ObJectRelationalBridge - Getting
Started

by Brian McCallister
Table of contents

L ACQUITING OJD-DIANK. ...t s
2 Contents Of OJD-DIaNK........ooeeeee s
p 2 1010 [o] (0] = o F R
B THE DU FIIES....eeieee e ettt et e b nreas
3.1 Configuration Via build.properti€S..........coveeieeie e
32 BUilding ViaBuild.Xml.........ooiie s
3.3 SAMPIE PIOJECT. ...ttt sttt e e et nr e bt
4 The runtime configuration fIlES.........uo e e 11
4.1 Configuring the OJB FUNLIME.........ccceiiie et 11
4.2 Configuring the database CONNECLION............cccoiieeiicie e 11
4.3 Configuring the FEPOSITONY.........eceeiieie e ettt ae e e sreeeennee s 11
4.4 SAMPIE PIOJECL....cveieeiieieeee ettt ettt b sttt e e b et b sbe b eneeneeneas 11
5 LEAMING IMOTE.......oiiiiiitesiieie ettt bbbt bt e s e b b et e b nn e e ae e e e e 14

ObJectRelationalBridge - Getting Started

This document will guide you through the very first steps of setting up a project with OJB.
To make thiseasier, OJB comes with a blank project template called ojb-blank which you're
encouraged to use. Y ou can download it here (http://www.apache.org/dyn/closer.cgi/db/ojb/)

For the purpose of this guide, we'll be showing you how to setup the project for asimple
application that handles products and uses MySQL. Thisis continued later on in the next
tutorial parts (../docu/tutorials/summary.html) .

1. Acquiring ojb-blank

First off, OJB uses Ant (http://ant.apache.org/) to build, so pleaseinstall it prior to using
OJB. In addition, please make sure that the environment variables ANT_HOVE and

JAVA HOME are correctly set to the top-level folders of your Ant distribution and your JDK
installation, respectively.

Next download the latest ojb-blank and OJB binary distributions
(http://www.apache.org/dyn/closer.cgi/db/ojb/) . Y ou can also start with the source
distribution (http://www.apache.org/dyn/closer.cgi/db/ojb/) rather than the binary as the unit
tests provide excellent sample code and you can build the ojb-blank project on your own with
it.

The ojb-blank project contains all libraries necessary to get running. However, there may be
additional libraries required when you venture deeper into OJB's APIs. See here
(../docu/guides/deployment.html#additional-jars) for alist of additional libraries.

Most notably, you'll probably want to add the jdbc driver for you database unless you plan to
use the embedded Hsgldb database (http://hsgldb.sourceforge.net/) for which the ojb-blank
project is pre-configured (including all necessary jars).

2. Contents of ojb-blank

Copy theoj b- bl ank. j ar fileto your project directory and unpack it viathe command

jar xvf ojb-blank.jar

Thiswill unpack it into the oj b- bl ank directory under wherever you unpacked it from.
Y ou can move things out of that directory into your project directory, or, more simply,
rename the oj b- bl ank directory to be whatever you want your project directory to be
named.

After you unpacked the jar, you'll get the following directory layout:

\ 0j b- bl ank
.classpath

Page 2

http://www.apache.org/dyn/closer.cgi/db/ojb/
../docu/tutorials/summary.html
http://ant.apache.org/
http://www.apache.org/dyn/closer.cgi/db/ojb/
http://www.apache.org/dyn/closer.cgi/db/ojb/
http://www.apache.org/dyn/closer.cgi/db/ojb/
../docu/guides/deployment.html#additional-jars
http://hsqldb.sourceforge.net/

ObJectRelationalBridge - Getting Started

. proj ect
bui | d. properties
bui | d. xmn
\lib
\src
\java
\resour ces
\ schema
\t est

Here's aquick rundown on what the individual directories and files are:

.classpath, .project

An Eclipse (http://www.eclipse.org/) project for your convenience. You can simply
import it into Eclipse via File -> Import... -> Existing Project into Workspace.
build.xml, build.properties

The Ant build script and the build properties. These are described in more detail
below.

lib

Contains the libraries necessary to compile and run your project. If you want to
use a different database than Hsqldb, then put the jars of your jdbc driver in here.
src/java

Put your java source code here.

src/resources

Contains the runtime configuration files for OJB. For more detail see below.
src/schema

Here you will find a schema containing tables that are required by certain
components of OJB such as clustered locking and OJB managed sequences.
More information on these tables is available in the platform documentation
(../docu/guides/platforms.html) . The schema is in a database-independent
format that can be used by Torque (http://db.apache.org/torque/) or commons-sq|
(http://jakarta.apache.org/commons/sandbox/sql/) to create the database.

