The Hello World example using David

April 12, 2002

This document describes step by step how the Hello World application has been developped
with Jonathan. However, it cannot be considered as a CORBA tutorial, and readers having
no familiarity at all with CORBA are strongly encouraged to refer to some CORBA tutorial.

1 Step 1: write an IDL specification

The first step when writing a CORBA application is to describe the interfaces to be accessed
remotely using the CORBMterface Definition Languag@DL). In the following, we'll use
this|IDL specificatioff as an example:

1

2 interface Hello {

3 string sayHello();
4%

2 Step 2: compile your IDL specification

The IDL specification is used to generate the code of the objects responsible for transmitting
requests to remote entities. The generation is carried out bplasompiler. The Jonathan
distribution provides such a compiler, written in Java. The following command starts the
compilation ofHello.idl

java org.objectweb.david.tools.idlcompiler.ldl2Java -p idl test.idl

Calling the compiler this way assumes that the Jonathan classes are in your classpath. This
operation is performed automatically if you use the provifkefile .

The compilation results in Java source files. In our example, these files are generated in the
directoryidl . These files have been generated belowith@ackage because the option
of the IDL compiler has been used. For more information about the IDL compiler, have a
look at its[HTMI_dociimentation.

3 Step 3: write servers

The file/Server.jafacontains implementations for the interfddello specified irHello.idl ,
and amain method to run the server. Let's go through the code:

contained irexamples/david/helloworld/Hello.idl
2contained irexamples/david/helloWorld/Makefile
Scontained irexamples/david/helloworld/Server.java

(©1998-1999 Franceélecom R&D

file:../../../examples/david/helloWorld/Hello.idl
file:../../hrefs/Idl2Java.html
file:../../../examples/david/helloWorld/Server.java

2 Step 3: write servers

25

26 import org.omg.CORBA.ORB;

27 import org.omg.CosNaming.NamingContext;

28 import org.omg.CosNaming.NamingContextHelper;
29 import org.omg.CosNaming.NameComponent;

30 import idl.*;

Helloimpl isthe class implementing th¢ello interface. ItextendsHelloimplBase
_HellolmplBase is the class of skeletons generated fromittetio interface IDL spec-
ification. It encapsulates the mechanisms necessary to manipigite references in a
CORBA distributed context (in particular tlerg.omg.CORBA.Object methods). Ex-
tending a skeleton is the simplest method to tell the system that an interface may be used in a
remote invocation.

41 class Hellolmpl extends _HellolmplBase {
42
43 Hellolmpl() {}

The following code implements in a straightforward way agHello method defined
in interfaceAccount .

47 public String sayHello() {
48 return "Hello World!";
49 }

50

51 }

TheServer class is the main class. It just containgain method.
55 public class Server {

56 public static void main (String[] args) {
57 try {

The following line is the standard way to initialize an ORB. The first argument contains the
arguments passed to the main operation, the second orieraparties instance. These
methods are used to initialize the ORB. One property is particularly important:

org.omg.CORBA.ORBClass

This property indicates which ORB implementation (and in particular, which protocol) should
be used. In our case, this property is not set using the second argument, but through an ad-
ditional argumentDorg.omg.CORBA.ORBClass=...) passed to the java virtual ma-
chine when starting the server (see the MaKefile for details).

71 ORB orb = ORB.init(args,null);
This simply creates an implementation for Hello.

74 Hello hello = new Hellolmpl();

The next line “connects” the instance to an ORB. The role of this operation is to register the
newly created instance in the ORB so that it can be used as a parameter in remote invocations,
exported to a name server, or receive invocations from remote objects.

The skeletons generated by the David IDL to Java compiler are protocol independent:
they may be used in invocations using the standard IIOP protocol, or a multimedia stream
specific protocol, or whatever protocol is accessible. The protocol chosen depends on the
ORB instance.

Note that a given implementation may be exported to several different ORBSs, if available.

91 orb.connect(hello);

David provides a standard COS name server. A name server is a server application con-
taining an association table between names and running servers, and allowing remote objects
to register new interfaces under a given name, or retrieve registered interfaces by providing
their name. The next invocation retrieves a reference to the running default name server:
such a name server should be running when this code is executed (to start a name server see
the[Makefilg). A reference to the name server may be retrieved using the initial references
mechanism of CORBA. The first invocation onb returns a CORBA object representing
the name server; This object reference must then be narrowed to obtain a Java object of the
appropriate type.

108 org.omg.CORBA.Object ns_ref =
109 orb.resolve_initial_references("NameService");
110 NamingContext ns = NamingContextHelper.narrow(ns_ref);

The following line shows how the server is registered in the name server. The firstargument
is the "name” given to the server.

114 ns.rebind(new NameComponent[] { new NameComponent("helloobj",") },hello);

This call blocks the calling thread until tl#hutdown method is called orb (in our
case, neverl!).

118 System.out.printin("Hello Server ready");
119 orb.run();

120 } catch (Exception e) {

121 System.err.printin("Hello Server exception");
122 e.printStackTrace();

123 }

124 }

125 }

4 Step 4 write a client

The fileClient.java Al contains a client for our server. Here is the code:

4contained irexamples/david/helloWorld/Client.java

file:../../../examples/david/helloWorld/Client.java

4 Step 5: run your client and server

25

26 import org.omg.CORBA.ORB;

27 import org.omg.CosNaming.NamingContext;

28 import org.omg.CosNaming.NamingContextHelper;
29 import org.omg.CosNaming.NameComponent;

30 import idl.*;

The Client code only consists inmaain method.
33 public class Client {
34 public static void main(String[] args) {
35 try {

The ORB initialization, and the retrieval of the name server reference are preformed exactly
like in the Server case.

39 ORB orb = ORB.init(args,null);

40 org.omg.CORBA.Object ns_ref =

41 orb.resolve_initial_references("NameService");

42

43 NamingContext ns = NamingContextHelper.narrow(ns_ref);

After having retrieved a reference to the name server, the client retrieves a reference to a
server registered in the name server. Like for the name server in the Server code, the obtained
reference must be narrowed (and not simply cast).

49 org.omg.CORBA.Object obj ref =

50 ns.resolve(new NameComponent[] { new NameComponent("helloobj",") });
51 Hello obj = HelloHelper.narrow(obj_ref);
52

53 System.out.printin(obj.sayHello());

54

55 } catch (Exception e) {

56 System.err.printin("Hello Client exception™);
57 e.printStackTrace();

58 }

59 }

60 }

5 Step 5: run your client and server

The providedviakefile] automates all the compilation phases. To compile the IDL file and
the Java files, simply typeake at a shell prompt in the example directory.
Once compiled, you may start the different applications:

e make cosnaming starts the name server;
e make server starts the Hello World server;

e make client starts the client.

	Step 1: write an IDL specification
	Step 2: compile your IDL specification
	Step 3: write servers
	Step 4 write a client
	Step 5: run your client and server

