GStreamer Plugin Writer's Guide (1.4.3)

Richard John Boulton
Erik Walthinsen
Steve Baker
Leif Johnson
Ronald S. Bultje
Stefan Kost
Tim-Philipp Mdiller

Wim Taymans

GStreamer Plugin Writer's Guide (1.4.3)
by Richard John Boulton, Erik Walthinsen, Steve Baker, Uelfinson, Ronald S. Bultje, Stefan Kost, Tim-Philipp
Mdller, and Wim Taymans

This material may be distributed only subject to the terms@nditions set forth in the Open Publication License, \at.ater (the latest version
is presently available at http://www.opencontent.orgfgpb/).

Table of Contents

I 101 oo [x4 T o S Vii
R =Y - T = SRS 1.
1.1, WAt IS GSIIEAMELZ ...eiiieiiiiie ettt et e s e e e e nbeeeas 1
1.2. Who Should Read ThisS GUITR?..........ueii ettt 1.
1.3. Preliminary REAGINGc.uveiiiiiiie ittt ettt et e sebe e ene 2
1.4. Structure Of THIS GUIOE.........vuviiiiiiiiie e 2...
2 0TV F= 1T 1= PSR 5.
2.1. Elements and PIUGINS.cooiiiiii ittt e 5.
N - Vo 3SR 5.
2.3. GstMiniObject, Buffers and EVENLS.........ccuvvvviviiei e 6.
2.4. Media types and Properties..........coiiiiiia it ettt 8..
1. BUHAING @ PIUGIN .ottt 11
3. Constructing the BOIEIPIALE..........oiiiiie ettt 12
3.1. Getting the GStreamer Plugin Templates. ... 12
3.2.USING the Project StamI.........oo i 12
3.3. Examining the BaSiC COUEL............c.ooviiiiiiiiiiieieieiiieeiieseeeeee e e e e eee e eeeeeaeeereeeeeeeaeaenes 13
3.4, EIemMent MEtATALA.vvieiiiiiieeii et 14
3.5. GstStaticPadTEMPIALE.ooiiiiiiee e 15.
3.6. CONSIIUCION FUNCHIONSciiiiiiiie ittt 17.
3.7. The plugin_init FUNCHION.ooiiiii e 17.
4. SPECITYING the PAASottt e e e e e smnneee e e e e 19
5. The Chain fUNCHION.........coiiiiiie et 20
6. THE @VENTTUNCLION........eiiii ittt e s rme e e s e e e 23
7. TE QUETY TUNCHION. ...ttt et e et e e e e e emne e e e e e as 25
8. WAL ArE STAIES 2. . ittt et e et e et e e snee et a e e e enee 27
8.1. Managing filter STALE..........coiiiiiii i 27
9. AdAING PrOPEITIES ...ttt e ettt et e e e e ree e e st e e e e 30
O RS To [F= 1 TP PP PR 33
11. Building & Test APPIICALION..........cciiiiiiieiiiiie e 34
1. AdVaNCE Flter CONCEPLScuiiiieiiieeiirie ettt ettt 38
12. Request and SOMELIMES PAAS.......ccoiiiiiiiiiiiiiie e 39.
12.1. SOMELIMES PAASeiueeiiiiiiiie ettt e ettt et e et e eanes 39
12.2. REQUESE PAUS ...ceeittiieeiitii ettt ettt ree e e et e et e e e skt e e s st e e e s anb e e e enrmeeesane 42
13. Different SCheduling MOTES.........cooiiiiiiiiiii e 45
13.1. The pad activation STAGE........cceiiuiiie et 45
13.2. Pads driving the PIPEIINE........coo i 46
13.3. Providing randOm @CCESS..........cooviiiiiieiiieieieeeeeeeeeeeie e eeeeeeeeeeeeeeeeeeeeeeeereeeaeesrennned 49
O 0= o I3 a1 To [0 1= L1 o] o AP RUPPPTPTRP 52
14.1. Caps Negotiation DASICS.ccuciiiiiiiiiii e 52
14.2. Caps NEYOLIALION USE CASES.....uuuieeiieiiiiitiiiieeeeeeeeaatbbtieeeeasatebbeeeeeae e s e e sanibeeneeeeans 52
14.3. Upstream caps (re)NeGOtIALION.ueeiiiiiiiiiiiiiieiie e emeee e e e 58
14.4. Implementing a CAPS query fUNCHON. ...t 58
14.5. Pull-mode Caps NEgOLIAtiQN............euiiiiiiiiiiiiiieeiie e e e e 60
A/ 1T T VA= 1o Yo o o USRS 61
TR B 1111V [T o o Y SO PRR 61

