
Jonathan: a white paper

April 12, 2002

1 Motivations

Application programmers started developing distributed applications using plain sockets;
then, they were offered higher level abstractions and tools: Remote Procedure Calls, TMs (à
la Tuxedo), Message Oriented Middlewares, Object Request Brokers, and now components
(Enterprise Java Beans, and soon, CORBA Components).

Each of these evolution steps resulted in a stricter separation of the business and technical
aspects of distributed systems, with the following advantages:

• make the business layers easier to develop and maintain;

• specialize programmers in business aspects;

• accelerate development thanks to the reuse of technical layers developed by specialists.

However, some domains did not follow this trend, and still handle distribution and the non-
functional aspects of their systems in ad-hoc, hardly re-usable ways, for different reasons:

• Runtime constraints:

When systems have to support hard constraints (like real-time, scalability, high data
rates, etc), applications may have to control precisely the system resources, or at least
impose specific resource management policies.

Most off-the-shelf products use a lot of system resources, but only offer a limited num-
ber of management policies, and usually don’t let the user add new ones. In these
conditions, these environments cannot be used.

• Imposed protocols

Another limitation of the curent middleware offer is the difficulty to use communication
protocols beyond the imposed standards: proprietary protocols for MOMs, IIOP for
CORBA ORBs, JRMP for RMI.

When new protocols are needed (to integrate legacy systems, to adapt a solution to
a specific network, for performance reasons, etc), these products can’t be used, since
they don’t usually let the user integrate custom protocols1.

1 This is also why it is difficult today to integrate MOMs and ORBs in a coherent object-oriented architecture.
MOMs may be seen as special transport protocols, but nothing prevents to use a MOM to transmit inter-objects
invocations. The fact is that this cannot be achieved with the currently available ORBs.

c©2000 France T́elécom – R&D



2 Architecture

• Imposed binding models

The most classical binding model proposed by ORB vendors is the client-server model.
MOMs offer more binding models (point-to-point, broadcast), but lose the high-level
object abstraction. No middleware platform offers both high-level abstractions for pro-
gramming, and the possibility to manage in a flexible way the most adequate binding
models for a specific application.

Jonathan is an ORB, written entirely in Java, and designed with these shortcomings in mind
to provide a really adaptable middleware solution: all the internal architecture of Jonathan
has been opened to allow for its adaptation to specific problems by modifying the minimum
portion of code.

2 Architecture

To provide this openness and this flexibility, Jonathan has been designed on the basis of a few,
yet very general and strictly applied, architectural principles. Jonathan stems for the idea that
a middleware platform may be built as a composition of components, specialised to provide
very specific functionalities: a buffer or thread management policy, a marshalling protocol,
a communication protocol (or part of it), a security policy, a data compression component,
etc. Each of these components is specialised in its own functionality, and relies on other
components for all the treatments that fall out of its scope: we apply here the functional/non-
functional separation principle to each micro-component of the infrastructure.

When all the functions carried out by a middleware platform have been properly separated,
they have to be re-composed to yield a fully functional platform: Jonathan offers a number
of assembly frameworks as a collection of APIs (Application Programming Interfaces) that
must be respected by components so that they can be assembled. Four such frameworks may
be found in Jonathan:

• Binding: this framework stricly distinguishes between theidentity of an object and
the way to access it – thebinding –. Thanks to this framework, different binding
models may be managed, or more simply, different access paths, using , e.g., different
protocols, or offering different qualities of service, may be managed for the same object
(i.e., a wellidentifiedobject). In particular, this framework would enable the use of a
MOM to transmit invocations between objects, in a completely transparent fashion.

• Communication: this framework defines the interfaces of the components implied in
inter-objects communications (protocols, compression or security modules, etc), and
how these elements may be composed to create bindings between objects. This frame-
work allows for the easy introduction of new protocols in Jonathan (e.g., support for
ATM or IPv6 networks, or use of a MOM as a specific transport layer.

