
OJB logging configuration

by Thomas Dudziak

Table of contents

1 Logging in OJB..2

2 Logging configuration within OJB.. 2

2.1 How and when OJB determines what kind of logging to use....................................... 2

2.2 Configuration of logging for the individual components.. 3

3 Logging configuration via configuration files... 4

3.1 OJB-logging.properties... 4

3.2 commons-logging.properties... 5

3.3 log4j.properties..5

3.4 Where to put the configuration files..6

4 Logging configuration at runtime.. 6

5 Defining your own logger..7

Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

1. Logging in OJB

For generating log messages, OJB provides its own, simplistic logging component
PoorMansLoggerImpl
(../../api/org/apache/ojb/broker/util/logging/PoorMansLoggerImpl.html) , but is also able to
use the two most common Java logging libraries, commons-logging
(http://jakarta.apache.org/commons/logging/) (which is actually a wrapper around several
logging components) and Log4j (http://logging.apache.org/log4j/) . In addition, it is also
possible to define your own logging implementation.

Per default, OJB uses its own PoorMansLoggerImpl
(../../api/org/apache/ojb/broker/util/logging/PoorMansLoggerImpl.html) which does not
require configuration and prints to stdout.

2. Logging configuration within OJB

2.1. How and when OJB determines what kind of logging to use

Logging is the first component of OJB that is initialized. If you access any component of
OJB, logging will be initialized first before that component is doing anything else. Therefore,
you'll have to provide for the configuration of logging before you access OJB in your
program (this is mostly relevant if you plan to initialize OJB at runtime as is described
below). Please note that logging configuration is independent of the configuration of other
parts of OJB, namely the runtime (via OJB.properties (../../docu/guides/ojb-properties.html))
and the database/repository (via repository.xml (../../docu/guides/repository.html)).

These are the individual steps OJB performs in order to initialize the logging component:

1. First, OJB checks whether the system property
org.apache.ojb.broker.util.logging.Logger.class is set. If specified,
this property gives the fully qualified class name of the logger class (a class
implementing the Logger (../../api/org/apache/ojb/broker/util/logging/Logger.html)
interface). Along with this property, another property is then read which may specify a
properties file for this logger class,
org.apache.ojb.broker.util.logging.Logger.configFile.

2. If this property is not set, then OJB tries to read the file OJB-logging.properties.
The name and path of this file can be changed by setting the runtime property of the same
name. See below for the contents of this file.

3. For backwards compatibility, OJB next tries to read the logging settings from the file
OJB.properties (../../docu/guides/ojb-properties.html) which is the normal runtime
configuration file of OJB. Again, the name and path of this file can be changed by setting

OJB logging configuration

Page 2
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/util/logging/PoorMansLoggerImpl.html
http://jakarta.apache.org/commons/logging/
http://logging.apache.org/log4j/
../../api/org/apache/ojb/broker/util/logging/PoorMansLoggerImpl.html
../../docu/guides/ojb-properties.html
../../docu/guides/repository.html
../../api/org/apache/ojb/broker/util/logging/Logger.html
../../docu/guides/ojb-properties.html

the runtime property of the same name. This file may contain the same entries as the
OJB-logging.properties file.

4. If the the OJB.properties file does not contain logging settings, next it is checked
whether the commons-logging log property org.apache.commons.logging.Log
or the commons-logging log factory system property
org.apache.commons.logging.LogFactory is set. If that's the case, OJB will
use commons-logging for its logging purposes.

5. Next, OJB checks for the presence of the Log4j properties file log4j.properties. If
it is found, the OJB uses Log4j directley (without commons-logging).

6. Finally, OJB tries to find the commons-logging properties file
commons-logging.properties which when found directs OJB to use
commons-logging for its logging.

7. If none of the above is true, or if the specified logger class could not be found or
initialized, then OJB defaults to its PoorMansLoggerImpl logger which simply logs
to stdout.

The only OJB component whose logging is not initialized this way, is the boot logger which
is used by logging component itself and a few other core components. It will (for obvious
reasons) always use PoorMansLoggerImpl
(../../api/org/apache/ojb/broker/util/logging/PoorMansLoggerImpl.html) and therefore log to
stdout. You can define the log level of the boot logger via the OJB.bootLogLevel
system property. Per default, WARN is used.