15.3. GSIMELA . ..eei ittt 64

15.4. GSIBUTEIPOOL.ccoiiiiiiiiiiii ettt e 69

15.5. GST_QUERY_ALLOCATION.ottt ettt 71

16. TYPES AN PrOPEITIESeeitiiiieiiie ettt e e e e e st e e e e senne e s 74
16.1. Building a Simple Format for TeSHNGuuueiiiiiaiiiiiiiieiee e 74

16.2. Typefind Functions and AUtOPIUGQING.......ccooriiiiiiiiiiieiiee e 74

16.3. LiSt Of DEfINEA TYPES. ...eeeiiiieiiiiiiiiieiiee ettt iibeaeeeae e e e L D

17. Events: Seeking, Navigation and MOIE...........uuuuueiiiiiiieeie e ee et 89
17.1. DOWNSIIEAM BVENLIS.......uuiiiiiiiiiieiii it srrr e 89

17.2. UPSITEAIM BVENLS. ...t an e 90

17.3. Al EVENES TOQEINEN.......ooiiiiiiieieeeeeee et enrnenenanenannnaee al

RS T @ [T (] o OO 96
L8.0. CHOCKS. ..ottt ee e 96

18.2. ClOCK FUNNMING-IME.....eiiiiiiiie ittt e 96

18.3. BUffer rUNNING-TIME.......eeiii e 96
18.4. Obligations of each element.............oociiiiiiiii e 97

19. Quality Of Service (QOS).....ccoiuriiii ettt e st e e e s e e e s sne e e 99
19.1. MeaSUNNG QOS......ei ittt bbb e et e et e e e e 99

19.2. HANAIING QOS......oiiiiiiiiie ettt ettt n b 100

S TR T I o o 11 o OO SRR PUR PR 102

19.4. QOS MESSAQGES. ...ceeeeieiiiiitiieee et e ettt e e e ettt e e e e e st e e e e e 102

20. Supporting DYNamiC ParameEtersS...........couiueiieiiiiiiiee it setee e 104
20.1. GettiNg STAME.cciiiiiii et 104
20.2. The Data Processing LAQP........cooiiiiiiieiiiii et 104

20 |] (= 1 7= Lo = PR 106
21.1. How to Implement INterfaces..........cooviiiiiiiiiieeeee e 106
P O L (= 3 = T = SRS 107
21.3. Color BalanCe INTEIfaCE...........cuuviieiiiii it 108
21.4. Video Overlay Interface..........cocooeeeiiii 108

21.5. Navigation INtEIfACE.........cvvviiiiiieieiieieei e e e e eeeeseaeseeeeraesraesenrnnnne 109

22. Tagging (Metadata and Streaminf0)...............evvuiiiieiiiiiiieiiieiieeeeeree e eereeeeeeererneran, 110
22,1, OVEIVIEW.ceiiiiiieie ettt ettt e st e e et e e e ettt e e e b e e e e b e e senne e e nnes 110
22.2. Reading Tags frOmM SIrEAMIS.cciiiii it 110
22.3. Writing TAgS t0 SIrEaMIS. .. .uuuueiiniiriiieiie e s e s e 111

[V. Creating Special @lemMENT TYPES......cooi ittt eb e sbeneas 115
23. Pre-made base Classes............oooiiiiiiiiiiiii i 116
23. 1 WIItING @ SINK oo 116
23.2. WITING @ SOUICEteiiiieeeee ettt e e e e et bbbttt e e e e e e e e aaabe b b e e e e e e e e e e bsbeeas 118
23.3. Writing a transformation element................uuuuiiiiiiiiiiiis s 119

24, WIItING @ DEMUXET OF PAISEL......cuuiiiiiiiiiie ettt 120
25. Writing @ N-t0-1 Element OF MUXET..........ccoiiiiiiieiiiiie ettt 121
26. WIHING @ IMBNAGEL ...ttt ettt e sttt s sttt e e beeeeneeeee s 122

