Persistence Broker Tutorial

by Brian McCallister
Table of contents

1 The PersistenCeBroKer AP ..ot 2
3 g 0o (0ot o o 1SRRI 2
1.2 A First LOOK - Persisting New ODJECLS.........ccoiriririeieese e 3
1.3 Querying Persistent ODJECES..........oviiiiiieeeee s 4
1.4 Updating PersiStent ODJECES.........oiiiiirieiierieeie et 6
1.5 Deleting Persistent ODJECES.........ccuiiiie ittt neas 7
1.6 Find object DY primary KeY ..o 8

2 EXCEPLiON HANAIING.......c.eeiieeieiiesie et et sae e s e nneeneaneens 8

Persistence Broker Tutorial

1. The PersistenceBroker API

1.1. Introduction

The PersistenceBroker API provides the lowest level accessto OJB's persistence engine.
Whileit isalow-level APl compared to the OTM, ODMG, or JDO API'sit is still very
straightforward to use.

The core class in the PersistenceBroker API isthe
or g. apache. oj b. br oker . Per si st enceBr oker class. Thisclass providesthe
point of access for all persistence operationsin this API.

More detailed information can be found in the PB-quide (../../docu/guides/pb-guide.html) and
in the other reference quides (../../docu/guides/summary.html) .

Thistutorial operates on a simple example class.

package org. apache.ojb.tutorials;
public class Product
{
/* Instance Properties */
private Double price;
private Integer stock;
private String name;l ean
/* artificial property used as prinmary key */
private Integer id;

/* CGetters and Setters */

}

The metadata descriptor for mapping this classis described in the mapping tutorial
(../../docu/tutorial s'/mapping-tutorial .html)

The source code for al tutorialsis available in the seperatet ut ori al s-src. j ar which
you can download here (http://www.apache.org/dyn/closer.cgi/db/ojb/) . If you're eager to try
them out, you can use them with the ojb-blank project which can be downloaded from the
same place. It is described in the Getting started (../../docu/getting-started.html) section.

Further information about the OJB PB-api implementation can be found in the PB guide
(../../docu/guides/pb-guide.html) .

Page 2

../../docu/guides/pb-guide.html
../../docu/guides/summary.html
../../docu/tutorials/mapping-tutorial.html
http://www.apache.org/dyn/closer.cgi/db/ojb/
../../docu/getting-started.html
../../docu/guides/pb-guide.html

Persistence Broker Tutorial

1.2. A First Look - Persisting New Objects

The most basic operation is to persist an object. Thisis handled very easily by just

obtaining aPer si st enceBr oker

begin the PB-transaction

storing the object viathe Per si st enceBr oker
commit transaction

. closing the Per si st enceBr oker

For example, the following function stores a single object of type Pr oduct .

abhwbdE

public static void storeProduct (Product product)

Per si st enceBr oker broker = null;

try

{
br oker = Persi st enceBr oker Fact ory. def aul t Per si st enceBr oker () ;
br oker. begi nTransacti on() ;

br oker. st or e(product) ;
br oker. comi t Transacti on() ;

cat ch(Persi st enceBr oker Excepti on e)

i f(broker !'= null) broker. abortTransaction();
/1 do nmore exception handling

}

finally

{
if (broker !'= null) broker.close();

}

}

Two OJB classes are used here, the Per si st enceBr oker Fact ory and the

Per si st enceBr oker . ThePer si st enceBr oker Fact ory class manages the
lifecycles of Per si st enceBr oker instances: it creates them, pools them, and destroys
them as needed. The exact behavior isvery configurable.

In this case we used the static

Per si st enceBr oker Fact ory. def aul t Per si st enceBr oker () method to
obtain an instance of aPer si st enceBr oker to the default data source. Thisis most often
how it isused if there is only one database for an application. If there are multiple data
sources, a broker may be obtained by name (using a PBKey instance as argument in

Per si st enceBr oker Fact ory. cr eat ePer si st enceBr oker (pbKey)).

It isworth noting that the br oker . cl ose() call ismadewithinafinally {...}
block. This ensures that the broker will be closed, and returned to the broker pool, even if the
function throws an exception.

Page 3

Persistence Broker Tutorial

To use thisfunction, we just create a Pr oduct and passit to the function:

Product product = new Product();

product . set Nane(" Spr ocket ") ;
product. set Price(1.99);

product . set St ock(10) ;

st or eProduct (product);

OnceaPer si st enceBr oker has been obtained, its

Per si st enceBr oker . st or e(Obj ect) method is used to make an object persistent.

Maybe you have noticed that there has not been an assignment to pr oduct . i d, the
primary-key attribute. Upon storing pr oduct OJB detects that the attribute is not properly
set and assigns a unique id. This automatic assignment of unique Idsfor the attribute i d has
been explicitly declared in the XML repository (../../docu/guides/repository.html) file, aswe
discussed in the (../../docu/tutorial s‘/mapping-tutorial .html#metadata) .