2.2. Configuration of logging for the individual components

Regardless of the logging implementation that is used by OJB, the configuration is generally
similar. The individual logging implementations mainly differ in the syntax and in the
configuration of the format of the output and of the output target (where to log to). See below
for specific details and examples.
In general, you specify a default log level and for every component (usually a class) that
should log differently, the amount and level of detail that is logged about that component.
These are the levels:

DEBUG
Messages that express what OJB is currently doing. This is the most detailed
debugging level
INFO
Informational messages
WARN
Warnings that may denote potentional problems (this is the default level)
ERROR
As the name says, this level is for errors which means that some action could not

OJB logging configuration

Page 3
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/util/logging/PoorMansLoggerImpl.html

be completed successfully
FATAL
Fatal errors which usually prevent an application from continuing

The levels DEBUG and INFO usually result in a lot of log messages which will reduce the
performance of the application. Therefore these levels should only be used when necessary.

There are two special loggers to be aware of. The boot logger is the logger used by the
logging component itself as well as a few other core components. It will therefore always use
the PoorMansLoggerImpl
(../../api/org/apache/ojb/broker/util/logging/PoorMansLoggerImpl.html) logging
implementation. You can configure its logging level via the OJB.bootLogLevel system
property.
The default logger is denoted in the OJB-logging.properties file by the keyword
DEFAULT instead of the class name. It is used by components that don't require their own
logging configuration (usually because they are rather small components).

3. Logging configuration via configuration files

3.1. OJB-logging.properties

This file usually specifies which logging implementation to use using the
org.apache.ojb.broker.util.logging.Logger.class property, and which
properties file this logger has (if any) using the
org.apache.ojb.broker.util.logging.Logger.configFile property. You
should also use this file to specify log levels for OJB's components if you're not using Log4j
or commons-logging (which have their own configuration files).

A typical OJB-logging.properties file looks like this:

Which logger to use
org.apache.ojb.broker.util.logging.Logger.class=org.apache.ojb.broker.util.logging.PoorMansLoggerImpl

Configuration file of the logger
#org.apache.ojb.broker.util.logging.Logger.configFile=

Global default log level used for all logging entities if not specified
ROOT.LogLevel=ERROR

The log level of the default logger
DEFAULT.LogLevel=WARN

Logger for PersistenceBrokerImpl class
org.apache.ojb.broker.core.PersistenceBrokerImpl.LogLevel=WARN

OJB logging configuration

Page 4
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/util/logging/PoorMansLoggerImpl.html

Logger for RepositoryXmlHandler, useful for debugging parsing of
repository.xml!
org.apache.ojb.broker.metadata.RepositoryXmlHandler.LogLevel=WARN

3.2. commons-logging.properties

This file is used by commons-logging (http://jakarta.apache.org/commons/logging/) . For
details on its structure see here (http://jakarta.apache.org/commons/logging/guide.html) .

An example commons-logging.properties file would be:

Use Log4j
org.apache.commons.logging.Log=org.apache.commons.logging.impl.Log4JLogger

Configuration file of the log
log4j.configuration=log4j.properties

Note:
Since commons-logging provides the same function as the logging component of OJB, it will likely be used as OJB's logging
component in the near future.

3.3. log4j.properties

The commons-logging (http://logging.apache.org/log4j/) configuration file. Details can be
found here (http://logging.apache.org/log4j/docs/manual.html) .

