Installation Guide

Jonathan 2.0

April 12, 2002

To work through the examples supplied with Jonathan, read setions[1 and 2 of this file,
and refer to sectiofj 5 if you encounter problems.

To link the Jonathan javadoc documentation with your copy of the JDK API javadoc doc-
umentation, read sectiofis[1, 2 dhd 3, and refer to sedtion 5 if you encounter problems.

To compile Jonathan source code (nhot normally necessary since Jonathan is delivered with
its classes), read sectioigL, 2 &nhd 4, and refer to sg¢tion 5 if you encounter problems.

1 Prerequisites: JDK, JNDI and a Make utility

¢ You will need a Java compiler (javac) and a Java runtime (java). While core Jonathan
and the CORBA personality "David” can be used with JDK 1.1 and higher, the Java
RMI personality “Jeremie” can only be used with JDK 1.2 and higher.

e The Jeremie registry can be accessed using JNDI. If you are going to use this possibil-
ity, you will need the JNDjavax.naming package version 1.2. It is available as a
jar file from:

http://java.sun.com/products/indi/index.htm

e If you are on a Unix platform, you will need GNU Make. If not already installed on
your machine, it is available from:
nup://iWwWw.gnu.org/software/make/make. ntmi

e If you are on a Windows 95/98 platform, you will need a port of GNU Make to Win-
dows. The latter is available as part of the GNU Cygwin toolset at
http://sourceware.cygnus.com/cygwin/
Enhydra proposes a pre-installed version of Cygwin that may be used to compile
Jonathan too. Se@tp://www.enhydra.org/DownioadCygwin.htmi

e If you are on a Windows NT platform, you will need either NMAKE, which is Mi-
crosoft’'s proprietary make utility, or else the port of GNU Make to Windows.

2 Instructions for configuring Jonathan

This phase is obligatory if you want to run the examples using the provided Makefiles, or
recompile Jonathan. It is done in thenfig directory.

(©1999-2000 Franceélecom — R&D

http://java.sun.com/products/jndi/index.htm
http://www.gnu.org/software/make/make.html
http://sourceware.cygnus.com/cygwin/
http://www.enhydra.org/DownloadCygwin.html

2 Instructions for (re)generating the Jonathan Javadoc documentation

1. Youfirst need to compile the fileonfigure.java by typing e.g.javac tools\Configure.java
from a DOS shell ojavac tools/Configure.java from a Unix or Cygwin
shell.

2. Do"./configure" from a unix shell,"./cygwin-configure" from a Cyg-
win shell, or"configure" from a DOS shell. This script requires that a java inter-
preter named "java” is available in your path. If not, you should either add such an
interpreter to your path, or modify the script you're using.

Important: the java interpreter used must be the java interpreter you intend to use to
run the examples and your applications.

The configure utility will ask you a few questions to create a file nafjwtathan.config” ,
that contains informations about the various directories, paths and parameters needed
for (re)building Jonathan or running the examples.

Amongst other things, it specifies the locations of any other classes and jar files (such
asjndi.jar) that you want added to the classpath when doing the examples, when
building Jonathan, and when regenerating the javadoc documentation. It also sets a
number of other parameters depending on what you are going to do with Jonathan: for
example, the version of JDK that you are using is needed for some examples.

You may edit the'jonathan.config" file to change some settings. It is normally
self-documenting. Note that all directories, jar files, etc., must be specified with abso-
lute names.

If you have problems, first look at sectipn]5.1.

3. Configure Jonathan makefiles. This step takes into account your make utility (GNU
Make or NMAKE).

In the config directory:

¢ if you are on a Unix platform, dmake from a shell.

e if you are on a Windows platform with GNU Make, dnake from a cygwin
shell.

e if you are on a Windows NT platform with NMAKE, damake from a DOS
shell.

This step generates a file callsthke.rules inthesrc andexamples directories
and recursively copies it through their subdirectories. It also generates a file called
LASTCONFIGnN the config directory, indicating the current configuration of Jonathan.

3 Instructions for (re)generating the Jonathan Javadoc documen-
tation

This phase is necessary if you wish to link the Jonathan javadoc documentation with your
copy of the JDK API javadoc documentatfpror if you modify Jonathan source code and
wish to regenerate the documentation. The following instructions except for step 1 are carried
out in thedoc/src directory.

Note that you re-generating the documentation requires javadoc 1.2.

