Locking

by Thomas Mahler, Armin Waibel
Table of contents

I 1100 [FTox 1 o o OSSP 2
p 0111 40T ES (o I ox (1 o S 3
3 PESSIMISHIC-LOCKING. ...ttt sne b nneas 3
3.1 SUPPOrted ISOIAtiON LEVELS.......c.ooeieee e 3
3.2 How to specify locking iSOlation [@VEL............ooeiiiieeeee e 7
3.3 Specify the LockManager Implementation............ccccveveeiieeiee s esee e 7
3.4 The LockManager Implementalions............cccceeieeieeseeneciee e eee e 7
3.4.1 LockManagerINMemOry MPl........cccooieieieereese e ee et eee e nneas 8
3.4.2 LockManagerCommONSI MLccoiiiriiinieeeee e 8
3.4.3 LockManagerREMOLEIMP.........coiiiiieiiree e 8

4 ODM G-ADI LOCKING. ...ttt sb e sn e 9
AL WHEE TT AOBS.......eeieiieieieee ettt st b ettt e nbe e 10
5 Locking in distributed envVironmMeNt...............coveiiiieieeie s 11

6 Pluggin own [0CKING CIaSSES........ccuviiiiieii et 11

Locking

1. Introduction

Lock management is needed to synchronize concurrent access to objects from multiple
transactions (possibly in clustered environments).

An example:

Assume there are two transactionst x1 and t X2 running. Thefirst transaction t x1 modify
object A and perform an update. At the same time transaction t x2 modify an object A' with
the same identity oi dA, so both objects represent the same row in DB table and both operate
on the "same" row at the same time, thus the state of object with identity oi dAis
inconsistent.

Assumethat t x1 was committed, now the modified object A' int x2 based on outdated
data (state before A changed). If now t x2 commits object A' the changesof t x1 will be
overwritten with the "illegal" object A" .

The OJB lock manager is responsible for detecting such a conflict and e.g. doesn't allow t x2
to read or modify objects with identity oi dAaslong ast x1 commit or rollback (pessimistic
locking).

In other words, if in arunning transaction an object in awith identity oi dA has awrite lock,
the lock manager doesn't allow other transactions to acquire aread or write lock on the same
identity oi dA objects (for the sake of completeness: dependent on the used locking isolation
level).

OJB supports two kind of locking strategies:

» optimistic locking

e pessimistic locking

OJB provide an pluggable low-level locking-api (located in

or g. apache. oj b. br oker . | ocki ng) for pessimistic locking, which can be used by
the top-level api's like ODMG (../../docu/tutorialsylodmg-tutorial.html) . The PB-api
(../../docultutorial g/pb-tutorial.html) itself does not support pessimistic locking out of the box.

The base classes of the locking-api can be found in
or g. apache. oj b. br oker . | ocki ng and the entry point is class LockManager
(../../api/org/apache/ojb/broker/locking/L ockM anager.html) .

Object locking helps to guarantee data consistency without the need of database locks.
During atransaction objects can be locked without the use a database connection, e.g the
ODMG (../../docu/tutorialsylodmg-tutorial .html) implementation lookup a database connection
not until the transaction commit was called. If database locks are used, a connection is
needed during the whol e transaction.

Page 2

../../docu/tutorials/odmg-tutorial.html
../../docu/tutorials/pb-tutorial.html
../../api/org/apache/ojb/broker/locking/LockManager.html
../../docu/tutorials/odmg-tutorial.html

Locking

2. Optimistic Locking

To control concurrent access to objects optimistic locking uses aversion field on each
persistent object.

Optimistic locking is supported by al API's (PB-api, ODMG-api, JDO when it's done).

Optimistic locking use an additional field/column for each persistent-object/table (Long,
Integer or Timestamp) which isincremented each time changes are committed to the object,
and is utilizied to determine whether an optimistic transaction should succeed or fail.
Optimistic locking is fast, because it checks data integrity only at update time.

