Object Transaction Manager Tutorial

by Brian McCallister
Table of contents

L TRE OTIM APl .ttt st bbbt e st e st e e e e e tenbentennas
3 g 0o (0ot o o 1SRRI
1.2 Persisting NEW ODJECLS.........eiuiririeierierie sttt see s
1.3 Deleting PersiStent ODJECLS.........coouiiiiiieriesesies et
1.4 QUENYING FOr ODJECES.....cueiieeeieeierteee et sae et ae e sne e
1.5 More Sophisticated Transaction Handling...........ccccoveiieiiniieevie e

2 Notes on the Object Transaction Manager...........ccueeeeieeieieere et
2 I I == o £ 0 SO P PRSP

Object Transaction Manager Tutorial

1. TheOTM API

1.1. Introduction

The Object Transaction Manager (OTM) iswritten as atool on which to implement other
high-level object persistence APIs. It is, however, very usable directly. It supports API's
similar to the ODMG (../../docu/tutorialy'odmg-tutorial .html) and PersistenceBroker
(../../docu/tutorials/pb-tutorial .html) API'sin OJB. Several of itsidioms are designed around
the fact that it is meant to have additional, client-oriented, API's built on top of it, however.

The OTMKi t istheinitia access point to the OTM interfaces. The kit provides basic
configuration information to the OTM components used in your system. This tutorial will use
the Si npl eKi t which will work well under most circumstances for local transaction
implementations.

This tutorial operates on a simple example class:

package org. apache.ojb.tutorials;
public class Product
/* Instance Properties */
private Doubl e price;
private |Integer stock;
private String namne;
/* artificial property used as prinmary key */
private Integer id;

/* Getters and Setters */

}
The metadata descriptor for mapping this classis described in the mapping tutorial
(../../docu/tutorial s'/mapping-tutorial .ntml) .

As aways the source code for thistutorial can befound inthet ut ori al s-src. jar
available from here (http://www.apache.org/dyn/closer.cgi/db/ojb/) , more specifically in the
or g/ apache/ oj b/ tutori al s/ directory.

1.2. Persisting New Objects

The starting point for using the OTM directly isto look at making a transient object
persistent. This code will use three things, an OTMKi t , an OTMConnect i on, and a

Page 2

../../docu/tutorials/odmg-tutorial.html
../../docu/tutorials/pb-tutorial.html
../../docu/tutorials/mapping-tutorial.html
http://www.apache.org/dyn/closer.cgi/db/ojb/

Object Transaction Manager Tutorial

Transact i on. The connection and transaction objects are obtained from the kit.

Initial accessto the OTM client API'sisthrough the OTMKi t interface. Welll use the
Si npl eKi t, an implementation of the OTIVKi t suitable for most circumstances using local
transactions.

public static void storeProduct(Product product) throws Locki ngException

OTWit kit = SinpleKit.getlnstance();
OTMConnecti on conn = nul |
Transaction tx = null;

try

{
conn =
ki t.acqui reConnecti on(PersistenceBrokerFactory. get Def aul t Key());
tx = kit.getTransaction(conn);
t x. begi n();
conn. makePer si st ent (product) ;
tx.commt();

}
catch (Locki ngException e)

if (tx.islnProgress()) tx.rollback();
t hrow e;

inally

conn. cl ose();

— A —h——

}

A kit isobtained and is used to obtain a connection. Connections are against a specific JCD
alias. In this case we use the default, but a named datasource could also be used, as
configured in the metadata repository. A transaction is obtained from the kit for the specific
connection. Because multiple connections can be bound to the same transaction in the OTM,
the transaction needs to be acquired from the kit instead of the connection itself. The

Si npl eKi t usesthe commonly seen transaction-per-thread idiom, but other kits do not
need to do this.

Every persistence operation within the OTM needs to be executed within the context of a
transaction. The JDBC concept of implicit transactions doesn't exist in the OTM --
transactions must be explicit.

Locks, on the other hand, are implicit in the OTM (though explicit locks are available). The
conn. nakePer si stent (..) cal obtainsawritelock on pr oduct and will commit
(insert) the object when the transaction is committed.

The Locki ngExcept i on will be thrown if the object cannot be write-locked in this

Page 3

Object Transaction Manager Tutorial

transaction. Asit isatransient object to begin with, thiswill probably only ever happen if it
has been write-locked in another transaction already -- but this depends on the transaction
semantics configured in the repository metadata.

