
The Hello World example using the David RMI/IIOP
implementation

April 12, 2002

David provides an RMI/IIOP implementation. Contrary to Jeremie, which is not a stan-
dard implementation of RMI, the provided implementation strictly conforms to the standard.
This document describes step by step how the Hello World application has been developped
with David’s RMI/IIOP. However, it is not a tutorial on distributed programming with Java
or RMI/IIOP. This example simply describes the main steps, and outlines some David speci-
ficities.

1 Step 1: write a remote interface

The first step when writing an RMI/IIOP application is to describe the interfaces to be ac-
cessed remotely. The only thing to do is to make these interfaces extendjava.rmi.Remote .

In the following, we’ll use this remote interface specification1 as an example:

23
24 package hello;
25
26 import java.rmi.Remote;
27 import java.rmi.RemoteException;

Like in RMI, the interface must extend Remote.

30 public interface Hello extends Remote {

Like in RMI, the method must declare a RemoteException.

33 String sayHello() throws RemoteException;
34 }

2 Step 2: write a server

The file Server.java2 contains an implementation of the interfaceHello and amain method
to run the server. Since David doesn’t provide yet a JNDI interface to the David naming
service, the way used to provide the server reference is quite specific.

1contained inexamples/david/helloRMI/srv/Hello.java
2contained inexamples/david/helloRMI/srv/Server.java

c©1998–2001 France T́elécom R&D

file:../../../examples/david/helloRMI/srv/Hello.java
file:../../../examples/david/helloRMI/srv/Server.java


2 Step 2: write a server

23
24 package hello;
25
26 import java.rmi.RemoteException;
27 import javax.rmi.PortableRemoteObject;
28 import javax.rmi.CORBA.Util;
29
30 import org.omg.CORBA.ORB;
31 import org.objectweb.david.libs.helpers.IORHelpers;

In the same way as in RMI, the easiest way to declare that an object may be accessed
remotely is to make it extend PortableRemoteObject.

35 public class Server extends PortableRemoteObject implements Hello {

The constructor must declare the RemoteException.

39 public Server () throws RemoteException {}

Straigtforward implementation of the sayHello method.

42 public String sayHello() {
43 return "Hello World!";
44 }

The Server class simply contains a main method to start the server.

47 public static void main (String[] args) {
48 try {
49 Server obj = new Server();

The expected way to give access to the reference of the exported object would be to register
it in a JNDI naming service. For now, the David naming service has not been provided with a
JNDI interface. We thus use a less standard method: we first retrieve a reference to an ORB
(it exists when RMI/IIOP is used, but usually doesn’t need to be explicitly manipulated), then
the object reference is turned into a a string that is written to a file.

58 ORB orb = ORB.init(args,null);
59 String ior = orb.object_to_string(Util.getTie(obj).thisObject());
60 IORHelpers.writeIORToFile(ior,args[0]);

The following line simply states that the server is ready to receive incoming requests.

64 System.out.println("Hello Server ready");
65
66 } catch (Exception e) {
67 System.out.println ("HelloServer Exception: " + e.getMessage());
68 e.printStackTrace ();
69 }
70 }
71
72 }



3

3 Step 3: Compile the java source files and generate the stub code

Like in RMI, the stub compiler is invoked on the server class. It means in particular that
the server must have been compiled before trying to generate the stubs. All these steps are
performed automatically if you use the providedMakefile 3: Simply typemake or make
all to compile everything.

Please note that David provides its own stub compiler, which is used if you use the provide
Makefile. However, it would be perfectly possible to use another stub compiler likermic
-iiop , provided with JDK 1.3.

4 Step 4 write a client

The file Client.java 4 contains a client for our server. The client only needs to have
access to theHello interface.

23
24 package hello;
25
26 import java.rmi.RemoteException;
27 import javax.rmi.PortableRemoteObject;
28 import java.rmi.RMISecurityManager;
29
30 import org.omg.CORBA.ORB;
31 import org.objectweb.david.libs.helpers.IORHelpers;

The Client class only contains a main method.

34 public class Client {
35 public static void main (String[] args) {
36 try {

It is necessary to set a security manager to let the client open new connections, download
code, etc. A security policy file is provided to the client to grant it some rights. See the
Makefile for details.