If several objects need to be stored, this can be done within a transaction, as follows.

public static void storeProducts(Product[] products)

{
Per si st enceBr oker broker = null;
try
{
br oker = Persi stenceBrokerFact ory. def aul t Persi st enceBr oker () ;
br oker . begi nTransacti on() ;
for (int i = 0; i < products.|ength; i++)
{
br oker. store(products[i]);
br oker. comi t Transacti on();
cat ch(Persi st enceBr oker Excepti on e)
i f(broker !'= null) broker.abortTransaction();
/1 do nmore exception handling
}
finally
{
if (broker !'= null) broker.close();
}
}

This contrived example stores al of the passed Product instances within a single transaction
viathe Per si st enceBr oker . begi nTransacti on() and

Per si st enceBr oker. comm t Transact i on() . These are database level
transactions, not object level transactions.

1.3. Querying Persistent Objects

Page 4

../../docu/guides/repository.html

Persistence Broker Tutorial

Once objects have been stored to the database, it isimportant to be able to get them back.
The PersistenceBroker APl provides two mechanisms for building queries
(../../docu/guides/query.html) , by using atemplate object, or by using specific criteria.

public static Product findByTenpl ate(Product tenplate)
{

Per si st enceBr oker broker = null;
Product result = null;

try
br oker = Persi stenceBroker Fact ory. def aul t Per si st enceBr oker () ;
QueryByCriteria query = new QueryByCriteria(tenplate);
result = (Product) broker.get ObjectByQuery(query);

}

finally

if (broker !'= null) broker.close();

} return result;

Thisfunction findsa Pr oduct by building a query against atemplate Pr oduct . The
template should have any properties set which should be matched by the query. Building on
the previous example where a product was stored, we can now query for that same product:

Product product = new Product ();
product . set Nane(" Sprocket ") ;
product . set Pri ce(new Doubl e(1.99));
product . set St ock(new I nt eger (10));
st or ePr oduct (product);

Product tenplate = new Product();

t enpl at e. set Nane(" Sprocket");

Product saneProduct = findByTenpl ate(tenpl ate);

In the above code snippet, pr oduct and samePr oduct will reference the same object
(assuming there are no additional products in the database with the name " Sprocket™).

Thetemplate Pr oduct hasonly one of its properties set, the nane property. The others are
all null. Properties with null values are not used to match.

An aternate, and more flexible, way to have specified a query viathe PersistenceBroker API
is by constructing the criteria on the query by hand. The following function does this.

public static Collection getExpensiveLowSt ockProducts()
{

Persi st enceBr oker broker = null;
Col l ection results = nul |;

try
{

Page 5

../../docu/guides/query.html

Persistence Broker Tutorial

br oker = Persi stenceBrokerFactory. def aul t Persi st enceBr oker () ;

Criteria criteria = new Criteria();
criteria.addLessO Equal Than("stock”, new I nteger(20));
criteria.addG eat er O Equal Than("price", new Doubl e(100000.0));

QueryByCriteria query = new QueryByCriteria(Product.class,
criteria);
results = broker.getColl ecti onByQuery(query);

I8
finally
if (broker !'= null) broker.close();

return results;

Thisfunction buildsaCri t eri a object and usesit to set more complex query parameters -
in this case greater-than and less-than contraints. Looking at the first constraint put on the
criteria, criteri a. addLessOr Equal Than("st ock™, new I nteger(10));
notice the arguments. The first is the property name on the object being queried for. The
second isan | nt eger instance to be used for the comparison.

AftertheCri t eri a hasbeen built, the Quer yByCri t er i a constructor used is also
different from the previous example. In this case the criteria does not know the type of the
object it isbeing used against, so the Cl ass must be specified to the query.

Finally, notice that this example uses the

Per si st enceBr oker. get Col | ecti onByQuery(...) method instead of the
Per si st enceBr oker. get Qbj ect ByQuery(...) method used previously. Thisis
used because we want all of the results. Either form can be used with either method of
constructing queries. In the case of the

Per si st enceBr oker . get Obj ect ByQuery(...) stylequery, thefirst matching
object is returned, even if there are multiple matching objects.

1.4. Updating Persistent Objects

The same mechanism, and method, is used for updating persistent objects as for inserting
persistent objects. The same Per si st enceBr oker . st or e(Obj ect) method is used to
store amodified object asto insert a new one - the difference between new and modified
objectsisirrelevent to OJB.

This can cause some confusion for people who are very used to working in the stricter
confines of SQL inserts and updates. Basically, OJB will insert a new object into the
relational storeif the primary key, as specified in the O/R metadataisnot in use. If itisin
use, it will update the existing object rather than create a new one.

Page 6

Persistence Broker Tutorial

This allows programmers to treat every object the same way in an object model, whether it
has been newly created and made persistent, or materialized from the database.

