OJB

Table of contents

O N S 11
1.1 ObJectRelational Bridge - OJB........cccooieiieiiiieiieerie et see e see e eseeseesneens 11
111 SUMIMIBIY .t itieeiitieesireessiteessseessseeesseeesssaeessseeeasteeeasse e e s teeeseeeesaeesnseeesnseessaneeesareennns 11
I =T o 2SS 11
I RS o = o] Y2 11
1L L3 FUNCHONAITY ..ottt ee e 11
I O N S T = L =SSR 12
N (PR 12
IR I L SRR 13
1.3.1 StAUS Of OIB API'S......ceeeeecee ettt ettt s s e aesneesteenneannens 13
1.3.1.1 PB APl (Persistence BroKer API)......c.oiee it 13
1.3. 12 ODMG APl ...ttt sttt ettt a e e aennenrenneas 14
TR T 1@ L o SRS 14
1.3.1.4 OTM API (Object Transaction Manager API).......cocoveieeieneneeieeeeseeee s 14
1.4 OJB - Ml LISES....ciiiiiieiiesiieiiseeie ettt sttt be e sneeneeneas 14
Y= T T o T I S 14
1.5 0B - Malil ATCNIVES.......cceeieee ettt e e re e nns 14
T Y= T o =SSR 14
1.6 OJB - References and TeSHMONIAIS........ccveveeieiieriee e 15
1.6.1 References and TeStIMONIAIS.........cooueiierieieeesee e 15
1.6.1.1 PrOJECIS USING OJB......coiiiiieciie ettt ettt era e ae e neeenreas 15
1.6.1.2 USEr tESHIMONIAISveeeecieeie ettt ne e 16
1.7 Links and further readings...........oooeiieieeie s 18

1.7.1 SUMIMIBIY ...ttt ettt st se et e st e e e e s se e s e e aneeaeeab e et e e sneeneennennnenreennennnens 18

0JB

O B 1= o | o R 18
1.7.3 Further readings 0N O/R MaPPING.......eeiiiiiieiieeieeseeesieeseeesreeseeesreeseesnseesneenseens 20
174 PAIEEIMS. ...ttt e s sr e e s r e e ne e n e e ne e nan e e ne e 20
1.7.5 OJB TULOMTBIS.veveeeeieeiee ettt sttt 20
1.7.6 BOOKS COVENNG OJB.......couiiiiiieiesie sttt 20

2 0] 1[0 o SRR 21
S DEVEIOPIMEN. ...ttt a et et esbe e tesseesbeebeeneesreeeenneens 21
KO0 o [10 TS =0 0 F= 0 SRS 21
T I I O0 o 1110 TS 0 = 0 21

Z D Lo o1l (4701 =[] o FO USSP 23
A 0T 1 011= 111 24
8 I 1 11 0o o o USRS 24
4.2 Frequently ASKEd QUESLIONS..........cceiuirirrieerieeiisiee st see et sae e s e sseesaeeneas 24
4.2.1 QUESLIONS......ccciteeeeiiee e ettt e etee e etee e ete e e et e e e eateeeebeeesbeeesbeeesabeeesnbeeesabeessabeesanseeeanseennnns 24
A.2.1.1 1. GENEYEL......eiecieiiiieee ettt 24
4212 2. GEING SEAMEU.......eeeeeee e 27
4.2.1.3 3. OB GI'S...c.eeeeitirieeiieiieie ettt ettt e b e ne e 29
A.2.1.4 4 HOWEO.....eiiieieeee ettt ettt e e e s e e s e e e e b e e e sane e e s nne e e ennee s 31

4.3 ObJectRelationa Bridge - Getting Started...........ccooeeveerieeieneseere e 43
4.3.1 ACqUIriNg OJD-DIANK........ccouieie s 44
4.3.2 Contents of OJ-blank...........cooveeeiice e 44
4.3.2.1 SAMPIE PIOJECL.....eeieeeee ettt e e e e e be et e sreesseeneesreesens 45
e T T I =Y o 10] [I 1 =SSOSR 46
4.3.3.1 Configuration vVia build.properties...........cceeereneneneneseeee e 46
4332 Building viabuild.Xml..........cooiii e 47
4.3.3.3 SAMPIE PIOJECL.....ceceieciie st e e a e nr e eare e 49
4.3.4 The runtime configuration fil€S..........ccvieri e 52
4.3.4.1 Configuring the OJB FUNLIME.........cccoieieiiee et eee et 52
4.3.4.2 Configuring the database CONNECLION...........cccveiiririrereer e 52

0oJB

4.3.4.3 Configuring the rEPOSITONYccccoiiriiiie et 53
4.3.4.4 SAMPIE PIrOJECL.....eeiuie ettt be et nr e eare e 53
435 LEAMNING IMOTE......cceeiieeie ettt te st e e s e te et e sneesaeeneesseenteennesneeneens 55
A8 TULOIT@AIS. ettt b et b bbbt et e et e b e st e s beebenbeeneeneeneas 55
441 TULOTT@l SUMIMBIYetiiiieieeieiesie sttt sttt se bbb nne s 55
T T IV 10 = S PRRPRRR 55
TV =) o T o N 1o = PSP 56
4.4.2.1 What is the Object-Relational Mapping Metadata?..............ccceeveveeiieeieeiinenns 56
4,422 AAVANCEA TOPICS.....eceeiiieireeeesteeiteeee st steete s e e te s e sre e se s e s se e teeneesreesseennesneenseas 60
4.4.3 Persistence Broker TULOMI@l...........ooeieiineneneneeeeee et 61
4.4.3.1 The PersistenceBroKer API ... 61
4.4.3.2 EXCEPtION HANAIING. ..ot 67
R oY @ 1Y L N SRS 68
0 s [0o 1o i [0 1SS PSPPSR 68
4442 INItIAliZING ODMG......cceeiieeieceecte ettt e sae e aesraesseeneesneenne s 69
4.4.4.3 Persisting New ODJECLS........ccueiieece e 70
4.4.4.4 Querying Persistent ODJECES........ccuoiiririresees e 70
4.4.4.5 Updating Persistent ODJECES.........cooiiiiririeieeeee s 71
4.4.4.6 Deleting Persistent ODJECES.........coiiiiiiieieneesee e 71
I B L@ R IV 0] - PRSP PR 72
4.4.5.1 Using the ObJectRelational Bridge JDO APccovieieeieieeseere e 72
4.45.2 Using the JDO API in the UseCase Implementations............cccccccevivereeieeneenns 73
e o o U] o S 79
4.4.6 Object Transaction Manager TULOM@l..........covreeeeierirereereee e 79
R I T X @ I N SR 80
4.4.6.2 Notes on the Object Transaction Manager..........cccveveeeveeiiecvieesee e 86
4.5 REFEIENCE GUITES.......couiieeieieieee ettt ettt nrenns 87
451 REFEIENCE GUIAES........eiueeieeieie et 87
45.1.1 REFEIENCE GUITES.........eeieeeieeiee ettt sre et e nneeneas 87

Page 3

0JB

452 PB-3D1 GUITE.........eoitiiieiie sttt st et nbe e 88
4521 INETOTUCTION. ..ottt ettt sttt b e sb et e s e e be e 88
4,522 HOW t0 aCCESSthe PB-aDI?......cceiiieeiece ettt 88
4,5.2.3 Notes on Using the PersistenceBroker API.........ccooveeveeve e 89
4.5.2.4 QUESLIONS.......cueeiteeneeeieeseeeieeseesteeseesseesseessesseesseeseesseesseaseesseessesneesseensesneessennsessenes 90

4.5.3 ODMG-8PI GUIE........ccieiiiieitieienieeie ettt sn e b e 90
4.5.3.1 INETOTUCTION.euiieieie ettt sttt sttt sbe b e seesbe e e e s e e sneenee s 90
4.5.3.2 Specific Metadata SEttiNgS.........cceivieiieiieiiie e 90
4.5.3.3 HOW t0 8CCESS ODM G-I ..c.veevieiesieeiteeieseesteeie e seeae e s ae e e s ere e nneeneas 91
4.5.3.4 CoNfiguration ProPErti€S.......cccueieeiieiieieeseeieseesteeae e sreesee e re e e eseesreensenneens 92
4,535 OJB EXteNSionS Of ODMG.........ccoveiriierienieseesie e sieesee e s eae e e e sneesneeneas 9
4.5.3.6 Notes on USINg the ODMG APcueiiiieeriseseee e 95
4.5.3.7 QUESHIONS......ueiiiieciieciee st e tee et e et s et e e e sae e s e e e be e e b e e sbeeenteesbeesnreeaseeenbeenreeanns 97

A58 PlatfOrMS.....ccuiiiiiie ettt bttt b et na et et ae s 98
4.5.4.1 how to use OJB with a specific relational database............cccccevveveiieveeiiennnnns 98
4.5.4.2 BASIC CONCEPLS.....ccueeveiueeiteeieseesteeteseesteeeesseesseeeesseesseeessseessesssnssesssessssssennsens 98
4.5.4.3 TNE SELUP PrOCESS......ccueiuerieeuieieie sttt sttt ae st bbbt st e e nae e sne e 100

455 OJB.properties Configuration File............cooeeiininiiieeeee e 103
4.5.5.1 OJB CONFIQUIELTON.......coivieeeeiiniiesieeie ettt e st ae e e bt s eesreennesnneas 103
4.55.2 OJB.ProPeErti@S File.......ccueiiieeie et 104

A.5.6 IDBC TYPBS .. eiitiriiitesierieeie ettt st st sttt bbbt b bt e et b e nns 104
45.6.1 Mapping of JIDBC Typesto JAVA TYPES......cccvevereereerieeeseesie e sree e eee e e 104
45.6.2 Type and Value Conversions - The FieldConversion Interface............c.......... 105

A4.5.7 REPOSITONY FllE.... .o 109
4.5.7.1 INtroduction - rePOSITONY SYNEBX........cccuereerierieereerieseesreeseesee e e seesseeseesnee e 109
4.5.7.2 AESCIIPLOr-TEPOSITONYeeiveeciee e ciee ettt e ere e e e b e e e rb e eesbeesnneeaeeenns 109
4.5.7.3 JdbC-CONNECtI ON-AESCIIPLON.....ccveeveeieeeee et 111
4.5.7.4 CONNECLION-PO0Nccueeirieiieeeseerie et e et e e sreenne e e nneenes 114
4.5.7.5 SEQUENCE-MANAGEYceiuriiiirieitrie e sre e sre e sre e e e s err e e sne e e snne s 115

0oJB

4.5.7.6 ODJECE-CACNE. ..o 116
4.5.7.7 CUSEOM BELITOULE. ... 117
4.5.7.8 ClaSS-AESCIIPLON.....ccuecieieeecieeie ettt ettt e e e e sreenreenne e 118
4.5.7.9 EXEENT-CIESS.... .o bbbt 120
4.5.7.10 FIElO-0ESCIIPLON ...ttt 120
4.5.7.11 FEf@rENCE-UESCIIPLON......c.veiveeeeeieeieeeee ettt 122
45712 TOTRIGNKEY ...ttt a e nre e 124
4.5.7.13 COll€CHION-UESCIIPLON........eeiieeciie e 124
45724 INVErSE-TOrQIgNKEYeociieeecteeie ettt e e e nreas 127
4,5.7.15 TK-poiNtiNg-tO-thiS-ClasS.........cccceiieieee e 127
4.5.7.16 TK-poiNting-t0-€l @MENt-ClaSS..........ccooiieriieree e 127
A.5.7.17 QUENY-CUSLOMIZENc.eeeuieieeieeeeee sttt sie st eie e e e s s b sbe st ese e e e e e enesnesne e 127
4.5.7.18 IN0EX-0ESCITPLON ... eeeieeeeiee sttt sttt et e s saeeeesneenreas 128
4.5.7.29 INAEX-COIUMN. ..ottt eesne e 128
4,5.7.20 Stored Procedure SUPPOI........ccviieiiereeeeseeseseesee e eee et see e s eesneeneas 128
=Tz S T I = o 1= 131
4.5.8.1 Mapping 1:1 8SSOCIALIONS........ccoueruereerierieriesieseeee et 131
4.5.8.2 MapPIiNg 1:N 8SSOCIBLIONS........ccoueieireriirierienieee et 135
4.5.8.3 MapPiNg M:N @SSOCIALIONS........coouerierieeieeeesieesieseesreeseeeeesseesseseesseesseseesseeeas 138
4.5.8.4 Setting Load, Update, and Delete Cascading.........ccovveeveevieeiieeniesieesiee e 145
4585 USING ProXy ClaSSES.......ccciieiiieieiicsie ettt ete sttt e sne e 148
45.8.6 Type and Value CONVEISIONS.......ccccccueieerieerieseesesseeseesseessesseesseessesessseessessenns 155
459 Advanced TEChNIQUE.........cc.oiiiiiiciee e 155
S T 1 0o 1 o] OSSPSR 155
4.5.9.2 Extents and PolymMOrPRiSM.........c.ooiiiiriiiie e 155
4.5.9.3 Mapping Inheritance HierarChies...........ccocecvvevie e 158
4594 Using interfaceS With OJB..........cccoceeiieie i 167
4.5.9.5 Change PersistentField ClasS.........cccooveveeieniese e 171
4.5.9.6 HOW do anonymous KEYS WOIK?..........coureririerienie et 172

Page 5

0JB

4.5.9.7 USING ROWIEAET ..ottt ettt 173
4.5.9.8 NESIEA ODJECES.......viiiiiiciie ettt ettt sre e be e sraeenee 176
4.5.9.9 INSLANCE CallDACKS........coiiiirieiesiesee e e 178
4.5.9.10 Manageabl@ COlECHION.........ccccvieiiee e 182
4.5.9.11 Customizing COlECLION QUENTES.........coveeeierieriesiesieeieeee et 185
4.5.9.12 Metadata runtime CRANGES.........ccuererierierire et 186
4.5.10 OJB QUEKTES.....cuvieitieciee et etee e e st e st s e et e e s a e e e te e s be e e teesreeeabeesseeenseesneesnneenns 186
4.5.20.1 INEFOTUCTION.eiieiiieeie ettt 186
4.5.10.2 QUENY DY CrItEITaL....ccueeveiieseecie ettt neeneenreas 186
4.5.10.3 ODMG OQL ..ottt sttt e b b 198
4.5.10.4 IDO QUENTES.....ceviteterieeuieeesee st st ste sttt e e steste b e sbe st s st e e e et e nbeseesbesaennis 198
4511 Metadata handling...........ccooeeieee s 198
L B 0o [F o1 o o PSR 198
4.5.11.2 When does OJB read metadatas...........ccooeereriieneinenieseeseeee e 199
4.5.11.3 CONNECEION MELAAELALeeveeereesierierieeeeee et 199
4,5.11.4 Persistent object metadata............ccocveveeeeiicie e 201
4.5.11.5 QUESHIONS......eeieeeiieiesteesieeeesteesteeeesreesseeseesseesteeseesseesseensesseesesneesseeseenenssennses 204
4.5.12 DEPIOYMENL......cveieeiiieieeieeete sttt b et e et n e e b e ne e s eneas 206
3 25 g (0o (8 o1 o o TSR 206
4.5.12.2 Things needed for deploying OJB.........ccccoveiieiiieeiie e 206
4.5.12.3 Deployment in standalone appliCations............ccceveeveeieeseesiesee e 208
4.5.12.4 Deployment in servlet based appliCations...........ccccevveeereeresieeseece e 208
4.5.12.5 Deployment in EJB based appliCations............cccoveverireninenieesesieseesieneens 209
4.5.13 OJB - ConNeCtion HaNAIiNG.........coeiiririeieiesiesese et 223
I T (0o [F o1 o o TSR 223
4.5.13.2 CONNECLIONFACIONYccueiiieciie ettt et eereesnaeenee s 223
4.5.13.3 CONNECLIONM@ANAGEToceeieeieiee it eite et e et e s ae e sre e te e sreenaeeneesneenes 224
4.5.13.4 QUESLIONS N0 ANSWETS.......eiiiieeiieeitee e eiteesre e e saeeseteesteessreesseesbeesseesseesseens 225
4514 The ODJECE CACNE.......ciiiieeeeeee et 227

0oJB

3 g (0o (B o1 o o ST 227
4.5.14.2 Why acache and hOw it WOIKS?.........cccoecviiiiiiiecee et 227
4.5.14.3 How to declare and change the used ObjectCache implementation............... 228
4.5.14.4 Shipped cache implementations:...........cccvreereeieseere e 231
4.5.14.5 Distributed ObjeCtCaChE?...........coiiiiiee e 238
4.5.14.6 Implement YOUr OWN CBCHE..........coiiiieieeeeere e 239
4.5.14.7 FULUIE PIrOSPECES.teeeeieeeeiee ettt e e e sne e e ssne e e e 239
4.5.15 SEOUENCE MANAENcciiie ittt et e s e s e s sbe e sbe e sbe e e snreeeenes 239
4.5.15.1 The OJB SequeNCe MaNagEN..........cceieerieerieieeseeieeseesreenseseesseesseseesseensesseens 239
4.5.16 OJB 10gging CONFIQUIALiON.......c.ecieerrieieeeecieeeesee e et ee e e eae e e eeeeneens 252
45.16.1L.0ggiNG INOUJB........coiiiiieieriesie ettt st na e e e 252
4.5.16.2 Logging configuration Within OJB............ccccviririnierieeesese e 253
4.5.16.3 Logging configuration via configuration files...........cccceverviinienin e 255
4.,5.16.4 Logging configuration at rUNLIME...........ccceeiiieeiieeiie e e s 257
4.5.16.5 DefiNiNg YOUr OWN [OQQEYc.uiiieiiesie ettt ns 257
3 Iy o {1 OSSR 258
L3 I A0 0o [o 1 o o 258
4.5.17.2 OPtIMISHIC LOCKING. ...c.veeveeieeieeieiesie sttt 259
4.5.17.3 PESSIMISHIC-LOCKING. ... ccuveetiesieeieniesiee ettt nes 259
4.5.17.4 ODMG-8PI LOCKING.....ccueiiieiiieiiecitiesieesieeseeesseeseessteeseessseessaesseesseesneessees 265
4,5.17.5 Locking in distributed environment............ccceeoeveereeieeseeseseeseee e 267
4.5.17.6 Pluggin Own [0CKING ClaSSES........ccocviieiiee et 267
4.5.18 XDoclet OJB module doCUMENLELION..........cceereeierreereeieseesieeeeseesre e eeeseeenes 268
45181 Acquiring and BUITAING.........ccoieiiiiiiie e 268
A.5.18.2 USAGEL. ...ce ittt ettt ettt e e nn e s ne e s e e sne e nreeeaa 269
45183 TAQ FEfEIONCE. ..o e b snes 272
45.18.4 INterfaceS anNd ClaSSES.........coirieieieiie e 273
4,5.18.5 Fields and Bean ProPerti€S........cceieeueeeereeiesiee e eseesee e see e ee e sns 284
4.5.18.6 REFEIENCES.......cveieie ettt e e neeneennes 290

Page 7

0JB

4.5.18.7 COBCLIONS......ceiuiiitieiieie sttt sttt sttt be e s esbeeeesneens 293
4.5.18.8 NESLEA ODJECES.......c.eeeiiee it annas 298
4.5.19 OJB PeIfOIMIBNCE........couiiirieriisiesieeiieie ettt bbb se e enes 301
4.5.19.1 INEFOTUCTION. ...ttt sttt bbb b 301
4.5.19.2 The Performance TSt SUITE.........cccvevieeeriee et 301
4.5.19.3 INtErPreting teSt FESUITS........ccioiree s 302
4.5.19.4 How OJB compares to native JDBC programming?..........ccccceereeeeeseereennenn 302
4,5.19.5 OJB performance in multi-threaded environments.............cccccceeveveieeeieesnnns 304
4.5.19.6 How OJB compares to other O/R mapping tOOIS?.........ccceceveeveeceieeseeeee 306
4,5.19.7 What are the best settings for maximal performance?...........ccccccevvvvveivreenee. 307
4.6 HOWLO'S.....coiiiii ettt ettt e st e e s e e e s ane e e snbe e e e nn e e e naneeenneeennes 308
4.6.1 HOWLO'S SUMMIBIY ..ottt 308
4.6.1.1 HOWLO'S.....coiiiiie ittt ettt e s e smn e enn e e s nn e e saneeas 308
4.6.2 How to build O/R mapping metadatafiles..........cccoovvveeviniiieiie e, 308
4.6.2.1 How to build O/R mapping fil€S........cccoveeiieiee e 308
4.6.2.2 classification of O/R related transformations.............ccoceevevevenenenesenesennens 308
4.6.2.3 Forward engineering from XM ... 310
4.6.2.4 Forward engineering from TOMQUE.........cceeeeieierieniene s 311
4.6.2.5 Forward engineering from repository. Xml...........ccoeereneniinnienenseseeseen, 312
4.6.2.6 XDoclet transformation from Java COOE...........cooervueieiierieneeneee e 312
4.6.2.7 Reverse engineering from database............cccveeeveeviece s 313
4.6.3 HOWTO - USE ANONYMOUS KEYS......ooiiiiiiiiiiesiie et 313
4.6.3.1 Why Do We Need AnonymouS KEYS?.........coviirrienenene e 313
4.6.32 HOW 1T WOIKS....c.eeiitieiicie et st s re e 315
4.6.3.3 USING ANONYMOUS KEYS.......coiiiiiriiirieeiie ettt nes 315
4.6.3.4 Benefits and Drawbacks...........cooeeiiiiiiiii 321
464 HOWTO - USE DB SEOUENCES......ccoiuiieiiiiiriieesteeesiesesites s sssesssssessnsaessseessnseessnnes 321
4.6.4.1 INEFOOUCTION......eiititiitieiieieee ettt bbbt sb e 321
4.6.4.2 The Sample Database.coovviririeeesere s 322

0oJB

4643 USING OUJB......ooiiiiiieieiiesieeiie sttt sttt sbeesse st e sbe e be st e sreeteeneesreeneas 322
465 HOWTO - Work with LOB Data TYPES.......cccveeieieiie et esiee e e 325
4.6.5.1 Using Oracle LOB Data TypesWith OJB...........cccceeceveeveniieneese e 325
4.6.5.2 Backgrounder: Large objects in databases..........cccccveveeeeereenieccie s 326
4653 Large ODJECISIN OJB.......ccoiiiiiirieriereree e 328
4.6.6 HOWTO - Use OJB in clustered environments...........ccoceveereneenenninsensessenneens 328
4.6.6.1 How to use OJB in clustered environments............cccecereeneeieseeseenieseeseenens 329
4.6.6.2 Three steps to clustering your OJB appliCation...........cccocveeceeieeiiieeseesieesienn 329
A.6.6.3 NOLES.....cceiieieeiie e et e e e e s e e s e e s ne e e r e e e e e e r e e sneeeneennneene e 331
4.6.7 HOWTO - Stored Procedure SUPPOI.........ccvivereeiesiereeseeseesseeeeseesseseesseeneeens 331
A T 1 0o (1 o o S 332
4.6.7.2 REPOSITONY ENEIES.....c.eeviiieitieiieieee ettt 332
4.6.7.3 COMMON ELHDULES.........eoieiiieeee e 333
4.6.7.4 INSEt-PrOCEAUIE........veeieie ettt et e e e e reesraeeseeanes 333
4.6.7.5 UPAALE-PrOCEAUIE........ocveeeieeeeecieeie ettt sae et e e e sreene e e e nneennas 334
4.6.7.6 AElELE-PIrOCEAUIE........ccveeee ettt e te e sraesneenesneennens 334
4.6.7.7 ArQUMENT ESCIIPLONS....c.veeveiieie sttt 335
4.6.7.8 A SIMPIE EXAMPIE.......oiiii e 336
4.6.7.9 A COMPIEX BXAMPIE......oouiiieiieieeeee ettt 342
A = (] o TSRS 344
4.7.1 TESHING SUMMIBIYeeiieeieeieesieeiteseesteeeeseesteeseesseesseessesseesseesesseesseesesseesseensessenns 344
2 T T 1=] o S 344
4.7.2 OB JUNIt TESE SUITE.....ueieeeeeeeeieie ettt resnenns 344
R g2 B 1 1 0o 1 o] 1SS 344
4.7.22 HOW 1O ruN the TESE SUITE.......eeiieieeie et e 344
4.7.2.3 What about KNOWN ISSUES?.........ocueiiiiiericerie ettt 346
4.7.2.4 Donate own testSfor OJB TeSt SUITE.........covrerereniririeiee e 346
4.7.3 0B - W TESES....ceiiteitiriieieeie ettt sttt st sttt b et be b sae e 346
ke T T 1 0o (1 o] o 1SS 346

Page 9

0JB

Page 10

0oJB

1.0JB
1.1. ObJectRelationalBridge - OJB

1.1.1. Summary

ObJectRelational Bridge (OJB) is an Object/Relational mapping tool that allows transparent
persistence for Java Objects against relational databases.

1.1.1.1. flexibility

OJB supports multiple persistence APIsto provide users with their API of choice:

« A PersistenceBroker APl which serves asthe OJB persistence kernel. The OTM-,
ODMG- and JDO-implementations are build on top of thiskernel.
This API can also be used directly by applications that don't need full fledged object level
transactions (See the Persistence Broker Tutorial for details).

o A full featured ODM G 3.0 compliant API. (See the ODMG Tutorial for an introduction.)

« A JDO compliant API. We currently provide a plugin to the JDO Reference
Implementation (RI). Combining the JDO RI and our plugin providesaJDO 1.0
compliant o/r solution.
A full IDO implementation is scheduled for OJB 2.0. (See JDO tutorial for an
introduction to the JDO programming model.)

« An Object Transaction Manager (OTM) layer that contains all features that JDO and
ODMG have in common. (See OTM tutorial for details).

See the FAQ for adetailed view of the OJB layering. API's status here.

1.1.1.2. scalability

OJB has been designed for alarge range of applications, from embedded systemsto rich
client application to multi-tier J2EE based architectures.

OJB integrates smoothly into J2EE Application servers. It supports INDI lookup of
datasources. It ships with full JTA and JCA Integration. OJB can be used within JSPs,
Servlets and SessionBeans. OJB provides special support for Bean Managed EntityBeans
(BMP).

1.1.1.3. functionality

OJB uses an XML based Object/Relational Mapping. The mapping residesin adynamic
MetaData layer which can be manipulated at runtime through a simple Meta-Obj ect-Protocol

Page 11

0JB

(MOP) to change the behaviour of the persistence kernel.

OJB provides several advanced O/R features like an Object Caching, lazy materialization
through virtual proxies or a distributed |ock-management with configurable
Transaction-Isolation Levels. Optimistic and pessimistic Locking is supported.

OJB provides aflexible configuration and plugin mechanism that allows to select from set of
predefined components or to implement your own extensions and plugins.

A more complete featurelist can be found here.

Learn more about the OJB design principles in this document.

1.2. OJB - Features

1.2.1. Features

Support of standard and non-standard API's:

* PB api (non-standard)

 OTM api (non-standard)

« ODMG api (standard)

e JDO api (standard)

The PersistenceBroker kernel api and al top-level api (ODMG, OTM, JDO) allows Java
Programmers to store and retrieve Java Objects in/from (any) JDBC-compliant RDBMS
Transparent persistence: Persistent classes don't have to inherit from a persistent base
class or to implement an interface.

Scalable architecture that allows to build massively distributed and clustered systems.
Configurable persistence by reachability: All Objects associated to a persistent object by
references can made persitent too.

Extremly flexible design with pluggable implementation of most service classes like
PersistenceBroker, ObjectCache, SequenceManager, RowReader, ConnectionFactory,
ConnectionManager, IndirectionHandler, SQLGenerator, JdbcAccess, ... and so on.
Quality assurance taken seriously: More than 600 JUnit-TestCases for regression tests.
JUnit tests integrated into the build scripts.

Mapping support for 1:1, 1:n and m:n associations.

Configurable collection queries to control loading of relationships. See QueryCustomizer.
Automatic and manual assignment of foreign key values.

The Object / Relational mapping is defined in an XML Repository. The mapping is
completely dynamic and can be manipulated at runtime for maximum flexibility

Easy use of multiple databases.

Configurable Lazy Materialization through Proxy support in the PersistenceBroker. The
user can implement specific Proxy classes or let OJB generate dynamic Proxies.

Page 12

0oJB

Support for Polymorphism and Extents. Y ou can use Interface-types and abstract classes
as attribute types in your persistent classes. Queries are a'so aware of extents: A query
against a baseclass or interface will return matches from derived classes, even if they are
mapped to different DB-tables

Support for Java Array- and Collection-attributes in persistent classes. The attribute-types
can be Arrays, java.util.Collection or may be user defined collections that implement the
interface oj b. br oker . Manageabl eCol | ecti on.

Sequence-Managing . The SequenceManager is aware of "extents' and maintains
uniqueness of ids accross any number of tables. Sequence Numbering can be declared in
the mappping repository.

Native Database based Sequence Numbering is aso supported.

Reusing Prepared Statements, internal connection pooling.

Integrates smoothly in controlled environments like EJB containers

Full JTA and JCA (in progress) Integration.

Support for prefetched relationships to minimize the number of queries.

ODMG compliant API, aTutorial, and TestCases are included.

JDO 1.0.1 compliant API (based on jdori, native implementation in progress), a Tutorial,
and TestCases are included.

The Lockmanagement supporting four pessimistic Transaction Isolation Levels
(uncommited or "dirty" reads, commited reads, repeatable reads, serializable transactions)
- distributed locking is possible.

Optimistic locking support. Users may declarei nt or | ong fields as version attributes
orj ava. sql . Ti mest anp fields as timestamp attributes.

Support for persistent object caching. Different caching strategies and distributed caches.
Comes along with fully functional demo applications running against HSQLDB.
Provides Commons-L ogaing and Log4J logging facilities.

100 %: pure Java, Open Source, Apache License

- OQL is currently not fully implemented (Aggregations and Method Invocations)
- ODMG implicit locking is partly implemented but does currently not maintain transaction isolation properly. To achieve safe
transaction isolation client application must use explicit lock acquisition

1.3. Status

1.3.1. Statusof OJB API's

Status reports of the supported API's:

1.3.1.1. PB API (Persistence Broker API)

Page 13

0JB

The PB API implementation is stable, known issues can be found in release-notes.

1.3.1.2. ODMG API

The ODMG API implementation is stable, known issues can be found in rel ease-notes.

OQL is currently not fully implemented (Aggregations and Method Invocations).

1.3.1.3. JDO API

By providing a plugin to the SUN JDO Reference Implementation we provide a complete
JDO 1.0.1 prototype O/R mapping tool. Integration in managed environments (in particul ar
JTA integration) is not supported for JDO 1.0 prototype.

A complete Apache licensed JDO 2.0 implementation is scheduled for OJB 2.0.

1.3.1.4. OTM API (Object Transaction Manager API)

The OTM Object Transaction Manager API isin early beta status and currently the work
stopped.

1.4. OJB - Mail Lists

1.4.1. Mailing Lists

These are the mailing lists that have been established for this project. For each list, thereisa
subscribe, unsubscribe, and an archive link.

List Name Subscribe Unsubscribe Archive
Objectbridge User List | Subscribe Unsubscribe Archive
Objectbridge Subscribe Unsubscribe Archive

Developer List

1.5. OJB - Mail Archives

1.5.1. Mail Archives

archive provider | OJB User list OJB Developer searchable remarks
list
GMANE gmane.comp.jakartagriianseromp.jakartayeig.devel latest 600

Page 14

0oJB

postings available
via web access.
Unlimited access
through nntp
(news reader)

Apache ojb-user@db.apachejirglev@db.apacheysag --
The Mail Archive | gjb-user -- yes --

1.6. OJB - References and Testimonials
1.6.1. References and Testimonials

1.6.1.1. projectsusing OJB

Jakarta JetSpeed

Jetspeed is an Open Source implementation of an Enterprise Information Portal, using Java
and XML.

OJB will be the default persistence model within Jetspeed 2.

BIT (http://www.bit.admin.ch)

The swiss federal office for information technology and telecommunications (BIT) uses OJB
1.0.1 as data access layer in their framework for webbased applications.

The BIT extended OJB with a complex history-mechanism by simply replacing the

JdbcA ccessimpl their own class.

The Tammi project

Tammi is a JM X-based Java application development framework and run-time environment
providing a service architecture for J2EE server side Internet applications that are accessible
from any device that supports HTTP including mobile (wireless) handsets.

Future plansinclude integration of Apache OJB based persistence services to the framework.

The Object Console project

The Object Console is an open web based application meant for the administration of objects
viathe web. Any object that is persistable by the ObJectRelationa Bridge (OJB) framework
can be managed through this tool. In addition, this tool provides administration functionality
for the ObJectRel ational Bridge (OJB) framework itself.

Object Console uses Struts and OJB. It ships with full sourcecode and is thus a great source
for learning Struts + OJB techniques.

ThelntAct project
The IntAct project establishes a knowledgebase for protein-protein interaction data. It's

Page 15

http://www.bit.admin.ch

0JB

hosted at EBI - European Bioinformatics Institute, Cambridge.
IntAct uses OJB asiits persistence layer.

Network for Earthquake Engineering Simulation

The NEES program will provide an unprecedented infrastructure for research and education,
consisting of networked and geographically distributed resources for experimentation,
computation, model-based simulation, data management, and communication.

OJB is used as the O/R mapping layer.

The OJB.NET project

OJB.NET is an object-to-relational persistence tool for the .NET platform. It enables
applications to transparently store and retrieve .NET objects using relational databases.
OJB.NET isaport ojb Apache OJB to the .NET platform

The OpenEMed project

OpenEMed is a set of distributed healthcare information service components built around the
OMG distributed object specifications and the HL7 (and other) data standards and is written
in Javafor platform portability.

OpenEMed uses ODMG asits persistence API. OJB is used as ODMG compliant O/R tool.

1.6.1.2. user testimonials

"At the BIT (http://www.bit.admin.ch) some stress-test were performed simulating 3000
parallel users accessing tables containing more than 1.8 million rows per table. These test
were run on Websphere 4.1 and DB2 on IBM z/OS (Host). The PB-API of OJB 1.RC1 was
used without problems. The ODMG-API of this release then had too many bugs (deadl ocks,
parallel threads, etc.)."

"We're using OJB in two production applications at the Northwest Alliance for
Computational Science and Engineering (NACSE). One is a data mining toolset, and the
other isamassive National Science Foundation project that involves huge amounts of data,
and about 20 or 25 universities and research groups like mine.

In fact, I've begun making OJB sort of a de-facto standard for NACSE java/database
development. I've thrown out EJB's for the most part and I've tried JDO from Castor, but I'm
sticking with OJB. Maybe wel'll reconsider JDO when the OJB implementation is more
complete.”

"We are planning a November 2003 production deployment with OJB and WE LOVE IT!!
We have been in development on avery data-centric application in the power industry for
about 5 months now and OJB has undoubtedly saved us countless hours of development
time. We have received benefitsin the following areas:

-> Easily adapts to any data model that we've thrown at it. No problems mapping tables with
compound keys, tables mapping polymorphic relationships, identity columns, etc.

Page 16

http://www.bit.admin.ch

0oJB

-> Seemledly switches between target DB platforms. We develop and unit test on our local
workstations with HSQL DB and PostgreSQL, and deploy to DB2 using the Type 4 JDBC
driver from IBM. Works great!

-> Makes querying a breeze with the PersistenceBroker API

Overall we have found OJB to be very stable (and we've really tested it out quite a bit). The
only issues we've got outstanding at the moment is support for connections to multiple
databases, but I've noticed in CV Sthat the OJB guys are aready fixing thisfor OJB 0.9.9."

"We've been using it in "production” for along time now, from about version 0.9.4, | believe.
It has been very robust. We don't use all of its features. We've only seeto failures of our
persistent store in about 9 months, and I'm not sure they were due to OJB."

"So yes, we have made a quite useful mediumsized production website based on OJB (with
JBoss, Jakarta Jetspeed, Jakarta Turbine and Jakarta Jelly, three Tomcats, OpenSymhony
OSCache and for the database MSSQL server, al running on Win2000.) It is attracting
between 600 and 9000 (peak) users aday, and runs smoothly for extended periods of time.
And no, | can not actually show you the wonders of the editorial interface of the content
management system, because it is hidden behind afirewall.

| feel OJB isquite useful in production, but you certainly have to know what you are doing
and what you are trying to achieve with it. And there have been some tricky aspects, but
these could be solved by simple workarounds and small hacks.

The main thing about OJB isthat AFAIK it has an overall clean design, and it far beats
making your own database abstraction layer and object/relational mapper. We certainly do
not use all of it, only the Persistence Broker parts, so there was lessto learn. We love the
virtual proxy and collection proxy concepts, the criteria objects for building queries, and the
nice little hidden features that you find when you start to learn the system.”

"My Company is building medium to large scale, mission critical applications (100 - 5.000
concurrent users) for our customers. Our largest customer is KarstadtQuelle, Europes largest
retail company. The next big system that will go in production (in June) is the new logistics
system for the stationary logistics of Karstadit.

Of course we are using OJB in those Systems! We have several OJB based systems now in
production for over ayear. We never had any OJB related problemsin production.

Most problems we faced during development were related to the learning curve developers
had to face who were new to O/R mapping.”

"I've also worked with OJB on high-load situations in J2EE environments. We're using JRun
and/or Orion with OJB in a clustered/distributed environment. Thisis a National Science
Foundation project called the Network for Earthquake Engineering Simulation (NEES).

The only major problem that we ran into was the cache. JCS just isn't good, and hasn't
seemed to get much better over the last year. We ended up plugging in Tangosol's Coherence
Clustered Cache into the system. We can aso do write-behinds, and buffered data caching

Page 17

0JB

that is queued for transaction. That's important to us because we're dealing with very
expensive scientific datathat _can't_ get lost if a db goes down. Some of these Tsunami
experiments can get pretty expensive.

Otherwise, we use mostly the PersistenceBroker, and alittle of the ODMG. Performance
seems better on PB, but less functional. It's not really that much of a problem anyway,
because we can cheaply and quickly add app-servers to the cluster.”

1.7. Linksand further readings

1.7.1. Summary

This page contains interesting links and recommended readings that will help to learn more
about OJB concepts, related projects, didactic material, research reports etc.

1.7.2. Design

OJB is based on avariety of conceptual sources. In this section I'll give a summary about the
most prominent influences.

1. CraigLarmansApplying UML and Patterns

2. The Siemens Guys" Pattern-Oriented Software Architecture’
3. Scott Amblersclassic paperson O/R mapping

4. The" Crossing Chasms' paper from Brown et. al.

5. The GOF Design Patterns

(sorted by relevance)

1. The most important input came from Applying UML and Patterns
(http://www.craiglarman.com/book_applying_2nd/Applying_2nd.htm) . It contains a chapter
describing the design of a PersistenceBroker based approach persistence layer. His
presentation contains alot of other good ideas (e.g. usage of Proxies, caching etc.) |
implemented alot of histhings 1:1. This book isamust have for all OJB developers!

2. Larman does not cover the dynamic metadata concept. He mentiones that such athing
would be possible, but does not go into details. As | had been afan of Metalevel
architectures for quite awhile | wanted to have such athing in OJB too !!!

i
MOP

Page 18

http://www.craiglarman.com/book_applying_2nd/Applying_2nd.htm

0oJB

mop-qif
(http://www?2.parc.com/csl/groups/sdalprojects/mops/default.ntml) | took the concepts from
the book Pattern-Oriented Software Architecture
(http://hillside.net/patterns/books/Siemens/book.html) . They have a chapter on the
Reflection pattern (aka Open Implementation, Meta-L evel Architecture
(http://www2.parc.com/csl/groups/sdalprojects/mops/defaul t.ntml)).
They even provide an example how to apply this pattern to a persistence layer.
Thereis another Architectural pattern from this book that I am using: The Microker nel
pattern.
My ideawas to have akernel (the PersistenceBroker) that does all the hard work (O/R
mapping, JDBC access, etc.)
High Level object transaction frameworks like a ODMG or JDO implementations are clients
to the PersistenceBroker kernel in this concept!

3. | read Scott Amblers (http://www.ambysoft.com/) papers before starting OJB. Sure! There
are several thingsin OJB that are from his classic The design of arobust persistence layer
(http://www.ambysoft.com/persistencel ayer.html) and from his Mapping Objects To
Relational Databases (http://www.ambysoft.com/mappingObjects.html) . Most prominent:
The PersistenceBroker concept.

| incorporated the Query API from the OpenSource project COBRA
(http://www.kimble.easynet.co.uk/cobra/index.htm) that applies Amblers PersistentCriteria
concept.

Reading Amblerspaper on thesetopicsisa must.

But IMO these are the only aspects of Amblers presentation that map directly to OJB. Here
are the concepts that differ:

Amblers concept relies on a persistent base class.

caching is not covered by his design

his concept of OID does not fit for legacy databases with compound PKs.

The OJB proxy concept is quite different (Ambler has proxy functionality in his
PersistentObject base class.)

e OJB does not use Insert- and UpdateCriteria

« 0OJB usesadifferent mapping approach (A full metadata layer)

4. For several detail questions (like mapping inheritance hierarchies) | consulted crossing
chasms (http://members.aol.com/kgh1001001/Chasms.htm) . Thisis also a very good source
for al O/R implementors.

5. For all the"small things' I'm using the common GOF patterns
(http://hillside.net/patterns/books/DPBook/DPBook.html) like Factory, Observer, Singleton,
Proxy, Adaptor, State, Command, etc.

Page 19

http://www2.parc.com/csl/groups/sda/projects/mops/default.html
http://hillside.net/patterns/books/Siemens/book.html
http://www2.parc.com/csl/groups/sda/projects/mops/default.html
http://www.ambysoft.com/
http://www.ambysoft.com/persistenceLayer.html
http://www.ambysoft.com/mappingObjects.html
http://www.ambysoft.com/mappingObjects.html
http://www.kimble.easynet.co.uk/cobra/index.htm
http://members.aol.com/kgb1001001/Chasms.htm
http://members.aol.com/kgb1001001/Chasms.htm
http://hillside.net/patterns/books/DPBook/DPBook.html

0JB

Here is athesis describing concepts very similar to OJB.
(http://www.lap.ttu.ee/erki/failid/konspekt/bakal aureusetoo/thesi s.pdf)

Asl| read this paper | saw alot of thing inspired by OJB. It's giving a nice introduction into
the PersistenceBroker pattern and related topics.

The PARC software design area (http://www2.parc.com/csl/groups/sda/proj ects.shtml)
pioneering in Metalevel computation, aspect oriented programming etc.

1.7.3. Further readings on O/R mapping

» ObjectArchitects O/R pattern page
(http://www.objectarchitects.de/ObjectArchitects/orpatterns/)

« JavaSkyl ine page on database integration (http://www.javaskyline.com/database.html)

« Barry and Associates page on O/R mapping
(http://www.service-architecture.com/object-rel ational -mapping/articles/)

« Portland Pattern Repository page on O/R
(http://c2.com/cgi/wiki?0bjectRel ational M apping)

« Martin Fowlers book "Pattern of Enterprise Application Architecture” covers many O/R
patterns that can be found in OJB. Here you will find an online catalog of these patterns.
(http://www.martinfowler.com/eaaCatal og/)

1.7.4. Patterns

« TheHillside Pattern page (http://hillside.net/patterns/)
» The Portland Pattern Repository (http://c2.com/cgi/wiki?CategoryPattern)

1.7.5. OJB tutorials

« Thefamous Beer4All Struts/OJB tutorial by Chuck Cavaness
(http://cvs.apache.org/viewcvs.cgi/* checkout* /db-ojb/contrib/struts-ojb.zipZrev=HEAD)

» A presentation on OJB held at the Atlanta Java Users Group by Chuck Cavaness
(http://cvs.apache.org/viewcvs.cgi/* checkout* /db-ojb/contrib/cavaness-gjug-dides.pdf rev=HEAD)

« Anextensive tutorial on OJB by John Carnell
(http://cvs.apache.org/viewcvs.cgi/* checkout* /db-ojb/contrib/ojb-dataccess.pdf rev=HEAD)

» Roberto Ghizziali's tutorial on Struts, OJB, and nested tags
(http://www.robertoghizzioli.it/jcomm/jcomm_tutorial.html)

e Anintroductory tutorial on the O'Reilly site.
(http://www.onjava.com/pub/a/onjava/2003/01/08/ojb.html)

1.7.6. Books covering OJB

o The O'Relilly book on Struts programming by Chuck Cavaness has awhole chapter about
how to build an applications model layers based on OJB. A must reading for everyone

Page 20

http://www2.parc.com/csl/groups/sda/projects.shtml
http://www.objectarchitects.de/ObjectArchitects/orpatterns/
http://www.javaskyline.com/database.html
http://www.service-architecture.com/object-relational-mapping/articles/
http://c2.com/cgi/wiki?ObjectRelationalMapping
http://www.martinfowler.com/eaaCatalog/
http://www.martinfowler.com/eaaCatalog/
http://hillside.net/patterns/
http://c2.com/cgi/wiki?CategoryPattern
http://cvs.apache.org/viewcvs.cgi/*checkout*/db-ojb/contrib/struts-ojb.zip?rev=HEAD
http://cvs.apache.org/viewcvs.cgi/*checkout*/db-ojb/contrib/cavaness-ajug-slides.pdf?rev=HEAD
http://cvs.apache.org/viewcvs.cgi/*checkout*/db-ojb/contrib/ojb-dataccess.pdf?rev=HEAD
http://www.robertoghizzioli.it/jcomm/jcomm_tutorial.html
http://www.onjava.com/pub/a/onjava/2003/01/08/ojb.html

0oJB

intending to use Struts and OJB.
(http://www.amazon.com/exec/obidos/A SIN/0596003285/qid=1054656123/sr=2-1/ref=sr_2_1/103-9325
All source code from the book can be found here: Struts Programming Sources.
(http://examples.oreilly.com/jakarta/)

e There'salso aWROX book on Struts + OJB
(http://www.amazon.com/exec/obidos/tg/detail/-/1861007817/qid=1054655953/sr=8- L/ref=sr_8 1/103-9
All source code from the book can be found here: Professional Struts and OJB sources.
(http://web.wrox.com/download/code/professional/7817.zip)

« Enterprise Java Development on a Budget
(http://www.amazon.com/exec/obidos/A SIN/1590591259/qid%3D 1082279566/sr%3D 11-1/ref %3D sr%4-

2. Download
3. Development

3.1. Coding Standards

3.1.1. Coding Standards

This document describes alist of coding conventions that are required for code submissions
to the project. By default, the coding conventions for most Open Source Projects should
follow the existing coding conventions in the code that you are working on. For example, if
the bracket is on the same line asthe if statement, then you should write all your code to have
that convention.

If you commit code that does not follow these conventions, you areresponsible for also
fixing your own code.

Below isalist of coding conventions that are specific to Turbine, everything else not
specificially mentioned here should follow the official Sun Java Coding Conventions
(http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html) .

1. Brackets should begin and end on a new line and should exist even for one line statements.
Examples:
if (foo)

// code here

}
try

/] code here

Page 21

http://www.amazon.com/exec/obidos/ASIN/0596003285/qid=1054656123/sr=2-1/ref=sr_2_1/103-9325116-6675068
http://examples.oreilly.com/jakarta/
http://www.amazon.com/exec/obidos/tg/detail/-/1861007817/qid=1054655953/sr=8-1/ref=sr_8_1/103-9325116-6675068?v=glance&s=books&n=507846
http://web.wrox.com/download/code/professional/7817.zip
http://www.amazon.com/exec/obidos/ASIN/1590591259/qid%3D1082279566/sr%3D11-1/ref%3Dsr%5F11%5F1/103-0814434-1236616
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

0JB

}

catch (Exception bar)
/1 code here

}

finally

/] code here

while (true)

// code here

}

2. Though it's considered okay to include spaces inside parens, the preference is to not
include them. Both of the following are okay:

if (foo)

or

if (foo)
3. 4 space indent. NO tabs. Period. We understand that many developers like to use tabs, but
the fact of the matter isthat in a distributed development environment where diffs are sent to

the mailing lists by both developers and the version control system (which sends commit log
messages), the use tabs makes it impossible to preserve legibility.

In Emacs-speak, this translates to the following command:
(setqg-default tab-wi dth 4 indent-tabs-nmode nil)

4. Unix linefeeds for all .java source code files. Other platform specific files should have the
platform specific linefeeds.

5. JavaDoc MUST exist on all methods. If your code modifications use an existing
class'/method/variable which lacks JavaDoc, it is required that you add it. Thiswill improve
the project as awhole.

6. The Jakarta/Turbine License MUST be placed at the top of each and every file.

7. If you contribute to afile (code or documentation), add yourself to the authors list at the
top of thefile. For javafiles the preferred Javadoc format is:

@ut hor John Doe</ a>

Page 22

0oJB

8. All .javafiles should have a @version tag like the one below.

@ersion $ld: code-standards.xm ,v 1.1 2004/06/20 09:12: 35 tondz
Exp $

9. Import statements must be fully qualified for clarity.

i mport java.util.ArraylList;
i mport java.util.Hashtabl e;

i mport org. apache. f 0o. Bar;
i mport org. apache. bar. Foo;

And not

i mport java.util.*;
i mport org. apache. foo. *;
i mport org. apache. bar. *;

X/Emacs users might appreciate thisin their .emacsfile.

(defun apache-j akarta-node ()
"The Java node specialization for Apache Jakarta projects."
(if (not (assoc "apache-jakarta" c-style-alist))
;; Define the Apache Jakarta cc-nbde style.
(c-add-styl e "apache-jakarta” '("java" (indent-tabs-node .

nil))))

(c-set-style "apache-jakarta")
(c-set-offset 'substatenent-open O nil)
(setq node-nane "Apache Jakarta")

;7 Turn on syntax highlighting when X i s running.
(if (boundp 'w ndow system
(progn (setqg font-I|ock-support-node 'l azy-I| ock-node)
(font-1ock-node t))))

;; Activate Jakarta node
(if (fboundp 'jde-nopde)
(add- hook ' j de-npde- hook 'apache-j akart a- nnde)
(add- hook 'java- node-hook 'apache-jakarta-node))

Thanks for your cooperation.

4. Documentation

Page 23

0JB

4.1. Documentation

4.1.1. Introduction

This section contains all documentation about OJB (except the wiki doc).

If you're new to OJB, we recommend that you start with reading the Getting Started section
and the FAQ.

There are tools for building the metadata mapping files used by OJB. Information about them
can be found here.

Tutorials

Tutorials for the API's supported by OJB.
Reference Guides

OJB reference guides.

Howto's

Howto's provided by OJB users and committers.
Testing

Info about OJB's quality assurance and test writing.

4.2. Frequently Asked Questions

4.2.1. Questions

42.1.1. 1. General

1.1. Why OJB? Why do we need another O/R mapping tool?

here are some outstanding OJB features:

It'sfully ODMG 3.0 compliant

It will have afull IDO implementation

It's higly scalable (Loadbalanced Multiserver scenario)

It provides multiple APIs:

* Thefull fledged ODMG-API,

* TheJDO API (planned)

» and the PersistenceBroker API. This API provides a O/R persistence kernel which
can be used to build higher level APIs (like the ODMG and JDO Implementations)

It's able to handle multiple RDBM S simultaneously.

it hasadlick Metalevel Architecture: By changing the MetaData at runtime you can

change the O/R mapping behaviour. (E.G. turning on/off usage of Proxies.)

Page 24

0oJB

» It hasasimple CacheMechanismsthat is fully garbage collectable by usage of weak
references.

» It hasasimple and clean pattern based design.

» It usesaconfigurable plugin concept. This allows to replace components (e.g. the
ObjectCache) by user defined Replacements.

» It hasamodular architecture (you can quite easily reuse some components in your own
applicationsif you don't want to use the whole thing:

The PersistenceBroker (e.g. to build your own PersistenceM anager)

The Query Interface as an abstract query syntax

The OQL Parser

The MetaData Layer

The JDBC Accesslayer

» It hasavery sharp focus: It's concerned with O/R mapping and nothing else.

Before making OJB an OpenSource project | had alook around at the emerging OpenSource
O/R scene and was asking myself if thereisreally aneed for yet another O/R tool. | cameto
the conclusion that there was a need for OJB because:

e Therewas no ODMG/JDO compliant opensource tool available

« There was no scalable opensource O/R tool available

» there was no tool available with the idea of a PersistenceBroker Kernel that could be
easiliy extended

« Thetools available had no dynamic MetaData architectures.

« Thetoolsavailable were not as clearly designed as | hoped, thus extending one of them
would have been very difficult.

1.2. How isOJB related to ODM G and JDO?

ODMG isastandard API for Object Persistence specified by the ODMG consortium
(www.odmg.org). JDO is Sun's API specification for Object Persistence. ODMG may well
be regarded as a Precursor to JDO. In fact JDO incorporates many ideas from ODMG and
severa people who have been involved in the ODMG spec are now in the JDO team.

| assume JDO will have tremendous influence on OODBMS-, RDBMS-, J2EE-server and
O/R-tool-vendors to provide compliant products.

OJB wants to provide first class support for JDO and ODMG APIs.

OJB currently contains of four main layers, each with its own API:

1. A low-level PersistenceBroker API which serves asthe OJB persistence kernel. The
PersistenceBroker also provides a scalable multi-server architecture that allowsto used it
in heavy-duty app-server scenarios.

This API can aso be used directly by applications that don't need full fledged object level
transactions (see PB tutorial for details).

Page 25

0JB

2. An Object Transaction Manager (OTM) layer that contains all features that JDO and
ODMG have in common as Object level transactions, lock-management, instance lifecyle
etc. (See OTM tutorial for details.) The OTM iswork in progress.

3. A full featured ODM G 3.0 compliant API. (See ODMG tutorial for an introduction.)
Currently this API isimplemented on top the PersistenceBroker. Once the OTM layer is
finished ODMG will be implemented on top of OTM.

4. A JDO compliant API. Thisiswork in progress. (See JDO tutorial for an introduction.)
Currently this API isimplemented on top the PersistenceBroker. Once the OTM layer is
finished JDO will be implemented on top of OTM.

The following graphics shows the layering of these APIs. Please note that the layers coloured
in yellow are not yet implemented.

OJB Layer

1.3. What arethe OJB design principals?
OJB has a"pattern driven" design. Please refer to this document for more details

1.4. Wherecan | learn more about Object/Relational mapping in general?
We have alink list pointing to further readings.

1.5. How OJB performance compar esto native JDBC programming?

See page Performance.

1.6. How OJB performance comparesto other O/R mapping tools?

See page Performance.

1.7.1s0JB ready for production environments?

Depends on your production environment. If you want to program an aeroplane autopilot
system you should not use Java at al. (according to the official disclaimer).

But | assume we are talking about enterprise business applications, aren't we? And for such
applicationsit'saclear yes. OJB is used in production application since version 0.5. We have
about 6.000 downloads each month (and growing) and alarge user base using it in awide
spectrum of production scenarios.

We provide aregression test suite for Quality Assurance. Y ou can use this testsuite to check
if OJB works smoothly in your target environment. (see supported platforms documentation)
We also provide a performance testsuite that compares OJB performance against native
JDBC. Thistest will give you an impression of the performance impact OJB will havein

Page 26

0oJB

your target environment. (see Performance testsuite documentation)

OJB is also the persistence layer of choice in several books on programming J2EE based
enterprise business systems. (see our links and references section)

Reference projects and user testimonials are listed here.

1.8. Does OJB supports caching?
Short answer isyes. To get a detailed answer, please read the caching guide.

4.2.1.2. 2. Getting Started

2.1. Help! I'm having problemsinstalling and using OJB!

Please read the Getting Started document. OJB is a powerful and complex system - installing
and configuring OJB is not atrivia task. Be sure to follow all the steps mentioned in that
document - don't skip any steps when first installing OJB on your systems.

If you are having problems running OJB against your target database, read the respective
platform documentation. Before you try to deploy OJB to your environment, read the
deployment guide.

2.2. Help! | «till have serious problemsinstalling OJB!

The following answer is quoted from the OJB user-list. It isfrom areply to a user who had
serious problems getting started with OJB.

| would say it was stupid not to understand OJB. How can you know what another
programmer wrote. |I've been a Java programmer for quite sometime and | could show you
stuff | wrote that | know you wouldn't understand. I'll just break it down the best | can on
what, where and why.

OJB is adata persistence layer for Java. I'll just use an example of how | useit. | have an
RDMS. | would like to save Java object states to this database and | would like to be able to
search thisinformation as well. If you serialize objectsit's hard to search and if you use SQL
it won't work with any different database. Plusit's a mess having to work with all that SQL in
your code. And by using SQL you don't get to work with just Java objects. But, with OJB
your separated from having to work outside the object world and unlike serialization you can
preform SQL like searches on your data. Also, there's things like caching and connection
pooling in OJB that help with performance. After setting up OJB you will use either PB-API
or ODMG or JDO to access your information in a object centric manner. PB APl isa
non-standard O/R mapping APl with many features and great flexibility. All top-level API's
like ODMG or JDO build on top of the PB-api. ODMG is a standard for the api for accessing

Page 27

0JB

your data. That means you can use any ODMG compliant api if you don't want to use OJB.
The JDO part islike ODMG except it's the SUN JDO standard. | use ODMG because the
JDO interfaceis not ready yet.

OJB iseasy to use. I'll just break it down into two sides. There's the side your writing your
code for your application and there's the side that you configure to make OJB connect to your
database. Starting with your application side, all that is needed isto use the interface you
wish. | use ODMG because JDO is not complete yet. Here's alink to the ODMG part with
some code for examples.

That's all you need on the application side. Next there's the configuration side. Thisisthe one
your fighting with. Here you need to setup the core tables for OJB and you will define the
classes you wish to store in your database.

First thing to do isto build the cvs's with the default database HSQL , because you know it
will work. If you get past this point you should have aworking OJB compiled. Now if your
using JDK 1.4 you will need to set in build.properties JIDBC=+JDBC30 and do a ant
preprocess first. Next you will do aant junit and thiswill build OJB and test everything for
you. If you get abuild successful then your in business. Then you will want to run ant jar to
create the OJB jar to put in your /lib. You will need a couple other jarsin you /lib directory to
make it all work. See this page for those. http://jakarta.apache.org/ojb/deployment.html

Next you will need some xml and configuration filesin your class path for OJB. Y ou will
find those files under {$OJB_base _dir} /target/test/ojb. All the repository.xml's and
OJB.properties for sure. With al these filesin place with your application you should be
ready to use OJB and start writing your application.

Finally you will want to setup your connection to your database and define your classes you
will be storing in your database. In the repository.xml file you can configure your JDBC
parameters so OJB can connect to your database. Y ou will also need your JDBC jar
somewhere in your class path. Then you will define your classes in the repository _user.xml
file. Look here for examples. http://jakarta.apache.org/ojb/tutorial 1.ntml Note you will want
to comment out the junit part in repository.xml because it's just for testing.

The final thing to do isto make sure the OJB core tables are in your database. Look on this
page for the core tables. These core tables are used by OJB to store internal datawhileit's
running. It needs these. Then there's the tables you define. The ones you mapped in the
repository _user.xml file.

Sorry if any of thisis off. OJB is growing so fast that it's hard to keep up with all changes.
The order | gavethe stepsinisjust how | would think it's understood better. You cangoin
any order you want. The steps I've shown are mostly for deployment. Hope this helps you
understand OJB allittle better. I'm not sureif thisiswhat your wanting or not.

Page 28

0oJB

2.3. OJB doesnot start?
If you carefully attended the installing hints there may be something wrong with your
metadata mapping defined in the repository file or one the included sub files.

« Areyouincluded all configuration filesin classpath?
e On update to a new release, make sure you replaced all configuration files
» Check your metadata mapping - typos,... ?

If something going wrong while OJB read the metadata files you can enable debug log level
for or g. apache. oj b. br oker . net adat a. Reposi t or yXn Handl er and

or g. apache. oj b. br oker. net adat a. Connect i onDescri pt or Xml Handl er
to get more detailed information.

If OJB default logging was used, change entries for these classes in OJB.properties file (this may change in future).

2.4. Does OJB support my RDBM S?
please refer to this document.

2.5. What arethe OJB internal tablesfor?
Please refer to this document.

2.6. What does the exception Could not borrow connection from pool mean?

There can be several reasons

2.7. Any tools help to gener ate the metadata files?

Please refer to this document.

4.2.1.3.3.0JB api's

3.1. What arethe differences between the PersistenceBroker APl and the ODMG API? Which one should
| usein my applications?

The PersistenceBroker (PB) provides aminimal APl for transparent persistence:

e O/R mapping
« Retrieval of objects with asimple query interface from RDBMS
« storing (insert, update) of objectsto RDBMS

Page 29

0JB

» deleting of objectsfrom RDBMS
Thisisall you need for simple applications asin tutorial 1.

The OJB ODMG implementation uses the PB as its persistence kernel. But it provides much
more functionality to the application developer. ODMG is afull fledged API for Object
Persistence, including:

e OQL Query interface

« real Object Transactions

» A Locking Mechanism for management of concurrent threads (apps) accessing the same
objects

» predefined persistent capable Collections and Hashtables

Some examples explaining the implications of these functional differences:

1. Say you use the PB to query an object O that has a collection attribute col with five
elements a,b,c,d,e. Next you delete Objects d and e from col and store O again with
PersistenceBroker.store(O);

PB will store the remaining objects a,b,c. But it will not deleted and e! If you then
requery object O it will again contain a,b,c,d,e!!!

The PB keeps no transactional state of the persistent Objects, thusit does not know that d
and e have to be deleted. (as a side note: deletion of d and e could also be an error, as
there might be references to them from other objects!!!)

Using ODMG for the above scenario will eliminate all trouble: Objects are registered to a
transaction so that on commit of the transaction it knows that d and e do not longer
belong to the collection. the ODMG collection will not delete the objects d and e but only
the REFERENCES from the collection to those objects!

2. Say you have two threads (applications) that try to access and modify the same object O.
The PB has no means to check whether objects are used by concurrent threads. Thus it
has no locking facilities. Y ou can get al kind of trouble by this situation. The ODMG
implementation has a L ockmanager that is capable of synchronizing concurrent threads.

Y ou can even use four transaction isolation levels:
read-uncommitted, read-committed, repestable-read, serializable.

In my eyesthe PB is a persistence kernel that can be used to build high-level
PersistenceM anagers like an ODMG or JDO implementation. It can also be used to write
simple applications, but you have to do all management things (locking, tracking objects
state, object transactions) on your own.

3.2.1 don't likeOQL, can | usethe PersistenceBroker Querieswithin ODMG?

Please refer to the ODM G-guide.

3.3. The OJB JDO implementation is not finished, how can | start using OJB?

Page 30

0oJB

| recommend to not use JDO now, but to use the existing ODMG api for the time being.

Migrating to JDO later will be smooth if you follow the following steps. | recommend to first
divide your model layer into Activity- (or Process-) classes and Entity classes.

Entity classes represent classes that must be made persistent at some point in time, say a
"Customer" or a"Order" object. These persistent classes and the repsective O/R mapping in
repository.xml will remain unchanged.

Activities are classes that perform business tasks and work upon entities, e.g. "edit a

Customer entry", "enter anew Order"... They implement (parts of) use cases.

Activities are driving transactions against the persistent storage.

| recommend to have a Transaction interface that your Activities can use. This Transaction
interface can be implemented by ODMG or by JDO Transactions (which are quite similar).
The implementation should be made configurable to allow to switch from ODMG to JDO
later.

The most obvious difference between ODMG and JDO are the query languages. ODMG uses
OQL, JDO define IDOQL. As an OO developer you won't like both of them. | recommend to
use the ojb Query objects that allow an abstract syntax representation of queries. It ispossible
to use these queries within ODMG transactions and it will also be possible to use them within
JDO Transactions. (thisis contained in the FAQ too).

Using your own Transaction interface in conjunction with the OJB query api will provide a
simple but powerful abstraction of the underlying persistence layer.

We are using this concept to provide an abstract layer above OJB-ODMG, TopLink and
LDAP serversin my company. Making it work with OJB-JDO will be easy!

4.2.1.4. 4. Howto

4.1. How to use OJB with my RDBM S?

please refer to this document.

4.2. How touse OJB in an web app?

If you follow these rules, then OJB works fine in web apps:

« Don't put OJB'sjarsinto one of the servers directories but rather put them into the
VAEB- | NF/ | i b folder of your web app.
e OJB searchesfor its configuration files (QJB. properti es,repository. xm)in

Page 31

0JB

the classpath. Therefore, it iseasiest if you put them in the WVEB- | NF/ ¢l asses folder
which isautomatically in the classpath of the web app

« Don't hold onto the Per si st enceBr oker instances, rather get one whenever you
want to do something, and close it once you're done.

See deployment doc for more information.

4.3. What arethe best settings for maximal performance?

See performance section.

4.4. How to page and sort?

Sorting can be configured by
org. apache. oj b. broker. query. Criteria::orderBy(col um_nane).

Thereis no paging support in OJB. OJB is concerned with Object/Relational mapping and
not with application specific presentation details like presenting a scrollable page of items.

OJB returns query results as Collections or Iterators.

Y ou can easily implement your partial display of result data by using an Iterator as returned
by oj b. br oker. Persi stenceBroker::getlteratorByQuery(...).

4.5. What about performance and memory usage if thousands of objects matching a query arereturned
asa Collection?

Y ou can do two things to enhance performance if you have to process queries that produce
thousands of result objects:

1. Use getlteratorByQuery() rather than getCollectionByQuery(). The returned Iterator is
lazy and does not materialize Objects in advance. Objects are only materialized if you
call the Iterators next() method. Thus you have total control about when and how many
Objects get materialized! Please see here for proper handling.

2. You can define Proxy Objects as placeholder for your persistent business objects. Proxys
are lighweight objects that contain only primary key information. Thus their
materialization is not as expensive as afull object materialization. In your case this would
result in a collection containing 1000 lighweight proxies. Materialization of the full
objects does only occur if the objects are accessed directly. Thus you can build similar
lazy paging as with the Iterator. Y ou will find examplesin the OJB test suite
(src-distribution only: [db-ojb]/src/test). More info about Proxy object here.

The Perfomance of 1. will be better than 2. This approach will also work for VERY large
resultsets, as there are no references to result objects that would prevent their garbage
collectability.

Page 32

0oJB

4.6. When isit helpful to use Proxy Classes?

Proxy classes can be used for "lazy loading” aka "lazy materialization”. Using Proxy classes
can help you in reducing unneccessary db lookups. Example:

Say you load a ProductGroup object from the db which contains a collection of 15 Article
objects.

Without proxies all 15 Article objects are immediately loaded from the db, even if you are
not interested in them but just want to lookup the description-attribute of the ProductGroup
object.

With a proxy class, the collection isfilled with 15 proxy objects, that implement the same
interface as the "real objects" but contain only an OID and avoid reference.

Once you access such a proxy object it loadsits "real subject” by OID and delegates the
method call to it.

have alook at section proxy usage of page basic technique.

4.7. How can | convert data between RDBM S and OJB?

For Example | have aDB column of type INTEGER but a class atribute of type boolean.
How can | provide an automatic mapping with OJB?

OJB provides a concept of ConversionStrategies that can be used for such conversion tasks.
Have alook at the respective document.

4.8. How can | trace and/or profile SQL statements executed by OJB?

OJB ships with out of the box support for P6Spy. P6Spy isa JDBC proxy which delegates all
JDBC callsto thereal JDBC driver and traces al callsto alog file.

P6Spy is contained in the p6spy.jar, which you'll find inthel i b folder of your OJB
distribution. Add this to the classpath of your app (if you're using the gjb-blank project, then
simply copy thejar into thel i b folder of the project and if you're using Eclipse then a'so
add it to the project build path).

Now the only other thing left is to configure OJB to use P6Spy, and P6Spy to use your
database's driver. To achieve this, change the database driver in your
j dbc- connecti on-descri ptor (inyour repository file) to

<j dbc- connecti on- descri pt or

Page 33

0JB

dri ver="com p6spy. engi ne. spy. P6SpyDri ver"
1>
Inoj b- bl ank thissetting ischanged inthebui | d. properti es instead.

Also copy thefilespy. pr operti es which can befound in the

src/test/ org/ apache/ oj b folder into your classpath (e.g. in the same place where
your QJB. properti es fileis). Inthisfileyou'll find aline starting withr eal dri ver
where you should put the name of the jdbc driver of your database, e.g.

real driver=org. hsqgl db. j dbcDri ver

Also, here you can influence to where P6Spy will output the SQL statements. The appender
defines how the logging is performed, e.g. to the console or to afile. Thel ogf i | e setting
defines into which file the statements will be printed (when afile appender is used). For
instance, these settings will writeto afilespy. | og:

logfile = spy.log
appender = com p6spy. engi ne. | oggi ng. appender . Fi | eLogger

This woul d be | ogging to the console
#appender = com p6spy. engi ne. | oggi ng. appender . St dout Logger

That's al thereisto it, no recompile or other change of your app is necessary. Btw, P6Spy
also measures the time needed to execute each statement!

4.9. How does OJB manage foreign keys?

Automatically! you just define 1:1, 1:n or m:n associations in the repository _user.xml file.
OJB does the rest!

Please refer to basic technigue and xml-metadata repository for details.

4.10. How does OJB manage 'null’ for primitive primary key?

Primitive values (int, long, ...) can't benul | , so OJB interpret '0' asnul | for primitive
PK/FK fields in persistent objects. Thus primitive PK fields of persistent objects should
never be represented by a'0' value in DB and never used as a sequence key value.
Thisisonly true for primitive PK/FK fields (e.g. | nt eger (0) isallowed). All other fields
have 'normal’ behavior.

4.11. How to lookup object by primary key?
Please see PB tutorial section.

4.12. Difference between getlterator ByQuery() and getCollectionByQuery()?

Page 34

0oJB

Thefirst onereturnsan or g. apache. oj b. br oker . QJBI t er at or instance. The
returned Iterator instance is lazy and does not materialize Objectsin advance. Objects are
only materialized from the underlying query result set if you call the Iterators next() method.
If al objects materialized or the calling

or g. apache. oj b. br oker . Per si st enceBr oker instance was closed or transaction
demarcations ends the Iterator instance release all used resources (e.g. used Statement and
ResultSet instances).

Method get Col | ecti onByQuer y() usean Iterator to materialize all objects first and
then return the materialized objects within thej ava. uti | . Col | ect i on instance.

If method get | t er at or ByQuer y() wasused keep in mind that the used Iterator instance is only valid aslong as the used
or g. apache. oj b. br oker . Per si st enceBr oker instance ends transaction or be closed. So it isNOT possible to get
an Iterator, close the PersistenceBroker and pass the Iterator instance to a servlet or client. In that case use

get Col | ecti onByQuery().

4.13. How can Callections of primitive typed elements be mapped?

The first thing to ask is: How are these primitive typed elements (Strings are also treated as
primitive types here) stored in the database.

1) are they treated as ordinary domain objects and stored in a separate table?

2) arethey serialized into aVarchar field?

3) are they stored as a comma separated varchar field?

4) is each element of the vector or array stored in a separate column? (this solution does only
work for afixed number of elements!)

Follow these steps for solution 3):

a) simply define ordinary collection-descriptors as for every other collection of domain
objects.

b) use the Object2ByteArrFieldConversion. See jdbc-types.html for details on conversion
strategies.

c) use the StringV ector2V archarFieldConversion. See jdbc-types.html for details on
conversion strategies.

d) provide afield-descriptor for each element.

4.14. How could class'myClass represent a collection of 'myClass objects

OJB can handle such recursive associations without problems.

« add acollection attribute 'myClasses' to the classmyCl ass this collection will hold the
associated nyCl ass objects.
« you haveto decide wether this assosciation is 1:n or m:n.

Page 35

0JB

for 1:n you just need an additional foreignkey attribute in the MY_CLASS table. Of
course you'll also need a matching attribute in the classmy Cl ass.
For am:n association you'll have to define aintermediary table to hold the mapping
entries.

» defineacol | ection-descri ptor taginthecl ass-descri ptor of nyCl ass
in repository.xml. Follow the steps in basic technique on 1:n and m:n.

4.15. How to lookup PersistenceBroker instances?

Please refer to PB-quide.

4.16. How to access ODMG?

Please refer to ODM G-guide.

4.17. Needed to put user/password of database connection in repository file?

There is no need to put user/password in the repository file (more exact in the
j dbc- connecti on-descri ptor). You can passthisinformation at runtime. See Many
different database user - How do they login?.

Only if you want to use convenience Per si st enceBr oker lookup method of

Per si st enceBr oker Fact or y, OJB needs all database connection information in the
configuration files. More details see repository file doc - section jdbc-connection-descriptor
def aul t - connect i on attribute

See |ookup PB api.
See lookup ODMG api.

PBKey pbKey = new PBKey(jcdAlias, user, passwd);

Per si st enceBr oker broker =

Per si st enceBr oker Fact ory. cr eat ePer si st enceBr oker (pbKey) ;

/1 or using a conveni ence (when default-connection was set in
j dbc- connecti on-descri ptor)

Per si st enceBr oker broker =

Per si st enceBr oker Fact ory. def aul t Per si st enceBr oker () ;

4.18. Many different database user - How do they login?

There are two ways to do that. Define for each user aj dbc- connecti on- descri pt or
(unattractive way, because we have to add each new user to repository file), or let OJB
handle thisfor you.

For it defineonej dbc- connecti on-descri pt or, now you can use the same

j cdAl i as name with different User / Passwor d. OJB copy the defined

j dbc- connecti on-descri pt or andreplacetheuser nane and passwor d with the

Page 36

0oJB

given User / Passwor d.

PersistenceBroker-api example:

PBKey user 1 = new PBKey(j cdAli as, user name, passwd);
Per si st enceBr oker broker =
Per si st enceBr oker Fact ory. cr eat ePer si st enceBr oker (user _1);

ODMG-api example:

| mpl enent ati on odng = QJB. get | nst ance();
Dat abase db = odng. newbDat abase() ;
db. open("j cdAl i as#user name#passwd", Dat abase. OPEN _READ WRI TE) ;

Keep in mind, whentheconnect i on- pool element enables connection pooling, every
user get its separate pool. See How does OJB handle connection pooling?.

4.19. How do | use multiple databases within OJB?
Define for each database aj dbc- connecti on- descri pt or, usethe different
] cdAl'i as namesin the repositry file to match the according database.

<j dbc- connecti on- descri pt or
jcd-alias="nmyFirstDb"

>
</j dbc- connect i on- descr i pt or >

<j dbc- connecti on- descri pt or
j cd-al i as="mySecondDb"

>

</j dbc- connect i on- descr i pt or >

Specific notes related to the PB-api_here.
Specific notes related to the ODM G-api_here.

OJB does not provide distributed transactions by itself. To use distributed transactions, OJB have to be integrated in an j2ee
conform environment (or made work with an JTA/JTS implementation).

4.20. How does OJB handle connection pooling?

Please have alook in section Connection Handling.

Page 37

4.21. Can | directly obtain a java.sgl.Connection within OJB?

Please have alook in section Connection Handling.

4.22.1sit possible to perform my own sgl-queriesin OJB?

There are serveral waysin OJB to do that.

If you completely want to bypass the OJBquery-api see Can | directly obtain a
java.sgl.Connection within OJB?.

A more elegant way isto use a Quer yBy SQL object:

String sqgl =

"SELECT A Artikel Nr FROM Artikel A, Kategorien PG

+ " WHERE A Kategorie Nr = PG Kategorie Nr"

+ " AND PG Kat egorie Nr = 2";

/1 get the QueryBySQ

Query g2 = QueryFactory. newQuery(Article.class, sql);

Iterator iter2 = broker.getlteratorByQuery(g2);

/1 or
Col ection col 2 = broker. getCol | ecti onByQuery(qg2);

4.23. When does OJB open/close a connection?

Please see Connection handling guide.

4.24. Start OJB without arepository file?
See section Metadata Handling.

4.25. Connect to database at runtime?

See section Metadata Handling.

4.26. Add new persistent objects metadata (class-descriptor) at runtime?

See section Metadata Handling.

4.27. Global metadata changes at runtime?

Please see section M etadata Handling.

4.28. Per thread metadata changes at runtime?

Please see section M etadata Handling.

0JB

Page 38

0oJB

4.29. 1sit possible to use OJB within EJB's?