15,2, GSIBUIBL.....eiieiieii ettt 62

27. Things to check when writing an €lement...........coooiiiiiiiiiii e 124
27. 1. ADOUL STALES. ...ttt e s 124
W2 2 1= o 18 To T 11 o USRS 124
27.3. Querying, events and the lKe...........coooiii e 125
27.4. Testing your element............oooiiiiiiiii e 125
28. Porting 0.8 PIUg-iNS 10 0.20.......uiiiiiieeeee ittt et te e e e e e e e s 127
28.1. LISt Of CRANGES.....eeiiiiieii ettt e e 127
29. Porting 0.20 PlUG-iNS 10 1u0. .. uuiiiiiiieeeee ittt ee et e e e e e e e e e s 129
GO 1S (== V0 o [=T ol o =Y o oo TP 130
30.1. How to license the code you write for GStreamer...........cccoeeveeeieiieiiieieieee e 130

List of Tables

2-1. Table Of EXAMPIE TYPES. .. ittt et et e e e 8
16-1. TAbIe Of AUAIO TYPES .. ettt ettt et e et e e e b 76
16-2. Table Of VIAEO TYPES .. ittt ettt et e e e e e 81
16-3. Table Of CONTAINET TYPES...ii ittt ettt e e et e et e et e e e s abe e e e s anb e e e esrmeeesane 86
16-4. Table Of SUDLIHIE TYPES....cii i 87
16-5. Table Of Other TYPES ... ettt et e e e b 87

Vi

|. Introduction

GStreamer is an extremely powerful and versatile framevimrkreating streaming media applications.
Many of the virtues of the GStreamer framework come from itglmarity: GStreamer can seamlessly
incorporate new plugin modules. But because modularitypeveer often come at a cost of greater
complexity (consider, for example, CORBA (http://www.ormg/)), writing new plugins is not always
easy.

This guide is intended to help you understand the GStreamaerefvork (version 1.4.3) so you can
develop new plugins to extend the existing functionalitye Quide addresses most issues by following
the development of an example plugin - an audio filter plugimitten in C. However, the later parts of
the guide also present some issues involved in writing difpes of plugins, and the end of the guide
describes some of the Python bindings for GStreamer.

Chapter 1. Preface

1.1. What is GStreamer?

GStreamer is a framework for creating streaming media eapins. The fundamental design comes
from the video pipeline at Oregon Graduate Institute, a$ agsome ideas from DirectShow.

GStreamer’s development framework makes it possible tewany type of streaming multimedia
application. The GStreamer framework is designed to ma&ady to write applications that handle
audio or video or both. Itisn’t restricted to audio and vidand can process any kind of data flow. The
pipeline design is made to have little overhead above wieeafiplied filters induce. This makes
GStreamer a good framework for designing even high-endeaauplications which put high demands
on latency or performance.

One of the most obvious uses of GStreamer is using it to buikédia player. GStreamer already
includes components for building a media player that capstia very wide variety of formats,
including MP3, Ogg/Vorbis, MPEG-1/2, AVI, Quicktime, maahd more. GStreamer, however, is much
more than just another media player. Its main advantagdbaitréhe pluggable components can be
mixed and matched into arbitrary pipelines so that it's flmego write a full-fledged video or audio
editing application.

The framework is based on plugins that will provide the vasicodec and other functionality. The
plugins can be linked and arranged in a pipeline. This pieadiefines the flow of the data.

The GStreamer core function is to provide a framework fogjis, data flow, synchronization and
media type handling/negotiation. It also provides an ARktite applications using the various plugins.

1.2. Who Should Read This Guide?

This guide explains how to write new modules for GStreambe uide is relevant to several groups of
people:

« Anyone who wants to add support for new ways of processing idgb Streamer. For example, a
person in this group might want to create a new data formaterter, a new visualization tool, or a
new decoder or encoder.

- Anyone who wants to add support for new input and output @sviEor example, people in this group
might want to add the ability to write to a new video outputteys or read data from a digital camera
or special microphone.

- Anyone who wants to extend GStreamer in any way. You needve &a understanding of how the
plugin system works before you can understand the condrihiat the plugin system places on the

Chapter 1. Preface

rest of the code. Also, you might be surprised after readiigat how much can be done with plugins.

This guide is not relevant to you if you only want to use thestrg functionality of GStreamer, or if you
just want to use an application that uses GStreamer. If ypouly interested in using existing plugins to
write a new application - and there are quite a lot of pluginsaaly - you might want to check the
GStreamer Application Development Manuélou are just trying to get help with a GStreamer
application, then you should check with the user manualifat particular application.

