappings, OJB manages associations (or object
references in Java terminology) by declaring special Reference and Collection Descriptors.
These Descriptor may contain some additional information that modifies OJB's behaviour on
object materialization, updating and deletion.
The behaviour depends on specific attributes

• auto-retrieve - possible settings are false, true. If not specified in the descriptor the
default value is true

• auto-update - possible settings are none, link, object and deprecated [false, true]. If not
specified in the descriptor the default value is false

• auto-delete - possible settings are none, link, object and deprecated [false, true]. If not
specified in the descriptor the default value is false

Warning:
When using a top-level api (ODMG, OTM, JDO) it is mandatory to use specific auto-xxx settings.
For OTM- and JDO-api the settings are:
- auto-retrieve="true"
- auto-update="false"
- auto-retrieve="false"
This are at the same time the default auto-XXX settings (so don't specify any of this attributes will have the same effect).
For the ODMG-api the mandatory settings are (since OJB 1.0.2):
- auto-retrieve="true"
- auto-update="none"
- auto-retrieve="none"

The attribute auto-update and auto-delete are described in detail in the corresponding
sections for 1:1, 1:n and m:n references. The auto-retrieve setting is described below:

Basic Technique

Page 15
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

4.1. auto-retrieve setting

The auto-retrieve attribute used in reference-descriptor or
collection-descriptor elements handles the loading behaviour of references (1:1,
1:n and m:n):

• false If set false the referenced objects will not be materialized on object materialization.
The user has to materialize the n-side objects (or single object for 1:1) by hand using one
of the following service methods of the PersistenceBroker class:

PersistenceBroker.retrieveReference(Object obj, String attributeName);
// or
PersistenceBroker.retrieveAllReferences(Object obj);
The first method load only the specified reference, the second one loads all references
declared for the given object.

Note:
Be careful when using "opposite" settings, e.g. if you declare a 1:1 reference with auto-retrieve="false" BUT
auto-update="object" (or "true" or "link").
Before you can perform an update on the main object, you have to "retrieve" the 1:1 reference. Otherwise you will end up with
an nullified reference enty in main object, because OJB doesn't find the referenced object on update and assume the reference
was removed.

• true If set true the referenced objects (single reference or all n-side objects) will be
automatic loaded by OJB when the main object was materialized.

If OJB is configured to use proxies, the referenced objects are not materialized
immmediately, but lazy loading proxy objects are used instead.

In the following code sample, a reference-descriptor and a collection-descriptor are
configured to use cascading retrieval (auto-retrieve="true"), cascading
insert/update (auto-update="object" or auto-update="true") and cascading
delete (auto-delete="object" or auto-delete="true") operations:

<reference-descriptor
name="productGroup"
class-ref="org.apache.ojb.broker.ProductGroup"
auto-retrieve="true"
auto-update="object"
auto-delete="object"
>
<foreignkey field-ref="productGroupId"/>
</reference-descriptor>

<collection-descriptor
name="allArticlesInGroup"
element-class-ref="org.apache.ojb.broker.Article"
auto-retrieve="true"

Basic Technique

Page 16
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

auto-update="object"
auto-delete="object"
orderby="articleId"
sort="DESC"
>
<inverse-foreignkey field-ref="productGroupId"/>
</collection-descriptor>

4.2. Link references

If in reference-descriptor or collection-descriptor the auto-update or
auto-delete attributes are set to none, OJB does not touch the referenced objects on insert,
update or delete operations of the main object. The user has to take care of the correct
handling of referenced objects. When using referential integrity (who does not ?) it's essential
that insert and delete operations are done in the correct sequence.

One important thing is assignment of the FK values. The assign of the FK values is
transcribed with link references in OJB. In 1:1 references the main object has a FK to the
referenced object, in 1:n references the referenced objects have FK pointing to the main
object and in non-decomposed m:n relations a indirection table containing FK values from
both sides of the relationship is used.

OJB provides some helper methods for linking references manually (assignment of the FK)
in org.apache.ojb.broker.util.BrokerHelper class.

public void link(Object obj, boolean insert)
public void unlink(Object obj)
public boolean link(Object obj, String attributeName, boolean insert)
public boolean unlink(Object obj, String attributeName)

These methods are accessible via org.apache.ojb.broker.PersistenceBroker:

BrokerHelper bh = broker.serviceBrokerHelper();

Note:
The link/unlink methods are only useful if you set auto-update/-delete to none. In all other cases OJB handles the link/unlink of
references internally. It is also possible to set all FK values by hand without using the link/unlink service methods.

