

PG-08085-001_v07 | June 2016

Programming Guide

NVIDIA VIDEO DECODER
(NVDEC) INTERFACE

NVIDIA VIDEO DECODER (NVDEC) INTERFACE PG-08085-001_v07 | ii

DOCUMENT CHANGE HISTORY

PG-08085-001_v07

Version Date Authors Description of Change

1.0 2016/6/10 VU/CC Initial release

NVIDIA VIDEO DECODER (NVDEC) INTERFACE PG-08085-001_v07 | iii

TABLE OF CONTENTS

Chapter 1. Overview .. 1

1.1 Decoding & Interoperability .. 1

1.2 Support .. 2

Chapter 2. Video Decoder Capabilities .. 1

Chapter 3. Video Playback and Decoder Pipeline .. 3

3.1 Decoder Pipeline ... 4

Chapter 4. NVIDIA Video Decoder (NVDECODE) API ... 6

4.1 Video Decoder APIs ... 6

4.2 Creating a Decoder .. 7

4.3 Decoding Surfaces ... 9

4.4 Processing and Displaying Frames ... 11

4.5 Writing an Efficient Decode-Display Application ... 13

NVIDIA VIDEO DECODER (NVDEC) INTERFACE PG-08085-001_v07 | iv

LIST OF FIGURES

Figure 1. Video decoder pipeline using NVDECODE API 4

LIST OF TABLES

Table 1. Hardware Video Decoder Capabilities ... 1

NVIDIA VIDEO DECODER (NVDEC) INTERFACE PG-08085-001_v07 | 1

Chapter 1.
OVERVIEW

The NVIDIA Video Decoder Interface hereafter referred to as NVDECODE APIs lets

developers access the video decoding features of NVIDIA graphics hardware and also

interoperates video with compute and graphics.

1.1 DECODING & INTEROPERABILITY

Compressed video streams are decoded directly to video memory. With frames in video

memory, post processing can be done using CUDA. Additionally clients can use

NVIDIA CUDA APIs for synchronous/asynchronous memory transfers between video

memory and system memory. Decoded video frames can either be presented to the

display with graphics interoperability for video playback, or frames can be passed

directly to a dedicated hardware encoder (NVENC) for video transcoding.

NVIDIA VIDEO DECODER (NVDEC) INTERFACE PG-08085-001_v07 | 2

1.2 SUPPORT

The API is supported on multiple OS platforms1 and works in conjunction with

NVIDIA’s CUDA, graphics, and encoder capabilities. The NVDECODE API supports the

following video codec formats:

 MPEG-2,

 VC-1,

 H.264 (AVCHD),

 H.265 (HEVC),

 VP8 and

 VP9 (profile 0).

Refer to Chapter 2 for complete details about the video capabilities for each GPU

architecture.

1 Windows and Linux OS

NVIDIA VIDEO DECODER (NVDEC) INTERFACE PG-08085-001_v07 | 1

Chapter 2. VIDEO DECODER
CAPABILITIES

Table 1 shows the codec support and capabilities of the hardware video decoder for each

GPU architecture.

Table 1. Hardware Video Decoder Capabilities

GPU

Architecture

MPEG-2

VC-1

H.264/AVCHD

H.265/HEVC

VP8

VP9

Fermi

(GF1xx)

Maximum

Resolution:

4080x4080

Maximum

Resolution:

2048x1024

1024x2048

Maximum

Resolution:

4096x4096

Profile:

Baseline, Main,

High profile up

to Level 4.1

Unsupported Unsupported Unsupported

Kepler

(GK1xx)

Maximum

Resolution:

4080x4080

Maximum

Resolution:

2048x1024

1024x2048

Maximum

Resolution:

4096x4096

Profile:

Main, High profile

up to Level 4.1

Unsupported Unsupported Unsupported

Maxwell Gen 1

(GM10x)

Maximum

Resolution:

4080x4080

Maximum

Resolution:

2048x1024

1024x2048

Maximum

Resolution:

4096x4096

Profile:

Baseline, Main,

High profile up

to Level 5.1

Unsupported Unsupported Unsupported

NVIDIA VIDEO DECODER (NVDEC) INTERFACE PG-08085-001_v07 | 2

GPU

Architecture

MPEG-2

VC-1

H.264/AVCHD

H.265/HEVC

VP8

VP9

Maxwell Gen 2

(GM20x)

Maximum

Resolution:

4080x4080

Maximum

Resolution:

2048x1024

1024x2048

Max bitrate:

60Mbps

Maximum

Resolution:

