
Advanced Technique

by Thomas Mahler, Jakob Braeuchli, Armin Waibel

Table of contents

1 Introduction..2

2 Extents and Polymorphism.. 2

2.1 Polymorphism..3

2.2 Extents... 3

3 Mapping Inheritance Hierarchies...5

3.1 Mapping All Classes on the Same Table...6

3.2 Mapping Each Class to a Distinct Table... 9

3.3 Mapping Classes on Multiple Joined Tables...9

4 Using interfaces with OJB... 13

5 Change PersistentField Class...17

6 How do anonymous keys work?.. 18

7 Using Rowreader..19

7.1 Rowreader Example.. 22

8 Nested Objects... 23

9 Instance Callbacks..25

10 Manageable Collection...29

10.1 Types Allowed for Implementing 1:n and m:n Associations.................................... 30

10.2 Which collection-class type should be used?.. 31

11 Customizing collection queries.. 32

12 Metadata runtime changes..33

Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

1. Introduction

2. Extents and Polymorphism

Working with inheritance hierarchies is a common task in object oriented design and
programming. Of course, any serious Java O/R tool must support inheritance and interfaces
for persistent classes. To demonstrate we will look at some of the JUnit TestSuite classes.

There is a primary interface "InterfaceArticle". This interface is implemented by "Article"
and "CdArticle". There is also a class "BookArticle" derived from "Article". (See the
following class diagram for details)

polymorphism.gif

Advanced Technique

Page 2
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

2.1. Polymorphism

OJB allows us to use interfaces, abstract, or concrete base classes in queries, or in type
definitions of reference attributes. A Query against the interface InterfaceArticle
must not only return objects of type Article but also of CdArticle and
BookArticle! The following test method searches for all objects implementing
InterfaceArticle with an articleName equal to "Hamlet". The Collection is filled
with one matching BookArticle object.

public void testCollectionByQuery() throws Exception
{

Criteria crit = new Criteria();
crit.addEqualTo("articleName", "Hamlet");
Query q = QueryFactory.newQuery(InterfaceArticle.class, crit);

Collection result = broker.getCollectionByQuery(q);

System.out.println(result);

assertNotNull("should return at least one item", result);
assertTrue("should return at least one item", result.size() > 0);

}

Of course it is also possible to define reference attributes of an interface or baseclass type. In
all above examples Article has a reference attribute of type InterfaceProductGroup.

2.2. Extents

The query in the last example returned just one object. Now, imagine a query against the
InterfaceArticle interface with no selecting criteria. OJB returns all the objects implementing
InterfaceArticle. I.e. All Articles, BookArticles and CdArticles. The following method prints
out the collection of all InterfaceArticle objects:

public void testExtentByQuery() throws Exception
{

// no criteria signals to omit a WHERE clause
Query q = QueryFactory.newQuery(InterfaceArticle.class, null);
Collection result = broker.getCollectionByQuery(q);

System.out.println(
"OJB proudly presents: The InterfaceArticle Extent\n" +result);

assertNotNull("should return at least one item", result);
assertTrue("should return at least one item", result.size() > 0);

}

The set of all instances of a class (whether living in memory or stored in a persistent

Advanced Technique

Page 3
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

medium) is called an Extent in ODMG and JDO terminology. OJB extends this notion
slightly, as all objects implementing a given interface are regarded as members of the
interface's extent.

In our class diagram we find:

1. two simple "one-class-only" extents, BookArticle and CdArticle.
2. A compound extent Article containing all Article and BookArticle instances.
3. An interface extent containing all Article, BookArticle and CdArticle instances.

There is no extra coding necessary to define extents, but they have to be declared in the
repository file. The classes from the above example require the following declarations:

1. "one-class-only" extents require no declaration
2. A declaration for the baseclass Article, defining which classes are subclasses of Article:

<!-- Definitions for org.apache.ojb.ojb.broker.Article -->
<class-descriptor

class="org.apache.ojb.broker.Article"
proxy="dynamic"
table="Artikel"

>
<extent-class class-ref="org.apache.ojb.broker.BookArticle" />
<extent-class class-ref="org.apache.ojb.broker.CdArticle" />

...
</class-descriptor>

1. A declaration for InterfaceArticle, defining which classes implement this interface:

<!-- Definitions for org.apache.ojb.broker.InterfaceArticle -->
<class-descriptor class="org.apache.ojb.broker.InterfaceArticle">

<extent-class class-ref="org.apache.ojb.broker.Article" />
<extent-class class-ref="org.apache.ojb.broker.BookArticle" />
<extent-class class-ref="org.apache.ojb.broker.CdArticle" />

</class-descriptor>

Why is it necessary to explicitely declare which classes implement an interface and which
classes are derived from a baseclass? Of course it is quite simple in Java to check whether a
class implements a given interface or extends some other class. But sometimes it may not be
appropiate to treat special implementors (e.g. proxies) as proper implementors.

Other problems might arise because a class may implement multiple interfaces, but is only
allowed to be regarded as member of one extent.

In other cases it may be neccessary to treat certain classes as implementors of an interface or
as derived from a base even if they are not.

As an example, you will find that the ClassDescriptor for class org.apache.ojb.broker.Article
in the repository.xml contains an entry declaring class CdArticle as a derived class:

Advanced Technique

Page 4
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

<!-- Definitions for org.apache.ojb.ojb.broker.Article -->
<class-descriptor

class="org.apache.ojb.broker.Article"
proxy="dynamic"
table="Artikel"

>
<extent-class class-ref="org.apache.ojb.broker.BookArticle" />
<extent-class class-ref="org.apache.ojb.broker.CdArticle" />
...