Y es, see deployment instructions in the docs. Additional you can find some EJB example
beansin package or g. apache. oj b. ej bunder [j akart a-oj b]/src/ ej b.

4.30. Can OJB handleternary (or higher) associations?

Yes, that's possible. Here is an example. With aternary relationship there are three (or more)
entities 'related’ to each other. An example would be Devel oper, Language and
Pr oj ect.

Each entity is mapped to one table (DEVEL OPER, LANGUAGE and PRQJECT). To represent
the combinations of these entities we need an additional bridge table (

PRQJECTRELATI ONSHI P)with three columns holding the foreign keys to the other three
tables (just like an m:n association is represented by an intermediary table with 2 columns).

To handle this table with OJB we have to define aclass that is mapped on it. This
Relationship class can then be used to perform queries/updates as with any other persistent
class. Hereisthe layout of thisclass:

public class ProjectRelationship {
I nt eger devel oper| d;
I nt eger | anguagel d;
I nt eger projectld;

Devel oper devel oper;
Language | anuage;
Proj ect project;

/[** setters and getters not shown for brevity**/

}
Here is the respective extract from the repository :

<cl ass-descri ptor
cl ass="Proj ect Rel ati onshi p"
t abl e=" PRQJECTRELATI ONSHI P"

<fi el d-descri pt or
nane="devel oper | d"
col um=" DEVELOPER | D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
/>
<fi el d-descri pt or
nane="1| anguagel d"
col um="LANGUACGE | D'
j dbc-t ype="1 NTEGER"

Page 39

0JB

pri marykey="true"
/>
<fi el d-descri pt or
nanme="proj ect | d"
col um="PRQJECT | D"
j dbc-type="1| NTEGER'
pri marykey="true"
/>
<r ef erence- descri pt or
nane="devel oper"
cl ass-ref ="Devel oper"
>
<forei gnkey field-id-ref="devel operld" />
</reference-descri ptor>
<r ef erence-descri pt or
nane="1| anguage"
cl ass-ref ="Language"
>
<forei gnkey field-id-ref="1anguagel d" />
</reference-descri ptor>
<r ef erence-descri pt or
nane="proj ect"
cl ass-ref="Project"
>
<forei gnkey field-ref="projectld" />
</reference-descri ptor>
</ cl ass-descri ptor>

Here is some sample code for storing arelationship :

Devel oper dev = ; I/ create or retrieve
Project proj = ; [/ create or retrieve
Language lang = ; // create or retrieve
Proj ect Rel ati onship rel = new ProjectRel ati onshi p();

rel . set Devel oper (dev);
rel . set Language(l ang) ;
rel.setProject(proj);

br oker.store(r);

In the next code sample we are looking up all Projects that Developer "Bob" has donein
"Java'.

Criteria criteria = new Criteria();
criteria.addEqual To("devel oper. nane", " Bob");
cirteria.addEquat To("| anguage. nane", "Java");

Query q = new QueryByCriteria(ProjectRel ationship.class, criteria, true);
Iterator iter = Broker.getlteratorByQuery(q);

/1l now iterate over the collection and retrieve all projects:
while (iter.hasNext())

Page 40

0oJB

Proj ectRel ati onship rel = (ProjectRelationship) iter.next();
Systemout.printlin(rel.getProject().toString());

Y ou could also have on the Project class-descriptor acol | ecti on-descri pt or that
returns all relationships associated with the Project. If it was call "projectRelationships’ the
following would give you all projects that have arelationship with "bob" and the language
"java'.

Criteria criteria = new Criteria();
criteria.addEqual To(" proj ect Rel ati onshi ps. devel oper. nane", "bob");
cirteria.addEquat To(" proj ect Rel ati onshi ps. | anguage. nane", "j ava");

Query q = new QueryByCriteria(Project.class, criteria, true);
Col I ection projects = Broker.getCollectionByQuery(q);

Thisisthe layout of the Project class:

public class Project {
I nt eger id;
String nane;
Col I ection projectRel ationshi ps;

/** setters and getters not shown for brevity**/

}
Thisisthe class-descriptor of the Project class:

<cl ass-descri ptor
cl ass="Project"
t abl e=" PROJECT"

<fi el d-descri pt or
name="i d"
col um="1D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
/>
<fi el d-descri pt or
name="name"
col um=" NAMVE"
, j dbc-t ype=" VARCHAR"
>
<col | ecti on-descri ptor
nane="pr oj ect Rel ati onshi ps"
el ement - cl ass-ref ="Proj ect Rel ati onshi p"
>
<i nverse-forei gnkey field-ref="projectld" />
</col | ecti on-descri ptor>
</ cl ass-descri ptor>

Page 41

0JB

4.31. How to map alist of Strings

Y ou can not map alist of Strings with a collection descriptor. A collection descriptor can
only be used if the element classis a persistent class too. But
element-class-ref="java.lang.String" won't work, because it's no persistent entity class!
Follow these steps to provide a mapping for an attribute holding alist of Strings. Let's assume
your persistent class has an attribute |l i st OF St ri ngs holding alist of Strings:

protected Collection IistOfStrings;

The database table mapped to the persistent class hasacolum LI ST_OF_STRI NGS of type
VARCHAR that is used to hold all strings.

<fi el d-descri pt or
name="1istOf Stri ngs"
col um="LI ST_OF_STRI NGS"
j dbc-t ype=" VARCHAR"
conver si on=
'/‘0. a. oj b. broker . accessl ayer. conversi ons. Stri ngVect or 2Var char Fi el dConver si on"
>

4.32. How to set up Optimistic Locking

Please see |ocking section.

4.33. How to use OJB in a cluster

Q: I'm running aweb site in aload-balanced/cluster environment. Multiple serviet engines
(different VMS/HTTP sessions), each running an OJB instance, against a single shared
database. How should OJB be configured to get the concurrent servlet engines synchronized
properly?

transactional isolation and locking

If you are using the PersistenceBroker API use optimistic locking (OL) to let OJB handle
write conflicts. To use OL definea TIMESTAMP or INTEGER column and the respective
Java attribute for it. In the field-descriptor of this attribute set the attribute locking="true".
If you are working with the ODMG API distributed pessemistic |ocking should be used, by
setting the respective flag in OJB.properties.

sequence numbers

Use a SequenceM anager that is safe across multiple VMs. The NextVal based
SequenceManagers or any other SequenceM anager based on database mechanisms will be
fine.

caching

Page 42

0oJB

Y ou could use different caching implementations

1. Usethe EmptyCachelmpl to avoid any dirty reads. (But: The EmptyCache cannot handle
cyclic structures on load!)

2. Usethe PerBrokerCache Implementation to avoid dirty reads.

3. Usethe OSCache cache implementation as distributed object cache.

There is also a complete howto document available that covers these topics.

4.34. How to turn of caching?

Declare an no-op implementation of the Cbj ect Cache interface as cache. See detailed
description here.

4.35. JDO - Why must my persisten classimplement javax.jdo.spi.PersistenceCapable?

As specified by JDO all persistent classe must implement the interface

j avax. j do. spi . Per si st enceCapabl e. If aclass does not implement this interface
a JDO implementation does not know how to handle it.

On the other hand the JDO spec claims to provide transaparent persistence. That is no
persistence classis required to implement a specific interface or to be derived from a special
base class.

Sounds like a contradiction? It is! The JDO spec resolves this contradiction by stating that a
JDO implemention is responsible to add the methods required by

j avax. j do. spi . Per si st enceCapabl e to the the user classes. This"injection” could
be achieved by Pre- or Post-processing. The strategy most implementations useis called
"bytecode-enhancement”. Thisis a postprocesing step that adds the required methods to the
.classfiles of the persistent user classes.

The JDO Reference implementation also uses bytecode-enhancement. In order to enhance the
Product classto implement thej avax. j do. spi . Per si st enceCapabl e interface use
the ant target "enhance-jdori" before launching the tutorial5 application. Thisis
documentated in the first section of tutorial4.html.

4.3. ObJectRelationalBridge - Getting Started

This document will guide you through the very first steps of setting up a project with OJB.
To make this easier, OJB comes with a blank project template called ojb-blank which you're
encouraged to use. Y ou can download it here.

For the purpose of this guide, we'll be showing you how to setup the project for asimple
application that handles products and uses MySQL. Thisis continued later on in the next

tutorial parts.

Page 43

0JB

4.3.1. Acquiring oj b-blank

First off, OJB uses Ant to build, so pleaseinstall it prior to using OJB. In addition, please
make sure that the environment variables ANT _HOVE and JAVA HOVE are correctly set to
the top-level folders of your Ant distribution and your JDK installation, respectively.

Next download the latest ojb-blank and OJB binary distributions. Y ou can also start with the
source distribution rather than the binary as the unit tests provide excellent sasmple code and
you can build the ojb-blank project on your own with it.

The ojb-blank project contains al libraries necessary to get running. However, there may be
additional libraries required when you venture deeper into OJB's APIs. See herefor alist of
additional libraries.

Most notably, you'll probably want to add the jdbc driver for you database unless you plan to
use the embedded Hsgldb database for which the ojb-blank project is pre-configured
(including all necessary jars).

4.3.2. Contents of ojb-blank

Copy the 0j b- bl ank. j ar fileto your project directory and unpack it via the command

jar xvf ojb-Dblank.jar

Thiswill unpack it into the oj b- bl ank directory under wherever you unpacked it from.
Y ou can move things out of that directory into your project directory, or, more simply,
rename the oj b- bl ank directory to be whatever you want your project directory to be
named.

After you unpacked the jar, you'll get the following directory layout:

\ 0j b- bl ank

.classpath

. proj ect

bui | d. properties

bui | d. xni

\lib

\src
\j ava
\resour ces
\ schema
\test

Here's aquick rundown on what the individual directories and files are:
.classpath, .project

An Eclipse project for your convenience. You can simply import it into Eclipse via
File -> Import... -> Existing Project into Workspace.

Page 44

0oJB

build.xml, build.properties

The Ant build script and the build properties. These are described in more detail
below.

lib

Contains the libraries necessary to compile and run your project. If you want to
use a different database than Hsqldb, then put the jars of your jdbc driver in here.
src/java

Put your java source code here.

src/resources

Contains the runtime configuration files for OJB. For more detail see below.
src/schema

Here you will find a schema containing tables that are required by certain
components of OJB such as clustered locking and OJB managed sequences.
More information on these tables is available in the platform documentation. The
schema is in a database-independent format that can be used by Torque or
commons-sql to create the database.

The ojb-blank project contains the runtime files of Torque 3.0.2, and provides a
build target that can be invoked on your schema (see below for details).
Therefore, this directory also contains the build script of Torque, but you won't
need to invoke it directly.

src/java

Place your unit tests in here.

4.3.2.1. Sample project

For our sample project, we should rename the directory to something more fitting, like
pr oduct manager .

Also, since we're using MySQL, we put the MySQL jar of the jdbc driver, which is called
something likenysql - connect or -j ava-[ver si on] - st abl e- bi n. j ar, intothe
| i b subdirectory.

The only other thing missing is the source code, but since that's what the other tutorials are
dealing with, we will silently assumethat it isalready presentinthesrc/j ava
subdirectory.

If you don't want to write the code yourself, you can use the code from one of the tutorials
which you can download here.

Notethat if you do not intent to use JDO, then you should delete thefilesinthe oj b. apache. oj b. t ut ori al 5, otherwise
you'll get compilation errors.

Page 45

0JB

4.3.3. Thebuild files

4.3.3.1. Configuration via build.properties

The next step isto adapt the build files, especially the bui | d. properti es fileto your
environment. It basically contains two sets of information, the database settings and the build
configuration. While you shouldn't have to change the latter, the database settings probably
need to be adapted to suit your needs:

Property Purpose
jcdAlias The name of the connection. You should leave
the default value, which is def aul t .
databaseName This is the name of the database, per default
oj b_bl ank.
databaseUser The user name for accessing the database

(default: sa). If you're using Torque to create the
database, then this user also requires sufficient
rights to create databases and tables.

databasePassword Password for the user, per default empty.
dbmsName The type of database, which is one of the
following:

Db2, Firebird, Hsqldb, Informix, MaxDB,
MsAccess, MsSQL, MySQL,Oracle (pre-9i
versions), Oracle9i, WLOracle9i (Oracle 9i or
above used from WebSphere), PostgreSQL,
Sapdb, Sybase (generic), SybaseASA,
SybaseASE.

Please note that this setting is case-sensitive.
Per default, Hsqgldb is used, which is an
embedded database. All files required for this
database come with the ojb-blank project.

jdbcRuntimeDriver The fully-qualified classname of the jdbc driver.
For Hsqldb this is or g. hsql db. j dbcDri ver.

jdbcLevel The jdbc level that the driver conforms to.
Please check the documentation of your jdbc
driver for this value, though most jdbc drivers
conform to version 2.0 at least.
For the Hsqldb jdbc driver this is 2.0.

urlProtocol The protocol of the database url (see below),
usually j dbc.

Page 46

0oJB

urlSubprotocol

urlDbalias

torque.database

The sub-protocol of the database url which is
database- and driver-specific. For Hsqldb, you're
using hsql db.

This is the address that points the jdbc driver to
the database. For Hsqldb this is per default the
database name.

If you're using Torque to create the database,
then you have to set the database here (again).
Unfortunately, this value is different from the
dbnsNane which defines the database for OJB.
Currently, these values are defined:

axion, cloudscape, db2, db2400, hypersonic
(which is Hsgldb), interbase (use for Firebird),
mssql, mysql, oracle, postgresql, sapdb, and
sybase.

Default value is hyper soni c for use with
Hsqldb.

torque.database.createUrl This specifies the url that Torque will use in

order to create the database. Depending on the
database, this may be the same as the normal
access url (the default value), but for some
database this is different. Please check the
manual of your database for this url.

If you know how the jdbc url for connecting to your database |ooks like, then you can derive
the settings dat abaseNane, dat abaseNane, dat abaseNane and dat abaseNane

easly:

Assumethisurl isgiven as.
j dbc: nysql : / /1 ocal host : 3306/ nyDat abase
then these properties are

databaseName
urlProtocol
urlSubprotocol

urlDbalias

Property Value
nmyDat abase
j dbc
mysql
/11 ocal host / nyDat abase

4.3.3.2. Building via build.xml

After setting up the build you're probably eager to actually build the project. Here's the

Page 47

0JB

actions that you can perform using the Ant build filebui | d. xm :

Action (target in the build.xml file) What it does
clean Cleans up all files from the previous build.
compile Compiles your java source files to

bui | d/ cl asses. Usually, you don't run this
target, but rather the next one which includes
the compilation step.

build Compiles your java sources files (using the
compile action), and prepares the runtime
configuration files using the settings that you
specified in the bui | d. properti es file, most
notably the r eposi t ory_dat abase. xni
which will be located in the bui | d/ r esour ces
directory after the build.
After you run this action, your application is
ready to go (if the action ran successfully, of
course).

jar A convenience action that packs your
successfully build application into a jar.

xdoclet Creates the runtime configuration files that
describe the repository, from javadoc comments
embedded in your java source files. Details on
how to this are given in the tutorials and in the
documentation of the XDoclet OJB module.

setup-db Creates the database and tables from a
database-independent schema using Torque.
You'll find more info on this schema in the
documentation of the XDoclet OJB module and

on the Torque homepage.

enhance-jdori This is a sample target that shows how a class
meant to be persistent with JDO, is processed
by the JDO bytecode enhancer from the JDO
reference implementation. It uses the Pr oduct
class from the JDO tutorial (tutorial 5).

So, atypical build would be achieved with this Ant call:
ant build

If you want to create the database as well, and you have javadoc comments in your source
code that describe the repository, then you would call Ant thisway:

Page 48

0oJB

ant build setup-db

Thiswill perform in that order the actionsbui | d, xdocl et (invoked automatically from
the next action) and set up- db.

Of course, you do not need to use Torque to setup your database, but it is a convenient way
to do so.

4.3.3.3. Sample project

First we change the database properties to these values (assuming that Torque will be used to
setup the database):

Property Value
jcdAlias We leave the default value of def aul t .
databaseName Since the application manages products, we call

the database pr oduct manager .

databaseUser This depends on your setup. For the purposes of
this guide, let's call him st eve.

databasePassword Again depending on your setup. How about
secr et (you know that you should not use this
password in reality ?!).

dbmsName My SQ

jdbcRuntimeDriver Its called com nysql . j dbc. Dri ver.
jdbcLevel For the newer Mysql drivers this is 3.0.
urlProtocol The default of j dbc will do.

urlSubprotocol For MySQL, we're using nysql .

urlDbalias Assuming that the database runs locally on the

default port, we have
/11 ocal host/ ${ dat abaseNane} .

torque.database We want to use Torque, so we put nysql here.

torque.database.createUrl MySQL allows to create a database via jdbc.
The url that we should use to do so, is the
normal url used to access the database minus
the database name. So the value here is:
${url Protocol }: ${url SubProtocol }://Iocal host/.
Please note that the trailing slash is important.

Ok, now we have everything configured for building. Thebui | d. properti es file now

Page 49

0JB

looks like this (the comments have been removed for brevity):

j cdAl i as=def aul t

dat abaseNane=pr oduct nanager
dat abaseUser =st eve

dat abasePasswor d=secr et

dbnsName=My SQL

j dbcLevel =3. 0

J dbcRunt i meDri ver =com nysql . j dbc. Dri ver
url Prot ocol =j dbc

ur | Subpr ot ocol =nysql

ur |l Dbal i as=//1 ocal host/ ${ dat abaseNane}

t or que. dat abase=nysql
t or que. dat abase. creat eUr | =${url Prot ocol }: ${ ur| Subprot ocol }:/ /1 ocal host/

j ar. name=pr oj ect manager.j ar

source.dir=src

source.java. dir=${source.dir}/java

source. resource. di r=${source. dir}/resources
source.test.dir=${source.dir}/test

sour ce. schena. di r =${ sour ce. di r}/ schenn

bui | d. di r=build

build.lib.dir=lib

bui |l d. cl asses. di r=${build.dir}/cl asses/
bui |l d. resource. di r=${buil d. dir}/resources/

target.dir=target

Looks like we're ready for building. Again, we're assuming that the source code is already
present. So we're invoking Ant now in the top-level folder pr oduct manager :

ant build setup-db
which should (assuming five java classes) produce an output like this

Bui l dfile: build.xn

conpi | e:
[mkdir] Created dir: /hone/stevelprojects/product manager/build
[mkdir] Created dir: /home/steve/projects/product manager/buil d/ cl asses
[javac] Conpiling 5 source files to

/ hone/ st eve/ proj ect s/ product manager/ bui | d/ cl asses

bui | d:
[copy] Copying 10 files to
/ hone/ st eve/ proj ect s/ product manager/ bui | d/ r esour ces

xdocl et :
[oj bdocl et] (XDocl et Mai n. start 47) Runni ng

Page 50

0oJB

<0j brepository/ >

[0] bdocl et] Cenerating ojb repository descriptor

(buil d/ resources//repository_user.xm)

[0j bdocl et] Type test. Project

[o] bdocl et] Processed 5 types

[o] bdocl et] Processed 5 types

[o] bdocl et] (XDocl et Mai n. start 47) Running

<t or queschema/ >

[0j bdocl et] Generating torque schema (buil d/resources//project-schenma. xnm)
[o] bdocl et] Processed 5 types

set up- db:

check- use-cl asspat h:
check-run-onl y- on- schema- change:
sqgl - check:

sql
[€CHO] H- e m e e e o +
[echo] |
[echo] | Generating SQ for YOUR Torque project! |
[echo] | Wo hoo! |
[echo] |

[€ChO] H---mm e e oo +

sqgl - cl asspat h:
[torque-sqgl] Using contextProperties file:
/ hone/ st eve/ proj ect s/ product manager/ bui | d. properties
torque-sql] Using cl asspath
torque-sql] Generating to file
/ hore/ st eve/ pr oj ect s/ product manager/ bui | d/ r esour ces/ report. product manager . sqgl . generatio
torque-sql] Parsing file: 'ojbcore-schema. xm'
torque-sqgl] (transform DTDResol ver 128) Resol ver: used
dat abase. dtd from
or g. apache. t or que. engi ne. dat abase. t r ansf or m package
torque-sql] Parsing file: 'project-schema. xm'
torque-sql] (transform DTDResol ver 140) Resol ver: used
http://jakarta. apache. org/turbi ne/ dt d/ dat abase. dtd

sql -tenpl at e:
cr eat e- db- check:

cr eat e- db:
[torque-data-nodel] Using classpath
[torque-data-npdel] Cenerating to file
/ hone/ st eve/ proj ect s/ product manager/ bui | d/ r esour ces/ cr eat e- db. sq
[torque-data-nodel] Parsing file: 'ojbcore-schena. xm'
[torque-data-nodel] (transform DIDResol ver 128) Resol ver:
used dat abase.dtd from

or g. apache. t or que. engi ne. dat abase. t ransf or m package
[torque-data-nodel] Parsing file: 'project-schema. xm'

Page 51

0JB

[torque-data-nodel] (transform DIDResol ver 140) Resol ver:
used
http://jakarta. apache. org/turbi ne/ dt d/ dat abase. dt d
[echo]
[echo] Executing the create-db.sql script
[echo]

[sql] Executing file:
/ hone/ st eve/ proj ect s/ product manager/ bui | d/ r esour ces/ cr eat e- db. sq
[sgl] 2 of 2 SQL statenments executed successfully

i nsert-sql:

[torque-sql -exec] Qur new url -> jdbc:nysql://1ocal host/product manager
[torque-sql -exec] Executing file:

/ hone/ st evel proj ect s/ product manager/ bui | d/ r esour ces/ pr oj ect - schena. sql
[torque-sql -exec] Executing file:

/ hone/ st evel proj ect s/ product manager/ bui | d/ r esour ces/ oj bcor e- schena. sql
[torque-sql -exec] 50 of 50 SQL statenents executed successfully

BU LD SUCCESSFUL
That wasiit. You now have your database setup properly. Go on, have alook:

nysqgl -u steve product manager

nysgl > show t abl es;

There, all tables for your project, as well as the tables required for some OJB functionality
which we also used in the above process (you can recognize them by their names which start
with oj b_).

4.3.4. Theruntime configuration files

The last thing missing for actually running your project is to adapt the runtime configuration
filesused by OJB. There are basically three sets of configuration that need to be provided:
configuration of the OJB runtime, description of the database connection, and description of
the repository.

4.3.4.1. Configuring the OJB runtime

With the OJB.properties file and OJB-logaing.properties (both located in
src/ resour ces), you configure and finetune the runtime aspects of OJB. For asimple
application you'll probably won't have to change anything in them, though.

4.3.4.2. Configuring the database connection

For projects that use OJB, you configure the connections to the database via jdbc connection
descriptors. These are usually defined in afilecalled r eposi t ory_dat abase. xmi
(locatedinsr c/ r esour ces). Inthe ojb-blank project, the build file will setup thisfile for

Page 52

0oJB

you and placeitinthebui | d/ r esour ces directory.

4.3.4.3. Configuring therepository

Finally you need to configure the repository. It consists of descriptors that define which java
classes are mapped in what way to which database tables, and it istypically contained in the
repository_user.xml file Thisisthe most complicated configuration part which will
be explained in much more detail in the rest of the tutorials.

An convenient way of creating the repository metadata is to use the XDoclet OJB module.
Basically, you put specific Javadoc comments into your source code, which are then
processed by the build file (xdocl et and set up- db targets) and the repository metadata
and the database schema are generated.

4.3.4.4. Sample project

Actualy, there is not much to do here. For our simple sample application the default
properties of OJB work just fine, so we leave QJB. pr operti es and
QJB- 1 oggi ng. properti es untouched.

Also, the build file generated the connection descriptor for us, and we were using the
XDoclet OJB module and Torque to generate the repository metadata and database for us.
For instance, the processed connection descriptor (file

bui | d/ resour ces/ repository_dat abase. xm) lookslikethis:

<j dbc- connecti on- descri pt or
jcd-alias="default"
def aul t - connecti on="t rue"
pl at f or m=" MySQL"
j dbc- I evel =" 3. 0"
driver="com nysql .jdbc. Driver"
pr ot ocol ="j dbc"
subpr ot ocol ="nysql "
dbal i as="//1 ocal host/ product manager "
user nanme="st eve"
passwor d="secret"
eager -rel ease="fal se"
bat ch- node="f al se"
useAut oCommi t =" 1"
i gnor eAut oConmmi t Excepti ons="f al se"
>
<obj ect - cache
cl ass="org. apache. oj b. br oker . cache. Obj ect CacheDef aul t | npl ">
<attribute attribute-nanme="tinmeout" attribute-val ue="900"/>
<attribute attribute-nanme="autoSync" attribute-val ue="true"/>
</ obj ect - cache>
<connecti on- poo
maxAct i ve="21"

Page 53

val i dati onQuery=

<sequence- nanager

0JB

cl assNane="or g. apache. oj b. broker. util. sequence. SequenceManager H ghLow npl " >

<attribute attribute-name="grabSi ze" attri bute-val ue="20"/>

<attribute attribute-name="autoNani ng" attribute-val ue="true"/>

<attribute attribute-nanme="gl obal Sequencel d"
attribute-val ue="fal se"/>

<attribute attribute-nane="gl obal SequenceStart"
attri but e-val ue="10000"/ >

</ sequence- manager >

</ j dbc- connecti on-descri ptor>
If you're curious as to what this stuff means, check this reference guide.

The repository metadata (filebui | d/ r esour ces/ reposi tory_user. xm) starts

like:

<cl ass-descri pt or

cl ass="pr oduct manager . Product "

t abl e=" Pr oduct "

<fi el d-descri pt or
nanme="naneg"
col um="nane"

j dbc-t ype=" VARCHAR'

| engt h="32"
>
</fiel d-descriptor>
<fi el d-descri pt or
nane="price"
col um="price"

j dbc-t ype="FLOAT"

>
</field-descriptor>
<fi el d-descri pt or
nane="st ock"
col um="st ock"

j dbc-t ype="| NTEGER'

>
</fiel d-descriptor>
<fi el d-descri pt or
nane="id"
col um="i d"

j dbc-t ype="1 NTEGER"
pri marykey="true"

>
</fiel d-descriptor>
</ cl ass-descri ptor>

Now you should be able to run your application:

cd buil d/ resources

Page 54

0oJB

j ava product manager. Mai n

Of course, you'll need to setup the CLASSPATH before running your application. You'll
should add all jarsfrom thel i b folder except the ones for Torque
(torque-[version].jar,velocity-[version].jar and

commons-col | ecti ons-[version].jar)andforthe XDoclet OJB module
(xdocl et -[version].jar,xjavadoc-[version].jar and

xdocl et - o] b-nodul e-[version].jar).

It isimportant to note that OJB per default assumesthe QJB. pr operti es and

QJB- | oggi ng. properti es filesin the directory where you're starting the application.
Hence, we changed to the bui | d/ r esour ces directory before running the application.
This of course requires the compiled classes to be on the classpath, as well (directory

bui | d/ cl asses).

Per default, the same applies to the other configuration files (r eposi t or y*. xm) but you
can changethisinthe QJB. pr operti es file

4.35. Learning More

After you've have learned about building and configuring projects that use OJB, you should
check out the tutorials to learn how to specify your persistent classes and how to use OJB's
APIsto perform database operations. The Mapping Tutorial in particular shows you how to
map your classes to tablesin an RDBMS.

4.4. Tutorials
4.4.1. Tutorial Summary

44.1.1. Tutorials

Here can be found a summary of al tutorials.

e Object-Relational Mapping
The Object-Relational Mapping tutorial walks though a basic metadata mapping for an
object to arelational database.

o The Persistence Broker API
The PB tutorial demonstrates how to use the Per si st enceBr oker API which forms
an object persistence kernel for OJB. Whileit isthe lowest level API provided by OJB it
is also exceptionally easy to use.

« TheODMG API
The ODMG AP tutorial steps though using the ODMG 3.0 API provided by OJB. Thisis

Page 55

0JB

an industry standard APl designed for Object Databases.

The JDO API

JDO isastandard API for accessing persistent objectsin Java. Thistutorial steps through
how to use OJB's JDO plugin.

The Object Transaction Manager

The OTM is OJB's implementation of object level transactions. These are transactions
independent of the underlying relational database providing more efficient resource
utilisation and extremely flexible locking semantics.

Further strongly recommended documentation for all beginners:

OJB Queries

This document explains the usage of the query syntax.

Basic O/R Technique

This tutorial explains basic object-relational mapping technique in OJB like 1:1, 1:n and
m:n relations, the auto-xxx settings for references and proxy objects/collections.
Toolsto build large metadata mappings

Explains how to build large metadata mapping and present useful tools.

4.4.2. Mapping Tutorial

4.4.2.1. What isthe Object-Relational Mapping M etadata?

The O/R mapping metadata is the specific configuration information that specifies how to
map classes to relational tables. In OJB thisis primarily accomplished through an xml
document, ther eposi t ory. xm file, which contains all of the initial mapping
information.

TheProduct Class

Thistutorial looks at mapping a simple class with no relations:

package org. apache.ojb.tutorials;
public class Product

[** product name */
private String nane;

/** price per item™*/
private Doubl e price;

/** stock of currently available itens */
private int stock;

Page 56

0oJB

}

Thisclass hasthreefields, pri ce, stock, and nane, that need to be mapped to the
database. Additionally, we will introduce one artificial field used by the database that has no
real meaning to the class, an artificial key primary id:

[** Artificial primry-key */
private Integer id;

Including the primary-key attribute in the class definition is mandatory, but under certain
conditions anonymous keys can aso be used to keep this database artifact hidden in the
database. However, as access to an artifical unique identifier for a particular object instance
can be useful, particularly in web-based applications, this tutorial will expose it

The Database

OJB isvery flexible in terms of how it can map classes to database tables, however the
simplest technique for mapping asingle classto arelational database isto map the classto a
single table, and each attribute on the class to a single column. Each row will then represent a
unique instance of that class.

The DDL for such atable, for the Pr oduct class might look like:

CREATE TABLE Product

(
id | NTEGER PRI MARY KEY,

nane VARCHAR(100),
pri ce DOUBLE,
st ock | NTEGER

)

The individual field names in the database and class definition match here, but thisisno
requirement. They may vary independently of each other as the metadata will specify what
maps to what.

The Metadata

Ther eposi tory. xm document is split into several physical documents. The
reposi tory_user. xm xml fileisused to contain user-defined mappings. OJB uses the
other ones for managing other metadata, such as database information.

In general each classwill be defined withinacl ass- descri pt or element with
fiel d-descri pt oy child elementsfor each field. In addition the mapping of references
and collectionsis described in the basic technigue section. Thistutorial sticksto mapping a

Page 57

0JB

single, smplistic, class.

The complete mapping for the Pr oduct classisasfollows:

<cl ass-descri pt or
cl ass="org. apache. oj b.tutorial s. Product™"
t abl e="Product "

<fi el d-descri pt or
nane="id"
col um="i d"
pri marykey="true"
aut oi ncrenent ="t rue"

/>

<fi el d-descri pt or
name="namnme"
col um="nane"

/>

<fi el d-descri pt or
nanme="price"
col um="pri ce"

/>

<fi el d-descri pt or
nane="st ock"
col um="st ock"

/>

</ cl ass-descri pt or >

Examinethecl ass- descri pt or element. It has two attributes:

« class- Thisattribute is used to specify the fully-qualified Java class name for this

mapping.
« table - Thisattribute specifies which table is used to store instances of this class.

Other information can be specified here, such as proxies and custom row-readers as specified
in the repository.xml documentation.

Examine now thefirstfi el d- descri pt or element. Thisisused to describethei d field
of the Pr oduct class. Two required attributes are specified:

« name - This specifies the name of the instance variable in the Java class.
« column - This specifies the column in the table specified for this class used to store the
value.

In addition to those required attributes, notice that the first element specifies two optional
attributes:

« primary-key - This attribute specifies that thisfield is the primary key for this class.
e autoincrement - Theaut oi ncr enent attribute specifies that the value will be
automatically assigned by OJB sequence manager. This might use a database supplied

Page 58

0oJB

sequence, or, by default, an OJB generated value.

Using the XDoclet module

OJB provides an XDoclet module to make generating the repository descriptor and the
corresponding table schema easier. An XDoclet module basically processes custom JavaDoc
tags in the source code, and generates files from them. In the case of OJB, two types of files
can be generated: the repository descriptor (r eposi t ory_user. xm) and aTorque
schema which can be used to create the tables in the database. This provides one important
benefit: the descriptor and the database schema are much more likely in sync with the code
thus avoiding errors that are usually hard to find. Furthermore, the XDoclet module contains
some checks that find common mapping errors.

In the above example, the source code for Product class with JavaDoc tags would ook like:

package org. apache.ojb.tutorials;

/**

* @jb.class
*/

public class Product

/**

* Artificial primry-key

* @jb.field primrykey="true"

* aut oi ncr enent =" oj b"
*/

private Integer id;

/**

* product nane

*

* @jb.field I engt h="100"
*)

private String nane;

/**
* price per item
*
* @jb.field
S
private Double price;
/**
* stock of currently available itens
* @jb.field
*/

private int stock;

Page 59

0JB

}

Asyou can see, much of the stuff that is present in the descriptor (and the DDL) is generated
automatically by the XDoclet module, e.g. the table/column names and the jdbc-types. Of
course, you can also specify them in the JavaDoc tags, e.g. if they differ from the java names.

For details on OJB's JavaDoc tags and how to generate and use the mapping files please see
the OJB XDoclet Module documentation.

4.4.2.2. Advanced Topics

Relations

As most object models have relationships between objects, mapping specific types of
relationships (1:1, 1:Many, Many:Many) isimportant in mapping objects into arelational
database. The basic technique tutorial discussesthisin great detail.

It isimportant to note that this metadata mapping can be modified at runtime through the
org. apache. o] b. net adat a. Met adat aManager class.

Inheritence

OJB can map inheritence hierarchies using a variety of techniques discussed in the Extents
and Polymorphism section of the Advanced O/R Documentation

Anonymous Keys

Thistutorial uses explicit keys mapped into the Java class. It is aso possible to keep artificial
keys completely hidden within the database. The Anonymous Keys HOWTO explains how
thisis accomplished.

Large Projects

Projects with small numbers of persistent classes can be mapped by hand, however, many
projects can have hundreds, or even thousands, of distinct classes which must be mapped. In
these circumstances managing the class-database mapping by hand is not viable. The How
To Build Mappings HOWTO explores different tools which can be used for managing
large-scale mapping.

Custom JDBC Mapping

OJB maps Java types to JDBC types according to the JDBC Types table. Y ou can, however,
define custom JDBC -> Java type mappings via custom field conversions.

Page 60

0oJB

4.4.3. Persistence Broker Tutorial

4.4.3.1. The PersistenceBroker API

Introduction

The PersistenceBroker API provides the lowest level accessto OJB's persistence engine.
Whileitisalow-level APl compared to the OTM, ODMG, or JDO API'sit isstill very
straightforward to use.

The core class in the PersistenceBroker APl isthe
or g. apache. oj b. br oker . Per si st enceBr oker class. This class provides the
point of access for all persistence operationsin this API.

More detailed information can be found in the PB-guide and in the other reference quides.

This tutorial operates on a simple example class:

package org. apache.ojb.tutorials;
public class Product
{ /* Instance Properties */
private Doubl e price;
private |Integer stock;
private String namne;l ean
[* artificial property used as primary key */
private Integer id;
/* Cetters and Setters */

}
The metadata descriptor for mapping this classis described in the mapping tutorial

The source code for all tutorialsis available in the seperatet ut ori al s-src. j ar which
you can download here. If you're eager to try them out, you can use them with the ojb-blank

project which can be downloaded from the same place. It is described in the Getting started
section.

Further information about the OJB PB-api implementation can be found in the PB guide.

A First Look - Persisting New Objects

Page 61

0JB

The most basic operation is to persist an object. Thisis handled very easily by just

obtaining aPer si st enceBr oker

begin the PB-transaction

storing the object viathe Per si st enceBr oker
commit transaction

. closing the Per si st enceBr oker

For example, the following function stores a single object of type Pr oduct .

abrwdE

public static void storeProduct(Product product)

{
Per si st enceBr oker broker = null;
try
br oker = Persi st enceBrokerFact ory. def aul t Persi st enceBr oker () ;
br oker. begi nTransacti on();
br oker. st ore(product) ;
br oker. conm t Transacti on();
cat ch(Persi st enceBr oker Excepti on e)
i f(broker !'= null) broker.abortTransaction();
/1 do nmore exception handling
}
finally
{
if (broker !'= null) broker.close();
}
}

Two OJB classes are used here, the Per si st enceBr oker Fact or y and the

Per si st enceBr oker . ThePer si st enceBr oker Fact or y class manages the
lifecycles of Per si st enceBr oker instances: it creates them, pools them, and destroys
them as needed. The exact behavior is very configurable.

In this case we used the static

Per si st enceBr oker Fact ory. def aul t Per si st enceBr oker () method to
obtain an instance of aPer si st enceBr oker to the default data source. Thisis most often
how it isused if there is only one database for an application. If there are multiple data
sources, a broker may be obtained by name (using a PBKey instance as argument in

Per si st enceBr oker Fact ory. cr eat ePer si st enceBr oker (pbKey)).

It isworth noting that the br oker . cl ose() call ismadewithinafinally {...}
block. This ensures that the broker will be closed, and returned to the broker pool, even if the
function throws an exception.

To usethisfunction, we just create a Pr oduct and passit to the function:

Page 62

0oJB

Product product = new Product ();

product . set Nane(" Sprocket");

product. setPrice(1.99);

product . set St ock(10);

st or ePr oduct (product);

OnceaPer si st enceBr oker has been obtained, its

Per si st enceBr oker . st or e(Obj ect) method is used to make an object persistent.

Maybe you have noticed that there has not been an assignment to pr oduct . i d, the
primary-key attribute. Upon storing pr oduct OJB detects that the attribute is not properly
set and assigns a unique id. This automatic assignment of unique Ids for the attribute i d has
been explicitly declared in the XML repository file, as we discussed in the .

If several objects need to be stored, this can be done within a transaction, as follows.

public static void storeProducts(Product[] products)

{

Per si st enceBr oker broker = null;

try

{
broker = Persi stenceBrokerFactory. def aul t Persi st enceBr oker () ;
br oker. begi nTransacti on();
for (int i = 0; i < products.length; i++)
{

br oker. store(products[i]);

br oker. commi t Transacti on() ;

}

cat ch(Persi st enceBr oker Excepti on e)
i f(broker !'= null) broker.abortTransaction();
/1 do nmore exception handling

}

finally

{
if (broker !'= null) broker.close();

}

}

This contrived example stores al of the passed Product instances within a single transaction
viathe Per si st enceBr oker . begi nTransacti on() and

Per si st enceBr oker. comm t Transacti on() . These are database level
transactions, not object level transactions.

Querying Persistent Objects

Once objects have been stored to the database, it isimportant to be able to get them back.
The PersistenceBroker API provides two mechanisms for building queries, by using a

Page 63

0JB

template object, or by using specific criteria

public static Product findByTenpl ate(Product tenplate)
{

Per si st enceBr oker broker = null;
Product result = null;

try

br oker = Persi st enceBroker Fact ory. def aul t Persi st enceBr oker () ;
QueryByCriteria query = new QueryByCriteria(tenplate);
result = (Product) broker.getObjectByQuery(query);

3
finally
if (broker !'= null) broker.close();

} return result;

Thisfunction findsaPr oduct by building aquery against atemplate Pr oduct . The
template should have any properties set which should be matched by the query. Building on
the previous example where a product was stored, we can now query for that same product:

Product product = new Product ();
product . set Nane(" Sprocket ") ;
product . set Pri ce(new Doubl e(1.99));
product . set St ock(new | nt eger (10));
st or eProduct (product);

Product tenplate = new Product();
t enpl at e. set Nane(" Sprocket");
Product saneProduct = findByTenpl ate(tenpl ate);

In the above code snippet, pr oduct and sanmePr oduct will reference the same object
(assuming there are no additional products in the database with the name " Sprocket").

Thetemplate Pr oduct hasonly one of its properties set, the nane property. The others are
all null. Properties with null values are not used to match.

An aternate, and more flexible, way to have specified a query viathe PersistenceBroker API
is by constructing the criteria on the query by hand. The following function does this.
public static Collection getExpensiveLowSt ockProducts()

Per si st enceBroker broker = null;
Coll ection results = null;

try
broker = Persi stenceBrokerFactory. def aul t Persi st enceBr oker () ;

Criteria criteria = new Criteria();

Page 64

0oJB

criteria.addLessOr Equal Than("stock”, new I nteger(20));
criteria.addG eat er Or Equal Than("price", new Doubl e(100000.0));

QueryByCriteria query = new QueryByCriteria(Product.class,
criteria);
results = broker.getColl ectionByQuery(query);

3
finally
if (broker !'= null) broker.close();

return results;

Thisfunction buildsaCri t er i a object and usesit to set more complex query parameters -
in this case greater-than and less-than contraints. Looking at the first constraint put on the
criterigcriteri a. addLessOr Equal Than("st ock”, new I nteger(10));
notice the arguments. The first is the property name on the object being queried for. The
secondisan | nt eger instance to be used for the comparison.

AftertheCri t eri a hasbeen built, the Quer yByCri t eri a constructor used is also
different from the previous example. In this case the criteria does not know the type of the
object it isbeing used against, so the Cl ass must be specified to the query.

Finally, notice that this example uses the

Per si st enceBr oker . get Col | ecti onByQuery(...) method instead of the
Per si st enceBr oker . get Obj ect ByQuer y(...) method used previously. Thisis
used because we want all of the results. Either form can be used with either method of
constructing queries. In the case of the

Per si st enceBr oker . get Obj ect ByQuery(...) stylequery, thefirst matching
object isreturned, even if there are multiple matching objects.

Updating Persistent Objects

The same mechanism, and method, is used for updating persistent objects as for inserting
persistent objects. The same Per si st enceBr oker . st or e(Obj ect) method is used to
store amodified object asto insert a new one - the difference between new and modified
objectsisirrelevent to OJB.

This can cause some confusion for people who are very used to working in the stricter
confines of SQL inserts and updates. Basically, OJB will insert a new object into the
relational storeif the primary key, as specified in the O/R metadatais not inuse. If itisin
use, it will update the existing object rather than create a new one.

This allows programmers to treat every object the same way in an object model, whether it
has been newly created and made persistent, or materialized from the database.

Page 65

0JB

Typically, making changes to a peristent object first requires retrieving a reference to the
object, so the typical update cycle, unless the application caches objects, isto query for the
object to modify, modify the object, and then store the object. The following function
demonstrates this behavior by "selling" a Product.

public static bool ean sel | OneProduct (Product tenpl ate)

{

Per si st enceBr oker broker = null;

bool ean isSol d = fal se;

try

{
br oker = Persi stenceBroker Factory. def aul t Per si st enceBr oker () ;
QueryByCriteria query = new QueryByCriteria(tenplate);
Product result = (Product) broker.get Qbject ByQuery(query);

if (result !'= null)

br oker . begi nTransacti on() ;

result.set Stock(new I nteger(result.getStock().intValue() - 1));
br oker.store(result);

/] alternative, nore performant

/1 broker.store(result, CbjectMdificationDefaultlnpl.UPDATE)
br oker. commi t Transacti on();

isSold = true;

}

}
cat ch(Persi st enceBr oker Excepti on e)

i f(broker !'= null) broker.abortTransaction();
/1 do nore exception handling

3
finally
if (broker !'= null) broker.close();

} return isSol d;

This function uses the same query-by-template and Per si st enceBr oker . st ore()
API's examined previously, but it uses the store method to store changes to the object it
retrieved. It isworth noting that the entire operation took place within atransaction.

Deleting Persistent Objects

Deleting persistent objects from the repository is accomplished viathe
Per si st enceBr oker . del et e() method. Thisremoves the persistent object from the
repository, but does not affect any change on the object itself. For example:

public static void del et eProduct (Product product)

{

Page 66

0oJB

Per si st enceBr oker broker = null;

try

{
br oker = Persi st enceBroker Fact ory. def aul t Persi st enceBr oker () ;
br oker. begi nTransacti on();

br oker . del et e(product);
br oker. commi t Transacti on() ;

}
cat ch(Persi st enceBr oker Excepti on e)

i f(broker !'= null) broker. abortTransaction();
/1 do nmore exception handling

}

finally

{
if (broker !'= null) broker.close();

}

}
This method simply deletes an object from the database.

Find object by primary key

In some cases only the primary key values (single field or n-fields for composed primary
keys) of an object are known. In OJB you have several ways to request the whole object. Itis
possible to build a query as shown above, but the smarter solution isto use

Per si st enceBr oker #get Obj ect Byl dentity(ldentity oid).An|dentity
object is aunique representation of a persistence capable object based on the object primary
key values and the top-level class (abstract class, interface or the classitself, depending on
the extent metadata mapping).

For example, to find an Product with an single primary key of '23' do

Identity oid = broker.serviceldentity().buildldentity(Product.class, new
I nt eger (23));
Product product = (Product) broker.getCbjectByldentity(oid);

4.4.3.2. Exception Handling

Most Per si st enceBr oker operationsthrow a

or g. apache. oj b. br oker . Per si st enceBr oker Except i on, which isderived
fromj ava. | ang. Runti meExcept i on if an error occurs. This means that no try/catch
block isrequired but does not mean that it should not be used. This tutorial specifically does
not catch exceptions al in order to focus more tightly on the specifics of the API, however,
best usage would be to include a try/catch/finally block around persistence operations using
the PeristenceBroker API.

Additionally, the closing of Per si st enceBr oker instancesisbest handledinfi nal | y

Page 67

0JB

blocksin order to guarantee that it is run, even if an exception occurs. If the

Per si st enceBr oker . cl ose() isnot called then the application will leak broker
instances. The best way to ensure that it is always called is to aways retrieve and use

Per si st enceBr oker instanceswithinatry {...} block, and always close the broker
inafinally {...} block attachedtothetry {...} block.

A better designed get Expensi veLowSt ockPr oduct s() method is presented here.

public static Collection betterGet Expensi veLowSt ockProduct s()
{

Persi st enceBr oker broker = null;
Col l ection results = nul | ;

try
{

br oker = Persi stenceBrokerFactory. def aul t Per si st enceBr oker () ;

Criteria criteria = new Criteria();
criteria.addLessOr Equal Than("stock”, new Integer(20));
criteria.addG eat er Or Equal Than("price", new Doubl e(100000.0));

QueryByCriteria query = new QueryByCriteria(Product.class,
criteria);
results = broker.getColl ectionByQuery(query);

cat ch (PersistenceBroker Exception e)

{
/1 Handl e exception
}
finally
if (broker !'= null) broker.close();

return results;

}

Noticefirst that the Per si st enceBr oker isretrieved and used within the confines of a
try {...} block. Assuming nothing goes wrong the entire operation will execute there,
al theway tother et urn resul ts; line Javaguaranteesthatfi nal ly {...} blocks
will be called before amethod returns, so the br oker . ¢l ose() method isonly included
once, inthef i nal | y block. Asan exception may have occured while attempting to retrieve
the broker, a not-null test isfirst performed before closing the broker.

4.4.4. The ODMG API

4.4.4.1. Introduction

The ODMG API is an implementation of the ODMG 3.0 Object Persistence API. The ODMG
API provides a higher-level API and query language based interface over the

Page 68

0oJB

PersistenceBroker API.

More detailed information can be found in the ODM G-guide and in the other reference
quides.

Thistutorial operates on asimple example class:

package org. apache.ojb.tutorials;

public class Product

/* Instance Properties */

private Double price;

private Integer stock;

private String nane;

/* artificial property used as prinmary key */
private Integer id;

/* Getters and Setters */

}

The metadata descriptor for mapping this class is described in the mapping tutorial

When using 1:1, 1:n and m:n references (the example doesn't use it) the ODM G-api need
specific metadata settings on relationship definition, the mandatory settings are listed in the
ODMG-Guide - additional info see auto-xxx settings and repository file settings.

Aswith the other tutorials, the source code for this tutorial is contained in the

tutorial s-src.jar whichcan be downloaded here. The source files are contained in
theor g/ apache/ oj b/ tutori al 2/ directory.

You can try it out with the ojb-blank project which can be downloaded from the same place
and is described in the Getting started section.

Further information about the OJB odmg-api implementation can be found in the ODMG
quide.
4.4.4.2. Initializing ODMG

The ODMG implementation needs to have a database opened for it to access. Thisis
accomplished viathe following code:

| mpl enent ati on odng = QJB. get | nst ance();
Dat abase db = odng. newbDat abase() ;
db. open("default", Database. OPEN_READ WRI TE);

Page 69

0JB

/* ... use the database ... */

db. cl ose();

With method call QJB. get | nst ance() alwaysanew org.odmg.lmplementation instance
will be created and odng. newDat abase() returnsanew Dat abase instance.

Call db. open(...) opensan ODMG Dat abase using the name specified in metadata
for the database -- "default” in this case. Notice the Dat abase isopened in read/write
mode. It is possible to open it in read-only or write-only modes as well.

Onceal npl enent at i on instanceis created and a Dat abase has been opened itis
availablefor use. Unlike Per si st enceBr oker instances, ODMG | npl enent ati on
and Dat abase instances are threadsafe and can typically be used for the entire lifecycle of
an application. Thereisno need to call the Dat abase. cl ose() method until the database
istruly no longer needed.

The QJB. get I nst ance() function providesthe ODMG | npl enent at i on instance
required for using the ODMG API. From here on out it is straight ODMG code that should
work against any compliant ODMG implementation.

4.4.4.3. Persisting New Objects

Persisting an object viathe ODMG API is handled by writing it to the peristence store within
the context of a transaction:

public static void storeNewProduct (Product product)

/1 get the used Inplenentation instance
| mpl enentation odnmg = .. .;

Transacti on tx = odng. newlransacti on();
t x. begi n();

/1 get current used Dat abase instance
Dat abase db = odng. get Dat abase(nul |');

/1 make persistent new object

db. makePer si st ent (product) ;

tx.commt();

}

Once the ODM G implementation has been obtained it is used to begin atransaction, obtain a
write lock on the Pr oduct , and commit the transaction. It is very important to note that all
changes need to be made within transactions in the ODMG API. When the transaction is
committed the changes are made to the database. Until the transaction is committed the
database is unaware of any changes -- they exist solely in the object model.

4.4.4.4. Querying Persistent Objects

Page 70

0oJB

The ODMG API uses the OQL query language for obtaining references to persistent objects.
OQL isvery similar to SQL, and using it is very similar to use JDBC. The ODMG
implementation is used to create a query, the query is specifed, executed, and alist fo results
is returned:

public static Product findProductByNanme(String nanme) throws Exception
{

/1 get the used Inplenentatlon i nst ance

| npl enentati on odng = .

Transaction tx = odng. nemﬂransactlon()

t x. begi n();

OQLQuery query = odng. newOQLQuery();
query. create("sel ect products from"
+ Product. cl ass. get Nanme()
+ " where name = $1");
query. bi nd(nane) ;
List results = (List)
:(r

guery. execute();
Pr oduct product d

oduct) results.iterator().next();

tx.commit();
return product;

}
4.4.4.5. Updating Persistent Objects

Updating a persistent object is done by modifying it in the context of a transaction, and then
committing the transaction:

public static void sellProduct(Product product, int nunber)

/1 get the used Inplenentat|on i nst ance
| npl enent ati on odng = .

Transaction tx = odng. nemﬂransactlon()
t x. begi n();

t x. |l ock(product, Transaction. Rl TE)
product . set St ock(new I nt eger (product. get Stock().intValue() - nunber));

tx.commt();

}

The sample code obtains awrite lock on the object (befor e the changes are made), binding it
to the transaction, changes the object, and commits the transaction. The newly modified

Pr oduct now hasanew st ock value.

4.4.4.6. Deleting Persistent Objects
Deleting persistent objects requires directly addressing the Dat abase which contains the

Page 71

0JB

persistent object. This can be obtained from the ODMG | npl enent at i on by asking for
it. Once retrieved, just ask the Dat abase to delete the object. Once again, thisisall donein
the context of atransaction.

public static void del eteProduct (Product product)

{
/1 get the used I nplenentation instance
| mpl enentation odng = ...;
Transaction tx = odng. newlransacti on();
t x. begi n();
/1 get current used Dat abase instance
Dat abase db = odng. get Dat abase(nul |);
db. del et ePer si st ent (product) ;
tx.commt();

}

It isimportant to note that the Dat abase. del et ePer sti ent () call doesnot delete the
object itself, just the persistent representation of it. The transient object still exists and can be
used however desired -- it is simply no longer persistent.

4.45.JDO Tutorial

4.45.1. Using the ObJectRelationalBridge JDO API

Introduction

This document demonstrates how to use ObjectRelational Bridge and the JDO APl ina
simple application scenario. The tutorial application implements a product catalog database
with some basic use cases. The source code for the tutorial application is shipped in the
tutorial s-src.jar whichcan bedownloaded here. The source for thistutorial isfound
in the directory or g/ apache/ oj b/ tut ori al 5.

This document is not meant as a complete introduction to JDO. For more information see:
Sun's JDO site.

OJB does not provide it's own JDO implementation yet. A full IDO implementation isin the scope of the 2.0 release.
For the time being we provide a plugin to the JDO reference implementation called § bSt or e. The§ bSt or e plugin
residesin the package or g. apache. oj b. j dori . sql .

Running the Tutorial Application

Toinstall and run the demo application with the oj b- bl ank sample project (whichis

Page 72

0oJB

described in more detail here) please follow the following steps:

1.

Extractthet ut ori al - src.j ar that you downloaded from hereintothesrc/j ava
subdirectory of the 0] b- bl ank project.

The JDO tutorial sourcefilesare contained intheor g/ apache/ oj b/ tutorial 5
subdirectory, and you can safely erase the subdirectories of the other tutorials.
Download the JDO Reference Implementation from Sun's JDO site.

Extract the archiv to alocal directory and copy thefiles:

e jdori.jar

e jdo.jar

intothel i b directory of the project.

Now you can run the test application with these commands:

ant build enhance-j dori

from the toplevel project directory. The latter of these commands will enhance the jdo
tutorial classes. Note that due to some limitations in the JDO reference implementation,
the ant target will only work for the JDO tutorial, so if you want to create you own JDO
application using the ojb-blank project, you have to adapt the build file accordingly.

To setup the test database you can issue this command

ant setup-db
Now you can start the tutorial application by executing

cd buil d/ resources

java org. apache.oj b.tutorial 5. Main
from the project toplevel directory.

4.45.2. Usingthe JDO API in the UseCase | mplementations

As shown here OJB supports four different API's. The PersistenceBroker, the OTM layer, the
ODMG implementation, and the JDO implementation.

The PB tutorial implemented the sample application's use cases with the PersistenceBroker
API. Thistutorial will show how the same use cases can be implemented using the JDO API.

Y ou can get more information about the JDO API at JDO javadocs.

Obtaining the JDO PersistenceM anager Object

In order to access the functionalities of the JIDO API you have to deal with a special facade
object that serves as the main entry point to all JDO operations. This facade is specified by
the Interfacej avax. j do. Per si st enceManager .

A Vendor of aJDO compliant product must provide a specific implementation of the

Page 73

0JB

j avax. j do. Per si st enceManager interface. JDO also specifiesthat a JDO
implementation must provideaj avax. j do. Per si st enceManager Fact ory
implementation that is responsible for generating j avax. j do. Per si st enceManager
instances.

So if you know how to use the JDO API you only have to learn how to obtain the OJB
specific PersistenceM anagerFactory object. Ideally thiswill be the only vendor specific
operation.

In our tutorial application the Per si st enceManager Fact or y object isobtained in the
constructor of the Application class and reached to the use case implementations for further

usage:

?ubl ic Application()

factory = null;
manager = null;
try

/] create QJB specific factory:
factory = new Q bSt or ePM=() ;

}
catch (Throwabl e t)
{

Systemout.println("ERROR " + t.getMessage());
t.printStackTrace();

useCases = new Vector();

useCases. add(new UCLi st Al | Product s(factory));
useCases. add(new UCEnt er NewPr oduct (factory));
useCases. add(new UCEdi t Product (factory));
useCases. add(new UCDel et eProduct (factory));
useCases. add(new UCQui t Appl i cation(factory));

}
Theclassor g. apache. oj b. jdori.sql. G bSt or ePMF isthe OJB specific
j avax. j do. Per si st enceManager Fact or y implementation.

HitHHHHHA#H#H TODO: Put information about the .jdo fil es #HHHHHHHH

ThePer si st enceManager Fact or y object is reached to the constructors of the
UseCases. These constructors store it in a protected attribute f act or y for further usage.

Retrieving collections

The next thing we need to know is how this Implementation instance integrates into our
persistence operations.

In the use case UCLi st Al | Pr oduct s we haveto retrieve a collection containing all

Page 74

0oJB

product entries from the persistent store. To retrieve a collection containing objects matching
some criteriawe can use the JIDOQL query language as specified by the JDO spec. In our use
case we want to select all persistent instances of the class Products. In this case the query is

quite simple as it does not need any limiting search criteria

We use the factory to create a PersistenceM anager instance in step one. In the second step we

ask the PersistenceManager to create a query returning all Product instances.

In the third step we perform the query and collect the results in a collection.

In the fourth step we iterate through the collection to print out each product matching our

query.

public void apply()
{

/1 1. get a PersistenceManager instance

Per si st enceManager

Systemout.println("The |ist of available products:");

try
{

/1 clear cache to provoke query agai nst database
Per si st enceBr oker Fact ory.
def aul t Per si st enceBr oker (). cl ear Cache();

/1 2. start tx and form query
manager . current Transacti on() . begi n();
Query query = manager. newQuery(Product. cl ass);

/1 3. perform query
Col l ection all Products = (Col |l ection)query.execute();

/1l 4. nowiterate over the result to print each
/1 product and finish tx
java.util.lterator iter = allProducts.iterator();
i f (! iter.hasNext())
{
Systemout. println("No Product entries found!");
}
while (iter.hasNext())
{
Systemout.println(iter.next());

manager . current Transaction().commt ();

}
catch (Throwable t)

t.printStackTrace();

}
finally
{

Page 75

manager = factory. get Persi st enceManager () ;

0JB

manager . cl ose();
}
Storing objects

Now we will have alook at the use case UCEnt er NewPr oduct . It works as follows: first
create a new object, then ask the user for the new product's data (productname, price and
available stock). These datais stored in the new object's attributes. This part is no different
from the PB tutorial implementation. (Steps 1. and 2.)

Now we will store the newly created object in the persistent store by means of the JDO API.

With JDO, all persistence operations must happen within atransaction. So the third step isto
ask the PersistenceManager object for afreshj avax. j do. Tr ansact i on object to work
with. Thebegi n() method starts the transaction.

We then have to ask the PersistenceManager to make the object persistent in step 4.

In the last step we commit the transaction. All changes to objects touched by the transaction
are now made persistent. Asyou will have noticed there is no need to explicitly store objects
as with the PersistenceBroker API. The Transaction object is responsible for tracking which
objects have been modified and to choose the appropriate persistence operation on commit.

public void apply()
{

/1l 1. this will be our new object
Product newProduct = new Product ();
/1 2. nowread in all relevant information and fill the new object:
System out. println("please enter a new product");

String in = readLi neWthMessage("enter nanme:");

newPr oduct . set Nanme(i n);

in = readLi neWthMessage("enter price:")
newPr oduct . set Pri ce(Doubl e. par seDoubl e(i
in = readLi neWt hMessage("enter avail ab
newPr oduct . set St ock(I nteger. parselnt(in

)

")
? stock:");

)

/1 3. create PersistenceManager and start transaction
Per si st enceManager manager = factory. get Persi stenceManager () ;

Transaction tx = null;
t X = manager. current Transacti on();
t x. begi n();

/1 4. mark object as persistent
manager . makePer si st ent (newPr oduct) ;

// 5. commt transaction
tx.commt();

manager . cl ose();

Page 76

0oJB

}

Updating Objects

The UseCase UCEdi t Pr oduct alowsthe user to select one of the existing products and to
edit it.

The user enters the products unique id. The object to be edited is looked up by thisid. (Steps

1., 2. and 3.) Thislookup is hecessary as our application does not hold alist of all product
objects.

The product is then edited (Step 4.).

In step five the transaction is commited. All changes to objects touched by the transaction are
now made persistent. Because we modified an existing object an update operation is
performed against the backend database.

?ublic voi d appl y()

Per si st enceManager nmanager = nul | ;

/1 ask user which object should edited
String in = readLi neWthMessage("Edit Product with id:");

int id = Integer.parselnt(in);
Product toBeEdited;

try

{

/1 1. start transaction
manager = factory. getPersistenceManager();
manager . current Tr ansacti on() . begi n();

/1 W don't have a reference to the sel ected Product.

/!l So we have to look it up first,

/1l 2. Build a query to | ook up product by the id

Query query = manager.newQery(Product.class, "id == " + id);
/1l 3. execute query

Col lection result = (Collection) query.execute();

toBeEdited = (Product) result.iterator().next();

if (toBeEdited == null)

Systemout.println("did not find a matching instance...");
manager . current Transacti on().rol | back();
return;

/1 4. edit the existing entry

Page 77

0JB

Systemout. println("please edit the product entry");
in =
readLi neWt hMessage(
"enter nane (was " + toBeEdited.getName() + "):");
t oBeEdi t ed. set Name(i n);
in =
readLi neWt hMessage(
"enter price (was " + toBeEdited.getPrice() + "):");
t oBeEdi t ed. set Pri ce(Doubl e. par seDoubl e(in));
in =
readLi neWt hMessage(
"enter avail able stock (was "
+ toBeEdit ed. get St ock()

+ ")),
t oBeEdi t ed. set St ock(| nt eger. parselnt(in));

/1 5. conmt changes
manager . current Transaction().commt ();

}

catch (Throwabl e t)
/1 rollback in case of errors
manager . current Transacti on().rol I back();
t.printStackTrace();

inally

manager . cl ose();

— A —h——

}
Deleting Objects

The UseCase UCDel et ePr oduct allowsthe user to select one of the existing products and
to delete it from the persistent storage.

The user enters the products unique id. The object to be deleted is looked up by thisid. (Steps
1., 2. and 3.) Thislookup is necessary as our application does not hold alist of all product
objects.

In the fourth step we check if a Product matching to theid could be found. If no entry is
found we print a message and quit the work.

If aProduct entry was found we deleteit in step 5 by calling the PersistenceM anager to
delete the persistent object. On transaction commit all changes to objects touched by the
transaction are made persistent. Because we marked the Product entry for deletion, a delete
operation is performed against the backend database.

public void apply()
{

Page 78

0oJB

Per si st enceManager nanager = null;

Transaction tx = null;

String in = readLi neWthMessage("Del ete Product with id:");
int id = Integer.parselnt(in);

try
{

/1 1. start transaction

manager = factory. get PersistenceManager();
tx = manager. current Transaction();

t x. begi n();

/1l 2. Build a query to | ook up product by the id
Query query = manager.newQuery(Product.class, "id == " + id);

/1l 3. execute query
Col lection result = (Collection) query.execute();

/[l 4. if no matching product was found, print a nessage
if (result.size() == 0)
{
Systemout.println("did not find a Product with id=" + id);
tx. rol I back();
manager . cl ose();

return;

}

/1 5. if a matching product was found, delete it

el se

{
Product toBeDeleted = (Product) result.iterator().next();
manager . del et ePer si st ent (t oBeDel et ed) ;
tx.commt();
manager . cl ose();

}

catch (Throwable t)

{

/1 rollback in case of errors
/1 broker . abort Transacti on();
tx. rol | back();
t.printStackTrace();

}
4.45.3. Conclusion

In this tutorial you learned to use the standard JDO API as implemented by the OJB system
within a simple application scenario. | hope you found this tutorial helpful. Any comments
are welcome.

4.4.6. Object Transaction Manager Tutorial

Page 79

0JB

44.6.1. TheOTM API

Introduction

The Object Transaction Manager (OTM) iswritten as atool on which to implement other
high-level object persistence APIs. It is, however, very usable directly. It supports API's
similar to the ODMG and PersistenceBroker API'sin OJB. Several of itsidioms are designed
around the fact that it is meant to have additional, client-oriented, API's built on top of it,
however.

The OTMKi t istheinitia access point to the OTM interfaces. The kit provides basic
configuration information to the OTM components used in your system. This tutorial will use
the Si npl eKi t which will work well under most circumstances for local transaction
implementations.

This tutorial operates on a simple example class:

package org. apache.ojb.tutorials;
public class Product
/* Instance Properties */
private Doubl e price;
private Integer stock;
private String namne;
/* artificial property used as prinmary key */
private Integer id;
/* Cetters and Setters */

}
The metadata descriptor for mapping this classis described in the mapping tutorial.

As aways the source code for thistutorial can befound inthet ut ori al s-src. jar
available from here, more specifically intheor g/ apache/ oj b/ t ut ori al s/ directory.
Persisting New Objects

The starting point for using the OTM directly isto look at making a transient object
persistent. This code will use three things, an OTMKi t , an OTMConnect i on, and a
Transact i on. The connection and transaction objects are obtained from the kit.

Initial accessto the OTM client API'sisthrough the OTMKi t interface. We'll use the

Page 80

0oJB

Si npl eKi t, an implementation of the OTMKi t suitable for most circumstances using local
transactions.

public static void storeProduct(Product product) throws Locki ngException

OTWit kit = SinpleKit.getlnstance();
OTMConnecti on conn = nul |
Transaction tx = null;

try

{
conn =
ki t.acqui reConnecti on(Persi stenceBroker Fact ory. get Def aul t Key()) ;
tx = kit.getTransaction(conn);
t x. begi n();
conn. makePer si st ent (product);
tx.commit();

}
catch (Locki ngException e)

if (tx.islnProgress()) tx.rollback();
t hr ow e;

inally

conn. cl ose();

— A ————

}

A kit is obtained and is used to obtain a connection. Connections are against a specific JCD
adlias. In this case we use the default, but a named datasource could also be used, as
configured in the metadata repository. A transaction is obtained from the kit for the specific
connection. Because multiple connections can be bound to the same transaction in the OTM,
the transaction needs to be acquired from the kit instead of the connection itself. The

Si mpl eKi t usesthe commonly seen transaction-per-thread idiom, but other kits do not
need to do this.

Every persistence operation within the OTM needs to be executed within the context of a
transaction. The JDBC concept of implicit transactions doesn't exist in the OTM --
transactions must be explicit.

Locks, on the other hand, are implicit in the OTM (though explicit locks are available). The
conn. makePer si stent (..) cal obtainsawritelock on pr oduct and will commit
(insert) the object when the transaction is committed.

TheLocki ngExcept i on will be thrown if the object cannot be write-locked in this
transaction. Asit isatransient object to begin with, thiswill probably only ever happen if it
has been write-locked in another transaction already -- but this depends on the transaction

Page 81

0JB

semantics configured in the repository metadata.

Finally, connections maintain resources so it isimportant to make sure they are closed when
no longer needed.

Deleting Persistent Objects

Deleting a persistent object from the backing store (making a persistent object transient) is
almost identical to making it persistent -- the difference isjust in the

conn. del et ePer si st ent (product) call instead of the

conn. makePer si st ent (product) call. The same notes about transactions and
resources apply here.

public static void storeProduct(Product product) throws Locki ngException
{

OWit kit = SinpleKit.getlnstance();

OTMConnecti on conn = nul | ;

Transaction tx = null;

try

{
conn =
ki t.acqui reConnecti on(Persi stenceBroker Fact ory. get Def aul t Key());
tx = kit.getTransaction(conn);
t x. begi n();
conn. del et ePer si st ent (product);
tx.commt();

}
cat ch (Locki ngException e)

if (tx.islnProgress()) tx.rollback();
t hrow e;

inally

conn. cl ose();

— A —h——

Querying for Objects

The OTM implements a transaction system, not a new client API. As such it supports two
styles of query at present -- an PersistenceBroker like query-by-criteria style querying
system, and an ODMG OQL query system.

Information on constructing these types of queriesis available in the PersistenceBroker and
ODMG tutorials respectively. Using those queries with the OTM is examined here.

A PB style query can be handled as follows:

Page 82

0oJB

public Iterator findByCriteria(Query query)
{

OTWit kit = SinpleKit.getlnstance();
OTMConnecti on conn = nul |
Transaction tx = null;

try

{

conn =

ki t.acqui reConnecti on(PersistenceBrokerFactory. get Def aul t Key());
tx = kit.getTransaction(conn);
t x. begin();
Iterator results = conn.getlteratorByQuery(query);
tx.commt();
return results;

inally

conn. cl ose();

— A ————

}
Where, by default, aread lock is obtained on the returned objects. If adifferent lock is
required it may be specified specifically:

public Iterator findByCriteriaWthLock(Query query, int |ock)
{

OWit kit = SinpleKit.getlnstance();
OTrMConnecti on conn = null;
Transaction tx = null;

try

{

conn =

ki t.acqui reConnecti on(Persi stenceBroker Fact ory. get Def aul t Key()) ;
tx = kit.getTransaction(conn);
t x. begi n();
Iterator results = conn.getlteratorByQuery(query, |ock);
tx.commt();
return results;

inally

conn. cl ose();

— A ————

}
Theint | ock argument is one of the integer constants on
or g. apache. oj b. ot m | ock. LockType:

LockType. NO LOCK
LockType. READ LOCK
LockType. WRI TE_LOCK

Page 83

0JB

OQL queries are also supported, as this somewhat more complex example demonstrates:

public Iterator findByOQ(String query, Object[] bindings) throws Exception

{
OWKit kit = SinpleKit.getlnstance();

OTrMConnecti on conn = nul |;
Transaction tx = null;

try
{
conn =

ki t.acqui reConnecti on(Persi stenceBroker Fact ory. get Def aul t Key()) ;
tx = kit.getTransaction(conn);

OQLQuery ogl = conn. newOQLQery();
oql . creat e(query);
for (int i = 0; I < bindings.length; ++i)
{
ogl . bi nd(bi ndi ngs[i]);
t x. begi n();
Iterator results = conn.getlteratorByOQLQuery(oql);
tx.commt();
return results;
}
catch (Querylnval i dException e)

if (tx.islnProgress()) tx.rollback();
t hrow new Exception("Invalid OQ expression given", e);

cat ch (QueryParanet er Count | nval i dExcepti on e)

if (tx.islnProgress()) tx.rollback();
t hrow new Exception("lncorrect nunmber of bindings given", e);

}
cat ch (QueryParanet er Typel nval i dExcepti on e)

if (tx.islnProgress()) tx.rollback();

t hrow new Exception("Incorrect type of object given as binding"
inally

conn. cl ose();

— A ————

}

Thisfunction is, at its core, doing the same thing as the PB style queries, except that it
constructs the OQL query, which supports binding values in amanner similar to JDBC
prepared statements.

The OQL style queries aso support specifying the lock level the same way:

Iterator results = conn.getlteratorByOQLQuery(query, |ock);

Page 84

0oJB

M or e Sophisticated Transaction Handling

These examples are a bit simplistic as they begin and commit their transactions all in one go
-- they are only good for retrieving data. More often data will need to be retrieved, used, and
committed back.

Only changes to persistent objects made within the bounds of a transaction are persisted. This
means that frequently a query will be executed within the bounds of an already established
transaction, data will be changed on the objects obtained, and the transaction will then be
committed back.

A very convenient way to handle transactions in many applications is to start a transaction
and then let any downstream code be executed within the bounds of the transaction
automatically. Thisis straightforward to do with the OTM using the Si npl eKi t ! Takea
look at avery slightly modified version of the query by criteria function:

public Iterator noreRealisticQueryByCriteria(Query query, int |ock)
{

OTWKit kit = SinpleKit.getlnstance();
OTMConnecti on conn = nul |
Transaction tx = null;

try

{
conn =
ki t.acqui reConnecti on(Persi stenceBr oker Fact ory. get Def aul t Key()) ;
tx = kit.getTransaction(conn);
bool ean auto = ! tx.islnProgress();
if (auto) tx.begin();
Iterator results = conn.getlteratorByQuery(query, |ock);
if (auto) tx.commt();
return results;

inally

conn. cl ose();

— A —h——

}

In this case the function looks to seeif atransaction is already in progress and sets a boolean
flagif itis, aut o. It then handles transactions itself, or allows the already opened transaction
to maintain control.

Because connections can be attached to existing transactions the Si npl eKi t can attach the
new connection to the already established transaction, allowing this function to work as
expected whether there is a transaction in progress or not!

Client code using this function could then open a transaction, query for products, change
them, and commit the changes back. For example:

Page 85

0JB

public void renameW dget Exanpl e()

OTWit kit = SinpleKit.getlnstance();
OTMConnecti on conn = nul |
Transaction tx = null;

try

{
conn =
ki t.acqui reConnecti on(PersistenceBrokerFactory. get Def aul t Key());
tx = kit.getTransaction(conn);
t x. begin();
Product sanple = new Product();
sanpl e. set Name("Wnder Wdget");
Query query = QueryFactory. newQuer yByExanpl e(sanpl e) ;
I'terator wonder Wdgets
= noreReal i sti cQueryByCriteria(query,
LockType. WRI TE_LOCK) ;
whi | e (wonder W dget s. hasNext ())

Product wi dget = (Product) wonder Wdgets. next();
wi dget . set Narme(" | nproved Wonder W dget");

tx.commt();
inally

conn. cl ose();

— A —h——

}

This sample renames a whole bunch of products from "Wonder Widget" to "Improved
Wonder Widget" and stores them back. It must makes the changes within the context of the
transaction it obtained for those changes to be stored back to the database. If the same iterator
were obtained outside of atransaction, and the changes made, the changes would be made on
the objects in memory, but not in the database. Y ou can think of non-transaction objects as
free immutable transfer objects.

This example also demonstrates two connections bound to the same transaction, as the
renameW dget Exanpl e(. . .) function obtains a connection, and the

nor eReal i sticQueryByCriteria(...) function obtainsan additional connection
to the same transaction!

4.4.6.2. Notes on the Object Transaction Manager

Transactions

The Object Transaction Manager (OTM) is a transaction management layer for Java objects.
It typically maps 1:1 to database transactions behind the scenes, but thisis not actually

Page 86

0oJB

required for the OTM to work correctly.

The OTM supports awide range of transactional options, delimited in the LockM anager
documentation. While the lock manager is writte to the ODMG API, the same locking rules
apply at the OTM layer.

45, Reference Guides

45.1. Reference Guides

45.1.1. Reference Guides

Here can be found a summary with a explanation of al reference guides.

PB quide
This document explains specific usage of the PB-api.

ODMG quide
This document explains specific usage of the ODMG-api.

OJB Queries

This document explains the usage of the query syntax.

Basic O/R Technique

This tutorial explains basic object-relational mapping technique in OJB like 1:1, 1:n and
m:n relations, the auto-xxx settings for references and proxy objects/collections.
Platforms

What OJB requires from relational databases, and how to let it know which database to
use.

L ogaing configuration

Details how to configure the logging within OJB.

OJB.properties configuration

The details on how to modify OJB's behaviour. This includes changing pluggable
components.

JDBC Types

This document explains the standard mapping of JDBC types to Java classes.
Repository Metadata

The specific details of OJB metadata.

Advanced O/R Technique

This document explains some advanced O/R techniques like Polymorphism and "OJB
Extents’, Mapping Inheritance Hierarchies, Nested Objects and so on.

M etadata Handling

This document explains how the metadata xml file work and how the metadata
information can be modified at runtime.

Page 87

0JB

o Deployment
Specifics on what is required to deploy OJB, including deployment to EJB containers.

« Connection Handling
This document explains how OJB handles the Connect i on instances and how User's
canstepin.

» Caching
Documentation on the different object caching implementations and strategies included
with OJB.

» The Seguence Manager
How to use different sequence management strategies with OJB.

» Locking
The optimistic and pessimistic locking capabilities of OJB.

« OJB XDoclet Module
Documentation for the OJB XDoclet module. The module can build mappings and
schema.

» OJB Performance
A look at how OJB performs and how to use OJB's performance tests.

4.5.2. PB-api Guide

45.2.1. Introduction

The PersistenceBroker API (PB-api) provides the lowest level accessto OJB's persistence
engine. Whileit isalow-level APl compared to the standardised ODMG or JDO API'sitis
still very straightforward to use.