1. Inyour table you need a dedicated column of type Bl G NT, | NTEGER or TI MESTAMP.
Say the column istyped as | NTEGER and named VERSI ON_MAI NTAI NED _BY_QJB.

2. Youthen need a(possibly private) attribute in your java class corresponding to the
column. Say the attribute is defined as:

private int versionMi ntai nedByQ b;

3. inrepository.xml you need a field-descriptor
(../../docu/guides/repository.html#field-descriptor) for this attribute. This field-descriptor
must specify attributel ocki ng="true"

4. The resulting field-descriptor will look as follows:

<fi el d-descri pt or
nane="ver si onMai nt ai nedByQ b"
col umm="VERSI ON_MAI NTAI NED_BY_QJB"
j dbc-t ype="1 NTEGER"
| ocki ng="true"
/>

Using of TIMESTAMP as optimistic locking field could cause problems, because dependent of the used operating system and
database the precision of timestamp values differ (e.g. new value only after 10 ms or 1000 ms). In high concurrency
applications this will cause problems.

3. Pessimistic-L ocking

To control concurrent access to objects pessimistic locking uses shared and exclusive locks
on persistent object (more precisely, on the identity object of the persistent object).
Pessimistic locking is currently used by the ODM G-api implementation. The PB-api
(../../docu/tutorials/pb-tutorial .html) does not support PL out of the box.

3.1. Supported I solation Levels

Page 3

../../docu/guides/repository.html#field-descriptor
../../docu/tutorials/pb-tutorial.html

Locking

The OJB locking package supports four different isolation level
(../../api/org/apache/ojb/broker/locking/I solationL evel s.ntml) .

e read-uncommitted
read-committed
repeatable-read
serializable

(none)
(optimistic)

The object locking isolation levels can be simply characterized as follows:

Uncommitted Reads

Obtaining two concurrent write locks on a given object is not allowed (case 14). Obtaining
read locksis allowed even if another transaction iswriting to that object (case 13). (Thats
why thislevel isalso caled dirty reads, because you can read lock objects with an existing
write lock).

Committed Reads
Obtaining two concurrent write locks on a given object is not allowed. Obtaining read locks
isallowed only if thereis no write lock on the given object (case 13).

Repeatable Reads
Same as commited reads, but obtaining awrite lock on an object that has been locked for
reading by another transaction is not alowed (case 7).

Serializable transactions
As Repeatable Reads, but it is even not allowed to have multiple read locks on a given object
(case 6).

The isolation level none and optimistic are self-explanatory:

none - don't lock objects associated with thisisolation level

optimistic - don't lock objects associated with thisisolation level, because optimistic locking
was used instead.

Thus the lock manager will ignore all objects associated with these isolation level.

It's not needed to declare the optimistic isolation level in al persistent objects class-descriptor
(../../docu/guides/repository.html#cl ass-descriptor) using thisisolation level, because OJB will automatically detect an enabled
optimistic locking and will bypass pessimistic locking.

Only the proper settings for optimistic locking are mandatory.

The locking isolation levels named similar to the database transaction isolation level, but the definitions are different from it,
so take care when comparing database transaction isolation level with object locking isolation level.

Page 4

../../api/org/apache/ojb/broker/locking/IsolationLevels.html
../../docu/guides/repository.html#class-descriptor

Locking

The proper behaviour of the different locking isolation level is checked by JUnit TestCases
that implement test methods for each of the 17 cases specified in the above table. (See code
for classesin package or g. apache. oj b. br oker . | ocki ng in OJB test suite
(../../docultesting/testsuite.ntml)).