</class-descriptor>

3. Mapping Inheritance Hierarchies

In the literature on object/relational mapping the problem of mapping inheritance hierarchies
to RDBMS has been widely covered. Have a look at the following inheritance hierarchy:

inheritance-1.gif

If we have to define database tables that have to contain these classes we have to choose one
of the following solutions:

1. Map all classes onto one table. A DDL for the table would look like:

CREATE TABLE A_EXTENT
(

ID INT NOT NULL PRIMARY KEY,
SOME_VALUE_FROM_A INT,
SOME_VALUE_FROM_B INT

)

2. Map each class to a distinct table and have all attributes from the base class in the derived
class. DDL for the table could look like:

Advanced Technique

Page 5
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

CREATE TABLE A
(

ID INT NOT NULL PRIMARY KEY,
SOME_VALUE_FROM_A INT

)
CREATE TABLE B
(

ID INT NOT NULL PRIMARY KEY,
SOME_VALUE_FROM_A INT,
SOME_VALUE_FROM_B INT

)

3. Map each class to a distinct table, but do not map base class fields to derived classes. Use
joins to materialize over all tables to materialize objects. DDL for the table would look like:

CREATE TABLE A
(

ID INT NOT NULL PRIMARY KEY,
SOME_VALUE_FROM_A INT

)
CREATE TABLE B
(

A_ID INT NOT NULL,
SOME_VALUE_FROM_B INT

)

OJB provides direct support for all three approaches.

Note:
But it's currently not recommended to mix mapping strategies within the same hierarchy !

In the following we demonstrate how these mapping approaches can be implemented by
using OJB.

3.1. Mapping All Classes on the Same Table

Mapping several classes on one table works well under OJB. There is only one special
situation that needs some attention:

Say there is a baseclass AB with derived classes A and B. A and B are mapped on a table
AB_TABLE. Storing A and B objects to this table works fine. But now consider a Query
against the baseclass AB. How can the correct type of the stored objects be determined?

OJB needs a column of type CHAR or VARCHAR that contains the classname to be used for
instantiation. This column must be mapped on a special attribute ojbConcreteClass. On
loading objects from the table OJB checks this attribute and instantiates objects of this type.

Advanced Technique

Page 6
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

Note:
The criterion for ojbConcreteClass is statically added to the query in class QueryFactory and it therefore appears in
the select-statement for each extent. This means that mixing mapping strategies should be avoided.

There is sample code for this feature in the method
org.apache.ojb.broker.PersistenceBrokerTest.testMappingToOneTable().
See the mapping details in the following Class declaration and the respective mapping:

public abstract class AB
{

/** the special attribute telling OJB the object's concrete type.
* NOTE: this attribute MUST be called ojbConcreteClass
*/
protected String ojbConcreteClass;

}

public class A extends AB
{

int id;
int someValue;

public A()
{

// OJB must know the type of this object
ojbConcreteClass = A.class.getName();

}
}

<!-- Definitions for extent org.apache.ojb.broker.AB -->
<class-descriptor class="org.apache.ojb.broker.AB">

<extent-class class-ref="org.apache.ojb.broker.A" />
<extent-class class-ref="org.apache.ojb.broker.B" />

</class-descriptor>

<!-- Definitions for org.apache.ojb.broker.A -->
<class-descriptor

class="org.apache.ojb.broker.A"
table="AB_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="ojbConcreteClass"
column="CLASS_NAME"
jdbc-type="VARCHAR"

Advanced Technique

Page 7
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

/>
<field-descriptor

name="someValue"
column="VALUE_"
jdbc-type="INTEGER"

/>
</class-descriptor>

The column CLASS_NAME is used to store the concrete type of each object.

If you cannot provide such an additional column, but need to use some other means of
indicating the type of each object you will require some additional programming:

You have to derive a Class from
org.apache.ojb.broker.accesslayer.RowReaderDefaultImpl and
overridee the method RowReaderDefaultImpl.selectClassDescriptor() to
implement your specific type selection mechanism. The code of the default implementation
looks like follows:

protected ClassDescriptor selectClassDescriptor(Map row)
throws PersistenceBrokerException

{
// check if there is an attribute which tells us
// which concrete class is to be instantiated
FieldDescriptor concreteClassFD =

m_cld.getFieldDescriptorByName(
ClassDescriptor.OJB_CONCRETE_CLASS);

if (concreteClassFD == null)
return m_cld;

else
{

try
{

String concreteClass = (String) row.get(
concreteClassFD.getColumnName());

if (concreteClass == null ||
concreteClass.trim().length() == 0)

{
throw new PersistenceBrokerException(

"ojbConcreteClass field returned null or 0-length
string");

}
else
{

concreteClass = concreteClass.trim();
}
ClassDescriptor result = m_cld.getRepository().

getDescriptorFor(concreteClass);
if (result == null)
{

result = m_cld;

Advanced Technique

Page 8
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

}
return result;

}
catch (PBFactoryException e)
{

throw new PersistenceBrokerException(e);
}

}
}

After implementing this class you must edit the ClassDescriptor for the respective class in the
XML repository to specify the usage of your RowReader Implementation:

<class-descriptor
class="my.Object"
table="MY_OBJECT"
...
row-reader="my.own.RowReaderImpl"
...

>
...

You will learn more about RowReaders in the next section.

3.2. Mapping Each Class to a Distinct Table

This is the most simple solution. Just write a complete ClassDescriptor for each class that
contains FieldDescriptors for all of the attributes, including inherited attributes.

3.3. Mapping Classes on Multiple Joined Tables

Here are the definitions for the classes A and B:

public class A
{

// primary key
int id;
// mapped to a column in A_TABLE
int someValueFromA;

}

public class B extends A
{

// id is primary key and serves also as foreign key referencing A.id
int id;
// mapped to a column in B_TABLE
int someValueFromB;

}

The next code block contains the class-descriptors for the the classes A and B.