The core class in the PersistenceBroker APl isthe
org. apache. oj b. br oker . Per si st enceBr oker class. This class providesthe
point of access for all persistence operationsin this API.

This document is not a PB tutorial (newbies please read the tutorial first) rather than a guide
showing the specific usage and possible pitfalls in handling the PB-api.

If you don't find an answer for a specific question, please have alook at the FAQ and the
other reference guides.

4.5.2.2. How to access the PB-api?

Theor g. apache. oj b. br oker . Per si st enceBr oker Fact or y make several
methods available:

publ i c PersistenceBroker createPersistenceBroker(PBKey key) throws
PBFact or yExcept i on;

Page 88

0oJB

publ i c PersistenceBroker createPersistenceBroker(String jcdAlias, String
user, String password)
t hr ows PBFact or yExcepti on;

publ i c PersistenceBroker defaultPersistenceBroker() throws
PBFact or yExcept i on;

Method def aul t Per si st enceBr oker () can be used if the attribute
default-connection is set true in jdbc-connection-descriptor. It's a convenience method,
useful when only one database is used.

The standard way to lookup a broker instanceisviaor g. apache. oj b. br oker . PBKey
by specify jcdAlias (defined in the jdbc-connection-descriptor of the repository file or sub
file), user and passwd. If the user and password is already set in jdbc-connection-descriptor it
is possible to lookup the broker instance only be specify the jcdAliasin PBKey:

PBKey pbKey = new PBKey("nmyJcdAl i asName", "user", "password");
[/l alternative if user/passwd set in configuration file

PBKey pbKey = new PBKey("myJcdAl i asName") ;

Per si st enceBr oker broker =

Per si t enceBr oker Fact ory. cr eat ePer si st enceBr oker (pbKey) ;

See further in FAQ "Needed to put user/password of database connection in repository file?'.

4.5.2.3. Notes on Using the PersistenceBroker API

Exception Handling
The exception handling is described in the PB-tutorial exception handling section.

Management of PersistenceBroker instances

Thereis no need to cache or pool the used PersistenceBroker instances, because OJB itself
use a PB-pool. The configuration of the PB-pool is adjustable in the OJB.propertiesfile.

Using the Per si st enceBr oker . cl ose() method releases the broker back to the pool
under the default implementation. For this reason the examplesin the PB tutorial all retrieve,
use, and close a new broker for each logical transaction.

Apart from the pooling management Per si st enceBr oker . cl ose() forcetheinterna
cleanup of the used broker instance - e.g. removing of temporary PersistenceBrokerListener
instances, release of used connection if needed, internal used object registration lists, ...
Therefore it's not recommended always refer to the same PB instance without closing it.

Transactions

Page 89

0JB

Transactions in the PeristenceBroker API are database level transactions. This differs from
object level transactions used by e.g. the odmg-api. The broker does not maintain a
collection of modified, created, or deleted objects until acommit is called -- it operates on the
database using the databases transaction mechanism. If object level transactions are required,
one of the higher level API's (ODMG, JDO, or OTM) should be used.

4.5.2.4. Questions

How to use multiple Databases

For each database define a jdbc-connection-descriptor same way as described in the FAQ.

Now each database will be accessible viathe Per si st enceBr oker Fact ory using a
PBKey matching the defined jcdAliase name as shown in section How to access the PB-api?.

4.5.3. ODM G-api Guide

45.3.1. Introduction

The ODMG API is an implementation of the ODMG 3.0 Object Persistence API. The ODMG
API provides a higher-level APl and OQL guery language based interface over the
PersistenceBroker API.

This document is not a ODMG tutorial (newbies please read the tutorial first) rather than a
guide showing the specific usage and possible pitfalls in handling the ODM G-api and the
proprietary extensions by OJB.

If you don't find an answer for a specific question, please have alook at the FAQ and the
other reference guides.

4.5.3.2. Specific M etadata Settings

To make OJB's ODMG-api implementation proper work some specific metadata settings
needed in the repository mapping files.

All defined reference-descriptor and collection-descriptor need specific auto-xxx settings:

e auto-retrieve="true"
e auto_update="none"
e auto-delete="none"

So an exampl e object mapping class-descriptor look like:

<cl ass-descri ptor

Page 90

0oJB

cl ass="org. apache. oj b. odng. shar ed. Mast er"

t abl e=" MDTEST_MASTER'

>

<fi el d-descri pt or
name="mast er | d"
col um=" MASTERI D"
j dbc-type="1 NTEGER'
pri marykey="true"
aut oi ncrenent ="t rue"
/>

<fi el d-descri pt or
name="mast er Text "
col utm="MASTER_TEXT"
;dbc—type="VARCHAR‘

>

<col | ecti on-descri ptor
name="col | Det al | FKi nPK"
el ement - cl ass-ref ="org. apache. oj b. odng. shar ed. Det ai | FKi nPK"
proxy="f al se"
auto-retrieve="true"
aut o- updat e="none"
aut o- del et e="none"
>

<i nverse-foreignkey field-ref="masterld"/>
</ col |l ecti on-descri ptor>

</ cl ass-descri ptor>

A lot of mapping samples can be found in mappings for the OJB test suite. All mappings for
the ODMG unittest areinr eposi tory_j uni t _odng. xm file, which can be found
under the src/test directory.

4.5.3.3. How to access ODM G-api

Obtainaor g. odng. | npl enent at i on instance first, then create a new
or g. odng. Dat abase instance and open this instance by setting the used jcd-alias name:

| mpl enent ati on odng = QJB. get | nst ance();
Dat abase dat abase = odng. newbDat abase() ;
dat abase. open("j cdAl i asNane#user #passwor d*, Dat abase. OPEN_READ WRI TE)

The user and password separated by # hash only needed, when the user/passwd is not
specified in the connection metadata (jdbc-connection-descriptor).

The jdbc-connection-descriptor may look like:

<j dbc- connecti on- descri pt or
jcd-alias="jcdAliasNane"

user nanme="user"

Page 91

0JB

passwor d=" passwor d"
N -

</ dbc- connect i on- descri pt or >

With method call QJB. get | nst ance() alwaysanew org.odmg.lmplementation instance
will be created and odng. newDat abase() returnsanew Dat abase instance.

For best performance it's recommended to share the] npl enent at i on instance across the
application. To get the current open database from the | npl enent at i on instance, use
method | npl enment at i on. get Dat abase(nul |)

| mpl enentation odng =
/1 get current used dat abase
Dat abase dat abase = odng. get Dat abase(nul |);

Or share the open Dat abase instance as well.

See further in FAQ "Needed to put user/password of database connection in repository file?".

4.5.3.4. Configuration Properties

The OJB ODMG-api implementation has some adjustable properties and pluggable
components. All configuration properties can be set in the OJB.propertiesfile.

Here are all properties used by OJB's ODMG-api implementation:
Property Name Description

OglCollectionClass This entry defines the collection type returned
from OQL gqueries. By default this value is set to
a List. This will be good for most situations.

If you need the additional features of the DList
interface (DList itself is persistable, support of
predicate) change setting to the DList
implementation (See also property 'DListClass'
entry).

Using DLists for large resultsets may be bad for
application performance. For these scenarios
you can use ArrayLists or Vectors.

Important note: The collection class to be used
MUST implement the interface

or g. apache. oj b. br oker. Manageabl eCol | ecti on.

ImplementationClass Specifies the used base class for the ODMG API
implementation. In managed environments a
specific class is needed to potentiate JTA
integration of OJB's ODMG implementation.

Page 92

0oJB

0OJBTxManagerClass

cascadingDeleteOneToOne

cascadingDeleteOneToN

cascadingDeleteMToN

ImplicitLocking

Specifies the class for transaction management.
In managed environments a specific class is
needed to potentiate JTA integration of OJB's
ODMG implementation.

If set true the cascading delete for 1:1
references will be enabled. This means that
when an object A with 1:1 reference to B will be
deleted, B will deleted too and all 1:1 references
used by B and so on.

When set false cascading delete is disabled for
1:1 references.

If set true the cascading delete for 1:n
references will be enabled. This means that
when an object A with 1:n reference to B will be
deleted, B will deleted too and all 1:n references
used by B and so on.

When set false cascading delete is disabled for
1:n references. In this case the referenced
(n-side) objects will be unlinked - all FK values
of the referenced objects will be nullified.

If set true the cascading delete for m:n
references will be enabled. This means that
when an object A with m:n reference to B will be
deleted, B will deleted too and all m:n references
used by B and so on.

When set false cascading delete is disabled for
m:n references. In this case only the m:n
indirection table entries will be deleted, the
referenced objects will be untouched.

This property defines the implicit locking
behavior. If set to true OJB implicitely locks
objects to ODMG transactions after performing
OQL queries or when do a single lock on an
object using Tr ansact i on#l ock(. ..)
method.

If implicit locking is used locking objects is
recursive, that is associated objects are also
locked.

If ImplicitLocking is set to false, no locks are
obtained in OQL queries and there is also no
recursive locking when do single lock on an

Page 93

LockAssociations

DListClass

DArrayClass

DMapClass

DBagClass

DSetClass

45.3.5. 0JB Extensionsof ODMG

0JB

object.

This property was only used when
ImplicitLocking is enabled. It defines the
behaviour for the OJB implicit locking feature. If
set to true acquiring a write-lock on a given
object x implies write locks on all objects
associated to x.

If set to false, in any case implicit read-locks are
acquired. Acquiring a read- or write lock on x
thus allways results in implicit read-locks on all
associated objects.

The used or g. odng. DLi st implementation
class.

The used or g. odng. DAr r ay implementation
class.

The used or g. odng. DMap implementation
class.

The used or g. odng. DBag implementation
class.

The used or g. odng. DSet implementation
class.

This section describes the propietary extension of the ODMG-api provided by OJB.

The ImplementationExt | nterface

The OJB extension of the odmg Implementation interface is called |mplementationExt and
provide additional methods missed in the standard class definition.

o get/setOqglCollectionClass

Use this methods to change the used OQL query result class at runtime. Description can
be found in Configuration Properties section and in javadoc of |mplementationExt.

o ig/setimpliciteWritelLocks

Use this methods to change the associated locking type at runtime when implicit locking
is used. Description can be found in Configuration Properties section and in javadoc of

| mplementationExt.

The TransactionExt I nterface

Page 94

0oJB

The OJB extension of the odmg Transaction interface is called TransactionExt and provide
additional methods missed in the standard class definition.

o markDelete

Description can be found in javadoc of TransactionExt.
e markDirty

Description can be found in javadoc of TransactionExt.
« flush

Description can be found in javadoc of TransactionExt.
« ig/setimplicitLocking
Description can be found in javadoc of TransactionExt.
» setCascadingDelete
Description can be found in javadoc of TransactionExt.
« getBroker()
Returns the current used broker instance. Usage exampleis here.

The EnhancedOQL Query Interface

The OJB extension of the odmg OQL Query interface is called EnhancedOQL Query and
provide additional methods missed in the standard class definition.

« create(String queryString, int startAtindex, int endAtindex)
Description can be found in javadoc of EnhancedOQL Query.

Access the PB-api within ODM G

Asthe PB-api was used by OJB's ODMG-api implementation, thusit is possible to get access
of the used Per si st enceBr oker instance using the extended Transaction interface class
TransactionExt:

| mpl enent ati on odmg
Transacti onExt tx = (Tr ansact i onExt) odng. newTr ansacti on();
t x. begi n();

Per si st enceBr oker broker = tx. get Broker () ;
/1 do work with broker

t x. conmmit O);
It's mandatory that the used PersistenceBroker instance never be closed with a
Per si st enceBr oker . cl ose() call or be committed with

Per si st enceBr oker. comm t Transacti on() , thiswill be doneinternally by the
ODMG implementation.

4.5.3.6. Notes on Using the ODM G API

Page 95

0JB

Transactions

The ODMG API uses object-level transactions, compared to the PersistenceBroker
database-level transactions. An ODMG Tr ansact i on instance contains all of the changes
made to the object model within the context of that transaction, and will not commit them to
the database until the ODMG Tr ansact i on iscommitted. At that point it will use a
database transaction (the underlying PB-api) to ensure atomicity of its changes.

Locks

The ODMG specification includes several levels of locks and isolation. These are explained
in much more detail in the Locking documentation.

In the ODMG API, locks obtained on objects are locked within the context of atransaction.
Any object modified within the context of atransaction will be stored with the transaction,
other changes made to the same object instance by other threads, ignoring the lock state of
the object, will also be stored - so take care of locking conventions.

The ODMG locking conventions (obtain awrite lock before do any modifications on an
object) ensure that an object can only be modified within the transaction.

It's possible to configure OJB's ODMG implementation to support implicit locking with
WRITE locks. Then awrite lock on an object forces OJB to obtain implicit write locks on all
referenced objects. See configuration properties.

Persisting Non-Transactional Objects

Frequently, objects will be modified outside of the context of an ODMG transaction, such as
adata access object in aweb application. In those cases a persistent object can still be
modified, but not directly through the OMG ODMG specification. OJB provides an extension
to the ODMG specification for instances such as this. Examine this code:

public static void persistChanges(Product product)

| mpl enentation inpl = QJB. getl nstance();
Transacti onExt tx = (Transacti onExt) inpl.newlransaction();

t X. begi n()
tx. markDir
tx. commi t (

gy(product) ;

} .

In this function the product is modified outside the context of the transaction, and is then the
changes are persisted within atransaction. The Tr ansact i onExt . mar kDi rt y()

method indicates to the Transaction that the passed object has been modified, even if the

Page 96

0oJB

Transaction itself sees no changes to the object.
4.5.3.7. Questions

| don't like OQL, can | usethe PersistenceBroker Querieswithin ODM G

Y esyou can! The ODMG implementation relies on PB Queriesinternally! Several users
(including myself) are doing this.

If you have alook at the simple example below you will see how OJB Query objects can be

used withing ODMG transactions.

The most important thing isto lock all objects returned by a query to the current transaction

before starting manipulating these objects.

Further on do not commit or close the obtained PB-instance, thiswill be done by the ODMG
transactionont x. commt () / tx.roll back().

Transacti onExt tx = (Transacti onExt) odng. newlr ansaction();
t x. begin();

/1 cast to get intern used PB instance
Per si st enceBr oker broker = tx.getBroker();

/1 build query
QueryByCriteria query = ...
/'l perform PB-query

Col l ection result = broker.getColl ectionByQuery(query);
/] use result

tx.commt();
Note: Don't close or commit the used broker instance, this will be done by the odmg-api.

How to use multiple Databases

For each database define a jdbc-connection-descriptor same way as described in the FAQ.

Now it is possible to

» access the databases one after another, by closing the current used Dat abase instance
and by open a new one.

/1 get current used database instance
Dat abase dat abase = ...;

/1 close it

dat abase. cl ose();

/1 open a new one

Page 97

0JB

dat abase = odng. newbDat abase();
dat abase. open("j cdAl i asNane#user #passwor d", Dat abase. OPEN READ WRI TE) ;

The Dat abase. cl ose() call closethe current used Dat abase instance, after thisit
is possible to open a new database instance.

« use multiple databases in parallel, by creating a separate | npl enent ati on and
Dat abase instance for each jdbc-connection-descriptor defined in the mapping
metadata.

| mpl enent ation odng_1 = QIB. getl nstance();
Dat abase dat abase_1 = odng. newbDat abase() ;
dat abase. open("db_1#user #passwor d", Dat abase. OPEN_READ WRI TE) ;

| npl enentati on odng_2 = QJB. get | nstance();

Dat abase dat abase 2 = odng. newbDat abase() ;
dat abase. open("db_2#user #passwor d*, Dat abase. OPEN_READ WRI TE) ;

Now it's possible to use both databasesin parallel.

0OJB does not provide distributed transactions by itself. To use distributed transactions, OJB have to be integrated in an j2ee
conform environment (or made work with an JTA/JTS implementation).

45.4. Platforms

4.5.4.1. how to use OJB with a specific relational database

OJB has been designed to smoothly integrate with any relational database that provides
JDBC support. OJB can be configured to use only JDBC 1.0 API callsto avoid problems
with restrictions of several JDBC drivers.

It uses alimited SQL subset to avoid problems with restrictions of certain RDBMS. This
design alows to keep the OJB code generic and free from database specifics.

This document explains basic concepts and shows how OJB can be configured to run against
aspecific RDBMS.

If you not already have done so, then you also might want to have alook at the Getting
Started section which presents a sample skeleton project.

4.5.4.2. Basic Concepts

OJB internal tables

Page 98

0oJB

For certain features OJB relies on several internal tables that must be present in the target
rdoms to allow a proper functioning.
If those features are not needed OJB can be safely run without any interna tables.

The following table lists all tables and their specific purpose.
Tablename Purpose

QIB_HL_SEQ Table for the high/low sequence manager.
If the built-in OJB sequence manager is not
used, this table is not needed.

QUB_LOCKENTRY Thistableis used to store Object locksif the
LockManager isrun in distributed mode. Not needed
in singlevm mode.

QIB_NRM The "Named Roots Map". ODMG alows to bind
persistent objects to an user defined name.
The Named roots map is used to store these bindings.
It has NAME (String of arbitrary length) as primary
key and keeps the serialized OID of the persistent
object inthefield OID (String of arbitrary length).
If bind() and lookup() are not used in client apps, this
table is not needed

QB_DLI ST The table used for the ODMG persistent DList
collections.
If ODMG DLists are not used, thistableis not
needed.

QIB_DLI ST_ENTRI ES stores the entries of DLists (awrapper to objects

stored in the DList)
If ODMG DLists are not used, thistableis not
needed.

QUB_DSET The table used to store ODMG persistent DSET
collections
If ODMG DSets are not used, thistableis not
needed.

QJB_DSET_ENTRI ES This table stores the entries of DSets.
If ODMG DSets are not used, this tableis not
needed.

QUB_DVAP The table use to store the ODMG persistent DMap

Page 99

0JB

tables
If ODMG DMaps are not used, thistableis not
needed.

QUB_DVAP_ENTRI ES The table containing the DMap entries. The Keys and
Values of the map can be arbitrary persistent objects.
If ODMG DMaps are not used, thistableis not
needed.

OJB uses Torque to create all required tables and data. Thusthereisno SQL DDL file, but an
XML file describing the tables in format readable by Torque. The Torque DDL information
for theinternal tablesresidesin thefilesr ¢/ schenma/ oj bcor e- schema. xmni .

The o/r mappings for these tables are contained in thefiler eposi t ory_i nternal . xm .
If you want to have alook at how these files could be used, have alook at the the ojb-blank
sample project which is already prepared to use these files.

Tablesfor theregression testbed

It is recommended to run the OJB JUnit regression tests against your target database. Thus
you will have to provide several more tables, filled with the proper testdata.

The DDL information for these tables resides in thefile
src/ schema/ oj bt est-schema. xni .

Thetestdatais defined in thefilesr ¢/ schema/ oj bt est - dat a. xni .

The o/r mappings for these tables are contained in thefiler eposi tory_j uni t. xm .

Tablesfor thetutorial applications

If you intend to run the OJB tutorial applications against your target database you will have
to provide one extratable.

The DDL information for thistable also resides in the file
src/ schema/ oj bt est - schema. xni .

Thetestdatais also defined inthefilesr ¢/ schena/ o bt est - dat a. xm .

The o/r mappings for thistable is contained in thefiler eposi t ory_user . xm .

4.5.4.3. The setup process
OJB provides a setup routine to generate the target database and to fill it with the required

Page 100

0oJB

testdata. Thisroutineis based on Torque scripts and is driven from the build.xml file. This
section describes how to useit.

Selecting a platform profile

OJB ships with support for several popular database platforms. The target platformis
selected by the switch pr of i | e inthefile build.properties. Y ou can choose one out of the
predefined profiles:

Wth the 'profile' property you can choose the RDBMS platform QIB is
usi ng
inpl emented profil es:

#

profil e=hsqgl db

use the mesql db- JSQ.Connect profile for Mcrosoft SQ Server and
you will automatically JSQ.Connect driver, from
http://ww.j-netdirect.con

NBQIRD: This is nmy driver of preference for M5 SQL Server, | find the
OEM

M5 driver to have sone probl ens.

#profil e=nssql db- ISQ.Connect

#profil e=mssql db- Opt a2000

#profil e=mssql db- s

#profil e=mysq

#profil e=db2

#profil e=oracle

#profil e=oracl e9

#prof i | e=or acl e9i - Ser opt 0

#profil e=nsaccess

#profi | e=post gr esql

#profil e=i nform x

#profil e=sybase

#profil e=sapdb

#profi | e=maxdb

The profile switch activated in bui | d. properti es isused to select aprofile file from the
pr ofi | e directory.

If youset profil e=db2,thenthefileprofil e/ db2. profil e isseected.

Thisfileis used by the Torque scripts to set platform specific properties and to perform
platform specific SQL operations.

editing the profileto point to your target db

The platform specific filepr of i | e/ xxx. prof i | e containslots of information used by
Torgue. You can ignore most of it. The only important part in thisfile is the section where
the url to the target db is assembled, here is an snip of the DB2 profile:

Page 101

0JB

DATABASE SETTI NGS

JDBC connection settings. This is used by the JDBCToXM. task
that will create an XML dat abase schema from JDBC net adat a.
These settings are al so used by the SQL Ant task to initialize
your Turbine systemwi th the generated SQ..

HHHFEHHFHFHHFH

dbnmsNanme = Db2
jdbcLevel = 1.0

url Protocol = jdbc
ur| Subprotocol = db2
url Dbalias = QIB

creat eDat abaseUrl = ${url Protocol }: ${url Subprot ocol }: ${url| Dbal i as}

bui | dDat abaseUr| = ${url Protocol }: ${url Subprot ocol }: ${ur | Dbal i as}

dat abaseUr| = ${url Protocol }: ${url Subprotocol }: ${url Dbal i as}

dat abaseDriver = COM i bm db2.j dbc. app. DB2Dri ver

dat abaseUser = adnin

dat abasePassword = db2

dat abaseHost = 127.0.0.1

These settings result in adatabase URL j dbc: db2: QIB. If your production databaseis
registered with the name My_ PRODUCTI ON_DB you have to edit theentry ur | DBal i as
to:

url Dbal i as = My_PRODUCTI ON_DB.

In this section you can also set application user name and password. Y ou can also enter a
different jdbc driver class, to activate a different driver.

Before progressing, please check that the jdbc driver class, named in the

dat abaseDri ver entry islocated on the classpath! Y ou can either edit the global
environment variable CLASSPATH or place the jdbc driver jar file into the

j akart a-oj b- xxx/ i b directory.

Executing the build script

Now everything should be prepared to launch the setup routine. This routine can be invoked
by callingant prepare-testdb.

If you are prompted with aBUI LD SUCCESSFUL message after some time, everything is
OK.

If you are prompted with aBUI LD FAI LED message after some time, something went
wrong. This may have several reasons:

« You entered some incorrect settings. Please check the log messages to see what went

Page 102

0oJB

wrong.

» Torgue does not work properly against your target database. Torqueis very flexible and
should be able to work against awide range of databases. But the code templates for each
database may not be accurate. Please check the ojb-user mailinglist archive if there are
any failure reports for your specific database. Please also check if some contributed a fix
aready. If you don't find anything please post your problem to the ojb user-list.

Asalast resort you can try the following: Switch back to the default hsgldb profile and

executeant prepare-test db Thiswill setup the default hsgldb database. And it will
also generate SQL scripts that you may use to generate your database manually.

The SQL scripts are generated to j akar t a- o] b- xxx/ target/src/ sql . Youcan
touch these scripts to match your database specifics and execute them manually against your
platform.

Verifying theinstallation
Now everything is setup to run the junit regression tests against your target database.

Execute

ant junit

to seeif everything works as expected. more information about the OJB Test Suite here. If
you did not manage to set up the target database withtheant prepar e-test db you can
use

ant junit-no-conpil e-no- prepar e torun the testsuite without generation of the
test database.

4.5.5. OJB.properties Configuration File

4.5.5.1. OJB Configuration

OJB provides two different configuration mechanisms:

1. An XML basedr eposi t ory. xm isused to define the Object/Relational Mapping.
This Mapping istrandated into a metadata dictionary at runtime. The metadata layer may
also be manipulated at runtime through OJB API calls. Follow thislink to learn more
about the XML repository.

2. A propertiesfile QJB. properti es that isresponsible for the configuration of the OJB
runtime environment. It contains information that does not change at runtime and does
not contain O/R mapping related information.

Therest of this document details on this propertiesfile.

Page 103

0JB

45.5.2. OJB.properties File

By default thisfileisnamed QJB. pr oper ti es andisloaded from the classpath by a
J2EE compliant resource lookup:

Thr ead. current Thread() . get Cont ext Cl assLoader () . get Resour ce(get Fi | ename());

The filename of the properties file can be changed by setting a Java system property. This
can be done programmatically:

System set Property(" QIB. properties"”, " myOmPropertiesFile.props");
or by setting a-D option to the VM:

java -DQJB. properties=myOannPropertiesFile.props my.own.ojb. Application
All things that can be configured by OJB.properties are commented in the fileitself. Have a
look at the default version of thisfile.

4.5.6. JDBC Types

4.5.6.1. Mapping of JDBC Typesto Java Types

OJB implements the mapping conversions for JDBC and Java types as specified by the JIDBC
3.0 specification (see IDBC 3.0 specification Appendix B, Data Type Conversion Tables).
See the table below for details.

If asgl-javatype mapping is needed, that doesn't match the java types defined by the
specification, e.g. afield in the persistent object classis of typeint[] and the DB typeis
VARCHAR or a List field have to be mapped to VARCHAR a field-conversion class can be
used.

JDBC Type Java Type

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal
DECIMAL java.math.BigDecimal

BIT boolean

BOOLEAN boolean

Page 104

0oJB

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

DOUBLE double

BINARY byte[]

VARBINARY bytel[]
LONGVARBINARY byte[]

DATE java.sgl.Date

TIME java.sgl.Time
TIMESTAMP java.sgl.Timestamp
CLOB Clob

BLOB Blob

ARRAY Array

DISTINCT mapping of underlying type
STRUCT Struct

REF Ref

DATALINK java.net.URL
JAVA OBJECT underlying Java class

4.5.6.2. Type and Value Conversions - The FieldConversion I nterface

Introduction

A typical problem with O/R toolsis mismatching datatypes. a class from the domain model
has an attribute of type boolean but the corresponding database table stores this attribute in a
column of type BIT or int.

Page 105

0JB

This example explains how OJB alows you to define FieldConver sions that do the proper
trandation of types and values.

The source code of this exampleisincluded in the OJB source distribution and resides in the
test package or g. apache. oj b. br oker .

The problem

Thetest classor g. apache. oj b. broker . Arti cl e contains an attribute
i sSel | out Arti cl e of type boolean:

public class Article inplenents InterfaceArticle

{
protected int articleld;
protected String articl eNane;
/1 maps to db-colum Auslaufartikel of type int
prot ected bool ean isSelloutArticle;
}

The coresponding table uses an int column (Ausl auf art i kel) to store this attribute:

CREATE TABLE Arti kel (

Artikel _Nr | NT PRI MARY KEY,
Arti kel nane CHAR(60) ,

Li eferanten_ Nr | NT,

Kat egori e Nr | NT,

Li ef erei nhei t CHAR(30),

Ei nzel prei s DECI VAL,

Lager best and I
Bestel | t eEi nheiten |
I
I

M ndest Best and
Ausl auf arti kel

)
The Solution

5555

OJB alowsto use predefined (or self-written) FieldConversions that do the appropiate
mapping. The Fi el dConver si on interface declares two methods: j avaToSql (. . .)
andsqgl ToJava(...):

*

Fi el dConversi on declares a protocol for type and val ue

conver si ons between persistent classes attributes and the col ums
of the RDBMS.

The default inplenentation does not nodify its input.

QIB users can use predefined inplenmentati on and can al so

/

* %k X X X X

Page 106

0oJB

* build their own conversions that performarbitrary nmappings.
* the mapping has to defined in the xm repository
* in the field-descriptor

@ut hor Thomas Mahl er
=

public interface FieldConversion extends Serializable

{

/**
* convert a Java object to its SQ
* pendant, used for insert & update
*/
public abstract Object javaToSqgl (Cbject source) throws
Conver si onExcepti on;
/**

* convert a SQL value to a Java Object, used for SELECT

*/

public abstract Object sgl ToJava(Obj ect source) throws
Conver si onExcepti on

}

The method Fi el dConver si on. sql ToJava() isacalback that is called within the
OJB broker when Object attributes are read in from JDBC result sets. If OJB detects that a
FieldConversion is declared for a persistent classes attributes, it uses the FieldConversion to
do the marshalling of this attribute.

For the above mentioned problem of mapping an int column to a bool ean attribute we can use
the predefined FieldConversion Bool ean2l nt Fi el dConver si on. Havealook at the
code to see how it works:

public cl ass Bool ean2l nt Fi el dConversion inplenments Fiel dConversion

private static Integer | _TRUE = new Integer(1);
private static Integer | _FALSE = new | nteger(0);

private static Boolean B TRUE = new Bool ean(true);
private static Bool ean B FALSE = new Bool ean(fal se);

/**

: @ee Fiel dConversi on#j avaToSql (Obj ect)
puélic hj ect javaToSql (Obj ect source)
i f (source instanceof Bool ean)
i f (source.equal s(B TRUE))
return | _TRUE

el se

{

Page 107

return | _FALSE

el se
{
return source
}
}
/**

: @ee Fiel dConversi on#sql ToJava(Obj ect)
puélic oj ect sgl ToJava(Obj ect source)
i f (source instanceof I|nteger)
i f (source.equals(l_TRUE))
{ return B_TRUE;

el se
{
return B_FALSE
}
}
el se

return source;

}

There are other helpful standard conversions defined in the package

or g. apache. oj b. br oker . accessl ayer. conver si ons: Of courseit ispossible
to map between j ava. sql . dat e andj ava. uti | . dat e by using aConversion. A very
interesting Conversion isthe Cbj ect 2Byt eArr Fi el dConver si on it allowsto store
inlined objects in varchar columns!

<l-- Definitions for test.ojb.broker.Article -->

<cl ass-descri pt or

cl ass="org. apache. oj b. broker. Article"

pr oxy="dynam c"
tabl e="Arti kel "

%field—descriptor

0JB

Coming back to our example, there is only one thing left to do: we must tell OJB to use the
proper FieldConversion for the Article class. Thisis donein the XML repository file. The
field-descriptor allows to define a conversion attribute declaring the fully qualified
FieldConversion class:

Page 108

0oJB

nane="isSel | out Article"
col um="Ausl auf arti kel "
j dbc-t ype="1 NTEGER"
converfion:"org.apache.ojb.broker.accesslayer.conversi0ns.BooIean2IntFieIdCbnversion"
>

</ cl ass-descri ptor>

4.5.7. Repository File

4.5.7.1. Introduction - repository syntax

The syntax of the OJB repository xml filesis defined by the repository.dtd.
The repository.dtd can be found here.

The actual repository metadta declaration is split up into several separate files, hereisan
excerpt of the most important files:

1. therepository.xml. Main file for metadata declaration. Thisfileis split into several sub
files using xml-Entity references.

2. therepository database.xml. Thisfile contains the mapping information for
database/connection handling.

3. therepository internal.xml. This file contains the mapping information for the OJB
internal tables. These tables are used for implementing SequenceM anagers and persistent
collections.

4. therepository user.xml. Thisfile contains mappings for the tutorial applications and may
be used to hold further user defined class mappings.

5. therepository junit.xml. Thisfile contains mapping information for common OJB JUnit
regression test suite. In production environments these tables are not needed.

6. other repository_junit_ XY Z.xml
More specific junit test mapping. In production environments these tables are not needed.

7. There are some more files, for more information see comment in appropriate xml-file.

4.5.7.2. descriptor-repository

The descriptor-repository is the root element of arepository.xml file. It consists of one or
more jdbc-connection-descriptor and at |east one class-descriptor element. But it's also
possible to startup OJB without any of these elements and add them at runtime.

Elements

<I ELEMENT descri ptor-repository (docunentation?, attribute*,
j dbc- connecti on-descri ptor*, class-descriptor*)>

The documentation element can be used to store arbitrary information.

Page 109

0JB

The attribute element allows to add custom attributes, e.g. for passing arbitrary properties.

The jdbc-connection-descriptor element specifies ajdbc connection for the repository.

The class-descriptor element specify o/r mapping information for persistent class.

<! ELEMENT descri ptor-repository (
docunent ati on?,
attri bute*,
j dbc- connecti on-descri ptor*,
cl ass-descriptor*)

Attributes

<I ATTLI ST descri ptor-repository

version (1.0) #REQU RED

i sol ation-level (read-unconmitted | read-comitted |
repeat abl e-read |

serializable | optimistic | none)

"read-unconmi tted"

proxy-prefetching-limt CDATA "50"
>

version

The version attribute is used to bind arepository.xml file to agiven version of thisdtd. A
given OJB release will work properly only with the repository version shipped with that
relase. This strictness maybe inconvenient but it does help to avoid the most common version
conflicts.

isolation-level

The isolation-level attribute defines the default locking isolation level used by OJB's
pessimistic locking api. All jdbc-connection-descriptor or class-descriptor that do not define
aspecific isolation level will usethis.

Note: Thisdoes NOT touch the jdbc-level of the connection.

proxy-pr efetching-limit

The proxy-prefetching-limit attribute specifies a default value to be applied to al proxy
instances. If none is specified adefault value of 50 is used. Proxy prefetching specifies how
many instances of a proxied class should be loaded in a single query when the proxy isfirst
accessed.

Page 110

0oJB

<I ATTLI ST descri ptor-repository
versi on (1.0) #REQU RED
i sol ati on-1| evel (read-unconmmitted
read-conmitted
repeat abl e- r ead
serializable |
optimstic) "read-unconmtted"
proxy-prefetching-limt CDATA "50"

4.5.7.3. jdbc-connection-descriptor

The jdbc-connection-descriptor element specifies ajdbc connection for the repository. Itis
allowed to define more than one jdbc-connection-descriptor. All class-descriptor elements
are independent from the jdbc-connection-descriptors. More info about connection handling
here.

Elements

<! ELEMENT j dbc-connecti on-descri ptor (docunentation?, attribute*,
obj ect -cache?, connection-pool ?, sequence- manager ?) >

The object-cache element specifies the object-cache implementation class associated with
thisclass.

A connection-pool element may be used to define connection pool properties for the
specified JIDBC connection.

Further a sequence-manager element may be used to define which sequence manager
implementation should be used within the defined connection.

Use the custom-attribute element to pass implementation specific properties.

<! ELEMENT j dbc- connecti on-descri ptor (
docunent ati on?,
attri but e*,
obj ect - cache?
connect i on- pool ?,
sequence- manager ?)

Attributes

The jdbc-connection-descriptor element contains a bunch of required and implied attributes:

<I ATTLI ST j dbc- connecti on-descri ptor

Page 111

0JB

j cd-al i as CDATA #REQUI RED
defaul t-connection (true | false) "fal se"
platform (Db2 | Hsgldb | Informx | MsAccess | MsSQ.Server
MySQL | Oracle | PostgreSQ. | Sybase | SybaseASE
SybaseASA | Sapdb | Firebird | Axion | NonstopSql
Oracl e9i | MaxDB) "Hsql db"

jdbc-level (1.0 | 2.0 | 3.0) "1.0"
eager-rel ease (true | false) "fal se”
bat ch-node (true | false) "fal se"
useAut oCommit (O | 1] 2) "1"
i gnor eAut oCommi t Exceptions (true | false) "fal se"

j ndi - dat asour ce- nane CDATA #| MPLI ED

driver CDATA #| MPLI ED

pr ot ocol CDATA #l MPLI ED
subpr ot ocol CDATA #| MPLI ED
dbal i as CDATA #l MPLI ED

user name CDATA #| MPLI ED
passwor d CDATA #l MPLI ED

jdbcAlias

The jcdAlias attribute is a shortcut name for the defined connection descriptor. OJB uses the
jcd alias as key for the defined connections.

default-connection

The default-connection attribute used to define if this connection should used as default
connection with OJB. Y ou could define only one connection as default connection. It isalso
possible to set the default connection at runtime using

Per sistenceBroker Factor y#setDefaul tkey(...) method. If set true you can use a PB-api
shortcut-method of the PersistenceBroker Factory to lookup PersistenceBroker instances.

If default-connection was not set at runtime, it is mandatory that username and password is set in repository file.

platform

The platform attribute is used to define the specific RDBMS Platform. This attribute
corresponds to a org.apache.ojb.broker.platforms.PlatformXXXImpl class. Supported
databases see here. Default was Hsgldb.

jdbc-level

Page 112

0oJB

The jdbc-level attribute is used to specify the Jdbc compliance level of the used Jdbc driver.
Allowed values are: 1.0, 2.0, 3.0. Default was 1.0.

eager -release

The eager-rel ease attribute was adopt to solve a problem occured when using OJB within
JBoss (3.0 <= version < 3.2.2, seemsto be fixed in jboss 3.2.2 and higher). Only use within
JBoss. DEPRECATED attribute.

batch-mode

The batch-mode attribute allow to enable JDBC connection batch support (if supported by
used database), 'true’ value allows to enable per-session batch mode, whereas 'false’ prohibits
it. PB.serviceConnectionManager .setBatchMode(...) method can be used to switch on/off
batch modus, if batch-mode was enabled. On PB.close() OJB switch off batch modus, thus
you haveto do '...setBatchM ode(true)' on each obtained PB instance again.

useAutoCommit

The useAutoCommit attribute allow to set how OJB uses the autoCommit state of the used
connections. The default mode is 1. When using mode 0 or 2 with the PB-api, you must use
PB transaction demarcation.

e 0- OJB ignores the autoCommit setting of the connection and does not try to change it.
This mode could be helpful if the connection won't let you set the autoCommit state (e.g.
using datasources within an application server).

e 1- SetautoCommit explicitly to true when a connection was created and temporary Set to
false when necessary (default mode).

e 2- Set autoCommit explicitly to false when a connection was created.

ignoreAutoCommitExceptions
If the ignoreAutoCommitExceptions attribute is set to true, all exceptions caused by setting
autocommit state, will be ignored. Default mode is false.

jndi-datasour ce-name

If ajndi-datasource-name for INDI based lookup of Jdbc connections is specified, the four
attributes driver, protocol, subprotocol, and dbalias used for Jdbc DriverManager based
construction of Jdbc Connections must not be declared.

username

The username and password attributes are used as credentials for obtaining ajdbc

Page 113

0JB

connections.
If users don't want to keep user/password information in the repository.xml file, they can
pass user/password using a PBKey to obtain a PersistenceBroker. More info see FAQ.

4.5.7.4. connection-pool

The connection-pool el ement specifies the connection pooling parameter. More info about
the connection handling can be found here.

<! ELEMENT connecti on-pool (docunmentation?)
>

Valid attributes for the connection-pool element are:

<! ATTLI ST connecti on- poo

maxAct i ve CDATA #| MPLI ED

max| dl e CDATA #1 MPLI ED

maxWai t CDATA #| MPLI ED

m nEvi ctableldl eTimeM I lis CDATA #| MPLI ED

nunlest sPer Evi cti onRun CDATA #| MPLI ED

t est OnBor r ow (true fal se) #l MPLI ED
test OnRet urn (true fal se) #l MPLI ED
testWiileldle (true fal se) #l MPLI ED
ti meBet weenEvi cti onRunsM I i s CDATA #| MPLI ED
whenExhaust edActi on (0] 2] 2) # MPLIED
val i dat i onQuery CDATA #| MPLI ED

| ogAbandoned (true | false) #l MPLIED
r enoveAbandoned (true | false) #l MPLIED
r emoveAbandonedTi meout CDATA #1 MPLI ED

>

maxActive is the maximum number of connections that can be borrowed from the pool at one
time. When non-positive, thereis no limit.

maxldle controls the maximum number of connections that can sit idle in the pool at any
time. When non-positive, thereis no limit

maxWait - the maximum time block to get connection instance from pool, after that
exception is thrown. When non-positive, block till last judgement

whenExhaustedAction

« 0- fal when pool is exhausted
e 1- block when pool is exhausted
e 2-grow when pool is exhausted

testOnBorrow when true the pool will attempt to validate each object beforeiit is returned
from the pool.

Page 114

0oJB

testOnReturn set to true will force the pool to attempt to validate each object beforeitis
returned to the pool.

testWhileldle indicates whether or not idle objects should be validated. Objects that fail to
validate will be dropped from the pool.

timeBetweenEvictionRunsMillis indicates how long the eviction thread should sleep before
"runs’ of examining idle objects. When non-positive, no eviction thread will be launched.

minEvictableldleTimeMillis specifies the minimum amount of time that a connection may sit
idle in the pool beforeit is eligable for eviction due to idle time. When non-positive, no
connection will be dropped from the pool due to idle time alone (depends on
timeBetweenEvictionRunsMillis > 0)

numTestsPer EvictionRun - the number of connections to examine during each run of theidle
object evictor thread (if any)

validationQuery alowsto specify avalidation query used by the ConnectionFactory
implementations using connection pooling, to test a requested connection (e.g. "select 1 from
dual") before leave the pool (used by ConnectionFactoryDBCPImpl and
ConnectionFactoryPooledimpl).

If not set, only connection.isClosed() will have been called before the connection was
delivered.

logAbandoned is only supported when using
org.apache.ojb.broker.accesslayer.ConnectionFactoryDBCPImpl ConnectionFactory
implementation. Then it isaflag to log stack traces for application code which abandoned a
Statement or Connection. Defaults to false. Logging of abandoned Statements and
Connections adds overhead for every Connection open or new Statement because a stack
trace has to be generated.

DEPRECATED attribute!

removeAbandoned and removeAbandonedTimeout When using
org.apache.ojb.broker.access ayer.ConnectionFactoryDBCPImpl ConnectionFactory
implementation, the removeAbandoned flag controls the removal of abandoned connections
if they exceed the removeAbandonedTimeout. Set to true or false, default false. If set to true a
connection is considered abandoned and eligible for removal if it has been idle longer than
the removeAbandonedTimeout. Setting this to true can recover db connections from poorly
written applications which fail to close a connection.

DEPRECATED attributes!

4.5.7.5. sequence-manager

Page 115

0JB

The sequence-manager element specifies the sequence manager implementation used for key
generation. All sequence manager implementations shipped with OJB can be found in the
org.apache.ojb.broker.util.sequence package. If no sequence manager is defined, OJB uses
the default one. More info about sequence key generation here.

Use the custom-attribute element to pass implementation specific properties.

<! ELEMENT sequence- manager (

docunent ati on?,

attributer)
>
The className attribute represents the full qualified class name of the desired sequence
manager implementation - it is mandatory when using the sequence-manager element. All
sequence manager implementations you find will under org.apache.ojb.broker.util.sequence
package named as SequenceManager XXXImpl

More info about the usage of the Sequence Manager implementations can be found here.

<I ATTLI ST sequence- manager
cl assNane CDATA #REQUI RED
>

4.5.7.6. object-cache

The object-cache element can be used to specify the ObjectCache implementation used by
OJB. There are three levels of declaration:

« in OJB.propertiesfile, to declare the standard (default) ObjectCache implementation

» on jdbc-connection-descriptor level, to declare ObjectCache implementation on a per
connection/user level

» on class-descriptor level, to declare ObjectCache implementation on a per class level

The priority of the declared object-cache elements are:
per class > per jdbc descriptor > standard

E.qg. if you declare ObjectCache implementation ‘'my.cacheDef" as standard, set ObjectCache
implementation 'my.cacheA' in class-descriptor for class A and class B does not declare an
object-cache element. Then OJB use 'my.cacheA' as ObjectCache for class A and
'my.cacheDef" for class B.

<! ELEMENT obj ect - cache (docunentation?, attribute*)>
Use the custom-attribute element to pass implementation specific properties.

Page 116

0oJB

<I ATTLI ST obj ect - cache

class CDATA #REQUI RED
>

Attribute ‘class specifies the full qualified class name of the used ObjectCache
implementation.

45.7.7. custom attribute

An attribute element allows arbitrary name/value pairs to be represented in the repository.
See the repository.dtd for details on which elements support it (e.g. class-descriptor,

object-cache, ...).

<! ELEMENT attribute EMPTY>

The attribute-name identifies the name of the attribute.
The attribute-value identifies the value of the attribute.

<I ATTLI ST attribute
attri but e- nane CDATA #REQUI RED
attribut e-val ue CDATA #REQUI RED
>
To get access of the definied attribute use methods of
or g. apache. oj b. br oker. net adat a. Attri but eCont ai ner . All classes

supporting custom attributes have to implement this interface.

Here you can see an example how to define an custom attribute within the class-descriptor
element:

<cl ass-descri ptor
cl ass="ny. Test C ass"
t abl e="QIB_TEST_CLASS"
>
<fi el d-descri pt or
name="i d"
col um="1D"
j dbc-type="I| NTEGER'
pri marykey="true"
aut oi ncrenment ="true"
/>

<attribute attribute-name=" nyAttribute" attribute-val ue="nyVval ue"/>
</ cl ass-descri pt or >

To access the attribute you have to know the associated At t r i but eCont ai ner class.
Here it was ClassDescriptor. To read the attribute at runtime do:

Page 117

0JB

/1 get the Cl assDescri ptor
Cl assDescriptor cld = broker.getC assDescri ptor(TestC ass. cl ass);
String value = cld.getAttribute("nyAttribute");

4.5.7.8. class-descriptor

A class-descriptor and the associated java class ClassDescriptor encapsulate metadata
information of an interface, abstract or concrete class.

For interfaces or abstract classes a class-descriptor holds a sequence of extent-class elements
which specify the types extending this class.

Concrete base classes may specify a sequence of extent-class elements, naming the derived
classes.

For concrete classes it must have field-descriptors that describe primitive typed instance
variables. References to other persistent entity classes are specified by reference-descriptor
elements. Collections or arrays attributes that contain other persistent entity classes are
specified by collection-descriptor elements

A class-descriptor may contain user defined custom attribute elements.

Use the custom-attribute element to pass implementation specific properties.

<! ELEMENT cl ass-descriptor (
(

docunent ati on?,
extent - cl ass+
attributer) |

docunent ati on?,

obj ect - cache?

ext ent - cl ass*,

fiel d-descriptor+,

ref erence-descri ptor*,
col | ecti on-descriptor*,
i ndex- descri ptor*,
attribute*,

i nsert-procedure?,
updat e- pr ocedur e?,

del et e- procedure?)

)

>

The class attribute contains the full qualified name of the specified class. Asthis attributeis
of the XML type ID there can only be one class-descriptor per class.

Theisolation-level attribute defines the locking isolation level of the specified class (used by
OJB's pessimistic locking api). Note: This does NOT touch the jdbc-level of the connection.

Page 118

0oJB

Theisolation-level does not touch the jdbc-connection isolation level. It's completely independend from the database
connection setting.

If the proxy attribute is set, proxies are used for al loading operations of instances of this
class. If set to dynamic, dynamic proxies are used. If set to another value thisvaueis
interpreted as the full-qualified name of the proxy class to use. More info about using of

proxies here.

The proxy-prefetching-limit attribute specifies alimit to the number of elements|oaded on a
proxied reference. When the first proxied element is loaded, a number up to the
proxy-prefetch-limit will be loaded in addition.

The schema attribute may contain the database schema owning the table mapped to this class.
The table attribute speciefies the table name this class is mapped to.

The row-reader attribute may contain afull qualified class name. This class will be used as
the RowReader implementation used to materialize instances of the persistent class.

The extends attribute ************TQDQO: desCcrijption********xxx*x

The accept-locks attribute specifies whether implicit locking should propagate to this class.
Currently relevant for the ODMG layer only.

The optional initialization-method specifies a no-argument instance method that isinvoked
after reading an instance from a database row. It can be used to do initialization and
validations.

The optional factory-class specifies afactory classthat that isto be used instead of ano
argument constructor when new objects are created. If the factory class is specified, then the
factory-method also must be defined. It refers to a static no-argument method of the factory
class that returns a new instance.

The refresh attribute can be set to true to force OJB to refresh instances when loaded from
cache. Means all field values (except references) will be replaced by values retrieved from
the database. It's set to false by default.

<I ATTLI ST cl ass-descri ptor

class | D #REQUI RED

i sol ation-level (read-unconmitted | read-comitted |

repeatabl e-read | serializable | optinmistic | none)

"read-uncommitted"

proxy CDATA #| MPLI ED

proxy-prefetching-limt CDATA #l MPLI ED

schema CDATA #| MPLI ED

t abl e CDATA #| MPLI ED

Page 119

0JB

row r eader CDATA #| MPLI ED
ext ends | DREF #| MPLI ED
accept-locks (true | false) "true"
initialization-nmethod CDATA #l MPLI ED
factory-class CDATA #l MPLI ED
factory-net hod CDATA #l MPLI ED
refresh (true | false) "fal se"

>

45.7.9. extent-class

An extent-class element is used to specify an implementing class or a derived class that
belongs to the extent of all instances of the interface or base class.

<! ELEMENT extent-cl ass EMPTY>

The class-ref attribute must contain afully qualified classname and the repository file must
contain a class-descriptor for this class.

<! ATTLI ST extent-cl ass
cl ass-ref | DREF #REQUI RED
>

4.5.7.10. field-descriptor

A field descriptor contains mapping info for a primitive typed attribute of a persistent class.
A field descriptor may contain custom attribute elements.

Use the custom-attribute element to pass implementation specific properties.

<! ELEMENT fiel d-descriptor (docunentation?, attribute*)>

Theid attributeisoptional. If not specified, OJB internally sorts field-descriptors according
to their order of appearance in the repository file.

If adifferent sort order isintended theid attribute may be used to hold a unique number
identifying the decriptors position in the sequence of field-descriptors.

The order of the numbers for the field-descriptors must correspond to the order of columnsin the mapped table.

The name attribute holds the name of the persistent classes attribute. More info about
persistent field handling.

The table attribute may specify atable different from the mapped table for the persistent
class. (currently not implemented).

The column attribute specifies the column the persistent classes field is mapped to.

Page 120

0oJB

The jdbc-type attribute specifies the JDBC type of the column. If not specified OJB triesto
identify the JDBC type by inspecting the Java attribute by reflection - OJB use the java/jdbc
mapping desribed here.

The primarykey specifies if the column isa primary key column, default valueis false.
The nullable attribute specifiesif the column may contain null values.
The indexed attribute specifiesif thereis an index on this column

The autoincrement attribute specifiesif the values for the persistent attribute should be
automatically generated by OJB. More info about sequence key generation here.

The sequence-name attribute can be used to state explicitly a sequence name used by the
sequence manager implementations. Check the javadocs of the used sequence manager
implementation to get information if thisis a mandatory attribute. OJB standard sequence
manager implementations build a sequence name by its own, if the attribute was not set.
More info about sequence key generation here.

The locking attribute is set to true if the persistent attribute is used for optimistic locking.
More about optimistic locking. The default valueis false.

The updatelock attribute is set to false if the persistent attribute is used for optimistic locking
AND the dbms should update the lock column itself. The default is true which means that
when locking is true then OJB will update the locking fields. Can only be set for
TIMESTAMP and INTEGER columns.

The default-fetch attribute specifies whether the persistent attribute belongs to the JDO
default fetch group.

The conversion attribute contains afully qualified class name. This class must implement the
interface or g. apache. oj b. accessl ayer. conver si ons. Fi el dConver si on. A
FieldConversion can be used to implement conversions between Java- attributes and database
columns. More about field conversion.

The length attribute can be used to specify alength setting if required by the jdbc-type of the
underlying database column.

The precision attribute can be used to specify a precision setting, if required by the jdbc-type
of the underlying database column.

The scale attribute can be used to specify a sclae setting, if required by the jdbc-type of the
underlying database column.

The access attribute specifies the accessibility of the field. Fields marked as readonly are not

Page 121

0JB

to modified. readwrite marks fields that may be read and written to. anonymous marks
anonymous fields.

An anonymous field has a database representation (column) but no corresponding Java
attribute. Hence the name of such afield does not refer to a Java attribute of the class, but is
used as aunique identifier only. More info about anonymous keys here.

<I ATTLI ST fi el d-descri ptor

i d CDATA #l MPLI ED

name CDATA #REQUI RED

t abl e CDATA #l| MPLI ED

col utm CDATA #REQUI RED

jdbc-type (BIT | TINYINT | SMALLINT | INTEGER | BI A NT | DOUBLE
FLOAT | REAL | NUMERI C | DECI MAL | CHAR | VARCHAR
LONGVARCHAR | DATE | TIME | TI MESTAMP | BI NARY |
VARBI NARY | LONGVARBI NARY | CLOB | BLOB) #REQUI RED

pri marykey (true | false) "fal se"

nul l able (true | false) "true"

i ndexed (true | false) "fal se"

aut oi ncrenent (true | false) "fal se"

sequence- name CDATA #l MPLI ED

l ocking (true | false) "fal se"

update-lock (true | false) "true"

default-fetch (true | false) "fal se"

conver si on CDATA #| MPLI ED

| engt h CDATA #l MPLI ED

preci si on CDATA #| MPLI ED

scal e CDATA #l MPLI ED

access (readonly | readwite | anonynous) "readwite"

>

4.5.7.11. reference-descriptor

A reference-descriptor contains mapping info for an attribute of a persistent class that is not
primitive but references another persistent entity Object. More about 1:1 references here.

A foreignkey element contains information on foreign key columns that implement the
association on the database level.

<I ELEMENT ref erence-descriptor (foreignkey+)>
The name attribute holds the name of the persistent classes attribute. Depending on the used

PersistendField implementation, there must be e.g. an attribute in the persistent class with
this name or a JavaBeans compliant property of this name.

The class-ref attribute contains a fully qualified class name. This classis the Object type of
the persistent reference attribute. Asthisis an IDREF there must be a class-descriptor for this
classin the repository too.

The proxy attribute can be set to true to specify that proxy based lazy |oading should be used

Page 122

0oJB

for this attribute.

The proxy-prefetch-limit attribute specifies alimit to the number of elementsloaded on a
proxied reference. When the first proxied element is loaded, a number up to the
proxy-prefetch-limit will be loaded in addition.

The refresh attribute can be set to true to force OJB to refresh the object reference when the
object was loaded from cache. If true OJB try to retrieve the reference (dependent on the
auto-xxx settings) again when the main object isloaded from cache (normally only make
sense for 1:n and m:n relations).

This could be useful if the ObjectCache implementation cache full object graphs without
synchronize the referenced objects.

This does not mean that all referenced objects will be read from database. It only means that the reference will be refreshed,
the objectsitself may provided by the cache. To refresh the object fields itself set the refresh attribute in class-descriptor of the
referenced object or disable caching (to always read objects from the persistent storage).

The auto-retrieve attribute specifies whether OJB automatically retrieves this reference
attribute on loading the persistent object. If set to false the reference attribute is set to null. In
this case the user isresponsible to fill the reference attribute.

More info about auto-retrieve here.

The auto-update attribute specifies whether OJB automatically stores this reference attribute
on storing the persistent object.
More info about the auto-X XX settings here.

This attribute must be set to false if using the OTM or JDO layer.
For ODMG-api none is mandatory (since OJB 1.0.2).

The auto-del ete attribute specifies whether OJB automatically deletes this reference attribute
on deleting the persistent object.
More info about the auto-X XX settings here.

This attribute must be set to false if using the OTM or JDO layer.
For ODMG-api none is mandatory (since OJB 1.0.2).

The otm-dependent attribute specifies whether the OTM layer automatically creates the
referred object or deletes it if the reference field is set to null. Also otm-dependent references
behave as if auto-update and auto-del ete were set to true, but the auto-update and auto-del ete

Page 123

0JB

attributes themself must be always set to false for use with OTM layer.

<! ATTLI ST reference-descri ptor
name CDATA #REQUI RED
cl ass-ref | DREF #REQUI RED

proxy (true | false) "fal se"
proxy-prefetching-Iimt CDATA #l MPLI ED
refresh (true | false) "fal se"

auto-retrieve (true | false) "true"
aut o-update (none | link | object | true | false) "fal se"
auto-delete (none | Iink | object | true | false) "fal se”
ot m dependent (true | false) "fal se"

>

4.5.7.12. foreignkey

A foreignkey element contains information on aforeign-key persistent attribute that
implement the association on the database level.

<l ELEMENT f or ei gnkey EMPTY>

The field-ref and field-id-ref attributes contain the name and the id attributes of the
field-descriptor used as aforeign key.

Exactly one of these attributes must be specified.

<I ATTLI ST f or ei gnkey
field-id-ref CDATA #l MPLI ED
field-ref CDATA #l MPLI ED

>

4.5.7.13. collection-descriptor

A collection-descriptor contains mapping info for aliCollection- or Array-attribute of a
persistent class that contains persistent entity Objects. See more about 1:n and m:n
references.

The inver se-foreignkey elements contains information on foreign-key attributes that
implement the association on the database level.

The fk-pointing-to-this-class and fk-pointing-to-el ement-class elements are only needed if the
Collection or array implements a m:n association. In this case they contain information on
the foreign-key columns of the intermediary table.

Page 124

0oJB

Use the custom+-attribute element to pass implementation specific properties.

<I ELEMENT col | ecti on-descri ptor (
docunent ati on?,
or der by*,
i nver se-forei gnkey*,
f k- poi nting-to-this-class*,
f k- poi nti ng-to-el emrent -cl ass*,
attribute*)>

The name attribute holds the name of the persistent classes attribute. More info about
persistent field handling.

The collection-class may hold afully qualified class name. This class must be the Java type
of the Collection attribute. This attribute must only specified if the attribute type is not a
java. util. Coll ecti on (orsubclass) or Array type. It is also possible to use non
Collection or Array type user defined "collection” classes. More info see section manageable
collection.

The element-class-ref attribute contains afully qualified class name. This classis the Object
type of the elements of persistent collection or Array attribute. Asthisis an IDREF there
must be a class-descriptor for this classin the repository too.

The orderby attribute may specify afield of the element class. The Collection or Array will
be sorted according to the specified attribute. The sort attribute may be used to specify
ascending or descending order for this operation.

The indirection-table must specify the name of an intermediary table, if the persistent
collection attribute implements a m:n association.

The proxy attribute can be set to true to specify that proxy based lazy loading should be used
for this attribute. More about using proxy here.

The proxy-prefetch-limit attribute specifies alimit to the number of elements loaded on a
proxied reference. When the first proxied element is loaded, a number up to the
proxy-prefetch-limit will be loaded in addition.

The refresh attribute can be set to true to force OJB to refresh the object reference when the
object was loaded from cache. If true OJB try to retrieve the reference (dependent on the
auto-xxx settings) again when the main object isloaded from cache (normally only make
sense for 1:n and m:n relations).

This could be useful if the ObjectCache implementation cache full object graphs without
synchronize the referenced objects.

This does not mean that all referenced objects will be read from database. It only means that the reference will be refreshed,

Page 125

0JB

the objects itself may provided by the cache. To refresh the object fieldsitself set the refresh attribute in class-descriptor of the
referenced object or disable caching (to always read objects from the persistent storage).

The auto-retrieve attribute specifies whether OJB automatically retrieves this reference
attribute on loading the persistent object. If set to false the reference attribute is set to null. In
this case the user is responsible to fill the reference attribute.

More info about auto-retrieve here.

The auto-update attribute specifies whether OJB automatically stores this reference attribute
on storing the persistent object.
More info about the auto-X XX settings here.

This attribute must be set to false if using the OTM or JDO layer.
For ODMG-api hone is mandatory (since OJB 1.0.2).

The auto-del ete attribute specifies whether OJB automatically deletes this reference attribute
on deleting the persistent object.
More info about the auto-XX X settings here.

This attribute must be set to false if using the OTM or JDO layer.
For ODMG-api none is mandatory (since OJB 1.0.2).

The otm-dependent attribute specifies whether the OTM layer automatically creates
collection elements that were included into the collection, and deletes collection elements
that were removed from the collection. Also otm-dependent references behave as if
auto-update and auto-del ete were set to true, but the auto-update and auto-del ete attributes
themself must be always set to false for use with OTM layer.

<! ATTLI ST col | ecti on-descri ptor
name CDATA #| MPLI ED
col I ection-cl ass CDATA #l MPLI ED
el ement - cl ass-ref | DREF #REQUI RED
order by CDATA #l MPLI ED
sort (ASC | DESC) "ASC

i ndirection-tabl e CDATA #| MPLI ED

proxy (true | false) "fal se"
proxy-prefetching-limt CDATA #l MPLI ED
refresh (true | false) "fal se"

auto-retrieve (true | false) "true"
aut o-update (none | link | object | true | false) "fal se"

Page 126

0oJB

auto-delete (none | Ilink | object | true | false) "fal se"
ot m dependent (true | false) "fal se"
>

4.5.7.14. inver se-foreignkey

A inverse-foreignkey element contains information on aforeign-key persistent attribute that
implement the association on the database level.

<! ELEMENT i nver se-f or ei gnkey EMPTY>

The field-ref and field-id-ref attributes contain the name and the id attributes of the
field-descriptor used as aforeign key. Exactly one of these attributes must be specified.

<! ATTLI
fie
fie

nver se-f or ei gnkey
d-ref CDATA #l MPLI ED

ST i
[d-i
| d-ref CDATA #l MPLI ED

>

4.5.7.15. fk-pointing-to-this-class

A fk-pointing-to-this-class element contains information on a foreign-key column of an
intermediary table in am:n scenario.

<! ELEMENT fk-poi nting-to-this-class EMPTY>

The column attribute specifies the foreign-key column in the intermediary table that pointsto
the class holding the collection.

<! ATTLI ST f k- poi nti ng-to-this-class
col um CDATA #REQUI RED
>

4.5.7.16. fk-pointing-to-element-class

A fk-pointing-to-element-class element contains information on a foreign-key column of an
intermediary table in a m:n scenario.

<! ELEMENT f k- poi nti ng-to-el ement - cl ass EMPTY>

The column attribute specifies the foreign-key column in the intermediary table that points to
the class of the collection elements.

<I ATTLI ST fk-poi nting-to-el enment-cl ass
col um CDATA #REQUI RED
>

4.5.7.17. query-customizer

Page 127

0JB

A query enhancer element to enhance the 1:n query, e.g. to modify the result objects of a
guery. More info about customizing collection queries.

Use the custom-attribute element to pass implementation specific properties.

<! ELEMENT query-custom zer (
docunent ati on?,
attribute*)>

<I ATTLI ST query-custoni zer

cl ass CDATA #REQUI RED
>

4.5.7.18. index-descriptor

An index-descriptor describes an index by listing its columns. It may be unique or not.

<! ELEMENT i ndex-descri ptor (docunentation?, index-columm+)>
<I' ATTLI ST i ndex-descri pt or

name CDATA #REQUI RED
unique (true | false) "false">

4.5.7.19. index-column

An index-column isjust the name of a column in an index.

<! ELEMENT i ndex-col unmm (docunentati on?)>

<! ATTLI ST i ndex- col umm
nane CDATA #REQUI RED>

4.5.7.20. Stored Procedure Support

OJB supports stored procedures for insert, update and del ete operations. How to use stored
procedures within OJB can be found here.

insert-procedure

I dentifies the procedure/function that should be used to handle insertions for a specific
class-descriptor.

The nested argument elements define the argument list for the procedure/function as well as
the source for each argument.

Use the custom-attribute element to pass implementation specific properties.

Page 128

0oJB

<! ELEMENT i nsert - procedure
(docunentati on?, (runtine-argument | constant-argunent)?, attribute*)>

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned
by the procedure/function. If the procedure/ function does not include areturn value, then do
not specify avalue for this attribute.

The include-all-fields attribute indicates if all field-descriptors in the corresponding
class-descriptor are to be passed to the procedure/ function. If include-all-fieldsis 'true’, any
nested ‘argument’ elements will be ignored. In this case, values for all field-descriptors will
be passed to the procedure/function. The order of values that are passed to the
procedure/function will match the order of field-descriptors on the corresponding
class-descriptor. If include-all-fields is false, then values will be passed to the
procedure/function based on the information in the nested ‘argument’ elements.

<I ATTLI ST i nsert - procedure
name CDATA #REQUI RED
return-field-ref CDATA #l MPLI ED
include-all-fields (true | false) "fal se"
>

update-procedure

| dentifies the procedure/function that should be used to handle updates for a specific
class-descriptor.

The nested argument elements define the argument list for the procedure/function as well as
the source for each argument.

Use the custom+-attribute element to pass implementation specific properties.

<! ELEMENT updat e- pr ocedur e
(docunentati on?, (runtine-argument | constant-argunent)?, attribute*)>

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned
by the procedure/function. If the procedure/ function does not include a return value, then do
not specify avalue for this attribute.

Theinclude-all-fields attribute indicates if all field-descriptors in the corresponding
class-descriptor are to be passed to the procedure/ function. If include-all-fieldsis 'true’, any
nested 'argument’ elements will be ignored. In this case, values for all field-descriptors will
be passed to the procedure/function. The order of values that are passed to the
procedure/function will match the order of field-descriptors on the corresponding

Page 129

0JB

class-descriptor. If include-all-fields is false, then values will be passed to the
procedure/function based on the information in the nested 'argument’ elements.

<I ATTLI ST updat e- pr ocedure

name CDATA #REQUI RED

return-field-ref CDATA #l MPLI ED

i nclude-all-fields (true | false) "fal se"
>

delete-procedure

| dentifies the procedure/function that should be used to handle deletions for a specific
class-descriptor.

The nested runtime-argument and constant-argument elements define the argument list for
the procedure/function as well as the source for each argument.

Use the custom-attribute element to pass implementation specific properties.

<! ELEMENT del et e- pr ocedur e
(docunentati on?, (runtine-argument | constant-argunent)?, attribute*)>

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned
by the procedure/function. If the procedure/ function does not include areturn value, then do
not specify avalue for this attribute.

The include-pk-only attribute indicates if all field-descriptors in the corresponding
class-descriptor that are identified as being part of the primary key are to be passed to the
procedure/function. If include-pk-only is'true', any nested ‘argument’ elements will be
ignored. In this case, values for al field-descriptors that are identified as being part of the
primary key will be passed to the procedure/function. The order of values that are passed to
the procedure/function will match the order of field-descriptors on the corresponding
class-descriptor. If include-pk-only is false, then values will be passed to the procedure/
function based on the information in the nested ‘argument’ elements.

<I ATTLI ST del et e- procedure

name CDATA #REQUI RED

return-field-ref CDATA #l MPLI ED

i ncl ude-pk-only (true | false) "fal se"
>

runtime-ar gument

Defines an argument that is passed to a procedure/function. Each argument will be set to a
value from afield-descriptor or null.

Page 130

0oJB

Use the custom+-attribute element to pass implementation specific properties.

<!l ELEMENT runti nme- ar gunent
(docunentati on?, attribute*)>

The field-ref attribute identifies the field-descriptor in the corresponding class-descriptor that
provides the value for this argument. If this attribute is unspecified, then this argument will
be set to null.

<I ATTLI ST runti me-ar gunent
field-ref CDATA #|l MPLI ED

return (true | false) "fal se"
>

constant-ar gument
Defines a constant value that is passed to a procedure/function.

Use the custom-attribute element to pass implementation specific properties.

<l ELEMENT const ant - ar gunent
(docunentati on?, attribute*)>

The value attribute identifies the value that is passed to the procedure/ function.

<! ATTLI ST const ant - ar gunent
val ue CDATA #REQUI RED
>

4.5.8. Basic Technique

4.5.8.1. Mapping 1:1 associations

As asample for asimple association we take the reference from an article to its
productgroup.

This association is navigable only from the article to its productgroup. Both classes are
modelled in the following class diagram. This diagram does not show methods, as only
attributes are relevant for the O/R mapping process.

Page 131

0JB

Productl roup Article
private Yector allArticle sInG roup protected int article ld
private String de scription protected String article Mamse
private int groupld protected boolean isSe llautArticle
private 5tring groupMame protected int minimumStock

protected int orde redUnits

protected double price

protected Inte rface ProductG roup productG roup
protected int productS roupld

protected int stock

protected int supplie rid

protected String unit

1:1 association

The association isimplemented by the attribute pr oduct G oup. To automatically maintain
this reference OJB relies on foreignkey attributes. The foreign key containing the gr oupl d
of the referenced pr oduct gr oup isstored in the attribute pr oduct G- oupl d. To avoid
FK attribute in persistent object class see section about anonymous keys.

Thisisthe DDL of the underlying tables:

CREATE TABLE Arti kel

(
Arti kel Nr I NT NOT NULL PRI MARY KEY,
Arti kel name VARCHAR(60) ,
Li eferanten_Nr I NT,
Kat egori e_Nr | NT,
Li ef erei nhei t VARCHAR(30) ,
Ei nzel prei s FLOAT,
Lager best and | NT,
Best el | t eEi nhei ten | NT,
M ndest Best and | NT,
Ausl auf arti kel | NT
)
CREATE TABLE Kat egori en
Kat egori e Nr I NT NOT NULL PRI MARY KEY,
Kat egori eNane VARCHAR(20) ,
Beschr ei bung VARCHAR(60)

To declare the foreign key mechanics of this reference attribute we have to add a
reference-descriptor to the class-descriptor of the Article class. This descriptor contains the
following information:

« The attribute implementing the association (nanme=" pr oduct Gr oup") is
productGroup.

« Thereferenced object is of type (
cl ass-ref ="org. apache. oj b. br oker. Product G oup")

Page 132

0oJB

or g. apache. oj b. br oker . Product G oup.
A reference-descriptor contains one or more foreignkey elements. These elements define
foreign key attributes. The element

<forei gnkey field-ref="product G oupld"/>
contains the name of the field-descriptor describing the foreignkey fields. The
FieldDescriptor with the name "productGroupld” describes the foreignkey attribute
productGroupld:

<fi el d-descri pt or
nanme=" pr oduct Gr oupl d"
col utm="Kat egori e_Nr"
j dbc-type="1 NTEGER'
/>

See the following extract from the repository.xml file containing the Article ClassDescriptor:

<I-- Definitions for org.apache.ojb.ojb.broker.Article -->
<cl ass-descri ptor

cl ass="org. apache. oj b. br oker. Articl e"
pr oxy="dynam c"
tabl e="Arti kel "

<extent-cl ass cl ass-ref="org. apache. oj b. br oker. BookArticle" />
<extent-class class-ref="org. apache. oj b. broker. CdArticle" />
<fi el d-descri pt or

name="articl el d"

col um="Arti kel _Nr"

j dbc-t ype="1 NTEGER"

pri marykey="true"

aut oi ncrement ="t rue"
/>
<fi el d-descri pt or

nane="articl eNane"

col um="Arti kel nane"

j dbc-t ype=" VARCHAR'
/>

<fi el d-descri ptor
nanme="supplierld"
col um="Li eferanten_Nr"
/ j dbc-t ype="1 NTEGER"
>

<fi el d-descri pt or
nanme="pr oduct Gr oupl d"
col um="Kat egori e _Nr"
j dbc-t ype="1 NTEGER"
/>

<référence-descriptor

nane="pr oduct G oup"

cl ass-ref="org. apache. oj b. br oker. Product G oup"
>

Page 133

0JB

<forei gnkey field-ref="product G oupld"/>
</reference-descri ptor>
</ cl ass-descri pt or>
This example provides unidirectional navigation only. Bidirectional navigation may be added
by including areference from a ProductGroup to asingle Article (for example, a sample
article for the productgroup). To accomplish this we need to perform the following steps:

1. Addaprivate Article attribute named sanpl eArti cl e to theclass Pr oduct Gr oup.

2. Add aprivateint attribute named sanpl eArti cl el d to the ProductGroup class
representing the foreign key. To avoid FK attribute in persistent object class see section
about anonymous keys.

3. Addacolumn SAMPLE_ARTI CLE_| D | NT to thetable Kat egori en.

4. Add aFieldDescriptor for the foreignkey attribute to the ClassDescriptor of the Class
ProductGroup:

<fi el d-descri ptor
nane="sanpl eArticl el d"
col um="SAMPLE_ARTI CLE_| D"
' j dbc-t ype="1 NTEGER"
>

1. Add aReferenceDescriptor to the ClassDescriptor of the Class ProductGroup:

<ref erence-descri pt or
nane="sanpl eArticl e"

cl ass-ref="org. apache. oj b. broker. Articl e"
>

<forei gnkey field-ref="sanpleArticleld""/>
</reference-descri ptor>

When using primitive primary key fields, please pay attention on how OJB manage nul | for primitive PK/FK

1:1 auto-xxx setting
General info about the aut 0- xxx and pr oxy attributes can be found here

auto-retrieve
See here

auto-update

« none On updating or inserting of the main object with
Per si st enceBr oker. store(...),thereferenced object will NOT be updated by
default. The reference will not be inserted or updated, the link to the reference (foreign
key value to the reference) on the main object will not be assigned automatically. The
user hasto link the main object and to store the reference before the main object to avoid

Page 134

0oJB

violation of referential integrity.

link On updating or inserting of the main object with

Per si st enceBr oker.store(...),theFK assignment on the main object was
done automatic. OJB reads the PK from the referenced object and sets these values as FK
in main object. But the referenced object remains untouched. If no referenced object is
found, the FK will be nullified. (Oninsert it is allowed to set the FK without popul ating
the referenced object)

object On updating or inserting of the main object with

Per si st enceBr oker.store(...),thereferenced object will be stored first, then
OJB doesthe same asin link.

false Isequivalent to link.

true Is equivalent to object.

auto-delete

none On deleting an object with Per si st enceBr oker . del ete(...) the
referenced object will NOT be touched.

link I's equivalent to none.

object On deleting an object with Per si st enceBr oker . del ete(...) the
referenced object will be deleted too.

false Is equivalent to none.

true Is equivalent to object.

4.5.8.2. Mapping 1:n associations

We will take a different perspective from the previous exmaple for a 1:n association. We will
associate multiple Articles with a single ProductGroup. This association is navigable only
from the ProductGroup to its Article instances. Both classes are modelled in the following
class diagram. This diagram does not show methods, as only attributes are relevant for the
O/R mapping process.

ProductGroup Article

private Yector allArticle sInGroup
private String de scription

private int groupld

private String grouphame

protected int article1d

protected String article MHame
protected boolean isSe lloutArticle
protected int minimum5Stock
protected int orderedUnits
protected double price

protected Inte rface ProductC roup productG roup
protected int productS roupld
protected int stock

protected int zupplierid
protected String unit

1:n association

The association isimplemented by the Vect or attributeal | Arti cl esl nG oup onthe

Page 135

0JB

ProductGroup class. Asin the previous example, the Article class contains aforeignkey
attribute named productGroupld that identifies an Article's ProductGroup. The Database
table are the same as above.

To declare the foreign key mechanics of this collection attribute we must add a
CollectionDescriptor to the ClassDescriptor of the ProductGoup class. This descriptor
contains the following information:

1.
2.

3.

4.

The attribute implementing the association (nane="al | Arti cl esl nG oup")
The class of the elements in the collection (

el enent - cl ass-ref ="org. apache. oj b. broker. Article")

The name of field-descriptor of the element class used as foreign key attributes are
defined in inverse-foreignkey elements:

<i nverse-forei gnkey field-ref="product G oupld"/>

Thisisagain pointing to the field-descriptor for the attribute pr oduct Goupl d in class
Article.

optional attributes to define the sort order of the retrieved collection:
orderby="articleld" sort="DESC'.

See the following extract from the repository.xml file containing the ProductGoup
ClassDescriptor:

<I-- Definitions for org.apache. ojb. broker. Product G oup -->
<cl ass-descri ptor

cl ass="org. apache. oj b. br oker. Product G oup"
t abl e="Kat egori en"”

<fi el d-descri pt or
nane="gr oupl d"
col um="Kat egori e_Nr"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrenent ="t rue"

/>

<fi el d-descri pt or
name="gr oupNane"
col um=" Kat egor i eNane"

/ j dbc-t ype=" VARCHAR"

>

<fi el d-descri pt or
nane="descri pti on"
col um="Beschr ei bung"
/ j dbc-t ype=" VARCHAR"
>

<col | ecti on-descri pt or
nane="al | Articl esl nG oup"
el ement - cl ass-ref ="org. apache. oj b. broker. Articl e"
orderby="articl el d"

Page 136

0oJB

sort =" DESC"
>

<i nverse-forei gnkey field-ref="product G oupld"/>
</ col | ecti on-descri ptor>

</ cl ass-descri ptor>

With the mapping shown above OJB has two possibilities to load the Articles belonging to a
ProductGroup:

1.