Examples
Now we prepared for some example. Say class Movie has an m:n reference with class
Actor and we want to store an Movie object with a list of Actor objects. The auto-update
setting of collection-descriptor for Movie is none:

broker.beginTransaction();
// store main object first
broker.store(movie);

Basic Technique

Page 17
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

//now we store the right-side objects
Iterator it = movie.getActors().iterator();
while(it.hasNext())
{

Object actor = it.next();
broker.store(actor);

}
// now both side exist and we can link the references
broker.serviceBrokerHelper().link(movie, "actors", true);
/*
alternative call
broker.serviceBrokerHelper().link(movie, true);
*/
broker.commitTransaction();

First store the main object and the references, then use
broker.serviceBrokerHelper().link(movie, "actors", true) to link
the main object with the references. In case of a m:n relation linking create all FK entries in
the indirection table.

In the next examples we want to manually delete a Project object with a 1:n relation to
class SubProject. In the example, the Project object has load all SubProject objects and
we want to delete the Project but don't want to delete the referenced SubProjects too (don't
ask if this make sense ;-)). SubProject has an FK to Project, so we first have to unlink the
reference from the main object to the references to avoid integrity constraint violation. Then
we can delete the main object:

broker.beginTransaction();
// first unlink the n-side references
broker.serviceBrokerHelper().unlink(project, "subProjects");

// update the n-side references, store SubProjects with nullified FK
Iterator it = project.getSubProjects().iterator();
while(it.hasNext())
{

SubProject subProject = (SubProject) it.next();
broker.store(subProject);

}

// now delete the main object
broker.delete(project);
broker.commitTransaction();

5. Using Proxy Classes

Proxy classes can be used for "lazy loading" aka "lazy materialization". Using Proxy classes
can help you in reducing unneccessary database lookups.
There are two kind of proxy mechanisms available:

Basic Technique

Page 18
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

1. Dynamic proxies provided by OJB. They can simply be activated by setting certain
switches in repository.xml. This is the solution recommemded for most cases.

2. User defined proxies. User defined proxies allow the user to write proxy
implementations.

As it is important to understand the mechanics of the proxy mechanism I highly recommend
to read this section before turning to the next sections "using dynamic proxies", "using a
single proxy for a whole collection" and "using a proxy for a reference", covering dynamic
proxies.

As a simple example we take a ProductGroup object pg which contains a collection of
fifteen Article objects. Now we examine what happens when the ProductGroup is loaded
from the database:

Without using proxies all fifteen associated Article objects are immediately loaded from the
db, even if you are not interested in them and just want to lookup the description-attribute of
the ProductGroup object.

If proxies are used, the collection is filled with fifteen proxy objects, that implement the same
interface as the "real objects" but contain only an OID and a void reference. The fifteen
article objects are not instantiated when the ProductGroup is initially materialized. Only
when a method is invoked on such a proxy object will it load its "real subject" and delegate
the method call to it. Using this dynamic delegation mechanism instantiation of persistent
objects and database lookups can be minimized.

To use proxies, the persistent class in question (in our case the Article class) must implement
an interface (for example InterfaceArticle). This interface is needed to allow replacement of
the proper Article object with a proxy implementing the same interface. Have a look at the
code:

public class Article implements InterfaceArticle
{

/** maps to db-column "Artikel-Nr"; PrimaryKey*/
protected int articleId;
/** maps to db-column "Artikelname"*/
protected String articleName;
...

public int getArticleId()
{

return articleId;
}

public java.lang.String getArticleName()
{

return articleName;
}

Basic Technique

Page 19
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

...
}

public interface InterfaceArticle
{

public int getArticleId();
public java.lang.String getArticleName();
...