43 System.setSecurityManager(new RMISecurityManager());

The way to retrieve a reference to the server implementation is dual to that used on the
server side. The stringified object reference is first read from a file, then turned into a CORBA
object.

48 String ior = IORHelpers.readIORFromFile(args[0]);
49 ORB orb = ORB.init(args,null);
50 org.omg.CORBA.Object obj_ref = orb.string_to_object(ior);

The obtained CORBA object reference must then be narrowed, using thenarrow method
of PortableRemoteObject . Note that a direct cast can’t be used here.

3contained inexamples/david/helloRMI/srv/Makefile
4contained inexamples/david/helloRMI/clt/Client.java

file:../../../examples/david/helloRMI/clt/Client.java


4 David specific options

55 Hello hello = (Hello)
56 PortableRemoteObject.narrow (obj_ref,Hello.class);

Now, the call to the server:

59 System.out.println(hello.sayHello());
60 } catch (Exception e) {
61 e.printStackTrace ();
62 }
63 }
64 }

If you use the providedMakefile 5, you just need to typemake ormake all to compile
your client.

5 Step 5: run your client and server

You are now ready to start the different applications.

• In thesrv directory:

– make server starts the Hello World server;

• In theclt directory,make client starts the client.

6 David specific options

If you look at the providedMakefiles , you’ll see that the java interpreter is started using
numerous options. Some of them are compulsory, others are only optional.

6.1 Options to use the David ORB

When using David, you must use the David ORB. You must thus start the java interpreter
with the following options, telling to the interpreter which ORB implementation to use:

-Dorg.omg.CORBA.ORBClass= \
org.objectweb.david.libs.binding.orbs.iiop.IIOPORB

-Dorg.omg.CORBA.ORBSingletonClass= \
org.objectweb.david.libs.binding.orbs.ORBSingletonClass

6.2 Options to use the David RMI/IIOP implementation

To use the David RMI/IIOP implementation, you must specify the names of delegation
classes to be used by the virtual machine, using the following options:

-Djavax.rmi.CORBA.StubClass= \
org.objectweb.david.libs.stub_factories.rmi.StubDelegate \

-Djavax.rmi.CORBA.PortableRemoteObjectClass= \
org.objectweb.david.libs.binding.rmi.ORBPortableRemoteObjectDelegate \

-Djavax.rmi.CORBA.UtilClass= \
org.objectweb.david.libs.helpers.RMIUtilDelegate

5contained inexamples/david/helloRMI/clt/Makefile



6.3 Setting the ValueHandler implementation 5

6.3 Setting the ValueHandler implementation

David doesn’t provide a standard implementation of theValueHandler interface, because
such an implementation depends on the virtual machine used. SUN provides an implementa-
tion of the interface with the JDK 1.3; to use it, the following option should be used:

-Ddavid.rmi.ValueHandlerClass=\
com.sun.corba.se.internal.io.ValueHandlerImpl

If no implementation is available, you can still use David, but Java serialization will be
used instead of CORBA serialization. In this case, you won’t be able to interoperate with
other RMI/IIOP implementations.

6.4 Other options

• Using Java serialization instead of CORBA serialization

Even if aValueHandler implementation is available, Java serialization may be used
instead of CORBA serialization. This may be useful, either for performance reasons,
or to overcome some bugs of SUN’s value handler implementation. To do so, the
following option must be used:

-Ddavid.iiop.use_java_serialization=true

This option is needed both on the server and client sides. On the server side, it is
needed so that the server reference contains an indication that the server is ready to
accept requests encoded using Java serialization. On the client side, it is needed to
decide whether Java serialization should be used or not when interacting with properly
exported servers.

Note that using that option doesn’t prevent interoperability. Note also that this option
is useless when noValueHandler implementation is provided.

• Avoiding parameters and result copies

The RMI/IIOP standard stipulates that, when a client and a server are executed in the
same virtual machine, parameters and results should anyway be copied to preserve the
remote call semantics.

These copy operations may be very costly, and are usually not needed by applications.
To avoid them, the following option should be used:

-Ddavid.rmi.local_copy=false


	Step 1: write a remote interface
	Step 2: write a server
	Step 3: Compile the java source files and generate the stub code
	Step 4 write a client
	Step 5: run your client and server
	David specific options
	Options to use the David ORB
	Options to use the David RMI/IIOP implementation
	Setting the ValueHandler implementation
	Other options