2.

loading all Articles of the ProductGroup immediately after |oading the ProductGroup.
Thisis done with two SQL-calls: one for the ProductGroup and one for all Articles.

if Articleisaproxy (using proxy classes), OJB will only load the keys of the Articles
after the ProductGroup. When accessing an Article-proxy OJB will have to materialize it
with another SQL-Call. Loading the ProductGroup and all it's Articles will thus produce
n+2 SQL-calls: one for the ProductGroup, one for keys of the Articles and one for each
Article.

Both approaches have their benefits and drawbacks:

A. issuitable for asmall number of related objects that are easily instantiated. It's
efficient regarding DB-calls. The major drawback is the amount of dataloaded. For
example to show alist of ProductGroups the Articles may not be needed.

B. isbest used for alarge number of related heavy objects. This solution loads the objects
when they are needed ("lazy loading"). The price to pay isa DB-call for each object.

Further down athird solution using a single proxy for awhole collection will be presented to
circumvent the described drawbacks.

OJB supports different Collection types to implement 1:n and m:n associations. OJB detects
the used type automatically, so there is no need to declare it in the repository file. But in
some cases the default behaviour of OJB is undesired. Please read here for more information.

When using primitive primary key fields, please pay attention on how OJB manage nul | for primitive PK/FK

1:n auto-xxx setting

General info about the auto-xxx and proxy attributes can be found here.

auto-retrieve
See here

auto-update

none On updating or inserting of the main object with
Per si st enceBr oker. store(...),thereferenced objects are NOT updated by
default. The referenced objects will not be inserted or updated, the referenced objects

Page 137

0JB

will not be linked (foreign key assignment on referenced objects) to the main object
automatically. The user hasto link and to store the referenced objects after storing the
main object to avoid violation of referential integrity.

link On updating or inserting of the main object with

Per si st enceBr oker.store(...),thereferenced objectsare NOT updated by
default. The referenced objects will not be inserted or updated, but the referenced objects
will be linked automatically (FK assignment) the main object.

object On updating or inserting of the main object with

Per si st enceBr oker.store(...),thereferenced objectswill be linked and
stored automatically.

false Isequivalent to link.

true Is equivalent to object.

auto-delete

none On deleting an object with Per si st enceBr oker . del ete(...) the
referenced objects are NOT touched. This may lead to violation of referential integrity if
the referenced objects are childs of the main object. In this case the referenced objects
have to be deleted manually first.

link I's equivalent to none.

object On deleting an object with Per si st enceBr oker . del ete(...) the
referenced objects will be deleted too.

false Is equivalent to none.

true Is equivalent to object.

4.5.8.3. Mapping m:n associations

OJB provides support for manually decomposed m:n associations as well as an automated
support for non decomposed m:n associations.

Manual decomposition into two 1:n associations

Have alook at the following class diagram:

Person Project
-id : int 0.® 0% 1id - int
—-firstname : 5tring -title : 5tring
-lastname : String —description : 5tring
-projects : Callection -perzons : Collection
-males : Collectian —-role s Callaction

m:N association

We see atwo classes with am:n association. A Person can work for an arbitrary number of
Projects. A Project may have any number of Persons associated to it.

Page 138

0oJB

Relational databases don't support m:n associations. They require to perform a manual
decomposition by means of an intermediary table. The DDL looks like follows:

CREATE TABLE PERSON (
| D INT NOT NULL PRI MARY KEY,
FI RSTNAVME VARCHAR(50),
LASTNAVE VARCHAR(50)

CREATE TABLE PRQIECT (

I D I NT NOT NULL PRI MARY KEY,
TI TLE VARCHAR(50) ,

DESCRI PTI ON VARCHAR(250)

)i

CREATE TABLE PERSON PRQJECT (
PERSON ID | NT NOT NULL,
PRQJECT ID | NT NOT NULL,
PRI MARY KEY (PERSON | D, PRQJECT | D)

) y
Thisintermediary table allows to decompose the m:n association into two 1:n associations.
The intermediary table may also hold additional information. For example, the role a certain
person plays for a project:

CREATE TABLE PERSON PRQJECT (

PERSON I D I NT NOT NULL,

PRQIECT_I D | NT NOT NULL,

ROLENAME VARCHAR(20) ,

PRI MARY KEY (PERSON_I D, PRQIECT_I D)

Ji
The decomposition is mandatory on the ER model level. On the object model level it isnot
mandatory, but may be a valid solution. It is mandatory on the object level if the association
isqualified (asin our example with arolename). Thiswill result in the introduction of a
association class. A class-diagram reflecting this decomposition looks like:

Person Fole Project
-id :int 0% | -person_id :int 0.* -id :int
-firstname : String -project_id : int ~title : String
-lastname : 5tring -parson : Person -de scription : 5tring
-projects : Caollection -project : Project -parsons : Collection
-roles : Collection -rale Mame : 5tring -roles ; Collection

m:n association

A Per son object has a Collection attribute r ol es containing Rol e entries. A Pr oj ect
has a Collection attributer ol es containing Rol e entries. A Rol e has reference attributes
toitsPer son andtoitsPr oj ect .

Handling of 1:n mapping has been explained above. Thus we will finish this section with a

Page 139

0JB

short look at the repository entries for the classesor g. apache. oj b. br oker . Per son,
or g. apache. oj b. br oker. Proj ect andor g. apache. oj b. br oker. Rol e:

<I--

Definitions for org.apache. ojb. broker. Person -->

<cl ass-descri ptor

cl ass="org. apache. oj b. br oker . Per son

t abl e=" PERSON"

<fi el d-descri pt or
nanme="i d"
col um="1D"
j dbc-type="I| NTEGER'
pri marykey="true"
aut oi ncrenment ="true"
/>
<fi el d-descri pt or
nane="fir st nane"
col um="FI RSTNAME"
/ j dbc-t ype=" VARCHAR"
>

<fi el d-descri pt or
name="1 ast nane"
col utm=" LASTNAME"
j dbc-t ype=" VARCHAR"
/>

<col | ecti on-descri pt or
nane="r ol es"

el ement - cl ass-ref ="org. apache. oj b. br oker. Rol e"

>

<i nverse-foreignkey field-ref="person_id"/>
</ col |l ecti on-descri ptor>

</ cl ass-descri ptor>

<l --

Definitions for org.apache. oj b. br oker. Proj ect

<cl ass-descri pt or

cl ass="or g. apache. oj b. br oker . Proj ect

t abl e=" PROJECT"

<fi el d-descri pt or
nane="i d"
col um="1D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrenent ="t rue"
/>
<fi el d-descri pt or
name="title"
col um="TI TLE"
j dbc-t ype=" VARCHAR'
/>

<fi el d-descri pt or
nane="descri pti on"

Page 140

0oJB

col um=" DESCRI PTI ON"
j dbc-t ype=" VARCHAR"
/>

<col | ecti on-descri ptor

name="r ol es"

el ement - cl ass-ref ="org. apache. oj b. br oker. Rol e"
>

<i nverse-forei gnkey field-ref="project_id"/>
</ col |l ecti on-descri ptor>

</ cl ass-descri pt or >

<I--

Definitions for org.apache. ojb. broker.Role -->

<cl ass-descri pt or

cl ass="org. apache. oj b. br oker . Rol e"
t abl e=" PERSON_PRQJECT"

<fi el d-descri pt or
nane="person_i d"
col um="PERSON_| D'
j dbc-t ype="1 NTEGER"
pri marykey="true"

/>

<fi el d-descri pt or
nane="proj ect id"
col um="PRQJIECT | D"
j dbc-t ype="1| NTEGER"
pri marykey="true"

/>

<fi el d-descri pt or
nanme="r ol eNane"
col umm=" ROLENAME"
j dbc-t ype=" VARCHAR"

/>

<ref erence-descri ptor

name="per son"

cl ass-ref="org. apache. oj b. br oker. Per son"
>

<forei gnkey field-ref="person_id"/>
</reference-descri ptor>
<r ef erence-descri pt or

nane="proj ect"

cl ass-ref ="org. apache. oj b. br oker. Proj ect"
>

<foreignkey field-ref="project_id"/>
</reference-descri ptor>

</ cl ass-descri pt or >

Support for Non-Decomposed m:n Mappings

If there is no need for an association class at the object level (we are not interested in role
information), OJB can be configured to do the m:n mapping transparently. For example, a
Person does not have a collection of Rol e objects but only a Collection of Pr o] ect objects

Page 141

0JB

(held in the attribute pr o) ect s). Projects aso are expected to contain a collection of
Per son objects (hold in attribute per sons).

To tell OJB how to handle this m:n association the CollectionDescriptors for the Collection
attributes pr oj ect s andr ol es need additional information on the intermediary table and
the foreign key columns pointing to the PERSON table and the foreign key columns pointing
to the PRQJECT table:

QJB supports a multiplicity of collection implementations, inter alia

org. apache. oj b. broker. util.collections. Renoval Awar eCol | ecti on and

org. apache. oj b. broker. util.col |l ecti ons. Renoval Awar eLi st . By default the removal aware collections
were used. This cause problemsin m:n relations when aut o- updat e="true" or "object" and

aut o-del ete="fal se" or "none" isset, because objects deleted in the collection will be deleted on update of main
object. Thusit is recommended to use aNOT removal aware collection class in m:n relations using the collection-class
attribute.

Example for setting a collection class in the collection-descriptor:

col I ection-cl ass="org. apache. oj b. broker. util.coll ections. Manageabl eArraylLi st
An full example for a non-decomposed m:n relation looks like:

<cl ass-descri ptor
cl ass="or g. apache. oj b. br oker . Per son"
t abl e=" PERSON"

<fi el d-descri pt or
name="i d"
col um="1D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrement ="t rue"
/>
<fi el d-descri pt or
name="fi r st nane"
col um="FlI RSTNAME"
j dbc-t ype=" VARCHAR'
/>

<fi el d-descri pt or
name="1 ast nane"
col um=" LASTNAME"
; j dbc-t ype=" VARCHAR"
>

<col | ecti on-descri ptor
nane="proj ect s"
col l ection-cl ass="org. apache. oj b. broker. util.coll ections. Manageabl eArrayLi st"
el ement - cl ass-ref ="org. apache. oj b. br oker. Proj ect"
auto-retrieve="true"

Page 142

0oJB

aut o- updat e="t rue"
i ndi recti on-tabl e=" PERSON PRQJECT"

<f k- poi nti ng-to-this-class colum="PERSON | D'/ >
<f k- poi nti ng-to-el ement - cl ass col um="PRQIECT | D'/ >
</ col | ecti on-descri ptor>
</ cl ass-descri ptor>

<I-- Definitions for org.apache. ojb. broker. Project -->
<cl ass-descri ptor

cl ass="org. apache. oj b. br oker . Proj ect™

t abl e=" PRQJECT"

<fi el d-descri pt or
nane="i d"
col um="1D"
j dbc-type="1| NTEGER'
pri marykey="true"
aut oi ncrenment ="true"

/>

<fi el d-descri ptor
nane="title"
col um="TI TLE"

/ j dbc-t ype=" VARCHAR"

>

<fi el d-descri pt or
nane="descri pti on"
col utm=" DESCRI PTI ON"
j dbc-t ype=" VARCHAR'
/>

<col | ecti on-descri pt or
name="per sons"
col l ection-cl ass="org. apache. oj b. broker. util.coll ecti ons. Manageabl eArrayLi st"
el ement - cl ass-ref ="org. apache. oj b. br oker . Per son"
auto-retrieve="true"
aut o- updat e="f al se"
i ndi recti on-tabl e=" PERSON PRQJECT"

<f k- poi nti ng-to-this-class colum="PRQIECT |ID'/>
<f k- poi nti ng-to-el ement-class col um="PERSON | D'/ >
</ col | ecti on-descri ptor>
</ cl ass-descri ptor>

That is all that needs to be configured! See the codein class
or g. apache. oj b. br oker . M oNMappi ng for JUnit testmethods using the classes
Per son, Proj ect and Rol e.

When using primitive primary key fields, please pay attention on how OJB manage nul | for primitive PK/FK

Page 143

0JB

m:n auto-xxx setting

General info about the aut 0- xxx and pr oxy attributes can be found here

auto-retrieve
See here

auto-update

none On updating or inserting of the main object with

Per si st enceBr oker. store(...),thereferenced objects are NOT updated by
default. The referenced objects will not be inserted or updated, the referenced objects
will not be linked (creation of FK entriesin the indirection table) automatically. The user
has to store the main object, the referenced objects and to link the m:n relation after
storing of all objects. establishing the m:n relationship before storing main and referenced
objects may violate referential integrity.

link On updating or inserting of the main object with

Per si st enceBr oker. store(...),thereferenced objects are NOT updated by
default. The referenced objects will not be inserted or updated, but the m:n relation will
be linked automatically (creation of FK entriesin the indirection table).

Make sure that the referenced objects exist in database before storing the main object with auto-update set link to avoid
violation of referential integrity.

object On updating or inserting of the main object with

Per si st enceBr oker. store(...),thereferenced objectswill be linked and
stored automatically.

false Is equivaent to link.

true Is equivalent to object.

auto-delete

none On deleting an object with Per si st enceBr oker. del ete(...) the
referenced objects are NOT touched. The corresponding entries of the main object in the
indirection table will not be removed. This may lead to violation of referential integrity
depending on the definition of the indirection table.

link On deleting an object with Per si st enceBr oker. del ete(...) themn
relation will be unlinked (all entries of the main object in the indirection table will be
removed).

object On deleting an object with Per si st enceBr oker . del ete(...) al
referenced objects will be deleted too.

false Isequivalent to link.

true Is equivalent to object.

Page 144

0oJB

4.5.8.4. Setting L oad, Update, and Delete Cascading

As shown in the sections on 1:1, 1:n and m:n mappings, OJB manages associations (or object
references in Javaterminology) by declaring special Reference and Collection Descriptors.
These Descriptor may contain some additional information that modifies OJB's behaviour on
object materialization, updating and deletion.

The behaviour depends on specific attributes

e auto-retrieve - possible settings are false, true. If not specified in the descriptor the
default value istrue

e auto-update - possible settings are none, link, object and deprecated [false, true]. If not
specified in the descriptor the default value is false

« auto-delete - possible settings are none, link, object and deprecated [false, true]. If not
specified in the descriptor the default value is false

When using atop-level api (ODMG, OTM, JDO) it is mandatory to use specific auto-xxx settings.

For OTM- and JDO-api the settings are:

- auto-retrieve="true"

- auto-update="false"

- auto-retrieve="false"

This are at the same time the default auto-XX X settings (so don't specify any of this attributes will have the same effect).
For the ODM G-api the mandatory settings are (since OJB 1.0.2):

- auto-retrieve="true"

- auto-update="none"

- auto-retrieve="none"

The attribute auto-update and auto-del ete are described in detail in the corresponding
sections for 1:1, 1:n and m:n references. The auto-retrieve setting is described below:

auto-retrieve setting

Theaut o-retri eve attributeusedinr ef er ence- descri pt or or
col | ecti on-descri pt or elements handles the loading behaviour of references (1:1,
1:n and m:n):

» falself set false the referenced objects will not be materialized on object materialization.
The user has to materialize the n-side objects (or single object for 1:1) by hand using one
of the following service methods of the Per si st enceBr oker class:

Per si st enceBroker.retri eveRef erence(Obj ect obj, String attributeNane);
/Il or
Per si st enceBroker.retrieveAl | Ref erences(Cbj ect obj);

The first method load only the specified reference, the second one loads all references
declared for the given object.

Page 145

0JB

Be careful when using "opposite" settings, e.g. if you declare a 1:1 reference with auto-retrieve="false" BUT
auto-update="object" (or "true" or "link").

Before you can perform an update on the main object, you have to "retrieve" the 1:1 reference. Otherwise you will end up with
an nullified reference enty in main object, because OJB doesn't find the referenced object on update and assume the reference
was removed.

» truelf set true the referenced objects (single reference or al n-side objects) will be
automatic loaded by OJB when the main object was materialized.

If OJB is configured to use proxies, the referenced objects are not materialized
immmediately, but lazy loading proxy objects are used instead.

In the following code sample, a reference-descriptor and a collection-descriptor are
configured to use cascading retrieval (aut o-retri eve="true"), cascading
insert/update (aut o- updat e=" obj ect " or aut o- updat e="t rue") and cascading
delete (aut o- del et e="o0bj ect " or aut o- del et e="t rue") operations:

<ref erence- descri ptor

nane="pr oduct G oup"

cl ass-ref="org. apache. oj b. br oker. Product G oup"
auto-retrieve="true"

aut o- updat e="obj ect "

aut o- del et e="obj ect"
>

<forei gnkey field-ref="product G oupld"/>
</reference-descri ptor>

<col | ecti on-descri pt or

name="al | Arti cl esl nG oup"

el ement - cl ass-ref="org. apache. oj b. broker. Articl e"
auto-retrieve="true"

aut o- updat e="obj ect "

aut o- del et e="obj ect"

orderby="articleld"

sort ="DESC'
>

<i nverse-forei gnkey field-ref="product G oupld"/>
</ col | ecti on-descri ptor>

Link references

Ifinr ef erence-descriptor orcol | ecti on-descri ptor theauto-update or
auto-del ete attributes are set to none, OJB does not touch the referenced objects on insert,
update or delete operations of the main object. The user hasto take care of the correct
handling of referenced objects. When using referential integrity (who does not ?) it's essential
that insert and delete operations are done in the correct sequence.

Page 146

0oJB

One important thing is assignment of the FK values. The assign of the FK valuesis
transcribed with link referencesin OJB. In 1:1 references the main object hasa FK to the
referenced object, in 1:n references the referenced objects have FK pointing to the main
object and in non-decomposed m:n relations a indirection table containing FK values from
both sides of the relationship is used.

OJB provides some helper methods for linking references manually (assignment of the FK)
inor g. apache. oj b. broker . util . Broker Hel per class.

public void |ink(Cbject obj, boolean insert)

public void unlink(Cbject obj)

public boolean |ink(Cbject obj, String attributeNanme, bool ean insert)
public bool ean unlink(Cbject obj, String attributeNane)

These methods are accessible viaor g. apache. oj b. br oker . Per si st enceBr oker:

Br oker Hel per bh = broker. servi ceBroker Hel per();

The link/unlink methods are only useful if you set auto-update/-delete to none. In al other cases OJB handles the link/unlink of
referencesinternaly. It is also possible to set all FK values by hand without using the link/unlink service methods.

Examples

Now we prepared for some example. Say class Mbvi e has an m:n reference with class
Act or and we want to store an Movie object with alist of Actor objects. The auto-update
setting of collection-descriptor for Movie is none:

br oker. begi nTransacti on();

/1 store mmin object first

br oker. st ore(novi e);

/I now we store the right-side objects
Iterator it = novie.getActors().iterator();
whi | e(it.hasNext())

{

nj ect actor = it.next();
br oker. store(actor);

/1 now both side exist and we can |ink the references

br oker. servi ceBroker Hel per().link(novie, "actors", true);

/*

alternative cal

br oker. servi ceBroker Hel per ().l ink(novie, true);

*/

br oker. commi t Transacti on();

First store the main object and the references, then use

br oker . servi ceBrokerHel per().link(nmovie, "actors", true) tolink
the main object with the references. In case of am:n relation linking create al FK entriesin

Page 147

0JB

the indirection table.

In the next examples we want to manually delete aPr o] ect object with al:n relation to
class SubPr oj ect . In the example, the Project object has load all SubProject objects and
we want to delete the Project but don't want to delete the referenced SubProjects too (don't
ask if this make sense ;-)). SubProject has an FK to Project, so we first have to unlink the
reference from the main object to the references to avoid integrity constraint violation. Then
we can del ete the main object:

br oker. begi nTransacti on();
/1 first unlink the n-side references
br oker. servi ceBroker Hel per (). unlink(project, "subProjects");

/1 update the n-side references, store SubProjects with nullified FK
Iterator it = project.getSubProjects().iterator();
whi | e(it.hasNext())

SubPr oj ect subProject = (SubProject) it.next();
br oker. st ore(subProj ect);

}

/1 now del ete the nmain object
br oker. del et e(proj ect);
br oker. commi t Transacti on();

4.5.8.5. Using Proxy Classes

Proxy classes can be used for "lazy loading” aka"lazy materialization”. Using Proxy classes

can help you in reducing unneccessary database lookups.

There are two kind of proxy mechanisms available:

1. Dynamic proxies provided by OJB. They can simply be activated by setting certain
switchesin repository.xml. Thisis the solution recommemded for most cases.

2. User defined proxies. User defined proxies allow the user to write proxy
implementations.

Asit isimportant to understand the mechanics of the proxy mechanism | highly recommend
to read this section before turning to the next sections "using dynamic proxies', "using a
single proxy for awhole collection” and "using a proxy for areference”, covering dynamic
proxies.

As a simple example we take a ProductGroup object pg which contains a collection of
fifteen Article objects. Now we examine what happens when the ProductGroup is loaded
from the database:

Without using proxies all fifteen associated Article objects are immediately loaded from the

Page 148

0oJB

db, even if you are not interested in them and just want to lookup the description-attribute of
the ProductGroup object.

If proxies are used, the collection is filled with fifteen proxy objects, that implement the same
interface as the "real objects" but contain only an OID and a void reference. The fifteen
article objects are not instantiated when the ProductGroup isinitially materialized. Only
when amethod is invoked on such a proxy object will it load its "real subject” and delegate
the method call to it. Using this dynamic delegation mechanism instantiation of persistent
objects and database |ookups can be minimized.

To use proxies, the persistent classin question (in our case the Article class) must implement
an interface (for example InterfaceArticle). Thisinterface is needed to alow replacement of
the proper Article object with a proxy implementing the same interface. Have alook at the
code:
public class Article inplenents InterfaceArticle

/** maps to db-colum "Artikel-N"; PrinmaryKey*/

protected int articleld;

/** maps to db-colum "Artikel name"*/

protected String articl eNane;

public int getArticleld()

{

return articleld;

public java.lang. String getArticl eNane()
{

return articl eNane;

}

public interface InterfaceArticle

publ i
publ i

int getArticleld();
java.lang. String getArticl eName();

o0

}

public class ArticleProxy extends Virtual Proxy inplenents InterfaceArticle

public ArticleProxy(ojb.broker.ldentity uniqueld, PersistenceBroker
br oker)
{

super (uni quel d, broker);

Page 149

0JB

public int getArticleld()

return real Subject().getArticleld();

}
public java.lang. String getArticl eNane()
; return real Subject().getArticleName();
private InterfaceArticle real Subject()
{ try
return (InterfaceArticle) getReal Subject();
iatch (Exception e)
return null;
}
}

}

The proxy is constructed from the identity of the real subject. All method calls are delegated
to the object returned by r eal Subj ect ().

This method uses getReal Subject() from the base class Virtual Proxy:

public Object getReal Subject() throws PersistenceBroker Exception

return indirectionHandl er. get Real Subj ect () ;
}
The proxy delegates the the materialization work to its| ndi r ect i onHandl er . If thereal
subject has not yet been materialized, a PersistenceBroker is used to retrieve it by its OID:

public synchroni zed Obj ect get Real Subject ()
t hr ows Per si st enceBr oker Excepti on

{
if (real Subject == null)
mat eri al i zeSubj ect () ;
return real Subject;
}

private void materializeSubject()
t hr ows Persi st enceBr oker Excepti on

real Subj ect = broker.get Obj ectByldentity(id);

To tell OJB to use proxy objects instead of materializing full Article objects we have to add

Page 150

0oJB

the following section to the XML repository file:

<cl ass-descri pt or

cl ass="org. apache. oj b. br oker. Articl e"
pr oxy="or g. apache. oj b. broker . Arti cl eProxy"

tabl e="Arti kel "
>

The following class diagram shows the rel ationships between all above mentioned classes:

Wirtiral Fray

+WirtualProxy
+W¥irtualProxyiaid:)
+YirtualProxyihandle ri)
+alreadyMate rializedy : boolean

+getRealsubject] @ Object

+create ProxoyiproxyC lass:Class, realsubjectszlde ntity:) : Object

Article Prosoy

+Article Froxyd

+Article Prozoyiunigue 1d:)

+Article Proxoyihandle)
+addToStockiin diff:int)
+getArticleldd :int

+getArticle Mame § : String
+getProducts roupd
+getstockyalus (@ double
-realSubject : Interface Article
+zetArticle |diin newArticle [d:int)
+ e tArticle Namea newA rticle Name :String)

Using Dynamic Proxies

=< Intarface = =

Inte rface A rticle
+addTo5tock(in diff:int)
+getArticlzldd :int
+getArticle Mame § : String
+getProductG roupd
+getstockyalue] : double
+setArticle Idiin newArticle Id:int)
+zetArticle Name (newArticle Name String)
+toStringf : String

ProductCroup

—allArticle sinGroup @ Yector
—description : 5tring
—groupld : int

—groupMame : 5tring

+getldd :int

+to5tringd : String
+getMame § : String

+zetMame fin groupHame Strings
+getAllArticle =g @ List
+zetldiin newhalueint)

Article

Harticleld : int

#article Mame : String
#istelloutArticle : boolean
Fminimumstock :int
Forde redUnits :int
#price : double
FproductGroupld : int
#stock :int

Fzuppliarld : int

#unit : String

+tosStringd : String

+addTo5tock(in diff:int)

+getArticlzldd :int

+getArticla Hame 0 : String

+getStockyalue] : double

+setArticle Idiin newArticle Id:int)

+zetArticle Name (newArticle Name String)
+getlsSe llouthrticle § : boolean
+getMinimumStock] : int

+getOrde edUnitsg : int

+getPrice { : double

+getProducts roupfd

+getProductS roupldd : int

+getstock] :int

+getsupplierldd @ int

+getlnitd : String

+zetlzSe lloutArticledin newlsSelloutArticle :boolean)
+zetMinimumsStockilin newMinimumStock:int)
+zetOrde redUnitziin newdrde redUnitz:int)
+setPrice{in newPrice .double)

+ setProductl roupine wProductG roups)

+ setProductl roupldiin newProductG roupld:int)
+setStockiin newStock:int)

+zetiupplierd{in newSupplie rid:int)
+zetUnit{newlnit:5tring)

proxy image

The implementation of a proxy classis aboring task that repeats the same del egation scheme

Page 151

0JB

for each new class. To liberate the developer from this unproductive job OJB provides a
dynamic proxy solution based on the JDK 1.3 dynamic proxy concept. (For JDK 1.2 we ship
areplacement for therequired | ava. | ang. ref | ect classes. Credits for this solution to
ObjectMentor.) The basic idea of the dynamic proxy concept is to catch all method
invocations on the not-yet materialized (loaded from database) object. When amethod is
called on the object, Java directs this call to the invocation handler registered for it (in OJB's
case a class implementing the

or g. apache. oj b. br oker. core. proxy. I ndi recti onHandl er interface). This
handler then materializes the object from the database and replaces the proxy with the real
object. By default OJB uses the class

or g. apache. oj b. br oker. core. proxy. I ndi recti onHandl er Def aul t | npl .
If you are interested in the mechanics have alook at this class.

To use adynamic proxy for lazy materialization of Article objects we have to declareit in the
repository.xml file.

<cl ass-descri ptor
cl ass="or g. apache. oj b. broker. Articl e"
pr oxy="dynam c"
tabl e="Arti kel "

>

Just as with normal proxies, the persistent classin question (in our case the Article class)
must implement an interface (for example InterfaceArticle) to be able to benefit from
dynamic proxies.

Using a Single Proxy for a Whole Collection

A collection proxy represents awhole collection of objects, where as a proxy class represents
asingle object.

The advantage of this concept is areduced number of db-calls compared to using proxy
classes. A collection proxy only needs asingle db-call to materialize all it's objects. This
happens the first time its content is accessed (ie: by calling iterator();). An additional db-call
is used to calculate the size of the collection if size() is called before loading the data. So
collection proxy ismainly used as a deferred execution of a query.

OJB uses three specific proxy classes for collections:

1. List proxiesare specificj ava. uti | . Li st implementations that are used by OJB to
replace lists. The default set proxy classis
or g. apache. oj b. br oker . core. proxy. Li st ProxyDef aul t | npl

2. Set proxiesare specificj ava. uti | . Set implementations that are used by OJB to
replace sets. The default set proxy classis

Page 152

0oJB

or g. apache. oj b. br oker. core. proxy. Set ProxyDef aul t | npl
3. Collection proxies are collection classes implementing the more generic
java. util. Col | ecti on interface and are used if the collection is neither alist nor a
set. The default collection proxy classis
or g. apache. oj b. br oker . core. proxy. Col | ecti onProxyDef aul t | npl

Which of these proxy classis actually used, is determined by thecol | ecti on-cl ass
setting of this collection. If noneis specified in the repository descriptor, or if the specified
classdoes not implement j ava. uti |l . Li st norjava. util . Set, thenthe generic
collection proxy is used.

The following mapping shows how to use a collection proxy for arelationship:

<I-- Definitions for
or g. apache. oj b. br oker. Product G oupWt hCol | ecti onProxy -->
<cl ass-descri ptor
cl ass="or g. apache. oj b. br oker . Product G- oupW t hCol | ecti onPr oxy"
t abl e=" Kat egori en"
>
<fi el d-descri pt or
nanme="gr oupl d"
col utm="Kat egori e_Nr"
j dbc-type="1 NTEGER'
pri marykey="true"
/>

<col | ecti on-descri ptor
name="al | Arti cl esl nG oup"
el ement - cl ass-ref ="org. apache. oj b. broker. Articl e"
proxy="true"

>

<i nverse-forei gnkey field-ref="product G oupld"/>
</col | ecti on-descri ptor>
</ cl ass-descri ptor>
The classes participating in this relationship do not need to implement a special interface to
be used in a collection proxy.

Although it is possible to mix the collection proxy concept with the proxy class concept, it is
not recommended because it increases the number of database calls.

Using a Proxy for a Reference

A proxy reference is based on the original proxy class concept. The main difference is that
the ReferenceDescriptor defines when to use a proxy class and not the ClassDescriptor.

In the following mapping the class ProductGroup is not defined to be a proxy classin its
ClassDescriptor. Only for shown relationship a proxy of ProductGroup should be used:

Page 153

0JB

<l-- Definitions for org.apache.ojb. broker. Articl eWthReferenceProxy
S
<cl ass-descri ptor
cl ass="org. apache. oj b. br oker. Arti cl eWt hRef er encePr oxy"
tabl e="Arti kel "

<fi el d-descri pt or
nane="articl el d"
col um="Artikel Nr"
j dbc-t ype="1 NTEGER"
pri marykey="true"
/ aut oi ncrenent ="t rue"
>

<r ef erence-descri pt or

nanme="pr oduct G oup"

cl ass-ref="org. apache. oj b. br oker. Product G oup"
proxy="true"
>

<f orei gnkey field-ref="product G oupld"/>
</reference-descriptor>
</ cl ass-descri pt or>

Because a proxy reference is only about the location of the definition, the referenced class
must implement a special interface (see using proxy classes).

Customizing the proxy mechanism

Both the dynamic and the collection proxy mechanism can be customized by supplying a
user-defined implementation.

For dynamic proxies you can provide your own invocation handler which implements the
org. apache. oj b. broker. core. proxy. I ndi recti onHandl er interface. See
OJB's default implementation

or g. apache. oj b. br oker. core. proxy. I ndi recti onHandl er Def aul t | npl
for details on how to implement such an invocation handler.

Each of the three collection proxy classes can be replaced by a user-defined class. The only
requirement is that such a class implements both the corresponding interface
(ava.util.Collection,java.util.List,orjava.util.Set)aswell asthe
or g. apache. oj b. br oker . Manageabl eCol | ect i on interface.

Proxy implementations are configured in the ojb properties file. These are the relevant
settings:

Page 154

0oJB

The IndirectionHandl erCl ass entry defines the class to be used by
QIB's proxies to
handl e net hod i nvocati ons

#
I ndi recti onHandl er Cl ass=or g. apache. oj b. br oker . cor e. proxy. | ndi r ecti onHandl er Def aul t | npl

The ListProxyC ass entry defines the proxy class to be used for
col I ections that
inplement the java.util.List interface.

#
Li st ProxyC ass=or g. apache. oj b. br oker. cor e. proxy. Li st ProxyDef aul t | npl
#

The Set ProxyC ass entry defines the proxy class to be used for
col I ections that

inplement the java.util.Set interface.

#

Set ProxyCl ass=or g. apache. oj b. br oker . core. proxy. Set ProxyDef aul t | npl

#

The Col | ecti onProxyC ass entry defines the proxy class to be used
for collections that
do not inplement java.util.List or java.util.Set.
#
Col | ecti onPr oxyCl ass=or g. apache. oj b. br oker. core. proxy. Col | ecti onProxyDefaul t1np

4.5.8.6. Type and Value Conversions

Say your database column contains INTEGER values but you have to use boolean attributes
in your Domain objects. Y ou need atype and value mapping described by a
FieldConversion!

4.5.9. Advanced Technique

45.9.1. Introduction

4.5.9.2. Extentsand Polymor phism

Working with inheritance hierarchies is a common task in object oriented design and
programming. Of course, any serious Java O/R tool must support inheritance and interfaces
for persistent classes. To demonstrate we will look at some of the JUnit TestSuite classes.

Page 155

0JB

Thereisaprimary interface "InterfaceArticle”. Thisinterface isimplemented by "Article"
and "CdArticle'. Thereisaso aclass "BookArticle" derived from "Article". (See the
following class diagram for details)

==lnterface>=>
Inte face Article

public void addToStockiint diff)

public int getArticle 140

public String getArticle Mame §

public Inte face ProductG roup getProductG roupd
public double getStockvalue

public void setArticle ldint newA rticle Id)

public void setArticle Mame String newfrticle Name)

public String toStringd

N

FaN

Article

CdArticle

protected int article 14

protected String article Hame
protected boolean izshe lootArticle
protected int minimumStock
protected int orde redUnits
protected double price

protected Inte face ProductG roup productGroup
protected int productC roupld
protected int stock

protected int supplie rld
protected String unit

private int article |d

private String article Mame
private int izSelloutArticle
private int minimumstock
private int onderedUnits
private double price
private Inte rface ProductC roup productGroup
private int prodoctG roopld
private int stock

private int supplie rld
private String unit

private String labe Iname
private 5tring musicians

BookArticls

private int article Id

private String article Name
private int is%e lloutArticle
private int minimumStock
private int orde redUnits
private double price
private Inte rface ProductC roup productG roup
private int productC roupld
private int stock

private int supplie rid
private String unit

private String author
private String isbn

polymorphism.gif

Polymor phism

OJB alows usto use interfaces, abstract, or concrete base classesin queries, or in type

definitions of reference attributes. A Query against the interfacel nt er f aceArti cl e

must not only return objects of type Arti cl e but also of CdArti cl e and
BookArti cl e! Thefollowing test method searches for all objects implementing
I nterfaceArticl ewithanarti cl eNane equal to "Hamlet". The Collectionisfilled

with one matching BookAr t i cl e object.

Page 156

0oJB

public void testCollectionByQuery() throws Exception
{

Criteria crit = new Criteria();
crit.addEqual To("articl eNane", "Hamet");
Query q = QueryFactory. newQuery(InterfaceArticle.class, crit);

Col l ection result = broker.getCollectionByQuery(q);
Systemout.println(result);

assertNotNul | ("should return at |east one item', result);
assert True("should return at |east one iten, result.size() > 0);

}

Of course it is aso possible to define reference attributes of an interface or baseclasstype. In
al above examples Article has areference attribute of type | nt er f acePr oduct G oup.

Extents

The query in the last example returned just one object. Now, imagine a query against the
InterfaceArticle interface with no selecting criteria. OJB returns all the objects implementing
InterfaceArticle. I.e. All Articles, BookArticles and CdArticles. The following method prints
out the collection of all InterfaceArticle objects:

public void testExtentByQuery() throws Exception

{
/1 no criteria signals to onmit a WHERE cl ause
Query q = QueryFactory. newQuery(InterfaceArticle.class, null);
Col l ection result = broker.getCollectionByQuery(q);
System out. printl n(
"QIB proudly presents: The InterfaceArticle Extent\n" +result);
assertNot Nul | ("should return at |least one item', result);
assert True("should return at |least one itent, result.size() > 0);
}

The set of al instances of a class (whether living in memory or stored in a persistent
medium) is called an Extent in ODMG and JDO terminology. OJB extends this notion
dightly, as all objectsimplementing a given interface are regarded as members of the
interface's extent.

In our class diagram we find:

1. two simple"one-class-only" extents, BookArticle and CdArticle.
2. A compound extent Article containing al Article and BookAvrticle instances.
3. Aninterface extent containing all Article, BookArticle and CdArticle instances.

Thereis no extra coding necessary to define extents, but they have to be declared in the
repository file. The classes from the above example require the following declarations:

Page 157

0JB

1. "one-class-only" extents require no declaration
2. A declaration for the baseclass Article, defining which classes are subclasses of Article:

<l-- Definitions for org.apache.ojb.ojb.broker.Article -->
<cl ass-descri ptor
cl ass="org. apache. oj b. br oker. Articl e"
pr oxy="dynam c"
tabl e="Arti kel "

<extent-cl ass cl ass-ref="org. apache. oj b. br oker. BookArticle" />
<extent-class class-ref="org. apache. oj b. broker. CdArticle" />

%]élass-descriptor>
1. A declaration for InterfaceArticle, defining which classes implement this interface:

<I-- Definitions for org.apache.ojb. broker.InterfaceArticle -->
<cl ass-descriptor class="org.apache. ojb. broker.|nterfaceArticle">
<extent-class class-ref="org. apache. oj b. broker. Article" />
<extent-cl ass class-ref="org. apache. o] b. br oker. BookArticle" />
<extent-cl ass class-ref="org. apache. oj b. broker. CdArticle" />
</ cl ass-descri ptor>
Why isit necessary to explicitely declare which classes implement an interface and which
classes are derived from a baseclass? Of courseit is quite simple in Javato check whether a
class implements a given interface or extends some other class. But sometimes it may not be

appropiate to treat special implementors (e.g. proxies) as proper implementors.

Other problems might arise because a class may implement multiple interfaces, but is only
allowed to be regarded as member of one extent.

In other cases it may be neccessary to treat certain classes as implementors of an interface or
as derived from a base even if they are not.

As an example, you will find that the ClassDescriptor for class org.apache.ojb.broker.Article
in the repository.xml contains an entry declaring class CdArticle as a derived class:

<I-- Definitions for org.apache.ojb.ojb.broker.Article -->
<cl ass-descri ptor
cl ass="org. apache. oj b. br oker. Articl e"
pr oxy="dynam c"
tabl e="Arti kel "

<extent-cl ass cl ass-ref="org. apache. oj b. br oker . BookArticle" />
<extent-cl ass class-ref="org. apache. oj b. broker. CdArticle" />

</ciéés-descriptor>
4.5.9.3. Mapping Inheritance Hierarchies

In the literature on object/relational mapping the problem of mapping inheritance hierarchies

Page 158

0oJB

to RDBMS has been widely covered. Have alook at the following inheritance hierarchy:

A

int id
int somealue FromA

B

int someYalue FromB

inheritance-1.gif

If we have to define database tables that have to contain these classes we have to choose one
of the following solutions:

1. Map all classes onto one table. A DDL for the table would look like:

CREATE TABLE A EXTENT

I D | NT
SOVE_VALUE_FROM A | NT,
SOVE_VALUE_FROM B | NT

NOT NULL PRI MARY KEY,

)
2. Map each classto adistinct table and have all attributes from the base classin the derived
class. DDL for the table could look like:

CREATE TABLE A

| D I NT NOT NULL PRI MARY KEY,
SOVE_VALUE_FROM A | NT

)
CREATE TABLE B
(

| D

| NT
SOVE_VALUE_FROM A | NT,
SOVE_VALUE_FROM B | NT

NOT NULL PRI MARY KEY,

)
3. Map each classto adistinct table, but do not map base class fields to derived classes. Use

Page 159

0JB

joins to materialize over all tablesto materialize objects. DDL for the table would look like:

CREATE TABLE A

I D I NT NOT NULL PRI MARY KEY,
SOVE_VALUE_FROM A | NT

)
CREATE TABLE B
A ID | NT NOT NULL,
) SOME_VALUE_FROM B | NT
OJB provides direct support for all three approaches.

But it's currently not recommended to mix mapping strategies within the same hierarchy !

In the following we demonstrate how these mapping approaches can be implemented by
using OJB.

Mapping All Classeson the Same Table

Mapping several classes on one table works well under OJB. There is only one specid
situation that needs some attention:

Say thereis abaseclass AB with derived classes A and B. A and B are mapped on atable
AB_TABLE. Storing A and B objects to this table works fine. But now consider a Query
against the baseclass AB. How can the correct type of the stored objects be determined?

OJB needs a column of type CHAR or VARCHAR that contains the classname to be used for
instantiation. This column must be mapped on a specia attribute oj bConcr et e ass. On
loading objects from the table OJB checks this attribute and instantiates objects of this type.

The criterion for oj bConcr et ed ass is statically added to the query in class Quer yFact or y and it therefore appearsin
the select-statement for each extent. This means that mixing mapping strategies should be avoided.

Thereis sample code for this feature in the method
or g. apache. oj b. br oker . Per si st enceBr oker Test . t est Mappi ngToOneTabl e() .
See the mapping details in the following Class declaration and the respective mapping:

public abstract class AB

/** the special attribute telling QIB the object's concrete type.

Page 160

0oJB

* NOTE: this attribute MUST be call ed oj bConcreted ass
*/
protected String oj bConcreted ass;

}
public class A extends AB
{
int id;
i nt sonmeVal ue;
public A()
/1 QIB must know the type of this object
oj bConcreteC ass = A. cl ass. get Nane() ;
}
<I-- Definitions for extent org.apache.ojb. broker.AB -->
<cl ass-descri ptor class="org. apache. oj b. br oker. AB" >
<extent-class class-ref="org. apache. oj b. br oker. A" />
<extent-cl ass class-ref="org. apache. oj b. broker.B" />
</ cl ass-descri pt or >
<l-- Definitions for org.apache.ojb. broker.A -->

<cl ass-descri pt or
cl ass="or g. apache. oj b. br oker . A"
t abl e=" AB_TABLE"

<fi el d-descri pt or
nane="id"
col um="1D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrement ="t rue"
/>
<fi el d-descri pt or
nane="0j bConcr et eCl ass"
col um=" CLASS NAM"
) j dbc-t ype=" VARCHAR'
>

<fi el d-descri pt or
name="soneVal ue"
col um="VALUE_"
j dbc-t ype="1 NTEGER"
/>
</ cl ass-descri pt or >

The column CLASS NAME is used to store the concrete type of each object.

If you cannot provide such an additional column, but need to use some other means of
indicating the type of each object you will require some additional programming:

Y ou have to derive a Class from

Page 161

0JB

or g. apache. oj b. br oker . accessl ayer. RowReader Def aul t | npl and
overridee the method RowReader Def aul t | npl . sel ect Cl assDescri ptor() to

implement your specific type selection mechanism. The code of the default implementation
looks like follows:

protected C assDescriptor selectC assDescriptor(Map row)
t hrows Persi st enceBr oker Excepti on
{

// check if there is an attribute which tells us
// which concrete class is to be instantiated
Fi el dDescri ptor concreteC assFD =
m cl d. get Fi el dDescr i pt or ByNane(
Cl assDescri ptor. QJB_CONCRETE_CLASS) ;

if (concreteCd assFD == nul)
return mcld;
el se

{
try
{
String concreteClass = (String) row. get(
concr et ed assFD. get Col unmNare()) ;
if (concreteCass == null ||

concreted ass.trin().length() == 0)
t hr ow new Per si st enceBr oker Except i on(
"0j bConcreteCl ass field returned null or O-length
string");

}
el se
concreteC ass = concreteC ass.trim);
Cl assDescriptor result = mcl d. get Repository().
get Descr i pt or For (concr et ed ass) ;
if (result == null)
result = mcld;
return result;
}
cat ch (PBFact or yException e)
t hr ow new Per si st enceBr oker Excepti on(e);

}
}

After implementing this class you must edit the ClassDescriptor for the respective classin the
XML repository to specify the usage of your RowReader |mplementation:

<cl ass-descri ptor

Page 162

0oJB

cl ass="ny. bj ect"
t abl e=" MY_OBJECT"

r ow r eader =" ny. own. RowReader | npl "

>
Y ou will learn more about RowReaders in the next section.

Mapping Each Classto a Distinct Table

Thisisthe most simple solution. Just write a complete ClassDescriptor for each class that
contains FieldDescriptors for all of the attributes, including inherited attributes.

Mapping Classes on Multiple Joined Tables

Here are the definitions for the classes A and B:

public class A

/1 primary key

int id;

/1 mapped to a colum in A TABLE
i nt someVal ueFr omA;

}

public class B extends A

/1 id is primary key and serves also as foreign key referencing A.id
int id;

/1 mapped to a colum in B _TABLE

i nt sonmeVal ueFr onB;

The next code block contains the class-descriptors for the the classes A and B.

<!-- Definitions for org.apache. ojb. broker.A -->
<cl ass-descri ptor

cl ass="org. apache. oj b. br oker . A"

t abl e="A TABLE"

<fi el d-descri pt or
name="i d"
col um="1D"
j dbc-type="I| NTEGER'
pri marykey="true"
aut oi ncrenent ="t rue"
/>
<fi el d-descri pt or
name="someVal ueFr omA"
col um="VALUE "

Page 163

0JB

j dbc-t ype="1 NTEGER"
</ cl ass-descri ptor>

<cl ass-descri ptor
cl ass="org. apache. oj b. br oker . B"
t abl e="B_TABLE"

<fi el d-descri ptor
nanme="i d"
col um="1D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
, aut oi ncrenment ="true"
>

<fi el d-descri pt or
nane="soneVal ueFr onB"
col um="VALUE "
j dbc-type="1| NTEGER'
/>

<ref erence-descri pt or name="super"
cl ass-ref="org. apache. oj b. br oker . A"
auto-retrieve="true"
aut o- updat e="t rue"
aut o- del ete="true"
>

<forei gnkey field-ref="id"/>
</reference-descri ptor>
</ cl ass-descri ptor>
Asyou can see from this mapping we need a special reference-descriptor that advises OJB to
load the values for the inherited attributes from class A by aJOIN usingthe (B. i d ==
A. i d) foreign key reference.

Thename="super " isnot used to address an actual attribute of the class B but as a marker
keyword defining the JOIN to the baseclass.

Auto-update must be trueto force insertion of A when inserting B. So have to define a
auto-update true setting for this reference-descriptor! In most casesit's aso useful to enable
auto-delete.

Be aware that this sample does not declare or g. apache. oj b. br oker . B to be an extent of
or g. apache. oj b. br oker . A. Using extents here will lead to problems (instatiating the wrong class) because the primary
key is not unique within the hiearchy defined in the repository.

Attributes from the super-class A can be used the same way as attributes of B when querying
for B. No path-expression is needed in this case:

Page 164

0oJB

Criteria c = new Criteria();
c. addEqual To("sonmeVal ueFromA", new Integer(1));
c. addEqual To("sonmeVal ueFronB", new Integer(2));

Query q = QueryFactory. newQery(B. cl ass, c)
br oker. get Col | ecti onByQuery(q);

The above example is based on the assumption that the primary key attribute B. i d and its
underlying column B_TABLE. | Disaso used as the foreign key attribute.

Now let us consider a case where B_ TABLE contains an additional foreign key column
B TABLE. A | Dreferencing A_TABLE. | D. In this case the layout for class B could ook
like follows:

public class B extends A

[l idis the primary key
int id;

/[l alDis the foreign key referencing A.id
int alD

/1 mapped to a colum in B_TABLE
i nt soneVal ueFronB

}
The mapping for B will then look like follows:

<cl ass-descri pt or
cl ass="or g. apache. oj b. br oker. B"
t abl e="B_TABLE"
>
<fi el d-descri pt or
name="i d"
col um="1D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrenment ="t rue"

<fi el d-descri pt or
name="al D"
col um="A_|I D"
j dbc-t ype="1 NTEGER"

<fi el d-descri pt or
name="sonmeVal ueFr onB"
col um="VALUE "
j dbc-t ype="1 NTEGER"
/>

<r ef erence-descri pt or name="super"

Page 165

0JB

cl ass-ref="org. apache. oj b. br oker . A" >
<forei gnkey field-ref="alD"' />
</reference-descri ptor>
</ cl ass-descri ptor>

The mapping now contains an additional field-descriptor for the al D attribute.

Inthe" super " reference-descriptor the foreignkey f i el d- r ef attribute had to be
changedto" al D" .

It is also possible to have the extraforeign key column B_ TABLE. A | D but without having
aforeign key attribute in class B:

public class B extends A

{
/[l idis the primary key
int id;
/1 mapped to a colum in B _TABLE
i nt soneVal ueFr onB;
}

We can use OJB's anonymous field feature to get everything working without the " al D"
attribute. We keep the field-descriptor for alD, but declare it as an anonymous field. We just
have to add an attribute access="anonynous" to the field-descriptor:

<cl ass-descri ptor
cl ass="org. apache. oj b. br oker . B"
t abl e="B_TABLE"

<fi el d-descri pt or
nane="i d"
col um="1D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
) aut oi ncrenent ="t rue"
>

<fi el d-descri ptor
name="al D"
col um="A_|ID"
j dbc-t ype="1 NTEGER"
/ access="anonynous"
>

<fi el d-descri pt or
name="sonmeVal ueFr onB"
col um="VALUE "
j dbc-t ype="1 NTEGER"
/>

<r ef erence-descri pt or name="super"

Page 166

0oJB

cl ass-ref="org. apache. oj b. br oker . A" >
<forei gnkey field-ref="alD"' />
</reference-descri ptor>
</ cl ass-descri ptor>

Y ou can learn more about the anonymous fields feature in this howto and how it work here.

4.5.9.4. Using interfaces with OJB

Sometimes you may want to declare class descriptors for interfaces rather than for concrete
classes. With OJB thisis no problem, but there are a couple of things to be aware of, which
are detailed in this section.

Consider this example hierarchy :

public interface A

String getDesc();

public class B inplenents A

{
[** primary key */
private Integer id;
/[** sanmple attribute */
private String desc;

public String getDesc()
{
return desc;
}
public void setDesc(String desc)

t his. desc = desc;

}

public class C

{
[** primary key */
private |Integer id;
[** foreign key */
private Integer ald;
[** reference */
private A obj;

public void test ()

String desc = obj.getDesc();

Page 167

0JB

Here, class C references the interface A rather than B. In order to make this work with OJB,
four things must be done:

All features common to all implementations of A are declared in the class descriptor of A.

Thisincludes references (with their foreignkeys) and collections.

Since interfaces cannot have instance fields, it is necessary to use bean properties instead.

This means that for every field (including collection fields), there must be accessors (a

get method and, if thefield isnot marked asaccess="r eadonl y", aset method)

declared in the interface.

Since we're using bean properties, the appropriate

or g. apache. oj b. br oker . net adat a. fi el daccess. Persi stent Fi el d

implementation must be used (see below). Thisclassis used by OJB to access the fields

when storing/loading objects. Per default, OJB uses a direct access implementation

(or g. apache. oj b. br oker. net adat a. fi el daccess. Persi stent Fi el dDi rect Access
which requires actual fields to be present.

In our case, we need an implementation that rather uses the accessor methods. Since the

Per si st ent Fi el d setting is (currently) global, you have to check whether there are

accessors defined for every field in the metadata. If yes, then you can use the

or g. apache. oj b. br oker . nmet adat a. fi el daccess. Per si st ent Fi el dl nt r ospect or
otherwise you'll have to resort to the

or g. apache. oj b. br oker . nmet adat a. fi el daccess. Per si st ent Fi el dAut oPr oxyl np
which determines for every field what type of field it is and then uses the appropriate

strategy.

If at some place OJB hasto create an object of the interface, say as the result type of a

guery, then you have to specify f act ory- cl ass and f act or y- net hod for the

interface. OJB then uses the specified class and (static) method to create an uninitialized

instance of the interface.

In our example, thiswould result in:

public interface A

}

void setld(lnteger id);

I nteger getld();

voi d setDesc(String desc);
String getDesc();

public class B inplenments A

{

[** primary key */
private Integer id;

/** sanmple attribute */
private String desc;

Page 168

0oJB

public String getld()

{ return id,

%ublic void setld(lnteger id)
this.id = id;

Lublic String getDesc()
return desc;

Lublic voi d setDesc(String desc)

t his.desc = desc;

}

public class C

{
[** primary key */
private |Integer id;
[** foreign key */
private Integer ald;
[** reference */
private A obj;
public void test ()

String desc = obj.getDesc();
}

public class AFactory
public static A createA()

return new B();

}
The class descriptors would look like:

<cl ass-descri ptor
cl ass="A"
t abl e="A TABLE"
factory-cl ass="AFact ory"
fact ory-nmet hod="cr eat eA"

<extent-class class-ref="B"/>
<fi el d-descri pt or

nane="id"

col um="1D"

j dbc-type="1| NTEGER'

Page 169

0JB

pri marykey="true"
aut oi ncremrent ="t r ue"

/>

<fi el d-descri pt or
name="desc"
col unm=" DESC"'
j dbc-t ype=" VARCHAR'
| engt h="100"

/>

</ cl ass-descri pt or>

<cl ass-descri ptor
cl ass="B"
t abl e="B_TABLE"

<fi el d-descri pt or
name="i d"
col um="1D"
j dbc-type="1 NTEGER'
pri marykey="true"
aut oi ncrenment ="true"

/>

<fi el d-descri pt or
nane="desc"
col um=" DESC"
j dbc-t ype=" VARCHAR"
| engt h="100"

/>

</ cl ass-descri ptor>

<cl ass-descri ptor
cl ass="C"
t abl e=" C_TABLE"

<fi el d-descri pt or
nane="i d"
col um="1D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrenent ="t rue

/>

<fi el d-descri pt or
name="al d"
colum="A I D"
j dbc-t ype="1 NTEGER"

/>

<ref erence-descri ptor name="obj"
class-ref="A">
<forei gnkey field-ref="ald" />
</reference-descri ptor>
</ cl ass-descri ptor>

One scenario where you might run into problemsis the use of interfaces for nested objects. In
the above example, we could construct such a scenario if we remove the descriptors for A

Page 170

0oJB

and B, aswell asthe foreign key field al d from class C and change its class descriptor to:

<cl ass-descri ptor
cl ass="C"
t abl e="C _TABLE"

<fi el d-descri pt or
name="i d"
col um="1D"
j dbc-type="1| NTEGER'
pri marykey="true"
aut oi ncrenent ="t rue"

/>

<fi el d-descri ptor
nane="obj : : desc"
col um=" DESC"
j dbc-t ype=" VARCHAR"
| engt h="100"

/>

</ cl ass-descri ptor>

The accessto desc will work because of the usage of bean properties, but you will get into
trouble when using dynamic proxies for C. Upon materializing an object of type C, OJB will
try to create the instance for the field obj whichis of type A. Of course, thisis an interface
but OJB won't check whether there is class descriptor for the type of obj (in fact there does
not have to be one, and usually there isn't) because obj isnot defined as areference. Asa
result, OJB tries to instantiate an interface, which of course fails.

Currently, the only way to handle thisisto write a custom invocation handler that knows
how to create an object of type A.

4.5.9.5. Change PersistentField Class

OJB supports a pluggable strategy to read and set the persistent attributes in the persistence
capable classes. All strategy implementation classes have to implement the interface

or g. apache. oj b. broker. net adat a. fi el daccess. Persi st ent Fi el d. OJB
provide a few implementation classes which can be set in OJB.propertiesfile:

The PersistentFiel dC ass property defines the inplenentation class

for PersistentField attributes used in the QJB MetaData | ayer.

By default the best performing attribute/refection based inplenentation
is selected (PersistentFieldD rectAccesslnml).

Per si st ent Fi el dDi rect Accessl npl

is a high-speed version of the access strategies.
It does not cooperate with an AccessControll er
but accesses the fields directly. Persistent
attributes don't need getters and setters

and don't have to be declared public or protected
Per si stent Fi el dPri vi | egedl npl

HFHHFHHHFHH

Page 171

public get Xxx() and set Xxx()

- Persi stent Fi el dAut oPr oxyl npl

articular field

HHOHFEHHFHHFHFHHF R

met hods.

Per si st ent Fi el dDynaBeanAccessl npl
i npl enent ati on used to access a property froma
or g. apache. cormons. beanuti | s.

DynaBean.

0JB

Sane as above, but does cooperate with AccessController and do not
suppress the java | anguage access check
- PersistentFiel dl ntrospectorl npl

uses JavaBeans conpliant calls only to access persistent attributes.
No Reflection is needed. But for each attribute xxx there must be

for each field determ nes upon first access how to access this

(directly, as a bean, as a dyna bean) and then uses that strategy

Per si st ent Fi el dC ass=or g. apache. oj b. br oker. met adat a. fi el daccess. Persi stent Fi el dDi rect Ac

#Per si st ent Fi el dCl ass=or g. apache.
#Per si st ent Fi el dCl ass=or g. apache.
#Per si st ent Fi el dCl ass=or g. apache.
#Per si st ent Fi el dCl ass=or g. apache.

#

oj b. br oker.
o] b. br oker.

oj b. br oker

net adat a. fi el daccess. Persi stentFieldPrivile
net adat a. fi el daccess. Persi stentFi el dl ntrosp

. met adat a. fi el daccess. Persi st ent Fi el dDynaBea
oj b. br oker.

nmet adat a. fi el daccess. Per si st ent Fi el dAut oPr o

E.qg. if the PersistentFieldDirectAccessimpl is used there must be an attribute in the persistent
class with this name, if the PersistentFieldintrospectorlmpl is used there must be a JavaBeans
compliant property of this name. More info about the individual implementation can be

found in javadoc.

4.5.9.6. How do anonymous keys wor k?

To play for safety it is mandatory to understand how this feature is working. In the HOWTO
section is detailed described how to use anoymous keys.

All involved classes can be found in

or g. apache. oj b. br oker. net adat a. fi el daccess package. The classes used for
anonymous keys start with a Anonynous XYZ. j ava prefix.

Main class used for provide anonymous keysis
or g. apache. oj b. br oker . net adat a. fi el daccess. AnonynousPer si st ent Fi el d.
Current implementation use an object identity based weak HashMap. The persistent object

identity is used as key for the anonymous key value. The (Anonymous)PersistentField

instance is associated with the FieldDescriptor declared in the repository.

This means that all anonymous key information will be lost when the object identity change,
e.g. the persistent object will be de-/serialized or copied. In conjuction with 1:1 references
thiswill be no problem, because OJB can use the referenced object to re-create the

anonymous key information (FK to referenced object).

The use of anonymous keysin 1:n references (FK to main object) or for PK fieldsis only valid when object identity does not
change, e.g. usein single VM without persistent object serialization and without persistent object copying.

Page 172

0oJB

4.5.9.7. Using Rowr eader

RowReaders provide a callback mechanism that allows to interact with the OJB load
mechanism. All implementation classes have to implement interface RowReader .

Y ou can specify the RowReader implementation in
 theQJB. properti es fileto set the standard used RowReader implementation

Set the standard RowReader inplenentation. It is also possible to specify
t he

RowReader on cl ass-descriptor |evel.

RowReader Def aul t Cl ass=or g. apache. oj b. br oker . accessl| ayer . RowReader Def aul t | npl

« within the class-descriptor to set the RowReader for a specific class.

RowReader setting on class-descriptor level will override the standard reader set in
QJB. properti es file. If neither a RowReader was set in OJB.propertiesfile nor in
class-descriptor was set, OJB use an default implementation.

To understand how to use them we must know some of the details of the load mechanism. To
materialize objects from ardoms OJB uses Rslterators, that are essentially wrappersto JDBC
ResultSets. Rslterators are constructed from queries against the Database.

The method Rsl t er at or . next () isused to materialize the next object from the
underlying ResultSet. This method first checksif the underlying ResultSet is not yet
exhausted and then delegates the construction of an Object from the current ResultSet row to
the method get Qbj ect FronResul t Set () :

protected Obj ect get Object FromResultSet() throws PersistenceBroker Exception

{ i{f (getltenProxyd ass() != null)

/1 provide mrow with primary key data of current row
get QueryQhj ect (). get C assDescri pt or (). get RowReader ()
. readPkVal uesFron{get RsAndStmt (). mrs, getRow());
/1 assert: mrowis filled with primary key values from db
} return get ProxyFronResul t Set () ;

el se

/1 0. provide mrow with data of current row
get Queryhj ect (). get G assDescri pt or (). get RowReader ()

.readQbj ect ArrayFron(get RsAndStnt (). mrs, getRow());
/1 assert: mrowis filled fromdb

/1 l.read ldentity

Page 173

0JB

Identity oid = getldentityFronResultSet();
oj ect result = null;

/1 2. check if Cbject is in cache. if so return cached version
result = getCache(). | ookup(oid);
if (result == null)

/1 3. If nject is not in cache
/1 materialize Cbject with primtive attributes filled from
/1 current row
result = getQueryQCbject().getC assDescriptor()
. get RowReader () . readCbj ect Fron{ get Row()) ;
/[l result may still be null!
if (result !'= null)

synchroni zed (result)

get Cache(). enabl eMateri al i zati onCache() ;

get Cache().cache(oid, result);

/1 fill reference and collection attributes

Cl assDescriptor cld =
get Queryhj ect (). get C assDescri ptor()

. get Repository().getDescriptorFor(result.getd ass());

/] don't force |oading of reference

final bool ean unforced = fal se;

/1 Maps ReferenceDescriptors to HashSets of owners
get Broker (). get Ref erenceBroker (). retrieveReferences(result, cld, unforced);
get Broker (). get Ref erenceBroker().retrieveCol |l ections(result, cld,
unf or ced) ;

get Cache() . di sabl eMateri al i zati onCache();

}
else // nject is in cache
Cl assDescriptor cld = get QueryQbj ect () .get d assDescriptor ()

. get Repository().getDescriptorFor(result.getd ass());
/1 if refresh is required, update the cache instance fromthe

db

if (cld.isAl waysRefresh())

{

get Quer ynj ect (). get Cl assDescri ptor ()
. get RowReader (). refreshCbject(result,

get Row()) ;

get Broker (). refreshRel ati onshi ps(result, cld);

return result;
}

}

This method first uses a RowReader to instantiate a new object array and to fill it with
primitive attributes from the current ResultSet row.
The RowReader to be used for a Class can be configured in the XML repository with the

Page 174

0oJB

atributer ow r eader . If no RowReader is specified, the standard RowReader isused.
The method r eadObj ect ArrayFron(. ..) of thisclasslookslike follows:

public void readObject ArrayFrom ResultSet rs, C assDescriptor cld, Map row)
{

try
{
Collection fields = cld. getRepository().
get Fi el dDescr | pt or sFor Mul t i MappedTabl e(cl d) ;
rator it = fields.iterator();
le (it.hasNext())

.-'-g.ﬁ
- D

Fi el dDescriptor frmd = (Fi el dDescriptor) it.next();

Fi el dConversi on conversion = fnd. get Fi el dConversion();
oj ect val = JdbcAccess. get Obj ect FronCol um(rs, fnd);
row. put (f nd. get Col uimNane() , conversion. sql ToJava(val));

}
catch (SQLException t)

t hr ow new Per si st enceBr oker Excepti on("Error reading fromresult
set",t);

}

In the second step OJB checksif there is already a cached version of the object to
materialize. If so the cached instance is returned. If not, the object is fully materialized by
first reading in primary attributes with the RowReader method r eadCbj ect Fr on(Map
row, Cl assDescriptor descriptor) andinasecond step by retrieving reference-
and collection-attributes. The fully materilized Object is then returned.

public Object readObject From(Map row, C assDescriptor descriptor)
t hrows Persi st enceBr oker Excepti on

/1 allow to select a specific classdescriptor
Cl assDescriptor cld = sel ectCl assDescriptor(row, descriptor);
return buil dWthRefl ection(cld, row;

}
By implementing your own RowReader you can hook into the OJB materialization process
and provide additional features.

Rowreader Example

Assume that for some reason we do not want to map a 1:1 association with aforeign key
relationship to a different database table but read the associated object ‘inline’ from some
columns of the master object's table. This approach is aso called 'nested objects. The section
nested objects contains a different and much simpler approach to implement nested fields.

Page 175

0JB

Theclassor g. apache. oj b. broker. Articl eWthSt ockDetail hasa

st ockDet ai | attribute, holding areferenceto aSt ockDet ai | object. The class
StockDetail is not declared in the XML repository. Thus OJB is not able to fill this attribute
by ordinary mapping techniques.

We have to define a RowReader that does the proper initialization. The Class
or g. apache. oj b. br oker . RowReader Test | npl extendsthe
RowReaderDefaultimpl and overridesther eadCbj ect Fron(. . .) method asfollows:

public Object readObject From(Map row, C assDescriptor cld)
{

oj ect result = super.readojectFron(row, cld);
if (result instanceof ArticleWthStockDetail)

{
ArticleWthStockDetail art = (ArticleWthStockDetail) result;
bool ean sellout = art.isSelloutArticle;
int mnimum= art. n ni munBt ock;
int ordered = art.orderedUnits;
int stock = art. stock;
String unit = art.unit;
StockDet ail detail = new StockDetail (sellout, m ninmm
ordered, stock, unit, art);
art.stockDetail = detail;
return art;
}
el se

return result;

}

To activate this RowReader the ClassDescriptor for the class ArticleWithStockDetail
contains the following entry:

<cl ass-descri ptor
cl ass="org. apache. oj b. broker. Articl eWthSt ockDetai |l "
tabl e="Arti kel "

row r eader =" or g. apache. oj b. br oker . RowReader Test | npl "
>

4.5.9.8. Nested Objects
In the last section we discussed the usage of a user written RowReader to implement nested
objects. This approach has several disadvantages.

1. Itisnecessary to write code and to have some understanding of OJB internals.
2. Theuser must take care that all nested fields are written back to the database on store.

This section shows that nested objects can be implemented without writing code, and without
any further trouble just by afew settings in the repository.xmil file.

Page 176

0oJB

Theclassor g. apache. oj b. broker. Articl eWthNest edSt ockDet ai | hasa
st ockDet ai | attribute, holding areferenceto aSt ockDet ai | object. The class
StockDetail is not declared in the XML repository as afirst class entity class.

public class ArticleWthNestedStockDetail inplenments java.io.Serializable

/**

* this attribute is not filled through a reference | ookup
* put with the nested fields feature

*/

protected StockDetail stockDetail;

}
The SockDetail class has the following layourt:

public class StockDetail inplenments java.io.Serializable
protected bool ean isSelloutArticle;
protected int mininunttock
protected int orderedUnits;
protected int stock

protected String unit;

}

Only precondition to make things work is that StockDetail needs a default constructor.
The nested fields semantics can simply declared by the following class- descriptor:

<cl ass-descri ptor
cl ass="org. apache. oj b. broker. Arti cl eWt hNest edSt ockDet ai | "
tabl e="Arti kel "
>
<fi el d-descri pt or
nanme="articl el d"
col um="Arti kel Nr"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrenent ="t rue"
/>
<fi el d-descri pt or
name="arti cl eNanme"
col um="Arti kel nane"
j dbc-t ype=" VARCHAR'
/>

<fi el d-descri pt or

Page 177

0JB

nane="supplierld"
col um="Li eferanten_Nr"
j dbc-t ype="1 NTEGER"

<fi el d-descri ptor
nanme="pr oduct G oupl d"
col um="Kat egori e_Nr"
j dbc-t ype="1 NTEGER"

<fi el d-descri pt or
name="stockDetail::unit"
col um="Li ef erei nhei t"
j dbc-t ype=" VARCHAR"

<fi el d-descri pt or
nane="price"
col um="Ei nzel prei s"
j dbc-t ype="FLOAT"

<fi el d-descri pt or
nanme="st ockDet ai | : : st ock"
col um="Lager best and"
j dbc-t ype="1 NTEGER"

<fi el d-descri pt or
name="st ockDet ai | : : orderedUni t s"
col um="Best el | t eEi nhei t en"
) j dbc-t ype="1 NTEGER"
>
<fi el d-descri pt or
nane="st ockDet ai | : : m ni nuntt ock"
col um="M ndest Best and"
j dbc-t ype="1 NTEGER"
/>
<fi el d-descri pt or
nane="stockDetail::isSelloutArticle"
col um="Ausl auf arti kel "
j dbc-t ype="1 NTEGER"
co?version="org.apache.0jb.broker.accesslayer.conversions.BooIeanZIntFieIdCDnversion"
>
</ cl ass-descri ptor>

That's all! Just add nested fields by using : : to specify attributes of the nested object. All
aspects of storing and retrieving the nested object are managed by OJB.
4.5.9.9. Instance Callbacks

OJB does provide transparent persistence. That is, persistent classes do not need to
implement an interface or extent a persistent baseclass.

For certain situations it may be neccesary to alow persistent instances to interact with OJB.
Thisis supported by a simple instance callback mechanism.

Page 178

0oJB

Theinterfaceor g. apache. oj b. Per si st enceBr oker Awar e provides a set of
methods that are invoked from the PersistenceBroker during operations on persistent
instances:

public interface PersistenceBrokerAvnare
/**

* this method is called as the first operation within a call to
* Persi stenceBroker. store(Obj ect pbAwareCbject), if
* the persistent object needs insert.
*/
public void beforelnsert(PersistenceBroker broker)
t hr ows Per si st enceBr oker Excepti on

/**
* this nmethod is called as the |ast operation within a call to
* Persi stenceBroker. store(Cbject pbAwareQbject), if
* the persistent object needs insert.
*/
public void afterlnsert(PersistenceBroker broker)
t hr ows Per si st enceBr oker Excepti on

/**
* this method is called as the first operation within a call to
* Persi stenceBroker. store(Cbject pbAwareCbject), if
* the persistent object needs update.
*/
public void beforeUpdat e(Persi st enceBroker broker)
t hr ows Per si st enceBr oker Excepti on

/**

* this method is called as the |ast operation within a call to
* Persi stenceBroker. store(Obj ect pbAwareCbject), if
* the persistent object needs update.
*/
public void afterUpdat e(Persi stenceBroker broker)
t hr ows Per si st enceBr oker Excepti on

/**
* this nmethod is called as the first operation within a call to
* Persi stenceBroker. del et e(Obj ect pbAware(hj ect) .
*/
public void beforeDel et e(Persi st enceBroker broker)
t hrows Persi stenceBroker Excepti on;

/**

* this method is called as the |last operation within a call to
* Per si st enceBroker. del et e(Obj ect pbAwar ehj ect) .
*/
public void afterDel et e(PersistenceBroker broker)
t hrows Per si st enceBr oker Excepti on

Page 179

0JB

/**
* this nmethod is called as the |ast operation within a call to
* Per si st enceBroker. get Gbj ect ByXXX() or
* Per si st enceBroker. get Col | ecti onByXXX() .
*/
public void afterLookup(PersistenceBroker broker)
t hr ows Per si st enceBr oker Except i on;

}
If you want your persistent entity to perform certain operations after it has been stored by the
PersistenceBroker you have to perform the following steps:

1. let your persistent entity classimplement the interface Per si st enceBr oker Awar e.

2. provide empty implementations for all required mthods.

3. implement the method af t er Updat e(Per si st enceBr oker broker) and
afterlnsert (PersistenceBroker broker) toperformyour intended logic.

In the following "for demonstration only code" you see aclass DBAut ol ncr enent ed that
does not use the OJB sequence numbering (more info here), but relies on a database specific
implementation of autoincremented primary key values.

When the broker is storing such an instance the DB assigns an autoincrement value to the
primary key column mapped to the attribute m i d. The

af t er St or e(Per si st enceBr oker broker) instance callback is used to update the

the attribute m_i d with this value.

public abstract class DBAutol ncrenent ed
i npl enent s Per si st enceBr oker Awar e

private static final String | D ATTRI BUTE_NAME = "m.i d";
publ i ¢ voi d afterDel et e(PersistenceBroker broker)

publ i ¢ void afterLookup(PersistenceBroker broker)

publ i ¢ void afterUpdat e(Persi st enceBroker broker)

/**
* after storing a new instance reflect the
* aut oi ncrenented PK val ue
* pack into the PK attri bute.
*/
public void afterlnsert(PersistenceBroker broker)

try
{

Page 180

0oJB

/1 renove object fromcache to ensure we are retrieving a
/1 copy that is in sync with the database.
br oker. renmoveFr onCache(t hi s);

Class clazz = getd ass();
Cl assDescriptor cld = broker.getC assDescriptor(clazz);
PersistentField idField = cld
. get Fi el dDescri pt or ByName(| D_ATTRI BUTE_NANME)
.get PersistentField();
/1 retrieve the object again with a query
/1 on all non-id attributes.
oj ect object =
br oker. get Obj ect ByQuer y(
bui | dQuer yOnAl | Nonl dAttri butes(clazz, cld));

if (object == null)

t hr ow new Per si st enceBr oker Except i on(
"cannot assign IDto "
+ this
clazz

because | ookup by attributes failed");

+ + + +

}

/] set id attribute with the val ue
/1 assigned by the database.
i dFi el d. set (this, idField.get(object));

}

publ i c voi d bef oreDel et e(Persi st enceBr oker broker)

{

}
public void beforeStore(PersistenceBroker broker)
}
/**
* returns a query that identifies an object by all its non-

* primary key attributes.
* NOTE: This method is only safe, if these values are unique!
*/
private Query buil dQueryOnAl | Nonl dAttri but es(
Cl ass clazz,
Cl assDescriptor cld)

/1l note: these are guaranteed to be in the sanme order
Fi el dDescriptor[] fields = cld.getFiel dDescriptions();
oj ect[] values = cld.getAll Values(this);

Criteria crit = new Criteria();

Page 181

0JB

for (int i =0; i < fields.length; i++)

if (!fields[i].getAttributeNanme().
equal s(1 D_ATTRI BUTE_NAME))

{
if (values[i] == null)
crit.addlsNull (fields[i].getAttributeName());
el se
{
crit.addEqual To(fields[i].getAttributeName(),
val ues[1]);
}
}

}

return QueryFactory. newQuery(clazz, crit);
}
4.5.9.10. Manageable Collection

In 1:n or m:n relations, OJB can handlej ava. uti | . Col | ecti on aswell asuser defined
collection classes as collection attributes in persistent classes. See
collection-descriptor.collection-class attribute for more information.

In order to collaborate with the OJB mechanisms these collection must provide a minimum
protocol as defined by thisinterface
or g. apache. oj b. br oker. Manageabl eCol | ecti on.

public interface Manageabl eCol | ecti on extends java.io. Serializable
{ /**

* add a single hject to the Collection. This nmethod is used during
readi ng Col | ection el ements

* fromthe database. Thus it is is save to cast anObject to the
underlying el enent type of the

* coll ection.

*/

voi d oj bAdd(Cbj ect anObj ect);

/**
* adds a Collection to this collection. Used in reading Extents from
t he Dat abase.
* Thus it is save to cast otherCollection to this.getd ass().
*/
voi d oj bAddAI | (Manageabl eCol | ecti on ot her Col | ecti on);
/**

* returns an Iterator over all elements in the collection. Used during
store and del ete Qperations.

Page 182

0oJB

* |f the inplenentor does not return an iterator over ALL el enents,
QJIB cannot store and del ete al
* el ements properly.
*/
Iterator ojblterator();
/**

* A call back method to inplement 'renoval -aware' (track renoved
obj ects and del ete

* themby its own) collection inplenmentations.

*/

public void afterStore(PersistenceBroker broker) throws
Per si st enceBr oker Excepti on

}
The methods have a prefix "ojb" that indicates that these methods are "technical” methods,
required by OJB and not to be used in business code.

In package or g. apache. oj b. broker . util . col | ecti ons can befound abunch of
pre-defined implementations of
or g. apache. oj b. br oker . Manageabl eCol | ecti on.

More info about which collection class to used here.