The ojb-blank project contains the runtime files of Torque 3.0.2, and provides a
build target that can be invoked on your schema (see below for details).
Therefore, this directory also contains the build script of Torque, but you won't
need to invoke it directly.

src/java

Place your unit tests in here.

2.1. Sample project

For our sample project, we should rename the directory to something more fitting, like
pr oduct manager .

Page 3

http://www.eclipse.org/
../docu/guides/platforms.html
http://db.apache.org/torque/
http://jakarta.apache.org/commons/sandbox/sql/

ObJectRelationalBridge - Getting Started

Also, since we're using MySQL, we put the MySQL jar of the jdbc driver
(http://dev.mysqgl.com/downloads/connector/j/) , which is called something like
mysqgl - connect or-j ava-[versi on] -stabl e-bin.jar,intothelib
subdirectory.

The only other thing missing is the source code, but since that's what the other tutorials are
dealing with, we will silently assumethat it is already presentinthesrc/j ava
subdirectory.

If you don't want to write the code yourself, you can use the code from one of the tutorials
(../docuftutorials/'summary.html) which you can download here
(http://www.apache.org/dyn/closer.cgi/db/ojb/) .

Notethat if you do not intent to use JDO, then you should delete thefilesinthe oj b. apache. oj b. t ut ori al 5, otherwise
you'll get compilation errors.

3. The build files

3.1. Configuration via build.properties

The next step isto adapt the build files, especially the bui | d. properti es fileto your
environment. It basically contains two sets of information, the database settings and the build
configuration. While you shouldn't have to change the latter, the database settings probably
need to be adapted to suit your needs:

Property Purpose
jcdAlias The name of the connection. You should leave
the default value, which is def aul t .
databaseName This is the name of the database, per default
oj b_bl ank.
databaseUser The user name for accessing the database

(default: sa). If you're using Torque to create the
database, then this user also requires sufficient
rights to create databases and tables.

databasePassword Password for the user, per default empty.
dbmsName The type of database, which is one of the
following:

Db2, Firebird, Hsqldb, Informix, MaxDB,
MsAccess, MsSQL, MySQL,Oracle (pre-9i
versions), Oracle9i, WLOracle9i (Oracle 9i or

Page 4

http://dev.mysql.com/downloads/connector/j/
../docu/tutorials/summary.html
http://www.apache.org/dyn/closer.cgi/db/ojb/

ObJectRelationalBridge - Getting Started

jdbcRuntimeDriver

jdbcLevel

urlProtocol

urlSubprotocol

urlDbalias

torque.database

torque.database.createUrl

above used from WebSphere), PostgreSQL,
Sapdb, Sybase (generic), SybaseASA,
SybaseASE.

Please note that this setting is case-sensitive.
Per default, Hsqldb
(http://hsqgldb.sourceforge.net/) is used, which is
an embedded database. All files required for this
database come with the ojb-blank project.

The fully-qualified classname of the jdbc driver.
For Hsqldb this is or g. hsql db. j dbcDri ver.

The jdbc level that the driver conforms to.
Please check the documentation of your jdbc
driver for this value, though most jdbc drivers
conform to version 2.0 at least.

For the Hsqldb jdbc driver this is 2.0.

The protocol of the database url (see below),
usually j dbc.

The sub-protocol of the database url which is
database- and driver-specific. For Hsqldb, you're
using hsql db.

This is the address that points the jdbc driver to
the database. For Hsqldb this is per default the
database name.

If you're using Torque to create the database,
then you have to set the database here (again).
Unfortunately, this value is different from the
dbnsNane which defines the database for OJB.
Currently, these values are defined:

axion, cloudscape, db2, db2400, hypersonic
(which is Hsgldb), interbase (use for Firebird),
mssql, mysql, oracle, postgresql, sapdb, and
sybase.