1.3. Preliminary Reading

This guide assumes that you are somewhat familiar with te& lveorkings of GStreamer. For a gentle
introduction to programming concepts in GStreamer, you miakh to read th& Streamer Application
Development Manudirst. Also check out the other documentation available @Gis$treamer web site
(http://gstreamer.freedesktop.org/documentation/).

In order to understand this manual, you will need to have &chaslerstanding of the C language. Since
GStreamer adheres to the GObject programming model, tide glso assumes that you understand the
basics of GObject (http://developer.gnome.org/golgtahlie/pt01.html) programming. You may also
want to have a look at Eric Harlow’s bodkeveloping Linux Applications with GTK+ and GDK

1.4. Structure of This Guide

To help you navigate through this guide, it is divided intees@l large parts. Each part addresses a
particular broad topic concerning GStreamer plugin dgualent. The parts of this guide are laid out in
the following order:

- Building a Plugin- Introduction to the structure of a plugin, using an exanguldio filter for
illustration.

This part covers all the basic steps you generally need formeto build a plugin, such as registering
the element with GStreamer and setting up the basics so recaive data from and send data to
neighbour elements. The discussion begins by giving exasrgilgenerating the basic structures and
registering an element i@onstructing the Boilerplatdhen, you will learn how to write the code to
get a basic filter plugin working i€hapter 4Chapter SandChapter 8

After that, we will show some of the GObject concepts on homake an element configurable for
applications and how to do application-element interadticAdding PropertiesandChapter 10Next,
you will learn to build a quick test application to test alattyou've just learned ihapter 11We will
just touch upon basics here. For full-blown applicationedegment, you should look at the
Application Development Manual
(http://gstreamer.freedesktop.org/data/doc/gstreduead/manual/html/index.html).

Chapter 1. Preface

« Advanced Filter Conceptsinformation on advanced features of GStreamer pluginldeveent.

After learning about the basic steps, you should be ableg@tera functional audio or video filter
plugin with some nice features. However, GStreamer offeygerfor plugin writers. This part of the
guide includes chapters on more advanced topics, such edidoiy, media type definitions in
GStreamer, clocks, interfaces and tagging. Since theserésaare purpose-specific, you can read
them in any order, most of them don’t require knowledge fraheosections.

The first chapter, namddifferent scheduling modesvill explain some of the basics of element
scheduling. It is not very in-depth, but is mostly some sberintroduction on why other things work
as they do. Read this chapter if you're interested in GStezamternals. Next, we will apply this
knowledge and discuss another type of data transmissionthat you learned i€hapter 5

Different scheduling mode&oop-based elements will give you more control over ingik r This is
useful when writing, for example, muxers or demuxers.

Next, we will discuss media identification in GStreameCimapter 16'You will learn how to define
new media types and get to know a list of standard media tygfasead! in GStreamer.

In the next chapter, you will learn the concept of request- ssmetimes-pads, which are pads that are
created dynamically, either because the application afskét(request) or because the media stream
requires it (sometimes). This will be @hapter 12

The next chapteChapter 18will explain the concept of clocks in GStreamer. You nees th
information when you want to know how elements should achawdio/video synchronization.

The next few chapters will discuss advanced ways of doingjegijpn-element interaction.
Previously, we learned on the GObject-ways of doing thi&dding PropertiesandChapter 10We

will discuss dynamic parameters, which are a way of definiament behaviour over time in advance,
in Chapter 20Next, you will learn about interfaces Dhapter 21Interfaces are very target- specific
ways of application-element interaction, based on GOlsj&interface. Lastly, you will learn about
how metadata is handled in GStreameCimapter 22

The last chapteChapter 17will discuss the concept of events in GStreamer. Eventsoarthe one
hand, another way of doing application-element interactittakes care of seeking, for example. On
the other hand, it is also a way in which elements interadi edgtch other, such as letting each other
know about media stream discontinuities, forwarding tag&lie a pipeline and so on.

« Creating special element typeExplanation of writing other plugin types.

Because the first two parts of the guide use an audio filter axample, the concepts introduced
apply to filter plugins. But many of the concepts apply egutlother plugin types, including

sources, sinks, and autopluggers. This part of the guidgepts the issues that arise when working on
these more specialized plugin types. The chapter starftsargpecial focus on elements that can be

Chapter 1. Preface

written using a base-clasBie-made base clas$esnd later also goes into writing special types of
elements inWriting a Demuxer or Parsgwriting a N-to-1 Element or MuxeandWriting a Manager

- Appendices Further information for plugin developers.