Advanced Technique

Page 9
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

<!-- Definitions for org.apache.ojb.broker.A -->
<class-descriptor

class="org.apache.ojb.broker.A"
table="A_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="someValueFromA"
column="VALUE_"
jdbc-type="INTEGER"

/>
</class-descriptor>

<class-descriptor
class="org.apache.ojb.broker.B"
table="B_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>

<field-descriptor
name="someValueFromB"
column="VALUE_"
jdbc-type="INTEGER"

/>

<reference-descriptor name="super"
class-ref="org.apache.ojb.broker.A"
auto-retrieve="true"
auto-update="true"
auto-delete="true"

>
<foreignkey field-ref="id"/>

</reference-descriptor>
</class-descriptor>

As you can see from this mapping we need a special reference-descriptor that advises OJB to
load the values for the inherited attributes from class A by a JOIN using the (B.id ==
A.id) foreign key reference.

The name="super" is not used to address an actual attribute of the class B but as a marker
keyword defining the JOIN to the baseclass.

Advanced Technique

Page 10
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

Auto-update must be true to force insertion of A when inserting B. So have to define a
auto-update true setting for this reference-descriptor! In most cases it's also useful to enable
auto-delete.

Note:
Be aware that this sample does not declare org.apache.ojb.broker.B to be an extent of
org.apache.ojb.broker.A. Using extents here will lead to problems (instatiating the wrong class) because the primary
key is not unique within the hiearchy defined in the repository.

Attributes from the super-class A can be used the same way as attributes of B when querying
for B. No path-expression is needed in this case:

Criteria c = new Criteria();
c.addEqualTo("someValueFromA", new Integer(1));
c.addEqualTo("someValueFromB", new Integer(2));
Query q = QueryFactory.newQuery(B.class, c);
broker.getCollectionByQuery(q);

The above example is based on the assumption that the primary key attribute B.id and its
underlying column B_TABLE.ID is also used as the foreign key attribute.

Now let us consider a case where B_TABLE contains an additional foreign key column
B_TABLE.A_ID referencing A_TABLE.ID. In this case the layout for class B could look
like follows:

public class B extends A
{

// id is the primary key
int id;

// aID is the foreign key referencing A.id
int aID;

// mapped to a column in B_TABLE
int someValueFromB;

}

The mapping for B will then look like follows:

<class-descriptor
class="org.apache.ojb.broker.B"
table="B_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

Advanced Technique

Page 11
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

/>

<field-descriptor
name="aID"
column="A_ID"
jdbc-type="INTEGER"

/>

<field-descriptor
name="someValueFromB"
column="VALUE_"
jdbc-type="INTEGER"

/>

<reference-descriptor name="super"
class-ref="org.apache.ojb.broker.A">

<foreignkey field-ref="aID" />
</reference-descriptor>

</class-descriptor>

The mapping now contains an additional field-descriptor for the aID attribute.

In the "super" reference-descriptor the foreignkey field-ref attribute had to be
changed to "aID".

It is also possible to have the extra foreign key column B_TABLE.A_ID but without having
a foreign key attribute in class B:

public class B extends A
{

// id is the primary key
int id;

// mapped to a column in B_TABLE
int someValueFromB;

}

We can use OJB's anonymous field feature to get everything working without the "aID"
attribute. We keep the field-descriptor for aID, but declare it as an anonymous field. We just
have to add an attribute access="anonymous" to the field-descriptor:

<class-descriptor
class="org.apache.ojb.broker.B"
table="B_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>

Advanced Technique

Page 12
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

<field-descriptor
name="aID"
column="A_ID"
jdbc-type="INTEGER"
access="anonymous"

/>

<field-descriptor
name="someValueFromB"
column="VALUE_"
jdbc-type="INTEGER"

/>

<reference-descriptor name="super"
class-ref="org.apache.ojb.broker.A">

<foreignkey field-ref="aID" />
</reference-descriptor>

</class-descriptor>

You can learn more about the anonymous fields feature in this howto
(../../docu/howtos/howto-use-anonymous-keys.html) and how it work here.

4. Using interfaces with OJB

Sometimes you may want to declare class descriptors for interfaces rather than for concrete
classes. With OJB this is no problem, but there are a couple of things to be aware of, which
are detailed in this section.

Consider this example hierarchy :

public interface A
{

String getDesc();
}

public class B implements A
{

/** primary key */
private Integer id;
/** sample attribute */
private String desc;

public String getDesc()
{

return desc;
}
public void setDesc(String desc)
{

this.desc = desc;

Advanced Technique

Page 13
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../docu/howtos/howto-use-anonymous-keys.html

}
}

public class C
{

/** primary key */
private Integer id;
/** foreign key */
private Integer aId;
/** reference */
private A obj;

public void test()
{

String desc = obj.getDesc();
}

}

Here, class C references the interface A rather than B. In order to make this work with OJB,
four things must be done:

• All features common to all implementations of A are declared in the class descriptor of A.
This includes references (with their foreignkeys) and collections.

• Since interfaces cannot have instance fields, it is necessary to use bean properties instead.
This means that for every field (including collection fields), there must be accessors (a
get method and, if the field is not marked as access="readonly", a set method)
declared in the interface.

• Since we're using bean properties, the appropriate
org.apache.ojb.broker.metadata.fieldaccess.PersistentField
implementation must be used (see below). This class is used by OJB to access the fields
when storing/loading objects. Per default, OJB uses a direct access implementation
(org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldDirectAccessImpl)
which requires actual fields to be present.
In our case, we need an implementation that rather uses the accessor methods. Since the
PersistentField setting is (currently) global, you have to check whether there are
accessors defined for every field in the metadata. If yes, then you can use the
org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldIntrospectorImpl,
otherwise you'll have to resort to the
org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldAutoProxyImpl,
which determines for every field what type of field it is and then uses the appropriate
strategy.