The semantics of the strategies are defined by the following table:

Case Name of Transaction Transaction-Isolationlevel
TestCase

Tx1 Tx2 ReadUncomReaeCommRegeatableSeaddizable

1 SingleReadldek True True True True

18 ReadThenRdad True True True True
R

2 UpgradeReaRlock True True True True
U

3 ReadThenWie True True True True
w

4 SingleWritelagk True True True True

5 WriteThenRaad True True True True
R

6 MultipleReadfck R True True True False

7 UpgradeWitHExistingReatler True True False False

8 WriteWithExiRtingReader W True True False False

9 UpgradeWithRultipleReadrers True True False False

U
10 WriteWithMuRipleReaderdR True True False False

Page 5

../../docu/testing/testsuite.html

11

12

13

14

15

16

17

w
UpgradeWithRultipleReadersOnl True
w

WriteWithMuRipleReadersonl True
w

ReadWithExMtingWriter R True

MultipleWritelgcks W False

ReleaseRead.ock True

Rel W

ReleaseUpgtddelLock True
Rel W

ReleaseWritélMock True

Rel W

Acquire R
ReadLock

Acquire W
WriteLock

Upgrade U
Lock

Release Rel
Lock

True

True

False

False

True

True

True

False

False

False

False

True

True

True

Locking

False

False

False
False

True

True

True

Thetableisto be read asfollows. The acquisition of asingle read lock on a given object
(case 1) isalowed (returns True) for all isolationlevels. To upgrade a single read lock (case
2) isalso allowed for all isolationlevels. If thereis aready awrite lock on a given object for
tx1, it isnot allowed (returns False) to obtain awrite lock from tx2 for all isolationlevels

(case 14).

Page 6

Locking

If the low-level locking api was used by hand:

Not all LockManager (../../api/org/apache/ojb/broker/locking/L ockManager.html) implementation support the
LockManager #upgr ade(. . .) method (e.g. upgrade was delegated to write lock) or behavior of this method is a wee bit
other than shown above. More detail see javadoc comment of the used LockManager implementation.

3.2. How to specify locking isolation level
The locking isolation level can be specified global or per class.

The global setting is done in the descriptor-repository
(../../docu/guides/repository.html#descriptor-repository) element:

<descriptor-repository version="1.0" isolation-I|evel ="read-uncomm tted"
proxy-prefetching-Iimt="50">

</ descri pt or - r eposi t ory>

Theisolation level of aclass can be configured with the following attribute to a
class-descriptor (../../docu/guides/repository.html#class-descriptor) :

<Cl assDescriptor isolation-|evel ="read-uncomtted" ...>

</ O assDescr i pt or >
If no isolation-level was specified a default isolation level was used - see interface

|solationL evels (../../api/org/apache/oj b/broker/l ocking/I sol ationL evel s.html) . The semantics
of isolation levels are described in isolation level section.

3.3. Specify the LockM anager | mplementation

To specify the used lock manager implementation set the LockManager Class property in
OJB.properties (../../OJB.properties.txt) file. By default an in memory lock manager is
enabled.

LockManager Cl ass=or g. apache. oj b. br oker . | ocki ng. LockManager | nMenor yl npl

3.4. The LockManager | mplementations

Below all LockManager (../../api/org/apache/ojb/broker/locking/L ockM anager.html)
implementations shipped with OJB are listed.

The LockManager implementation can optionally support

Page 7

../../api/org/apache/ojb/broker/locking/LockManager.html
../../docu/guides/repository.html#descriptor-repository
../../docu/guides/repository.html#class-descriptor
../../api/org/apache/ojb/broker/locking/IsolationLevels.html
../../OJB.properties.txt
../../api/org/apache/ojb/broker/locking/LockManager.html

Locking

« lock timeout: The locked objects of an owner will be released after a specified time

» block timeout: The maximal time to wait for acquire alock (e.g. when an object was
locked by another thread). Implementations which do not support this feature are called
non-blocking

3.4.1. LockM anager | nMemoryl mpl

A non-blocking, single VM, in-memory LockManager implementation. All
LockManager . upgr adeLock(.. .) calsare delegated to write locks. It's asimple and
fast implementation.

The timeout of locks is supported. The block timeout is ignored, because it's non-blocking.

3.4.2. LockM anager Commonsl mpl

This implementation use the locking part of apache's commons-transaction
(http://jakarta.apache.org/commong/transaction/) api. The timeout of locksis currently (OJB
1.0.2) not supported, maybe in further versions. Thisimplementation supports blocking (with
deadlock detection) and non-blocking of acquired locks.