The appendices contain some information that stubborfiiges to fit cleanly in other sections of the
guide. Most of this section is not yet finished.

The remainder of this introductory part of the guide presarghort overview of the basic concepts
involved in GStreamer plugin development. Topics covenetlideElements and Plugin®ads

Data, Buffers and EvenendTypes and PropertieHf you are already familiar with this information, you
can use this short overview to refresh your memory, or youskgmto Building a Plugin

As you can see, there a lot to learn, so let’s get started!

« Creating compound and complex elements by extending frostBi This will allow you to create
plugins that have other plugins embedded in them.

« Adding new media types to the registry along with typedéfiaattions. This will allow your plugin to
operate on a completely new media type.

Chapter 2. Foundations

This chapter of the guide introduces the basic concepts te@®er. Understanding these concepts will
help you grok the issues involved in extending GStreamenyMd these concepts are explained in
greater detail in th&Streamer Application Development Manuhak basic concepts presented here
serve mainly to refresh your memory.

2.1. Elements and Plugins

Elements are at the core of GStreamer. In the context of pldevelopment, aalemenis an object
derived from the Gst El enent (../../gstreamer/html/GstElement.html) class. Elera@nbvide some

sort of functionality when linked with other elements: Faample, a source element provides data to a
stream, and a filter element acts on the data in a stream. MYithements, GStreamer is just a bunch of
conceptual pipe fittings with nothing to link. A large numlo¢elements ship with GStreamer, but extra
elements can also be written.

Just writing a new element is not entirely enough, howeveu Will need to encapsulate your element in
apluginto enable GStreamer to use it. A plugin is essentially a Ibkdalock of code, usually called a
shared object file or a dynamically linked library. A singlagin may contain the implementation of
several elements, or just a single one. For simplicity, ghisle concentrates primarily on plugins
containing one element.

A filter is an important type of element that processes a stream afedducers and consumers of data
are calledsourceandsink elements, respectivelBin elements contain other elements. One type of bin is
responsible for synchronization of the elements that tlheyain so that data flows smoothly. Another
type of bin, callecautopluggerlements, automatically add other elements to the bin akd them
together so that they act as a filter between two arbitraeastrtypes.

The plugin mechanism is used everywhere in GStreamer, éeatyithe standard packages are being
used. A few very basic functions reside in the core librang all others are implemented in plugins. A
plugin registry is used to store the details of the pluginarirbinary registry file. This way, a program
using GStreamer does not have to load all plugins to determirich are needed. Plugins are only
loaded when their provided elements are requested.

See theGStreamer Library Referender the current implementation details @t El ement
(../../gstreamer/html/GstElement.html) aBt Pl ugi n (../../gstreamer/html/GstPlugin.html).

2.2. Pads

Padsare used to negotiate links and data flow between elementStire@mer. A pad can be viewed as a

Chapter 2. Foundations

“place” or “port” on an element where links may be made withestelements, and through which data
can flow to or from those elements. Pads have specific datdihgrdpabilities: A pad can restrict the
type of data that flows through it. Links are only allowed begw two pads when the allowed data types
of the two pads are compatible.

An analogy may be helpful here. A pad is similar to a plug okjan a physical device. Consider, for
example, a home theater system consisting of an amplifiey,[a @ayer, and a (silent) video projector.
Linking the DVD player to the amplifier is allowed becauserbdévices have audio jacks, and linking
the projector to the DVD player is allowed because both d=/itave compatible video jacks. Links
between the projector and the amplifier may not be made bed¢heagprojector and amplifier have
different types of jacks. Pads in GStreamer serve the sanp@gel as the jacks in the home theater
system.

For the most part, all data in GStreamer flows one way throdgtkdetween elements. Data flows out
of one element through one or ma@eurce padsand elements accept incoming data through one or
moresink padsSource and sink elements have only source and sink pagecte®ly.

See theGStreamer Library Referender the current implementation details ofat Pad
(../../gstreamer/html/GstPad.html).

2.3. GstMiniObject, Buffers and Events

All streams of data in GStreamer are chopped up into churststie passed from a source pad on one
element to a sink pad on another elem>MiniObjectis the structure used to hold these chunks of
data.