• If at some place OJB has to create an object of the interface, say as the result type of a
query, then you have to specify factory-class and factory-method for the
interface. OJB then uses the specified class and (static) method to create an uninitialized
instance of the interface.

In our example, this would result in:

Advanced Technique

Page 14
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

public interface A
{

void setId(Integer id);
Integer getId();
void setDesc(String desc);
String getDesc();

}

public class B implements A
{

/** primary key */
private Integer id;
/** sample attribute */
private String desc;

public String getId()
{

return id;
}
public void setId(Integer id)
{

this.id = id;
}
public String getDesc()
{

return desc;
}
public void setDesc(String desc)
{

this.desc = desc;
}

}

public class C
{

/** primary key */
private Integer id;
/** foreign key */
private Integer aId;
/** reference */
private A obj;

public void test()
{

String desc = obj.getDesc();
}

}

public class AFactory
{

public static A createA()
{

return new B();

Advanced Technique

Page 15
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

}
}

The class descriptors would look like:

<class-descriptor
class="A"
table="A_TABLE"
factory-class="AFactory"
factory-method="createA"

>
<extent-class class-ref="B"/>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="desc"
column="DESC"
jdbc-type="VARCHAR"
length="100"

/>
</class-descriptor>

<class-descriptor
class="B"
table="B_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="desc"
column="DESC"
jdbc-type="VARCHAR"
length="100"

/>
</class-descriptor>

<class-descriptor
class="C"
table="C_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"

Advanced Technique

Page 16
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="aId"
column="A_ID"
jdbc-type="INTEGER"

/>
<reference-descriptor name="obj"

class-ref="A">
<foreignkey field-ref="aId" />

</reference-descriptor>
</class-descriptor>

One scenario where you might run into problems is the use of interfaces for nested objects. In
the above example, we could construct such a scenario if we remove the descriptors for A
and B, as well as the foreign key field aId from class C and change its class descriptor to:

<class-descriptor
class="C"
table="C_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="obj::desc"
column="DESC"
jdbc-type="VARCHAR"
length="100"

/>
</class-descriptor>

The access to desc will work because of the usage of bean properties, but you will get into
trouble when using dynamic proxies (../../docu/guides/basic-technique.html#dynamic-proxy)
for C. Upon materializing an object of type C, OJB will try to create the instance for the field
obj which is of type A. Of course, this is an interface but OJB won't check whether there is
class descriptor for the type of obj (in fact there does not have to be one, and usually there
isn't) because obj is not defined as a reference. As a result, OJB tries to instantiate an
interface, which of course fails.
Currently, the only way to handle this is to write a custom invocation handler
(../../docu/guides/basic-technique.html#proxy-customization) that knows how to create an
object of type A.

5. Change PersistentField Class

Advanced Technique

Page 17
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../docu/guides/basic-technique.html#dynamic-proxy
../../docu/guides/basic-technique.html#proxy-customization

OJB supports a pluggable strategy to read and set the persistent attributes in the persistence
capable classes. All strategy implementation classes have to implement the interface
org.apache.ojb.broker.metadata.fieldaccess.PersistentField. OJB
provide a few implementation classes which can be set in OJB.properties
(../../OJB.properties.txt) file:

The PersistentFieldClass property defines the implementation class
for PersistentField attributes used in the OJB MetaData layer.
By default the best performing attribute/refection based implementation
is selected (PersistentFieldDirectAccessImpl).
#
- PersistentFieldDirectAccessImpl
is a high-speed version of the access strategies.
It does not cooperate with an AccessController,
but accesses the fields directly. Persistent
attributes don't need getters and setters
and don't have to be declared public or protected
- PersistentFieldPrivilegedImpl
Same as above, but does cooperate with AccessController and do not
suppress the java language access check.
- PersistentFieldIntrospectorImpl
uses JavaBeans compliant calls only to access persistent attributes.
No Reflection is needed. But for each attribute xxx there must be
public getXxx() and setXxx() methods.
- PersistentFieldDynaBeanAccessImpl
implementation used to access a property from a
org.apache.commons.beanutils.DynaBean.
- PersistentFieldAutoProxyImpl
for each field determines upon first access how to access this
particular field
(directly, as a bean, as a dyna bean) and then uses that strategy
#
PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldDirectAccessImpl
#PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldPrivilegedImpl
#PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldIntrospectorImpl
#PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldDynaBeanAccessImpl
#PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldAutoProxyImpl
#

E.g. if the PersistentFieldDirectAccessImpl is used there must be an attribute in the persistent
class with this name, if the PersistentFieldIntrospectorImpl is used there must be a JavaBeans
compliant property of this name. More info about the individual implementation can be
found in javadoc (../../api/index.html) .

6. How do anonymous keys work?

To play for safety it is mandatory to understand how this feature is working. In the HOWTO
section is detailed described how to use anoymous keys
(../../docu/howtos/howto-use-anonymous-keys.html) .

Advanced Technique

Page 18
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../OJB.properties.txt
../../api/index.html
../../docu/howtos/howto-use-anonymous-keys.html

All involved classes can be found in
org.apache.ojb.broker.metadata.fieldaccess package. The classes used for
anonymous keys start with a AnonymousXYZ.java prefix.
Main class used for provide anonymous keys is
org.apache.ojb.broker.metadata.fieldaccess.AnonymousPersistentField.
Current implementation use an object identity based weak HashMap. The persistent object
identity is used as key for the anonymous key value. The (Anonymous)PersistentField
instance is associated with the FieldDescriptor declared in the repository.

This means that all anonymous key information will be lost when the object identity change,
e.g. the persistent object will be de-/serialized or copied. In conjuction with 1:1 references
this will be no problem, because OJB can use the referenced object to re-create the
anonymous key information (FK to referenced object).