A sample log4j configuration is:

Root logging level is WARN, and we're using two logging targets
log4j.rootCategory=WARN, A1, A2

A1 is set to be ConsoleAppender sending its output to System.out
log4j.appender.A1=org.apache.log4j.ConsoleAppender

A1 uses PatternLayout
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-5r %-5p [%t] %c{2} - %m%n

Appender A2 writes to the file "org.apache.ojb.log".
log4j.appender.A2=org.apache.log4j.FileAppender
log4j.appender.A2.File=org.apache.ojb.log

Truncate the log file if it aleady exists.
log4j.appender.A2.Append=false

A2 uses the PatternLayout.
log4j.appender.A2.layout=org.apache.log4j.PatternLayout
log4j.appender.A2.layout.ConversionPattern=%-5r %-5p [%t] %c{2} - %m%n

OJB logging configuration

Page 5
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/logging/guide.html
http://logging.apache.org/log4j/
http://logging.apache.org/log4j/docs/manual.html

Special logging directives for individual components
log4j.logger.org.apache.ojb.broker.metadata.RepositoryXmlHandler=DEBUG
log4j.logger.org.apache.ojb.broker.accesslayer.ConnectionManager=INFO
log4j.logger.org.apache.ojb.odmg=INFO

3.4. Where to put the configuration files

OJB and the different logging implementations usually look up their configuration files in the
classpath. So for instance, OJB searches for the OJB-logging.properties file directly
in any of the entries of the classpath, directories and jar files. If the classpath contains in that
order some-library.jar, db-ojb.jar, and ., then it will first search in the two jars
(which themselves contain a directory structure in which OJB will search only in the root),
and lastly in the current directory (which only happens if . is part of the classpath) but not in
sub directories of it.

For applications, this classpath can easily be set either as an environment variable
CLASSPATH or by using the commandline switch -classpath when invoking the java
executable.

For web applications however, the server will define the classpath. There are specific folders
in the webapp structure that are always part of the webapp's classpath. The one that is
normally used to store configuration files, is the classes folder:

[folder containing webapps]\
mywebapp\

WEB-INF\
lib\
classes\ <-- Put your configuration files here

4. Logging configuration at runtime

Sometimes you want to configure OJB completely at runtime (within your program). How to
do that for logging depends on the used logging implementation, but you can usually
configure them via system properties. The only thing to keep in mind is that logging in OJB
is initialized as soon as you use one of its components, so you'll have to define the properties
prior to using any OJB parts.

With system properties (which are accessible via System.getProperty() from within a
Java program) you can always define the following OJB logging settings:

org.apache.ojb.broker.util.logging.Logger.class
Which logger OJB shall use
org.apache.ojb.broker.util.logging.Logger.configFile
The config file of the logger
OJB-logging.properties

OJB logging configuration

Page 6
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

The path to the logging properties file, default is OJB-logging.properties
OJB.properties
The path to the OJB properties file (which may contain logging settings), default
is OJB.properties
org.apache.commons.logging.Log
Use commons-logging with the specified log implementation
org.apache.commons.logging.LogFactory
Use commons-logging with the specified log factory
log4j.configuration
When using Log4j directly or via commons-logging, this is the Log4j configuration
file (default is log4j.properties)

In addition, all Log4j properties (e.g. log4j.rootCategory) can be specified as system
properties.

5. Defining your own logger

It is rather easy to use your own logger. All you need to do is to provide a class that
implements the interface Logger (../../api/org/apache/ojb/broker/util/logging/Logger.html) .
Besides the actual log methods (debug, info, warn, error, fatal) this interface
defines a method void configure(Configuration) which is used to initialize the
logger with the logging properties (as contained in OJB-logging.properties).

Note:
Because commons-logging performs a similar function to the OJB logging component, it is likely that it will be used as such in
the near future. Therefore you're encouraged to also implement the Log
(http://jakarta.apache.org/commons/logging/api/org/apache/commons/logging/Log.html) interface which is nearly the same as
the Logger (../../api/org/apache/ojb/broker/util/logging/Logger.html) interface.

OJB logging configuration

Page 7
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/util/logging/Logger.html
http://jakarta.apache.org/commons/logging/api/org/apache/commons/logging/Log.html
../../api/org/apache/ojb/broker/util/logging/Logger.html

	1 Logging in OJB
	2 Logging configuration within OJB
	2.1 How and when OJB determines what kind of logging to use
	2.2 Configuration of logging for the individual components

	3 Logging configuration via configuration files
	3.1 OJB-logging.properties
	3.2 commons-logging.properties
	3.3 log4j.properties
	3.4 Where to put the configuration files

	4 Logging configuration at runtime
	5 Defining your own logger