Default value is hyper soni ¢ for use with
Hsqldb.

This specifies the url that Torque will use in
order to create the database. Depending on the
database, this may be the same as the normal
access url (the default value), but for some
database this is different. Please check the
manual of your database for this url.

Page 5

http://hsqldb.sourceforge.net/

ObJectRelationalBridge - Getting Started

If you know how the jdbc url for connecting to your database |ooks like, then you can derive
the settings dat abaseNane, dat abaseNane, dat abaseNane and dat abaseNane
easly:

Assumethisurl isgiven as.

j dbc: nysql : / /1 ocal host : 3306/ nyDat abase

then these properties are

Property Value
databaseName myDat abase
urlProtocol j dbc
urlSubprotocol mysql
urlDbalias /1l ocal host/ nyDat abase

3.2. Building via build.xml

After setting up the build you're probably eager to actually build the project. Here's the
actions that you can perform using the Ant build filebui | d. xm :

Action (target in the build.xml file) What it does
clean Cleans up all files from the previous build.
compile Compiles your java source files to

bui | d/ cl asses. Usually, you don't run this
target, but rather the next one which includes
the compilation step.

build Compiles your java sources files (using the
compile action), and prepares the runtime
configuration files using the settings that you
specified in the bui | d. pr operti es file, most
notably the r eposi t ory_dat abase. xni
(../repository_database.xml.txt) which will be
located in the bui | d/ r esour ces directory
after the build.
After you run this action, your application is
ready to go (if the action ran successfully, of
course).

jar A convenience action that packs your
successfully build application into a jar.

xdoclet Creates the runtime configuration files that
describe the repository, from javadoc comments

Page 6

../repository_database.xml.txt

ObJectRelationalBridge - Getting Started

embedded in your java source files. Details on
how to this are given in the tutorials
(../docultutorials/summary.html) and in the
documentation of the XDoclet OJB module
(../docu/guides/xdoclet-module.html) .

setup-db Creates the database and tables from a
database-independent schema using Torque.
You'll find more info on this schema in the
documentation of the XDoclet OJB module
(../docu/guides/xdoclet-module.html) and on the
Torque homepage (http://db.apache.org/torque/)

enhance-jdori This is a sample target that shows how a class
meant to be persistent with JDO, is processed
by the JDO bytecode enhancer from the JDO
reference implementation
(http://java.sun.com/products/jdo/) . It uses the
Product class from the JDO tutorial
(../docultutorials/jdo-tutorial.html) (tutorial 5).

So, atypical build would be achieved with this Ant call:

ant build

If you want to create the database as well, and you have javadoc comments in your source
code that describe the repository, then you would call Ant thisway:

ant build setup-db

Thiswill perform in that order the actionsbui | d, xdocl et (invoked automatically from
the next action) and set up- db.

Of course, you do not need to use Torgue to setup your database, but it is a convenient way
to do so.

3.3. Sample project

First we change the database properties to these values (assuming that Torque will be used to
setup the database):

Property Value
jcdAlias We leave the default value of def aul t .
databaseName Since the application manages products, we call

the database pr oduct manager .

databaseUser This depends on your setup. For the purposes of
this guide, let's call him st eve.

Page 7

../docu/tutorials/summary.html
../docu/guides/xdoclet-module.html
../docu/guides/xdoclet-module.html
http://db.apache.org/torque/
http://java.sun.com/products/jdo/
http://java.sun.com/products/jdo/
../docu/tutorials/jdo-tutorial.html

ObJectRelationalBridge - Getting Started

databasePassword Again depending on your setup. How about
secr et (you know that you should not use this
password in reality ?!).

dbmsName My SQL

jdbcRuntimeDriver Its called com nysql . j dbc. Dri ver.
jdbcLevel For the newer Mysql drivers this is 3.0.
urlProtocol The default of j dbc will do.

urlSubprotocol For MySQL, we're using nmysql .

urlDbalias Assuming that the database runs locally on the

default port, we have
/11 ocal host/ ${ dat abaseNane} .

torque.database We want to use Torque, so we put nysql here.

torque.database.createUrl MySQL allows to create a database via jdbc.
The url that we should use to do so, is the
normal url used to access the database minus
the database name. So the value here is:
${url Protocol }: ${url SubProtocol }://Iocal host/.
Please note that the trailing slash is important.