Warning:
The use of anonymous keys in 1:n references (FK to main object) or for PK fields is only valid when object identity does not
change, e.g. use in single JVM without persistent object serialization and without persistent object copying.

7. Using Rowreader

RowReaders provide a callback mechanism that allows to interact with the OJB load
mechanism. All implementation classes have to implement interface RowReader
(../../api/org/apache/ojb/broker/accesslayer/RowReader.html) .

You can specify the RowReader implementation in

• the OJB.properties (../../OJB.properties.txt) file to set the standard used
RowReader implementation

#---
RowReader
#---
Set the standard RowReader implementation. It is also possible to specify
the
RowReader on class-descriptor level.
RowReaderDefaultClass=org.apache.ojb.broker.accesslayer.RowReaderDefaultImpl
• within the class-descriptor (../../docu/guides/repository.html#class-descriptor) to set the

RowReader for a specific class.

RowReader setting on class-descriptor level will override the standard reader set in
OJB.properties file. If neither a RowReader was set in OJB.properties file nor in
class-descriptor was set, OJB use an default implementation.

To understand how to use them we must know some of the details of the load mechanism. To

Advanced Technique

Page 19
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/accesslayer/RowReader.html
../../OJB.properties.txt
../../docu/guides/repository.html#class-descriptor

materialize objects from a rdbms OJB uses RsIterators, that are essentially wrappers to JDBC
ResultSets. RsIterators are constructed from queries against the Database.

The method RsIterator.next() is used to materialize the next object from the
underlying ResultSet. This method first checks if the underlying ResultSet is not yet
exhausted and then delegates the construction of an Object from the current ResultSet row to
the method getObjectFromResultSet():

protected Object getObjectFromResultSet() throws PersistenceBrokerException
{

if (getItemProxyClass() != null)
{

// provide m_row with primary key data of current row
getQueryObject().getClassDescriptor().getRowReader()

.readPkValuesFrom(getRsAndStmt().m_rs, getRow());
// assert: m_row is filled with primary key values from db
return getProxyFromResultSet();

}
else
{

// 0. provide m_row with data of current row
getQueryObject().getClassDescriptor().getRowReader()

.readObjectArrayFrom(getRsAndStmt().m_rs, getRow());
// assert: m_row is filled from db

// 1.read Identity
Identity oid = getIdentityFromResultSet();
Object result = null;

// 2. check if Object is in cache. if so return cached version.
result = getCache().lookup(oid);
if (result == null)
{

// 3. If Object is not in cache
// materialize Object with primitive attributes filled from
// current row
result = getQueryObject().getClassDescriptor()

.getRowReader().readObjectFrom(getRow());
// result may still be null!
if (result != null)
{

synchronized (result)
{

getCache().enableMaterializationCache();
getCache().cache(oid, result);
// fill reference and collection attributes
ClassDescriptor cld =

getQueryObject().getClassDescriptor()
.getRepository().getDescriptorFor(result.getClass());

// don't force loading of reference
final boolean unforced = false;

Advanced Technique

Page 20
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

// Maps ReferenceDescriptors to HashSets of owners
getBroker().getReferenceBroker().retrieveReferences(result, cld, unforced);
getBroker().getReferenceBroker().retrieveCollections(result, cld,
unforced);

getCache().disableMaterializationCache();
}

}
}
else // Object is in cache
{

ClassDescriptor cld = getQueryObject().getClassDescriptor()
.getRepository().getDescriptorFor(result.getClass());

// if refresh is required, update the cache instance from the
db

if (cld.isAlwaysRefresh())
{

getQueryObject().getClassDescriptor()
.getRowReader().refreshObject(result,

getRow());
}
getBroker().refreshRelationships(result, cld);

}
return result;

}
}

This method first uses a RowReader to instantiate a new object array and to fill it with
primitive attributes from the current ResultSet row.
The RowReader to be used for a Class can be configured in the XML repository with the
attribute row-reader (../../docu/guides/repository.html#class-descriptor) . If no
RowReader is specified, the standard RowReader is used. The method
readObjectArrayFrom(...) of this class looks like follows:

public void readObjectArrayFrom(ResultSet rs, ClassDescriptor cld, Map row)
{

try
{

Collection fields = cld.getRepository().
getFieldDescriptorsForMultiMappedTable(cld);

Iterator it = fields.iterator();
while (it.hasNext())
{

FieldDescriptor fmd = (FieldDescriptor) it.next();
FieldConversion conversion = fmd.getFieldConversion();
Object val = JdbcAccess.getObjectFromColumn(rs, fmd);
row.put(fmd.getColumnName() , conversion.sqlToJava(val));

}
}
catch (SQLException t)
{

throw new PersistenceBrokerException("Error reading from result
set",t);

Advanced Technique

Page 21
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#class-descriptor

}
}

In the second step OJB checks if there is already a cached version of the object to
materialize. If so the cached instance is returned. If not, the object is fully materialized by
first reading in primary attributes with the RowReader method readObjectFrom(Map
row, ClassDescriptor descriptor) and in a second step by retrieving reference-
and collection-attributes. The fully materilized Object is then returned.

public Object readObjectFrom(Map row, ClassDescriptor descriptor)
throws PersistenceBrokerException

{
// allow to select a specific classdescriptor
ClassDescriptor cld = selectClassDescriptor(row, descriptor);
return buildWithReflection(cld, row);

}

By implementing your own RowReader you can hook into the OJB materialization process
and provide additional features.

7.1. Rowreader Example

Assume that for some reason we do not want to map a 1:1 association with a foreign key
relationship to a different database table but read the associated object 'inline' from some
columns of the master object's table. This approach is also called 'nested objects'. The section
nested objects contains a different and much simpler approach to implement nested fields.