4096x4096

Profile:

Baseline, Main,

High profile up

to Level 5.1

Unsupported Maximum

Resolution:

 4096x4096

Unsupported

Maxwell Gen 2

(GM206)

Maximum

Resolution:

4080x4080

Maximum

Resolution:

2048x1024

1024x2048

 Interlaced

Maximum

Resolution:

4096x4096

Profile:

Baseline, Main,

High profile up

to Level 5.1

Maximum

Resolution:

4096x2304

Profile:

Main profile up

to Level 5.1

Maximum

Resolution:

4096x4096

Maximum

Resolution:

4096x2304

Profile:

Profile 0

GP100 Maximum

Resolution:

4080x4080

Maximum

Resolution:

2048x1024

1024x2048

Maximum

Resolution:

4096x4096

Profile:

Baseline, Main,

High profile up

to Level 5.1

Maximum

Resolution:

4096x4096

Profile:

Main profile up

to Level 5.1

Maximum

Resolution:

4096x4096

Maximum

Resolution:

4096x4096

Profile:

Profile 0

GP10x Maximum

Resolution:

4080x4080

Maximum

Resolution:

2048x1024

1024x2048

Maximum

Resolution:

4096x4096

Profile:

Baseline, Main,

High profile up

to Level 5.1

Maximum

Resolution:

8192x8192

Profile:

Main profile up

to Level 5.1

Supported2

Maximum

Resolution:

4096x4096

Maximum

Resolution:

8192x8192

Profile:

Profile 0

2 Supported only on GP104

NVIDIA VIDEO DECODER (NVDEC) INTERFACE PG-08085-001_v07 | 3

Chapter 3. VIDEO PLAYBACK AND
DECODER PIPELINE

Sample3 applications NvDecodeD3D9 (DirectX 9), NvDecodeD3D11 (DirectX 11)

NvDecodeGL (OpenGL on Windows and Linux), included in the SDK package,

demonstrate the following functions in video playback:

1. Parse the video input source.

2. Decode video on GPU using NVDECODE API.

3. Convert decoded surface NV12 format to RGBA.

4. Map RGBA surface to DirectX 9.0 or OpenGL surface.

5. Draw texture to screen.

Sample application NvTranscoder included in the SDK package demonstrates how to

set up an end-to-end vide transcode pipeline using NVDECODE and NVENCODE APIs,

with following functions:

1. Parse the video input source.

2. Decode video on GPU using NVDECODE API.

3. Send YUV video frame to encoding using the NVENCODE API.

4. Receive a compressed video bitstream back to the host.

3 Location: ./Samples in the Video Codec SDK package

NVIDIA VIDEO DECODER (NVDEC) INTERFACE PG-08085-001_v07 | 4

3.1 DECODER PIPELINE

Figure 1. Video decoder pipeline using NVDECODE API

Figure 1 shows the decoder pipeline using NVDECODE API. The solid black lines show

the data flow between modules. The solid colored lines represent process flow.

1. The application thread (referred to as the primary thread) calls

cuvidCreateVideoSource(), which spawns a de-multiplexer thread (referred to as

the secondary thread).

2. The primary thread (colored in blue above) calls cuvidCreateVideoParser() to

create the parser. It also creates the decoder by calling cuvidCreateDecoder().

3. The secondary thread (colored in red above) makes the following callbacks given

that the function pointers are not NULL. The callbacks are serial:

a) Handle video data: The callback implementation calls cuvidParseVideoData()

to parse the video data.

b) Handle video sequence: The callback is made when there is sequence change.

c) Handle picture decode: The callback implementation calls

cuvidDecodePicture() to decode the frame.

d) Handle Picture Display: The callback implementation signals the primary thread

to display the picture.

NVIDIA VIDEO DECODER (NVDEC) INTERFACE PG-08085-001_v07 | 5

4. The primary thread calls cuvidMapVideoFrame() to get the pitch and CUDA device

pointer to the surface which contains the decoded/post-processed frame. Thereafter

it calls cuvidUnmapVideoFrame() as the complimentary operation.

5. The primary thread destroys the resources by calling cuvidDestroyDecoder(),

cuvidDestroyVideoParser() and cuvidDestroyVideoSource().

The sample applications use all three components - Video Source, Video Parser, and

Video Decoder. The components are not dependent on each other and hence can be used

independently. The user can unplug the Video Source and Video Parser and plug-in an

implementation of his own. In this document we will be concentrating particularly on

the Video Decoder (colored dark green in Figure 1) and the stages following decode

(format conversion and display using OpenGL or DirectX). It is highly recommended

that the user use his own implementation for Video Source and Video Parser. These two

components are not hardware-accelerated or optimized and users may want to have

their own customized parsers which have better performance.