3.4.3. LockM anager Remotel mpl

Supports locking in distributed environments based on a servlet. The

LockManager Remotel mpl class delegates all locking calls to aremote servlet
(LockManager Ser vl et). The URL to contact the serviet have to be set in OJB.properties
(../../OJB.properties.txt) file using the LockServietUr| property, e.g.

LockServl et Ul =http://127.0.0.1: 8080/ oj b-1 ockser ver

To make deployment of the LockManager Ser vl et on aservlet container easier an Ant
target lockserviet-war exist, which will build an example .war file containing all needed files
(maybe some useless files) for deployment.

The generated web. xni filelook like:

<! DOCTYPE web- app
PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN
"http://java. sun. com dt d/ web-app_2 3. dtd">

<web- app>

<di spl ay- name>QJB ODM5 Lock Server </ di spl ay- nane>
<descri pti on>

QJB ODMG Lock Server

</ descri ption>

Page 8

http://jakarta.apache.org/commons/transaction/
../../OJB.properties.txt

Locking

<servl et >
<servl et - nane>| ockserver </ servl et - name>
<servl et - cl ass>or g. apache. oj b. br oker . | ocki ng. LockManager Ser vl et </ servl et -cl ass>
<init-paranp
<par am nane>|l ockManager </ par am nane>
<par am val ue>or g. apache. oj b. br oker . | ocki ng. LockManager | nMenor yl npl </ par am val ue>
</init-paranp
<init-paranp
<par am nanme>| ockTi meout </ par am nanme>
<par am val ue>80000</ par am val ue>
</init-paranr
<init-paranp
<par am nane>bl ockTi meout </ par am nane>
<par am val ue>1000</ par am val ue>
</init-paranp

<! --| oad-on-startup>1</I| oad-on-startup-->
</servl et>

<!-- The mapping for the webdav serviet -->
<servl et - mappi ng>
<servl et - nane>| ockserver </ servl et - name>
<url-pattern>/</url-pattern>
</ servl et - mappi ng>

<l-- Establish the default list of welcone files -->
<wel come-file-list>
<wel corme-fil e>i ndex. j sp</ wel cone-fil e>
<wel come-fil e>i ndex. ht M </ wel cone-fil e>
<wel come-fil e>i ndex. ht nx/ wel cone-fil e>
</wel come-file-list>
</ web- app>
It's possible to use each LockManager implementation as backend of the lock manager
servlet - only adapt the lockManager init-param entry in theweb. xmi file.

4. ODM G-api L ocking

The OJB ODMG implementation provides object level transactions as specified by the
ODMG. Thisincludes features like registering objects to transactions, persistence by
reachability (atoplevel object isregistered to atransaction, and also all its associated objects
become registered implicitely) and as a very important aspect: object level locking.

The ODMG locking implementation islocated in or g. apache. oj b. odnyg. | ocki ng
and base on the OJB kernel locking codeinor g. apache. oj b. br oker . | ocki ng. The
odmg implementation use it's own internal locking interface

or g. apache. oj b. odny. | ocki ng. LockManager with specific methods to handle
transactions as owner of alock and persistent object Identity objects
(../../api/org/apache/ojb/broker/I dentity.html) as resources to lock..

Page 9

../../api/org/apache/ojb/broker/Identity.html

Locking

4.1. What it does

The ODMG-Api allows transactions to lock an object obj asfollows:

org. odng. Transacti on. | ock(Obj ect obj, int | ockMde)
where lockM ode defines the locking modes:

or g. odng. Tr ansact i on. READ
or g. odng. Tr ansact i on. UPGRADE
org. odng. Transacti on. WRI TE

A sample session could look as follows:

/1 get odng facade instance
| npl enentation odng = ...

/1 get open dat abase
Dat abase db = ...

/] start a transaction
Transaction tx = odng. newlr ansacti on();
t x. begi n();

MyCl ass nmyQbject = ...