Ok, now we have everything configured for building. The bui | d. properti es filenow
looks like this (the comments have been removed for brevity):

j cdAl i as=def aul t

dat abaseNane=pr oduct nanager
dat abaseUser =st eve

dat abasePasswor d=secr et

dbnsName=My SQL

j dbcLevel =3. 0

j dbcRunt i meDri ver =com nysql . j dbc. Dri ver
ur | Pr ot ocol =j dbc

ur | Subpr ot ocol =nysql

ur | Dbal i as=//1 ocal host/ ${ dat abaseNane}

t or que. dat abase=nysq|l
t or que. dat abase. creat eUr | =${ur | Prot ocol }: ${ur| Subprot ocol }://1 ocal host/

j ar. name=pr oj ect manager . j ar

source.dir=src

source. java. dir=${source.dir}/java

source. resource. di r=${source. dir}/resources
source.test.dir=${source.dir}/test

Page 8

ObJectRelationalBridge - Getting Started

sour ce. schena. di r=${source. dir}/schema

bui | d. di r=build
build.lib.dir=lib

bui | d. cl asses. di r=${bui | d. di r}
bui I d. resource. di r=${bui l d.dir

/ cl asses/
}/ resources/

target. dir=target

Looks like we're ready for building. Again, we're assuming that the source code is already
present. So we're invoking Ant now in the top-level folder pr oduct manager :

ant build setup-db
which should (assuming five java classes) produce an output like this

Bui l dfile: build.xm

conpi |l e:
[mkdir] Created dir: /home/stevel/projects/product manager/build
[mkdir] Created dir: /hone/stevel/projects/product nanager/buil d/cl asses
[javac] Conpiling 5 source files to

/ hone/ st evel proj ect s/ product manager/ bui | d/ cl asses

bui | d:
[copy] Copying 10 files to
/ hone/ st eve/ proj ect s/ product manager/ bui | d/ r esour ces

xdocl et :

[oj bdocl et] (XDocl et Mai n. start 47) Running
<oj brepository/ >

[0] bdocl et] Cenerating ojb repository descriptor

(buil d/ resources//repository_user.xnl)

[oj bdocl et] Type test. Project

[o] bdocl et] Processed 5 types

[o] bdocl et] Processed 5 types

[o] bdocl et] (XDocl et Mai n. start 47) Runni ng
<t or queschena/ >

[0] bdocl et] Cenerating torque schema (buil d/resources//project-schema. xm)
[o] bdocl et] Processed 5 types

set up- db:
check- use-cl asspat h:

check-run-onl y- on- schena- change:

sqgl - check:

sql :
[echo] +------------"-“"---“-“----“- - i
[echo] |

|
[echo] | CGenerating SQ for YOUR Torque project! |

Page 9

ObJectRelationalBridge - Getting Started

[echo] | Wo hoo! |
[echo] |
[echo] +----------cmmimmm 1+

sql - cl asspat h:
[torque-sqgl] Using contextProperties file:
/ hone/ st eve/ proj ect s/ product manager/ bui | d. properties
torque-sql] Using cl asspath
torque-sql] Cenerating to file
/ hone/ st eve/ proj ect s/ product manager/ bui | d/ resour ces/ report . product manager. sql . generatio
torque-sql] Parsing file: 'ojbcore-schema. xm"
torque-sqgl] (transform DTDResol ver 128) Resol ver: used
dat abase. dtd from
or g. apache. t or que. engi ne. dat abase. t ransf or m package
torque-sql] Parsing file: 'project-schema. xm"
torque-sql] (transform DTDResol ver 140) Resol ver: used
http://jakarta. apache. org/turbi ne/ dt d/ dat abase. dt d

sqgl -tenpl ate
cr eat e- db- check:

cr eat e- db:

t or que-dat a- nodel] Usi ng cl asspath

t or que-dat a- nodel] Generating to file

/ hone/ st evel proj ect s/ product manager/ bui | d/ r esour ces/ cr eat e- db. sq
torque-dat a- nodel] Parsing file: 'ojbcore-schema. xm'

t or que-dat a- nodel | (transform DTDResol ver 128) Resol ver:
used dat abase.dtd from

or g. apache. t or que. engi ne. dat abase. t ransf or m package
torque-dat a-model] Parsing file: 'project-schema. xm'

t or que-dat a- nodel | (transform DTDResol ver 140) Resol ver:
used
http://jakarta. apache. org/ turbi ne/ dt d/ dat abase. dtd
[echo]
[echo] Executing the create-db.sql script
[echo]