}

public class ArticleProxy extends VirtualProxy implements InterfaceArticle
{

public ArticleProxy(ojb.broker.Identity uniqueId, PersistenceBroker
broker)

{
super(uniqueId, broker);

}

public int getArticleId()
{

return realSubject().getArticleId();
}

public java.lang.String getArticleName()
{

return realSubject().getArticleName();
}

private InterfaceArticle realSubject()
{

try
{

return (InterfaceArticle) getRealSubject();
}
catch (Exception e)
{

return null;
}

}
}

The proxy is constructed from the identity of the real subject. All method calls are delegated
to the object returned by realSubject().
This method uses getRealSubject() from the base class VirtualProxy:

public Object getRealSubject() throws PersistenceBrokerException
{

return indirectionHandler.getRealSubject();
}

The proxy delegates the the materialization work to its IndirectionHandler. If the real
subject has not yet been materialized, a PersistenceBroker is used to retrieve it by its OID:

Basic Technique

Page 20
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

public synchronized Object getRealSubject()
throws PersistenceBrokerException

{
if (realSubject == null)
{

materializeSubject();
}
return realSubject;

}

private void materializeSubject()
throws PersistenceBrokerException

{
realSubject = broker.getObjectByIdentity(id);

}

To tell OJB to use proxy objects instead of materializing full Article objects we have to add
the following section to the XML repository file:

<class-descriptor
class="org.apache.ojb.broker.Article"
proxy="org.apache.ojb.broker.ArticleProxy"
table="Artikel"

>
...

The following class diagram shows the relationships between all above mentioned classes:

Basic Technique

Page 21
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

proxy image

5.1. Using Dynamic Proxies

The implementation of a proxy class is a boring task that repeats the same delegation scheme
for each new class. To liberate the developer from this unproductive job OJB provides a
dynamic proxy solution based on the JDK 1.3 dynamic proxy concept. (For JDK1.2 we ship
a replacement for the required java.lang.reflect classes. Credits for this solution to
ObjectMentor.) The basic idea of the dynamic proxy concept is to catch all method
invocations on the not-yet materialized (loaded from database) object. When a method is
called on the object, Java directs this call to the invocation handler registered for it (in OJB's
case a class implementing the
org.apache.ojb.broker.core.proxy.IndirectionHandler interface). This
handler then materializes the object from the database and replaces the proxy with the real

Basic Technique

Page 22
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

object. By default OJB uses the class
org.apache.ojb.broker.core.proxy.IndirectionHandlerDefaultImpl.
If you are interested in the mechanics have a look at this class.

To use a dynamic proxy for lazy materialization of Article objects we have to declare it in the
repository.xml file.

<class-descriptor
class="org.apache.ojb.broker.Article"
proxy="dynamic"
table="Artikel"

>
...

Just as with normal proxies, the persistent class in question (in our case the Article class)
must implement an interface (for example InterfaceArticle) to be able to benefit from
dynamic proxies.

5.2. Using a Single Proxy for a Whole Collection

A collection proxy represents a whole collection of objects, where as a proxy class represents
a single object.
The advantage of this concept is a reduced number of db-calls compared to using proxy
classes. A collection proxy only needs a single db-call to materialize all it's objects. This
happens the first time its content is accessed (ie: by calling iterator();). An additional db-call
is used to calculate the size of the collection if size() is called before loading the data. So
collection proxy is mainly used as a deferred execution of a query.

OJB uses three specific proxy classes for collections:

1. List proxies are specific java.util.List implementations that are used by OJB to
replace lists. The default set proxy class is
org.apache.ojb.broker.core.proxy.ListProxyDefaultImpl

2. Set proxies are specific java.util.Set implementations that are used by OJB to
replace sets. The default set proxy class is
org.apache.ojb.broker.core.proxy.SetProxyDefaultImpl

3. Collection proxies are collection classes implementing the more generic
java.util.Collection interface and are used if the collection is neither a list nor a
set. The default collection proxy class is
org.apache.ojb.broker.core.proxy.CollectionProxyDefaultImpl

Which of these proxy class is actually used, is determined by the collection-class
setting of this collection. If none is specified in the repository descriptor, or if the specified
class does not implement java.util.List nor java.util.Set, then the generic
collection proxy is used.