Finally, connections maintain resources so it isimportant to make sure they are closed when
no longer needed.

1.3. Deleting Persistent Objects

Deleting a persistent object from the backing store (making a persistent object transient) is
amost identical to making it persistent -- the differenceisjust in the

conn. del et ePer si st ent (product) call instead of the

conn. makePer si st ent (product) call. The same notes about transactions and
resources apply here.

public static void storeProduct (Product product) throws Locki ngException
{

OTWKi t kit SlaneKlt getlnstance()

CﬁNConnectlon conn = nm

Transaction tx = nul

try

{
conn =
ki t.acqui reConnecti on(Persi st enceBr oker Fact ory. get Def aul t Key()) ;
tx = kit.getTransaction(conn);
t x. begi n();
conn. del et ePer si st ent (product);
tx.commt();

}
catch (Locki ngException e)

if (tx.islnProgress()) tx.rollback();
t hrow e;

inally

conn. cl ose();

— A —h——

1.4. Querying for Objects

The OTM implements a transaction system, not a new client API. As such it supports two
styles of query at present -- an PersistenceBroker like query-by-criteria style querying
system, and an ODMG OQL query system.

Information on constructing these types of queriesis available in the PersistenceBroker

Page 4

../../docu/tutorials/pb-tutorial.html

Object Transaction Manager Tutorial

(../../docu/tutorials/pb-tutorial .html) and ODMG (../../docu/tutorials'odmg-tutorial .html)
tutorials respectively. Using those queries with the OTM is examined here.

A PB style query can be handled as follows:

public Iterator findByCriteria(Query query)
{
OTWKit kit = SinpleKit.getlnstance();
OTMConnecti on conn = nul |
Transaction tx = null;

try

{

conn =

ki t.acqui reConnecti on(PersistenceBroker Factory. get Def aul t Key());
tx = kit.getTransaction(conn);
t x. begin();
Iterator results = conn.getlteratorByQuery(query);
tx.commt();
return results;

inally

conn. cl ose();

— A ————

}
Where, by default, aread lock is obtained on the returned objects. If adifferent lock is
required it may be specified specifically:

public Iterator findByCriteriaWthLock(Query query, int |ock)

OTWit kit = SinpleKit.getlnstance();
OTrMConnecti on conn = null;
Transaction tx = null;

try

{

conn =

ki t.acqui reConnecti on(Persi stenceBroker Fact ory. get Def aul t Key());
tx = kit.getTransaction(conn);
t x. begi n();
Iterator results = conn.getlteratorByQuery(query, |ock);
tx.commt();
return results;

inally

conn. cl ose();

— A ————

}
Theint | ock argument is one of the integer constants on
or g. apache. oj b. ot m | ock. LockType:

Page 5

../../docu/tutorials/odmg-tutorial.html

Object Transaction Manager Tutorial

LockType. NO_LOCK
LockType. READ LOCK
LockType. WRI TE_LOCK

OQL queries are also supported, as this somewhat more complex example demonstrates:

public Iterator findByOQL(String query, Object[] bindings) throws Exception
{

OTWKit kit = SinpleKit.getlnstance();
OTMConnecti on conn = null
Transaction tx = null;

try

{
conn =
ki t.acqui reConnecti on(Persi stenceBroker Fact ory. get Def aul t Key()) ;
tx = kit.getTransaction(conn);

OQLQuery oqgl = conn. newOQLQuery();

ogl . creat e(query);

for (int i =0; I < bindings.length; ++i)
{
ogl . bi nd(bi ndi ngs[i]);
}
t x. begi n();

Iterator results = conn.getlteratorByOQLQuery(oql);
tx.commt();
return results;

}

catch (Querylnval i dException e)

if (tx.islnProgress()) tx.rollback();
t hrow new Exception("Invalid OQ expression given", e);

catch (QueryParanet er Count | nval i dExcepti on e)

if (tx.islnProgress()) tx.rollback();
t hrow new Exception("lncorrect nunmber of bindings given", e);

}
catch (QueryPar anet er Typel nval i dExcepti on e)

if (tx.islnProgress()) tx.rollback();

t hrow new Exception("Incorrect type of object given as binding"
inally

conn. cl ose();

— A ————

}

Thisfunction is, a its core, doing the same thing as the PB style queries, except that it
constructs the OQL query, which supports binding values in amanner similar to JDBC
prepared statements.