GstMiniObject contains the following important types:

- An exact type indicating what type of data (event, buffeythis GstMiniObject is.

- A reference count indicating the number of elements culyrérmiding a reference to the miniobject.
When the reference count falls to zero, the miniobject weldisposed, and its memory will be freed
in some sense (see below for more details).

For data transport, there are two types of GstMiniObjecheeli events (control) and buffers (content).

Buffers may contain any sort of data that the two linked patskhow to handle. Normally, a buffer
contains a chunk of some sort of audio or video data that floera bne element to another.

Buffers also contain metadata describing the buffer'seotst Some of the important types of metadata
are:

Chapter 2. Foundations

- Pointers to one or more GstMemory objects. GstMemory obja@a refcounted objects that
encapsulate a region of memory.

- Atimestamp indicating the preferred display timestampheft¢ontent in the buffer.

Events contain information on the state of the stream flowietgveen the two linked pads. Events will
only be sent if the element explicitly supports them, elsedbre will (try to) handle the events
automatically. Events are used to indicate, for examplegdiatype, the end of a media stream or that
the cache should be flushed.

Events may contain several of the following items:

- A subtype indicating the type of the contained event.

- The other contents of the event depend on the specific eveat ty

Events will be discussed extensively@hapter 17Until then, the only event that will be used is the
EOSevent, which is used to indicate the end-of-stream (usealt+of-file).

See theGStreamer Library Referender the current implementation details ofsat M ni Qoj ect
(../../gstreamer/html/gstreamer-GstMiniObject.h{i@)x Buf f er (../../gstreamer/html/GstBuffer.html)
andGst Event (../../gstreamer/html/GstEvent.html).

2.3.1. Buffer Allocation

Buffers are able to store chunks of memory of several diffetypes. The most generic type of buffer
contains memory allocated by malloc(). Such buffers, aitffioconvenient, are not always very fast,
since data often needs to be specifically copied into thesbuff

Many specialized elements create buffers that point toiapeemory. For example, the filesrc element
usually maps a file into the address space of the applicaiging mmap()), and creates buffers that
point into that address range. These buffers created bycfites exactly like generic buffers, except that
they are read-only. The buffer freeing code automaticahgdnines the correct method of freeing the
underlying memory. Downstream elements that receive tkiesks of buffers do not need to do anything
special to handle or unreference it.

Another way an element might get specialized buffers is gqoest them from a downstream peer
through a GstBufferPool or GstAllocator. Elements can aGistBufferPool or GstAllocator from the
downstream peer element. If downstream is able to provieletibbjects, upstream can use them to
allocate buffers. See more Memory allocation

Chapter 2. Foundations

Many sink elements have accelerated methods for copyiregtddtardware, or have direct access to
hardware. It is common for these elements to be able to cae@sBufferPool or GstAllocator for their
upstream peers. One such example is ximagesink. It creaffesdthat contain XImages. Thus, when an
upstream peer copies data into the buffer, it is copyingctlirénto the XImage, enabling ximagesink to
draw the image directly to the screen instead of having ty dapa into an XImage first.

Filter elements often have the opportunity to either worladmuffer in-place, or work while copying
from a source buffer to a destination buffer. It is optimaitplement both algorithms, since the
GStreamer framework can choose the fastest algorithm asppgte. Naturally, this only makes sense
for strict filters -- elements that have exactly the same &irom source and sink pads.

2.4. Media types and Properties

GStreamer uses a type system to ensure that the data passedrbelements is in a recognized format.
The type system is also important for ensuring that the patars required to fully specify a format
match up correctly when linking pads between elements. Halcthat is made between elements has a
specified type and optionally a set of properties. See mavatalaps negotiation i@aps negotiatian

2.4.1. The Basic Types

GStreamer already supports many basic media types. Faljpwia table of a few of the basic types used
for buffers in GStreamer. The table contains the name ("anggbie”) and a description of the type, the
properties associated with the type, and the meaning of gagerty. A full list of supported types is
included inList of Defined Types

Table 2-1. Table of Example Types

Media Type Description Property Property Property Property
Type Values Description
audio/* All audio types| rate integer greater than 0 | The sample

rate of the data
in samples (pel
channel) per
second.

channels integer greater than O | The number of
channels of
audio data.