• Resources: this framework defines abstractions of the management of various resources
(threads, network connections, buffers), letting the programmer of resource-constrained
applications introduce the most adequate resource management policies. For instance,
the application programmer may choose the type of threads to be used, control their
activity, use a scheduling policy based on task deadlines, etc. In the same way, it is
possible to change the buffer or network connections management policies.



3

• Configuration: this framework lets the platform be configured at boot-time, and will al-
low its dynamical re-configuration in the future. Standard components may be replaced
by new components specific to a given application, thanks to this framework.

3 Jonathan components

The main added value of Jonathan w.r.t. the other available ORBs is its flexible architecture.
However, Jonathan wouldn’t even exist if it didn’t provide a set of components doing some
real work, and enabling the development of real distributed applications !

There are today two main standards for ORBs: CORBA, from the Object Management
Group, and RMI from Sun Microsystems. These two standards offer slightly different pro-
gramming models, and different services and functionalities. But the Jonathan architectural
principles may be applied to both standards, and a large part of the necessary components
may be used whatever the chosen standard is.

Today, Jonathan supports the two main ORB standards (CORBA and RMI). The Jonathan
components (corresponding to the standard functionalities of the platform) may be classified
in three groups:

• common components;

• components related to CORBA;

• components related to RMI.

3.1 Common components

3.1.1 Resource management

Jonathan features components allowing to manage pools of:

• threads;

• TCP/IP connections;

• buffers.

3.1.2 Protocols

Jonathan features some basic protocols: TCP/IP, IP Multicast, and a simplified version of
RTP (Real Time Protocol). Other protocols, like UDP, are in preparation2.

3.1.3 Basic configuration tools

Jonathan offers very simple tools to configure the platform. These tools will be XML-based
in a near future.

2IIOP (namely GIOP + TCP/IP + the CDR marshalling protocol) is of course provided, but in the CORBA
components set.



4 Jonathan components

3.2 CORBA components

Jonathan may be used as a CORBA ORB. It comes with the following features:

• CORBA 2.3 compliant IDL compiler;

• IIOP protocol (version 1.0)

• Dynamic Invocation Interface and Dynamic Skeleton Interface

• RMI/IIOP

Moreover, it is possible to use RTP/IP Multicast bindings, to add services and to include
service contexts in IIOP messages very simply, to define “smart stubs” specific to an applica-
tion, to replace the default stubs generated by the IDL compiler.

A number of basic CORBA 2.3 functionalities are still missing: in particular, the Portable
Object Adapter and Object by Value support. Jonathan doesn’t offer many services, just the
CORBA naming and event services. It doesn’t provide either support for security, transac-
tions, load balancing and persistence.

The provided RMI/IIOP implementation requires a JDK 1.3 implementation to be fully
standard compliant. However, it may also be used with JDK 1.2, but in this case, Java serial-
ization is used instead of CORBA serialization. The RMI/IIOP implementation also provides
some non-standard features like the possibility to avoid argument copies when the client and
server are located in the same virtual machine.

3.3 RMI components

Jonathan may also be used with the RMI programming model and compilation chain. To do
so, it provides a stub compiler and uses the GIOP protocol for communication.

Jonathan turns out to be much more efficient than Sun’s reference implementation, espe-
cially when the client and server are co-located in the same Java virtual machine. It also
offers some non-standard features:

• a dynamic programming interface (much like CORBA’s DSI);

• support for RTP/IP Multicast bindings;

• context services transmission in the GIOP messages.

Comparing to the reference implementation, the support for server activation and dis-
tributed garbage collection are missing. A complete implementation of RMI/IIOP (with dis-
tributed garbage collection and support for the JRMP protocol) is being prepared.


	Motivations
	Architecture
	Jonathan components
	Common components
	Resource management
	Protocols
	Basic configuration tools

	CORBA components
	RMI components