Typically, making changes to a peristent object first requires retrieving a reference to the
object, so the typical update cycle, unless the application caches objects, isto query for the
object to modify, modify the object, and then store the object. The following function
demonstrates this behavior by "selling" a Product.

public static bool ean sel |l OneProduct (Product tenplate)

Per si st enceBr oker broker = null;
bool ean i sSold = fal se;

try
{
br oker = Persi st enceBroker Fact ory. def aul t Persi st enceBr oker () ;

QueryByCriteria query = new QueryByCriteria(tenplate);
Product result = (Product) broker.getObjectByQuery(query);

if (result !'= null)

br oker . begi nTransacti on();

result.set Stock(new I nteger(result.getStock().intValue() - 1));
broker.store(result);

/] alternative, nore performant

/1 broker.store(result, ObjectMdificationDefaultlnpl.UPDATE)
br oker. commi t Transacti on();

isSold = true;

}

}
cat ch(Persi st enceBr oker Excepti on e)

i f(broker !'= null) broker.abortTransaction();
/1 do nmore exception handling

I8
finally
if (broker !'= null) broker.close();

return isSold;

}

This function uses the same query-by-template and Per si st enceBr oker . st ore()
API's examined previously, but it uses the store method to store changes to the object it
retrieved. It isworth noting that the entire operation took place within atransaction.

1.5. Deleting Persistent Objects

Deleting persistent objects from the repository is accomplished viathe
Per si st enceBr oker . del et e() method. Thisremoves the persistent object from the

Page 7

Persistence Broker Tutorial

repository, but does not affect any change on the object itself. For example:

public static void del et eProduct (Product product)
Per si st enceBr oker broker = null;
try
{
br oker = Persi st enceBroker Fact ory. def aul t Persi st enceBr oker () ;
br oker. begi nTransacti on();

br oker . del et e(product);
br oker. conm t Transacti on();

}
cat ch(Persi st enceBr oker Excepti on e)

i f(broker !'= null) broker.abortTransaction();
/1 do nmore exception handling

}

finally

{
if (broker !'= null) broker.close();

}

}
This method ssimply deletes an object from the database.

1.6. Find object by primary key

In some cases only the primary key values (single field or n-fields for composed primary
keys) of an object are known. In OJB you have several ways to request the whole object. Itis
possible to build a query as shown above, but the smarter solution isto use

Per si st enceBr oker #get bj ect Byl dentity(ldentity oid).Anldentity
(../../api/org/apache/ojb/broker/Identity.html) object is a unique representation of a
persistence capabl e object based on the object primary key values and the top-level class
(abstract class, interface or the class itself, depending on the extent metadata mapping
(../../docu/guides/advanced-technique.html#extents)).

For example, to find an Product with an single primary key of '23' do

Identity oid = broker.serviceldentity().buildldentity(Product.class, new
I nt eger (23));
Product product = (Product) broker.get CbjectByldentity(oid);

2. Exception Handling

Most Per si st enceBr oker operationsthrow a

or g. apache. oj b. br oker . Per si st enceBr oker Except i on, which isderived
fromj ava. | ang. Runti meExcept i on if an error occurs. This means that no try/catch
block isrequired but does not mean that it should not be used. This tutorial specifically does

Page 8

../../api/org/apache/ojb/broker/Identity.html
../../docu/guides/advanced-technique.html#extents

Persistence Broker Tutorial

not catch exceptions al in order to focus more tightly on the specifics of the API, however,
best usage would be to include a try/catch/finaly block around persistence operations using
the PeristenceBroker API.

Additionally, the closing of Per si st enceBr oker instancesisbest handledinfi nal | y
blocksin order to guarantee that it is run, even if an exception occurs. If the

Per si st enceBr oker . cl ose() isnot caled then the application will leak broker
instances. The best way to ensure that it is always called is to aways retrieve and use

Per si st enceBr oker instanceswithinatry {...} block, and always close the broker
inafinally {...} block attachedtothetry {...} block.

A better designed get Expensi veLowSt ockPr oduct s() method is presented here.

public static Collection betterGet Expensi veLowSt ockProduct s()

Per si st enceBr oker broker = null;
Coll ection results = null;

try

{

br oker = Persi stenceBrokerFactory. def aul t Persi st enceBr oker () ;

Criteria criteria = new Criteria();
criteria.addLessO Equal Than("stock”, new I nteger(20));
criteria.addG eat er O Equal Than("price", new Doubl e(100000. 0));

QueryByCriteria query = new QueryByCriteria(Product.class,
criteria);
results = broker. getColl ectionByQuery(query);

catch (PersistenceBroker Exception e)
/1 Handl e exception
%inally
if (broker !'= null) broker.close();

return results;

}

Notice first that the Per si st enceBr oker isretrieved and used within the confines of a
try {...} block. Assuming nothing goeswrong the entire operation will execute there,
al theway tothereturn resul ts; line. Javaguaranteesthatfinally {...} blocks
will be called before a method returns, so the br oker . cl ose() method is only included
once, inthef i nal | y block. Asan exception may have occured while attempting to retrieve
the broker, a not-null test isfirst performed before closing the broker.

Page 9

	1 The PersistenceBroker API
	1.1 Introduction
	1.2 A First Look - Persisting New Objects
	1.3 Querying Persistent Objects
	1.4 Updating Persistent Objects
	1.5 Deleting Persistent Objects
	1.6 Find object by primary key

	2 Exception Handling