The class org.apache.ojb.broker.ArticleWithStockDetail has a
stockDetail attribute, holding a reference to a StockDetail object. The class
StockDetail is not declared in the XML repository. Thus OJB is not able to fill this attribute
by ordinary mapping techniques.

We have to define a RowReader that does the proper initialization. The Class
org.apache.ojb.broker.RowReaderTestImpl extends the
RowReaderDefaultImpl and overrides the readObjectFrom(...) method as follows:

public Object readObjectFrom(Map row, ClassDescriptor cld)
{

Object result = super.readObjectFrom(row, cld);
if (result instanceof ArticleWithStockDetail)
{

ArticleWithStockDetail art = (ArticleWithStockDetail) result;
boolean sellout = art.isSelloutArticle;
int minimum = art.minimumStock;
int ordered = art.orderedUnits;
int stock = art.stock;
String unit = art.unit;
StockDetail detail = new StockDetail(sellout, minimum,

Advanced Technique

Page 22
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

ordered, stock, unit, art);
art.stockDetail = detail;
return art;

}
else
{

return result;
}

}

To activate this RowReader the ClassDescriptor for the class ArticleWithStockDetail
contains the following entry:

<class-descriptor
class="org.apache.ojb.broker.ArticleWithStockDetail"
table="Artikel"
row-reader="org.apache.ojb.broker.RowReaderTestImpl"

>

8. Nested Objects

In the last section we discussed the usage of a user written RowReader to implement nested
objects. This approach has several disadvantages.

1. It is necessary to write code and to have some understanding of OJB internals.
2. The user must take care that all nested fields are written back to the database on store.

This section shows that nested objects can be implemented without writing code, and without
any further trouble just by a few settings in the repository.xml file.

The class org.apache.ojb.broker.ArticleWithNestedStockDetail has a
stockDetail attribute, holding a reference to a StockDetail object. The class
StockDetail is not declared in the XML repository as a first class entity class.

public class ArticleWithNestedStockDetail implements java.io.Serializable
{

/**
* this attribute is not filled through a reference lookup
* but with the nested fields feature
*/
protected StockDetail stockDetail;

...
}

The StockDetail class has the following layout:

public class StockDetail implements java.io.Serializable
{

protected boolean isSelloutArticle;

Advanced Technique

Page 23
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

protected int minimumStock;

protected int orderedUnits;

protected int stock;

protected String unit;

...
}

Only precondition to make things work is that StockDetail needs a default constructor.
The nested fields semantics can simply declared by the following class- descriptor:

<class-descriptor
class="org.apache.ojb.broker.ArticleWithNestedStockDetail"
table="Artikel"

>
<field-descriptor

name="articleId"
column="Artikel_Nr"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="articleName"
column="Artikelname"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="supplierId"
column="Lieferanten_Nr"
jdbc-type="INTEGER"

/>
<field-descriptor

name="productGroupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"

/>
<field-descriptor

name="stockDetail::unit"
column="Liefereinheit"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="price"
column="Einzelpreis"
jdbc-type="FLOAT"

/>
<field-descriptor

name="stockDetail::stock"
column="Lagerbestand"
jdbc-type="INTEGER"

Advanced Technique

Page 24
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

/>
<field-descriptor

name="stockDetail::orderedUnits"
column="BestellteEinheiten"
jdbc-type="INTEGER"

/>
<field-descriptor

name="stockDetail::minimumStock"
column="MindestBestand"
jdbc-type="INTEGER"

/>
<field-descriptor

name="stockDetail::isSelloutArticle"
column="Auslaufartikel"
jdbc-type="INTEGER"

conversion="org.apache.ojb.broker.accesslayer.conversions.Boolean2IntFieldConversion"
/>

</class-descriptor>

That's all! Just add nested fields by using :: to specify attributes of the nested object. All
aspects of storing and retrieving the nested object are managed by OJB.

9. Instance Callbacks

OJB does provide transparent persistence. That is, persistent classes do not need to
implement an interface or extent a persistent baseclass.

For certain situations it may be neccesary to allow persistent instances to interact with OJB.
This is supported by a simple instance callback mechanism.

The interface org.apache.ojb.PersistenceBrokerAware provides a set of
methods that are invoked from the PersistenceBroker during operations on persistent
instances:

public interface PersistenceBrokerAware
{

/**
* this method is called as the first operation within a call to
* PersistenceBroker.store(Object pbAwareObject), if
* the persistent object needs insert.
*/
public void beforeInsert(PersistenceBroker broker)

throws PersistenceBrokerException;

/**
* this method is called as the last operation within a call to
* PersistenceBroker.store(Object pbAwareObject), if
* the persistent object needs insert.
*/
public void afterInsert(PersistenceBroker broker)

throws PersistenceBrokerException;

Advanced Technique

Page 25
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

/**
* this method is called as the first operation within a call to
* PersistenceBroker.store(Object pbAwareObject), if
* the persistent object needs update.
*/
public void beforeUpdate(PersistenceBroker broker)

throws PersistenceBrokerException;

/**
* this method is called as the last operation within a call to
* PersistenceBroker.store(Object pbAwareObject), if
* the persistent object needs update.
*/
public void afterUpdate(PersistenceBroker broker)

throws PersistenceBrokerException;

/**
* this method is called as the first operation within a call to
* PersistenceBroker.delete(Object pbAwareObject).
*/
public void beforeDelete(PersistenceBroker broker)

throws PersistenceBrokerException;

/**
* this method is called as the last operation within a call to
* PersistenceBroker.delete(Object pbAwareObject).
*/
public void afterDelete(PersistenceBroker broker)

throws PersistenceBrokerException;

/**
* this method is called as the last operation within a call to
* PersistenceBroker.getObjectByXXX() or
* PersistenceBroker.getCollectionByXXX().
*/
public void afterLookup(PersistenceBroker broker)

throws PersistenceBrokerException;
}

If you want your persistent entity to perform certain operations after it has been stored by the
PersistenceBroker you have to perform the following steps:

1. let your persistent entity class implement the interface PersistenceBrokerAware.
2. provide empty implementations for all required mthods.
3. implement the method afterUpdate(PersistenceBroker broker) and

afterInsert(PersistenceBroker broker) to perform your intended logic.