Types Allowed for Implementing 1:n and m:n Associations

OJB supports different Collection types to implement 1:n and m:n associations. OJB detects
the used type automatically, so there is no need to declare it in the repository file. Thereis
also no additional programming required. The following types are supported:

1. java.util.Collection, java.util.List, java.util.Vector asinthe
example above. Internally OJB usesj ava. uti | . Vect or toimplement collections.

2. Arrays(seethefile Pr oduct G oupW t hAr r ay).

3. User-defined collections (see thefile Pr oduct G oupW t hTypedCol | ecti on). A
typical application for this approach are typed Collections.
Here is some sample code from the Collection classAr ti cl eCol | ecti on. This
Collection istyped, i.e. it accepts only InterfaceArticle objects for adding and will return
InterfaceArticle objectswith get (i nt i ndex) . Tolet OJB handle such a user-defined
Collection it must implement the callback interface Manageabl eCol | ecti on and
the typed collection class must be declared in the collection-descriptor using the
collection-class attribute. Manageabl eCol | ect i on provides hooks that are called by
OJB during object materialization, updating and deletion.

public class ArticleCollection inplenents Manageabl eCol | ecti on
java.io. Serializable
{

private Vector el enents;

Page 183

0JB

public ArticleCollection()
{

super () ;
el ements = new Vector ()

}

public void add(InterfaceArticle article)

el ements. add(article);

}

public InterfaceArticle get(int index)

return (InterfaceArticle) el enments. get(index);

/**
* add a single Cbject to the Collection. This nethod is
* used during reading Collection elenments fromthe
* database. Thus it is is save to cast an(bject
* to the underlying el ement type of the collection.
*/
public void oj bAdd(java. | ang. Obj ect anCbj ect)

el ements. add((I nterfaceArticle) anthject);

/**
* adds a Collection to this collection. Used in readi ng
* Extents fromthe Database
* Thus it is save to cast otherCollection to this.getd ass().
*/
public voi d oj bAddAl I (
oj b. br oker . Manageabl eCol | ecti on ot her Col | ecti on)

el enent s. addAl | (
((ArticleCollection) otherCollection).elenments);

}
/**

* returns an Iterator over all elenents in the collection
* Used during store and del ete Operati ons.

*/

public java.util.lterator ojblterator()

return elements.iterator();

}
}

And the collection-descriptor have to declare this class:

<col | ecti on-descri ptor
nane="al | Articl esl nG oup"
el ement - cl ass-ref ="org. apache. oj b. broker. Articl e"

Page 184

0oJB

col I ection-cl ass="org. apache. oj b. broker. Articl eCol | ecti on"
auto-retrieve="true"

aut o- updat e="f al se"

aut o- del et e="true"

>

<i nverse-forei gnkey field-ref="product G oupld"/>

</ col | ecti on-descri ptor>

Which collection-class type should be used?

Earlier in this section the or g. apache. oj b. br oker . Manageabl eCol | ecti on was
introduced. Now we talk about which type to use.

By default OJB use aremoval-aware collection implementation. These implementations
(classes prefixed with Removal...) track removal and addition of elements.

This tracking allow the PersistenceBroker to delete elements from the database that have
been removed from the collection before a PB.store() operation occurs.

This default behaviour isundesired in some cases;

« Inm:nrelations, e.g. between Movie and Actor class. If an Actor was removed from the
Actor collection of a Movie object expected behaviour was that the Actor be removed
from the indirection table, but not the Actor itself. Using aremoval aware collection will
remove the Actor too. In that case a simple manageabl e collection is recommended by set
e.g.
col | ection-cl ass="org. apache. oj b. broker. util.col |l ections. Manageabl eArr
in collection-descriptor.
« In 1:nrelations when the n-side objects be removed from the collection of the main
object, but we don't want to remove them itself (be careful with this, because the FK
entry of the main object still exists - more info about linking here).

4.5.9.11. Customizing collection queries

Customizing the query used for collection retrieval allows a developer to take full control of
collection mechanism. For example only children having a certain attribute should be loaded.
Thisis achieved by a QueryCustomizer defined in the collection-descriptor of arelationship:

<col | ection-descri ptor
name="al | Arti cl esl nG oup"

<i nverse-forei gnkey field-ref="product G oupld"/>

<query-cust om zer
cl ass="org. apache. oj b. br oker. accessl ayer. Quer yCust om zer Def aul t | npl ">
<attribute
attribute-name="attr1"

Page 185

0JB

attri but e-val ue="val uel”
/>
</ query-custoni zer>

</col | ecti on-descri ptor>

The query customizer must implement the interface

or g. apache. oj b. br oker . accessl ayer. Quer yCust om zer . Thisinterface
defines the single method below which is used to customize (or completely rebuild) the query
passed as argument. The interpretation of attribute-name and attribute-value read from the
collection-descriptor is up to your implementation.

*
*

Return a new Query based on the original Query, the
ori ginator object and the additional Attributes

@ar am anCbj ect the origi nator object
@ar am aBr oker the PersistenceBroker
@ar am aCod the Col | ecti onDescri ptor
@aram aQuery the original 1:n-Query
@eturn Query the custom zed 1:n-CQuery

* Ok X ok 3k X X T~

*

*/
public Query custoni zeQuery(Object anObj ect,
Per si st enceBr oker aBroker,
Col | ecti onDescri ptor aCod, Query aQuery);
The class
or g. apache. oj b. br oker . accessl ayer. Quer yCust om zer Def aul t | npl

provides a default implentation without any functionality, it simply returns the query.

4.5.9.12. Metadata runtime changes
This was described in metadata section.

4.5.10. OJB Queries

4.5.10.1. Introduction

Thistutorial describes the use of the different queries mechanisms. The sample code shown
here is taken mainly from JUnit test classes. The junit test source can be found under
[db- 0j b] / src/t est inthe source distribution.

4.5.10.2. Query by Criteria

In this section you will learn how to use the query by criteria. The classes are located in the
package or g. apache. oj b. br oker . query. Using query by criteriayou can either
guery for whole objects (ie. person) or you can use report queries returning row data.

Page 186

0oJB

A query consists mainly of the following parts:

1. theclassof the objects to be retrieved

2. alist of criteria

3. aDISTINCT flag

4. additional ORDER BY and GROUP BY

OJB offers a QueryFactory to create a new Query. Although the constructors of the query
classes are public using the QueryFactory isthe preferred way to create a new query.

Query gq = QueryFactory. newQuery(Person.class, crit);
To create a DISTINCT-Query, ssimply add true as third parameter.

Query q = QueryFactory. newQuery(Person.class, crit, true);
Each criterion stands for a column in the SQL-WHERE-clause.

Criteria crit = new Criteria();

crit.addEqual To("upper(firstnane)", "TOM');
crit.addEqual To("Il ast nane", "hanks");

Query gq = QueryFactory. newQuery(Person.class, crit);

This query will generate an SQL statement like this:

SELE(kZT ... FROM PERSON WHERE upper (FI RSTNAME) = "TOM' AND LASTNAME =
"hanks";

OJB supports functionsin field criteriaie. upper(firstname). When converting a field name
to a database column name, the function is added to the generated sgl. OJB does not and can
not verify the correctness of the specified function, an illegal function will produce an
SqlException.

Query Criteria

OJB provides selection criteriafor almost any SQL-comparator. In most cases you do not
have to deal directly with the implementing classes like Equal ToCriteria. The Criteria class
provides factory methods for the appropriate classes. There are four kinds of factory
methods:

» create criteriato compare afield to avalue: ie. addEqual To("firstname”, "tom");

« create criteriato compare afield to another field: ie. addEqual ToField("firstname”,
“other_field");

 create criteriato check null value: ie. addIsNull("firstname");

» createaraw sql criteria ie: addSql("REVERSE(name) like 're%™);

The following list shows some of the factory methods to compare afield to avalue:

Page 187

0JB

addEqualTo

addLike

addGreaterOrEqual Than

addGreaterThan

addLike

addBetween , this methods has two value parameters
addin , this method uses a Collection as value parameter
and of course there negative forms

Thislist shows some factory methods to compare afield to another field, all those methods
end on ...field:

« addequalToField
o addGreaterThanField
« and of course there negative forms

in/notin

Some databases limit the number of parametersin an IN-statement.
If the limit is reached OJB will split up the IN-Statement into multiple Statements, the limit
is set to 3 for the following sample:

SELECT ... FROM Arti kel A0 WHERE AO. Kategorie Nr IN(?, ?, ?)
OR AO0. Kategorie Nr IN(? , ?) ORDER BY 7 DESC

The IN-limit for prefetch can be defined in OJB.properties:

The SqlInLinmit entry limts the nunber of values in INsql
statement, -1 for no limts. This hint is used in Criteria.
Sql I nLi mi t =200

and / or

All selection criteria added to a criteria set using the above factory methods will be ANDed
in the WHERE-clause. To get an OR combination two criteria sets are needed. These sets are
combined using addOrCriteria:

Criteria critl = new Criteria();
critl. addLi ke("firstnane", "%%);
critl. addLi ke("I ast name", "%4);
Criteria crit2 = new Criteria();
crit2. addeEqual To("firstnane", "hank");

critl.addOrCriteria(crit?2);
Query q = QueryFactory. newQuery(Person.class, critl);

Page 188

0oJB

Col l ection results = broker.getCollectionByQuery(Qq);
This query will generate an SQL statement like this:

SELECT ... WHERE (FI RSTNAME LI KE "%%) AND LASTNAME
LI KE "% OR FI RSTNAME = "hank"

negating thecriteria

A criteria can be negated to obtain NOT in the WHERE-clause:

Criteriacritl = new Criteria();
critl. addLi ke("firstnanme", "%%);
critl. addLi ke("Il ast name", "%¥4);
critl. set Negative(true);

Col ection results = broker.getColl ecti onByQuery(q);
This query will generate an SQL statement like this:

SELECT ... WHERE NOT (FI RSTNAME LI KE "% 0% AND LASTNAME LI KE " %96)
ordering and grouping

The following methods of QueryByCiriteriaare used for ordering and grouping:

« addOrderByAscending(String anAttributeName);
« addOrderByDescending(String anAttributeName);
« addGroupBy(String anAttributeName); this method is used for report queries

Y ou can of course have multiple order by and group by clauses, ssmply repeat the
addOrderBy.

crit = new Criteria();

query = new QueryByCriteria(Person.class, crit);

guery. addOr der ByDescendi ng("i d");

guery. addOr der ByAscendi ng(" | ast nane") ;

br oker. get Col | ecti onByQuery(query);

The code snippet will query all Persons and order them by attribute "id" descending and
"lastname" ascending. The query will produce the following SQL-statement using column

numbersin the ORDER BY clause:

SELECT AO. | D, AO. FI RSTNAME, AQ. LASTNAVE FROM

PERSON A0 CRDER BY 1 DESC, 3

When you use the column name "LASTNAME" instead of the attribute name "lasthame”
(query.addOrderBy("LASTNAME");), an additional column named "LASTNAME" without
alias will be added.

Page 189

0JB

SELECT AO. | D, AO. FI RSTNAME, A0. LASTNAME, LASTNAMVE FROM

PERSON A0 ORDER BY 1 DESC, 4

If there are multiple tables with a column "LASTNAME" the SQL -Statement will produce an
error, so it's better to always use attribute names.

subqueries

Subqueries can be used instead of values in selection criteria. The subquery should thus be a
ReportQuery.

The following example queries al articles having a price greator or equal than the average
price of articles named 'A%'".

Report QueryByCriteria subQuery;
Criteria subCrit = new Criteria();
Criteria crit = new Criteria();

subCrit.addLi ke("articl eNanme", "A®%);
subQuery = QueryFactory. newReport Query(Article.class, subCrit);
subQuery. setAttributes(new String[] { "avg(price)" });

crit.addG eat er Or Equal Than("price", subQuery);
Query q = QueryFactory. newQuery(Article.class, crit);

Col l ection results = broker.getCollectionByQuery(Qq);

It's also possible to build a subquery with attributes referencing the enclosing query. These
attributes have to use a special prefix Criteria. PARENT_QUERY_PREFIX.
The following example queries all product groups having more than 10 articles:

Report QueryByCriteria subQuery;
Criteria subCrit = new Criteria();
Criteria crit = new Criteria();

subCrit. addEqual ToFi el d(" product G oupl d", Criteria. PARENT QUERY_ PREFI X +
"groupld");

subQuery = QueryFactory. newReport Query(Article.class, subCrit);

subQuery. setAttributes(new String[] { "count(product Goupld)" });
crit.addG eater Than(subQuery, "10"); // MORE than 10 articles
crit.addLessThan("groupld", new |Integer(987654));

Query gq = QueryFactory. newQuery(Product Goup. class, crit);

Col l ection results = broker.getCol |l ectionByQuery(Qq);

Subqueries are not extent aware. Thusiit's not possible to use an abstract class or an interface as search class of a subquery.

joins

Page 190

0oJB

Joins resulting from path expressions ("relationship.attribute") in criteria are automatically
handled by OJB. Path expressions are supported for all relationships 1:1, 1:n and m:n
(decomposed and non-decomposed) and can be nested.

The following sample looks for al articles belonging to the product group "Liquors'. Article
and product group are linked by the relationship "productGroup” in class Article:

<I-- Definitions for org.apache.ojb.ojb.broker.Article -->
<cl ass-descri ptor
cl ass="org. apache. oj b. br oker. Articl e"
proxy="dynam c"
tabl e="Arti kel "

<r ef erence-descri pt or
nane="pr oduct G oup”
cl ass-ref="org. apache. oj b. br oker. Product G oup"
>
<forei gnkey field-ref="productGoupld"/>
</reference-descri ptor>
</ cl ass-descri pt or >

<cl ass-descri ptor
cl ass="org. apache. oj b. br oker . Product G oup"
pr oxy="or g. apache. oj b. br oker . Product G- oupPr oxy"
t abl e=" Kat egori en"

<fi el d-descri pt or
name="gr oupNanme"
col um="Kat egor i eNane"
, j dbc-t ype=" VARCHAR"
>

</ cl ass-descri pt or >

The path expression includes the 1:1 relationship "productGroup" and the attribute
"groupName":

Criteria crit = new Criteria();
crit.addEqual To(" product G oup. gr oupNane", "Liquors");
Query q = QueryFactory. newQuery(Article.class, crit);

Col l ection results = broker.getCollectionByQuery(Qq);

If path expressions refer to a class having extents, the tables of the extent classes participate
in the JOIN and the criteriais ORed. The shown sample queries all ProductGroups having an
Article named 'F%'. The path expression 'all ArticlesinGroup' refers to the class Articles
which has two extents: Books and CDs.

Page 191

0JB

Criteria crit = new Criteria();
crit.addLi ke("all ArticleslnGoup.articleNanme", "F%);
QueryByCriteria q = QueryFactory. newQuery(Product G oup. class, crit, true);

Col l ection results = broker.getCollectionByQuery(q);
This sample produces the following SQL:

SELECT DI STI NCT AO. Kat egori eNane, AO. Kat egori e_Nr, AO. Beschr ei bung
FROM Kat egori en A0

INNER JO N Artikel Al ON AO. Kat egori e_Nr=Al. Kat egori e_Nr

LEFT QUTER JO N BOOKS ALEO ON AO0. Kat egori e_Nr=A1EQ. Kat egori e_Nr
LEFT QUTER JO N CDS AlE1 ON AO. Kat egori e Nr=AlEl. Kat egori e_Nr
WHERE Al. Artikelname LIKE 'F% OR

ALlEO. Arti kel name LIKE 'F% OR

AlEl. Arti kel name LIKE 'F%

OJB triesto doit's best to automatically use outer joins where needed. Thisis currently the
case for classes having extents and ORed criteria. But you can force the SQL Generator to use
outer joins where you find it useful.

Thisis done by the method QueryByCriteria#setPathOuter Join(String).

Report QueryByCriteria query;
Criteria crit;

Iterator resultl, result2;
crit = new Criteria();

qguery = new Report QueryByCriteria(Person.class, crit);

query. set Attri but es(new String[] { "id", "nane", "vorname",
"sum(konti . sal do)"
query. addG oupBy(new Stri ng[]{ ' "nane", "vornane" });

resultl = broker.get Report QuerylteratorByQuery(query);

qguery. set Pat hQut er Joi n("konti ") ;
result2 = broker. get Report QuerylteratorByQuery(query);

Thefirst query will use an inner join for relationship "konti", the second an outer join.

user defined alias

This feature allows to have multiple aiases for the same table. The standard behaviour of
OJB isto build one alias for one relationship.

Suppose you have two classes Issue and Keyword and thereisa 1:N relationship between
them. Now you want to retrieve Issues by querying on Keywords. Suppose you want to
retrieve all Issues with keywords 'JOIN' and 'ALIAS. If these values are stored in the
attribute 'value' of Keyword, OJB generates a query that contains” Al.value ="JOIN' AND
Alvalue="ALIAS " in the where-clause. Obvioudly, thiswill not work, no hits will occur

Page 192

0oJB

because Al.value can not have more then 1 value at the time!

For the examples below, suppose you have the following classes (pseudo-code):

cl ass Cont ai ner
int id
Col l ection all AbstractAttri butes

class AbstractAttribute

int id

inf ref _id

String nane

String val ue

Col l ection all AbstractAttri butes
OJB maps these classes to separate tables where it maps all AbstractAttributes using a
collectiondescriptor to AbstractAttribute using ref_id asinverse foreignkey on Container for
the collection descriptor.

For demo purposes : AbstractAttribute also has a collection of abstract attributes.

Criteria critl = new Criteria();

critl.setAlias("conpany"); /1 set an alias
critl. addEqual To("al | Abstract Attri butes. nane", "conmpanyNane");
critl. addEqual To("al | Abstract Attri butes.value", "iBanx");
Criteria crit2 = new Criteria();

crit2.setAlias("contact"); /1 set an alias
crit2. addEqual To("al | Abstract Attri but es. name", "contactPerson");
crit2. addLi ke("al |l Abstract Attri butes.value", "janssen");
Criteria crit3 = new Criteria();

crit3.addEqual To("al | Abstract Attri butes. nane", "size");
crit3.addG eater Than("al | Abstract Attri butes. val ue", new I nteger(500));
critl. addAndCriteria(crit2);

critl. addAndCriteria(crit3);

g = QueryFactory. newQuery(Container.class, critl);
g. addOr der By(" conpany. val ue"); /1 user alias

The generated query will be asfollows. Note that the alias name ‘company" does not show up
inthe SQL.

SELECT DI STINCT A0. 1D, Al.VALUE
FROM CONTAI NER A0 | NNER JO N ABSTRACT_ATTRI BUTE Al
ON AO. | D=Al. REF_| D
I NNER JO N ABSTRACT ATTRI BUTE A2
ON AO. | D=A2. REF_| D
I NNER JO N ABSTRACT_ATTRI BUTE A3
ON AO. | D=A3. REF_| D
WHERE ((AO.NAME = T"conmpanyName') AND (A0.VALUE = 'iBanx')) AND

Page 193

((AL. NAME = 'contactPerson') AND (Al.VALUE LIKE '% anssen%
AND

((A2.NAME = 'size') AND (A2.VALUE = '500'))
ORDER BY 2

The next example uses areport query.

Criteria critl = new Criteria();

critl.setAlias("ALIAS1");

critl. addEqual To("al | Abstract Attributes. all AbstractAttri butes. name",
"XXXX")

critl. addEqual To("al | Abstract Attri butes. all AbstractAttri butes. val ue",
"hel | 0");

Criteriacrit2 = new Criteria();
crit2.setAlias("ALI AS2");

crit2. addEqual To("al | Abstract Attri but es. name", yyy");
crit2. addLi ke("al |l Abstract Attri butes.value", "");

critl. addAndCriteria(crit?2);
g = QueryFactory. newReport Query(Container.class, critl);

String[] cols ={ id, "ALIAS2. nane", "ALIAS2. nanme", "ALIAS1l. nane",
"ALl AS1. name" };
g.setAttributes(cls);

The generated query will be:

SELECT DI STINCT AO.1D, Al.NAME, Al.VALUE, A2.NAME, A2.VALUE
FROM CONTAI NER A0 | NNER JO N ABSTRACT ATTRI BUTE Al

ON AO. | D=Al. REF I D

I NNER JO N ABSTRACT ATTRI BUTE A2

ON Al. | D=A2. REF_I D
WHERE ((A2.NAME = “xxxx') AND (A2.VALUE = 'hello)) AND

((AL.NAME = 'yyyy') AND (A2.VALUE LIKE '9%%)) AND

ORDER BY 2

0JB

))

When you define an alias for acriteria, you have to make sure that all attributes used in this criteria belong to the same class. If

you break this rule OJB will probably use awrong ClassDescriptor to resolve your attributes !

class hints

This feature allows the user to specify which class of an extent to use for a path-segment. The

standard behaviour of OJB isto use the base class of an extent when it resolves a
path-segment.

In the following sample the path all ArticleslnGroup pointsto class Article, thisisdefined in
the repository.xml. Assume we are only interested in ProductGroups containing CdArticles

Page 194

0oJB

performed by Eric Clapton or Books authored by Eric Clapton, a class hint can be defined for
the path. This hint is defined by:
CriteriattaddPathClass("all ArticlesinGroup”, CdArticle.class);

/1
/1 find a ProductGroup with a CD or a book by a particular arti st
/1
t

String artistName = new String("Eric Capton");

critl = new Criteria();

critl. addEqual To("al I Articl esl nGroup. musi ci ans", arti st Nane);
critl. addPat hC ass("all ArticleslnG oup", CdArticle.class);
crit2 = new Criteria();

crit2. addeEqual To("al Articl esl nG oup. aut hor”, artistNane);
crit2. addPat hC ass("all Articl esl nG oup”, BookArticle.class);
critl.addOrCriteria(crit2);

query = new QueryByCriteria(Product G oup.class, critl);
br oker. get Obj ect ByQuery(query);

Thisfeatureis also available in class QueryByCriteria but using it on Criteria-level provides additional flexibility.
QueryByCiriteriattaddPathClass is only useful for ReportQueries to limit the class of the selected columns.

prefetched relationships

This feature can help to minimize the number of queries when reading objects with
relationships. In our Testcases we have ProductGroups with a one to many relationship to
Articles. When reading the ProductGroups one query is executed to get the ProductGroups
and for each ProductGroup another query is executed to retrieve the Articles.

With prefetched relationships OJB tries to read all Articles belonging to the ProductGroups
in one query. See further down why one query is not always possible.

Criteria crit = new Criteria();
crit.addLessO Equal Than("groupld", new Integer(5));

QueryByCriteria q = QueryFactory. newQuery(Product G oup. cl ass, crit);
g. addOr der ByDescendi ng(" gr oupl d") ;

g. addPr ef et chedRel ati onshi p("al | Articl esl nG oup") ;

Col l ection results = broker.getCol |l ectionByQuery(Qq);

The first query reads al matching ProductGroups:

SELECT ... FROM Kat egorien A0 WHERE
AO. Kat egori e_Nr <= ? ORDER BY 3 DESC

Page 195

0JB

The second query retrieves Articles belonging to the ProductGroups read by the first query:

SELECT ... FROM Arti kel A0 WHERE AOQ. Kat egori e Nr
IN(?, ?2, ?, ?, ?) ORDER BY 7 DESC

After reading al Articlesthey are associated with their ProductGroup.

Thisfunction is not yet supported for relationships using Arrays.

Some databases limit the number of parametersin an IN-statement. If the limit is reached
OJB will split up the second query into multiple queries, the limit is set to 3 for the following
sample:

SELECT ... FROM Arti kel A0 WHERE AO. Kat egorie_Nr
IN(?, ?, ?) ORDER BY 7 DESC
SELECT ... FROM Arti kel A0 WHERE AO. Kat egorie_Nr

IN(?, ?) ORDER BY 7 DESC
The IN-limit for prefetch can be defined in OJB.properties SglinLimit.

querying for objects

OJB queries return complete objects, that means all instance variables are filled and all
‘auto-retrieve' relationships are loaded. Currently there's no way to retrieve partially loaded
objects (ie. only first- and lastname of a person).

More info about manipulation of metadata setting here.

Report Queries

Report queries are used to retrieve row data, not 'real’ business objects. A row is an array of
Object. With these queries you can define what attributes of an object you want to have in the
row. The attribute names may also contain path expressions like 'owner.address.street’. To
define the attributes use ReportQuery #setAttributes(String[] attributes).

The following ReportQuery retrieves the name of the ProductGroup, the name of the Article
etc. for all Articlesnamed like "C%":

Criteria crit = new Criteria();

Col l ection results = new Vector();

crit.addLi ke("articleNanme", "C%);

Report QueryByCriteria q = QueryFactory. newReport Query(Article.class, crit);
g.setAttributes(new String[] { "product Goup. groupNanme", "articleld",
"articleName", "price" });

Page 196

0oJB

Iterator iter = broker.getReportQuerylteratorByQuery(q);

The ReportQuery returns an Iterator over a Collection of Object[4] ([String, Integer, String,
Double]).

Limitations of Report Queries

ReportQueries should not be used with columns referencing classes with extents. Assume we
want to select all ProductGroups and summarize the amount and prize of items in stock per
group. The class Article referenced by allArticlesinGroup has the extents Books and CDs.

Criteria crit = new Criteria();

Col l ection results = new Vector();

Repo;t QueryByCriteria q = QueryFactory. newReport Query(Product G oup. cl ass,
crit);

g.setAttributes(new String[] { "groupNane",

"sum(al I Articl esl nGoup.stock)", "sum(all ArticleslnGoup.price)" });

g. addG oupBy(" gr oupName") ;

Iterator iter = broker.get ReportQuerylteratorByQuery(q);
The ReportQuery looks quite reasonable, but it will produce an SQL not suitable for the task:

SELECT AO0. Kat egori eNane, sun(Al. Lager best and) , sun(Al. Ei nzel prei s)
FROM Kat egori en A0

LEFT QUTER JO N arti kel Al ON AO. Kategori e Nr=Al. Kategorie Nr
LEFT QUTER JO N books AL1E2 ON AO. Kat egori e_Nr=Al1E2. Kat egori e_Nr
LEFT QUTER JO N cds AlE1 ON AO. Kat egori e_Nr=AlEl. Kat egori e_Nr
GROUP BY AO0. Kat egor i eNane

This SQL will select the columns "Lagerbestand” and "Einzelpreis’ from one extent only,
and for ProductGroups having Articles, Books and CDs the result is wrong!

As aworkaround the query can be "reversed"”. Instead of selection the ProductGroup we go
for the Articles:

Criteria crit = new Criteria();

Col l ection results = new Vector();

Report QueryByCriteria q = QueryFactory. newReport Query(Article.class, crit);
g.setAttributes(new String[] { "product Goup. groupNanme", "sum(stock)",
“sum(price)” });

g. addG oupBy(" product Gr oup. gr oupNane") ;

This ReportQuery executes the following three selects (one for each concrete extent) and
produces better results.

SELECT Al. Kat egori eNane, sun{ AO. Lager best and), sun{ AO. Ei nzel prei s)
FROM arti kel A0

I NNER JO N Kat egori en A1l ON AO. Kat egori e_Nr=Al. Kat egori e_Nr

GROUP BY Al. Kat egor i eNane

Page 197

0JB

SELECT Al. Kat egori eNane, sun{ AO. Lager best and) , sun{ AO. Ei nzel prei s)
FROM cds A0

I NNER JO N Kat egorien Al ON AO. Kat egori e Nr=Al. Kat egori e_Nr

GROUP BY Al. Kat egor i eNane

SELECT Al. Kat egori eNane, sun{ AO. Lager best and) , sun{ AO. Ei nzel prei s)

FROM books A0

I NNER JO N Kat egorien A1 ON AO. Kat egori e_Nr=Al. Kat egori e_Nr

GROUP BY Al. Kat egori eNane

Of course there's also a drawback here: the same ProductGroup may be selected several
times, so to get the correct sum, the results of the ProductGroup has to be added. In our

sample the ProductGroup "Books" will be listed three times.

After listing so many drawbacks and problems, here's the SQL the produces the desired
result. Thisisamanually created SQL, not generated by OJB. Unfortunately it's not fully
supported by some DBM S because of "union" and sub-selects.

sel ect Kat egorieNanme, sun{l agerbestand), sun{einzel preis)
from

(
SELECT Al. Kat egori eNane, AO. Lager best and, AO. Ei nzel prei s

FROM arti kel AO

I NNER JO N Kat egori en A1 ON AO. Kat egori e_Nr=Al. Kat egori e_Nr
uni on

SELECT Al. Kat egori eNane, AO. Lager best and, AO. Ei nzel prei s
FROM books A0

I NNER JO N Kat egori en AL ON AO. Kat egori e_Nr=Al. Kat egori e_Nr
uni on

SELECT Al. Kat egori eNane, AO. Lager best and, AO. Ei nzel prei s
FROM cds A0

I NNER JO N Kat egori en A1 ON AO. Kat egori e_Nr=Al. Kat egori e_Nr

)
group by kategori eNane

45.10.3. ODMG OQL
4.5.10.4. JDO queries
4.5.11. Metadata handling

45.11.1. Introduction

To make OJB proper work information about the used databases (more info see connection
handling) and sequence managers is needed. Henceforth these metadata information is called

Page 198

0oJB

connection metadata.

Further on OJB needs information about the persistent objects and object relations,
henceforth thisinformation is called (per sistent) object metadata.

All metadata information need to be stored in the OJB repository file.

The connection metadata are completely decoupled from the persistent object metadata.
Thusit is possible to use the same object metadata on different databases.
But it isalso possible to use different object metadata profiles .

In OJB there are several ways to make metadata information available:

« using xml configuration files parsed at start up by OJB
» set metadata instances at runtime by building metadata class instances at runtime
« parse additional xml configuration files (additional repository files) and merge at runtime

All classes used for managing metadata stuff can be find under

or g. apache. oj b. br oker . net adat a. * -package.

The main class for metadata handling and entry point for metadata manipulation at runtimeis
or g. apache. o] b. br oker . net adat a. Met adat aManager .

45.11.2. When does OJB read metadata

By default all metadataisread at startup of OJB, when the first call to
Per si st enceBr oker Fact or y (directly or by atop-level api) or Met adat aManager
class was done.

OJB expects arepository file at startup, but it is also possible to start OJB without an
repository file or only load connection metadata and object metadata at runtime or what ever
combination fit your requirements.

4.5.11.3. Connection metadata

The connection metadata encapsulate all information referring to used database and must be
declared in OJB repository file.

For each database a jdbc-connection-descriptor must be declared. This element encapusaltes
the connection specific metadata information.

The JdbcConnectionDescriptor instances are managed by
org. apache. oj b. br oker . net adat a. Connect i onReposi tory

L oad and mer ge connection metadata

It is possible to load additional connection metadata at runtime and merge it with the existing

Page 199

0JB

one. The used repository files have to be valid against the repository.dtd:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<I DOCTYPE descri ptor-repository SYSTEM "repository.dtd">

<descriptor-repository version="1.0" isolation-I|evel ="read-unconmitted">
<j dbc- connecti on- descri pt or
jcd-alias="runtinme"
pl at f or m=" Hsql db"
j dbc- I evel =" 2. 0"
driver="org. hsql db. j dbcDri ver"
pr ot ocol =" dbc"
subpr ot ocol =" hsqgl db"
dbal i as="../ QIB_Far Anay"
user name="sa"
passwor d=""
bat ch- nrode="f al se"

<obj ect - cache
cl ass="org. apache. oj b. br oker. cache. Obj ect CacheDef aul t | npl ">
<attribute attribute-nanme="tinmeout" attribute-val ue="900"/>

<attribute attribute-nane="autoSync" attribute-val ue="true"/>
</ obj ect - cache>

<connecti on- poo
maxAct i ve="5"
whenExhaust edAct i on="0"

val i dati onQuery="sel ect count(*) from QJB_HL_SEQ'
/>

<sequence- nanhager

cl assNane="or g. apache. oj b. broker. util . sequence. SequenceManager H ghLow npl ">
<attribute attribute-name="grabSi ze" attribute-val ue="5"/>
</ sequence- manager >
</j dbc-connecti on-descri pt or >

<l-- user/passwd at runtine required -->

<j dbc- connecti on-descri pt or
jcd-alias="mnimal"
pl at f or m=" Hsql db"
j dbc- I evel ="2. 0"
driver="org. hsql db. j dbcDriver"
pr ot ocol =" dbc"
subpr ot ocol =" hsqgl db"
dbal i as="../ QIB_Far Anay"

>

</j dbc-connecti on-descri pt or >

</ descri ptor-repository>

In the above additional repository file two new jdbc-connection-descriptor (new databases)

runtime and minimal are declared, to load and merge the additional connection metadata the
MetadataManager was used:

Page 200

0oJB

/1 get Metadat aManager instance
Met adat aManager mm = Met adat aManager . get | nst ance() ;

/1 read connection netadata fromrepository file
Connecti onRepository cr = mm readConnecti onRepository("valid path/url to
repository file");

/1 merge new connection netadata with existing one
nm mer geConnect i onRepository(cr);
After the merge the access to the new databases is ready for use.

4.5.11.4. Persistent object metadata

The object metadata encapsulate all information referring to the persistent capable java
objects and the associated tables in database. Object metadata must be declared in OJB

repository file.
Each persistence capable java object must be declared in a corresponding class-descriptor.

The ClassDescriptor instances are managed by

org. apache. oj b. br oker . net adat a. Descri pt or Reposi t ory . Per default
OJB use only one global instance of thisclass - it's the repository file read at startup of OJB.
But it is possible to change the global use repository:

/1 get Metadat aManager instance
Met adat aManager mm = Met adat aManager . get | nst ance() ;

nm set Descri pt or (myd obal Repository, true);

L oad and merge object metadata

It ispossible to load additional object metadata at runtime and merge it with the existing one.
The used repository files have to be valid against the repository.dtd:

An additional repository file may look like:

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE descri ptor-repository SYSTEM "repository.dtd">

<descriptor-repository version="1.0" isolation-I|evel ="read-uncomitted">

<cl ass-descri ptor
class="org. ny. \yQObj ect "
t abl e="My_0OBJ"
>
<fi el d-descri pt or
nane="id"
colum="0BJ_I D

Page 201

0JB

j dbc-t ype="1 NTEGER"

pri marykey="true"

aut oi ncrenent ="t rue"
/>

<fi el d-descri pt or
name="namnme"
col um=" NAME"
j dbc-type=" VARCHAR'
/>

</ cl ass-descri pt or>
</ descri ptor-repository>

To load and merge the object metadata of the additional repository filesfirst read the
metadata using the MetadataManager .

/'l get Metadat aManager instance
Met adat aManager mm = Met adat aManager . get | nst ance() ;

[/l read the additional repository file
Descri ptor Repository dr = nmm readDescri ptorRepository("valid path/url to
repository file");

/1 nmerge the new cl ass-descriptor with existing object netadata
nm ner geDescri pt or Reposi tory(dr);

It is also possible to keep the different object metadata for the same classes parallel by using
metadata profiles .

Global object metadata changes

The MetadataManager provide several methods to read/set and manipulate object metadata.

Per default OJB use a global instance of class DescriptorRepository to manage all object
metadata. This meansthat all PersistenceBroker instances (kernel component used by all
top-level api) use the same object metadata.

So changes of the object metadata (e.g. remove of a CollectionDescriptor instance from a
ClassDescriptor) will be seen immediately by all PersistenceBroker instances. Thisisin most
cases not the favoured behaviour and OJB supports per thread changes of object metadata.

Per thread metadata changes

Per default the manager handle one global DescriptorRepository for all calling threads (keep
in mind PB-api is not threadsafe, thus each thread use it's own PersistenceBroker instance),
but it is ditto possible to use different metadata profilesin a per thread manner - profiles
means different instances of DescriptorRepository objects. Each thread/Persi stenceBroker
instance can be associated with a specific DescriptorRepository instance. All made object

Page 202

0oJB

metadata changes only will be seen by the PersistenceBroker instances using the same
DescriptorRepository instance. In theory each PersistenceBroker instance could be associated
with a separate instance of object metadata, but the recommended way is to use metadata

profiles.
To enable the use of different Descriptor Repository instances for each thread do:

Met adat aManager mm = Met adat aManager . get | nst ance() ;
/1 tell the nmanager to use per thread node
nm set Enabl ePer Thr eadChanges(true);

This can be done e.g. at start up or at runtime when it's needed. If method
set Enabl ePer Thr eadChanges is set false only the global Descriptor Repository was
used. Now it's possible to use dedicated DescriptorRepository instances per thread:

/1l e.g get a coppy of the global repository
Descri ptorRepository dr = nm copyOf G obal Repository();
/1 now we can mani pul ate the persistent object netadata of the copy

/1l set the changed repository for current thread
nm set Descri ptor(dr);

/1 now let this thread | ookup a PersistenceBroker instance
/1 with the nodified netadata

[/ all other threads use still the gl obal object netadata
Per si st enceBr oker broker =

Per si st enceBr oker Fact ory. cr eat ePer si st enceBr oker (nyKey)

Set object metadata (setting of the DescriptorRepository) before lookup the PersistenceBroker instance for current thread,
because the metadata was bound to the PersistenceBroker instance at |ookup.

Object metadata profiles

M etadataM anager was shipped with a simple mechanism to add, remove and load different
persistent objects metadata profiles (different DescriptorRepository instances) in a per thread
manner. Use method addProfile to add different persistent object metadata profiles, method
removeProfile to remove profiles and loadProfile load a profile for the calling thread.

/1 get Metadat aManager instance
Met adat aManager mm = Met adat aManager . get | nst ance() ;

/1 enable per thread nbde if not done before
mm set Enabl ePer Thr eadChanges(true);

/1 Load additional object netadata by parsing an repository file

Page 203

0JB

Descri ptorRepository dr_1 =
nm r eadDescr | pt or Reposi tory("pat hOr URLtoFil e_1");
Descri ptorRepository dr_2 =
nm r eadDescr | pt or Reposi tory("pat hOr URLt oFi | e_2");

[/ add profiles

nm addProfil e("gl obal ", mm copyOf d obal Repository());
mm addProfil e("quest”, dr_1);

nm addProfil e("adm n", dr_2);

/1 now | oad a specific profile
mm | oadProfil e("admnmi n");
br oker = Persi stenceBrokerFactory. def aul t Persi st enceBr oker () ;

After the loadProfile call all PersistenceBroker instances will be associated with the admin
profile.

Method loadProfile only proper work if the per thread mode is enabled.

Reference runtime changes on per query basis

Changes of reference settings on a per query basis will be supported with next upcoming release 1.1

Pitfalls

OJB'sflexibility of metadata handling demanded specific attention on object caching. If a
global cache (shared permanent cache) was used, be aware of side-effects caused by runtime
metadata changes.

For example, using two metadata profiles A and B. In profile A al fields of aclass are
showed, in profile B only the 'name filed' is showed. Thread 1 use profile A, thread 2 use
profile B. It is obvious that a global shared cache will cause trouble.

45.11.5. Questions

Start OJB without arepository file?

It is possible to start OJB without any repository file. In this case you have to declare the

j dbc-connecti on-descri ptor andcl ass-descri ptor at runtime. See Connect
to database at runtime? and Add new persistent objects (class-descriptors) at runtime? for
more information.

Page 204

0oJB

Connect to database at runtime?

There are two possibilities to connect your database at runtime:

» load connection metadata by parsing additional repository files
 create the JdbcConnectionDescriptor at runtime

Thefirst oneis described in section |oad and merge connection metadata. For the second one
anew instance of class

org. apache. oj b. broker. net adat a. JdbcConnect i onDescr.i pt or isneeded.
The prepared instance will be passed to class ConnectionRepository:

Connecti onRepository cr =
Met adat aManager . get | nst ance() . connecti onReposi tory();

JdbcConnect i onDescri ptor jcd = new JdbcConnecti onDescri ptor();
jcd. setJcdAlias("test Connection");

j cd. set User Nane("sa") ;

j cd. set PassWord("sa");

jcd. set DbAl i as("aAlias");

j cd. set Dons (" aDat abase") ;

/1l the other required setter

/1 add new descri ptor
cr.addDescri ptor () cd);

/1 Now it's possible to obtain a PB-instance

PBKey key = new PBKey("testConnection", "sa", "sa");
Per si st enceBr oker broker = PersistenceBrokerFactory.
cr eat ePer si st enceBr oker (key) ;

Please read this section from beginning for further information.

Add new persistent objects metadata (class-descriptor) at runtime?

There are two possibilities to add new object metadata at runtime:

» |load object metadata by parsing additional repository files
« create new metadata objects at runtime

Thefirst oneis described in section load object metadata.

To create and add new metadata objects at runtime we create new
org. apache. oj b. broker . net adat a. Cl assDescr i pt or instances at runtime
and using the Met adat aManager to add them to OJB:

Descri ptorRepository dr = Met adat aManager. get | nst ance(). get Repository();

Cl assDescriptor cld = new Cl assDescri ptor(dr);
cl d. set O assOF Obj ect (A. cl ass);

Page 205

0JB

//l.... other setter

/] add the fields of the class

Fi el dDescriptor fd = new Fi el dDescriptor(cld, 1);
fd. set PersistentFiel d(A class, "sonmeAField");

cl d. addFi el dDescri ptor (fd);

/1 now we add the the class descri ptor
dr.set C assDescriptor(cld);

Please read this section from beginning for further information.

4.5.12. Deployment

45.12.1. Introduction

This section enumerates all things needed to deploy OJB in standalone or servlet based
applications and j2ee-container.

4.5.12.2. Things needed for deploying OJB

1. The OJB binary jar archive

You need adb- 0j b- <ver si on>. | ar file containing the compiled OJB library.

Thisjar files contains all OJB code neccessary in production level environments. It does not
contain any test code. It aso does not contain any configuration data. You'll find thisfilein
the lib directory of the binary distribution. If you are working with the source distribution
you can assemble the binary jar archive By calling

ant jar
This ant task generates the binary jar to the dist directory.

2. Configuration data

OJB needs two kinds of configuration data:

1. Configuration of the OJB runtime environment. This datais stored in afile named
QJB. properties .Lean moreabout thisfile here.

2. Configuration of the MetaData layer. This datais stored in file named
reposi tory. xm (and several included files). Learn more about thisfile here.

These configuration files are read in through ClassL oader resource lookup and must therefore be placed on the classpath.

Page 206

0oJB

3. External dependenciesthat do not come with OJB

Some components of OJB depend on external libraries and components that cannot be
shipped with OJB. You'll also need these if you want to compile OJB from source. Hereisa
list of these dependencies:
| 2ee. j ar
This is the main archive of the J2EE SDK. We recommend that you use the 1.3
version as the 1.4 is rather new and not thoroughly tested yet with OJB.
jdo.jar, jdori*.jar
The JDO Reference implementation is required if you plan to use the JDO Api.

4. Optional jar archivesthat comewith OJB

Someof jar filesinthel i b folder are only used during build-time or are only required by
certain components of OJB, and so they might need not to be needed in runtime
environments.
Apart from wasting disk space they do no harm. If you don't care about disk space you just
takeadl jarsfromthel i b folder.
If you do care, hereisthelist of jars you might omit during runtime:
ant-*.jar
These are the Apache Ant 1.6 jars.
antlr-[version].jar
ANTLR is a parser generator which is used in the ODMG component of OJB. If
you only use the PB Api, then you don't need this.
junit.jar
Junit for running the unit tests. You'll need this only if you're also writing unit tests
for you app.
xerces.jar, xm-apis.jar
The Xerces XML parser. Since most newer JDK's ship with an XML parser, it is
likely that you do not need these files.
xal an. j ar
Xalan is used to generate the unit test report, so you'll probably don't need this.
j akart a-regexp-[version].jar
The Jakarta Reqular Expression library is only used when building OJB from
source.
t orque- xxx.jar, velocity-xxx.jar
Torque is used to generate concrete databases from database-independent
schema files. OJB uses it internally to setup databases for the unit tests.
xdocl et-[version].jar, xjavadoc-[version].jar,

Page 207

0JB

xdocl et - 0] b-nodul e-[version].jar,

commons-col | ections-[version].jar

The XDoclet OJB module can be used to generate the repository metadata and
Torque schema files from Javadoc comments in the Java source files. It is
however not required at runtime, so you can safely ignore these files then.

5. Don't forget the JDBC driver

The repository.xml defines JDBC Connections to your runtime databases. To use the
declared JDBC drivers the respective jar archives must also be present in the classpath. Refer
to the documentation of your databases.

In the following sections | will describe how to deploy these items for specific runtime
environments.

4.5.12.3. Deployment in standalone applications

Deploying OJB for standalone applications is most smple. If you follow these four steps
your application will be up in afew minutes.

1. Adddb- oj b- <versi on>.j ar to the classpath

2. placeQIB. properties andrepository.xm fileson the classpath
3. Add the additional runtime jar archives to the classpath.

4. Addyour JDBC driversjar archive to the classpath.

4.5.12.4. Deployment in servlet based applications

Generally speaking the four steps described in the previous section have to be followed aso
in Servlet / JSP based environments.

The exact details may differ for your specific Servlet container, but the general concepts
should be quite similar.

1. Deploy db- 0j b- <ver si on>. j ar with your servlet applications WAR file.
The WAR format specifies that application specific jars are to be placed in a directory
VEEB- | NF/ | i b. Place db- oj b- <ver si on>. j ar tothisdirectory.

2. Deploy QJB. properties andrepository. xm withyour servlet applications
WAR file.
The WAR format specifies that Servlet classes areto be placed in adirectory
VEEB- | NF/ cl asses. The OJB configuration files have to bein this directory.

3. Add the additiona runtime jar archivesto V\EB- | NF/ | i b too.

4. Addyour IDBC driversjar archiveto VEB- | NF/ | i b.

By executing ant war you can generate a sample servlet application assembled to avalid
WAR file. Theresulting o] b- ser vl et . war fileiswritten to the dist directory. Y ou can

Page 208

0oJB

deploy thisWAR file to your servlet engine or unzip it to have alook at its directory
structure.
you can a'so use the target war as a starting point for your own deployment scripts.

4.5.12.5. Deployment in EJB based applications

The above mentioned guidelines concerning jar files and placing of the OJB.properties and
the repository.xml are valid for EJB environments as well. But apart from these basic steps
you'll have to perform some additional configurations to integrate OJB into a managed
environment.

The instructions to make OJB running within your application server should be similar for all
server. So the following instructions for JBoss should be useful for al user. E.g. most
QIB. properti es filesettings are the same for al application server.

There are some topics you should examine very carefully:

« Connection handling: Lookup DataSource from your AppServer, only these connections
will be enlisted in running transactions

» Caching: Do you need distributed caching?

» Locking: Do you need distributed locking (when using odmg-api)?

Configure OJB for managed environments considering as JBoss example

The following steps describe how to configure OJB for managed environments and deploy
on a gjb conform Application Server (JBoss) on the basis of the shipped ejb-examples. In
managed environments OJB needs some specific properties.

1. Adapt OJB.propertiesfile

If the PB-api isthe only persistence API being used (no ODMG nor JDO) and it isonly
being used in a managed environment, it is strongly recommended to use a specid
PersistenceBrokerFactory class, which enables PersistenceBroker instances to participatein
the running JTA transaction (e.g. this makes PBStateL istener proper work in managed
environments and enables use of ‘autoSync' property in ObjectCacheDefaultimpl):

Per si st enceBr oker Fact or yCl ass=or g. apache. oj b. br oker. cor e. Per si st enceBr oker Fact or ySyncl n

Don't use this setting in conjunction with any other top-level api (e.g. ODMG-api).

Your QJB. pr operti es file need the following additional settings to work within
managed environments (apply to all used api):

Page 209

0JB

Connect i onFact oryC ass=
or g. apache. oj b. br oker. accessl ayer. Connect i onFact or yManaged!| npl

set used application server TM access cl ass

JTATr ansact i onManager Cl ass=

org. apache. oj b. ot mtransaction. factory.JBossTransacti onManager Fact ory

A specific ConnectionFactory implementation was used to by-pass all forbidden method
calls in managed environments.

The JTATransactionManager Class set the used implementation class for transaction
manager lookup, necessary for for j avax. t ransacti on. Transact i onManager
lookup to participate in running JTA transaction via

j avax. transacti on. Synchroni zat i on interface.

The ODMG-api needs some additional settings for use in managed environments (only
needed when odmg-api was used):

onl y needed for odng-api
| mpl enent ati onCl ass=or g. apache. oj b. odnyg. | npl enent at i onJTAI npl

onl y needed for odng-api
QIBTxManager Cl ass=or g. apache. oj b. odng. JTATxManager

The ImplementationClass specify the ODMG base class implementation. In managed
environments a specific implementation is used, able to participate in JTA transactions.

The OJBTxManager Class specify the used OJBTxManager implementation to manage the
transaction synchronization in managed enviroments.

Currently OJB integrate in managed environmentsviaj avax. t ransacti on. Synchr oni zat i on interface. When the
JCA adapter isfinished (work in progress) integration will be more smooth.

2. Declaredatasourcein therepository (repository_database) file and do additional configuration

Do only use Dat aSour ce from the application server to connect to your database (Local
used connections do not participate in JTA transaction).

We strongly recommend to use JBoss 3.2.2 or higher of the 3.x series of JBoss. With earlier versions of 3.x we got
Statement/Connection resource problems when running some gjb stress tests. As workaround we introduce a jboss specific
attribute eager-release for version before 3.2.2, but it seems that this attribute can cause side-effects. Again, this problem

Page 210

0oJB

seemsto befixed in 3.2.2.

Define OJB to use a DataSource:

<l-- Datasource exanmple -->
<j dbc- connecti on- descri pt or
jcd-alias="default"
def aul t - connecti on="t rue"
pl at f or m=" Sapdb”
] dbc- | evel =" 2. 0"
J ndi - dat asour ce- nane="j ava: Def aul t DS"
user name="sa"
passwor d=""
eager -rel ease="f al se"
bat ch- node="f al se"
useAut oCommi t =" 0"
i gnor eAut oConmi t Excepti ons="f al se"
>
<obj ect - cache
cl ass="or g. apache. oj b. br oker. cache. Obj ect CacheDef aul t | npl ">
<attribute attribute-name="timeout" attribute-val ue="900"/>
<attribute attribute-nanme="autoSync" attribute-val ue="true"/>
</ obj ect - cache>

<sequence- manager
cl assNane="or g. apache. oj b. broker. util . sequence. SequenceManager Next Val | npl ">
</ sequence- manager >

</ j dbc- connecti on-descri pt or >

The attribute useAut oConmmi t =" 0" is mandatory in managed environments, because it's
in most cases not allowed to change autoCommit state.

In managed environments you can't use the default sequence manager (SeguenceManagerHighL owlmpl) of OJB. For
alternative sequence manager implemetation see here.

[2b. How to deploy ojb test hsgldb database to jboss]

If you use hsgl database for testing you can easy setup the DB on jboss. After creating the
database in OJB test directory withant pr epar e-t est db, take the generated
...ltarget/test/ QIB. scri pt fileand renameittodef aul t. scri pt. Then
replace the jboss default.script file in

...l jboss-3.x.y/server/defaul t/db/ hypersoni c withthisfile.

3. Include all OJB configuration filesin classpath
Include the all needed OJB configuration filesin your classpath:

Page 211

0JB

- OJB.properties

- repository.dtd

- repository.xml

- repository_internal.xml

- repository_database.xml,

- repository_gjb.xml (if you want to run the gjb examples)

To deploy the g/b-examples beans we include all configuration filesin agb jar file - more
info about this see below.

The repository.xml for the glb-example beans ook like:

<?xm version="1.0" encodi ng="UTF-8""?>

<I-- This is a sanple netadata repository for the CbJectBridge
System Use this file as a tenplate for building your own
mappi ngs- - >

<l-- defining entities for include-files -->

<I DOCTYPE descri ptor-repository SYSTEM "repository.dtd" |
<IENTI TY dat abase SYSTEM "repository_dat abase. xm ">
<IENTITY internal SYSTEM "repository_internal.xmn">
<IENTITY ejb SYSTEM "repository ejb.xm ">

1>

<descriptor-repository version="1.0"
i sol ation-I|evel ="read-unconm tted">

<I-- include all used database connections -->
&dat abase;

<l-- include ojb internal nappings here -->
& nt er nal

<!'-- include mappi ngs for the EJB-exanples -->
&ej b;

</ descri ptor-repository>

4. Enclose all libraries OJB depend on

In most casesit is recommended to include all libraries OJB depend on in the application
.ear/.sar or gb .jar file to make OJB run and (re-)deployable. Here are the libraries needed to
make the ojb sample session beans run on JBoss:

The jakartacommons libraries files (all commons-xxx.jar) from OJB /lib directory
The antlr jar file (antlr-xxx.jar) from OJB /lib directory

jakarta-regexp-xxx.jar from OJB /lib directory

[jakartaturbinejcs.jar from OJB /lib directory, only if ObjectCacheJCSImpl was used]

Page 212

0oJB

(This was tested with jboss 3.2.2)

5. Take care of caching

Very important thing is cache synchronization with the database. When using the ODM G-api
or PB-api (with special PBF (see 1.) setting) it's possible to use all Obj ect Cache
implementations as long as OJB doesn't run in a clustered mode. When the

bj ect CacheDef aul t I npl cache implementation was used it's recommended to enable
the autoSync mode.

In clustered environments (OJB run on different AppServer nodes) you need a distributed
ObjectCache or you should use alocal/empty cache like

oj ect Cached ass=or g. apache. oj b. br oker . cache. Cbj ect CachePer Br oker | npl
or

nj ect Cached ass=or g. apache. oj b. br oker . cache. Cbj ect CacheEnpt yl npl

The cacheis pluggable, so you can write your own ObjectCache implementation to
accomplish your expectations.

Moreinfo you can find in clustering and ObjectCache topic.

6. Take care of locking

If the used api supports Object Locking (e.g. ODMG-api, PB-api does not), in clustered
environments (OJB run on different AppServer nodes) a distributed lock management is
mandatory.

7. Put all together

Now put al files together. We keep the examples as simple as possible, thus we deploy only
agb .jar file. Below you can find a short instruction how to pack an gb application .ear file
including OJB.

Generate the ejb-exampl es described below or build your own gjb .jar fileincluding al
beans, gjb-jar.xml and appServer dependend files. Then add all OJB configuration files, the
db-ojb jar fileand al libraries OJB depends on into thisegb .jar file.

The structure of the gb .jar file should now look like this:

/ QJB. properties
/repository.dtd

[repository. xmn

[all used repository-XYZ. xn
/ META- | NF

Page 213

0JB

.../ Mani f est. nf
...lejb-jar.xmn
.../l jboss. xm

/all ejb classes

/db-0j b-1. X.jar
/all used libraries

7b. Example: Deployablejar

For example the jar-file used to test the gb-examples shipped with OJB, base on the
db-ojb-XY-beans,jar file. This jar was created when the g/b-examples target was called.

The generated jar contains only the gb-classes and the deployment-descriptor. We have to
add additional jars (al libraries used by OJB) and files (all configuration files) to make it
deployable. The deployable db-ojb-XY-beans.jar should look like this:

/ QJB. properties
/repository.dtd

[repository. xn
/repository_ dat abase. xmi
/repository ejb.xm
/repository internal.xmn
/ META- | NF

.../ Mani fest.nf
...lejb-jar.xn

.../l jboss. xm

/org
...lapache (all ejb classes)

/db-0j b-1. X.jar

[ant|r-XXX. jar

/ commons- beanuti | s- XXX. j ar

/ conmons-col | ecti ons- XXX. j ar
/ conmons- dbcp- XXX. j ar

/ conmons- | anf - XXX. | ar

/ conmons- | oggi ng- XXX. j ar

/ conmons- pool - XXX. j ar

/j akart a-regexp- XXX. j ar

Please pay attention on the configuration settings to make OJB work in managed
environments (especially the OJB.properties settings).

This exampleisn't areal world production example. Normally you will setup one or more enterprise archive files (.ear files) to
bundle one or more complete J2EE (web) applications. More about how to build an J2EE application using OJB see here.

Page 214

0oJB

The described example should be re-deployable/hot-deployable in JBoss.
If you will get any problems, please let me know. All suggestions ar e welcome!

8. How to access OJB API?

In managed environmentsit is possible to access OJB in same way used in non-managed
environments:

/1 PB-api
Per si st enceBr oker broker = PersistenceBrokerFactory.create...;

/ | ODMG- api
| mpl enent ati on odng = QJB. get | nstance();

But it isrecommended to bind OJB api access classes to JINDI and |ookup the the api entry
classesvia JNDI.

9. OJB logging within JBoss

Jooss use |og4j as standard logging api.
In summary, to use log4j logging with OJB within jBoss:
1) in OJB.properties set

Logger O ass=or g. apache. oj b. broker. util .| oggi ng. Log4j Logger | npl

Thereis no need for a separate log4j.properties file of OIB-specific log4j settings (in fact the
OJB.properties setting LoggerConfigFile isignored). Instead, the jBoss log4j configuration
file must be used:

2) in JBOSS HOME/server/default/conf/logdj.xml,
define appenders and add categories to add or filter logging of desired OJB packages,
following the numerous examples in that file. For example,

<cat egory nane="org. apache. oj b">
<priority val ue="DEBUG' />
<appender -ref ref="CONSOLE"/ >
<appender-ref ref="FILE"/>

</ cat egory>

<cat egory nane="or g. apache. oj b. br oker. net adat a. Reposi t or yXm Handl er " >
<priority val ue="ERROR' />
<appender-ref ref="CONSOLE"/>
<appender-ref ref="FILE"/>

</ cat egory>

Example Session Beans

Page 215

0JB

Introduction

The OJB source distribution was shipped with a bunch of sample session beans and client
classes for testing. Please recognize that we don't say that these examples show "best
practices’ of using OJB within enterprise java beans - it's only one way to make it work.

To keep the examples as simple as possible we directly use the OJB main classes via static
lookup or helper classes on each gjbCreate() call. But we recommend to bind the OJB main
classesin JNDI instead of direct use in the session beans.

Generate the sample session beans

The source code of the sample beansis stored in directory
[db-0j b] /src/ ej b/ org/ apache/ oj b/ ej b
To generate the sample beans call

ant ej b-exanpl es

This ant target copies the bean sourcesto [db- oj b] / t ar get / sr cej b generates all
needed bean classes and deployment descriptor (by using xdoclet) to the same directory,
compiles the sources and build an gjb .jar file called

[db- 0j b] / di st/ db- 0] b- XXX- beans. j ar. Test clients for the generated beans
included inthe[db- oj b] / di st/ db- 0j b- XXX-client.|ar.

To run xdoclet properly the following xdoclet jar filesneeded in [db- oj b] / | i b directory
(xdoclet version 1.2xx or higher):

xdocl et - xxx. j ar

xdocl et - ej b- nodul e- xxx. j ar

xdocl et - j boss- nodul e- xxx. j ar

xdocl et - j nx- nodul e- xxx. j ar

xdocl et - web- nodul e- xxx. j ar

xdocl et - xj avadoc- nodul e- xxx. j ar

If you using a different application server than JBoss, you have to modifiy the xdoclet ant
targetin[db- oj b] / bui | d- ej b- exanpl es. xni to force xdoclet to generate the

appServer specific files. See xdoclet documentation for further information.

How torun test clientsfor PB/ ODMG - api

If the "extended gjb .jar" file was successfully deployed we need atest client to invoke the
gjb-examples. As said above, the gb-examples target generates atest client jar too. It's called
[db- 0j b] / di st/ db-0j b- XXX-cl i ent.jar and containsjunit based test clients for
the PB-/ODMG-api.

The main test classes are:

Page 216

0oJB

» org.apache.ojb.gb.AIIODMGTests
» org.apache.ojb.g/b.AlIPBTests

OJB provide an ant target to run the client side bean tests. Include all needed appServer
librariesin[db- o] b] /| i b (e.g. for JBossjbossall-client.jar do the job, beside the "j2ee
jars"). Torun the PB-api test clients (access running JBoss server with default settings) call

ant ej b-exanpl es-run -Dclient.class=org. apache.oj b.ejb. All PBTests

To run the test clients on an arbitrary appServer pass the INDI properties for naming context
initalisation too, e.g.

« -Djava.naming.factory.initial="org.jnp.interfaces.NamingContextFactory"
» -Djava.naming.provider.url="jnp://localhost:1099"
» -Djava.naming.factory.url.pkgs="org.jboss.naming:org.jnp.interfaces’

Then the target call may looks like

ant ej b-exanpl es-run -Dclient.class=org. apache. oj b.ejb. Al PBTests
-Djava. nam ng.factory.initial ="org.jnp.interfaces. Nam ngCont ext Fact ory"
- Dj ava. nam ng. provi der.url ="jnp://1 ocal host: 1099"
- Dj ava. nam ng. factory. url . pkgs="org. j boss. nam ng: org.j np.interfaces"

Packing an .ear file

Hereis an example of the .ear package structure. It is redeployable without having to restart
JBoss.

The Package Structure

The package structure of the .ear file should look like:

/lejb.jar/

...EJBs

... META- | NF/
...... ej b-jar.xm
...... j boss. xm
...... MANI FEST. MF

/ web- app. war /
...JSP

... VEB- | NF/
...... web. xmi

/ META- | NF/
...application. xm

/ojb.jar

/[ojb required runtime jar]

/ QJB. properties

Page 217

0JB

/repository.dtd
/respository_internal.xn
/ repository. xn
/reposi tory_ dat abasel. xni
/repository appl. xn
/repository_dat abase2. xmn
/repository_app2. xm

Make OJB API Resourcesavailable
There are two approaches to use OJB api in the gjb.jar file:

1. To create a Manifest.mf file with classpath attribute that include al the runtime jar
required by OJB (Very important to include al required jar). The sample below works fine:

Cl ass-Path: db-ojb-1.0.rc6.jar antlr-2.7.3.jar comons-beanutils.jar
conmons-col | ections. jar comons-dbcp-1.1.jar comons-| ang-2.0.jar
commons- | oggi ng. j ar conmons-pool -1.1.j ar

jakarta-regexp-1.3.jar

If you to include the jar file under adirectory of the ear file, says/ | i b/ db- 0j b- 1. 0. rc6. j ar and etc. At the classpath
attribute it will be something like: Cl ass-Path: ./1ib/db-0jb-1.0.rc6.jar and etc (The"."infrontis
important)

2. To add the required jar fileasa"java" element in the application.xml file:

<nmodul e>

<java>antlr-2.7.3.jar</java>
</ modul e>
<nmodul e>

<j ava>commons- beanutils.jar</java>
</ modul e>
<nodul e>

<j ava>comons- col | ections.jar</java>
</ modul e>
<nmodul e>

<j ava>commons- dbcp-1. 1. ar</java>
</ nodul e>
<nmodul e>

<j ava>commons- | ang-2. 0. j ar</j ava>
</ modul e>
<nmodul e>

<j ava>commons- | oggi ng. j ar</j ava>
</ modul e>
<nodul e>

<j ava>comons- pool -1. 1. j ar</java>
</ modul e>
<nmodul e>

<java>db-oj b-1.0.rc6.jar</java>
</ nodul e>

Page 218

0oJB

To use this approach, al the library had to be in the root of the ear.

(This was tested on Jboss 3.2.3)

Make OJB accessible via INDI

Current bean examples do directly use OJB main classes, but it's also possible to make OJB
accessible via JNDI and use a INDI-lookup to access OJB api's in your beans.
To make the OJB api's accessible via INDI, bind main/access classes to JNDI. How to do
this depends on the used environment. The main classes/methods to bind are:
e PB-api:
Method
or g. apache. oj b. br oker . core. Per si st enceBr oker Fact or yFact or y#i nst ance()
returns the used
or g. apache. oj b. br oker. core. Persi st enceBr oker Fact oryl F. Make
thisinstance accessible via JNDI.
« ODMG-api:
Method or g. apache. oj b. odng. QJB#get | nst ance() returnsanew instance of
theor g. odnyg. | npl enent at i on instance. Open anew Dat abaseand make this
instance and the Dat abase instance accessible via JNDI.

JBoss

In JBoss you can write mbean classes to bind OJB main/access classes to JNDI, similar to the
Webl ogic example below.

Let JBoss know about the new mbeans, so declaretheminaj boss- servi ce. xni file.
Please see JBoss documentation how to write mbeans and bind objectsto JNDI.

Other Application Server
In other application server you can do similar steps to bind OJB main api classes to JNDI.
For example in Weblogic you can use startup class implementation to bind OJB main/access
classes to JNDI (see below).
Instructionsfor Weblogic
1. Add the OJB jar files and depedenciesinto the Weblogic classpath
2. Asusual create the connection pool and the datasource.

3. Prepare the OJB.properties file. Should be similar to jboss. Expect the following entry:

Page 219

0JB

#'VEblogic Transacti on Manager Factory
JTATr ansact i onManager Cl ass=
or g. apache. oj b. broker. transacti on.t m Wbl ogi cTransact i onManager Fact ory

4. Modify the connection information in the repository.xml (specify the datasource name).
SequenceM anager implementation depends on the used DB, more info see here:

<j dbc- connecti on- descri pt or
jcd-alias="default"

def aul t - connecti on="t rue"

pl at f or m=" Sapdb"

j dbc- I evel =" 2. 0"

J ndi - dat asour ce- nane="dat asour ce_denodb"
eager -rel ease="f al se"

bat ch- nrode="f al se"

useAut oComm t =" 0"

i gnor eAut oConmmi t Excepti ons="f al se"
>

<sequence- manager

cl assNane="or g. apache. oj b. broker. util. sequence. SequenceManager Next Val | npl " >
<attribute attribute-nanme="grabSi ze" attri bute-val ue="20"/>

</ sequence- manager >

</j dbc-connecti on-descri pt or>

The following step is only neccessary if you want to bind OJB main api classes to JNDI.

[5.] Compile the following classes (see at the end of this section) and add them to the
weblogic classpath. This allows to access the PB-api via JINDI lookup. Register viathe
weblogic console the startup class (see G bPbSt ar t up class below). The INDI name and
the OJB.properties file path can be specified as parametersin this startup class.

To use the ODMG-api you have to write a similar startup class. This shouldn't be too
complicated. Takealook inor g. apache. oj b. j boss package (dir

src/ connect or/ mai n). Here you could find the jboss mbeans. All you haveto dois
bound a similar classto JNDI in weblogic.

Implement ODMGJ 2EEFact or y Interface in your class bound this class to JINDI (in the
gjb-examples the beans try to lookup the | npl enent at i on instancevia

"java:/ oj b/ def aul t ODMG"). Y our ODMGFactory class should implement this
method

public I nplenmentation getlnstance()

return QIBJ2EE 2. get | nstance();

Page 220

0oJB

Write a session bean similar to those provided for the JBOSS samples. It is aso possible to
use the g b-example beans (doing minor modifications when the INDI lookup should be
used).

Webolgic startup class
Write an OJB startup class to make OJB accessible via JNDI can look like (I couldn't test this
sample class, so don't know if it will work ;-)):

package org. apache. oj b. webl ogi c;
i mport javax.nam ng.*;

i mport org.apache. oj b. broker. core. Persi st enceBr oker Fact or yFact ory;
i mport org.apache. oj b. broker. core. Persi st enceBr oker Fact oryl F;

i mport webl ogi c. conmon. T3Ser vi cesDef;
i mport webl ogi c. conmon. T3St art upDef;
i mport java.util.Hashtabl e;

/**

* This startup class created and binds an instance of a
* Persi stenceBrokerFactoryl F into JNDI
*/
public class G bPbStartup
i mpl enents T3StartupDef, O bPbFactory, Serializable
{
private String defaultPropsFile =

"or g/ apache/ oj b/ webl ogi c/ QIB. properties";

public void setServices(T3Servi cesDef services)

{
}

publ i c PersistenceBrokerFactoryl F getlnstance()

return PersistenceBrokerFact oryFactory.instance();

public String startup(String nane, Hashtabl e args)
t hrows Exception
{

try
{
String Jndlhbne = (String) args.get("jndinane");
i f(jndi Name == null || jndiNane.length() == 0)
jndlhbne = O bPbFact ory. DEFAULT_JNDI _NAME

tring propsFile = (String) args.get("propsfile");
(ropsFile == null || propsFile.length() == 0)

—~—

Page 221

0JB

System set Property("QIB. properties", defaultPropsFile);
}

el se

System set Property("QIB. properties", propsFile);
Initial Context ctx = new Initial Context();
bi nd(ctx, jndi Name, this);

/1 return a nessage for |ogging
return "Bound QIB PersistenceBrokerFactorylF to " + jndi Nane;

}
cat ch(Exception e)
{
e.printStackTrace();

/1 return a nessage for |ogging
return "Startup Class error: inpossible to bind QJB PB

factory";
}
}
private void bind(Context ctx, String name, Object val)
t hrows Nani ngExcepti on
{
Name n;
for(n = ctx.get NaneParser("").parse(nanme); n.size() > 1; n =
n. get Suf fix(1))
{

String ctxName = n.get(0);
try

ctx = (Context) ctx.|ookup(ctxNamne);
}
cat ch(NameNot FoundExcept i on nanenot f oundexcepti on)

ctx = ctx.createSubcont ext (ctxNamne);

%tx.bind(n.get(O), val);

}
The used OjbPbFactory interface:

package org. apache. oj b. webl ogi c;
i mport org.apache. oj b. broker. core. Persi st enceBr oker Fact oryl F;

public interface Q bPbFactory

public static String DEFAULT_JNDI _NAVE = "PBFactory"”;
publ i c Persi stenceBrokerFactoryl F getlnstance();

Page 222

0oJB

4.5.13. OJB - Connection Handling

4.5.13.1. Introduction
In this section the connection handling within OJB will be described. OJB use two classes
which share the connection management:

e org.apache. oj b. br oker. accessl ayer. Connecti onFact ory
« org.apache. oj b. broker. accessl ayer. Connecti onManager | F

4.5.13.2. ConnectionFactory

Theor g. apache. oj b. br oker . accessl ayer. Connect i onFact ory interface
implementation is a pluggable component (viathe OJB.properties file - more about the
OJB.propertiesfile here) responsible for creation/lookup and release of connections.

public interface ConnectionFactory

Connecti on | ookupConnecti on(JdbcConnecti onDescriptor jcd) throws
LookupExcepti on;

voi d rel easeConnecti on(JdbcConnecti onDescriptor jcd, Connection con);

voi d rel easeAl | Resources();

To enable a specific ConnectionFactory implementation class in OJB.propertiesfile, set
property ConnectionFactoryClass:

Connecti onFact or yC ass=or g. apache. oj b. br oker. accessl ayer . Connecti onFact or yPool edl npl
OJB was shipped with a bunch of different implementation classes which can be used in

different situations, e.g. creation of connection instancesis costly, so pooling of connection
will increase performance.

To make it more easier to implement own ConnectionFactory classes an abstract base class
called

or g. apache. oj b. br oker . accessl ayer. Connecti onFact or yAbstract | npl
exists, most shipped implementation classes inherited from this class.

All shipped implementation with support for connection pooling only pool direct obtained connections, DataSources will
never be pooled.

ConnectionFactoryPooled mpl

Page 223

0JB

An ConnectionFactory implementation using commons-pool to pool the requested
connections. On lookup call a connection was borrowed from pool and returned on the
release call. Thisimplementation was used as default setting in OJB.propertiesfile.

This implementation allows awide range off different settings, more info about the
configuration properties can be found in metadata repository connection-pool section.

ConnectionFactoryNotPooledl mpl

The name is programm, this implementation creates a new connection on each request and
closeit onrelease call. All connection-pool settings are ignored by this implementation.

ConnectionFactoryM anagedl mpl

Thisis a specific implementation for use in managed environments like J2EE conform
application server. In managed environmentsit is mandatory to use DataSource provided by
the application server.

All connection-pool settings are ignored by this implementation.

ConnectionFactoryDBCPImpl

An implementation using commons-dbcp to pool the connections.

This implementation allows a wide range off different settings, more info about the
configuration properties can be found in metadata repository connection-pool section.

4.5.13.3. ConnectionM anager

Theor g. apache. oj b. broker. accessl ayer. Connect i onManager | F interface
implementation is a pluggable component (viathe OJB.properties file - more about the
OJB.propertiesfile here) responsible for managing the connection usage lifecycle and
connection status (commit/rollback of connections).

public interface Connecti onManager| F
JdbcConnecti onDescri pt or get Connecti onDescri ptor();
Pl at f or m get Support edPl at f orn{() ;
bool ean i sAli ve(Connection conn);
Connecti on get Connection() throws LookupExcepti on;

bool ean i sl nLocal Transacti on();

Page 224

0oJB

voi d | ocal Begin();

voi d | ocal Commit();

voi d | ocal Rol | back() ;

voi d rel easeConnection();

voi d set Bat chibde(bool ean node) ;
bool ean i sBat chMbde();

voi d execut eBat ch();

voi d execut eBat chl f Necessary();

voi d clearBatch();
}
The ConnectionManager was used by the PersistenceBroker to handle connection usage
lifecycle.

45.13.4. Questionsand Answers

How does OJB handle connection pooling?

OJB does connection pooling per default, expect for datasources. Datasources never will be
pooled.

Responsible for managing the connections in OJB are implementations of the

or g. apache. oj b. br oker. accessl ayer. Connecti onFactory. j ava

interface. There are severa implementations shipped with OJB called

or g. apache. oj b. br oker. accessl ayer. Connect i onFact or yXXXI npl . j ava.
Y ou can find among other things a none pooling implementation and aimplementation using
jakarta-DBCP api.

To manage the connection pooling define in your jdbc-connection-descriptor a
connection-pool element. Here you can specify the properties for the used
ConnectionFactory implementation. More common info see repository section or in

repository.dtd.

Can | directly obtain ajava.sql.Connection within OJB?

The PB-api enabled the possibility to obtain a connection from the current used
Per si st enceBr oker instance:

Page 225

0JB

Per si st enceBr oker broker =

Per si st enceBr oker Fact ory. cr eat ePer si st enceBr oker (nyKey) ;
br oker. begi nTransacti on();

/1 do sonething

Connection con = broker. servi ceConnecti onManager (). get Connecti on();
/1 performyour connction action and do nore
/'l close the created statenent and result set

br oker. commi t Transacti on();

br oker. cl ose();

After obtain the connection with

br oker . servi ceConnect i onManager () . get Connect i on() , the connection can
be used in a'normal’ way. The user is responsible for cleanup of created statements and result
sets, so close statements and result sets after use.

For read-only operations there is no need to start a PB-tx.

Do not commit the connection instance, thiswill be done by OJB when PersistenceBroker commit-/abortTransaction was
called.

Never do aConnect i on. cl ose() cal onthe obtained connection instance by hand!!

Thiswill be handled by the ConnectionFactory.

If no transaction is running, it is possible to rel ease a connection after use by hand with call:

pBr oker. servi ceConnect i onManager () . rel easeConnecti on();

This cal cleanup the used connection and pass the instance to release method of
ConnectionFactory (thiswill e.g. return connection it to pool or closeit).

If you don't do any connection cleanup at the latest the connection will be released on
PB.close() call.

Users who interested in this section also interested in 'Is it possible to perform my own
sgl-queriesin OJB?.

When does OJB open/close a connection

Thisis dependent on the used OJB api. Generally OJB try to obtain a connection as late as
possible and close the connection as soon as possible.

Using the PB-api the connection is obtained when

Per si st enceBr oker . begi nTransacti on() wascalled or aquery is executed.
OnPer si st enceBr oker.commi t Transacti on() or

Per si st enceBr oker . abort Transacti on() call the connection wasreleased. If no

Page 226

0oJB

PB-tx is running, the connection will be released on Per si st enceBr oker . cl ose()
call.

Using the ODM G-api the connection is obtained when a query is executed or when the
transaction commit. On |leaving the commit method, the connection will be released.
All other top-level API should behave similar.

4.5.14. The Object Cache

45.14.1. Introduction

OJB supports several caching strategies and allow to pluggin own caching solutions by
implementing the ObjectCache interface. All implementations shipped with OJB can be
found in package or g. apache. oj b. br oker . cache. The naming convention of the
implementation classesis Cbj ect CacheXXXI npl .

To classify the different implementations we differ local/session cache and
shared/global/application cache implementations (we use the different terms synonymous).
The ObjectCacheTwol evellmpl use both characteristics.

« Loca cache implementation mean that each instance use its own map to manage cached
objects.

« Shared/global cache implementations share one (in most cases static) map to manage
cached objects.