NVIDIA VIDEO DECODER (NVDEC) INTERFACE PG-08085-001_v07 | 6

Chapter 4. NVIDIA VIDEO DECODER
(NVDECODE) API

The NVDECODE API consists of two main header-files: dynlink_cuviddec.h and

dynlink_nvcuvid.h. The samples in NVIDIA Video Codec SDK dynamically load the

library functions and only include dynlink_cuviddec.h and dynlink_nvcuvid.h in

the source files. These headers can be found under ./Samples/common/inc folder in

the Video Codec SDK package. The Windows DLL nvcuvid.dll is included in the

NVIDIA display driver for Windows. The Linux library libnvcuvid.so is included

with NVIDIA display driver for Linux.

4.1 VIDEO DECODER APIS

The Video Decoder consists of the following APIs:

// Create the Decoder Object

CUresult cuvidCreateDecoder(CUvideodecoder *phDecoder,

 CUVIDDECODECREATEINFO *pdci);

// Destroy the Decoder Object

CUresult cuvidDestroyDecoder(CUvideodecoder hDecoder);

// Decode a single picture (field or frame)

CUresult cuvidDecodePicture(CUvideodecoder hDecoder,

 CUVIDPICPARAMS *pPicParams);

// Post-Process and map a video frame for use in CUDA

CUresult cuvidMapVideoFrame(CUvideodecoder hDecoder, int PicIdx,

 unsigned int* pDevPtr. unsigned int*

 pPitch, CUVIDPROCPARAMS* pVPP);

NVIDIA VIDEO DECODER (NVDEC) INTERFACE PG-08085-001_v07 | 7

// Unmap the previously mapped video frame

CUresult cuvidUnmapVideoFrame(CUvideodecoder hDecoder, unsigned int

DevPtr

4.2 CREATING A DECODER

The sample application uses the API cuvidCreateDecoder() through a C++ wrapper

class VideoDecoder defined in VideoDecoder.h. The class’s constructor is a good

starting point to see how to set up the CUVIDDECODECREATEINFO for the

cuvidCreateDecoder() method. Most importantly, the structure

CUVIDDECODECREATEINFO contains the following information about the stream to be

decoded:

 Codec type

 Frame size

 Chroma format

The user also specifies various properties of the output that the decoder should generate:

 Output surface format (currently only NV12 is supported)

 Output frame size

 Maximum number of output surfaces: This is the maximum number of surfaces that

the client code will simultaneously map for display.

The user also needs to specify the maximum number of surfaces the decoder may

allocate for decoding.

The following pseudo-code demonstrates the setup of decoder in case of
scaling, cropping, or aspect ratio conversion.

NVIDIA VIDEO DECODER (NVDEC) INTERFACE PG-08085-001_v07 | 8

// Scaling. Source size is 1280x960. Scale to 1920x1080.

CUresult rResult;

unsigned int uScaleW, uScaleH;

uScaleW = 1920;

uScaleH = 1080;

...

CUVIDDECODECREATEINFO stDecodeCreateInfo;

memset(&stDecodeCreateInfo, 0, sizeof(CUVIDDECODECREATEINFO));

... // setup the structure members

stDecodeCreateInfo.ulTargetWidth = uScaleWidth;

stDecodeCreateInfo.ulTargetHeight = uScaleHeight;

rResult = cuvidCreateDecoder(&hDecoder, &stDecodeCreateInfo);

...

// Cropping. Source size is 1280x960

CUresult rResult;

unsigned int uCropL, uCropR, uCropT, uCropB;

uCropL = 30;

uCropR = 700;

uCropT = 20;

uCropB = 500;

...

CUVIDDECODECREATEINFO stDecodeCreateInfo;

memset(&stDecodeCreateInfo, 0, sizeof(CUVIDDECODECREATEINFO));

... // setup structure members

stDecodeCreateInfo.display_area.left = uCropL;

stDecodeCreateInfo.display_area.right = uCropR;

stDecodeCreateInfo.display_area.top = uCropT;

stDecodeCreateInfo.display_are.bottom = uCropB;

rResult = cuvidCreateDecoder(&hDecoder, &stDecodeCreateInfo);

...