[sql] Executing file:
/ hone/ st evel proj ect s/ product manager/ bui | d/ r esour ces/ cr eat e- db. sq
[sql] 2 of 2 SQ statenents executed successfully

i nsert-sql:

[torque-sql -exec] Qur new url -> jdbc:nysql://|ocal host/product manager
[torque-sql -exec] Executing file:

/ home/ st eve/ proj ect s/ pr oduct manager/ bui | d/ r esour ces/ pr oj ect - schena. sql
[torque-sgl -exec] Executing file:

/ hone/ st evel proj ect s/ product manager/ bui | d/ r esour ces/ oj bcor e- schemna. sq
[torque-sql -exec] 50 of 50 SQL statenents executed successfully

BU LD SUCCESSFUL
That wasit. Y ou now have your database setup properly. Go on, have alook:

nysgl -u steve product manager

Page 10

ObJectRelationalBridge - Getting Started

nysgl > show t abl es;

There, all tables for your project, as well as the tables required for some OJB functionality
which we also used in the above process (you can recognize them by their names which start
with oj b_).

4. Theruntime configuration files

The last thing missing for actually running your project isto adapt the runtime configuration
files used by OJB. There are basically three sets of configuration that need to be provided:
configuration of the OJB runtime, description of the database connection, and description of
the repository.

4.1. Configuring the OJB runtime

With the OJB.properties (../docu/guides/ojb-properties.html) file and OJB-logging.properties
(../docu/guides/logging.html) (both located in sr ¢/ r esour ces), you configure and
finetune the runtime aspects of OJB. For a simple application you'll probably won't have to
change anything in them, though.

4.2. Configuring the database connection

For projects that use OJB, you configure the connections to the database via jdbc connection
descriptors (../docu/guides/repository.html#jdbc-connection-descriptor) . These are usually
definedin afilecalledr eposi t ory_dat abase. xnml (locatedinsr c/ resour ces). In
the ojb-blank project, the build file will setup thisfile for you and place it in the

bui | d/ r esour ces directory.

4.3. Configuring the repository

Finally you need to configure the repository. It consists of descriptors that define which java
classes are mapped in what way to which database tables, and it is typically contained in the
repository_user. xml file. Thisisthe most complicated configuration part which will
be explained in much more detail in the rest of the tutorials (../docu/tutorials/summary.html) .
An convenient way of creating the repository metadata isto use the XDoclet OJB module
(../docu/guides/xdoclet-module.html) . Basically, you put specific Javadoc comments into
your source code, which are then processed by the build file (xdocl et and set up- db
targets) and the repository metadata and the database schema are generated.

4.4. Sample project

Page 11

../docu/guides/ojb-properties.html
../docu/guides/logging.html
../docu/guides/repository.html#jdbc-connection-descriptor
../docu/guides/repository.html#jdbc-connection-descriptor
../docu/tutorials/summary.html
../docu/guides/xdoclet-module.html

ObJectRelationalBridge - Getting Started

Actually, there is not much to do here. For our simple sample application the default
properties of OJB work just fine, so we leave QJB. pr operti es and
QIB- | oggi ng. properti es untouched.