Basic Technique

Page 23
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

The following mapping shows how to use a collection proxy for a relationship:

<!-- Definitions for
org.apache.ojb.broker.ProductGroupWithCollectionProxy -->
<class-descriptor
class="org.apache.ojb.broker.ProductGroupWithCollectionProxy"
table="Kategorien"

>
<field-descriptor

name="groupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"
primarykey="true"

/>
...
<collection-descriptor

name="allArticlesInGroup"
element-class-ref="org.apache.ojb.broker.Article"
proxy="true"

>
<inverse-foreignkey field-ref="productGroupId"/>

</collection-descriptor>
</class-descriptor>

The classes participating in this relationship do not need to implement a special interface to
be used in a collection proxy.

Although it is possible to mix the collection proxy concept with the proxy class concept, it is
not recommended because it increases the number of database calls.

5.3. Using a Proxy for a Reference

A proxy reference is based on the original proxy class concept. The main difference is that
the ReferenceDescriptor defines when to use a proxy class and not the ClassDescriptor.
In the following mapping the class ProductGroup is not defined to be a proxy class in its
ClassDescriptor. Only for shown relationship a proxy of ProductGroup should be used:

<!-- Definitions for org.apache.ojb.broker.ArticleWithReferenceProxy
-->

<class-descriptor
class="org.apache.ojb.broker.ArticleWithReferenceProxy"
table="Artikel"

>
<field-descriptor

name="articleId"
column="Artikel_Nr"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>

Basic Technique

Page 24
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

...
<reference-descriptor

name="productGroup"
class-ref="org.apache.ojb.broker.ProductGroup"

proxy="true"
>

<foreignkey field-ref="productGroupId"/>
</reference-descriptor>

</class-descriptor>

Because a proxy reference is only about the location of the definition, the referenced class
must implement a special interface (see using proxy classes).

5.4. Customizing the proxy mechanism

Both the dynamic and the collection proxy mechanism can be customized by supplying a
user-defined implementation.

For dynamic proxies you can provide your own invocation handler which implements the
org.apache.ojb.broker.core.proxy.IndirectionHandler interface. See
OJB's default implementation
org.apache.ojb.broker.core.proxy.IndirectionHandlerDefaultImpl
for details on how to implement such an invocation handler.

Each of the three collection proxy classes can be replaced by a user-defined class. The only
requirement is that such a class implements both the corresponding interface
(java.util.Collection, java.util.List, or java.util.Set) as well as the
org.apache.ojb.broker.ManageableCollection interface.

Proxy implementations are configured in the ojb properties file. These are the relevant
settings:

...
#--

IndirectionHandler
#--

The IndirectionHandlerClass entry defines the class to be used by
OJB's proxies to

handle method invocations
#

IndirectionHandlerClass=org.apache.ojb.broker.core.proxy.IndirectionHandlerDefaultImpl
#

#--
ListProxy

#--
The ListProxyClass entry defines the proxy class to be used for

collections that
implement the java.util.List interface.
#

Basic Technique

Page 25
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

ListProxyClass=org.apache.ojb.broker.core.proxy.ListProxyDefaultImpl
#

#--
SetProxy

#--
The SetProxyClass entry defines the proxy class to be used for

collections that
implement the java.util.Set interface.
#
SetProxyClass=org.apache.ojb.broker.core.proxy.SetProxyDefaultImpl
#

#--
CollectionProxy

#--
The CollectionProxyClass entry defines the proxy class to be used

for collections that
do not implement java.util.List or java.util.Set.
#

CollectionProxyClass=org.apache.ojb.broker.core.proxy.CollectionProxyDefaultImpl
...

6. Type and Value Conversions

Say your database column contains INTEGER values but you have to use boolean attributes
in your Domain objects. You need a type and value mapping described by a
FieldConversion! (../../docu/guides/jdbc-types.html)

Basic Technique

Page 26
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../docu/guides/jdbc-types.html

	1 Mapping 1:1 associations
	1.1 1:1 auto-xxx setting

	2 Mapping 1:n associations
	2.1 1:n auto-xxx setting

	3 Mapping m:n associations
	3.1 Manual decomposition into two 1:n associations
	3.2 Support for Non-Decomposed m:n Mappings
	3.3 m:n auto-xxx setting

	4 Setting Load, Update, and Delete Cascading
	4.1 auto-retrieve setting
	4.2 Link references

	5 Using Proxy Classes
	5.1 Using Dynamic Proxies
	5.2 Using a Single Proxy for a Whole Collection
	5.3 Using a Proxy for a Reference
	5.4 Customizing the proxy mechanism

	6 Type and Value Conversions