Chapter 2. Foundations

Media Type Description Property Property Property Property
Type Values Description
audio/x-raw Unstructured |format string S8 U8 S16LE | The format of
and S16BE U16LE | the sample
uncompressed U16BE data.
raw integer S24 32LE
audio data. S24 32BE
U24_32LE
U24_32BE
S32LE S32BE
U32LE U32BE
S24LE S24BE
U24LE U24BE
S20LE S20BE
U20LE U20BE
S18LE S18BE
U18LE U18BE
F32LE F32BE
F64LE F64BE
audio/mpeg Audio data mpegversion |integer 1,2o0r4 The
compressed MPEG-version
using the used for
MPEG audio encoding the
encoding data. The valug
scheme. 1 refersto
MPEG-1, -2
and -2.5 layer
1,20r3.The
values 2 and 4
refer to the
MPEG-AAC
audio encoding
schemes.
framed boolean Oorl A true value
indicates that
each buffer
contains
exactly one

frame. A false
value indicates
that frames and
buffers do not
necessarily
match up.

Chapter 2. Foundations

Media Type

Description

Property

layer

Property
Type
integer

Property
Values

1,2,0r3

Property
Description
The
compression
scheme layer
used to
compress the
data(only if
mpegver-
sion=1).

bitrate

integer

greater than 0

The bitrate, in
bits per second.
For VBR
(variable
bitrate) MPEG
data, this is the
average bitrate

audio/x-vorbis

\orbis audio
data

There are
currently no
specific
properties
defined for this
type.

10

Il. Building a Plugin

You are now ready to learn how to build a plugin. In this parthaf guide, you will learn how to apply
basic GStreamer programming concepts to write a simplamlii@pe previous parts of the guide have
contained no explicit example code, perhaps making thirigsabstract and difficult to understand. In
contrast, this section will present both applications amdiechy following the development of an
example audio filter plugin called “MyFilter”.

The example filter element will begin with a single input pad & single output pad. The filter will, at
first, simply pass media and event data from its sink pad ®oitsce pad without modification. But by
the end of this part of the guide, you will learn to add someaenioteresting functionality, including
properties and signal handlers. And after reading the remttgh the guideAdvanced Filter Concepts
you will be able to add even more functionality to your plugin

The example code used in this part of the guide can be fouaxdnpl es/ pwg/ exanpl efil ter/ in
your GStreamer directory.

Chapter 3. Constructing the Boilerplate

In this chapter you will learn how to construct the bare mimimcode for a new plugin. Starting from
ground zero, you will see how to get the GStreamer templateceo Then you will learn how to use a
few basic tools to copy and modify a template plugin to createw plugin. If you follow the examples
here, then by the end of this chapter you will have a functiandio filter plugin that you can compile
and use in GStreamer applications.

3.1. Getting the GStreamer Plugin Templates

There are currently two ways to develop a new plugin for G8trer: You can write the entire plugin by
hand, or you can copy an existing plugin template and wrigepligin code you need. The second
method is by far the simpler of the two, so the first method méll even be described here. (Errm, that is,
“itis left as an exercise to the reader.”)

The first step is to check out a copy of th&t - t enpl at e git module to get an important tool and the
source code template for a basic GStreamer plugin. To chedkegst - t enpl at e module, make sure
you are connected to the internet, and type the followingroamds at a command console:

shell $ git clone git://anongit.freedesktop.org/gstreaner/gst-tenplate.git
Initialized enpty Gt repository in /sone/path/gst-tenplate/.git/
renote: Counting objects: 373, done.

renote: Conpressing objects: 100% (114/114), done.

renote: Total 373 (delta 240), reused 373 (delta 240)

Recei ving objects: 100% (373/373), 75.16 KiB | 78 KiB/s, done.
Resol ving del tas: 100% (240/ 240), done.

This command will check out a series of files and directoriésgdst - t enpl at e. The template you will
be using is in thegst - t enpl at e/ gst - pl ugi n/ directory. You should look over the files in that
directory to get a general idea of the structure of a soussefor a plugin.

If for some reason you can’t access the git repository, youatso download a snapshot of the latest
revision (http://cgit.freedesktop.org/gstreamertgstplate/commit/) via the cgit web interface.