Lavailable fromhttp://java.sun.com/docs

http://java.sun.com/docs

1. You must have already configured Jonathan as described in Sgction 1.

2. Generate the documentation.
In the doc/src directory:

o if you are on a Unix platform, dmake from a shell.

e if you are on a Windows platform with GNU Make, doake from a cygwin
shell.

e if you are on a Windows NT platform with NMAKE, damake from a DOS
shell.

This regenerates the Jonathan javadoc documentationdotiiapis directory, with
links to your copy of the JDK API documentation if you specified it during the Jonathan
confirguration phase.

Due to limitations imposed by javadoc, this make is not incremental and will regenerate
the documentation from scratch every time you run the make.

4 Instructions for (re)building Jonathan

This phase is necessary only if you wish to modify Jonathan source code. It is not needed
if you only wish to work through the examples since Jonathan is normally delivered with
its classes. Note also that re-compiling all the distribution may take quite a long time. The
following instructions except for step 1 are carried out in the src directory.

1. You must have already configured Jonathan as described in ggction 1.

2. Recompile the source code. To recompile all the sources, do the following:
In the src directory:

e if you are on a Unix platform, dmake from a shell.

e if you are on a Windows platform with GNU Make, doake from a cygwin
shell.

e if you are on a Windows NT platform with NMAKE, damake from a DOS
shell.

If you are rebuilding Jonathan from scratch, the build will take a while. It is also fairly
verbose; you may wish to redirect output to a file, emtake > log with GNU Make
ornmake > log with Nmake.

To independently recompile a particular package, proceed as follows: sre¢hesubdi-
rectory corresponding to the package (or any pasemt subdirectory), simply run the make.
This will recompile only the modified source files of that package. If several packages are to
be recompiled, do the make in a parent directory of those packages.

To remove generated classes, run the make with target "clean”. This will remove classes
(and most derived source files) of the current package and its subpackages.

Note that make without a target is equivalent to making the taegpeat|

4 Hints and common problems

5 Hints and common problems

5.1 Running the configuration tool

e Under Unix, if you can't execute./configure ", check that theconfigure has
the appropriate execution rights.

e Under cygwin, you may needto type “ ./cygwin-configure " instead of “/cygwin-
configure " to run the script.

e Under cygwin, if the script exits with €lassDefNotFound exception, check that
you really did “./cygwin-configure " and not“./configure ”

¢ If you modify manually theconfig/jonathan.config file, the file names must
be specified with absolute names, and not just names relative to the current directory.
This is so that individual packages can be modified and recompiled independently of
one another.

5.2 Running the Makefiles

e The source code Makefiles only take into account code generation dependencies be-
tween files where a file is generated from another file, e.glaas file is generated
by compiling a.java file. The Makefiles daot take into account package depen-
dencies, where one package imports/uses another. In this case, if you fundamentally
modify a package, you may have to clean and recompile packages that import/use the
modified package, depending on the kind of changes you have made.

e Depending on the version of Java that you use, the compilation of some files may
produce warnings that certain APIs are deprecated. These warnings can be ignored.

e If you get messages such aske: *** <directory name>:. No such
file or directory orthe specified directory can not be found :
then the cause is likely to be a Makefile in a directory where the value of the macro
SUBDIRSrefers to a subdirectory that does not exist. You can either ignore the mes-
sage or find and correct the Makefile.

e Messages such &o rule to make <target> or Missing separator in-
dicate a problem. The cause may simply be that GNU Make is being used on an
Nmake makefile, or vice-versa. Check whether you are using the right make utility for
the current configuration of Jonathan (check the contents dfASTCONFIGfile in
the config directory). If not, try reconfiguring Jonathan.

If you are having these problems on Unix, another cause may be a makefile that was
edited on a Windows platform and which may therefore contain non-printing carriage
return characters which GNU Make on Unix does not like. Try editing the suspect
makefile on Unix to remove such characters.

e By default, GNU Make is unnecessarily verbose in non-error cases. The following
messages from GNU Make can safely be ignored:

make: Nothing to be done for <target>

5.2 Running the Makefiles 5

make: Entering directory <directory name>
make: Leaving directory <directory name>

You can prevent them by running GNU Make with tiee (silent) option or by redi-
recting the standard output to a file.

e The Windows commandel for removing files is also unnecesarily verbose: if a file
does not exist, it will output a message to that effect. Just ignore such messages.

	Prerequisites: JDK, JNDI and a Make utility
	Instructions for configuring Jonathan
	Instructions for (re)generating the Jonathan Javadoc documentation
	Instructions for (re)building Jonathan
	Hints and common problems
	Running the configuration tool
	Running the Makefiles