NVIDIA VIDEO DECODER (NVDEC) INTERFACE PG-08085-001_v07 | 9

// Aspect Ratio Conversion. Source size is 1280x960(4:3). Convert to

// 16:9

CUresult rResult;

unsigned int uCropL, uCropR, uCropT, uCropB;

uDispAR_L = 0;

uDispAR_R = 1280;

uDispAR_T = 70;

uDispAR_B = 790;

...

CUVIDDECODECREATEINFO stDecodeCreateInfo;

memset(&stDecodeCreateInfo, 0, sizeof(CUVIDDECODECREATEINFO));

... // setup structure members

stDecodeCreateInfo.target_rect.left = uDispAR_L;

stDecodeCreateInfo.target_rect.right = uDispAR_R;

stDecodeCreateInfo.target_rect.top = uDispAR_T;

stDecodeCreateInfo.target_rect.bottom = uDispAR_B;

reResult = cuvidCreateDecoder(&hDecoder, &stDecodeCreateInfo);

...

4.3 DECODING SURFACES

The classes VideoSource and VideoParser wrap the calls to Video Source and Video

Parser components of Figure 1. The VideoParser class implements three callback

functions, two of which are explained below:

// called by the video parser to decode a single picture. Since the

// parser will deliver data as fast as it can, we need to make sure

// that the picture index we're attempting to use for decode is no

// longer used for display.

static int CUDAAPI HandlePictureDecode(void *pUserData,

 CUVIDPICPARAMS *pPicParams);

// called by the video parser to display a video frame (in case of

// field pictures, there may be two decode calls per one display call,

// since two fields make up one frame)

static int CUDAAPI HandlePictureDisplay(void *pUserData,

 CUVIDPARSERDISPINFO *pPicParams);

VideoParser passes a CUVIDPICPARAMS structure to the callback which can be passed

without any modifications to the function cuvidDecodePicture(). The

CUVIDPICPARAMS structure contains all the information necessary for the decoder to

decode a frame or field. In particular, it contains pointers to the video bitstream,

NVIDIA VIDEO DECODER (NVDEC) INTERFACE PG-08085-001_v07 | 10

information about frame size, flags denoting whether it’s a field or a frame, bottom or top

field, etc.

The decoded result gets associated with a picture-index value in the CUVIDPICPARAMS

structure, which is also provided by the parser. This picture index is later used to map

the decoded frames to CUDA memory.

The implementation of HandlePictureDecode() in the sample application waits if the

output queue is full. When a slot in the queue becomes available, it simply invokes the

cuvidDecodePicture() function, passing the pPicParams as received from the parser.

The HandlePictureDisplay() method is passed a CUVIDPARSERDISPINFO structure

which contains the necessary data for displaying a frame; i.e. frame index of the decoded

frame (as given to the decoder), and some information relevant for display such as frame

time, field information, etc. The parser calls this method for frames in the order that they

should be displayed.

The implementation of HandlePictureDisplay() method in the sample application

simply enqueues the pPicParams passed by the parser into the FrameQueue object.

The FrameQueue is used to implement a producer-consumer pattern for passing frames

(or better, references to decoded frames) between the VideoSource’s decoding thread

and the application’s main thread, which is responsible for displaying them on the

screen.

NVIDIA VIDEO DECODER (NVDEC) INTERFACE PG-08085-001_v07 | 11

4.4 PROCESSING AND DISPLAYING FRAMES

The user needs to call cuvidmapVideoFrame() to get the CUDA device pointer and

pitch of the surface that has the decoded frame. The following is a pseudo-code that

demonstrates using cuvidMapVideoFrame() and cuvidUnmapVideoFrame().

// MapFrame: Call cuvidMapVideoFrame and get the devptr and associated

// pitch. Copy this surface (in device memory) to host memory using

// CUDA device to host memcpy.

bool MapFrame()

{

 CUVIDPARSEDISPINFO stDispInfo;

 CUVIDPROCPARAMS stProcParams;

 CUresult rResult;

 unsigned int cuDevPtr; int nPitch, nPicIdx;

 unsigned char* pHostPtr;

 memset(&stDispInfo, 0, sizeof(CUVIDPARSEDISPINFO));

 memset(&stProcParams, 0, sizeof(CUVIDPROCPARAMS));

 ... // setup stProcParams if required

 // retrieve the frames from the Frame Display Queue. This Queue is

 // is populated in HandlePictureDisplay.

 if (g_pFrameQueue->dequeue(&stDispInfo))

 {

 nPicIdx = stDispInfo.picture_index;

 rResult = cuvidMapVideoFrame(&hDecoder, nPicIdx, &cuDevPtr,

 &nPitch, &stProcParams);

 // use CUDA based Device to Host memcpy

 pHostPtr = cuMemAllocHost((void**)&pHostPtr, nPitch);

 if (pHostPtr)

 {

 rResult = cuMemcpyDtoH(pHostPtr, cuDevPtr, nPitch);

 }

 rResult = cuvidUnmapVideoFrame(&hDecoder, cuDevPtr);

 }

 ... // Dump YUV to a file

 if (pHostPtr)

 {

 cuMemFreeHost(pHostPtr);

 }

 ...