In the following "for demonstration only code" you see a class DBAutoIncremented that
does not use the OJB sequence numbering (more info here
(../../docu/guides/sequencemanager.html)), but relies on a database specific implementation
of autoincremented primary key values.

Advanced Technique

Page 26
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../docu/guides/sequencemanager.html

When the broker is storing such an instance the DB assigns an autoincrement value to the
primary key column mapped to the attribute m_id. The
afterStore(PersistenceBroker broker) instance callback is used to update the
the attribute m_id with this value.

public abstract class DBAutoIncremented
implements PersistenceBrokerAware

{
private static final String ID_ATTRIBUTE_NAME = "m_id";

public void afterDelete(PersistenceBroker broker)
{
}

public void afterLookup(PersistenceBroker broker)
{
}

public void afterUpdate(PersistenceBroker broker)
{
}

/**
* after storing a new instance reflect the
* autoincremented PK value
* back into the PK attribute.
*/
public void afterInsert(PersistenceBroker broker)
{

try
{

// remove object from cache to ensure we are retrieving a
// copy that is in sync with the database.
broker.removeFromCache(this);

Class clazz = getClass();
ClassDescriptor cld = broker.getClassDescriptor(clazz);
PersistentField idField = cld

.getFieldDescriptorByName(ID_ATTRIBUTE_NAME)

.getPersistentField();
// retrieve the object again with a query
// on all non-id attributes.
Object object =

broker.getObjectByQuery(
buildQueryOnAllNonIdAttributes(clazz, cld));

if (object == null)
{

throw new PersistenceBrokerException(
"cannot assign ID to "

+ this
+ " ("

Advanced Technique

Page 27
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

+ clazz
+ ")"
+ " because lookup by attributes failed");

}

// set id attribute with the value
// assigned by the database.
idField.set(this, idField.get(object));

}
}

public void beforeDelete(PersistenceBroker broker)
{
}

public void beforeStore(PersistenceBroker broker)
{
}

/**
* returns a query that identifies an object by all its non-
* primary key attributes.
* NOTE: This method is only safe, if these values are unique!
*/
private Query buildQueryOnAllNonIdAttributes(

Class clazz,
ClassDescriptor cld)

{

// note: these are guaranteed to be in the same order
FieldDescriptor[] fields = cld.getFieldDescriptions();
Object[] values = cld.getAllValues(this);
Criteria crit = new Criteria();

for (int i = 0; i < fields.length; i++)
{

if (!fields[i].getAttributeName().
equals(ID_ATTRIBUTE_NAME))

{
if (values[i] == null)
{

crit.addIsNull(fields[i].getAttributeName());
}
else
{

crit.addEqualTo(fields[i].getAttributeName(),
values[i]);

}
}

}
return QueryFactory.newQuery(clazz, crit);

}
}

Advanced Technique

Page 28
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

10. Manageable Collection

In 1:n (../../docu/guides/basic-technique.html#one-to-n) or m:n
(../../docu/guides/basic-technique.html#m-to-n) relations, OJB can handle
java.util.Collection as well as user defined collection classes as collection
attributes in persistent classes. See collection-descriptor.collection-class
(../../docu/guides/repository.html#collection-descriptor) attribute for more information.

In order to collaborate with the OJB mechanisms these collection must provide a minimum
protocol as defined by this interface
org.apache.ojb.broker.ManageableCollection.

public interface ManageableCollection extends java.io.Serializable
{

/**
* add a single Object to the Collection. This method is used during

reading Collection elements
* from the database. Thus it is is save to cast anObject to the

underlying element type of the
* collection.
*/
void ojbAdd(Object anObject);

/**
* adds a Collection to this collection. Used in reading Extents from

the Database.
* Thus it is save to cast otherCollection to this.getClass().
*/
void ojbAddAll(ManageableCollection otherCollection);

/**
* returns an Iterator over all elements in the collection. Used during

store and delete Operations.
* If the implementor does not return an iterator over ALL elements,

OJB cannot store and delete all
* elements properly.
*/
Iterator ojbIterator();

/**
* A callback method to implement 'removal-aware' (track removed

objects and delete
* them by its own) collection implementations.
*/
public void afterStore(PersistenceBroker broker) throws

PersistenceBrokerException;
}

The methods have a prefix "ojb" that indicates that these methods are "technical" methods,
required by OJB and not to be used in business code.

Advanced Technique

Page 29
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../docu/guides/basic-technique.html#one-to-n
../../docu/guides/basic-technique.html#m-to-n
../../docu/guides/repository.html#collection-descriptor

In package org.apache.ojb.broker.util.collections can be found a bunch of
pre-defined implementations of
org.apache.ojb.broker.ManageableCollection.

More info about which collection class to used here.

10.1. Types Allowed for Implementing 1:n and m:n Associations

OJB supports different Collection types to implement 1:n and m:n associations. OJB detects
the used type automatically, so there is no need to declare it in the repository file. There is
also no additional programming required. The following types are supported:

1. java.util.Collection, java.util.List, java.util.Vector as in the
example above. Internally OJB uses java.util.Vector to implement collections.