Page 6

Object Transaction Manager Tutorial

The OQL style queries aso support specifying the lock level the same way:

Iterator results = conn.getlteratorByOQLQuery(query, | ock);

1.5. More Sophisticated Transaction Handling

These examples are a bit smplistic as they begin and commit their transactions all in one go
-- they are only good for retrieving data. More often data will need to be retrieved, used, and
committed back.

Only changes to persistent objects made within the bounds of a transaction are persisted. This
means that frequently a query will be executed within the bounds of an already established
transaction, data will be changed on the objects obtained, and the transaction will then be
committed back.

A very convenient way to handle transactions in many applications is to start a transaction
and then let any downstream code be executed within the bounds of the transaction
automatically. Thisis straightforward to do with the OTM using the Si npl eKi t ! Takea
look at avery slightly modified version of the query by criteria function:

?ublic Iterator noreRealisticQueryByCriteria(Query query, int |ock)
OTWKit kit = SinpleKit.getlnstance();
OTMConnecti on conn = null
Transaction tx = null;
try
{
conn =
ki t.acqui reConnecti on(Persi stenceBr oker Fact ory. get Def aul t Key()) ;
tx = kit.getTransaction(conn);
bool ean auto = ! tx.islnProgress();
if (auto) tx.begin();
Iterator results = conn.getlteratorByQuery(query, |ock);
if (auto) tx.commit();
return results;

inally

conn. cl ose();

— A —h——

}

In this case the function looks to seeif atransaction is already in progress and sets a boolean
flagif itis, aut o. It then handles transactions itself, or allows the already opened transaction
to maintain control.

Because connections can be attached to existing transactions the Si npl eKi t can attach the
new connection to the already established transaction, allowing this function to work as

Page 7

Object Transaction Manager Tutorial

expected whether there is a transaction in progress or not!

Client code using this function could then open atransaction, query for products, change
them, and commit the changes back. For example:

public void renameW dget Exanpl e()

{
OTWKit kit = SinpleKit.getlnstance();
OTMConnecti on conn = nul |
Transaction tx = null;

try

{
conn =
ki t.acqui reConnecti on(PersistenceBroker Factory. get Def aul t Key());
tx = kit.getTransaction(conn);
t x. begin();
Product sanple = new Product();
sanpl e. set Nanme("Wnder Wdget");
Query query = QueryFactory. newQuer yByExanpl e(sanpl e) ;
I'terator wonder Wdgets
= noreReal i sti cQueryByCriteria(query,
LockType. WRI TE_LOCK) ;
whi | e (wonder W dget s. hasNext ())

Product wi dget = (Product) wonder Wdgets. next();
wi dget . set Narme(" | nproved Wonder W dget");

}
tx.commt();
inally

conn. cl ose();

— A —h——

}

This sample renames a whole bunch of products from "Wonder Widget" to "Improved
Wonder Widget" and stores them back. It must makes the changes within the context of the
transaction it obtained for those changes to be stored back to the database. If the same iterator
were obtained outside of atransaction, and the changes made, the changes would be made on
the objects in memory, but not in the database. Y ou can think of non-transaction objects as
free immutable transfer objects.

This example also demonstrates two connections bound to the same transaction, as the
renameW dget Exanpl e(. . .) function obtains a connection, and the

nor eReal i sticQueryByCriteria(...) function obtainsan additional connection
to the same transaction!

2. Notes on the Object Transaction M anager

Page 8

Object Transaction Manager Tutorial

2.1. Transactions

The Object Transaction Manager (OTM) is a transaction management layer for Java objects.
It typically maps 1:1 to database transactions behind the scenes, but thisis not actually
required for the OTM to work correctly.

The OTM supports awide range of transactional options, delimited in the LockM anager
(../../docu/guides/lockmanager.html) documentation. While the lock manager is writte to the
ODMG API, the same locking rules apply at the OTM layer.

Page 9

../../docu/guides/lockmanager.html

	1 The OTM API
	1.1 Introduction
	1.2 Persisting New Objects
	1.3 Deleting Persistent Objects
	1.4 Querying for Objects
	1.5 More Sophisticated Transaction Handling

	2 Notes on the Object Transaction Manager
	2.1 Transactions