Also, the build file generated the connection descriptor for us, and we were using the
XDoclet OJB module and Torque to generate the repository metadata and database for us.
For instance, the processed connection descriptor (file

bui | d/ resour ces/ repository_dat abase. xm) lookslikethis:

<j dbc- connecti on- descri pt or
jcd-alias="default"
def aul t - connecti on="t rue"
pl at f or m=" MySQL"
j dbc- I evel =" 3. 0"
driver="com nysql .jdbc. Driver"
pr ot ocol =" dbc"
subpr ot ocol ="nysql "
dbal i as="//1ocal host/ product manager"
user name="st eve"
passwor d="secret"
eager-rel ease="f al se"
bat ch- node="f al se"
useAut oCommi t =" 1"
i gnor eAut oConmi t Excepti ons="f al se"
>
<obj ect - cache
cl ass="or g. apache. oj b. br oker. cache. Obj ect CacheDef aul t | npl ">
<attribute attribute-name="timeout" attribute-val ue="900"/>
<attribute attribute-nanme="autoSync" attribute-val ue="true"/>
</ obj ect - cache>
<connect i on- poo
maxAct i ve="21"
val i dati onQuery="" />
<sequence- manager
cl assNane="or g. apache. oj b. broker. util . sequence. SequenceManager H ghLow npl ">
<attribute attribute-nanme="grabSi ze" attri bute-val ue="20"/>
<attribute attribute-name="autoNani ng" attribute-val ue="true"/>
<attribute attribute-name="gl obal Sequencel d"
attribute-val ue="fal se"/>
<attribute attribute-nane="gl obal SequenceStart"
attri bute-val ue="10000"/ >
</ sequence- manager >
</j dbc-connecti on-descri pt or>

If you're curious as to what this stuff means, check this reference quide
(../docu/guides/repository.html#j dbc-connection-descriptor) .

The repository metadata (filebui | d/ r esour ces/ reposi tory_user. xm) starts
like:

Page 12

../docu/guides/repository.html#jdbc-connection-descriptor

ObJectRelationalBridge - Getting Started

<cl ass-descri pt or
cl ass="product manager . Pr oduct "
t abl e="Product "

<fi el d-descri ptor
name="name"
col um="nane"
j dbc-t ype=" VARCHAR'
| engt h="32"

>

</field-descriptor>

<fi el d-descri ptor
nane="price"
col um="price"
j dbc-t ype="FLOAT"

>

</fiel d-descriptor>

<fi el d-descri pt or
nane="st ock"
col um="st ock"
j dbc-t ype="1 NTEGER"

</field-descriptor>

<fi el d-descri ptor
name="i d"
col um="i d"
j dbc-t ype="1 NTEGER"
pri marykey="true"

>

</fiel d-descriptor>

</ cl ass-descri ptor>

Now you should be able to run your application:

cd buil d/ resources

j ava product manager. Mai n

Of course, you'll need to setup the CLASSPATH before running your application. Y ou'll
should add all jarsfrom thel i b folder except the ones for Torque
(torque-[version].jar,velocity-[version].jar and

commons-col | ections-[version].jar)andforthe XDoclet OJB module
(xdocl et-[version].jar,xjavadoc-[version].jar and

xdocl et - o] b- nodul e-[version].jar).

It isimportant to note that OJB per default assumesthe QJB. pr operti es and

QJB- 1 oggi ng. properti es filesin the directory where you're starting the application.
Hence, we changed to the bui | d/ r esour ces directory before running the application.
This of course requires the compiled classes to be on the classpath, as well (directory

bui | d/ cl asses).

Page 13

ObJectRelationalBridge - Getting Started

Per default, the same appliesto the other configuration files (r eposi t or y*. xm) but you
can changethisinthe QJB. properti es file.

5. Learning More

After you've have learned about building and configuring projects that use OJB, you should
check out the tutorials (../docu/tutorials/summary.html) to learn how to specify your
persistent classes and how to use OJB's APIs to perform database operations. The Mapping
Tutorial (../docu/tutorial/mapping-tutorial.html) in particular shows you how to map your
classesto tablesin an RDBMS.

Page 14

../docu/tutorials/summary.html
../docu/tutorials/mapping-tutorial.html
../docu/tutorials/mapping-tutorial.html

	1 Acquiring ojb-blank
	2 Contents of ojb-blank
	2.1 Sample project

	3 The build files
	3.1 Configuration via build.properties
	3.2 Building via build.xml
	3.3 Sample project

	4 The runtime configuration files
	4.1 Configuring the OJB runtime
	4.2 Configuring the database connection
	4.3 Configuring the repository
	4.4 Sample project

	5 Learning More