2. Arrays (see the file ProductGroupWithArray).
3. User-defined collections (see the file ProductGroupWithTypedCollection). A

typical application for this approach are typed Collections.
Here is some sample code from the Collection class ArticleCollection. This
Collection is typed, i.e. it accepts only InterfaceArticle objects for adding and will return
InterfaceArticle objects with get(int index). To let OJB handle such a user-defined
Collection it must implement the callback interface ManageableCollection and
the typed collection class must be declared in the collection-descriptor using the
collection-class attribute. ManageableCollection provides hooks that are called by
OJB during object materialization, updating and deletion.

public class ArticleCollection implements ManageableCollection,
java.io.Serializable

{
private Vector elements;

public ArticleCollection()
{

super();
elements = new Vector();

}

public void add(InterfaceArticle article)
{

elements.add(article);
}

public InterfaceArticle get(int index)
{

return (InterfaceArticle) elements.get(index);
}

/**

Advanced Technique

Page 30
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

* add a single Object to the Collection. This method is
* used during reading Collection elements from the
* database. Thus it is is save to cast anObject
* to the underlying element type of the collection.
*/
public void ojbAdd(java.lang.Object anObject)
{

elements.add((InterfaceArticle) anObject);
}

/**
* adds a Collection to this collection. Used in reading
* Extents from the Database.
* Thus it is save to cast otherCollection to this.getClass().
*/
public void ojbAddAll(

ojb.broker.ManageableCollection otherCollection)
{

elements.addAll(
((ArticleCollection) otherCollection).elements);

}

/**
* returns an Iterator over all elements in the collection.
* Used during store and delete Operations.
*/
public java.util.Iterator ojbIterator()
{

return elements.iterator();
}

}

And the collection-descriptor have to declare this class:

<collection-descriptor
name="allArticlesInGroup"
element-class-ref="org.apache.ojb.broker.Article"
collection-class="org.apache.ojb.broker.ArticleCollection"
auto-retrieve="true"
auto-update="false"
auto-delete="true"
>
<inverse-foreignkey field-ref="productGroupId"/>
</collection-descriptor>

10.2. Which collection-class type should be used?

Earlier in this section the org.apache.ojb.broker.ManageableCollection was
introduced. Now we talk about which type to use.

By default OJB use a removal-aware collection implementation. These implementations
(classes prefixed with Removal...) track removal and addition of elements.

Advanced Technique

Page 31
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

This tracking allow the PersistenceBroker to delete elements from the database that have
been removed from the collection before a PB.store() operation occurs.

This default behaviour is undesired in some cases:

• In m:n relations (../../docu/guides/basic-technique.html#m-to-n) , e.g. between Movie and
Actor class. If an Actor was removed from the Actor collection of a Movie object
expected behaviour was that the Actor be removed from the indirection table
(../../docu/guides/basic-technique.html#m-to-n) , but not the Actor itself. Using a removal
aware collection will remove the Actor too. In that case a simple manageable collection is
recommended by set e.g.
collection-class="org.apache.ojb.broker.util.collections.ManageableArrayList"
in collection-descriptor.

• In 1:n relations (../../docu/guides/basic-technique.html#one-to-n) when the n-side objects
be removed from the collection of the main object, but we don't want to remove them
itself (be careful with this, because the FK entry of the main object still exists - more info
about linking here (../../docu/guides/basic-technique.html#linking)).

11. Customizing collection queries

Customizing the query used for collection retrieval allows a developer to take full control of
collection mechanism. For example only children having a certain attribute should be loaded.
This is achieved by a QueryCustomizer defined in the collection-descriptor of a relationship:

<collection-descriptor
name="allArticlesInGroup"
...

>
<inverse-foreignkey field-ref="productGroupId"/>

<query-customizer
class="org.apache.ojb.broker.accesslayer.QueryCustomizerDefaultImpl">

<attribute
attribute-name="attr1"
attribute-value="value1"

/>
</query-customizer>

</collection-descriptor>

The query customizer must implement the interface
org.apache.ojb.broker.accesslayer.QueryCustomizer. This interface
defines the single method below which is used to customize (or completely rebuild) the query
passed as argument. The interpretation of attribute-name and attribute-value read from the
collection-descriptor is up to your implementation.

Advanced Technique

Page 32
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../docu/guides/basic-technique.html#m-to-n
../../docu/guides/basic-technique.html#m-to-n
../../docu/guides/basic-technique.html#one-to-n
../../docu/guides/basic-technique.html#linking

/**
* Return a new Query based on the original Query, the
* originator object and the additional Attributes
*
* @param anObject the originator object
* @param aBroker the PersistenceBroker
* @param aCod the CollectionDescriptor
* @param aQuery the original 1:n-Query
* @return Query the customized 1:n-Query
*/
public Query customizeQuery(Object anObject,

PersistenceBroker aBroker,
CollectionDescriptor aCod, Query aQuery);

The class
org.apache.ojb.broker.accesslayer.QueryCustomizerDefaultImpl
provides a default implentation without any functionality, it simply returns the query.

12. Metadata runtime changes

This was described in metadata section (../../docu/guides/metadata.html) .

Advanced Technique

Page 33
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../docu/guides/metadata.html

	1 Introduction
	2 Extents and Polymorphism
	2.1 Polymorphism
	2.2 Extents

	3 Mapping Inheritance Hierarchies
	3.1 Mapping All Classes on the Same Table
	3.2 Mapping Each Class to a Distinct Table
	3.3 Mapping Classes on Multiple Joined Tables

	4 Using interfaces with OJB
	5 Change PersistentField Class
	6 How do anonymous keys work?
	7 Using Rowreader
	7.1 Rowreader Example

	8 Nested Objects
	9 Instance Callbacks
	10 Manageable Collection
	10.1 Types Allowed for Implementing 1:n and m:n Associations
	10.2 Which collection-class type should be used?

	11 Customizing collection queries
	12 Metadata runtime changes