A distributed object cache implementation supports caching of objects across different JVM.

4.5.14.2. Why a cache and how it works?
OJB provides a pluggable object cache provided by the ObjectCache interface:

public interface ObjectCache
{

/**

* Wite to cache.

*/

public void cache(ldentity oid, Object obj);
/**

* Lookup object from cache.
*/

public Object |ookup(ldentity oid);

/**

* Renpbves an (bject fromthe cache.
*/

public void renmove(ldentity oid);

Page 227

0JB

/**

* Cl ear the nject Cache.

*/
public void clear();
}
Each PersistenceBroker instance (PersistenceBroker is a standalone api and the basic layer
for al top-level api'slike ODMG) useit'sown Obj ect Cache instance. The
hj ect Cache instances are created by the Obj ect CacheFact ory classon
Per si st enceBr oker instantiation.

Each cache implementation holds objects previously loaded or stored by the
Per si st enceBr oker - dependend on the implementation.
Using a Cache has several advantages:

» Itincreases performance as it reduces database |ookups or/and object materialization. If
an object islooked up by Identity the associated PersistenceBroker instance does not
perform a SELECT against the database immediately but first looks up the cache if the
requested object is already loaded. If the object is cached it is returned as the lookup
result. If it isnot cached a SELECT is performed.

Other queries were performed against the database, but before an object from the
ResultSet was materialized the object identity was looked up in cache. If not found the
whole object was materialized.

« [talowsto perform circular lookups (as by crossreferenced objects) that would result in
non-terminating loops without such a cache (Note: Since OJB 1.0.2 thisis handled
internally by OJB and does not depend on the used cache implementation).

4.5.14.3. How to declar e and change the used ObjectCache implementation

Theobj ect - cache element can be used to specify the ObjectCache implementation used
by OJB. If no object-cache is declared in configuration files (see below), OJB use by default
a noop-implementation of the Cbj ect Cache interface.

There are two levels of declaration:

» jdbc-connection-descriptor level
o class-descriptor level

and the possibility to exclude al persistent objects of specified package names.

Use ajdbc-connection-descriptor level declaration to declare ObjectCache implementation
on a per connection/user level. Additional configuration properties can be passed by using
custom attributes entries:

<j dbc- connect i on-descriptor ...>

'ébbject-cache cl ass="org. apache. oj b. br oker . cache. Obj ect CacheDef aul t | npl ">

Page 228

0oJB

<attribute attribute-nanme="tinmeout" attribute-val ue="900"/>
<attribute attribute-name="useAutoSync" attribute-value="true"/>
</ obj ect - cache>

</j dbc- connecti on-descri pt or >

Set an object-cache tag on class-descriptor level , to declare ObjectCache implementation
on aper classleve:

<cl ass-descri ptor
cl ass="org. apache. oj b. broker. util . sequence. H ghLowSequence"
t abl e="QIB_HL_SEQ'

<obj ect - cache cl ass="org. apache. oj b. br oker. cache. Obj ect CacheEnpt yl npl ">
</ obj ect - cache>

</ cl ass- descri pt or >
Additional configuration properties can be passed by using custom attributes entries.

If polymorphism was used it's only possible to declare the object-cache element in the class-descriptor of the top-level
class/interface (root class), all object-cache declarations in the sub-classes will beignored by OJB.

Priority of Cache L evel

Sinceit is possible to mix the different levels of object-cache element declaration a ordering
of priority is needed:

The order of priority of declared object-cache elements in metadata are:
per class > excluded packages > per jdbc-connection-descriptor

E.qg. if you declare ObjectCache 'OC1' on connection level and set ObjectCache 'OC2' in
class-descriptor of class A. Then OJB use 'OC2' as ObjectCache for class A instances and
'OC1' for al other classes.

Exclude classes from being cached

If it's undesirable to cache an persistent object (e.g. persistent objects with BLOB fields or
large binary fields) declare an obj ect - cache descriptor with the noop-cache
implementation called ObjectCacheEmptylmpl.

<cl ass-descri ptor
cl ass="or g. apache. oj b. broker. util . sequence. H ghLowSequence"
t abl e="QIB_HL_SEQ'

Page 229

0JB

<obj ect - cache cl ass="org. apache. oj b. br oker. cache. Obj ect CacheEnpt yl npl ">
</ obj ect - cache>

</ cl ass-descri ptor>

If polymorphism was used and the class to exclude is part of an inheritance hierarchy and it's declared in in OJB metadata, it's
not possible to exclude it. Only for the top-level class/interface (root class) it's allowed to specify the object-cache element in
metadata. So it's only possible to exclude all sub-classes of the top-level class/interface (root class). More info see here.

Exclude packages from being cached

To exclude all persistent objects of awhole package from being cached use the custom
attribute cacheExcludes on connection level within the object-cache declaration. To declare
several packages use acomma seperated list.

<j dbc- connecti on-descri pt or
jcd-alias="nmyDefault"
R

<obj ect - cache
cl ass="or g. apache. oj b. br oker. cache. Obj ect CacheTwoLevel | npl ">
<attribute attribute-nane="cacheExcl udes"
attribute-value="ny.core, mny.persistent.local"/>
... hore attributes
</ obj ect - cache>
</j dbc-connecti on-descri ptor
To include a persistent class of aexcluded package, ssimply declare an object-cache
descriptor on class-descriptor level of the classto include, object cache declarations on

class-descriptor level have ahigher priority asthe excluded packages - see more.

Turn off caching

If you don't declare a object-cache element in configuration files (see here), OJB doesn't
cache persistent objects by default.

To explicitly turn off caching declare a no-op implementation of the ObjectCache interface
as caching implementation. OJB was shipped with such aclass called
ObjectCacheEmptylmpl. To explicitly turn off caching for a used database look like this:

<j dbc- connecti on-descriptor ...>

%6bject-cache cl ass="or g. apache. oj b. br oker. cache. Obj ect CacheEnpt yl npl ">
</ obj ect - cache>

</jdbélconnection-descriptor>

Page 230

0oJB

To get more detailed info about the different level of cache declaration, please see here.
4.5.14.4. Shipped cache implementations:

ObjectCacheDefaultl mpl

Per default OJB use a shared reference based ObjectCache implementation -
ObjectCacheDefaultimpl. It's areally fast cache but there are afew drawbacks:

« Thereisno transaction isolation, when thread one modify an object, thread two will see
the modification when lookup the same object or use a reference of the same object, so
"dirty-reads" can happen.

« |If you rollback/abort a transaction the modified/corrupted objects will not be removed
from the cache by default(when using PB-api, top-level api may support automatic cache
synchronization). Y ou have to do this by your own using a service method to remove
cached objects or enable the autoSync property.

br oker . renoveFr onCache(obj) ;

/1 or (using ldentity object)
hj ect Cache cache = broker. servi ceObj ect Cache();
cache. renove(oi d);

« Thisimplementation cache full object graphs (the object with all referenced objects) and
does not synchronize the references. So if cached object ProductGroup hasa 1:n
reference to Article, e.g. articlel, article2, article3 and another thread delete article2, the
ProductGroup still has areference to article2. To avoid such abehavior you can use the
collection-descriptor 'refresh’ attribute to force OJB to query the referenced objects when
the main object isloaded from cache or use another Cbj ect Cache implementation
supporting synchronization of references (e.g. ObjectCacheTwol evelImpl).

Thisimplementation use by default Sof t Ref er ence to wrap all cached objects. If the
cached object was not longer referenced by your application but only by the cache, it can be
reclaimed by the garbage collector.

Aswe don't know when the garbage collector reclaims the freed objects, it is possible to set a
t i meout property. So an cached object was only returned from cache if it was not garbage
collected and was not timed oui.

To enable this Obj ect Cache implementation declare

<obj ect -cache cl ass="org. apache. oj b. br oker. cache. Obj ect CacheDef aul t | npl ">
<attribute attribute-name="cacheExcl udes" attri bute-val ue=""/>
<attribute attribute-nanme="tinmeout" attribute-val ue="900"/>
<attribute attribute-nane="autoSync" attribute-val ue="true"/>
<attribute attribute-name="cachi ngKeyType" attri bute-val ue="0"/>
<attribute attribute-name="useSoft References" attribute-val ue="true"/>

Page 231

</ obj ect - cache>

Implementation configuration properties:

Property Key

timeout

autoSync

cachingKeyType

0JB

Property Values

Lifetime of the cached objects in seconds. If
expired, the cached object was discarded -
default was 900 sec. When set to -1 the lifetime
of the cached object never expire.

If set true all cached/looked up objects within a
PB-transaction are traced. If the the
PB-transaction was aborted all traced objects
will be removed from cache. Default is false.

NOTE: This does not prevent "dirty-reads’ by
concurrent threads (more info see above).

It's not a smart solution for keeping cache in sync
with DB but should do the job in most cases.

E.g. if OJB read 1000 objects from the database
within atransaction, one object was modified and the
transaction will be aborted, then 1000 objects will be
passed to the cache on lookup, 1000 objects will be
traced and all 1000 objects will be removed from
cache on abort.

Read these objects without running tx or in aformer
tx and then modify one object in atx and abort the tx,
only one object was traced/removed. Keep in mind
that this property counteract the useSoftReferences
property as long as the PB-transaction is running,
because all traced objects will have strong references.

Determines how the key was build for the
cached objects:

0 - Identity object was used as key, this was the
default setting.

1 - Idenity + jcdAlias name was used as key.
Useful when the same object metadata model
(DescriptorRepository instance) are used for
different databases (JdbcConnectionDescriptor),
because different databases should use
separated caches (persistent object instances).
2 - Identity + model (DescriptorRepository) was
used as key. Useful when different metadata
model (DescriptorRepository instance) are used
for the same database. Keep in mind that there
was no synchronization between cached objects

Page 232

0oJB

with same Identity but different metadata model.
E.g. when the same database use different
metadata versions of the same persistent object
class.

3 - all together (Idenity + jcdAlias + model)

If possible '0' is recommended, because it will be
the best performing setting.

useSoftReferences If set true this class use {@link
java.lang.ref.SoftReference} to cache objects.
Default value is true. If set true and the cached
object was not longer referenced by your
application but only by the cache, it can be
reclaimed by the garbage collector. If set false
it's strongly recommended to the timeout
property to prevent memory problems of the
JVM.

Recommendation:
If you take care of cache synchronization (or use autoSync property) and be aware of dirty
reads, thisimplementation is useful for read-only or less update centric classes.

ObjectCacheTwoL evell mpl

ObjectCacheTwol evellmpl is atwo level ObjectCache implementation with atransactional
session- and a shared application-cache part.

Thefirst level isatransactional session cache that cache objects till
PersistenceBroker#close() or if aPB-tx isrunning till #abort Tr ansacti on() or
#conmmi t Transacti on() wascalled.

On commit all objects reside in the session cache will be pushed to the application cache.

If objects be new materialized from the database (e.g. when achieve a query), the full
materialized objects will be pushed immediately to the application cache (more precisely, if
the application cache doesn't contain the "new materialized" objects).

The second level cache can be specified with the applicationCache property. Properties of
the specified application cache are allowed too. Here is an example how to use the two level
cachewith Qbj ect CacheDef aul t | npl assecond level cache.

<obj ect -cache cl ass="org. apache. oj b. br oker. cache. Gbj ect CacheTwoLevel | npl ">
<I-- nmeaning of attributes, please see docs section "Caching" -->
<l-- conmon attributes -->
<attribute attribute-nane="cacheExcl udes" attri bute-val ue=""/>
<I-- nject CacheTwoLevel I npl attributes -->
<attribute attribute-nanme="applicati onCache"
attri but e-val ue="org. apache. oj b. br oker. cache. Cbj ect CacheDef aul t | npl "/ >

Page 233

0JB

<attribute attribute-nane="copyStrategy"
attri but e-val ue="org. apache. oj b. br oker. cache. Cbj ect CacheTwoLevel | npl $Copy St r at egyl npl "/
<l-- (njectCacheDefaultlnpl attributes -->
<attribute attribute-name="timeout" attribute-val ue="900"/>
<attribute attribute-nanme="autoSync" attribute-val ue="true"/>
<attribute attribute-nanme="cachi ngKkeyType" attri bute-val ue="0"/>
<attribute attribute-nanme="useSoft Ref erences" attribute-val ue="true"/>
</ obj ect - cache>

The most important characteristic of the two-level cache isthat all objects put to or read from
the application cache are copies of the target object, so the cached objects never could be
corrupted by the user when changing fields, because all operations done on copies of objects
cached in the application cache (in contrast to ObjectCacheDefaultimpl).

The strategy to make copies of the persistent objectsis pluggable and can be specified by the
copyStrategy property which expects an implementation of the
(bj ect CacheTwolLevel | npl . CopySt r at egy interface.

The default Qbj ect CacheTwoLevel | npl . Copy St r at egy implementation make
copies based on the field-descriptors of the cached object and set these valuesin anew
instance of the cached object. If you lookup a cached object with 1:n or m:n relation a query
is needed to get the ID's of the referenced objects, because in application cache only "flat"
objects without references/reference-info will be cached.

Thistwo-level cache implementation does not guarantee that cache and persistent storage (e.g. database) are always consistent,
because the session cache push the persistent objects to application cache after the PB-tx was commited.

Let us assume that thread 1 (using broker 1) update objects A1, A2, ... within atransaction and does commit the tx. Now
before OJB could execute the after commit call on thread 1 to force session cache to push the objects to the application cache,
thread 2 (using broker 2) lookup and update object A2 too (improbably but could happen, because thread 1 has already
commited the objects A1, A2,... to the persistent storage) and push A2 to application cache. After thisthread 1 was able to
perform the after commit call and the ‘outdated' version of A2 was pushed to the application cache overwriting the actual
version of A2 in cache - cache and persistent storage are out of synchronization.

To avoid writing of outdated data to the persistence storage optimistic locking can be used. OL will not prevent the above
scenario, but if it happens and e.g. broker 3 read the outdated object A1 from the cache and try to perform an update of A1, an
optimistic locking exception will be thrown. So it is guaranteed that the persistent storage is always consistent.

A possihbility to completely prevent synchronization problems of cache and persistent storage is the usage of pessimistic
locking (if the used api supports it) with an adequate locking isolation level. If only one thread/broker could modify an object
at the same time and the lock will be released after all work is done, the above scenario can't happen.

To avoid corrupted data, all objects cached by users (using the methods of the ObjectCache
interface) will never be pushed to the application cache, they will be buffered in the session
cachetill it was cleared.

Implementation configuration properties:

Property Key Property Values
applicationCache Specifies the ObjectCache implementation used

Page 234

0oJB

as application cache (second level cache). By
default ObjectCacheDefaultimpl was used. It's
recommended to use a shared cache
implementation (all used PB instances should
access the same pool of objects - e.g. by using
a static Map in cache implementation).

copyStrategy Specifies the implementation class of the
hj ect CacheTwoLevel | npl . CopyStr at egy
interface, which was used to copy objects on
read and write operations to application cache. If
not set, a default implementation was used
(Cbj ect CacheTwoLevel | npl . Copy St r at egyl npl
make field-descriptor based copies of the
cached objects).

ObjectCachePer Broker Impl

ObjectCachePerBrokerlmpl is alocal/session cache implementation allows to have dedicated
caches per PersistenceBroker instance.

Note: When the used broker instance was closed (returned to pool) the cache was cleared.

This cache implementation is not synchronized with the other Qbj ect Cache instances,
there will be no automatic refresh of objects modified/updated by other threads
(PersistenceBroker instances).

So, objects modified by other threads will not influence the cached objects, because for each
broker instance the objects will be cached separately and each thread should use it's own
PersistenceBroker instance.

ObjectCacheEmptylmpl

Thisis an no-op ObjectCache implementation. Useful when caching was not desired.

This implementaion supports circular references as well (since OJB 1.0.2, materialization of object graphs with circular
references will be handled internally by OJB).

ObjectCacheJCSI mpl

A shared Obj ect Cache implementation using a JCS region for each classname. More info
see turbine-JCS.

Page 235

0JB

ObjectCacheOSCachel mpl

You're basically in good shape at this point. Now you've just got to set up OSCache to work
with OJB. Here are the steps for that:

« Download OSCache from OSCache. Add the oscache-2.0.x.jar to your project so that itis
in your classpath (for Servlet/J2EE users place in your WEB-INF/lib directory).

« Download JavaGroups from JavaGroups. Add the javagroups-all.jar to your classpath
(for Servlet/J2EE users place in your WEB-INF/lib directory).

» Add oscache.properties from your OSCache distribution to your project so that it isin the
classpath (for Servlet/J2EE users place in your WEB-INF/classes directory). Open the
file and make the following changes:

1. Addthefollowing lineto the CACHE LISTENERS section of your

oscache.propertiesfile:

cache.event.listener s=com.opensymphony.oscache. plugins.cluster support.JavaGroupsBroadcastingl
2. Addthefollowing line at the end of the oscache.properties file (your network must

support multicast):

cache.cluster.mul ticast.ip=231.12.21. 132

« Add thefollowing class to your project (feel free to change package name, but make sure
that you specify the full qualified class name in configuration files). Y ou can find source
of thisclassunder db- oj b/ contri b/ src/ Obj ect CacheOSCachel npl or copy
this source:

public class Ohject CacheOSCachel npl i npl enents Obj ect Cachel nt er nal

{
private Logger log =
Logger Fact ory. get Logger (Obj ect CacheOSCachel nmpl . cl ass) ;
private static General CacheAdm ni strator admn = new
CGener al CacheAdmi ni strator();
private static final int REFRESH PERI OD =
com opensynphony. oscache. base. CacheEnt ry. | NDEFI Nl TE_EXPI RY;

publ i ¢ Obj ect CacheOSCachel mpl ()

publ i c Obj ect CacheGsCachel npl (Per si st enceBr oker broker, Properties
prop)

public void cache(ldentity oid, Object obj)
{
try
{
adm n. put I nCache(oi d.toString(), obj);

Page 236

0oJB

cat ch(Exception e)
{

adm n. cancel Update(oid.toString());
log.error("Error while try to cache object: " + oid, e);

}
public void dol nternal Cache(ldentity oid, Object obj, int type)

cache(oid, obj);

public bool ean cachel fNew(Identity oid, Cbject obj)

bool ean result = fal se;
Cache cache = admi n. get Cache();

try

cache. get FrontCache(oid.toString());
éatch(hbedsRefreshException e)
{ try

cache. put I nCache(oid.toString(), obj);
result = true;

}
cat ch(Exception el)
{

cache. cancel Update(oid.toString());
log.error("Error while try to cache object: " + oid, e);

}

return result;

public Object |ookup(ldentity oid)

{ try
{ return adm n. get FronCache(oid.toString(), REFRESH PERI OD);
%atch(hbedstfreshException e)

/1 not found in cache
i f(log.isDebugEnabl ed()) | og.debug("Not found in cache: " +

oi d);
return null;
}
cat ch(Exception e)
{
| og. error (" Unexpected error when | ookup object from cache:
oid, e);

return null;

Page 237

0JB

}
}

public void renove(ldentity oid)
try
o i f(log.isDebugEnabl ed()) | og.debug("Remove from cache: " +
s admi n. flushEntry(oid.toString());
%atch(Exception e)

t hrow new Runti neCacheExcepti on("Unexpected error when renpve
object fromcache: " + oid, e);

}
public void clear()
{
try
{
i f(log.isDebugEnabl ed()) | og.debug("d ear cache");
adm n. fl ushAl I ();
}
cat ch(Exception e)
t hrow new Runti neCacheExcepti on("Unexpected error while clear
cache", e);
}
}

}

To allow usage of thisimplementation as application cache level in the two-level cache
implement the internal object cache interface instead of the standard one.

Now OSCache can be used by OJB as standal one cache (by declaring the implementation
class on connection- or class-level) or as application cache in the two-level cache.

Moreimplementations...

Additional ObjectCache implementations can be found in org.apache.ojb.broker.cache
package.

45.14.5. Distributed ObjectCache?

If OJB was used in a clustered enviroment it is mandatory to distribute al shared cached
objects across different VM. OJB does not support distributed caching "out of the box", to
do this a external caching library is needed, e.g. the OSCache implementation supports
distributed caching. More information how to setup OJB in clustered enviroments see

Page 238

0oJB

clustering howto.

4.5.14.6. Implement your own cache

The OJB cache implementations are quite simple but should do a good job for most
scenarios. If you need a more sophisticated cache or need to pluggin a proprietary caching
library you'll write your own implementation of the ObjectCache interface.

Integration of your implementation in OJB is easy since the object cache is a pluggable
component. All you have to do, isto declare it on connection- or class-level. Here an
example howto declare the new implementation on connection level:

<j dbc- connecti on-descri pt or
jcd-alias="nmyDefault"

<obj ect - cache cl ass="nmny. Cbj ect CacheMyI npl ">
<attribute attribute-name="cacheExcl udes" attri bute-val ue=""/>
... additional attributes of the cache
</ obj ect - cache>
</ j dbc- connecti on-descri ptor

If interested to get more detailed information about the "type" of the objects to cache (objects

written to DB, new materialized objects,...) implement the ObjectCachelnternal interface
(For an implementation example see source for ObjectCacheTwol evellmpl).

Of course we interested in your solutions! If you have implemented something interesting, just contact us.

4.5.14.7. Future prospects
In OJB 1.1 the caching part will be rewritten to get rid of static classes, factories and member
variables.

4.5.15. Sequence M anager

4.5.15.1. The OJB Sequence M anager

All sequence manager implementations shipped with OJB you can find under the
or g. apache. oj b. br oker. uti|. sequence package using the following naming
convention SequenceManager XXXI npl .

Automatical assignment of unique values

As mentioned in mapping tutorial OJB provides a mechanism to automatic assign unique

Page 239

0JB

values for primary key attributes. Y ou just have to enable the autoincrement attribute in the
respective field-descriptor of the XML repository file asfollows:

<cl ass-descri ptor
class="ny. Article"
t abl e=" ARTI CLE"
>
<fi el d-descri pt or
name="articl el d"
col um="ARTI CLE_| D"
j dbc-type="1| NTEGER'
pri marykey="true"
aut oi ncrenent ="t rue"
/>

</ cl ass- descri pt or >

This definitions contains the following information:

Theattributear t i cl el d ismapped on the table's column ARTI CLE_| D. The JDBC Type
of thiscolumnis| NTEGER. Thisisaprimary key column and OJB shall automatically
assign unigue values to this attribute.

This mechanism works for al whole-numbered column types like BIGINT, INTEGER,
SMALLINT,... and for CHAR, VARCHAR columns. This mechanism helps you to keep
your business logic free from code that computes unique ID's for primary key attributes.

For ce computation of unique values

By default OJB triggers the computation of unique ids during callsto
PersistenceBroker.store(...). Sometimesit will be necessary to have the ids computed in
advance, before a new persistent object was written to database. This can be done by ssimply
obtaining the Identity of the respective object as follows:

Identity oid = broker.serviceldentity().buildldentity(Cbject

newPer si st ent Qbj ect) ;

This creates an |dentity object for the new persistent object and set all primary key values of
the new persistent object - But it only works if aut oi ncr enent isenabled for the primary
key fields.

Force computation of unique valuesis not allowed when using database based |dentity columns for primary key generation
(e.g vialdentity column supporting sequence manager), because thereal PK valueis at the earliest available after database
insert operation. If you nevertheless force PK computing, OJB will use an temporary dummy PK value in the Identity object
and this may lead to unexpeted behavior.

Info about lookup persistent objects by primary key fields see here.

Page 240

0oJB

How to change the sequence manager ?

To enable a specific SequencelManager implementation declare an sequence-manager
attribute within the jdbc-connection-descriptor element in the repository file.

If no sequence-manager was specified in the jdbc-connection-descriptor, OJB use a default
sequence manager implementation (default was SequenceManager HighLowlmpl).

Further information you could find in the repository.dtd section sequence-manager element.
Exampl e jdbc-connection-descriptor using a sequence-manager tag:

<j dbc- connecti on- descri pt or
jcd-alias="farAway"
pl at f or m=" Hsql db"
j dbc- I evel =" 2. 0"
driver="org. hsql db. j dbcDri ver"
pr ot ocol =" dbc"
subpr ot ocol =" hsqgl db"
dbal i as="../ QIB_Far Anay"
user name="sa"
passwor d=""
bat ch- nrode="f al se"

>

<connect i on- poo
maxAct i ve="5"
whenExhaust edAct i on="0"

val i dati onQuery="sel ect count(*) from QIB_HL_ SEQ'
/>

<sequence- manager

cl assNane="or g. apache. oj b. broker. util. sequence. SequenceManager H ghLow npl ">
<attribute attribute-nanme="grabSi ze" attribute-val ue="5"/>
<attribute attribute-nanme="gl obal Sequencel d"

attribute-val ue="fal se"/>

<attribute attribute-nane="gl obal SequenceStart"

attri bute-val ue="10000"/ >

</ sequence- manager >
</j dbc-connecti on-descri pt or >
The mandatory className attribute needs the full-qualified class name of the desired
sequence-manager implementation. If aimplementation needs configuration properties you
pass them using custom attribute tags with attribute-name represents the property name and
attribute-value the property value. Each sequence manager implementation shows all
properties on the according javadoc page.

SequenceM anager implementations

Source code of all SequenceManager implementations can be found in

Page 241

0JB

or g. apache. oj b. broker . util . sequence package.
If you still think something is missing, you can just write your own Ssequence manager
implementation.

High/L ow sequence manager

The sequence manager implementation class

oj b. broker. util.sequence. SequenceManager H ghLow npl andisableto
generate ID's unique to a given object and all extent objects declarated in the objects class
descriptor.

If you ask for an ID using an interface with several implementor classes, or a baseclass with
several subclasses the returned 1D have to be unique accross all tables representing objects of
the interface or base class (more see here).

It's also possible to use this implementation in a global mode, generate global uniqueid's.

This implementation needs an internal database table and object mapping declaration to
persist the used sequences (see OJB internal mapping for more info).

<sequence- nmanager cl assNane=
"org. apache. oj b. broker. util.sequence. SequenceManager H ghLow npl " >

<attribute attribute-nanme="grabSi ze" attri bute-val ue="20"/>
<attribute attribute-name="sequenceStart" attribute-val ue="0"/>
<attribute attribute-nanme="gl obal Sequencel d" attri bute-val ue="fal se"/>
<attribute attribute-nane="gl obal SequenceStart"
attri bute-val ue="10000"/ >
<attribute attribute-name="autoNani ng" attribute-val ue="true"/>
</ sequence- nmanager >
With property gr abSi ze you set the size of the assigned I1D's kept in memory for each
autoincrement field. If the assigned ID's are exhausted a database call is made to lookup the
next bunch of ID's (default grabSzeis 20).

If OJB was shutdown/redeployed all unused assigned ID's are |ost.

The attribute sequencesSt ar t define the start value of the id generation (default was'1').
It's recommended to use start values greater than '0' to avoid problems with primitive primary
key fields.

If property gl obal Sequencel d wassett r ue you will get globa unique ID's over all
persistent objects. Default wasf al se.

The attribute gl obal SequencesSt art define the start value of the global id generation
(default was 10000). This property is deprecated, please use property 'sequenceSart’
instead.

This sequence manager implementation supports user defined sequence-names as well as

Page 242

0oJB

automatic generated sequence-names to manage the sequences - more about sequence-names
here.

The attribute aut oNam ng can be used to enable auto-generation of sequence-names,
default valueistrue.

More info about attribute autoNaming here.

Limitations:

- do not use in managed environments when connections were enlisted in running
transactions, e.g. when using DataSources of an application server

- if set connection-pool attribute ‘whenExhaustedAction' to ‘block’ (wait for connection if
connection-pool is exhausted), under heavy load this sequence manager implementation can
block application.

- superfluously to mention, do not use if other non-OJB applications insert objects too

In-Memory sequence manager

Another sequence manager implementation is aln-Memory version called

oj b. broker. util.sequence. SequenceManager | nMenor yl npl .

Only thefirst time an UID was requested for a object, the manager query the database for the
max value of the target column - all following request were performed in memory. This
implementation ditto generate unique ID's across all extents, using the same mechanism as
the High/Low sequence manager implementation.

<sequence- nanager

cl assNane="or g. apache. oj b. broker. uti | . sequence. SequenceManager | nMenor yl npl " >
<attribute attribute-nanme="sequenceStart" attribute-val ue="0"/>
<attribute attribute-nanme="autoNani ng" attribute-val ue="true"/>

</ sequence- nanager >

The attribute sequenceSt ar t define the start value of the id generation (default was'1').

It's recommended to use start values greater than '0' to avoid problems with primitive primary

key fields.

This sequence manager implementation supports user defined sequence-names as well as
automatic generated sequence-names to manage the sequences - more about
sequence-names.

The attribute aut oNam ng can be used to enable auto-generation of sequence-names,
default valueistrue.

More info about autoNaming.

Thisisthe fastest standard sequence manager implementation and should work with all
databases without any specific preparation, but has some Limitations:

- do not use in clustered environments

- superfluously to mention, do not use (or handle with care) if other non-OJB applications

Page 243

0JB

insert objects too

Database sequences based implementation

If your database support sequence key generation (e.g. Oracle, SAP DB, PostgreSQL, ...) you
can use the SequenceManager Next Val | npl implementation to force generation of the
sequence keys by your database.

<sequence- nanager

cl assNane="or g. apache. oj b. broker. uti | . sequence. SequenceManager Next Val | npl " >
<attribute attribute-name="aut oNanm ng" attri bute-val ue="true"/>

</ sequence- manager >

Database based sequences (sequence objects, sequence generators) are specia (single-row)

tables in the database created with an specific statement, e.g. CREATE SEQUENCE

sequenceNane. Thisimplementation use database based sequencesto assign ID'sin

autoincrement fields.

The sequences can be managed by hand, by a database tool or by OJB. If the autoNaming

attribute is enabled OJB creates sequences if needed. Also it's possible to declare sequence

names in the field-descriptor

Attribute aut oNam ng, default setting istrue. If set true OJB will try to auto-generate a
sequence name if none was found in field-descriptor's sequence-name attribute and create a
database sequence if needed - more details see autoNaming section.

The auto-generated name will be set as sequence-name in the field-descriptor.

If set false OJB throws an exception if none sequence-name was found in field-descriptor,
also OJB does NOT try to create a database sequence when for a given sequence name
(specified in field-descriptor) no database sequence can be found.

<cl ass-descri ptor
cl ass="org. great est . sof t war e. Per son”
t abl e=" GS_PERSON'

<fi el d-descri pt or
nane="seql d"
col um="SEQ | D'
j dbc-t ype="1| NTEGER"
pri marykey="true"
aut oi ncrement ="t rue"
; sequence- name=" PERSON_SEQUENCE"
>

é)éiass-descriptor>
Limitations;
- none known

Page 244

0oJB

Database sequences based high/low implementation

Based on the sequence manager implementation described above, but use a high/low
algorithm to avoid database access.

<sequence- manager
cl assNane="or g. apache. oj b. broker. uti | . sequence. SequenceManager SegHi Lol npl ">
<attribute attribute-nanme="grabSi ze" attri bute-val ue="20"/>
<attribute attribute-name="autoNani ng" attribute-val ue="true"/>
</ sequence- nanager >
With property gr abSi ze you set the size of the assigned ID's kept in memory for each
autoincrement field. If the assigned ID's are exhausted a database call is made to lookup the
next bunch of ID's using the next database sequence (default grabSze is 20).

If OJB was shutdown/redeployed al unused assigned ID's are lost.
Attribute autoNaming is the same as for SequenceManagerNextVallmpl.

This sequence manager implementation supports user defined sequence-names to manage the
sequences (see more) or if not setinfi el d- descri pt or it isdone automatic when
autoNaming is enabled.

Limitations:
- superfluously to mention, do not use (or handle with care) if other non-OJB applications
insert objects too

Oracle-style sequencing

(By Ryan Vanderwerf et al.) This solution will give those seeking an oracle-style sequence
generator afinal answer (Identity columnsreally suck). If you are using multiple application
serversin your environment, and your database does not support read locking like Microsoft
SQL Server, thisisthe only safe way to guarantee unique keys (HighL owSegquenceM anager
WILL give out duplicate keys, and corrupt your data).

The SequenceManager St or edPr ocedur el npl implementation enabled database
sequence key generation in a Oracle-style for all databases (e.g. MSSQL, MySQL, DB2, ...).
First add anew table QJB_NEXTVAL _SEQto your database.

CREATE TABLE QJB_NEXTVAL_SEQ
(

SEQ NAME VARCHAR(150) NOT NULL,
MAX_KEY | NTEGER,
CONSTRAI NT SYS_PK_QJB_NEXTVAL PRI MARY KEY(SEQ NAME)

)
You will also need a stored procedure called 0oj b_next val _pr oc that will take care of
giving you a guaranteed unique sequence number.

Page 245

0JB

Hereis an example for the stored procedure you need to use sequencing for MSSQL server:

CREATE PROCEDURE QJB_NEXTVAL_PROC
@SEQ NAME var char (150)
AS

decl are @AX_KEY BI G NT

-- return an error if sequence does not exist

-- so we wWll know if someone truncates the table
set @AX KEY = 0

UPDATE QJB_NEXTVAL_SEQ
SET @MKX KEY = MAX KEY = MAX_KEY + 1

WHERE SEQ NANME ©@SEQ NAME
if @AX KEY = 0

select 1/0

el se

sel ect @MAX_KEY

RETURN @MBX_KEY

Y ou have to adapt this script if MSSQL was not used (We are interested in scripts for other
databases). Last, enable this sequence manager implementation:

<sequence- manager

cl assNane="or g. apache. oj b. broker. uti | . sequence. SequenceManager St or edPr ocedur el npl ">
<attribute attribute-nane="autoNam ng" attribute-val ue="true"/>

</ sequence- manager >

For attribute autoNaming see.

This sequence manager implementation supports user defined sequence-names to manage the
sequences (see more) or if not setinfi el d- descri pt or itisdone automatic when
autoNaming is enabled.

Limitations:
- currently none known

Microsoft SQL Server 'uniqueidentifier' type (GUID) sequencing

For those users you are using SQL Server 7.0 and up, the uniqueidentifier was introduced,
and allows for your rows Primary Keysto be GUID's that are guaranteed to be unique in time
and space.

However, thistype is different than the Identity field type, whereas thereis no way to
programmatically retrieve the inserted value. Most implementations when using the u.i. field
type set adefault value of "newid()". The SequenceM anagerM SSQL Guidimpl class manages
this process for you asif it was any normal generated sequence/identity field.

Assuming that your PK on your table is set to 'uniqueidentifier’, your field-description would

Page 246

0oJB

be the same as using any other SequenceM anager:

<fi el d-descri pt or
nane="gui d"
col um="docunent file_guid"
j dbc-type=" VARCHAR'
pri marykey="true"
aut oi ncrenent ="t rue"
/>
Note that the jdbc-typeisaVARCHAR, and thus the attribute (in this case 'guid’) on your
class should be a String (SQL Server does the conversion from the String representation to

the binary representation when retrieved/set).

Y ou aso need to turn on the SequenceManager in your jdbc-connection-descriptor like this:

<sequence- manager
cl assNane="or g. apache. oj b. broker. util . sequence. SequenceManager MSSQ.Gui dl npl "
/>

Limitations:

-Thiswill only work with SQL Server 7.0 and higher as the uniqueidentifier type was not
introduced until then.

Thisworks well in situations where other applications might be updated the database as well,
because it guarantees (well, as much as Microsoft can guarantee) that there will be no
collisions between the Guids generated.

I dentity based sequence manager

This sequence manager implementation supports database | dentity columns (supported by
MySQL, MsSQL, HSQL, ...). When using identity columns we have to do atrick to make the
sequence manager work.

OJB identify each persistence capable object by a unique ojb-Identity object. These
ojb-Identity objects were created using the sequence manager instance to get UID's. Often
these ojb-Identity objects were created before the persistence capable object was written to
database.

When using Identity columnsit is not possible to retrieve the next valid UID before the
object was written to database. As recently as the real object was written to database, you can
ask the DB for the last generated UID. Thus in SequenceM anagerNativelmpl we have to do a
trick and use a'temporary' UID till the object was written to database.

So for best compatibility try to avoid using Identity columnsin your database model. If thisis
not possible, use this sequence manager implementation to work with database | dentity
columns.

Page 247

0JB

To enable this sequence manager implementation set in your
j dbc- connecti on-descri ptor:

<sequence- manager
cl assNane="or g. apache. oj b. broker. util. sequence. SequenceManager Nati vel npl ">
</ sequence- manager >

To declare the identity column in the persistent class mapping class-descriptor, add the
following attributes to the primary key/identity key field-descriptor:

pri marykey="true",autoi ncrenent ="true" andaccess="r eadonl y"

The first and second attributes are the same as all sequence manager implementations use to
support autoincrement PK fields, the third one is mandatory for database Identity columns
only.

<fi el d-descri pt or
name="identifier"
col um=" NATI VE_I D'
j dbc-type="BI G NT"
pri marykey="true"
aut oi ncrenent ="t rue"
access="readonl y"/>

Limitations:

- The Identity columns haveto start with value greater than '0" and should never be
negative.

- Use of Identity columnsis not extent awar e (This may change in further versions). More
info here.

The sequence-name attribute

Several SequenceManager implementations using sequences (Synonyms: sequence objects,
sequence generators) to manage the ID generation. Sequences are entities which generate
unique ID's using e.g. database table per sequence, database row per sequence or an
in-memory java-object.

To address the sequences, each sequence has an unique sequence-name.

In OJB the sequence-name of an autoincrement field is declared in a sequence-name attribute
within the field-descriptor.

<cl ass-descri pt or
cl ass="org. great est. sof t war e. Per son"
t abl e=" GS_PERSON'

<fi el d-descri pt or
name="i d"

Page 248

0oJB

col um="1D_PERSON'

j dbc-t ype="1 NTEGER"

pri marykey="true"

aut oi ncrement ="t rue"

sequence- nane=" PERSON_ SEQUENCE"
/>

%}biass-descriptor>
The sequence-name attribute in the field-descriptor isonly needed if the used sequence

manager supports sequences, the field should be autoi ncremented and the auto-assign of a
sequence-name is not desired.

Each sequence-name has be extent-aware.

If you don't specify a sequence name in the field-descriptor it is possible to auto-assign a
sequence-name by OJB if autoNaming is supported by the used sequence manager
implementation.

The autoNaming property

All shipped SequenceM anager implementations using sequences for ID generation support a
property called autoNaming which can be declared as a custom attribute within the
sequence-manager el ement:

<sequence- nanager

cl assNane="or g. apache. oj b. broker. util. sequence. SequenceManager Next Val | npl ">
<attribute attribute-nanme="autoNani ng" attribute-val ue="true"/>

</ sequence- nanager >

If set true OJB try to build a sequence name by it's own (a simple agorithm was used to

auto-generate the sequence name - more details how it worksin pitfalls section) and set this

name as sequence- narne in the field-descriptor of the autoincrement field if no sequence

name is specified.

If set fal se the sequence manager throw an exception if a sequence name can't be found or

was not declared in the field-descriptor of the autoincrement field. In this case OJB expects a

valid sequence-name in the field-descriptor.

If the attribute aut oNam ng is set fal se the sequence manager never try to auto-generate a

sequence-name (more detailed info here). If set true and a sequence-nameis set in the

field-descriptor, the SequenceManager will use this one and does not override the existing

one.

The default setting istrue.

Page 249

0JB

How to write my own sequence manager ?

Very easy to do, just write aimplementation class of the interface
or g. apache. oj b. broker. util. sequence. SequenceManager . OJB usea
factory (SequenceManager Fact or y) to obtain sequence manager instances.

This Factory can be configured to generate instances of your specific implementation by
adding asequence- nanager taginthej dbc- connecti on-descri ptor.

<sequence- manager cl assNane="my. SequenceManager Myl npl ">
</ sequence- manager >

That's it!

If your sequence manager implementation was derived from
or g. apache. oj b. broker. util. sequence. Abstract SequenceManager it's
easy to pass configuration properties to your implementation using custom attributes.

<sequence- manager cl assName="nmny. SequenceManager Myl npl ">
<attribute attribute-name="nyProperty" attribute-value="test"/>
</ sequence- manager >

With

public String getConfigurationProperty(String key, String defaultVal ue)
method get the properties in your implementation class.

Of course we interested in your solutions! If you have implemented something interesting, just contact us.

Questions

When using sequence-name attribute in field-descriptor ?

Most SequenceManager implementations based on sequence names. If you want retain

control of sequencing use your own sequence- nane attribute in the

fi el d-descri ptor.Inthat caseyou are reponsible to use the same name across extents,

we call it extent-aware (see more info about extents and polymorphism). Per default the

sequence manager build its own extent awar e sequence name with an ssmple algorithm (see

or g. apache. oj b. broker . util. sequence. SequenceManager Hel per #bui | dSequenceNe
if necessary.

In most cases this should be sufficient. If you have a very complex data model and you will

do many metadata changes in the repository file in future, then it could be better to explicit

Page 250

0oJB

usesequence- nanes inthefi el d- descri pt or . See more avoid pitfals.

What to hell does extent aware mean?

Say we have a abstract base class Ani mal and two classes Dog and Cat which extend

Ani mal . For each non-abstract class we create a separate database table and declare the
inheritance in OJB.

Now it is possible to do a query like give me all animals. To make this working in OJB the
ID's of Dog and Cat objects must be unique across the tables of both classes or else you may
not get availd query result.

The reason for this behaviour istheor g. apache. oj b. br oker . I denti ty class
implementation (more detail s see javadoc/source of this class).

How could | prevent auto-build of the sequence-name?

All shipped SequenceManager implementations which using sequence names for UID
generation, support by default auto-build (autoNaming) of the sequence name if none was
foundinthef i el d- descri ptor.

To prevent this, all relevant SM implementations support aaut oNam ng property - set via
attri but e element. If set f al se OJB doesn't try to build sequence names automatic.

<sequence- manager

cl assNane="or g. apache. oj b. broker. util. sequence. SequenceManager Next Val | npl " >
<attribute attribute-name="autoNani ng" attribute-val ue="fal se"/>

</ sequence- manager >

Keep in mind that user defined sequence names have to be extent-aware.

Sequence manager handling using multiple databases

If you use multiple databases you have to declare a sequence manager in each

j dbc- connecti on-descri ptor. If you don't specify a sequence manager OJB use a
default one (currently

oj b. broker. util.sequence. SequenceManager H ghLow npl).

One sequence manager with multiple databases?

0OJB was intended to use a sequence manager per database. But it shouldn't be complicated to
realize a global sequence manager solution by writing your own SequenceManager
implementation.

Can | get direct access to the sequence manager ?

That's no problem:

Page 251

0JB

Per si st enceBr oker broker =
Per si st enceBr oker Fact ory. cr eat ePer si st enceBr oker (nyPBKey) ;
SequenceManager sm = broker. servi ceSequenceManager () ;

b}bker.close();

If you useaut oi ncrenent =trueinyourfi el d-descri ptor,thereisno reasonto
obtain UID directly from the sequence manager or to handle UID in your object model.
Except when using user-defined sequence manager implementations, in this case it could be
needed.

Don't use SequenceM anagerFactory#getSequenceM anager(PersistenceBroker broker), this method returns a new sequence
manager instance for the given broker instance and not the current used SM instance of the given PersistenceBroker instance]

Any known pitfalls?

» When using sequences based sequence manager implementationsit's possible to enable
auto-generation of sequence names - see autoNaming section. To build the sequence
name an simple agorithm was used.

The algorithm try to get the top-level class of the field's (the autoincrement
field-descriptor) enclosing class, if no top-level class was found, the table name of the
field's enclosing class was used. If atop-level class was found, the first found extent class
table name was used as sequence name. The algorithm can be found in

or g. apache. oj b. broker . util. sequence. SequenceManager Hel per #bui | dSequenc
When using base classes/interfaces with extent classes (declared in the class-descriptor)
based on different database tables and the extent-class entries in repository often change
(e.g. add new top-level class, change top-level class), the algorithm could be corrupted
after restart of OJB, because the first found extent class's table name could be change,
hence the used sequence-name. Now the ID generation start over and could clash with
existing ID's.

To avoid this, remove the implementation specific internal sequence name entry (e.g.
from table OJB_HL_SEQ when using the Hi/L o implementation, or remove the database
sequence entry when using the 'Nextval' implementation) or use custom sequence name
attributes in the field descriptor.

4.5.16. OJB logging configuration

4.5.16.1. Loggingin OJB

For generating log messages, OJB provides its own, simplistic logging component
PoorMansl oggerlmpl, but is aso able to use the two most common Javalogging libraries,

Page 252

0oJB

commons-logaging (which is actually awrapper around several logging components) and
Log4j. In addition, it is also possible to define your own logging implementation.

Per default, OJB uses its own PoorM ansl oggerlmpl which does not require configuration
and printsto st dout .

4.5.16.2. Logging configuration within OJB

How and when OJB deter mines what kind of logging to use

Logging is the first component of OJB that isinitialized. If you access any component of
0OJB, logging will beinitialized first before that component is doing anything else. Therefore,
you'll have to provide for the configuration of logging before you access OJB in your
program (thisis mostly relevant if you plan to initialize OJB at runtime as is described
below). Please note that logging configuration is independent of the configuration of other
parts of OJB, namely the runtime (via OJB.properties) and the database/repository (via
repository.xml).

These are the individual steps OJB performsin order to initialize the logging component:

1. First, OJB checks whether the system property
or g. apache. oj b. broker. util .| oggi ng. Logger. cl ass isset. If specified,
this property gives the fully qualified class name of the logger class (a class
implementing the Logger interface). Along with this property, another property is then
read which may specify a propertiesfile for thislogger class,
or g. apache. oj b. broker. util .l oggi ng. Logger. confi gFil e.

2. If thisproperty is not set, then OJB triesto read thefile QJB- | oggi ng. properti es.
The name and path of this file can be changed by setting the runtime property of the same
name. See below for the contents of thisfile.

3. For backwards compatibility, OJB next tries to read the logging settings from the file
OJB.properties which is the normal runtime configuration file of OJB. Again, the name
and path of thisfile can be changed by setting the runtime property of the same name.
Thisfile may contain the same entriesasthe QI B- | oggi ng. properti es file

4. |If thethe QJB. pr operti es file does not contain logging settings, next it is checked
whether the commons-logging log property or g. apache. commons. | oggi ng. Log
or the commons-logging log factory system property
or g. apache. cormons. | oggi ng. LogFact ory isset. If that's the case, OJB will
use commons-logging for its logging purposes.

5. Next, OJB checks for the presence of the Log4j propertiesfilel og4j . properti es. If
itisfound, the OJB uses Log4j directley (without commons-logging).

6. Finally, OJB triesto find the commons-logging propertiesfile
comons- | oggi ng. properti es which when found directs OJB to use

Page 253

0JB

commons-logging for its logging.

7. 1f none of the aboveistrue, or if the specified logger class could not be found or
initialized, then OJB defaultsto its Poor MansLogger | npl logger which ssimply logs
tost dout .

The only OJB component whose logging is not initialized this way, is the boot logger which
is used by logging component itself and afew other core components. It will (for obvious
reasons) always use PoorMansL oggerlmpl and therefore log to st dout . You can define the
log level of the boot logger viathe QJB. boot LogLevel system property. Per default,
WARN isused.

Configuration of logging for theindividual components

Regardless of the logging implementation that is used by OJB, the configuration is generaly
similar. Theindividual logging implementations mainly differ in the syntax and in the
configuration of the format of the output and of the output target (where to log to). See below
for specific details and examples.

In general, you specify adefault log level and for every component (usually aclass) that
should log differently, the amount and level of detail that is logged about that component.
These are the levels:

DEBUG

Messages that express what OJB is currently doing. This is the most detailed
debugging level

INFO

Informational messages

WARN

Warnings that may denote potentional problems (this is the default level)
ERROR

As the name says, this level is for errors which means that some action could not
be completed successfully

FATAL

Fatal errors which usually prevent an application from continuing

Thelevels DEBUG and INFO usually result in alot of log messages which will reduce the
performance of the application. Therefore these levels should only be used when necessary.

There are two special loggers to be aware of. The boot logger isthe logger used by the
logging component itself as well as afew other core components. It will therefore always use
the PoorM ansL oggerlmpl logging implementation. Y ou can configure itslogging level via
the QJB. boot LogLevel system property.

The default logger isdenoted inthe QJB- | oggi ng. pr operti es file by the keyword
DEFAULT instead of the class name. It is used by components that don't require their own

Page 254

0oJB

logging configuration (usually because they are rather small components).
4.5.16.3. Logging configuration via configuration files

0JB-logging.properties
Thisfile usually specifies which logging implementation to use using the

or g. apache. oj b. broker. util .| oggi ng. Logger. cl ass property, and which
propertiesfile thislogger has (if any) using the
org. apache. oj b. broker. util .| oggi ng. Logger. confi gFi | e property. You

should also use thisfile to specify log levels for OJB's componentsif you're not using Logé4j
or commons-logging (which have their own configuration files).

A typical QJB- | oggi ng. properti es filelookslikethis:

Whi ch | ogger to use
org. apache. oj b. broker. util .| oggi ng. Logger . cl ass=or g. apache. oj b. broker. util .| oggi ng. Poor

Configuration file of the |ogger
#or g. apache. oj b. broker. util .| oggi ng. Logger. confi gFi |l e=

d obal default log |evel used for all logging entities if not specified
ROOT. LogLevel =ERROR

The log |l evel of the default | ogger
DEFAULT. LogLevel =WARN

Logger for PersistenceBrokerlnmpl class
or g. apache. oj b. br oker. cor e. Persi st enceBr oker | npl . LogLevel =WARN

Logger for RepositoryXm Handl er, useful for debuggi ng parsing of

repository. xm!
or g. apache. oj b. br oker . net adat a. Reposi t or yXnl Handl er . LogLevel =WARN

commons-logging.properties

Thisfileisused by commons-logging. For details on its structure see here.

An example comons- | oggi ng. properti es filewould be:

Use Log4j
or g. apache. commons. | oggi ng. Log=or g. apache. conmons. | oggi ng. i npl . Log4JLogger

Configuration file of the |og
| og4j . confi guration=l og4j.properties

Since commons-logging provides the same function as the logging component of OJB, it will likely be used as OJB's logging
component in the near future.

Page 255

0JB

log4j .properties

The commons-logging configuration file. Details can be found here.

A samplelog4j configurationiis:

Root |ogging level is WARN, and we're using two | ogging targets
| og4j . r oot Cat egor y=\WARN, Al, A2

Al is set to be Consol eAppender sending its output to System out
| og4j . appender. Al=or g. apache. | og4j . Consol eAppender

Al uses PatternLayout
| og4j . appender . Al. | ayout =or g. apache. | og4j . Patt er nLayout
| og4j . appender. Al. | ayout . ConversionPattern=%5r %5p [%] %{2} - %Pn

Appender A2 wites to the file "org.apache. oj b. | og"
| og4) . appender. A2=or g. apache. | og4j . Fi | eAppender
| og4j . appender. A2. Fi | e=or g. apache. oj b. | og

Truncate the log file if it al eady exists.
| og4j . appender. A2. Append=f al se

A2 uses the PatternLayout.
| og4j . appender . A2. | ayout =or g. apache. | og4j . Pat t er nLayout
| og4j . appender. A2. | ayout . ConversionPattern=%5r %5p [%] %{2} - %Pm

Special |ogging directives for individual conmponents

| og4j . | ogger . org. apache. oj b. br oker . net adat a. Reposi t or yXn Handl er =DEBUG
| og4) . | ogger. org. apache. o] b. br oker. accessl ayer . Connect i onManager =l NFO
| og4j . | ogger . or g. apache. oj b. odmg=I NFO

Whereto put the configuration files

OJB and the different logging implementations usually look up their configuration filesin the
classpath. So for instance, OJB searches for the QJB- | oggi ng. pr operti es filedirectly
in any of the entries of the classpath, directories and jar files. If the classpath contains in that
order some- | i brary.jar,db-ojb.jar,and.,thenitwill first search in the two jars
(which themselves contain a directory structure in which OJB will search only in the root),
and lastly in the current directory (which only happensif . is part of the classpath) but not in
sub directories of it.

For applications, this classpath can easily be set either as an environment variable
CLASSPATH or by using the commandline switch - cl asspat h when invoking the java
executable.

For web applications however, the server will define the classpath. There are specific folders
in the webapp structure that are always part of the webapp's classpath. The one that is

Page 256

0oJB

normally used to store configuration files, isthe cl asses folder:

[fol der contai ni ng webapps]\

nmywebapp\
V\EB- | NF\

['i b\
cl asses\ <-- Put your configuration files here

4.5.16.4. L ogging configuration at runtime

Sometimes you want to configure OJB completely at runtime (within your program). How to
do that for logging depends on the used logging implementation, but you can usually
configure them via system properties. The only thing to keep in mind is that logging in OJB
isinitialized as soon as you use one of its components, so you'll have to define the properties
prior to using any OJB parts.

With system properties (which are accessible viaSyst em get Property() fromwithina
Java program) you can aways define the following OJB logging settings:

or g. apache. oj b. broker . util .l oggi ng. Logger. cl ass
Which logger OJB shall use
org. apache. oj b. broker. util .| oggi ng. Logger.configFile

The config file of the logger
QJB- 1 oggi ng. properties
The path to the logging properties file, default is QJB- | oggi ng. properti es
QJB. properties
The path to the OJB properties file (which may contain logging settings), default
is QJB. properties
or g. apache. commons. | oggi ng. Log
Use commons-logging with the specified log implementation
or g. apache. commons. | oggi ng. LogFact ory
Use commons-logging with the specified log factory
| og4j . configuration
When using Log4j directly or via commons-logging, this is the Log4j configuration
file (defaultis | og4j . properti es)
In addition, all Log4j properties (e.g. | og4j . r oot Cat egor y) can be specified as system
properties.

4.5.16.5. Defining your own logger

It israther easy to use your own logger. All you need to do isto provide a class that
implements the interface Logger. Besides the actual log methods (debug, i nfo, warn,
error, fatal)thisinterface definesamethod voi d

Page 257

0JB

confi gure(Confi guration) whichisused toinitialize the logger with the logging
properties (as contained in QJB- | oggi ng. properties).

Because commons-logging performs asimilar function to the OJB logging component, it is likely that it will be used as such in
the near future. Therefore you're encouraged to also implement the Log interface which is nearly the same as the L ogger
interface.

4.5.17. Locking

45.17.1. Introduction

Lock management is needed to synchronize concurrent access to objects from multiple
transactions (possibly in clustered environments).

An example:

Assume there are two transactionst x1 and t x2 running. Thefirst transaction t x1 modify
object A and perform an update. At the same time transaction t x2 modify an object A" with
the same identity oi dA, so both objects represent the same row in DB table and both operate
on the "same" row at the same time, thus the state of object with identity oi dAis
inconsistent.

Assume that t x1 was committed, now the modified object A' int x2 based on outdated
data (state before A changed). If now t x2 commits object A" the changesof t x1 will be
overwritten with the "illegal” object A" .

The OJB lock manager is responsible for detecting such a conflict and e.g. doesn't allow t x 2
to read or modify objects with identity oi dA aslong ast x1 commit or rollback (pessimistic
locking).

In other words, if in arunning transaction an object in awith identity oi dA has awrite lock,
the lock manager doesn't allow other transactions to acquire aread or write lock on the same
identity oi dA objects (for the sake of completeness: dependent on the used locking isolation
level).

OJB supports two kind of locking strategies:

e optimistic locking
e pessimistic locking

OJB provide an pluggable low-level locking-api (located in

or g. apache. oj b. br oker . | ocki ng) for pessimistic locking, which can be used by
the top-level api'slike ODMG. The PB-api itself does not support pessimistic locking out of
the box.

Page 258

0oJB

The base classes of the locking-api can be found in
or g. apache. oj b. br oker . | ocki ng and the entry point is class LockM anager.

Object locking helps to guarantee data consistency without the need of database locks.
During a transaction objects can be locked without the use a database connection, e.g the
ODMG implementation lookup a database connection not until the transaction commit was
called. If database locks are used, a connection is needed during the whole transaction.

4.5.17.2. Optimistic Locking

To control concurrent access to objects optimistic locking uses aversion field on each
persistent object.

Optimistic locking is supported by al API's (PB-api, ODMG-api, JDO when it's done).

Optimistic locking use an additional field/column for each persistent-object/table (Long,
Integer or Timestamp) which isincremented each time changes are committed to the object,
and is utilizied to determine whether an optimistic transaction should succeed or fail.
Optimistic locking is fast, because it checks data integrity only at update time.

1. Inyour table you need a dedicated column of type Bl G NT, | NTEGER or TI MESTAMP.
Say the column istyped as | NTEGER and named VERSI ON_MAI NTAI NED_BY_QJB.

2. Youthen need a (possibly private) attribute in your java class corresponding to the
column. Say the attribute is defined as:

private int versionMi ntai nedByQ b;

3. inrepository.xml you need afield-descriptor for this attribute. This field-descriptor must
specify attribute| ocki ng="t r ue"

4. Theresulting field-descriptor will look as follows:

<fi el d-descri pt or
nanme="ver si onMai nt ai nedByQ b"
col umm="VERSI ON_MAI NTAI NED_BY_QJB"
j dbc-type="1 NTEGER'
| ocki ng="true"
/>

Using of TIMESTAMP as optimistic locking field could cause problems, because dependent of the used operating system and
database the precision of timestamp values differ (e.g. new value only after 10 ms or 1000 ms). In high concurrency
applications this will cause problems.

4.5.17.3. Pessimistic-L ocking

To control concurrent access to objects pessimistic locking uses shared and exclusive locks

Page 259

0JB

on persistent object (more precisely, on the identity object of the persistent object).
Pessimistic locking is currently used by the ODM G-api implementation. The PB-api does not
support PL out of the box.

Supported I solation Levels

The OJB locking package supports four different isolation level.

read-uncommitted
read-committed
repeatable-read
seridizable

(none)
(optimistic)

The object locking isolation levels can be ssmply characterized as follows:

Uncommitted Reads

Obtaining two concurrent write locks on a given object is not allowed (case 14). Obtaining
read locksis allowed even if another transaction iswriting to that object (case 13). (Thats
why thislevel isalso caled dirty reads, because you can read lock objects with an existing
write lock).

Committed Reads
Obtaining two concurrent write locks on a given object is not allowed. Obtaining read locks
isallowed only if there is no write lock on the given object (case 13).

Repeatable Reads
Same as commited reads, but obtaining awrite lock on an object that has been locked for
reading by another transaction is not allowed (case 7).

Serializable transactions
As Repeatable Reads, but it is even not allowed to have multiple read locks on a given object
(case 6).

The isolation level none and optimistic are self-explanatory:

none - don't lock objects associated with thisisolation level

optimistic - don't lock objects associated with thisisolation level, because optimistic locking
was used instead.

Thus the lock manager will ignore all objects associated with these isolation level.

It's not needed to declare the optimistic isolation level in al persistent objects class-descriptor using thisisolation level,
because OJB will automatically detect an enabled optimistic locking and will bypass pessimistic locking.
Only the proper settings for optimistic locking are mandatory.

Page 260

0oJB

The locking isolation levels named similar to the database transaction isolation level, but the definitions are different from it,
S0 take care when comparing database transaction isolation level with object locking isolation level.

The proper behaviour of the different locking isolation level is checked by JUnit TestCases
that implement test methods for each of the 17 cases specified in the above table. (See code
for classesin package or g. apache. oj b. br oker . | ocki ng in OJB test suite).

The semantics of the strategies are defined by the following table:

Case Name of Transaction Transaction-Isolationlevel
TestCase
Tx1 Tx2 ReadUncomReaeCommiRegeatableBeaddizable
1 SingleReadldek True True True True
18 ReadThenRdad True True True True
R
2 UpgradeReaRlock True True True True
U
3 ReadThenWke True True True True
w
4 SingleWritelagk True True True True
5 WriteThenRaad True True True True
R
6 MultipleReadfck R True True True False
7 UpgradeWitHExistingReadler True True False False
8 WriteWithExiRtingReader W True True False False
9 UpgradeWitiRultipleReadrers True True False False

Page 261

10

11

12

13

14

15

16

17

U

WriteWithMuRipleReaderdR

UpgradeWithHRultipleReadRersOnl

w

WriteWithMuRipleReadersonl

W

w

ReadWithExMtingWriter R

MultipleWritelgcks

ReleaseRead.ock

Rel
ReleaseUpgtadeLock

Rel
ReleaseWrité\/ock

Rel
Acquire R
ReadLock
Acquire W
WriteLock
Upgrade U
Lock

Release Rel
Lock

w

True

True

True

True

False

True

True

True

True

True

True

False

False

True

True

True

False

False

False

False

False

True

True

True

0JB

False

False

False

False

False

True

True

True

The tableisto be read asfollows. The acquisition of asingle read lock on a given object

Page 262

0oJB

(case l) isalowed (returns True) for all isolationlevels. To upgrade a single read lock (case
2) isalso allowed for dl isolationlevels. If thereis aready awrite lock on a given object for
tx1, itisnot allowed (returns False) to obtain awrite lock from tx2 for al isolationlevels
(case 14).

If the low-level locking api was used by hand:

Not all LockManager implementation support the LockManager #upgr ade(. . .) method (e.g. upgrade was delegated to
write lock) or behavior of this method is a wee bit other than shown above. More detail see javadoc comment of the used
LockManager implementation.

How to specify locking isolation level

The locking isolation level can be specified global or per class.

The global setting is done in the descriptor-repository element:

<descriptor-repository version="1.0" isolation-I|evel ="read-uncomitted"
proxy-prefetching-Iimt="50">

</ descri pt or - repository>

Theisolation level of aclass can be configured with the following attribute to a
class-descriptor:

<Cl assDescriptor isolation-Ilevel ="read-uncomtted" ...>

</ O assDescr i pt or >

If no isolation-level was specified a default isolation level was used - see interface
|solationLevels. The semantics of isolation levels are described in isolation level section.

Specify the LockManager | mplementation

To specify the used lock manager implementation set the LockManager Class property in
OJB.propertiesfile. By default an in memory lock manager is enabled.

LockManager Cl ass=or g. apache. oj b. br oker . | ocki ng. LockManager | nMenor y| npl

TheLockManager Implementations
Below all LockManager implementations shipped with OJB are listed.

The LockManager implementation can optionally support

Page 263

0JB

« lock timeout: The locked objects of an owner will be released after a specified time

» block timeout: The maximal time to wait for acquire alock (e.g. when an object was
locked by another thread). Implementations which do not support this feature are called
non-blocking

L ockM anager InM emoryl mpl

A non-blocking, single VM, in-memory LockManager implementation. All
LockManager . upgr adeLock(.. .) calsaredelegated to write locks. It'sasimple and
fast implementation.

The timeout of locks is supported. The block timeout isignored, because it's non-blocking.

L ockM anager Commonsl mpl

This implementation use the locking part of apache's commons-transaction api. The timeout
of locksis currently (OJB 1.0.2) not supported, maybe in further versions. This
implementation supports blocking (with deadlock detection) and non-blocking of acquired
locks.

L ockM anager Remotel mpl

Supports locking in distributed environments based on a servlet. The

LockManager Remotel mpl class delegates all locking calls to aremote servlet
(LockManager Ser vl et). The URL to contact the servlet have to be set in OJB.properties
file using the LockServietUr| property, e.g.

LockServletUrl =http://127.0.0. 1: 8080/ oj b-1 ockser ver

To make deployment of the LockManager Ser vl et on aservlet container easier an Ant
target lockserviet-war exist, which will build an example .war file containing all needed files
(maybe some useless files) for deployment.

The generated web. xnl filelook like:

<! DOCTYPE web- app
PUBLIC "-//Sun M crosystenms, Inc.//DTD Wb Application 2.3//EN'
"http://java. sun. coni dt d/ web-app_2_3. dtd" >

<web- app>
<di spl ay- name>QIB ODM5 Lock Server </ di spl ay- nane>
<descri pti on>
QIB ODMG Lock Server
</ descri ption>

<servl| et >

Page 264

0oJB

<servl et - nane>| ockserver </ servl et - name>
<servl et - cl ass>or g. apache. oj b. br oker . | ocki ng. LockManager Ser vl et </ servl et -cl ass>
<init-paranp
<par am nane>|l ockManager </ par am nane>
<par am val ue>or g. apache. oj b. br oker . | ocki ng. LockManager | nMenor yl npl </ par am val ue>
</init-paranp
<init-paranp
<par am nanme>| ockTi neout </ par am nanme>
<par am val ue>80000</ par am val ue>
</init-paranpr
<init-paranp
<par am nane>bl ockTi meout </ par am nanme>
<par am val ue>1000</ par am val ue>
</init-paranp

<! --| oad-on-startup>1</I| oad-on-startup-->
</servlet>

<!-- The mapping for the webdav serviet -->
<servl et - mappi ng>
<servl et - nane>| ockserver </ servl et - name>
<url-pattern>/</url-pattern>
</ servl et - mappi ng>

<l-- Establish the default list of welcone files -->
<wel come-file-list>
<wel cone-fil e>i ndex. j sp</wel cone-fil e>
<wel come-fil e>i ndex. ht M </ wel cone-fil e>
<wel come-fil e>i ndex. ht nk/ wel conme-fil e>
</wel come-file-list>
</ web- app>
It's possible to use each LockManager implementation as backend of the lock manager
servlet - only adapt the lockManager init-param entry in theweb. xmi file.

4.5.17.4. ODM G-api L ocking

The OJB ODMG implementation provides object level transactions as specified by the
ODMG. Thisincludes features like registering objects to transactions, persistence by
reachability (atoplevel object is registered to atransaction, and also all its associated objects
become registered implicitely) and as a very important aspect: object level locking.

The ODMG locking implementation islocated in or g. apache. oj b. odng. | ocki ng
and base on the OJB kernel locking codeinor g. apache. oj b. br oker . | ocki ng. The
odmg implementation use it's own internal locking interface

or g. apache. oj b. odng. | ocki ng. LockManager with specific methods to handle
transactions as owner of alock and persistent object Identity objects as resourcesto lock..

What it does

Page 265

0JB

The ODMG-Api alows transactions to lock an object obj asfollows:

org. odng. Transacti on. | ock(Obj ect obj, int |ockMde)
where lockM ode defines the locking modes:

or g. odng. Tr ansact i on. READ
or g. odng. Tr ansact i on. UPGRADE
org. odng. Transacti on. WRI TE

A sample session could look as follows:

/1 get odng facade instance
| npl enentation odng = ...

/1 get open dat abase
Dat abase db = ...

/] start a transaction
Transaction tx = odng. newlransacti on();
t x. begi n();

MyCl ass myCbject = ...

/1 lock object for wite access
tx. 1 ock(myQbj ect, Transaction.\WRl TE);

/1 now performwite access on nyQhj ect

/1 finally comrit transaction to make changes to nyCbj ect persistent
tx.commt();

The ODMG specification does not say if locks must be acquired explicitely by client
applications or may be acquired implicitely. OJB provides implicit locking for the
application programmers convenience: On commit of atransaction all read-locked objects
are checked for modifications. If amodification is detected, awrite lock is acquired for the
respective object. If automatic acquisition of read- or write-lock failes, the transaction is
aborted.

On locking an object to a transaction, OJB automatically locks all associated objects (as part
of the persistence by reachability feature) with the same locking level. If application use
large object nets which are shared among several transactions acquisition of write-locks may
be very difficult. Thus OJB can be configured to aguire only read-locks for associated
objects.

Y ou can change this behaviour by modifying the file OJB.properties and changing the entry
LockAssoci ati ons=WRI TEto LockAssoci at i ons=READ.

The ODMG specification does not prescribe transaction isolation levels or locking strategies
to be used. Thusthere are no API calls for setting isolation levels. OJB provides four

Page 266

0oJB

different isolation |levels that can be configured global or for each persistent classin the
configuration files.

4.5.17.5. Locking in distributed environment

In distributed or clustered environments the object level locking (pessimistic locking) haveto
be consistent over several VM. The optimistic |ocking works in clustered/distributed
environments without any modifications.

Currently OJB was shipped was simple servlet based L ockManager implementation called
L ockM anagerRemotel mpl.

Hereis adescription how to use it:

1. Change LockManager Class entry in OJB.properties file to the remote implementation:
or g. apache. oj b. br oker . | ocki ng. LockManager Renot el npl and the
LockSer vl et Ur | to the servelt engine where the lock-server serviet will be deployed:

LockManager Cl ass=or g. apache. oj b. br oker . | ocki ng. LockManager Renot el npl
LockSer vl et Ur | =ht t p://127.0.0.1: 8080/ 0j b-1 ockserver

2.Runtheant | ockservl et -war target to generate the lock-server serviet . war
application file. The generated file will be found in[db- oj b] / di st .

3. Check that all needed libraries be copied in lockserviet-war file.

This implementation has some drawbacks, e.g. it uses one servlet node to deploy the
LockMap servlet.

A much better solution will be a JMS- or JavaGroups-based L ockManager implementation
(hope we can start working on such aimplementation some day).

4.5.17.6. Pluggin own locking classes

OJB was shipped with several locking classes implementations.

This may not be viable in some environments. Thus OJB allowsto plug in user defined
L ockManager implementations.

To specify specific implementations change the following entry in the OJB.properties
configuration file:

LockManager Cl ass=mny. oj b. LockManager Myl npl

Of course we are interested in your solutions! If you have implemented something interesting, just contact us.

Page 267

0JB

45.18. XDoclet OJB module documentation

4.5.18.1. Acquiring and building

The XDoclet OJB moduleis part of OJB source. As such, the source of the moduleis part of
the OJB source tree and can be found in directory src/xdoclet. Likewise, binary versions of
the module and the required libraries (xjavadoc, xdoclet) are to be found in the lib folder.

In order to build the XDoclet OJB module from source, you'll need a source distribution of
XDoclet version 1.2, either a source distribution from the sourceforge download site or a
CV S checkout/drop. See the XDoclet website at http://xdoclet.sourceforge.net/install.html for
details.

Building with a XDoclet source distribution

Unpack the source distribution of XDoclet which is contained in afile
xdocl et - src- <ver si on>. <ar chi ve- f or mat > somewhere. If you unpacked it
side-by-side of OJB, you'll get adirectory layout similar to:

\ xdoclet-1.2
\config
\core
\lib

\db-0jb
\ bi n
\contrib

The XDoclet OJB module isthen build using the bui | d- xdocl et - nodul e. xm ant
script:

ant -Dxdoclet.src.dir=../xdoclet-1.2 -f build-xdocl et-nodul e. xm

The build process will take some time, and after successful compilation the three jars

Xj avadoc- <ver si on>. j ar,xdocl et - <versi on>. j ar, and

xdocl et - o] b- nodul e- <ver si on>. j ar are copied to thelibrary directory of OJB.

Building with a XDoclet CV'S checkout
When checking out from CVS (the xdocl et - al | target), you'll get adirectory like:

\ xdocl et - al |
\ xdocl et
\config
\core

Page 268

0oJB

\ xdocl et gui

\ xj avadoc
\db-0jb

\ bin

\contrib

Building is XDoclet OJB module is performed by calling:

ant -Dxdoclet.src.dir=../xdoclet-all/xdoclet -f build-xdoclet-nodul e. xni
Since thisis the default structure assumed by the build script, this can be shortend to:

ant -f buil d-xdocl et - nodul e. xm

Other build options

The build script for the XDoclet OJB module uses the OJB build properties so the following
line added to the bui | d. pr operti es filein the OJB root directory allows to omit the
- Dxdocl et . src. di r =<xdocl et src di r>commandline option:

xdocl et.src. di r=<xdocl et src dir>

45.18.2. Usage

Using the XDoclet OJB module is rather easy. Put the module jar along with the xdoclet and
Xjavadc jarsin a place where ant will find it, and then invoke it in your build file like:

<target name="repository-files">
<t askdef name="oj bdocl et"
cl assnane="xdocl et . modul es. oj b. g bDocl et Task"
cl asspat href =" bui | d- cl asspat h" >
<o0j bdocl et destdir="./build">
<fileset dir="./src"/>
<0j breposi tory destinationFil e="repository_user.xm"/>
<t orqueschema dat abaseNane="t est"
destinati onFi |l e="proj ect-schema. xm "/ >
</ oj bdocl et >
</target>

The XDoclet OJB module has two sub tasks, o] br eposi t ory andt or queschens,
which generate the OJB repository part containing the user descriptors and the torque table
schema, respectively. Please note that the XDoclet OJB module (like all xdoclet tasks)
expects the directory structure of its input java source files to match their package structure.
Inthisregard it issimilar to thej avac ant task.

Dueto abug in XDoclet, you should not call the oj bdocl et task more than oncein the
samet askdef scope. So, each o] bdocl et call should bein its own target with aleading
t askdef .

Page 269

0JB

The main oj bdocl et task hastwo attributes:

destdir
The destination directory where generated files will be placed.
checks : none | basic | strict (default)
The amount of the checks performed. Per default, st ri ct checks are performed
which means that for instance classes specified in an attribute (e.g.
col | ection-cl ass, row r eader etc.) are loaded from the classpath and
checked. So in this mode it is necessary to have OJB as well as the processed
classes on the classpath (using the cl asspat hr ef attribute of the t askdef ant
task above). If this is for some reason not possible, then use basi ¢ which
performs most of the checks but does not load classes from the classpath. none
does not perform any checks so use it with care and only if really necessary (in
this case it would be helpful if you would post the problem to the ojb-user mailing
list).

The oj br eposi t ory subtask has the following attributes:

destinationFile

Specifies the output file. The defaultis r eposi tory_user. xnl .
verbose : true | false (default)

Whether the task should output some information about its progress.

Thet or queschema subtask has these attributes:

databaseName

This attribute gives the name of the database for torque (required).
destinationFile

The output file, default is pr oj ect - schema. xni .

dtdUrl

Allows to specify the url of the torque dtd. This is necessary e.g. for XML parsers
that have problems with the default dtd url
(http://jakarta.apache.org/turbine/dtd/database.dtd), or when using a newer
version of torque.

generateForeignkeys : true (default) | false

Whether foreignkey tags are generated in the torque database schema.
verbose : true | false (default)

Whether the task outputs some progress information.

Thecl asspat hr ef attribute in the taskdef can be used to define the classpath for xdoclet
(containing the xdoclet and ojb module jars), e.g. via:

<pat h i d="buil d-cl asspat h">
<fileset dir="lib">

Page 270

0oJB

<i nclude name="**/*_jar"/>
</fileset>
</ pat h>

Using the generated torque schemais a bit more tricky. The easiest way isto use the

bui | d-t or que. xm script whichis part of OJB. Include the lib subdirectory of the OJB

distribution which also includestorque (e.g. in bui | d- cl asspat h as shown above). You
will also want to use your OJB settings (if you're using the gjb-blank project, then only

bui | d. properti es), soinclude them at the beginning of the build script if they are not

aready there:

<property file="build.properties"/>
Now you can create the database with ant calls similar to these:

<target name="init-db" depends="repository-files">
<l-- Torque's build file -->
<property nane="tor que. bui |l dFi | "
val ue="bui |l d-torque. xm "/ >

<l-- The name of the database which we're taking fromthe profile -->
<property name="torque. project"
val ue="${dat abaseNane}"/ >

<l-- Were the schemas (your project and, if required, ojb's interna
tabl es) are -->
<property nane="tor que. schema. di r"
val ue="src/ schema"/ >

<l-- Build directory of Torque -->
<property nane="tor que. output.dir"”
val ue="bui |l d"/>

<l-- Torque will put the generated sqgl here -->
<property name="torque.sqgl.dir"
val ue="${torque. output.dir}"/>

<l-- Torque shall use the classpath (to find the jdbc driver etc.) -->
<property nane="tor que. used asspat h"
val ue="true"/>

<l-- Wiich jdbc driver to use (again fromthe profile) -->
<property nane="tor que. dat abase. dri ver"
val ue="${j dbcRunti neDriver}"/>

<l-- The url used to build the database; note that this my be
di fferent
fromthe url to access the database (e.g. for MWSQ) -->
<property nane="t or que. dat abase. bui | dUr | "
val ue="${url Prot ocol }: ${url Subprotocol }: ${url Dbal i as}"/ >

Page 271

0JB

<I-- Now we're generating the database sql -->
<ant dir="."
antfile="${torque. bui |l dFi |l e}"
target="sqgl ">
</ ant >
<I-- Next we create the database -->
<ant dir="."
antfile="${torque. buildFile}"
target="create-db">
</ ant >
<!-- And the tables -->
<ant dir="."
antfile="${torque. buildFile}"
target="insert-sql">
</ ant >
</target>
Asyou can see, the mgjor problem of using Torque is to correctly setup Torque's build

properties.