}

NVIDIA VIDEO DECODER (NVDEC) INTERFACE PG-08085-001_v07 | 12

The function copyDecodedFrameToTexture() in videoDecode.cpp does something

more than the above pseudo-code. It retrieves the frame (decoded surface) from

FrameQueue as above. Uses cuvidMapVideoFrame() to get the CUDA device pointer

and the associated pitch of the decoded surface. It maps a D3D/OGL texture to be used

by CUDA (interop surface). It then calls cudaPostProcessFrame() to do the color

space conversion from NV12 to RGBA. The texture holds the RGBA surface. This texture

can now be drawn to the screen.

The following list summaries the function calls involved (refer sample apps) in the

display and post-process pipeline:

1. cuvidMapVideoFrame – gets a CUDA device pointer from decoded frame of a

Video Decoder (using map).

2. cuD3D9ResourceGetMappedPointer – For cudaDecodeD3D9, this function

retrieves a CUDA device pointer from a D3D9 texture.

3. cuGLMapBufferObject – For cudaDecodeGL, this function retrieves a CUDA

device pointer from an OpenGL PBO (Pixel Buffer Object).

4. cudaPostProcessFrame – calls all subsequent CUDA post-process functions on

that frame, and writes the result directly to the Mapped D3D texture.

5. cuD3D9UnmapResources – For NvDecodeD3D9, the CUDA driver will release the

pointer back to the D3D9 driver. This tells the Direct3D driver that CUDA is finished

modifying the resource, and that it is safe to use it with D3D9.

6. cuGLUnmapBufferObject – For NvDecodeGL, the CUDA driver will release the

pointer back to the OpenGL driver. This tells the OpenGL driver that CUDA is

finished modifying the resource, and that it is safe to use it with OpenGL.

7. cuvidUnmapVideoFrame – Unmap the previously mapped frame.

NVIDIA VIDEO DECODER (NVDEC) INTERFACE PG-08085-001_v07 | 13

4.5 WRITING AN EFFICIENT DECODE-DISPLAY
APPLICATION

The NVDEC engine on NVIDIA GPUs is a dedicated hardware block, which decodes the

input video bitstream in supported formats. A typical video decode and display

application consists of the following stages:

1. Video bitstream parser

2. Video decoder

3. Post-processor

4. Screen display

Of these, post-processing (such as scaling, color space conversion, noise reduction, color

enhancement etc.) can be effectively performed using user-defined CUDA kernels.

The post-processed frames can then be sent to the display engine for displaying on the

screen, if required. Note that this operation is outside the scope of NVDECODE APIs.

The sample applications included with the Video Codec SDK are written to demonstrate

the functionality of various APIs but they are by no means fully optimized applications.

In fact, programmers are strongly encouraged to ensure that their application is well-

designed, with various stages in the decode-postprocess-display pipeline structured in

an efficient manner to achieve desired performance.

As a starting point, an optimized implementation may make use of independent threads

for bitstream decode and display as follows:

1. Decode Thread: This thread calls cuvidDecodePicture() and pushes the decoded

frame to the display queue. This continues as long as there are frames to decode.

2. Display thread: This thread reads the display queue and checks if there are any

decoded frames. If yes, then it calls cuvidMapVideoFrame() to get the CUDA device

pointer and pitch of the frame. The resulting CUDA device pointer can be used for

CUDA post-processing of the decoded video frames using user-defined CUDA

kernels. Finally, it is necessary to call cuvidUnMapVideoFrame() so that the

decoded frame buffer is unmapped by the driver. This continues as long as there are

decoded frames in the display queue and end of decode has not been reached. The

display thread presents the contents of the post processed video frame to an

OpenGL or Direct3D surface, using CUDA interoperability.

To ensure that the video frames will playback without stuttering or hitching, it is

necessary to ensure that decode and display threads do not get blocked. Two or more

D3D9/D3D11 or OpenGL surfaces allows double or triple buffered playback. This

allows both decode and display to run on different surfaces without being blocked.

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of
HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and
other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Copyright

© 2016 NVIDIA Corporation. All rights reserved.