/1 lock object for wite access
tx.l ock(myQbj ect, Transaction.\WRI TE);

/1 now performwite access on nyQhj ect

/1l finally commit transaction to make changes to nyCbj ect persistent
tx.commit();

The ODMG specification does not say if locks must be acquired explicitely by client
applications or may be acquired implicitely. OJB providesimplicit locking for the
application programmers convenience: On commit of atransaction all read-locked objects
are checked for modifications. If a modification is detected, awrite lock is acquired for the
respective object. If automatic acquisition of read- or write-lock failes, the transaction is
aborted.

On locking an object to a transaction, OJB automatically locks all associated objects (as part
of the persistence by reachability feature) with the same locking level. If application use
large object nets which are shared among several transactions acquisition of write-locks may
be very difficult. Thus OJB can be configured to aguire only read-locks for associated
objects.

Y ou can change this behaviour by modifying the file OJB.properties
(../../docu/guides/ojb-properties.html) and changing the entry

Page 10

../../docu/guides/ojb-properties.html

Locking

LockAssoci ati ons=WRlI TEtoLockAssoci at i ons=READ.

The ODMG specification does not prescribe transaction isolation levels or locking strategies
to be used. Thusthere are no API calls for setting isolation levels. OJB provides four
different isolation levels that can be configured global or for each persistent classin the
configuration files.

5. Lockingin distributed environment

In distributed or clustered environments the object level locking (pessimistic locking) haveto
be consistent over several VM. The optimistic locking works in clustered/distributed
environments without any modifications.

Currently OJB was shipped was simple servlet based L ockM anager
(../../api/org/apache/ojb/broker/locking/L ockM anager.html) implementation called
L ockM anagerRemotelmpl.

Hereis adescription how to use it:

1. Change LockManager Class entry in OJB.properties (../../OJB.properties.txt) file to the
remote implementation:

or g. apache. oj b. br oker . | ocki ng. LockManager Renot el npl and the
LockSer vl et Ur | to the servelt engine where the lock-server serviet will be deployed:

LockManager Cl ass=or g. apache. oj b. br oker . | ocki ng. LockManager Renot el npl
LockSer vl et Ur | =ht t p://127.0.0. 1: 8080/ 0j b- | ockserver

2.Runtheant | ockservl et -war target to generate the lock-server serviet . war
application file. The generated file will befound in[db- oj b] / di st .

3. Check that all needed libraries be copied in lockserviet-war file.

This implementation has some drawbacks, e.g. it uses one servlet node to deploy the
LockMap servlet.

A much better solution will be a IMS- or JavaGroups-based L ockM anager
(../../1api/org/apache/ojb/broker/locking/L ockManager.html) implementation (hope we can
start working on such aimplementation some day).

6. Pluggin own locking classes

OJB was shipped with several locking classes implementations.
This may not be viable in some environments. Thus OJB allows to plug in user defined

Page 11

../../api/org/apache/ojb/broker/locking/LockManager.html
../../OJB.properties.txt
../../api/org/apache/ojb/broker/locking/LockManager.html

Locking

L ockM anager (../../api/org/apache/ojb/broker/locking/L ockM anager.html) implementations.
To specify specific implementations change the following entry in the OJB.properties
(../../OJB.properties.txt) configuration file:

LockManager Cl ass=ny. oj b. LockManager Myl npl

Of course we are interested in your solutions! If you have implemented something interesting, just contact us.

Page 12

../../api/org/apache/ojb/broker/locking/LockManager.html
../../OJB.properties.txt

	1 Introduction
	2 Optimistic Locking
	3 Pessimistic-Locking
	3.1 Supported Isolation Levels
	3.2 How to specify locking isolation level
	3.3 Specify the LockManager Implementation
	3.4 The LockManager Implementations
	3.4.1 LockManagerInMemoryImpl
	3.4.2 LockManagerCommonsImpl
	3.4.3 LockManagerRemoteImpl

	4 ODMG-api Locking
	4.1 What it does

	5 Locking in distributed environment
	6 Pluggin own locking classes