One important thing to note here is that the latter two calls modify the database and in the
process remove any existing data, so use them with care. Similar to the above targets, you
can use the additional targets dat adunp for storing the data currently in the databasein an
XML file, and dat asql for inserting the datafrom an XML fileinto the database.

Also, these steps are only valid for the torque that is delivered with OJB, but probably not for
newer or older versions.

4.5.18.3. Tag reference

Interfaces and Classes
ojb.class
ojb.extent-class
ojb.modify-inherited
ojb.object-cache
ojb.index
ojb.delete-procedure
ojb.insert-procedure
ojb.update-procedure
ojb.constant-argument
ojb.runtime-argument
Fields and Bean properties
ojb.field

References

ojb.reference
Collections

ojb.collection

Page 272

0oJB

Nested objects

ojb.nested
ojb.modify-nested

4.5.18.4. Interfaces and Classes

ojb.class

The ojb.class tag marks interfaces and classes that shall be present in the repository
descriptor. Thisincludes types that are used as reference targets or as collection elements, but
for instance not abstract base classes not used elsewhere.

Attributes:

attributes

Optionally contains attributes of the class as a comma-separated list of
name-value pairs.

determine-extents : true (default) | false

When set to t r ue, then the XDoclet OJB module will automatically determine all
extents (ojb-relevant sub types) of this type. If set to f al se, then extents need to
be specified via the gjb.extent-class class tag (see below).

documentation

Optionally contains documentation on the class. If no t abl e- docunent ati on
attribute is specified, then the value is also used for the table documentation in
the database schema.

generate-repository-info : true (default) | false

Setting this to f al se prevents the generation of field/reference/collection
descriptors in the repository XML file, and also automatically enforces
generate-table-info = fal se.

Note that there is one case where the XDoclet module will still generate field
descriptors. If the type is referenced by a reference or collection, then the
corresponding foreign key fields (if 1:n collection) or primary keys (if reference or
m:n collection) will be automatically included in the class descriptor, even if they
are only defined in subtypes.

generate-table-info : true (default) | false

This attribute controls whether the type has an associated table. If setto t r ue, a
torque table descriptor will be created in the database schema. Otherwise, no
table will be in the database schema for this type.

include-inherited : true (default) | false

Determines whether base type fields/references/collections with the appropriate
tags (gjb.field, ojb.reference, ojb.collection) will be included in the descriptor and

Page 273

0JB

table definition of this class. Note that all base type fields/references/collections
with an appropriate tag are included regardless of whether the base types have
the ojb.class tag or not.

table

The name of the table used for this type. Is only used when table info is
generated. If not specified, then the short name of the type is used.
table-documentation

Optionally contains documentation for the table in the database schema.

Thefollowing cl ass-descri pt or attributes are also supported in the ojb.class tag and
will be written directly to the generated class descriptor (see the repository.dtd for their
meaning):

» accept-locks

« factory-class

« factory-method

« initialization-method

« isolation-level

e proxy
e proxy-prefetching-limit
e refresh

e row-reader
Example: (from the unit tests)

/**

* @jb.class generate-tabl e-info="fal se"
*/

public abstract class AbstractArticle inplenents InterfaceArticle,
java.io. Serializable

/**

* @j b.class tabl e="ARTI CLE"
* pr oxy="dynam c"

* i ncl ude-inherited="true"

* docunment ati on="This is inportant docunentation on the Article
class."

*

t abl e- docunent ati on="And this is inmportant documentation on
t he ARTI CLE table."

* attribut es="col or =bl ue, si ze=bi g"

*/

public class Article extends AbstractArticle inplenents InterfaceArticle,
Jjava.io. Serializable

The Abst ract Arti cl e classwill have an class descriptor in the repository file, but no
field, reference or collection descriptors. The Art i cl e class however will not only have

Page 274

0oJB

descriptors for its own fields/references/collections but also for those inherited from
Abstract Arti cl e. Also, itstable definition in the torque file will be called "Artikel", not
"Article". The resulting class descriptors look like:

<cl ass-descri ptor

cl ass="org. apache. oj b. br oker. Abstract Articl e"
>

<extent-class class-ref="org. apache. oj b. broker. Article"/>
</cl ass-descri ptor>

<cl ass-descri ptor

cl ass="org. apache. oj b. br oker. Articl e"

pr oxy="dynam c"

t abl e=" ARTI CLE"
>

<docunent ati on>This is inportant docunentation on the Article
cl ass. </ docunent ati on>

<attribute attribute-name="color" attribute-val ue="bl ue"/>
<attribute attribute-name="size" attribute-val ue="big"/>
</cl ass-descri ptor>

ojb.extent-class

Use the ojb.extent-class to explicitly specify extents (direct persistent sub types) of the
current type. The class-ref attribute contains the fully qualified name of the class. However,
these tags are only evaluated if the deter mine-extents attribute of the gjb.classtagis set to
fal se.

Attributes:

class-ref
The fully qualified name of the sub-class (required).

Example:

/**

* @Djb cl ass determ ne-extents="fal se"

gener ate-t abl e-i nf o="f al se"
* @jb.extent-class class-ref="org.apache. oj b. broker. CdArticle"
*/

public abstract class Abstract CdArticle extends Article inplenents
Java.io. Serializable

which resultsin;

<cl ass-descri ptor
cl ass="org. apache. oj b. br oker. Abstract CdArticl e"

Page 275

0JB

>

<extent-cl ass class-ref="org. apache. oj b. broker. CdArticle"/>
</ cl ass-descri ptor>

ojb.modify-inherited

Allows to modify attributes of inherited fields/references/collections (normally, all attributes
are used without modifications) for thisand al sub types. One special caseisthe
specification of an empty value which leads to areset of the attribute value. As aresult the
default value is used for this attribute.

Attributes: All of gjb.field, ojb.reference, and ojb.collection (with the exception of the
attributes related to indirection tables (indir ection-table, remote-for eignkey,
indirection-table-primarykeys, indir ection-table-documentation,
foreignkey-documentation, remote-for eignkey-documentation), and also:

ignore : true | false (default)

Specifies that this feature will be ignored in this type (but only in the current type,
not in subtypes).

name

The name of the field/reference/collection to modify (required).

Example:

/**
* @jb.class table="Artikel"
* @jb.nmodi fy-inherited name="product G oup”
* proxy="true"
* aut o- updat e="obj ect "
*
/

public class ArticleWthReferenceProxy extends Article
produces the class descriptor

<cl ass-descri ptor
cl ass="org. apache. oj b. broker. Arti cl eWt hRef er encePr oxy"
tabl e="Arti kel "

<ref erence-descri ptor
nane="pr oduct G oup"
cl ass-ref="org. apache. oj b. br oker. Product G oup"
proxy="true"
aut o- updat e="obj ect "

>
<docunmentation>this is the reference to an articles

pr oduct gr oup</ docunent at i on>

<attribute attribute-nane="color" attribute-value="red"/>
<attribute attribute-name="size" attribute-value="tiny"/>
<forei gnkey field-ref="product G oupld"/>

Page 276

0oJB

</reference-descriptor>
</cl ass-descri ptor>

0j b.object-cache

The ojb.object-cache tag allows to specify the ObjectCache implementation that OJB uses
for objects of this class (instead of the one defined in the jdbc connection descriptor or in the
0j b. properti es file). Classes specified with this tag have to implement the

or g. apache. oj b. br oker . cache. Obj ect Cache interface. Note that object cache
specifications are not inherited.

Attributes:

attributes

Optionally contains attributes of the object cache as a comma-separated list of
name-value pairs.

class

The fully qualified name of the object cache class (required).

documentation

Optionally contains documentation on the object cache specification.

Example:

/**
* @jb.class
* @ b obj ect - cache
cI ass="org. apache. oj b. br oker. cache. G)J ect CachePer Br oker | npl "
docunent ati on="Sone i nportant docunentation"”
*/
public class SoneCd ass inplenents Serializable

{

}
and the class descriptor

<cl ass-descri ptor
cl ass="Sonmed ass"
t abl e=" Soned ass"
>
<obj ect - cache
cl ass="org. apache. oj b. br oker . cache. Obj ect CachePer Br oker | npl ">
<docunent ati on>Sone i nmportant docunent ati on</ docunent ati on>
</ obj ect - cache>

</ cl ass-descri pt or >

ojb.index

Page 277

0JB

The ojb.index tag is used to define possibly unique indices for the class. An index consists of
at least one field of the class (either locally defined or inherited, anonymous or explicit).
Thereis an default index (without a name) that is made up by al fields that have the indexed
attribute set to t r ue. All other indices have to be defined viathe ojb.index tag. In contrast
to the indexed attribute, indices defined viathe ojb.index tag are not inherited.

Attributes:

documentation

Optionally contains documentation on the index.

fields

The fields that make up the index separated by commas (required).

name

The name of the index (required). If there are multiple indices with the same
name, then only the first one is used (all others are ignored).

unique : true | false (default)

Whether the index is unique or not.

Example:

/**

* @j b.class table="SITE"

* @) b. i ndex name="NAME_UNI QUE"
* uni que="true"

* fields="nane"
*/
public class Site inplenents Serializable
{
/**

* @jb.field i ndexed="true"
*/

private |Integer nr;

/**

* @jb.field col um="NAMVE"
k3 | engt h="100"
*/

private String nane;

}
the class descriptor

<cl ass-descri ptor
cl ass="org. apache. oj b. odng. shared. Site"
t abl e="SI TE"

<fi el d-descri ptor
name="nr"
col um="nr"

Page 278

0oJB

j dbc-t ype="1 NTEGER"
i ndexed="t rue"

>

</field-descriptor>

<fi el d-descri pt or
name="name"
col um=" NAME"
j dbc-t ype=" VARCHAR'
| engt h="100"

>

</field-descriptor>

<i ndex- descri pt or
name="NAVE_UNI QUE"
uni que="true"
>
<i ndex- col unm nane="NAME"/ >
</i ndex-descri pt or>
</ cl ass-descri ptor>

and the torque table schema

<t abl e name="SI TE" >
<col um nane="nr"
j avaNanme="nr"
t ype="1 NTEGER'
/>
<col um nane=" NANMVE"
j avaName="nane"
t ype=" VARCHAR"

si ze="100"
/>
<i ndex>
<i ndex-col um nane="nr"/>
</i ndex>

<uni que name="NAME_UNI QUE" >
<uni que- col um nane=" NAMVE"/ >
</ uni que>
</t abl e>

0jb.delete-procedure
Declares a database procedure that is used for deleting persistent objects.

Attributes:

arguments

A comma-separated list of the names of constant or runtime arguments specified
in the same class.

attributes

Optionally contains attributes of the procedure as a comma-separated list of

Page 279

0JB

name-value pairs.

documentation

Optionally contains documentation on the procedure.

include-pk-only : true | false (default)

Whether all fields of the class that make up the primary key, shall be passed to
the procedure. If set to t r ue then the arguments value is ignored.

name

The name of the procedure (required).

return-field-ref

Identifies a field of the class that will receive the return value of the procedure.
Use only if the procedure has a return value.

Example:
/ * %
* @jb.class
* @) b. del et e- procedure nane="DELETE_ PRCC"
* argunment s="argl, arg2"
* return-field-ref="attr2"
* docunent ati on="Son® i nmportant docunentation”
* @j b. const ant - argunment name="argl"
* val ue="0"
* @j b. runtime-argunent nanme="arg2"
* field-ref="attr1"
*
/

public class Soned ass

}

[** @jb.field */
private Integer attrl
[** @jb.field */
private String attr2;

leads to the class descriptor

<cl

ass-descri ptor
cl ass="SomeCl ass"
t abl e=" Soned ass"

<fi el d-descri pt or
name="attr1"
colum="attr1"
j dbc-t ype="1 NTEGER"
>
</field-descriptor>
<fi el d-descri pt or
name="attr?2"
col um="attr2"
j dbc-t ype=" VARCHAR'

Page 280

0oJB

| engt h="254"
>

</field-descriptor>

édélete—procedure
nanme=" DELETE PROCC'
return-field-ref="attr?2"

<docunent at i on>Sone i nportant docunentati on</docunentati on>
<const ant - ar gunent
val ue="0"
>
</ const ant - ar gunent >
<runti me- ar gunent
field-ref="attr2"
>

</runti ne-argunent >
</ del et e- pr ocedur e>
</ cl ass-descri ptor>

ojb.insert-procedure
| dentifies the database procedure that shall be used for inserting objects into the database.

Attributes:

arguments

Comma-separated list of names of constant or runtime arguments that are
specified in the same class.

attributes

Contains optional attributes of the procedure in a comma-separated list of
name-value pairs.

documentation

Contains optional documentation on the procedure.

include-all-fields : true | false (default)

Specifies whether all persistent fields of the class shall be passed to the
procedure. If so, then the arguments value is ignored.

name

The name of the procedure (required).

return-field-ref

The persistent field that receives the return value of the procedure (should only
be used if the procedure returns a value).

For an example see constant argument.

ojb.update-procedure

The database procedure that will be used for updating persistent objectsin the database.

Page 281

0JB

Attributes:

arguments

A comma-separated list of names of constant or runtime arguments in the same
class.

attributes

The optional attributes of the procedure in a comma-separated list of name-value
pairs.

documentation

Optional documentation on the procedure.

include-all-fields : true | false (default)

Whether all persistent fields of the class shall be passed to the procedure in
which case the arguments value is ignored.

name

Name of the database procedure (required).

return-field-ref

A persistent field that will receive the return value of the procedure (only to be
used if the procedure returns a value).

For an example see runtime argument.

0j b.constant-ar gument

A constant argument for a database procedure. These arguments are referenced by the
procedure tags in the ar guments attribute via their names.

Attributes:

attributes
Optionally contains attributes of the argument.
documentation
Optionally contains documentation on the argument.
value
The constant value.
name
The identifier of the argument to be used the arguments attribute of a procedure
tag (required).
Example:

*

/

@j b. cl ass

@j b. i nsert-procedure name="I| NSERT PRCC"
argunent s="arg"

*
*
*
*

Page 282

0oJB

* @j b. const ant - ar gunent nane="arg"

* val ue="Sone val ue"

* attri but es="nane=val ue"
*/

public class Soned ass

}
will result in the class descriptor

<cl ass-descri pt or
cl ass="SomeCl ass"
t abl e=" Sonmed ass"

éihsert—procedure
name="1 NSERT PRCC'
>
<const ant - ar gunent
val ue="Sone val ue"
>
<attribute attri bute-nanme="nanme" attribute-val ue="val ue"/>
</ const ant - ar gunent >
</insert-procedure>
</ cl ass-descri ptor>

oj b.runtime-argument

An argument for a database procedure that is backed by a persistent field. Similar to constant
arguments the name isimportant for referencing by the procedure tags in the arguments
attribute.

Attributes:

attributes

Contains optionally attributes of the argument.

documentation

Optionally contains documentation on the argument.

field-ref

The persistent field that delivers the value. If unspecified, then in the procedure
call nul I will be used.

name

Identifier of the argument for using it in the arguments attribute of a procedure
tag (required).

return

If the field receives a value (?).

Example:

Page 283

0JB

/**
* @jb.class
* @j b. updat e- pr ocedur e nanme="UPDATE_PRCC"
* argunent s="arg"
* @j b. runtine-argunment nanme="arg"
* field-ref="attr"
* docunent ati on="Sone documnent ati on”
*/
public class Soned ass
{
[** @jb.field */
private Integer attr;
}

will result in the class descriptor

<cl ass-descri ptor
cl ass="Somed ass"
t abl e=" Somed ass"

<fi el d-descri pt or
name="attr"
colum="attr"
j dbc-t ype="1 NTEGER"

>

</fiel d-descriptor>

%deate-procedure
name=" UPDATE_PRCC"
>

<runti me- ar gunent

val ue="attr"
>

<docunent ati on>Sone docunent ati on</ docunent ati on>
</ runti ne-argunment >
</ updat e- pr ocedur e>
</ cl ass-descri ptor>

4.5.18.5. Fieldsand Bean properties

ojb.field

Fields or accessor methods (i.e. get/is and set methods) for properties are marked with the

0j b.field tag to denote a persistent field. When a method is marked, then the corresponding
bean property is used for naming purposes (e.g. "value" for amethod get Val ue()). The
XDoclet OJB module ensures that afield is not present more than once, therefore it is safe to
mark both fields and their accessors. However, in that case these ojb.field tags are required

Page 284

0oJB

to have the same attributes.

Dueto abug in XDoclet, it is currently not possible to processf i nal ortransi ent
fields.

Marked fields are used for descriptor generation in the same type (if it has an gjb.class tag)
and all sub types with the gjb.class tag having the include-inherited attribute set tot r ue.

It isalso possible to use the oj b.field tag at the classlevel (i.e. in the JavaDoc comment of
the class). In this case, the tag is used to define an anonymous field, e.g. a"field" that has no
counterpart in the class but exists in the database. For anonymous fields, both the name and
the jdbc-type attributes are required, and the access attribute is ignored (it defaults to the
value anonynous). Beside these differences, anonymous fields are handled like other
fields, e.g. they result in field-descriptor entries in the repository descriptor, and in columns
in the table schema, and they are inherited and can be modified via the ojb.modify-inherited

tag.

The XDoclet OJB module orders the fields in the repository descriptor and table schema
according to the following rules:

1. Fields (anonymous and non-anonymous) from base types/nested objects and from the
current file that have an id, sorted by the id value. If fields have the same id, then they are
sorted following the rules for fields without an id.

2. Fields (anonymous and non-anonymous) from base types/nested objects and from the
current file that have no id, in the order they appear starting with the farthest base type.
Per class, the anonymous fields come first, followed by the non-anonymous fields.

Attributes:

access : readonly | readwrite (default)

Specifies the accessibility of the field. r eadonl y marks fields that are not to
modified. r eadwr i t e marks fields that may be read and written to. Anonymous
fields do not have to be marked (i.e. anonynous value) as the position of the
ojb.field tag in the class JavaDoc comment suffices.

attributes

Optionally contains attributes of the field as a comma-separated list of
name-value pairs.

autoincrement : none (default) | ojb | database

Defines whether this field gets its value automatically. If o] b is specified, then
0OJB fills the value using a sequence manager. If the value is dat abase, then
the column is also defined as aut ol ncr enent in the torque schema (i.e. the
database fills the field), and in the repository descriptor, the field is marked as
access='readonl y' (ifitisn'tan anonymous field). The dat abase value is
intended to be used with the

Page 285

0JB

org. apache. oj b. broker. util.sequence. SequenceManager Nat i vel npl
sequence manager. For details, see the Sequence Manager documentation.

The default value is none which means that the field is not automatically filled.
column

The name of the database column for this field. If not given, then the name of the
attribute is used.

column-documentation

Optionally contains documentation on the column in the database schema.
conversion

The name of the class to be used for conversion between the java type of the

field (e.g. j ava. | ang. Bool ean orj ava. uti | . Dat e) and the java type for the
JDBC type (e.g. j ava. | ang. | nt eger orj ava. sql . Dat e). Conversion

classes must implement the

or g. apache. oj b. br oker . accessl ayer. conver si ons. Fi el dConver si on
interface. If no explicit JDBC type is defined and the java type has no defined
conversion (see below), then per default the

or g. apache. oj b. br oker. accessl ayer. conver si ons. Qbj ect 2Byt eArr Fi el dConve
conversion class is used.

Default conversion is also used for the following java types when no jdbc type is
given (default type is used instead), and no conversion is specified:

Java type Default conversion

org. apache. oj b. broker. util.GUJ D or g. apache. oj b. br oker. accessl ayer. conver si ons. GUl

documentation

Optionally contains documentation on the field. If no col unm- docunent ati on
attribute value is specified, then this value is also used for the documentation of
the column in the database schema.

id

An integer specifying the position in the repository descriptor and table schema.
For the placement rules see above.

jdbc-type : BIT | TINYINT | SMALLINT | INTEGER | BIGINT | DOUBLE |
FLOAT | REAL | NUMERIC | DECIMAL | CHAR | VARCHAR |
LONGVARCHAR | DATE | TIME | TIMESTAMP | BINARY | VARBINARY |
LONGVARBINARY | CLOB | BLOB | STRUCT | ARRAY | REF | BOOLEAN |
DATALINK

The JDBC type for the column. The XDoclet OJB module will automatically
determine a jdbc type for the field if none is specified. This means that for
anonymous fields, the jdbc-type attribute is required. The automatic mapping
performed by the XDoclet OJB module from java type to jdbc type is as follows:

Java type JDBC type

Page 286

0oJB

bool ean
byt e
short

i nt

| ong
char

fl oat

doubl e

j ava. | ang.
j ava. |l ang.
j ava. | ang.
j ava. | ang.
j ava. |l ang.
j ava. | ang.
j ava. |l ang.
j ava. | ang.

j ava. | ang.

java. util
j ava. sql .
j ava. sql .
j ava. sq
j ava. sql .
j ava. sq
j ava. sql .

j ava. sq

j ava. mat h. Bi gDeci ma

org. apache. oj b. broker.util.GUJ D

Bool ean
Byt e
Shor t

I nt eger
Long
Char act er
Fl oat
Doubl e
String
.Dat e
Dat e

Ti me

. Ti mest anp

Bl ob

. ob

Ref

. Struct

BIT

TI NYI NT
SMVALLI NT
| NTEGER
Bl G NT
CHAR
REAL
FLOAT
BIT

TI NYI NT
SMVALLI NT
I NTEGER
Bl G NT
CHAR
REAL
FLOAT
VARCHAR
DATE
DATE

TI ME

TI MESTAWP
BLOB
CLOB

REF
STRUCT
DECI MAL
VARCHAR

Page 287

0JB

For any other type (including array types) the default mapping isto LONGVARBI NARY using
the Obj ect 2Byt eAr r Fi el dConver si on conversion (see conver sion attribute above).

length

The length of the column which might be required by the jdbc type in some
databases. This is the reason that for some jdbc types, the XDoclet OJB module
imposes default lengths if no length is specified:

Jdbc type Default length

CHAR 1
VARCHAR 254

name
The name of the field. This attribute is required for anonymous fields, otherwise it
is ignored.

precision

scale

The precision and scale of the column if required by the jdbc type. They are
usually used in combination with the DECI MAL and NUVERI C types, and then
specifiy the number of digits before (precision) and after (scale) the comma
(excluding the plus/minus sign). Due to restrictions in some databases (e.g.
MySQL), the XDoclet OJB module imposes default values for some types if none
are specified:

Jdbc type Default values for precision, scale
DECI MAL 20, 0 (this corresponds to the range of | ong
where the longest nhumber is
-9223372036854775808).
NUMERI C 20,0

For other types, if only the precision is specified, the scale defaultsto O. If only scaleis
specified, precision defaultsto 1.

Other attributes supported in the ojb.field tag that have the same meaning as in the repository
descriptor (and partly in the torque table schema) are:

default-fetch
indexed
locking
nullable
primarykey
sequence-name

Page 288

0oJB

» update-lock
Examples:

/**

* @jb.field col um="Ausl aufarti kel "
t5 j dbc-type="1 NTEGER'

*

conver si on="or g. apache. oj b. br oker . accessl ayer. conver si ons. Bool ean2l nt Fi el dConver si on"

* col um-docunent ati on="Some docunentati on on the col um"
S i d="10"

* attri but es="col or=green, si ze=snal | "

*/

prot ected bool ean isSelloutArticle;
will result in the following field descriptor:

<fi el d-descri ptor
nane="isSel | out Article"
col um="Ausl auf arti kel "
j dbc-t ype="1 NTEGER"
conver si on="or g. apache. oj b. br oker . accessl ayer. conver si ons. Bool ean2l nt Fi el dConver si on"
>
<attribute attribute-name="color" attribute-val ue="green"/>
<attribute attribute-nane="size" attribute-value="small"/>
</field-descriptor>

The column descriptor looks like:

<t abl e nane="Arti kel ">

<col um name="Ausl aufarti kel "
j avaNanme="isSel | out Articl e"
type="1 NTEGER'
) descri pti on="Sone docunentation on the col um"
>

</t abl e>
An anonymousfield is declared like this:

*

/
@ij b. cl ass tabl e="TABLE F"
i ncl ude-inherited="fal se"
@jb.field nanme="el D"
colum="E I D"
j dbc-type="1 NTEGER"
@j b.ref erence cl ass-ref="org. apache. oj b. br oker . E"
auto-retrieve="true"
aut o- updat e="obj ect "
aut o- del et e="obj ect"
forei gnkey="el D'

* Ok X X X X Ok X %k X X *

~

Page 289

0JB

public class F extends E i npl ements Serializable

In this case an anonymous field is declared and also used as the foreignkey of an anonymous
reference. The corresponding class descriptor looks like:

<cl ass-descri pt or
cl ass="or g. apache. oj b. br oker. F"
t abl e="TABLE_F"

<fi el d-descri pt or
nane="el D'
colum="E I D"
j dbc-t ype="1 NTEGER"
access="anonynous"

>

</fiel d-descriptor>

<r ef erence- descri pt or
nanme="super"
cl ass-ref="org. apache. oj b. br oker . E"
auto-retrieve="true"
aut o- updat e="obj ect "
aut o- del et e="obj ect"
>
<forei gnkey field-ref="elD'/>
</reference-descri ptor>
</ cl ass-descri ptor>

Here the anonymous field and reference (which implicitly refersto super) are used to

establish the super-subtype relationship between E and F on the database level. For details on
this see the advanced technigue section.

4.5.18.6. References

ojb.reference

Similar to fields, references (javafields or accessor methods) are marked with the

0j b.reference tag. We have areference when the type of the javafield isitself a persistent
class (has an gjb.class tag) and therefore the java field represents an association. This means
that the referenced type of an association (or the one specified by the class-ref attribute, see
below) isrequired to be present in the repository descriptor (it has the gjb.class tag).

Foreign keys of references are also declared in the torque table schema (see example below).
OJB currently requires that the referenced type has at least one field used to implement the
reference, usually someid of an integer type.

A reference can be stated in the JavaDoc comment of the class (anonymous reference), but in
thiscaseit silently refer to super (seethe example of gjb.field) which can be used to

Page 290

0oJB

establish an inheritance relationship. Note that anonymous references are not inherited (in
contrast to anonymous fields and normal references).

Attributes:

attributes

Optionally contains attributes of the reference as a comma-separated list of
name-value pairs.

class-ref

Allows to explicitly specify the referenced type. Normally the XDoclet OJB
module searches the type of the field and its sub types for the nearest type with
the gjb.class tag. If the type is specified explicitly, then this type is used instead.
For anonymous references, the class-ref has to specified as there is no field to
determine the type from.

Note that the type is required to have the gjb.class tag.

database-foreignkey : true (default) | false

Specifies whether a database foreignkey shall be generated for the reference.
Note that this attribute is only evaluated if the XDoclet module has determined
that a database foreignkey could be generated. You cannot force the generation
with this attribute, and the value of the attribute is not considered when checking
if database foreignkeys can be generated in case the referencing class has
subtypes (in which case database foreignkeys can only be generated if all
subtypes map to the same table or don't map to a table or the inheritance is
mapped via a super-reference).

documentation

Optionally contains documentation on the reference.

foreignkey

Contains one or more foreign key fields separated by commas (required). The
foreign key fields are fields with the ojb.field tag in the same class as the
reference, which implement the association, i.e. contains the values of the
primarykeys of the referenced object.

Other supported attributes (see repository.dtd for their meaning) written directly to the
repository descriptor file:

auto-delete
auto-retrieve
auto-update
otm-dependent

proxy
proxy-prefetching-limit
refresh

Page 291

0JB

Example:

public abstract class AbstractArticle inplenments InterfaceArticle,
java.io. Serializable

protected InterfaceProduct Goup product G oup;

/**
* @jb.reference class-ref="o0org. apache. oj b. br oker. Product G oup"
* f or ei gnkey="product G oupl d"
* docunmentation="this is the reference to an articles
pr oduct gr oup”

*/

protected InterfaceProduct G oup product G oup;
/**

* @jb.field

*/

protected int product G oupld;

attributes="col or=red, size=tiny"

}
Herethejavatypeis| nt er f acePr oduct G oup athough the repository reference uses
the sub type Pr oduct Gr oup. The generated reference descriptor looks like:

<fi el d-descri ptor
nanme="pr oduct G oupl d"
col um="Kat egori e_Nr"
j dbc-t ype="1 NTEGER"

</field-descriptor>
<ref erence-descri ptor
nane="pr oduct G oup"
cl ass-ref="org. apache. oj b. br oker. Product G oup"
>
<docunmentation>this is the reference to an articles
pr oduct gr oup</ docunent at i on>
<attribute attribute-name="color" attribute-val ue="red"/>
<attribute attribute-name="size" attribute-value="tiny"/>
<f orei gnkey field-ref="product G oupld"/>
</reference-descriptor>

In the torque table schemafor the Art i cl e class, the foreign key for the product group is
explicitly declared:

<t abl e name="Arti kel ">

<col um nanme="Kat egori e Nr"
j avaName="pr oduct G oupl d"
t ype="1 NTEGER"

/>

Page 292

0oJB

<f orei gn- key forei gnTabl e="Kat egori en">
<reference | ocal ="Kategorie Nr" foreign="Kategorie Nr"/>
</ foreign-key>
</tabl e>

For an example of an anonymous reference, see the examples of gjb.field.
4.5.18.7. Collections

ojb.collection

Persistent collections which implement 1:n or m:n associations are denoted by the

oj b.collection tag. If the collection is an array, then the XDoclet OJB module can determine
the element type automatically (analogous to references). Otherwise the type must be
specified using the element-class-ref attribute. m:n associations are a so supported
(collections on both sides) viathe indir ection-table, foreignkey and remote-foreignkey
attributes.

Attributes:

attributes

Optionally contains attributes of the collection as a comma-separated list of
name-value pairs.

collection-class

Specifies the class that implements the collection. This attribute is usually only
required if the actual type of the collection object shall be different from the
variable type, e.qg. if an interface like j ava. uti | . Col | ecti on is used as the
declared type.

Collections that use j ava. util. Col | ecti on,java. util.List or

java. util. Set can be handled by OJB as-is so specifying collection-class is
not necessary. For the types that do not, the XDoclet OJB module checks
whether the declared collection field type implements the

or g. apache. oj b. br oker . Manageabl eCol | ect i on interface, and if so,
generates the collection-class attribute automatically. Otherwise, you have to
specify it.

database-foreignkey : true (default) | false

Specifies whether a database foreignkey shall be generated for the collection.
Note that this attribute is only evaluated if the XDoclet module has determined
that a database foreignkey could be generated. You cannot force the generation
with this attribute, and the value of the attribute is not considered when checking
if database foreignkeys can be generated in the case of subtypes of the element
type or the type having the collection (if m:n collection). For 1:n collections,
database foreignkeys can only be generated if all subtypes of the element type

Page 293

0JB

map to the same table or don't map to a table or the inheritance is mapped via a
super-reference. For m:n collections, the same applies to the class owning the
collection.

documentation

Optionally contains documentation on the collection.

element-class-ref

Allows to explicitly specify the type of the collection elements. Note that the type
is required to have the gjb.class tag.

foreignkey

Contains one or more foreign key field or columns separated by commas
(required).

If the collection implements an 1:n association, then this attribute specifies the
fields in the element type that implement the association on the element side, i.e.
they refer to the primary keys of the class containing this collection. Note that
these fields are required to have the gjb.field tag.

When the collection is one part of an m:n association (e.g. with an indirection
table), this attribute specifies the columns in the indirection table that point to the
type owning this collection. This attribute is required of both collections. If the
other type has no explicit collection, use the remote-foreignkey attribute to
specify the foreign keys for the other type.

foreignkey-documentation

Optionally contains documentation for the columns in the indirection table in the
database schema that point to this class.

indirection-table

Gives the name of the indirection table used for m:n associations. The XDoclet
0OJB module will create an appropriate torque table schema. The specified
foreign keys are taken from the foreignkey attribute in this class and the
corresponding collection in the element class, or if the element class has no
collection, from the remote-foreignkey attribute of this collection. The XDoclet
OJB module associates the foreignkeys (in the order they are stated in the
foreignkey/ remote-foreignkey attributes) to the ordered primarykey fields (for
the ordering rules see the ojb.field tag), and use ther jdbc type (and length setting
if necessary) of these primarey keys for the columns.
indirection-table-documentation

Optionally contains documentation for the indirection table in the database
schema.

indirection-table-primarykeys : true | false (default)

Specifies that the columns in the indirection table that point to this type, are
primary keys of the table. If the element type has no corresponding collection,

Page 294

0oJB

then this setting is also applied to the columns pointing to the element type.
orderby

Contains the fields used for sorting the collection and, optionally, the sorting
order (either ASC or DESC for ascending or descending, respectively) as a
comma-separated list of name-value pairs. For instance,

fiel d1=DESC, fi el d2, fi el d3=ASC specifies three fields after which to sort,
the first one in descending order and the other two in ascending order (which is
the default and can be omitted).

guery-customizer

Specifies a query customizer for the collection. The type is required to implement
or g. apache. oj b. br oker . accessl ayer. Quer yCust om zer .
guery-customizer-attributes

Specifies attributes for the query customizer. This attribute is ignored if no query
customizer is specified for this collection.

remote-foreignkey

Contains one or more foreign key columns (separated by commas) in the
indirection table pointing to the elements. Note that this field should only be used
if the other type does not have a collection itself which the XDoclet OJB module
can use to retrieve the foreign keys. This attribute is ignored if used with 1:n
collections (no indirection table specified).

remote-foreignkey-documentation

Optionally contains documentation for the columns in the indirection table in the
database schema that point to the element type. This value can be used when
the element type has no corresponding collection (i.e. remote-foreignkey is
specified) or if the corresponding collection does not specify the

f or ei gnkey-docunent at i on attribute.

The same attributes as for references are written directly to the repository descriptor file (see
repository.dtd) :

auto-delete
auto-retrieve
auto-update
otm-dependent

proxy
proxy-prefetching-limit
refresh

Examples:

/**

* @jb.collection el ement-class-ref="org. apache. oj b. broker. Article"

Page 295

0JB

f or ei gnkey="product G oupl d"
auto-retrieve="true"

aut o- updat e="11i nk"

aut o- del et e="obj ect"

or der by="pr oduct G oupl d=DESC"

* % F % X

*

guery-cust om zer ="or g. apache. oj b. br oker. accessl ayer. Quer yCust oni zer Def aul t | npl "
* qguery-custom zer-attri butes="attrl=val uel"
*/

private ArticleCollection allArticleslnG oup
The corresponding collection descriptor is:

<col | ecti on-descri ptor
nanme="al | Articl esl nG oup"
el ement - cl ass-ref ="org. apache. oj b. broker. Articl e"
col I ection-cl ass="org. apache. oj b. broker. Articl eCol | ecti on"
auto-retrieve="true"
aut o- updat e="1i nk"
aut o- del et e="obj ect"

<or der by name="product G oupl d" sort="DESC'/ >
<i nverse-foreignkey field-ref="product G oupld"/>
<query-custom zer
cl ass="org. apache. oj b. br oker. accessl ayer. Quer yCust oni zer Def aul t | npl " >
<attribute attribute-nane="attr1" attri bute-val ue="val uel"/>
</ query-custom zer >
</ col | ecti on-descri ptor>

An m:n collection is defined using the indir ection-table attribute:

/**
* @jb.class generate-tabl e-info="fal se"
*/
public abstract class BaseContentl|npl inplenents Content
/**
* @jb.collection el ement-class-ref="org. apache. oj b. broker. Qualifier"
* auto-retrieve="true"
* aut o- updat e="11i nk"
* aut o- del et e="none"
* i ndi rection-tabl e=" CONTENT_QUALI FI ER"
* f or ei gnkey="CONTENT_| D"
* renot e- f or ei gnkey="QUALI FI ER_| D"
*/
private List qualifiers;
}
/**

* @j b.class tabl e=" NEWS"
*/

public class News extends BaseContent | npl

{

Page 296

0oJB

}
/**

* @jb.class generate-tabl e-info="fal se"
*/

public interface Qualifier extends Serializable

{

}

TheBaseCont ent | npl hasam:n associationto the Qual i f i er interface. for the
BaseCont ent | npl class, this association isimplemented viathe CONTENT _I D column
(specified by the foreignkey) in the indirection table CONTENT _QUALI FI ER. Usually, both
ends of an m:n association have a collection implementing the association, and for both ends
the for eignkey specifies the indirection table column pointing to the class at this end. The
Qual i fi er interface however does not contain a collection which could be used to
determine the indirection table column that implements the association from its side. So, this
column is also specified in the BaseCont ent | npl class using the remote-foreignkey
attribute. The class descriptors are:

<cl ass-descri ptor

cl ass="or g. apache. oj b. br oker . BaseCont ent | npl "
>

<extent-cl ass class-ref="org. apache. oj b. br oker. News"/ >
</ cl ass-descri ptor>

<cl ass-descri ptor
cl ass="or g. apache. oj b. br oker . News"
t abl e=" NEW5"

<col | ecti on-descri pt or
nane="qual i fiers"
el ement - cl ass-ref="org. apache. oj b. broker. Qual i fier"
i ndi rection-tabl e=" CONTENT_QUALI FI ER"
auto-retrieve="true"
aut o- updat e="11i nk"
aut o- del et e="none"

<f k- poi nting-to-this-class columm="CONTENT | D'/ >
<f k- poi nti ng-to-el ement-cl ass col um="QUALIFIER ID"'/ >
</ col | ecti on-descri ptor>
</ cl ass-descri ptor>

<cl ass-descri ptor

cl ass="org. apache. oj b. broker. Qual i fier"
>

<extent-cl ass class-ref="org. apache. oj b. br oker. BaseQual i fierlnmpl"/>
</ cl ass-descri ptor>

As can be seen, the collection definition isinherited in the News class and the two

Page 297

0JB

indirection table columns pointing to the ends of the m:n associaton are correctly specified.

4.5.18.8. Nested objects

0jb.nested

The features of a class can be included in another class by declaring afield of that type and
using thistag. The XDoclet OJB module will then add every tagged feature (i.e. fields/bean
properties with ojb.field, ojb.reference or gjb.collection tag, or even with ojb.nested) from
the type of the field to the current class descriptor. It is not required that the field's type has
the gjb.class tag, though.

All attributes of the features are copied (even primarykey) and modified if necessary (e.g.
the foreignkey of areference is adjusted accordingly). For changing an attribute use the
0jb.modify-nested tag.

For an example of nesting, see the example of ojb.modify-nested.

ojb.modify-nested
Similar to ojb.modify-inherited, thistag allows to modify attributes of a nested feature.

Attributes: All of gjb.field, ojb.reference, and ojb.collection with the exception of the
attributes related to indirection tables (indirection-table, remote-foreignkey,
indirection-table-primarykeys, indir ection-table-documentation,
foreignkey-documentation, remote-for eignkey-documentation), and also:

ignore : true | false (default)

Specifies that this feature will not be nested.

name

The name of the field/reference/collection to modify (required). Use here the
name of the feature in the nested type.

Example:

The two classes;

public class NestedObject inplenents java.io. Serializable

[** @jb.field primrykey="true" */
protected int id;

[** @jb.field */
protected bool ean hasVal ue;

Page 298

0oJB

[** @jb.field */

protected int containerld;

/**

* @jb.reference forei gnkey="contai nerld"
*/

prot ect ed Cont ai ner Cbj ect cont ai ner

}

[** @jb.class */
public class ContainerCbject inplenments java.io.Serializable
{ /**

* @jb.field primrykey="true"

* aut oi ncr enent =" oj b"

* id="1"

*/

protected int id;

[** @jb.field id="2" */
protected String nane;

/**
* @j b. nested
* @j b. nodi fy-nest ed name="hasVal ue"
* j dbc-type="1 NTEGER"

*

conver si on="or g. apache. oj b. br oker . accessl ayer. conver si ons. Bool ean2l nt Fi el dConver si on"

* | d:n 3n
* @jb. nodi fy-nested nanme="id"
* pri marykey=""

*/
prot ect ed Nest edObj ect nestedvj;

}
result in the one class descriptor

<cl ass-descri pt or
cl ass="Cont ai ner bj ect "
t abl e=" Cont ai ner Obj ect "

<fi el d-descri pt or
nane="i d"
col um="i d"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrenent ="t rue"

/>

<fi el d-descri pt or
name="nane"

Page 299

0JB

col um="nane"
j dbc-t ype=" VARCHAR"
| engt h="24"

/>

<fi el d-descri pt or
nanme="nest edCbj : : hasVal ue"
col um="nest edCbj _hasVal ue"
j dbc-t ype="1 NTEGER"

conver si on="or g. apache. oj b. br oker . accessl ayer. conver si ons. Bool ean2l nt Fi el dConver si on"

/>

<fi el d-descri pt or
nane="nestedObj : :i d"
col um="nest edObj _i d"
j dbc-t ype="1 NTEGER"

<fi el d-descri pt or
nanme="nest edCbj : : cont ai ner| d"
col utm="nest edCbj _cont ai nerl d"
j dbc-type="1 NTEGER'

/>

<r ef erence-descri ptor
name="nest edQbj : : cont ai ner"
cl ass-ref="Cont ai ner Qbj ect"

>
<forei gnkey field-ref="nestedj::containerld"/>

</reference-descri ptor>

</c|ééé—descriptor>
and the table descriptor

<t abl e name="Cont ai ner Cbj ect " >
<col um nane="i d"
j avaNanme="i d"
t ype="1 NTEGER'
pri mar yKey="true"
requi red="true"
/>
<col um nane="nane"
j avaName="nanme"
t ype=" VARCHAR"
si ze="24"
/>
<col um nane="nest edObj _hasVal ue"
t ype="1 NTEGER'
/>
<col um nane="nest edObj i d"
type="1 NTEGER'
/>
<col um name="nest edCbj contai ner|d"
t ype="1 NTEGER"
/>
<f orei gn- key forei gnTabl e=\"Cont ai ner Cbj ect\">\n"+
<reference | ocal =\"nestedObj containerld\" foreign=\"id\"/>\n"+

Page 300

0oJB

</ foreign-key>\n"+
</tabl e>
Note how one ojb.modify-nested tag changes the type of the nested hasVal ue field, add a

conver si on and specifies the position for it. The other modification tag removes the
pri mar ykey status of the nested i d field.

4.5.19. OJB Performance

4.5.19.1. Introduction

" Thereisno such thing asafreelunch.”
(North American proverb)

Object/relational mapping tools hide the details of relational databases from the application
developer. The developer can concentrate on implementing businesslogic and is liberated
from caring about RDBM S related coding with JIDBC and SQL.

O/R mapping tools allow to separate business logic from RDBM S access by forming an
additional software layer between business logic and RDBMS. Introducing new software
layers aways eats up additional computing resources.

In short: the price for using O/R toolsis performance.

Software architects have to take in account this tradeoff between programming comfort and
performance to decide if it is appropiate to use an O/R tool for a specific software system.

This document describes the OJB Performance Test Suite which was created to lighten the
decision between native JDBC, OJB (the different OJB API's) and other O/R mapper.
4.5.19.2. The Performance Test Suite

The OJB Performance Test Suite allows to compare OJB against native JDBC programming
against your RDBMS of choice and run OJB in avirtual multithreaded environment. Further
onitis possible to compare OJB against any O/R mapping tool using a simple framework.

All tests are integrated in the OJB build script, you only need to perform the according ant
target:

ant target

The following 'targets’ exist:

e perf-test multithreaded performance/stress test of PB/OTM/ODMG api against
native JDBC

Page 301

0JB

« performance older single threaded test, OJB APl implementations (PB, ODMG)
against native JDBC
« [performance3 multithreaded test against two different databases - devel opers test]

By changing the JdbcConnectionDescriptor in the configuration files you can point to your
specific RDBMS. Please refer to this document for details.

4.5.19.3. Interpreting test results

Interpreting the result of these benchmarks carefully will help to decide whether using OJB is
viable for specific application scenarios or if native JDBC programming should be used for
performance reasons.

Take care of compareable configuration properties when run performance tests with different
O/R tools.

If the decision made to use an O/R mapping tool the comparison with other tools helpsto
find the best one for the thought scenario. But performance shouldn't be the only reason to
take a specific O/R tool. There are many other pointsto consider:

- Usability of the supported API's

- Flexibility of the framework

- Scalability of the framework

- Community support

- The different licences of Open Source projects
- etcetera. ...

4.5.19.4. How OJB comparesto native JDBC programming?

OJB is shipped with tests compares native JDBC with ODMG and PB-API implementation.
This part of the test suite is integrated into the OJB build mechanism.

A single client test you can invokeit by typing ant per f or mance or ant

per f or mance.

If running OJB out of the box the tests will be performed against the Hypersonic SQL
shipped with OJB. A typical output looks like follows:

per f or mance:
[ojb] .[performance] |INFQO Test for PB-api
[o] b] [performance] | NFO
[o]jb] [performance] INFG inserting 2500 Objects: 3257 nsec
[o] b] [performance] |INFG updating 2500 Cbjects: 1396 nsec
[o] b] [performance] |INFG querying 2500 Cbjects: 1322 nsec
[o] b] [performance] INFG querying 2500 bjects: 26 nsec
[oj b] [performance] INFQ fetching 2500 Objects: 495 nsec

Page 302

0oJB

ojb per f or mance
oj b per f or mance
o] b per f or mance
o] b per f or mance
o] b per f or mance
ojb per f or mance
ojb per f or mance
ojb per f or mance
ojb per f or mance
ojb per f or mance
ojb per f or mance
ojb per f or mance
ojb per f or mance
oj b per f or mance
o] b per f or mance

[ojb] Tine: 18,964
[0jb] OK (1 test)

jdbc] . [performance]
j dbc per f or mance
j dbc per f or mance
j dbc per f or mance
j dbc per f or mance
j dbc per f or mance
j dbc per f or mance
] dbc per f or mance
] dbc per f or mance
] dbc per f or mance
| dbc per f or mance
j dbc per f or mance
j dbc per f or mance
j dbc per f or mance
j dbc per f or mance
j dbc per f or mance
j dbc per f or mance
j dbc per f or mance
j dbc per f or mance
] dbc per f or mance
] dbc per f or mance
j dbc per f or mance
[jdbc] Tinme: 18,363
[jdbc] OK (1 test)
[odng] . [perfornmance]
[odng] [performance]
[odng] [performance]
[odng] [performance]
[odng] [performance]
[odng] [performance]
[odmg] [performance]

I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO

| NFO. Test for

I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO

del eti ng 2500 Cbj ect s:

i nserting 2500 Objects:
2500 nj ects:
2500 nj ects:
2500 vj ects:
2500 nj ects:
2500 nj ects:

updati ng
qgueryi ng
gueryi ng
fetchi ng
del eti ng

inserting 2500 Cbjects:
2500 nj ects:
2500 nj ects:
2500 nj ects:
2500 nj ects:
2500 nj ects:

updati ng
queryi ng
queryi ng
fetching
del eti ng

nati ve JDBC

inserting 2500 Cbjects:

updat i
queryi
queryi
fetchi
del eti

ng 2500 Obj ects:
ng 2500 Obj ects:
ng 2500 Obj ects:
ng 2500 Obj ects:
ng 2500 bj ects:

i nserting 2500 Qbj ects:

updat i
queryi
queryi
fetchi
del et

ng 2500 Obj ects:
ng 2500 Obj ects:
ng 2500 Obj ects:
ng 2500 Obj ects:
ng 2500 Obj ects:

inserting 2500 Cbjects:

updat i
queryi
queryi
fetchi
del eti

2500 nj ects:
2500 nj ects:
2500 nj ects:
2500 nj ects:
2500 voj ects:

ng
ng
ng
ng
ng

I NFO Test for ODMG api

I NFO
I NFO
I NFO
I NFO
I NFO
I NFO

i nserting 2500 Objects:

updat i
queryi
queryi
fetchi

ng 2500 Obj ects:
ng 2500 bj ects:
ng 2500 bj ects:
ng 2500 (bjects:

592 nsec

869 nsec
1567 nsec
734 msec
20 msec
288 msec
447 nsec

979 nsec
1240 nsec
741 nsec
18 nsec
289 nsec
446 nsec

651 nsec
775 nsec
616 nsec
384 nsec
49 nsec
213 nsec

508 msec
686 msec
390 msec
360 msec
46 msec
204 nsec

538 nsec
775 msec
384 nsec
360 nsec
48 nsec
204 msec

12151 nsec
2937 nsec
4691 nsec
2239 msec
1633 nsec

Page 303

0JB

odny performance] |INFQO deleting 2500 Objects: 1815 nsec
odny performance] | NFO

odny performance] |INFQO inserting 2500 Objects: 2483 nsec
odny performance] |INFQ updating 2500 Objects: 2868 nsec
odny performance] |INFQO querying 2500 Objects: 3272 nsec
odng performance] | NFO querying 2500 Objects: 2223 nsec
odny performance] |INFO fetching 2500 Objects: 1038 nsec
odny performance] |INFO deleting 2500 Objects: 1717 msec
odnygy performance] | NFO

odny performance] INFQO inserting 2500 Objects: 2666 nmsec
odny performance] | NFO updating 2500 Objects: 2841 nsec
odny performance] | NFO querying 2500 Objects: 2092 nsec
odnyg performance] | NFQO querying 2500 Objects: 2161 nsec
odny performance] |INFQ fetching 2500 Objects: 1036 nsec
odny performance] |INFQ deleting 2500 Objects: 1741 nsec

[odng] Tinme: 55,186

Some notes on these test results:

Y ou see a consistently better performance in the second and third run. thisis caused by
warming up effects of VM and OJB.

PB and native JDBC need about the same time for the three runs although JDBC
performance is better for most operations. thisis caused by the second run of the
guerying operations. In the second run OJB can load all objects from the cache, thus the
time is much shorter. Hence the interesting result: if you have an application that has a
lot of lookups, OJB can be faster than a native JDBC application!

ODMG is much slower than PB or JDBC. Thisis due to the complex object level
transaction management it is doing.

Y ou can see that for HSQL DB operations like insert and update are much faster with
JDBC than with PB (60% and more). Thisratio is so high, because HSQLDB is much
faster than ordinary database servers (asit'sinmemory). If you work against Oracle or
DB2 the percentual OJB overhead is going down alot (10 - 15 %), as the database
latency is much longer than the OJB overhead.

It's easy to change target database. Please refer to this document for details.
Also it's possible to change the number of test objects by editing the ant-target in build.xml.

Another test compares PB-api,ODM G-api and native JDBC you can find next section.

4.5.19.5. OJB performancein multi-threaded environments

This test was created to check the performance and stability of the supported API's (PB-api,
ODMG-api, JDO-api) in amultithreaded environment. Also this test compares the api's and
native JDBC.

Running this test out of the box (avirgin OJB version against hsgl) shouldn't cause any
problems. To run the JDO-api test too, see JDO tutorial and comment in the test in target

Page 304

0oJB

perf-test inbuild. xm

A test for IDO API is missed.

Per default OJB use hsgl as database, by changing the JdbcConnectionDescriptor in the
repository.xml file you can point to your specific RDBMS. Please refer to this document for
details.

To run the multithreaded performance test call

ant perf-test
A typical output of thistest looks like (OJB against hsgl server, 2-tier, 100 MBit network):

OJ b e e e e
oj b QIB PERFORVMANCE TEST SUMVARY

oj b] 10 concurrent threads, handl e 2000 objects per thread
ojb - performance node

ojb APl Period Total Insert Fetch Update Delete
ojg [sec] [sec] [nsec] [nsec] [nsec] [nsec]
o] [l o] I e T R
oj b JDBC 7.786 7.374 3951 76 2435 911
oj b PB 9.807 8.333 5096 121 2192 922
oj b ODMG 19.562 18. 205 8432 1488 5064 3219
ojg OTM 24.953 21.272 10688 223 4326 6033
OJ e e e e

[0j b] PerfTest takes 191 [sec]

To change the test properties go to target per f -t est inthebui | d. xm file and change
the program parameter.

The test needs five parameter:

- A comma separated list of the test implementation classes (no blanks!)

- The number of test loops

- The number of concurrent threads

- The number of managed objects per thread

- The desired test mode. f al se meansrun in performance mode, t r ue meansrun in stress
mode (useful only for developer to check stability).

<target name="perf-test" depends="prepare-testdb"
descripti on="Si npl e performance benchmark and stress test for
PB- and ODMG api ">
<java fork="yes" cl assname="org. apache. oj b. performance. Perf Mai n"
dir="${build.test}/ojb" tasknane="ojb" failonerror="true" >

Page 305

0JB

<cl asspath refid="runti nme-cl asspat h"/ >

<l-- conmm separated |ist of the PerfTest inplenentations -->
<arg val ue=

"org. apache. oj b. br oker . QJBPer f Test $JdbcPer f Test , \

or g. apache. oj b. br oker. QJBPer f Test $PBPer f Test , \

or g. apache. oj b. br oker. QJBPer f Test $ODMGPer f Test , \

or g. apache. oj b. br oker. QJBPer f Test $OTMPer f Test "

/>

<I-- test |oops, default was 3 -->
<arg val ue="3"/>
<l-- performed threads, default was 10 -->
<arg val ue="10"/>
<I-- nunber of nmanaged objects per thread, default was 2000 -->
<arg val ue="2000"/>
g <l-- if '"false' we use performance node, 'true' we do run in stress
node -->

<arg val ue="fal se"/>

<jvmarg val ue="-Xns128nm'/ >
<jvmarg val ue="- Xmx256nt/ >

</java>

<l-- do sone cleanup -->

<ant target="copy-testdb"/>
</target>

4.5.19.6. How OJB comparesto other O/R mapping tools?

Many user ask this question and there is more than one answer. But OJB was shipped with a
simple performance "framework” (independend from OJB) which allows a rudimentarily
comparision of OJB with other (java-based) O/R mapping tools.

All involved classes can be found in dirctory [db-ojb]/src/test in package

or g. apache. oj b. perf or mance.

Cal ant perf-test-jar tobuildthejar file contain al necessary classesto set up atest
with an arbitrary O/R mapper. After the build, the db- oj b- XXX- per f or mance. j ar can
befoundin[db- oj b] / di st directory.

Stepsto set up thetest for other O/R frameworks:

« Implement aclass derived from Per f Test

« Implement aclass derived from Per f Handl| e

« [If persistent objects used within your mapping tool must be derived from a specific base
class or must be implement a specific interface write your own persistent object class by
implementing Per f Art i cl e interface and override method #newPer f Arti cl e()
inyour Per f Handl e implementation class.
Otherwise adefault implementation of Per f Art i cl e was used]

That's it!

Page 306

0oJB

Y ou can find a example implementation called

or g. apache. oj b. br oker. QJBPer f Test in the test-sources directory under

[db-0j b] / src/test (when using source-distribution). Thisimplementation classis
used to compare performance of the PB-API, ODMG-API, OTM-api and native JDBC.

See more section multi-threaded performance. QJBPer f Test is made up of inner classes.
At each case two inner classes represent atest for one api (as described above).

Run thetest

Y ou have two possibilities to run the test:

a) Integration in the OJB build script

Add the full qualified class name of your PerfTest implementation classto the per f - t est
target of the OJB bui | d. xm file, add all necessary jar filesto[db-oj b] /1 i b. The
working directory of thetestis[db- oj b] /target/t est/ oj b.

b) Run PerfMain

It's possible to run the test using or g. apache. oj b. per f or mance. Per f Mai n.

java -cl asspat h CLASSPATH or g. apache. oj b. per f or mance. Per f Mai n

[comma separated |ist of PerfTest inplenentation classes, no bl anks!]
[number of test | oops]

[number of threads]

[number of insert/fetch/delete | oops per thread]

[boolean - run in stress nmode if set true,

run in performance node if set false, default false]

For example:

java -cl asspat h CLASSPATH ny. A Perf Test, my. B PerfTest 3 10 2000 fal se
Thiswill use A Per f Test andB_Per f Test and perform three loops each loop run 10
threads and each thread operate on 2000 objects. The test run in performance mode.

Take care of compareable configuration properties when run performance tests with different
O/R tools (caching, locking, sequence key generation, connection pooling, ...).

Please, don't start flame war s by posting performance results to mailing lists made with this simple test. This test was created
for OJB QA and to give a clue how good or bad OJB performs, NOT to start discussion like XY is 12% faster then XZ!!.

4.5.19.7. What arethe best settings for maximal performance?

We don't know, that depends from the environment OJB runs (hardware, database, driver,
application server, ...). But there are some settings which affect the performance:

« TheAPI you use, e.g. PB-api is much faster then the ODMG-api. See which AP for

Page 307

0JB

more information.

« ConnectionFactory implementation / Connection pooling. See connection pooling for
more information.

» PersistentField class implementation.See OJB.properties section 'PersistentFieldClass for
more information.

» Used sequence manager implementation. See sequence manager for more information.

» Use of batch mode (when supported by the DB). See repository.dtd element
'jdbc-connection-descriptor’ for more information.

» PersistenceBroker pool size. See OJB.properties for more information.

To test the different settings use the tests of the performance test suite.

4.6. Howto's
4.6.1. Howto's Summary

4.6.1.1. Howto's

Here can be found a summary of all Howto documentation submitted by OJB Users and
Developers.

How to build large metadata mappings
Using anonymous keys for cleaner objects

Using native database sequences
Using Oracle LOB's

Using OJB in a clustered environment
Working with stored procedures

4.6.2. How to build O/R mapping meta data files

4.6.2.1. How to build O/R mapping files

Writing the repository.xml file for only afew classes can easily be done manually with the
text or xml editor of your choice.

But keeping the repository in sync with the java codebase and the database gets more
difficult if several hundred classes and large developer teams are involved.

This page contains tips how to integrate mapping tools and code-generators into your build
process.

4.6.2.2. classification of O/R related transfor mations

Page 308

0oJB

Let's start with a classification of the source transformation problems that developers have to
face in an O/R environment.

Typical development environments contain some or all of the following artefacts:

« A UML model containing at least class diagrams of the persistent classes. All modern
UML tools can export to the XM standard format.

» Other tools, such as Torque, also use amodel based approach but use different model file
formats (typically XML based)

» Javasource code for the persistent classes. The Java source code can possibly be
enhanced with xdoclet tags.

« The OJB repository.xml file. Thisfile contains all the class-descriptors for the persistent
classes.

» Thedatabase. This could be an online DB or a DDL script representing the database
tables. The database contains all tables used to store instances of the persistent classes.

The technique you will use depends alot on the problem you have to solve, on the
methodology and the tool chain you have in use, which of transformations between those
artefactsfit to your development process.

1. Forward engineering from XMI: A UML model in XMI format with class diagrams of
your persistent classes exists and is used as the master source (model driven approach).
Java code, repository.xml and DDL for the database tables have to be generated from this
model.

2. Forward engineering from Torque: A model of the persistent entity classes existsin
form of a Torque. XML file. Java code, repository.xml and DDL for the database tables
have to be generated from this model.

3. Forward engineering from therepository.xml: The OJB repository.xml fileisused a
model format. Java code and DDL for the database tables have to be generated from this
model.

4. Xdoclet transformation from Java code: Java code for the persistent classes exists and
contains special comment tags in the Xdoclet ojb-module format. Repository.xml and
DDL for the database tables have to be generated from the javafiles via Xdoclet
transformation.

5. Reverseengineering from database: There is a database with existing tables or aDDL
script. Java code and repository.xml have to be generated from the database.

These transformations are depicted in the following graphics. The numbers close to the
arrows correspond to the numbers in the above enumeration. All related transformations have
the same colour.

mapping tools image

In the following sections we will have a closer look at each of these transformations an
discuss tools that provide support each approach.

Page 309

0JB

4.6.2.3. Forward engineering from XM|

This approach is recommended if you start from scratch with a new project and have to deal
with alarge number of persistent classes. This approach works best when there are no
restrictions regarding the database, like integration of legacy tables.

Forward engineering from XMI fits perfectly into amodel driven architecture (MDA)
software development process.

Tool support

AXGen

AXgen isacode generator using XMl asinput and Velocity templates for transformation.
The power of AXgenisin itssimplicity. Y ou don't have to understand complicated
structure of your XMI fileto write an XSLT stylsheet for transformation. AXgen uses
nsuml to deal with the xmi file, which gives access to the Metamodel in an objectoriented
way.

Further AXgen makes use of Jakartas Velocity. Velocity is avery sophisticated
Java-based template engine. This means that inside your templates you can call Java
methods. Fedl free to write templates that generate anything you want.

Our motive for AXgen isto generate Java Classes for use in a O/R Mapping tool that
allows transparent persistence for Java Objects against relational databases. Therefore
AXgen comes with abundle of ready to use templates for generating

ObJectRelational Bridge (OJB) specific stuff like:

* Entity Classes

* XML Repository

* SQL script to build the DB scheme

AndroM DA

AndroMDA is a code generator framework - it takes a Unified Modeling Language
(UML) model from a CASE-tool in XMI format and generates custom components. It
comes with a set of sample templates that generate classes attributed with X Doclet tags.
One build step later, the XDaoclet tool generates full-blown components that can readily
be deployed in the JBoss application server (and the other servers that XDoclet can feed).

Page 310

0oJB

| CASE tool
(Poseidon, Rose, Together)

l AndroMDA Software components

O

o
¥

‘e -
5;?2@"{3 ~ - @ L e
® &

UML Model

Templates

andromeda image
Currently AndroMDA provides no special support for OJB. But by tagging classes with
tags of the XDoclet OJB moduleit is possibleto useit asafull forward engineering
engine.
» Searching the Sourceforge project list for "XMI" returns along list of projects dealing
with code generation. It may be agood ideato check if you find atool that matches your
requirements.

4.6.2.4. Forward engineering from Torque

Torque
Torgue is apersistence layer. Torque includes a generator to generate all the database

resources required by your application and includes a runtime environment to run the
generated classes.

Page 311

0JB

Torque was developed as part of the Turbine Framework. It is now decoupled and can be
used by itself. Starting with version 2.2 Turbine uses the decoupled Torgue.

Torgue uses asingle XML database schema to generate the SQL for your target database and
Torque's Peer-based object relation model representing your XML database schema.

Y ou can use devaki-nextobjects to create the model for your application.
OJB uses Torque's generator engine to setup the testbed database and feed it with initial data.

Besides the SQL generation facilities Torque also provides special support for OJB related
transformations. It provides the following two ant targets:
e 0jb-mode
generates a simple object model for ojb
e 0jb-repository
generates the repository for ojb
A complete list of al availableTorque targets can be found at the Torque Generator site.

4.6.2.5. Forward engineering from repository.xml

Thereis currently no tool available that directly supports this model. It is not difficult to
implement an XSLT stylesheet that transforms the OJB repository.xml directly into DDL
Statements.

An even simpler approach could be to transform the repository.xml file into a Torque xml
file. DDL can then be generated by the Torque engine.
If you write such an XSLT file please tell us about it!

4.6.2.6. XDoclet transfor mation from Java code

XDoclet

XDoclet is acode generation engine. It enables Attribute-Oriented Programming for java. In
short, this means that you can add more significance to your code by adding meta data
(attributes) to your java sources. Thisis donein special JavaDoc tags.

OJB was shipped with its own xdoclet-module.

XDoclet will parse your source files and generate many artifacts such as XML descriptors
and/or source code from it. These files are generated from templates that use the information
provided in the source code and its JavaDoc tags.

XDoclet lets you apply Continuous Integration in component-oriented devel opment.
Developers should concentrate their editing work on only one Java source file per

Page 312

0oJB

component.

XDoclet originated as atool for creating EJBs, it has evolved into a general -purpose code
generation engine. XDoclet consists of a core and a constantly growing number of modules.

4.6.2.7. Reverse engineering from database

Druid

Druid isatool that allows users to create databases in agraphical way. The user can add
or import tables, fields, folders to group tables and can modify most of the database
options that follow the SQL-92 standard. In addition to sgl options, the user can
document each table and each field with HTML information. It is distributed with
modules for generating Java classes, OJB metadata, and JDO metadata.

Impart Eclipse Plugin for OJB

The Impart Eclipse plugin is based on the OJB ReverseDB Tool and provides the same
functionality (and also some additiona goodies). It ships as a plugin to the Eclipse IDE.
It provides a very convenient GUI that integrates smoothly into the Eclipse platform.
RDBS2J

RDBS2Jis a GUI based mapping tool from relational database scheme to persistent java
classes which use JDO as persistence mechanism. The mapping can be modified by the
GUI.

The current version is designed to create code for OJB.

The ODMG and the JDO interface are supported. RDBS2J creates the *.jdo files and the
repository _user.xml, which are needed by OJB.

The OJB ReverseDB tool

OJB ships with asimple reverse engineering tool that allows to connect to aRDBMS via
JDBC and to take the tables from the database catalog as input.

Thistool provides anice GUI to generate Java classes and the matching repository.xml
file.

Y ou can invoke the ReverseDB tool with the ANT target r ever se- db.

The ReverseDB tool is not up to date - any help is welcome.

4.6.3. HOWTO - Use Anonymous K eys

4.6.3.1. Why Do We Need Anonymous K eys?

The core difference between referential integrity in Javaand in an RDBMS liesin where the
specific referential information is maintained. Java, and most modern OO languages,
maintain referential integrity information in the runtime environment. Actual object

Page 313

0JB

relationships are maintained by the virtual machine so that the symbolic variable used in the
application is dereferenced it will in fact provide access to the object instance which it is
expected to provide access to. Thereis no need for amanual lookup or search across the heap
for the correct object instance. Entity reference integrity is maintained and handled for the
programmer by the environment.

Relational databases, on the other, purposefully place the referential integrity and lookups
into the problem domain - that is the problem they are designed to solve. An RDBMS
presumes you can design something more efficient for your specific circumstances than the
JVM does (you trust its ability to do object lookupsin the heap is sufficiently efficient). As
an RDBM S has a much larger heap equivalent it is designed to not operate under that
assumption (mostly). So, in an RDBM S the concept of specific foreign keys exists to
maintain the referential integrity.

In crossing the object to relational entity barrier there is a mismatch between the referential
integrity implementations. Java programmers do not want to have to maintain both object
referential integrity and key referential integrity analogous to

{

Foo child = new SoneQ her FooType() ;
Foo parent = new SoneFooType();

chi l d. set Parent (parent);
child.setParentld(parent.getld());
}

Thisis double the work required - you set up the object relationship, then set up the key
relationship. OJB knows about the relationship of the objects, thusit is only needed to do

Foo child = new Foo();
Foo parent = new Foo();
chi |l d. set Parent (parent);

OJB can provide transparent key relationship maintenance behind the scenesfor 1:1 relations
viaanonymous access fields. As object relationships change, the relationships will be
propogated into the key values without the Java object ever being aware of a relational key
being in use. This means that the java object does not need to specify a FK field for the
reference.

Without use of anonymous keys class Foo haveto look like:

cl ass Foo

I nt eger id;
I nt eger fkParent Foo;

Page 314

0oJB

Foo parent;
/1 optional getter/setter

{
When using anonymous keys the FK field will become obsolete:

cl ass Foo

I nt eger id;
Foo parent;

/1 optional getter/setter

Under specific conditionsiit's also possible to use anonymous keys for other relations or primary keys. More info in
advanced-technique section.

4.6.3.2. How it works

To play for safety it is mandatory to understand how this feature is working. More
information how it works please see here.

4.6.3.3. Using Anonymous K eys

Now we can start using of the anonymous key feature. In this section the using is detailed
described on the basis of an example.

The Code

Take the following classes designed to model a particular problem domain. They may do it
reasonably well, or may not. Presume they model it perfectly well for the problem being
solved.

public class Desk

{
private Finish finish;
/** Contains Drawer instances */
private List drawers;
private int number O Legs;
private Integer id;
public Desk()

this.drawers = new ArraylList();

Page 315

0JB

}
public List getDrawers()

return this.drawers;

}
public int getNunmber Of Legs()
{
return this. number O Legs;
}
public void set Number Of Legs(int num
{
t hi s. nunber O Legs = num
}
publ i c Finish getFinish()
{
return this.finish;
}
public void setFinish(Finish finish)
{
this.finish = finish;
}
}
public class Drawer
{
/** Contains Thing instances */
private List stufflnDrawer;
private Integer id;
public List getStufflnDrawer()
return this.stufflnDrawer;
public Drawer ()
this.stufflnDrawer = new ArraylList();
}
}

public class Finish
private String wood
private String col or;
private Integer id;

public String getWod()

Page 316

0oJB

return this.wood

ublic void set Wod(String wood)

thi s. wood = wood;

ublic String getCol or()

return this.color;

ublic void setColor(String col or)

this.color = color;

—~— o~ —~— ~g —~ ~ —— -

}
public class Thing
{

private String namne;
private Integer id;

public String getName()
{

return this.name;

public void setName(String name)

thi s. nanme = nane;

}
}

A Desk will typically reference multiple drawers and one finish.

The Database

When we need to store our instances in a database we use afairly typical table per class
persistance model.

CREATE TABLE fi ni sh

i d | NTEGER PRI MARY KEY,
wood VARCHAR(255) ,
col or VARCHAR(255)

)

CREATE TABLE desk

(
id | NTEGER PRI MARY KEY,

Page 317

0JB

num | egs | NTEGER

finish_id | NTEGER

FORElI GN KEY (finish_id) REFERENCES fi ni sh(id)
IE

CREATE TABLE dr awer

(
id | NTEGER PRI MARY KEY,

desk id | NTEGER,
FOREI GN KEY (desk_id) REFERENCES desk(i d)

)

CREATE TABLE t hi ng

(
id | NTEGER PRI MARY KEY,

nane VARCHAR(255) ,
drawer id | NTEGER
FOREI GN KEY (drawer i d) REFERENCES drawer (i d)

iE

At the database level the possible relationships need to be explicitely defined by the foreign
key constraints. These model all the possible object relationships according to the domain
model (until generics enter the Java language for the collections AP, thisis technically
untrue for the classes used here).

The Repository Configuration

When we go to map the classes to the database, it is almost a one-to-one property to field
mapping. The exception here isthe primary key on each entity. Thisis meaningless
information in Java, so we would like to keep it out of the object model. Anonymous access
keys allow usto do that.

The repository.xml must know about the database columns used for referential integrity, but
OJB can maintain the foreign key relationships behind the scenes - freeing the devel oper to
focus on more accurate modeling of her objects to the problem, instead of the the persistance
mechanism. Doing thisis also very simple - in the repository.xml file mark the field
descriptorswithaaccess="anonynous" attribute.

<cl ass-descri ptor
cl ass="Desk"
t abl e="desk" >

<fi el d-descri pt or
name="i d"
col um="i d"
j dbc-t ype="1| NTEGER"
pri marykey="true"
?utoincrenEnt="true"
>

Page 318

0oJB

<fi el d-descri pt or
nane="nunber Of Legs"
col um="num | egs"
;dbc—type:"INTEGER‘
>

<fi el d-descri pt or
nanme="fini shld"
col um="finish_id"
j dbc-t ype="1 NTEGER"
access="anonynmous" />

<col | ecti on-descri ptor

nane="dr aner s"

el enent - cl ass-ref ="Drawer"

>

<i nverse-forei gnkey field-ref="deskld"/>
</col | ecti on-descri ptor>

<r ef erence-descri pt or
name="fini sh"
cl ass-ref="Fini sh">
<foreignkey field-ref="finishld"/>
</reference-descri ptor>
</ cl ass-descri ptor>

<cl ass-descri ptor
cl ass="Fi ni sh"
tabl e="finish">

<fi el d-descri pt or
name="i d"
col um="id"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrenent ="t rue"
/>

<fi el d-descri pt or
nanme="wood"
col um="wood"
j dbc-t ype=" VARCHAR'
si ze=" 255"
/>

<fi el d-descri pt or
nanme="col or"
col um="col or"
j dbc-t ype=" VARCHAR"
si ze="255"
/>

</ cl ass-descri pt or >

<cl ass-descri pt or
cl ass="Dr aner"
t abl e="dr aner ">

Page 319

0JB

<fi el d-descri pt or
name="i d"
col um="i d"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrenent ="t rue"
/>
<fi el d-descri pt or
nanme="deskl d"
col um="desk_i d"
j dbc-t ype="1 NTEGER"
?ccess:"anonynnus"
>
<col | ecti on-descri ptor
name="st uf f | nDr awner "
el ement - cl ass-ref="Thi ng"
>
<i nverse-foreignkey field-ref="drawerld"/>
</ col | ecti on-descri ptor>
</ cl ass-descri ptor>

<cl ass-descri ptor
cl ass="Thi ng"
t abl e="t hi ng" >

<fi el d-descri pt or
name="i d"
col um="i d"
j dbc-type="1| NTEGER'
pri marykey="true"
aut oi ncrenent ="t rue"
/>

<fi el d-descri ptor
name="name"
col um="nane"
j dbc-t ype=" VARCHAR"
si ze=" 255"
/>

<fi el d-descri pt or
name="dr awer | d"
col um="dr awer i d"
j dbc-type="| NTEGER'
access="anonynous"
/>

</ cl ass-descri pt or>

Look first at the class descriptor for the Thing class. Notice the field-descriptor with the
name attribute "drawerld". Thisfield is |abeled as anonymous access. Because it is
anonymous access OJB will not attempt to assign the value here to a"drawerld” field or
property on the Thing class. Normally the name attribute is used as the Java name for the
attribute, in this case it isnot. The name is till required because it is used as an indicated for
references to this anonymous field.

Page 320

0oJB

In the field descriptor for Drawer, ook at the collection descriptor with the name
stuffinDrawer. This collection descriptor references aforeign key with the
field-ref="drawerl d". Thisreferenceisto the anonymous field descriptor in the
Thing descriptor. The field-ref matches to the name in the descriptor whether or not the name
also maps to the Java attribute name. This dual use of nane can be confusing - be careful.

The same type mapping that is used for the collection descriptor in the Drawer descriptor is
also used for the 1:1 reference descriptor in the Desk descriptor.

The primary keys are populated into the objects asit is generally a good practice to not
implement primary keys as anonymous access fields. Primary keys may be
anonymous-access but references will get lost if the cache is cleared or the persistent object
isserialized.

4.6.3.4. Benefits and Drawbacks

There are both benefits and drawbacks to using anonymous field references for maintaining
referential integrity between Java objects and database relations. The most immediate benefit
is avoiding semantic code duplication. The second major benefit is avoiding cluttering class
definitions with persistance mechanism artifacts. In awell layered application, the
persistance mechanism will not really need to be so obvious in the object model
implementation. Anonymous fields helpt o achieve this - thereby making persistence
mechanisms more flexible. Moving to a different one becomes easier.

4.6.4. HOWTO - Use DB Sequences

4.6.4.1. Introduction

It is easy to use OJB with with database generated sequences. Typically atable using
database generated sequences will autogenerate auniqueid for afield as the default value for
that field. This can be particularly useful if multiple applications access the same database.
Not every application will be using OJB and find it convenient to pull unique values from a
high/low table. Using a database managed sequence can help to enforce unique id's across
applications all adding to the same database. All of that said, care needs to be taken as using
database generated sequences imposes some portability problems.

OJB includes a sequence manager implementation that is aware of database sequences and
how to use them. It is known to work against Oracle, SAP DB, and PostgreSQL. MySQL has
its own sequence manager implementation because it is special. This tutorial will build
against PostgreSQL, but working against Oracle or SAP will work the same way.

Additional information on sequence managersis available in the Sequence Manager

Page 321

0JB

documentation.

4.6.4.2. The Sample Database

Before we can work with OJB against a database with a sequence, we need the database. We
will create asimple table that pullsits primary key from a sequence named 'Uniquel dentifier'.

CREATE TABLE t hi ngi e
(

name VARCHAR(50),
i d | NTEGER DEFAULT NEXTVAL(' Uni quel dentifier')

)
We must also define the sequence from which it is drawing values:

CREATE SEQUENCE Uni quel dentifi er;
So that we have the following table:

Tabl e "public.thingie"

Col um | Type | Modi fi ers

________ e S
nane | character varying(50) |

id | integer | default nextval (' Uni queldentifier'::text)

If we manually insert some entriesinto this table they will have their i d field set
automagically.

I NSERT | NTO t hi ngi e (name) VALUES (' Fred');
I NSERT | NTO t hi ngi e (nane) VALUES ('WInm');
SELECT nane, id FROM t hi ngi e;

nane | id

T, [

Fred | O

Wim | 1

(2 rows)

4.6.4.3. Using OJB

The Database Repository Descriptor

The next step isto configure OJB to access our t hi ngi e table. We need to configure the
corrct sequence manager inther eposi t or y- dat abase. xni .

Thedefault r eposi t or y- dat abase. xm usesthe High/Low Sequence manager. We
will delete or comment out that entry, and replace it with the
or g. apache. oj b. broker. util. sequence. SequenceManager Next Val | npl

Page 322

0oJB

manager. This manager will pull the next value from a named sequence and use it. The entry
for our sequence manager in the repository is:

<sequence- manager
cl assNane="or g. apache. oj b. broker. util. sequence. SequenceManager Next Val | npl "
/>

This needs to be declared within the JDBC Connection descriptor, so an entire
reposi t ory-dat abase. xm might look like:

<j dbc- connecti on- descri pt or
jcd-alias="defaul t"
def aul t - connecti on="t rue"
pl at f or n=" Post gr eSQL"
j dbc- I evel =" 2. 0"
driver="org. postgresqgl.Driver"
pr ot ocol =" dbc"
subpr ot ocol =" post gresql "
dbal i as="test"
user name="t ester"
passwor d=""
eager -rel ease="f al se"
bat ch- nrode="f al se"
useAut oComm t ="1"
i gnor eAut oConmmi t Excepti ons="f al se"
>

<connect i on- poo
maxActive="21"
val i dationQuery=""/>

<sequence- manager
cl assNane="or g. apache. oj b. broker. uti | . sequence. SequenceManager Next Val | npl "
/>
</j dbc-connecti on-descri pt or>

Defining a Thingie Class
For the sake of simplicity we will make avery basic Java Thingie:

public class Thingie

{
/** thingi e(nane) */
private String namne;

[** thingie(id) */
private int id;

public String getNanme() { return this.nane; }
public void setName(String nane) { this.name = nane; }

public int getld() { return this.id; }

Page 323

0JB

}
We also need aclass descriptor inr eposi t ory-user. xm that appears asfollows:

<cl ass-descri ptor
cl ass="Thi ngi e"
t abl e="THI NG E"
>
<fi el d-descri pt or
nane="i d"
col um="1D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrement ="t rue"
sequence- nane="Uni quel dentifier"
/>
<fi el d-descri pt or
name="namnme"
col um=" NAMVE"
;dbc-type:"VARCHAR‘
>
</ cl ass-descri pt or >

Look over thei d field descriptor carefully. The aut oi ncr enent and sequence- nane
attributes are important for getting our desired behavior. These tell OJB to use the sequence
manager we defined to auto-increment the thevalueini d, and they also tell the sequence
manager which database sequence to use - in thiscase Uni quel denti fi er

We could allow OJB to create an extent-aware sequence and use it, however aswe are
working against a table that defaults to a specific named sequence, we want to make sure to
pull values from that same sequence. Information on allowing OJB to create its own
sequences is available in the Sequence Manager documentation.

Using Thingie
Just to demonstrate that this all works, hereis asimple application that uses our Thingie.

i mport org. apache. oj b. br oker. Per si st enceBr oker
i mport org. apache. oj b. br oker . Per si st enceBr oker Fact ory;

public class ThingieDriver
public static void main(String [] args)

Per si st enceBr oker broker =
Per si st enceBr oker Fact ory. def aul t Per si st enceBr oker () ;

Thi ngi e thing = new Thingie();
Thi ngi e ot her Thi ng = new Thi ngi e();

t hi ng. set Name(" Mabob") ;

Page 324

0oJB

ot her Thi ng. set Nane("Majig");

br oker. begi nTransacti on();
br oker. st ore(thing);

br oker. st or e(ot her Thi ng) ;
br oker. conm t Transacti on();

Systemout.println(thing.getNane() + " : " + thing.getld());
System out. println(otherThing. getNane() + " : " +
ot her Thi ng. get1d());
} br oker. cl ose();

}

When itisrun, it will create two Thingie instances, store them in the database, and report on
their assigned i d values.

java -cp [...] ThingieDriver
Mabob : 2
Majig : 3

4.6.5.HOWTO - Work with LOB Data Types
4.6.5.1. Using Oracle LOB Data Typeswith OJB

Introduction

In alot of applications there is aneed to store large text or binary objects into the database.
The definition of large usually means that the object's size is beyond the maximum length of
acharacter field. In Oracle this means the objects to be stored can grow to > 4 KB each.

Depending on the application you are developing your "large objects’ may either be in the
range of some Kilobytes (for example when storing text-only E-Mails or regular XML
documents), but they may also extend to several Megabytes (thinking of any binary data such
as larger graphics, PDFs, videos, etc.).

In practice, the interface between your application and the database used for fetching and
storing of your "large objects" needs to be different depending on the expected size. While it
is probably perfectly acceptable to handle XML documents or E-Mailsin memory as a string
and always completely retrieve or store them in one chunk this will hardly be a good ideafor
video files for example.

ThisHOWTO will explain:

1. Why you would want to store large objects in the database
2. Oracle LARGE versus LOB datatypes
3. LOB handling in OJB using JDBC LOB types

Page 325

0JB

Thistutorial presumes you are familiar with the basics of OJB.

4.6.5.2. Backgrounder: Large objectsin databases

This section is meant to fill in non-DBA people on some of the topics you need to understand
when discussing large objects in databases.

Your database: The most expensive file system?

Depending on background some people tend to store anything in a database while others are
biased against that. As databases use afile system for physical storage anyway, why would it
make sense to store pictures, videos and the like as a large object in a database rather that just
create a set of folders and store them right into the database.

When listening to Oracle's marketing campaingns one might get the impression that there is
no need to have plain filesystems anymore and that they all will vanish and be replaced by
Oracle database servers. If that happened this would definitely boast Oracl€e's revenues, but at
the same time make I T cost in companies explode.

But there are applications where it in fact makes sense to have the database take care of
unstructured data that you would otherwise just store in afile. The most common criteriafor
storing non-relational data in the database instead of storing it directly into the file systemis
whenever there is a strong link between this non-relatinal and some relational data.

Typical examplesfor that would be:

1. Picturesor videos of housesin area estate agent's offer database
2. E-Mailsrelated to a customer's order

If you are not storing these objects into the database you would need to create alink between
the relational and the non-relational data by saving filenames in the database. This means that
you application is responsible for managing this weak link in any respect. In order to make
sure your application will be robust you need to make sure in your own code that

1. When creating a new record you create a valid and unique filename for storing the object.

2. When deleting arecord you delete the corresponding file as well

3. When accessing the file referred to in the record you double-check the file is there and no
locked

(There might be other, more subtle implications.)

All thisis done for you by the database in case you choose to store your objects there. In
addition to that, when discussing text data, a database might come with an option to
automatically index the stored text documents for easy retrievel. Thiswould allow you to
perform an SQL seach such as"give me al customers that ever referred to the project foo in

Page 326

0oJB

an e-mail". (In Oracle you need to install the InterMedia option, aka Oracle Text in order to
get this extrafunctionality. Several vendors have also worked on technologies that alowed to
seach rich content such as PDFsfiles, pictures or even sound or video stored in a database

from SQL.)

Oracle LARGE versus L OB datatypes

Some people are worried about the efficiency of storing large objects in databases and the
implications on performance. They are not necessarily entirely wrong in fearing that storing
large objects in databases might be problematic the best or might require alot of tweaks to
parametersin order to be able to handle the large objects. It all depends on how a database
implements storing large objects.

Oracle comes with two completely different mechanisms for that:

1. LARGE objects
2. LOB objects

When comparing the LARGE datatypes such as (*fixme*) to the LOB datatypes such as
CLOB, BLOB, NCLOB (*fixme*) they don't read that different at first. But there is a huge
difference in how they are handled both internally inside the database as well when storing
and retrieving from the database client.

LARGE fields are embedded directly into the table row. This has some consequences you
should be aware of:

1. If your record is made up of 5 VARCHAR fields with a maximum length of 40 bytes
each and one LONGVARCHAR and you store 10 MB into the LONGVARCHAR
column, your database row will extent to 10.000.200 bytes or roughly 10 MB.

2. The database always reads or writes the entire row. So if you do a SELECT on the
VARCHAR fieldsin order to display their content in a user interface as abasis for the
user to decideif he or she will need the content of the LONGVARCHAR at al the
database will already have fetched all the 10 MB. If you SELECT and display 25 records
each with a10 MB abject in it thiswill mean about 250 MB of |/0.

3. When storing or fetching such arow you need to make sure your fetch buffer is sized
appropriately.

In practice this cannot be efficient. It might work aslong as you stay in the KB range, but

you will most likely run into trouble as soon as it getsinto the MBs per record. Additionally,

there are more limitations to the concept of LONG datatypes such as limiting the number of
them you can have in one row and how you can index them. Thisis probably why Oracle
decided to deprecate LONG datatypes in favor of LOB columns.

A lot of non-Oracle-DBA people believe that LOB means "large OBject" because some other

Page 327

0JB

vendors have used the term BLOB for "Binary Large OBject" in their products. Thisis not
only wrong but - even worse - misleading, because people are asking: "What's the difference
between large and long?' (Bear with all non native English speakers here, please!)

Instead, LOB stands for Locator OBject which exactly describeswhat isis. It isapointer to
the place where the actual dataitself is stored. Thislocator will need only occupy some bytes
in the row thus not harming row size at all. So all the issues discussed above vanish
immediatelly. For the sake of simplicity think of a LOB as a pointer to afile on the databases
internal file system that stores the actual content of that field. (Oracle might use plain files or
different mechanismsin their implementation, we don't have to care.)

But asthere is always a trade-off while LOBs are exstremely handy inside arow, they are
more complex to store and retrieve. As opposed to all other column types their actual content
stayswhereit iseven if you transfer the row from the database to the client. All that goes
over thewire in that case will be atoken representing the actual LOB column content.

In order to read the content or to write LOB content it needs to open a separate stream
connection over the network that can be read from or written to similar to afile on a network
file system. JDBC (starting at version *fixme*) comes with special objects such as
java.sgl.Blob and java.sgl.Clob to access the content of LOBs that do not represent character
arrays or strings but streams!

4.6.5.3. Large Objectsin OJB

After having skipped the above Backgrounder (in case you do Oracle administration for a
living) of having read and understood it (hopefully appliesto the rest of us) now that you've
most likely decided to go for LOBs and forget about LONGs how is this handled with OJB?

Strategy 1: Using streamsfor LOB 1/O
HHHHHHHHHE 10 be Written HHHHHHETHH

Strategy 2: Embedding OJB content in Java objects
HHHHHHHHHHE 10 be wrritten SR

Querying CLOB content
HHHHHHHHHE 10 be wrritten s

4.6.6. HOWTO - Use OJB in clustered environments

Page 328

0oJB

4.6.6.1. How to use OJB in clustered environments

Object/Relational Bridge will work fine in environments that require robustness features such
as load-balancing, failover, and clustering. However, there are some important steps that you
need to take in order for your data to be secure, and to prevent isolation failures. These steps
are outlined below.

| have tested this in a number of environments, and with Servlet engines and J2EE
environments. If you run into problems, please post questions to the OJB users mail list.

This outline for clustering is based on an email from the OJB Users Mail List: Thisisthat
mail.
4.6.6.2. Three stepsto clustering your OJB application

A lot of people keep asking for robust ways to run their OJB enginesin multi-VM or
clustered environments. This email covers how to do that safely and securely using Open
Symphony's OSCache caching product.

OSCache is a high-performance, robust caching product that supports clustering. I've been
using it for awhilein production and it is excellent.

Back to the Topic: There are three main things that you should do in order to make your OJB
application ready for using a cache in amulti-VM or distributed environment.
First: Take care of the sequence manager

that you define within jdbc-connection-descriptor element in your repository.xml file. If
none was set OJB use per default the SequenceManager Hi ghLowl npl sequence
manager implementation.

As of Release Candidate 5 (rc5), you can use SequenceManagerHighLowlmpl in distributed (non-managed) environments.
The SequenceManagerHighL owlmpl now supports its own optimistic locking that makes the implementation cluster aware by
versioning an entry in the OJB_HL _SEQ table.

However, the SequenceM anagerHighL owImpl has not been heavily tested in clustered
environments, so if you want absolute security use an sequence manager implementation
which delegates key generation to database.

If your database supports database based sequence key generation (like PostgreSQL, Oracle,
...) it'srecommended to use SequenceManager Next Val | npl (supports database based
sequence keys). Using this sequence manager will prevent conflicts in multi-vm or clustered

Page 329

0JB

environments. More about sequence manager here.

Handling sequence names

If you are using SequenceManager Next Val | npl you have two possibilities:

e Doit by your own:
» Create a sequence object in your database.
* An Oracle sequence lookslike: "create sequence ackSequence increment by 1 start
with 1;"
* A Postgres sequence looks like: "CREATE SEQUENCE ackSequence START
1%
» For other databases you're on your own.
* Totell OJB to usethat sequence for your table add in your repository.xml the
sequence name to the field-descriptor for your table's primary key field:

<fi el d-descri pt or

name="ackl D'

col um="ACKI D"

j dbc-t ype="1 NTEGER"

pri marykey="true"

aut oi ncrenent ="t rue"

}sequence- nane="ackSequence"

>

e Let OJB do that job for you:
The SequenceManager Next Val | npl implementation create the sequencein
database automatic if none was found. If you don't want to declare asequence- nane
attribute in your field-descriptor, you can enable an automatic sequence name building by
setting a specific customrattribute , then SequenceManager Next Val | npl build an

internal sequence name if none was found.

<sequence- manager

cl assNane="or g. apache. oj b. broker. util. sequence. SequenceManager Next Val | npl " >
<attribute attribute-name="autoNani ng" attribute-val ue="true"/>

</ sequence- nmanager >

More about sequence manager here.

Second: Enable optimistic locking

Y ou need to secure the data at the database. Thomas Mahler (lead OJB developer and
considerable ORM guru) recommended in one email that you use the Optimistic Locking
feature that is provided by OJB when using the PB API in a clustered environment. Sounds
good to me. To do this you need to do three small steps:

Page 330

0oJB

When using one of the top-level API in most cases Pessimistic (Object) Locking is supported. In that case it is recommended
to use a distributed lock management instead of optimistic locking. More information about ODMG API and L ocking here.

« Add adatabase column to your table that is either an INTEGER or a TIMESTAMP
« Addthefield to your java class, and getter/setter methods (depends on the used
PersistentField implementation):

private Integer ackOptLock;
public Integer get AckOptLock()

{
return ackOpt Lock;
}

public void set AckOpt Lock(|l nteger ackOpt Lock)
{
t hi s. ackOpt Lock = ackOpt Lock;

e Add the column to your table in your repository:

<fi el d-descri pt or
nanme="ackOpt Lock"
col umm=" ACKOPTLOCK"
j dbc-type="1 NTEGER'
| ocki ng="true"/>

Now OJB will handle the locking for you. No explicit transactional code necessary!

Do The Cache

The detailed steps to setup the OSCache can be found in caching document

You'reready to go! Now just create two instances of your application and see how they
communicate at the cache level. Very cool.

4.6.6.3. Notes

» For J2EE/Servlet users: | have tested this on a number of different application servers. If
you're having problems with your engine, post an email to the OJB Users mail list.

e OSCache also supports IMS for clustering here, which | haven't covered. If you either
don't have access to a multicast network, or just plain like IMS, please refer to the
OSCache documentation for help with that, see OSCache Clustering with IMS).

« | have also tested this with Tangosol Coherence. Please refer to this Blog entry for that
setup: Coherence Setup

« OJB aso has shipswith JCS. Feel freeto try that one out on your own.

4.6.7. HOWTO - Stored Procedure Support

Page 331

0JB

4.6.7.1. Introduction

OJB supports the use of stored procedures to handle the basic DML operations (INSERT,
UPDATE, and DELETE). This document will describe the entries that you'll need to add to
your repository in order to get OJB to utilize stored procedures instead of 'traditional’
INSERT, UPDATE or DELETE statements.

Please note that there will be references to 'stored procedures throughout this document.
However, thisisjust asimplification for the purposes of this document. Any place you see a
reference to 'stored procedure’, you can assume that either a stored procedure or function can
be used.

Information presented in this document includes the following:

Basic repository entries

Common attributes for all procedure descriptors

An overview of the insert procedure, update procedure and delete procedure descriptors.
Information about the argument descriptors that are supported for all procedure

A simple example and a more complex example

4.6.7.2. Repository entries

For any persistable class (i.e. "com.myproject.Customer") where you want to utilize stored
procedures to handle persistence operations instead of traditional DML statements (i.e.
INSERT, UPDATE or DELETE), you will need to include one or more of the following
descriptors within the corresponding class-descriptor for the persistable class:

e insert-procedure -identifiesthe stored procedure that isto be used whenever a
class needs to be inserted into the database.

e updat e- procedur e - identifies the stored procedure that is to be used whenever a
class needs to be updated in the database.

« del et e-procedur e - identifies the stored procedure that is to be used whenever a
class needs to be removed from the database.

All of these descriptors must be nested within the class-descriptor that they apply to. Hereis
an example of asimple class-descriptor that includes each of the procedure descriptors listed
above:

<cl ass-descriptor class="com nyproject.Custonmer" table="CUSTOVER">
<fiel d-descriptor colum="1D" jdbc-type="DECI MAL" name="id"
pri marykey="true"/>
<fi el d-descri ptor col um="NAVE" jdbc-type="VARCHAR' nane="nanme"/>
<i nsert-procedure nane="CUSTOVER _PKG ADD'>
<runtime-argument field-ref="id" return="true"/>
<runtinme-argunment field-ref="nane"/>

Page 332

0oJB

</insert-procedure>

<updat e- pr ocedur e nane="CUSTOVER PKG. CHG'>
<runtime-argunment field-ref="id"/>
<runtime-argunent field-ref="nanme"/>

</ updat e- pr ocedur e>

<del et e- procedur e nane="CUSTOVER_PKG. CHG' >
<runtime-argunment field-ref="id"/>

</ del et e- pr ocedur e>

</ cl ass-descri pt or>

4.6.7.3. Common attributes

All three procedure descriptors have the following attributes in common:

e nane - Thisisthe name of the stored procedure that isto be used to handle the specific
persistence operation.

e return-field-ref - Thisidentifiesthefield in the class where the return value from
the stored procedure will be stored. If this attribute is blank or not specified, then OJB
will assume that the stored procedure does not return a value and will format the SQL
command accordingly.

The basic syntax that is used to call a procedure that has a return value looks something like
this:

{?= call & t;procedure-nane>[& t;argl>, & t;arg2>, ...]1}
The basic syntax that is used to call a procedure that does not include areturn value looks
something like this:

{call <procedure-naneé>[& t;arglé>, & t;arg2>, ...]}

When OJB assembles the SQL to call a stored procedure, it will use the value of the 'name'
attribute in place of ‘procedure-name’ in these two examples.

In addition, if the procedure descriptor includes avauein the 'return-field-ref' attribute that is
'vaid', then the syntax that OJB builds will include the placeholder for the result parameter.

The previous section referred to the idea of a'valid' value in the 'return-field-ref' attribute. A
valueis considered to be 'valid' if it meets the following criteria:

e Thevaueisnot blank
« Thereisafield-descriptor with a‘'name' that matches the value in the 'return-fiel d-ref*
attribute.

If the 'return-field-ref' attribute is not 'valid', then the placeholder for the result parameter will
not be included in the SQL that OJB assembles.

4.6.7.4. insert-procedure

Page 333

0JB

The insert-procedure descriptor identifies the stored procedure that should be used whenever
aclass needs to be inserted into the database. In addition to the common attributes listed
earlier, the insert-procedure includes the following attribute:

e include-dl-fields

This attribute provides an efficient mechanism for passing al attributes of a persistable class
to a stored procedure. If this attribute is set to true, then OJB will ignore any nested argument
descriptors. Instead, OJB will assume that the argument list for the stored procedure includes
arguments for all attributes of the persistable class and that those arguments appear in the
same order as the field-descriptors for the persistable class.

The default value for this attribute is 'false'.

If the field-descriptors in your repository do not ‘align' exactly with the argument list for the stored procedure, or you want to
maintain explicit control over the values that are passed to the stored procedure, then either set the 'include-all-fields' attribute
to 'false’ or leave it off the insert-procedure descriptor.

4.6.7.5. update-procedure

The update-procedure descriptor identifies the stored procedure that should be used
whenever a class needs to be updated in the database. In addition to the common attributes
listed earlier, the update-procedure includes the following attribute:

e include-al-fields

This attribute provides the same capabilities and has the same caveats as the
include-all-fields attribute on the insert-procedure descriptor.

4.6.7.6. delete-procedure

The delete-procedure descriptor identifies the stored procedure that should be used whenever
a class needs to be deleted from the database. In addition to the common attributes listed
earlier, the delete-procedure includes the following attribute:

¢ include-pk-only
This attribute provides an efficient mechanism for passing all of the attributes that make
up the primary key for a persistable class to the specified stored procedure. If this
attribute is set to true, then OJB will ignore any nested argument descriptors. Instead,
OJB will assume that the argument list for the stored procedure includes arguments for all
attributes that make up the primary key for the persistable class (i.e. those
field-descriptors where the ‘primary-key" attribute is set to 'true’). OJB will also assume
that those arguments appear in the same order as the corresponding field-descriptors for
the persistable class.

Page 334

0oJB

The default value for this attribute is 'false'.

If the field-descriptors in your repository that make up the primary key for a persistable class do not ‘align’ exactly with the
argument list for the stored procedure, or you want to maintain explicit control over the values that are passed to the stored
procedure, then either set the 'include-pk-only" attribute to ‘false’ or leave it off the delete-procedure descriptor.

4.6.7.7. Argument descriptors

Argument descriptors are the mechanism that you will use to tell OJB two things:

1. How many placeholders should be included in the argument list for a stored procedure?
2. What value should be passed for each of those arguments?

There are two types of argument descriptors that can be defined in the repository:

« runtime arguments used to set a stored procedure argument equal to avalue that is only
known at runtime.
« constant arguments used to set a stored procedure argument equal to constant value.

Y ou may notice that there is no argument descriptor specifically designed to pass anull value
to the procedure. This capability is provided by the runtime argument descriptor.

The argument descriptors are essentially the 'mappings between stored procedure arguments
and their runtime values. Each procedure descriptor can include O or more argument
descriptorsin it's definition.

After reading that last comment, you may wonder why OJB allows you to configure a
procedure descriptor with no argument descriptors since the primary focus of OJB isto
handle object persistence. How could OJB perform any sort persistence operation using a
stored procedure that did not involve the passage of at least one value to the stored
procedure? To be honest, it is extremely unlikely that you would ever set up a procedure
descriptor with no argument descriptors. However, since there is no minimum number of
arguments required for a stored procedure, we did not want to implement within OJB a
requirement on the number of arguments that was more restrictive than the limits imposed by
most/all database systems.

runtime-argument descriptors

A runtime-argument descriptor is used to set a stored procedure argument equal to avalue
that is only known at runtime.

Two attributes can be specified for each runtime-argument descriptor:

o field-ref
The 'field-ref' attribute identifies the specific field descriptor that will provide the

Page 335

0JB

argument's value. If this attribute is not specified or does not resolveto avalid
field-descriptor, then anull value will be passed to the stored procedure.

e return
The 'return’ attribute is used to determine if the argument is used by the stored procedure
as an 'output’ argument.
If this attribute is set to true, then the corresponding argument will be registered as an
output parameter. After execution of the stored procedure, the value of the argument will
be 'harvested' from the CallableStatement and stored in the attribute identified by the
field-ref attribute.
If this attribute is not specified or set to false, then OJB assumes that the argument is
simply an 'input’ argument, and it will do nothing special to the argument.

constant-argument descriptors

A constant-argument descriptor is used to set a stored procedure argument equal to constant
value.
Thereis one attribute that can be specified for the constant-argument descriptor:

e vaue
The 'value' attribute identifies the value for the argument.

4.6.7.8. A ssimple example

This section provides background information and a simple exampl e that illustrates how
OJB's support for stored procedures can be utilized.

The background information covers the following topics:

« Thebasic requirements

« The database objects including the table that will be manipulated, the sequence that will
be used by the stored procedures to assign primary key falues, the insert and update
triggers that maintain the four 'audit’ columns and the package that provides the stored
procedures that will handle the persistence operations.

Click hereto skip the background information and go straight to the implementation.

The basic requirements

These are the requirements that must be satisfied by our example
1. All insert, update and delete operations are to be performed by stored procedures.

2. All primary key values are to be by the stored procedure that handles the insert operation.
The value that is assigned should be reflected in the object that ‘triggered’ the insert
operation.

Page 336

0oJB

3. For auditing purposes, all tables will include the following set of columns:

USER_CREATED - Thiswill contain the id of the user who created the record
DATE_CREATED - The date on which the record was created created
USER_UPDATED - Theid of the user who last modified the record
USER_UPDATED - The date on which the record was last modified

In addition to the inclusion of these columns on each table, the following requirements
related to these columns had to be supported:

1.

2.

3.

The values of the two date-related audit columns were to be maintained at the

database level viainsert and update triggers.

» Theinsert trigger will set both DATE_CREATED and DATE_UPDATED to the
current system date.

» Theupdate trigger will set DATE_UPDATED to the current system date. The
update trigger will also ensure that the original value of DATE_CREATED is
never modified.

The values of the two user-related audit columns are to be maintained at the database

level viainsert and update triggers.

* Theinsert and update triggers will ensure that USER_CREATED and
USER_UPDATED are appropriately popul ated.

» Theupdate trigger will ensure that the original value of USER_CREATED is never
modified.

Any changes that are made by the insert or update triggersto any of the four "audit’

columns had to be reflected in the object that caused the insert or update operation to

occur.

The database objects

The database objects that are described in this section utilize Oracle specific syntax.
However, you should not infer from this that the stored procedure support provided by OJB
can only be used to access data that is stored in an Oracle database. In reality, stored
procedures can be used for persistence operations in any database that supports stored
procedures.

e Thetable that will be manipulated,

» The sequence that will be used by the stored procedures to assign primary key values

e Theinsert and update triggers that maintain the four ‘audit' columns

» The package that provides the stored procedures that will handle the persistence
operations.

Click here to skip the information about the database objects and go straight to the
implementation.

The CUSTOMER table

Page 337

0JB

This example will deal exclusively with persistence operations related to the a table named
'CUSTOMER' that is built using the following DDL.:

CREATE TABLE CUSTOVER
(1D NUMBER(18) NOT NULL

NAVE VARCHAR2(50) NOT NULL
USER_CREATED VARCHAR2(30)

DATE_CREATED DATE

USER_UPDATED VARCHAR2(30)

DATE_UPDATED DATE

CONSTRAI NT PK_CUSTOVER PRI MARY KEY (D)

);
The sequence
This sequence will be used to assign unique valuesto CUSTOVER. | D.

CREATE SEQUENCE CUSTOMER_SEQ

Theinsert and updatetriggers

These two triggers will implement all of the requirements listed above that are related to the
four audit columns:

CREATE OR REPLACE TRI GGER CUSTOMER | TR
BEFORE | NSERT ON CUSTOVER

FOR EACH ROW

BEG N

-- Popul ate the audit dates

SELECT SYSDATE, SYSDATE
I NTO : NEW DATE_CREATED, : NEW DATE_UPDATED
FROM DUAL;

-- Make sure the user created colum is popul at ed.
| F : NEW USER_CREATED | S NULL
THEN
SELECT SYS_CONTEXT(' USERENV' , ' TERM NAL')
| NTO : NEW USER_CREATED
FROM DUAL;
END | F;

-- Make sure the user updated columm is popul at ed.

I F : NEW USER_UPDATED I S NULL

THEN

SELECT SYS_CONTEXT(' USERENV' , ' TERM NAL')
I NTO : NEW USER_UPDATED

Page 338

0oJB

FROM DUAL;
END | F;
END;
/

CREATE OR REPLACE TRI GGER CUSTOMER _UTR
BEFORE UPDATE ON CUSTOVER

FOR EACH ROW

BEG N

-- Popul ate the date updated

SELECT SYSDATE
I NTO : NEW DATE_UPDATED
FROM DUAL;

-- Make sure the user updated columm is popul at ed.
I F : NEW USER_UPDATED | S NULL
THEN
SELECT SYS_CONTEXT(' USERENV' , ' TERM NAL')
| NTO : NEW USER_UPDATED
FROM DUAL;
END | F;

-- Make sure the date/user created are never changed

SELECT : OLD. DATE_CREATED, :OLD. USER CREATED
I NTO : NEW DATE_CREATED, : NEW USER_CREATED
FROM DUAL,;

END;

/

The package

This Oracle package will handle all INSERT, UPDATE and DELETE operations involving
the CUSTOMVER table.

CREATE OR REPLACE PACKAGE CUSTOVER _PKG AS
-- This procedure should be used to add a record to the CUSTOMVER t abl e.

PROCEDURE ADD (Al D IN QUT CUSTOMER. | DT YPE
, ANAMVE I'N CUSTOVER. NAVEY% YPE
, AUSER CREATED I N QUT CUSTOVER. USER CREATEDY YPE
, ADATE_CREATED I N QUT CUSTOVER. DATE_CREATEDY YPE
, AUSER UPDATED I N QUT CUSTOVER. USER UPDATEDY YPE
, ADATE_UPDATED I N QUT CUSTOMER. DATE_UPDATEDY YPE) ;

-- This procedure should be used to change a record on the CUSTOVER tabl e.

PROCEDURE CHANCE (AID I'N CUSTOVER. | D% YPE
, ANANVE I'N CUSTOVER. NAVE% YPE

Page 339

0JB

, AUSER_CREATED | N OUT CUSTOVER. USER CREATEDYA YPE
, ADATE_CREATED | N OUT CUSTOVER. DATE_CREATEDYI YPE
, AUSER_UPDATED | N OUT CUSTOVER. USER UPDATEDYI YPE
, ADATE_UPDATED I N OUT CUSTOVER. DATE_UPDATEDYIYPE) ;
-- This procedure should be used to delete a record fromthe CUSTOVER
tabl e.
PROCEDURE DELETE (Al D I N CUSTOMER | DUIYPE) ;
END CUSTOMVER PKG
/
CREATE OR REPLACE PACKAGE BODY CUSTOVER PKG AS

-- This procedure should be used to add a record to the CUSTOMVER t abl e.
PROCEDURE ADD (Al D I N OUT CUSTOVER. | DY YPE
, ANANMVE IN CUSTOMER. NAMEYA YPE
, AUSER_CREATED I N OUT CUSTOVER. USER CREATEDY YPE
, ADATE_CREATED I N OUT CUSTOVER. DATE_CREATEDY YPE
, AUSER_UPDATED I N OUT CUSTOVER. USER UPDATEDY YPE
, ADATE_UPDATED I N OUT CUSTOVER. DATE_UPDATEDYA YPE)
IS
NEW SEQUENCE 1 CUSTOVER. | DY YPE;
BEG N
SELECT CUSTOVER _SEQ NEXTVAL
| NTO NEW SEQUENCE_1
FROM DUAL;
| NSERT | NTO CUSTOMER (| D, NAME, USER CREATED, USER UPDATED)
VALUES (NEW SEQUENCE_ 1, ANAME, AUSER CREATED, AUSER UPDATED)
RETURNI NG | D, USER CREATED, DATE_CREATED, USER _UPDATED, DATE_UPDATED
| NTO Al D, AUSER _CREATED, ADATE_CREATED, AUSER UPDATED,
ADATE_UPDATED;
END ADD;

-- This procedure should be used to change a record on the CUSTOVER tabl e.

PROCEDURE CHANGE (AID I N CUSTOVER. | DY YPE
, ANAMVE I'N CUSTOVER. NAVE% YPE
, AUSER CREATED I N OQUT CUSTOMER. USER CREATEDYA YPE
, ADATE_CREATED I N OQUT CUSTOVER. DATE_CREATEDY YPE
, AUSER UPDATED I N QUT CUSTOVER. USER UPDATEDY YPE
, ADATE_UPDATED I N OQUT CUSTOMER. DATE_UPDATEDYA YPE)
IS
BEG N
UPDATE CUSTOVER

SET NAME
, USER CREATED 3
. USER_UPDATED = AUSER UPDATED
WHERE | D Al D
RETURNI NG USER CREATED, DATE CREATED, USER UPDATED, DATE_ UPDATED
| NTO AUSER CREATED, ADATE_CREATED, AUSER UPDATED, ADATE_UPDATED;
END CHANGE;

-- This procedure should be used to delete a record fromthe CUSTOVER

ANANME
USER CREATED

Page 340

0oJB

t abl e.
PROCEDURE DELETE (AID I N CUSTOVER. | DY YPE)
IS
BEG N
DELETE
FROM CUSTOVER
VHERE | D = Al D
END DELETE;
END CUSTOMER _PKG
/

Please note the following about the structure of the CUSTOVER PKG package:

« TheAl Dargument that is passed to the the ADD procedureis defined as| N OUT. This
allows the procedure to return the newly assigned | D to the caller.

« Inthe ADD and CHANGE procedures, the arguments that correspond to the four 'audit’
columns are defined as| N OUT. This allows the procedure to return the current value of
these columns to the 'caller'.

Theimplementation

Getting OJB to utilize the stored procedures described earlier in this document is as simple as
adding afew descriptorsto the repository. Here is a class-descriptor related to the
CUSTOVER table that includes all of the necessary descriptors.

<cl ass-descriptor class="com nyproj ect. Custoner"” tabl e=" CUSTOVER" >
<fiel d-descriptor colum="1D" jdbc-type="DECI MAL" name="id"
pri marykey="true"/>
<fi el d-descri ptor col um="NAVE" jdbc-type="VARCHAR' nane="nanme"/>
<fi el d-descri ptor col um="USER CREATED"' j dbc-type="VARCHAR'
name="user Creat ed"/ >
<fi el d-descri ptor col um="DATE_CREATED"' jdbc-type="TI MESTAMP"
name="dat eCr eat ed"/ >
<fiel d-descriptor colum="USER_UPDATED"' j dbc-type="VARCHAR'
nane="user Updat ed"/ >
<fi el d-descri ptor col um="DATE UPDATED"' jdbc-type="TI MESTAMP"
nane="dat eUpdat ed"/ >
<i nsert-procedure nane="CUSTOVER PKG ADD'>
<runtime-argument field-ref="id" return="true"/>
<runtime-argument field-ref="name"/>
<runtime-argument field-ref="userCreated" return="true"/>
<runtinme-argunment field-ref="dateCreated" return="true"/>
<runtinme-argunment field-ref="userUpdated" return="true"/>
<runtinme-argunment field-ref="dateUpdated" return="true"/>
</insert-procedure>
<updat e- pr ocedur e nane="CUSTOVER PKG. CHG'>
<runtime-argunment field-ref="id"/>
<runtinme-argunent field-ref="nanme"/>
<runtinme-argunent field-ref="userCreated" return="true"/>
<runtime-argunent field-ref="dateCreated" return="true"/>
<runtime-argunment field-ref="userUpdated" return="true"/>

Page 341

0JB

<runtinme-argunment field-ref="dateUpdated" return="true"/>
</ updat e- pr ocedur e>
<del et e- procedur e nane="CUSTOVER PKG. CHG'>
<runtime-argunment field-ref="id"/>
</ del et e- pr ocedur e>
</ cl ass-descri ptor>

Some things to note about this class-descriptor:

1. Intheinsert-procedure descriptor, the first runtime-argument descriptor correspnds to the
"AID" argument that is passed to the CUSTOMER_PKG.ADD routine. The "return”
attribute on this runtime-argument is set to "true". With this configuration, OJB will
‘harvest’ the value that is returned by the CUSTOMER PKG.ADD stored procedure and
store the valuein the "id" attribute on the com.myproject. Customer class.

2. Inboth the insert-procedure and update-procedure descriptors, the runtime-argument
descriptors that correspond to the four 'audit’ columns al have the "return” argument set
to "true". Thisalows any updates that are made by the procedure or the insert/update
triggersto be reflected in the "Customer" object that caused the insert/update operation to
occur.

4.6.7.9. A complex example

This example builds upon the simple example that was presented earlier by introducing some
additional requirements beyond those that were specified in the simple example. Some of
these additional requirements may seem alittle contrived. To be honest, they are. The only
purpose of these additional requirementsisto create situations that illustrate how the
additional capabilities provided by OJB's support for stored procedures can be utilized.

The additional requirements for this example include the following:

» All procedures will include two additional arguments. These two new arguments will be
added to the end of the argument list for all existing procedures.

* ASOURCE_SYSTEM- identifies the system that initiated the persistence operation.
Thiswill provide ahigher level of audit tracking capability. In our example, thiswill
aways be"SAMPLE".

 ACOST_CENTER - identifies the 'cost center' that should be charged for the
persistence operation. In our example, this argument will always be null.

e For al "ADD" and "CHG" stored procedures, the value that was assigned to the

"DATE_UPDATED" column will no longer be returned to the caller viaan "IN OUT"

argument. Instead, it will be returend to the caller viathe procedure's return value.

Based on these new requirements, the class-descriptor for the "com.myproject.Customer”
classwill look like this. The specific changes are detailed below.

<cl ass-descriptor class="com nmyproject.Custoner" tabl e="CUSTOVER" >
<fiel d-descriptor colum="1D" jdbc-type="DECI MAL" name="id"

Page 342

0oJB

pri marykey="true"/>

<fi el d-descri pt or
<fi el d-descri pt or

col um="NAME" j dbc-type="VARCHAR' nane="nane"/>
col um="USER_CREATED" | dbc-t ype="VARCHAR"

nanme="user Creat ed"/ >

<fi el d-descri ptor col um="DATE CREATED"' jdbc-type="TI MESTAMP"

nane="dat eCr eat ed"/ >

<fiel d-descri ptor col um="USER UPDATED"' | dbc-type="VARCHAR"

nane="user Updat ed"/ >

<fi el d-descri ptor col um="DATE_UPDATED" j dbc-type="TI MESTAMP"

nane="dat eUpdat ed"/ >

<i nsert-procedure nane="CUSTOVER PKG. ADD'

return-field-ref="dateUpdated"> <!-- See note 1 -->
<runtinme-argunment field-ref="id" return="true"/>
<runtime-argunent field-ref="nanme"/>
<runtinme-argunent field-ref="userCreated" return="true"/>
<runtime-argunent field-ref="dateCreated" return="true"/>
<runtime-argunent field-ref="userUpdated" return="true"/>
<runtime-argument field-ref="dateUpdated"/> <!-- See note 2 -->
<const ant - ar gunent val ue="SAMPLE"/> <!-- See note 3 -->

<runtinme-argunent/> <!-- See note 4 -->

</insert-procedure>

<updat e- pr ocedur e nane="CUSTOVER_PKG. CHG'
return-field-ref="dateUpdated"> <!--

<runtime-argunment field-ref="id"/>

See note 1 -->

<runtinme-argunment field-ref="nane"/>

<runtinme-argunment field-ref="userCreated" return="true"/>
<runtinme-argunent field-ref="dateCreated" return="true"/>
<runtinme-argunent field-ref="userUpdated" return="true"/>
<runtime-argunent field-ref="dateUpdated"/> <!-- See note 2 -->
<const ant - ar gunent val ue="SAWMPLE"/> <!-- See note 3 -->

<runtime-argunment/> <!-- See note 4 -->

</ updat e- pr ocedur e>

<del et e- procedur e nanme="CUSTOVER PKG. CHG' >
<runtine-argunment field-ref="id"/>
<const ant - argunent val ue="SAMPLE"/> <! --
<runtine-argument/> <!-- See note 4 -->

</ del et e- pr ocedur e>

See note 3 -->

</ cl ass-descri ptor>
Here are an explanation of each modification:

Note 1: The value that is returned by the "ADD" and "CHG" stored procedures will now
be stored in the "dateUpdated" attribute on the "com.myproject.Customer” class.

Note 2: Sincethe ADATE_UPDATED argument isno longer defined asan "IN OUT"
argument, we have removed the "return" attribute from the corresponding
runtime-argument descriptor.

Note 3: Thisisthefirst of two new arguments that were added to the argument list of
each procedure. This argument represents the 'source system’, the system that initiated the
persistence operation. In our example, we will always pass a value of 'SAMPLE'.

Note 4: Thisisthe second of two new arguments that were added to the argument list of
each procedure. This argument represents the 'cost center' that should be charged for the

Page 343

0JB

persistence operation. In our example, we have no cost center, so we need to pass anull
value. Thisisaccomplished by including a 'runtime-argument' descriptor that has no
field-ref' specified.

4.7. Testing
4.7.1. Testing Summary

4.7.1.1. Testing
Here can be found a summary of all (maybe nearly all) documentation about how OJB does
testing (a JUnit baseed test suite) and how to write new tests.

e The OJB test suite
e How to write tests

4.7.2. OJB JUnit Test Suite

4.7.2.1. Introduction

Building an Object/Relational mapping tool with support for multiple API'sisredly error
prone. To create a solid and stable software, the most awful thing in programmers life has to
be done - Testing.

Quality assurance taken seriously! OJB and provide specific tests for each supported API.
Currently more than 600 test cases for regression tests exist. Astesting framework JUnit was
used.

4.7.2.2. How torun the Test Suite
If the platform depended settings are done, the test suite can be started with the ant target:

ant junit
If compiling of the sources should be skipped use

ant junit-no-conpile
If you did not manage to set up the target database with theant pr epar e-t est db you
can use

ant junit-no-conpil e-no-prepare
to run the testsuite without generation of the test database (and without compiling).

Page 344

0oJB

After running the regression tests you should see a console output as follows:

j uni t - no- conpi | e- no- prepare:
junit] Running org.apache. oj b. broker. Al | Tests
junit] Tests run: 382, Failures: 0, Errors: 0, Tine elapsed: 50, 843 sec

junit] Running org. apache. oj b. odng. Al | Test s
junit] Tests run: 193, Failures: 0, Errors: 0, Tine elapsed: 16,243 sec

junit] Running org.apache. oj b. soda. Al |l Tests
junit] Tests run: 3, Failures: 0, Errors: 0, Tine elapsed: 8,392 sec

junit] Running org.apache.ojb.otmAll Tests

junit] Tests run: 79, Failures: 0, Errors: 0, Tine elapsed: 21,871 sec

j uni t-no-conpil e:

junit:

BU LD SUCCESSFUL

Total tinme: 3 minutes 58 seconds

We aim at shipping that releases have no failures and errorsin the regression tests! If the
Junit tests report errors or failures something does not work properly! There may be several

reasons.

» You made amistake in configuration (OJB was shipped with settings pass all tests). See
platform, OJB.properties, repository file, .

» Your database doesn't support specific features used by the tests

« Evil hex

e« BuginOJB

JUnit writes alog-file for each tested API. Y ou can find the logs under
[db-oj b]/target/test.Thelogfilesnamedliket est s- XXX. t xt . Thetest logs
show in detail what's going wrong.

In such a case please check again if you followed all the above steps. If you still have
problems you might post a request to the OJB user mailinglist.

How to run the test-suite with a different database than OJB default DB

Basically all you havetodois:

» Get source version of OJB or fetch OJB from CV S (take care of branches, branch
OJB 1 0 RELEASE represents OJB 1.0.x).

» Adapt the profile file of your database under
[db-oj b] / profil e/ yourDB. profil e and set user, password, ...

e In[db-o0jb]/build.properti es filecomment the "profile=hsgldb" line and
uncomment the "#profile=yourDB" line.

» Dropjdo.jar and your database driver into [db- oj b] /| i b directory.

e Dropjunitjarintoyour...ant/|i b folder.

Page 345

0JB

» Make surethat your database allows at least 20 concurrent connections.
Then follow the steps described above.

4.7.2.3. What about known issues?

All major known issues are listed in the rel ease-notes file.

The tests reproduce open bugs will be skipped on released OJB versions. It is possible to
enable these tests to see all failing test cases of the shipped version by changing aflagin
[db- 0j b] / bui | d. properti es file

Hi#

1f "true', junit tests marked as known issue in the junit-test

source code (see QJBTestCase class for nore detailed info) will be

ski pped. Default value is '"true'. For devel opnent 'false' is recommended,
because this will show unsol ved probl ens.

QJIB. ski p. i ssues=true

4.7.2.4. Donate own testsfor OJB Test Suite
Details about donate own test to OJB vou can find here.

4.7.3. 0JB - Write Tests

4.7.3.1. Introduction

As described in test suite section OJB emphasise quality assurance and provide a huge test
suite. But it isimpossible to cover al parts of OJB with tests and OJB will never be perfect
(of courseit's nearly perfect ;-)), thusif you miss atest or found an bug don't hesitate, write
your own test and send it to the lists or attach it in the bug report.

4.7.3.2. How towriteanew Test

Before start writing your own test case please pay attention of these rules.

TheTest Class
All test classes have to inherit from or g. apache. oj b. j uni t . QJBTest Case and have
to provide a static main method to start the Junit test:

public class MyTest extends QIBTest Case
{

public static void main(String[] args)

String[] arr = {MyTest. cl ass. get Nane() };

Page 346

0oJB

junit.textui.Test Runner. main(arr);

public void test M/FirstOne()
{

{
In package or g. apache. oj b. j uni t can be found some test classes for specifc
circumstances:

e org.apache.ojb.junit.PBTest Case - Provideapublic
or g. apache. oj b. br oker . Per si st enceBr oker field.

e« org.apache. ojb.junit. ODMGTest Case - Provide public
org. odng. | npl enent ati on and or g. odng. Dat abase fields.

e« org.apache.ojb.junit.JUnitExtensions - Provide base classesfor write
multithreaded test classes. More info see javadoc comment of this class.

A test case for the PB-API may look like:

public class ReferenceRunti meSetti ngTest extends PBTest Case
public static void main(String[] args)
String[] arr = {ReferenceRunti neSettingTest.cl ass. get Name()};
junit.textui.Test Runner. main(arr);
public void testChangeRef erenceSetting()

Cl assDescriptor cld = broker.getC assDescri pt or (M nQbj ect. cl ass) ;
/1 and so on

}
The PersistenceBroker cleanup is done by PBTestCase.

Persistent Objectsused by Test
We recommend to introduce separate persistent objects for each TestCase class. In test suite
two concepts are used:

« Include your persistent objects as public static classes in your test class.
» Separate your test classin an independent package and include the test case and all
persistent object classesin this new package.

Test Class Metadata

Currently all test specific object metadata (class-descriptor used for tests) are shared among
several xml files. The naming conventionisr eposi tory_j uni t _XXX. xm . Thus

Page 347

0JB

metadata for new tests should be included in one of the existing junit repository (sub) files or
writen in an new separate one and included in repository main file.

<! DOCTYPE descri ptor-repository PUBLIC
"-// Apache Software Foundation//DTD QIB Repository//EN'
"repository.dtd"

[

<IENTI TY dat abase SYSTEM "repository_ dat abase. xm ">
<IENTITY internal SYSTEM "repository internal.xm">
<IENTI TY user SYSTEM "repository user.xm ">

<l-- here the junit include files begin -->

<IENTITY junit SYSTEM "repository junit.xm ">

<IENTITY junit_odng SYSTEM "repository_junit_odng. xm ">

<IENTITY junit_otm SYSTEM "repository_junit_otm xm ">

<IENTITY junit_ref SYSTEM "repository_junit_reference.xmn ">
<IENTITY junit_neta seq SYSTEM "repository junit_meta seq. xnml ">
<IENTITY junit_nodel SYSTEM "repository_junit_nodel .xm">
<IENTITY junit_cloneabl e SYSTEM "repository junit_cl oneabl e. xm ">

<IENTITY junit_nyfirsttest SYSTEM "repository junit_nyfirsttest.xm ">
>

<descriptor-repository version="1.0" isolation-I|evel ="read-uncommtted
proxy-prefetching-limt="50">

<I-- include all used database connections -->
&dat abase;

<l-- include ojb internal mappings here -->

& nt ernal ;

<l-- include user defined nmappings here -->
&user

<l-- include mappings for JUnit tests -->

<l-- This could be renmoved (with <IENTITY entry),
if junit test suite was not used

e S

& unit;

& uni t _odny;

& unit_otm

& unit_ref;

& unit_neta_seq;

& uni t _nodel ;

& unit_cl oneabl e;

& unit_nyfirsttest;

5. All

Page 348

	1 OJB
	1.1 ObJectRelationalBridge - OJB
	1.1.1 Summary
	1.1.1.1 flexibility
	1.1.1.2 scalability
	1.1.1.3 functionality

	1.2 OJB - Features
	1.2.1 Features

	1.3 Status
	1.3.1 Status of OJB API's
	1.3.1.1 PB API (Persistence Broker API)
	1.3.1.2 ODMG API
	1.3.1.3 JDO API
	1.3.1.4 OTM API (Object Transaction Manager API)

	1.4 OJB - Mail Lists
	1.4.1 Mailing Lists

	1.5 OJB - Mail Archives
	1.5.1 Mail Archives

	1.6 OJB - References and Testimonials
	1.6.1 References and Testimonials
	1.6.1.1 projects using OJB
	1.6.1.2 user testimonials

	1.7 Links and further readings
	1.7.1 Summary
	1.7.2 Design
	1.7.3 Further readings on O/R mapping
	1.7.4 Patterns
	1.7.5 OJB tutorials
	1.7.6 Books covering OJB

	2 Download
	3 Development
	3.1 Coding Standards
	3.1.1 Coding Standards

	4 Documentation
	4.1 Documentation
	4.1.1 Introduction

	4.2 Frequently Asked Questions
	4.2.1 Questions
	4.2.1.1 1. General
	4.2.1.1.1 1.1. Why OJB? Why do we need another O/R mapping tool?
	4.2.1.1.2 1.2. How is OJB related to ODMG and JDO?
	4.2.1.1.3 1.3. What are the OJB design principals?
	4.2.1.1.4 1.4. Where can I learn more about Object/Relational mapping in general?
	4.2.1.1.5 1.5. How OJB performance compares to native JDBC programming?
	4.2.1.1.6 1.6. How OJB performance compares to other O/R mapping tools?
	4.2.1.1.7 1.7. Is OJB ready for production environments?
	4.2.1.1.8 1.8. Does OJB supports caching?

	4.2.1.2 2. Getting Started
	4.2.1.2.1 2.1. Help! I'm having problems installing and using OJB!
	4.2.1.2.2 2.2. Help! I still have serious problems installing OJB!
	4.2.1.2.3 2.3. OJB does not start?
	4.2.1.2.4 2.4. Does OJB support my RDBMS?
	4.2.1.2.5 2.5. What are the OJB internal tables for?
	4.2.1.2.6 2.6. What does the exception Could not borrow connection from pool mean?
	4.2.1.2.7 2.7. Any tools help to generate the metadata files?

	4.2.1.3 3. OJB api's
	4.2.1.3.1 3.1. What are the differences between the PersistenceBroker API and the ODMG API? Which one should I use in my applications?
	4.2.1.3.2 3.2. I don't like OQL, can I use the PersistenceBroker Queries within ODMG?
	4.2.1.3.3 3.3. The OJB JDO implementation is not finished, how can I start using OJB?

	4.2.1.4 4. Howto
	4.2.1.4.1 4.1. How to use OJB with my RDBMS?
	4.2.1.4.2 4.2. How to use OJB in an web app?
	4.2.1.4.3 4.3. What are the best settings for maximal performance?
	4.2.1.4.4 4.4. How to page and sort?
	4.2.1.4.5 4.5. What about performance and memory usage if thousands of objects matching a query are returned as a Collection?
	4.2.1.4.6 4.6. When is it helpful to use Proxy Classes?
	4.2.1.4.7 4.7. How can I convert data between RDBMS and OJB?
	4.2.1.4.8 4.8. How can I trace and/or profile SQL statements executed by OJB?
	4.2.1.4.9 4.9. How does OJB manage foreign keys?
	4.2.1.4.10 4.10. How does OJB manage 'null' for primitive primary key?
	4.2.1.4.11 4.11. How to lookup object by primary key?
	4.2.1.4.12 4.12. Difference between getIteratorByQuery() and getCollectionByQuery()?
	4.2.1.4.13 4.13. How can Collections of primitive typed elements be mapped?
	4.2.1.4.14 4.14. How could class 'myClass' represent a collection of 'myClass' objects
	4.2.1.4.15 4.15. How to lookup PersistenceBroker instances?
	4.2.1.4.16 4.16. How to access ODMG?
	4.2.1.4.17 4.17. Needed to put user/password of database connection in repository file?
	4.2.1.4.18 4.18. Many different database user - How do they login?
	4.2.1.4.19 4.19. How do I use multiple databases within OJB?
	4.2.1.4.20 4.20. How does OJB handle connection pooling?
	4.2.1.4.21 4.21. Can I directly obtain a java.sql.Connection within OJB?
	4.2.1.4.22 4.22. Is it possible to perform my own sql-queries in OJB?
	4.2.1.4.23 4.23. When does OJB open/close a connection?
	4.2.1.4.24 4.24. Start OJB without a repository file?
	4.2.1.4.25 4.25. Connect to database at runtime?
	4.2.1.4.26 4.26. Add new persistent objects metadata (class-descriptor) at runtime?
	4.2.1.4.27 4.27. Global metadata changes at runtime?
	4.2.1.4.28 4.28. Per thread metadata changes at runtime?
	4.2.1.4.29 4.29. Is it possible to use OJB within EJB's?
	4.2.1.4.30 4.30. Can OJB handle ternary (or higher) associations?
	4.2.1.4.31 4.31. How to map a list of Strings
	4.2.1.4.32 4.32. How to set up Optimistic Locking
	4.2.1.4.33 4.33. How to use OJB in a cluster
	4.2.1.4.34 4.34. How to turn of caching?
	4.2.1.4.35 4.35. JDO - Why must my persisten class implement javax.jdo.spi.PersistenceCapable?

	4.3 ObJectRelationalBridge - Getting Started
	4.3.1 Acquiring ojb-blank
	4.3.2 Contents of ojb-blank
	4.3.2.1 Sample project

	4.3.3 The build files
	4.3.3.1 Configuration via build.properties
	4.3.3.2 Building via build.xml
	4.3.3.3 Sample project

	4.3.4 The runtime configuration files
	4.3.4.1 Configuring the OJB runtime
	4.3.4.2 Configuring the database connection
	4.3.4.3 Configuring the repository
	4.3.4.4 Sample project

	4.3.5 Learning More

	4.4 Tutorials
	4.4.1 Tutorial Summary
	4.4.1.1 Tutorials

	4.4.2 Mapping Tutorial
	4.4.2.1 What is the Object-Relational Mapping Metadata?
	4.4.2.1.1 The Product Class
	4.4.2.1.2 The Database
	4.4.2.1.3 The Metadata
	4.4.2.1.4 Using the XDoclet module

	4.4.2.2 Advanced Topics
	4.4.2.2.1 Relations
	4.4.2.2.2 Inheritence
	4.4.2.2.3 Anonymous Keys
	4.4.2.2.4 Large Projects
	4.4.2.2.5 Custom JDBC Mapping

	4.4.3 Persistence Broker Tutorial
	4.4.3.1 The PersistenceBroker API
	4.4.3.1.1 Introduction
	4.4.3.1.2 A First Look - Persisting New Objects
	4.4.3.1.3 Querying Persistent Objects
	4.4.3.1.4 Updating Persistent Objects
	4.4.3.1.5 Deleting Persistent Objects
	4.4.3.1.6 Find object by primary key

	4.4.3.2 Exception Handling

	4.4.4 The ODMG API
	4.4.4.1 Introduction
	4.4.4.2 Initializing ODMG
	4.4.4.3 Persisting New Objects
	4.4.4.4 Querying Persistent Objects
	4.4.4.5 Updating Persistent Objects
	4.4.4.6 Deleting Persistent Objects

	4.4.5 JDO Tutorial
	4.4.5.1 Using the ObJectRelationalBridge JDO API
	4.4.5.1.1 Introduction
	4.4.5.1.2 Running the Tutorial Application

	4.4.5.2 Using the JDO API in the UseCase Implementations
	4.4.5.2.1 Obtaining the JDO PersistenceManager Object
	4.4.5.2.2 Retrieving collections
	4.4.5.2.3 Storing objects
	4.4.5.2.4 Updating Objects
	4.4.5.2.5 Deleting Objects

	4.4.5.3 Conclusion

	4.4.6 Object Transaction Manager Tutorial
	4.4.6.1 The OTM API
	4.4.6.1.1 Introduction
	4.4.6.1.2 Persisting New Objects
	4.4.6.1.3 Deleting Persistent Objects
	4.4.6.1.4 Querying for Objects
	4.4.6.1.5 More Sophisticated Transaction Handling

	4.4.6.2 Notes on the Object Transaction Manager
	4.4.6.2.1 Transactions

	4.5 Reference Guides
	4.5.1 Reference Guides
	4.5.1.1 Reference Guides

	4.5.2 PB-api Guide
	4.5.2.1 Introduction
	4.5.2.2 How to access the PB-api?
	4.5.2.3 Notes on Using the PersistenceBroker API
	4.5.2.3.1 Exception Handling
	4.5.2.3.2 Management of PersistenceBroker instances
	4.5.2.3.3 Transactions

	4.5.2.4 Questions
	4.5.2.4.1 How to use multiple Databases

	4.5.3 ODMG-api Guide
	4.5.3.1 Introduction
	4.5.3.2 Specific Metadata Settings
	4.5.3.3 How to access ODMG-api
	4.5.3.4 Configuration Properties
	4.5.3.5 OJB Extensions of ODMG
	4.5.3.5.1 The ImplementationExt Interface
	4.5.3.5.2 The TransactionExt Interface
	4.5.3.5.3 The EnhancedOQLQuery Interface
	4.5.3.5.4 Access the PB-api within ODMG

	4.5.3.6 Notes on Using the ODMG API
	4.5.3.6.1 Transactions
	4.5.3.6.2 Locks
	4.5.3.6.3 Persisting Non-Transactional Objects

	4.5.3.7 Questions
	4.5.3.7.1 I don't like OQL, can I use the PersistenceBroker Queries within ODMG
	4.5.3.7.2 How to use multiple Databases

	4.5.4 Platforms
	4.5.4.1 how to use OJB with a specific relational database
	4.5.4.2 Basic Concepts
	4.5.4.2.1 OJB internal tables
	4.5.4.2.2 Tables for the regression testbed
	4.5.4.2.3 Tables for the tutorial applications

	4.5.4.3 The setup process
	4.5.4.3.1 Selecting a platform profile
	4.5.4.3.2 editing the profile to point to your target db
	4.5.4.3.3 Executing the build script
	4.5.4.3.4 Verifying the installation

	4.5.5 OJB.properties Configuration File
	4.5.5.1 OJB Configuration
	4.5.5.2 OJB.properties File

	4.5.6 JDBC Types
	4.5.6.1 Mapping of JDBC Types to Java Types
	4.5.6.2 Type and Value Conversions - The FieldConversion Interface
	4.5.6.2.1 Introduction
	4.5.6.2.2 The problem
	4.5.6.2.3 The Solution

	4.5.7 Repository File
	4.5.7.1 Introduction - repository syntax
	4.5.7.2 descriptor-repository
	4.5.7.2.1 Elements
	4.5.7.2.2 Attributes
	4.5.7.2.2.1 version
	4.5.7.2.2.2 isolation-level
	4.5.7.2.2.3 proxy-prefetching-limit

	4.5.7.3 jdbc-connection-descriptor
	4.5.7.3.1 Elements
	4.5.7.3.2 Attributes
	4.5.7.3.2.1 jdbcAlias
	4.5.7.3.2.2 default-connection
	4.5.7.3.2.3 platform
	4.5.7.3.2.4 jdbc-level
	4.5.7.3.2.5 eager-release
	4.5.7.3.2.6 batch-mode
	4.5.7.3.2.7 useAutoCommit
	4.5.7.3.2.8 ignoreAutoCommitExceptions
	4.5.7.3.2.9 jndi-datasource-name
	4.5.7.3.2.10 username

	4.5.7.4 connection-pool
	4.5.7.5 sequence-manager
	4.5.7.6 object-cache
	4.5.7.7 custom attribute
	4.5.7.8 class-descriptor
	4.5.7.9 extent-class
	4.5.7.10 field-descriptor
	4.5.7.11 reference-descriptor
	4.5.7.12 foreignkey
	4.5.7.13 collection-descriptor
	4.5.7.14 inverse-foreignkey
	4.5.7.15 fk-pointing-to-this-class
	4.5.7.16 fk-pointing-to-element-class
	4.5.7.17 query-customizer
	4.5.7.18 index-descriptor
	4.5.7.19 index-column
	4.5.7.20 Stored Procedure Support
	4.5.7.20.1 insert-procedure
	4.5.7.20.2 update-procedure
	4.5.7.20.3 delete-procedure
	4.5.7.20.4 runtime-argument
	4.5.7.20.5 constant-argument

	4.5.8 Basic Technique
	4.5.8.1 Mapping 1:1 associations
	4.5.8.1.1 1:1 auto-xxx setting

	4.5.8.2 Mapping 1:n associations
	4.5.8.2.1 1:n auto-xxx setting

	4.5.8.3 Mapping m:n associations
	4.5.8.3.1 Manual decomposition into two 1:n associations
	4.5.8.3.2 Support for Non-Decomposed m:n Mappings
	4.5.8.3.3 m:n auto-xxx setting

	4.5.8.4 Setting Load, Update, and Delete Cascading
	4.5.8.4.1 auto-retrieve setting
	4.5.8.4.2 Link references

	4.5.8.5 Using Proxy Classes
	4.5.8.5.1 Using Dynamic Proxies
	4.5.8.5.2 Using a Single Proxy for a Whole Collection
	4.5.8.5.3 Using a Proxy for a Reference
	4.5.8.5.4 Customizing the proxy mechanism

	4.5.8.6 Type and Value Conversions

	4.5.9 Advanced Technique
	4.5.9.1 Introduction
	4.5.9.2 Extents and Polymorphism
	4.5.9.2.1 Polymorphism
	4.5.9.2.2 Extents

	4.5.9.3 Mapping Inheritance Hierarchies
	4.5.9.3.1 Mapping All Classes on the Same Table
	4.5.9.3.2 Mapping Each Class to a Distinct Table
	4.5.9.3.3 Mapping Classes on Multiple Joined Tables

	4.5.9.4 Using interfaces with OJB
	4.5.9.5 Change PersistentField Class
	4.5.9.6 How do anonymous keys work?
	4.5.9.7 Using Rowreader
	4.5.9.7.1 Rowreader Example

	4.5.9.8 Nested Objects
	4.5.9.9 Instance Callbacks
	4.5.9.10 Manageable Collection
	4.5.9.10.1 Types Allowed for Implementing 1:n and m:n Associations
	4.5.9.10.2 Which collection-class type should be used?

	4.5.9.11 Customizing collection queries
	4.5.9.12 Metadata runtime changes

	4.5.10 OJB Queries
	4.5.10.1 Introduction
	4.5.10.2 Query by Criteria
	4.5.10.2.1 Query Criteria
	4.5.10.2.1.1 in / not in
	4.5.10.2.1.2 and / or
	4.5.10.2.1.3 negating the criteria

	4.5.10.2.2 ordering and grouping
	4.5.10.2.3 subqueries
	4.5.10.2.4 joins
	4.5.10.2.5 user defined alias
	4.5.10.2.6 class hints
	4.5.10.2.7 prefetched relationships
	4.5.10.2.8 querying for objects
	4.5.10.2.9 Report Queries
	4.5.10.2.9.1 Limitations of Report Queries

	4.5.10.3 ODMG OQL
	4.5.10.4 JDO queries

	4.5.11 Metadata handling
	4.5.11.1 Introduction
	4.5.11.2 When does OJB read metadata
	4.5.11.3 Connection metadata
	4.5.11.3.1 Load and merge connection metadata

	4.5.11.4 Persistent object metadata
	4.5.11.4.1 Load and merge object metadata
	4.5.11.4.2 Global object metadata changes
	4.5.11.4.3 Per thread metadata changes
	4.5.11.4.4 Object metadata profiles
	4.5.11.4.5 Reference runtime changes on per query basis
	4.5.11.4.6 Pitfalls

	4.5.11.5 Questions
	4.5.11.5.1 Start OJB without a repository file?
	4.5.11.5.2 Connect to database at runtime?
	4.5.11.5.3 Add new persistent objects metadata (class-descriptor) at runtime?

	4.5.12 Deployment
	4.5.12.1 Introduction
	4.5.12.2 Things needed for deploying OJB
	4.5.12.2.1 1. The OJB binary jar archive
	4.5.12.2.2 2. Configuration data
	4.5.12.2.3 3. External dependencies that do not come with OJB
	4.5.12.2.4 4. Optional jar archives that come with OJB
	4.5.12.2.5 5. Don't forget the JDBC driver

	4.5.12.3 Deployment in standalone applications
	4.5.12.4 Deployment in servlet based applications
	4.5.12.5 Deployment in EJB based applications
	4.5.12.5.1 Configure OJB for managed environments considering as JBoss example
	4.5.12.5.1.1 1. Adapt OJB.properties file
	4.5.12.5.1.2 2. Declare datasource in the repository (repository_database) file and do additional configuration
	4.5.12.5.1.3 [2b. How to deploy ojb test hsqldb database to jboss]
	4.5.12.5.1.4 3. Include all OJB configuration files in classpath
	4.5.12.5.1.5 4. Enclose all libraries OJB depend on
	4.5.12.5.1.6 5. Take care of caching
	4.5.12.5.1.7 6. Take care of locking
	4.5.12.5.1.8 7. Put all together
	4.5.12.5.1.9 7b. Example: Deployable jar
	4.5.12.5.1.10 8. How to access OJB API?
	4.5.12.5.1.11 9. OJB logging within JBoss

	4.5.12.5.2 Example Session Beans
	4.5.12.5.2.1 Introduction
	4.5.12.5.2.2 Generate the sample session beans
	4.5.12.5.2.3 How to run test clients for PB / ODMG - api

	4.5.12.5.3 Packing an .ear file
	4.5.12.5.3.1 The Package Structure
	4.5.12.5.3.2 Make OJB API Resources available

	4.5.12.5.4 Make OJB accessible via JNDI
	4.5.12.5.4.1 JBoss
	4.5.12.5.4.2 Other Application Server

	4.5.12.5.5 Instructions for Weblogic

	4.5.13 OJB - Connection Handling
	4.5.13.1 Introduction
	4.5.13.2 ConnectionFactory
	4.5.13.2.1 ConnectionFactoryPooledImpl
	4.5.13.2.2 ConnectionFactoryNotPooledImpl
	4.5.13.2.3 ConnectionFactoryManagedImpl
	4.5.13.2.4 ConnectionFactoryDBCPImpl

	4.5.13.3 ConnectionManager
	4.5.13.4 Questions and Answers
	4.5.13.4.1 How does OJB handle connection pooling?
	4.5.13.4.2 Can I directly obtain a java.sql.Connection within OJB?
	4.5.13.4.3 When does OJB open/close a connection

	4.5.14 The Object Cache
	4.5.14.1 Introduction
	4.5.14.2 Why a cache and how it works?
	4.5.14.3 How to declare and change the used ObjectCache implementation
	4.5.14.3.1 Priority of Cache Level
	4.5.14.3.2 Exclude classes from being cached
	4.5.14.3.3 Exclude packages from being cached
	4.5.14.3.4 Turn off caching

	4.5.14.4 Shipped cache implementations:
	4.5.14.4.1 ObjectCacheDefaultImpl
	4.5.14.4.2 ObjectCacheTwoLevelImpl
	4.5.14.4.3 ObjectCachePerBrokerImpl
	4.5.14.4.4 ObjectCacheEmptyImpl
	4.5.14.4.5 ObjectCacheJCSImpl
	4.5.14.4.6 ObjectCacheOSCacheImpl
	4.5.14.4.7 More implementations ...

	4.5.14.5 Distributed ObjectCache?
	4.5.14.6 Implement your own cache
	4.5.14.7 Future prospects

	4.5.15 Sequence Manager
	4.5.15.1 The OJB Sequence Manager
	4.5.15.1.1 Automatical assignment of unique values
	4.5.15.1.2 Force computation of unique values
	4.5.15.1.3 How to change the sequence manager?
	4.5.15.1.4 SequenceManager implementations
	4.5.15.1.4.1 High/Low sequence manager
	4.5.15.1.4.2 In-Memory sequence manager
	4.5.15.1.4.3 Database sequences based implementation
	4.5.15.1.4.4 Database sequences based high/low implementation
	4.5.15.1.4.5 Oracle-style sequencing
	4.5.15.1.4.6 Microsoft SQL Server 'uniqueidentifier' type (GUID) sequencing
	4.5.15.1.4.7 Identity based sequence manager
	4.5.15.1.4.8 The sequence-name attribute
	4.5.15.1.4.9 The autoNaming property

	4.5.15.1.5 How to write my own sequence manager?
	4.5.15.1.6 Questions
	4.5.15.1.6.1 When using sequence-name attribute in field-descriptor?
	4.5.15.1.6.2 What to hell does extent aware mean?
	4.5.15.1.6.3 How could I prevent auto-build of the sequence-name?
	4.5.15.1.6.4 Sequence manager handling using multiple databases
	4.5.15.1.6.5 One sequence manager with multiple databases?
	4.5.15.1.6.6 Can I get direct access to the sequence manager?
	4.5.15.1.6.7 Any known pitfalls?

	4.5.16 OJB logging configuration
	4.5.16.1 Logging in OJB
	4.5.16.2 Logging configuration within OJB
	4.5.16.2.1 How and when OJB determines what kind of logging to use
	4.5.16.2.2 Configuration of logging for the individual components

	4.5.16.3 Logging configuration via configuration files
	4.5.16.3.1 OJB-logging.properties
	4.5.16.3.2 commons-logging.properties
	4.5.16.3.3 log4j.properties
	4.5.16.3.4 Where to put the configuration files

	4.5.16.4 Logging configuration at runtime
	4.5.16.5 Defining your own logger

	4.5.17 Locking
	4.5.17.1 Introduction
	4.5.17.2 Optimistic Locking
	4.5.17.3 Pessimistic-Locking
	4.5.17.3.1 Supported Isolation Levels
	4.5.17.3.2 How to specify locking isolation level
	4.5.17.3.3 Specify the LockManager Implementation
	4.5.17.3.4 The LockManager Implementations
	4.5.17.3.4.1 LockManagerInMemoryImpl
	4.5.17.3.4.2 LockManagerCommonsImpl
	4.5.17.3.4.3 LockManagerRemoteImpl

	4.5.17.4 ODMG-api Locking
	4.5.17.4.1 What it does

	4.5.17.5 Locking in distributed environment
	4.5.17.6 Pluggin own locking classes

	4.5.18 XDoclet OJB module documentation
	4.5.18.1 Acquiring and building
	4.5.18.1.1 Building with a XDoclet source distribution
	4.5.18.1.2 Building with a XDoclet CVS checkout
	4.5.18.1.3 Other build options

	4.5.18.2 Usage
	4.5.18.3 Tag reference
	4.5.18.4 Interfaces and Classes
	4.5.18.4.1 ojb.class
	4.5.18.4.2 ojb.extent-class
	4.5.18.4.3 ojb.modify-inherited
	4.5.18.4.4 ojb.object-cache
	4.5.18.4.5 ojb.index
	4.5.18.4.6 ojb.delete-procedure
	4.5.18.4.7 ojb.insert-procedure
	4.5.18.4.8 ojb.update-procedure
	4.5.18.4.9 ojb.constant-argument
	4.5.18.4.10 ojb.runtime-argument

	4.5.18.5 Fields and Bean properties
	4.5.18.5.1 ojb.field

	4.5.18.6 References
	4.5.18.6.1 ojb.reference

	4.5.18.7 Collections
	4.5.18.7.1 ojb.collection

	4.5.18.8 Nested objects
	4.5.18.8.1 ojb.nested
	4.5.18.8.2 ojb.modify-nested

	4.5.19 OJB Performance
	4.5.19.1 Introduction
	4.5.19.2 The Performance Test Suite
	4.5.19.3 Interpreting test results
	4.5.19.4 How OJB compares to native JDBC programming?
	4.5.19.5 OJB performance in multi-threaded environments
	4.5.19.6 How OJB compares to other O/R mapping tools?
	4.5.19.7 What are the best settings for maximal performance?

	4.6 Howto's
	4.6.1 Howto's Summary
	4.6.1.1 Howto's

	4.6.2 How to build O/R mapping meta data files
	4.6.2.1 How to build O/R mapping files
	4.6.2.2 classification of O/R related transformations
	4.6.2.3 Forward engineering from XMI
	4.6.2.4 Forward engineering from Torque
	4.6.2.5 Forward engineering from repository.xml
	4.6.2.6 XDoclet transformation from Java code
	4.6.2.7 Reverse engineering from database

	4.6.3 HOWTO - Use Anonymous Keys
	4.6.3.1 Why Do We Need Anonymous Keys?
	4.6.3.2 How it works
	4.6.3.3 Using Anonymous Keys
	4.6.3.3.1 The Code
	4.6.3.3.2 The Database
	4.6.3.3.3 The Repository Configuration

	4.6.3.4 Benefits and Drawbacks

	4.6.4 HOWTO - Use DB Sequences
	4.6.4.1 Introduction
	4.6.4.2 The Sample Database
	4.6.4.3 Using OJB
	4.6.4.3.1 The Database Repository Descriptor
	4.6.4.3.2 Defining a Thingie Class
	4.6.4.3.3 Using Thingie

	4.6.5 HOWTO - Work with LOB Data Types
	4.6.5.1 Using Oracle LOB Data Types with OJB
	4.6.5.1.1 Introduction

	4.6.5.2 Backgrounder: Large objects in databases
	4.6.5.2.1 Your database: The most expensive file system?
	4.6.5.2.2 Oracle LARGE versus LOB datatypes

	4.6.5.3 Large Objects in OJB
	4.6.5.3.1 Strategy 1: Using streams for LOB I/O
	4.6.5.3.2 Strategy 2: Embedding OJB content in Java objects
	4.6.5.3.3 Querying CLOB content

	4.6.6 HOWTO - Use OJB in clustered environments
	4.6.6.1 How to use OJB in clustered environments
	4.6.6.2 Three steps to clustering your OJB application
	4.6.6.2.1 First: Take care of the sequence manager
	4.6.6.2.1.1 Handling sequence names

	4.6.6.2.2 Second: Enable optimistic locking
	4.6.6.2.3 Do The Cache

	4.6.6.3 Notes

	4.6.7 HOWTO - Stored Procedure Support
	4.6.7.1 Introduction
	4.6.7.2 Repository entries
	4.6.7.3 Common attributes
	4.6.7.4 insert-procedure
	4.6.7.5 update-procedure
	4.6.7.6 delete-procedure
	4.6.7.7 Argument descriptors
	4.6.7.7.1 runtime-argument descriptors
	4.6.7.7.2 constant-argument descriptors

	4.6.7.8 A simple example
	4.6.7.8.1 The basic requirements
	4.6.7.8.2 The database objects
	4.6.7.8.3 The CUSTOMER table
	4.6.7.8.4 The sequence
	4.6.7.8.5 The insert and update triggers
	4.6.7.8.6 The package
	4.6.7.8.7 The implementation

	4.6.7.9 A complex example

	4.7 Testing
	4.7.1 Testing Summary
	4.7.1.1 Testing

	4.7.2 OJB JUnit Test Suite
	4.7.2.1 Introduction
	4.7.2.2 How to run the Test Suite
	4.7.2.2.1 How to run the test-suite with a different database than OJB default DB

	4.7.2.3 What about known issues?
	4.7.2.4 Donate own tests for OJB Test Suite

	4.7.3 OJB - Write Tests
	4.7.3.1 Introduction
	4.7.3.2 How to write a new Test
	4.7.3.2.1 The Test Class
	4.7.3.2.2 Persistent Objects used by Test
	4.7.3.2.3 Test Class Metadata

	5 All