3.2. Using the Project Stamp

The first thing to do when making a new element is to specifyesbasic details about it: what its name
is, who wrote it, what version number it is, etc. We also needkfine an object to represent the element
and to store the data the element needs. These details Eetiwely known as théoilerplate

12

Chapter 3. Constructing the Boilerplate

The standard way of defining the boilerplate is simply to &sbme code, and fill in some structures. As
mentioned in the previous section, the easiest way to degsiiscopy a template and add functionality
according to your needs. To help you do so, there is a tookintigst - pl ugi ns/t ool s/ directory.

This tool,make_el enent , is a command line utility that creates the boilerplate codgou.

To usemake_element, first open up a terminal window. Change to the
gst -t enpl at e/ gst - pl ugi n/ sr ¢ directory, and then run theake_element command. The
arguments to thenake_element are:

1. the name of the plugin, and

2. the source file that the tool will use. By defaglét pl ugi n is used.

For example, the following commands create the MyFiltegpilbased on the plugin template and put
the output files in thgst - t enpl at e/ gst - pl ugi n/ sr c directory:

shell $ cd gst-tenplate/gst-plugin/src
shell $../tool s/ make_el ement MyFilter

Note: Capitalization is important for the name of the plugin. Keep in mind that under some operating
systems, capitalization is also important when specifying directory and file names in general.

The last command creates two filgst nyfil ter. c andgstnyfilter. h.

Note: It is recommended that you create a copy of the gst - pl ugi n directory before continuing.

Now one needs to adjust tivakef i | e. amto use the new filenames and raun ogen. sh from the
parent directory to bootstrap the build environment. Aftet, the project can be built and installed using
the well knownmeke && sudo make instal |l commands.

Note: Be aware that by default aut ogen. sh and conf i gur e would choose / usr/ | ocal as a default
location. One would need to add / usr /| ocal /i b/ gstreaner-1.0 to GST_PLUGIN_PATH in order
to make the new plugin show up in a gstreamer that’s been installed from packages.

Note: FIXME: this section is slightly outdated. gst-template is still useful as an example for a minimal
plugin build system skeleton. However, for creating elements the tool gst-element-maker from
gst-plugins-bad is recommended these days.

13

Chapter 3. Constructing the Boilerplate

3.3. Examining the Basic Code

First we will examine the code you would be likely to place ineader file (although since the interface
to the code is entirely defined by the plugin system, and db@spend on reading a header file, this is
not crucial.) The code here can be found in

exanpl es/ pwg/ exanpl efi | ter/boil er/gstexanplefilter.h.

Example 3-1. Example Plugin Header File
#i ncl ude <gst/gst. h>

/* Definition of structure storing data for this element. =/
typedef struct _GstMFilter {
Gst El enent el enent ;

Gst Pad =*si nkpad, *srcpad;

gbool ean sil ent;

} GstMWFilter;

/+* Standard definition defining a class for this elenment. */
typedef struct _GstMyFilterd ass {

Gst El enent Cl ass parent _cl ass;
} GstMWFilterd ass;

/+ Standard nacros for defining types for this elenment. =*/
#define GST_TYPE_MY_FILTER (gst_my_filter_get_type())
#define GST_MY_FILTER(obj) \

(G_TYPE_CHECK_| NSTANCE_CAST((0obj), GST_TYPE_MY_FI LTER, Gst MyFil ter))
#define GST_MY_FI LTER CLASS(kl ass) \

(G_TYPE_CHECK_CLASS_CAST((kl ass), GST_TYPE_MY_FI LTER, Gst MyFi | ter d ass))
#define GST_IS MY_FILTER(obj) \

(G_TYPE_CHECK_| NSTANCE_TYPE((obj), GST_TYPE_MY_FI LTER))
#define GST_IS MY_FILTER CLASS(kl ass) \

(G_TYPE_CHECK_CLASS_TYPE((kl ass), GST_TYPE_MY_FI LTER))

/+ Standard function returning type information. =*/
Glype gst_ny_filter_get_type (void);

Using this header file, you can use the following macro tofs#teGobj ect basics in your source file
so that all functions will be called appropriately:

#include "filter.h"

G DEFI NE_TYPE (Gst MyFilter, gst_nmy filter, GST_TYPE_ELEMENT);

14

Chapter 3. Constructing the Boilerplate

3.4. Element metadata

The Element metadata provides extra element informatidgs configured with
gst _el enent _cl ass_set _netadataorgst_el enent _cl ass_set _stati c_net adat awhich
takes the following parameters:

A long, English, name for the element.

The type of the element, see the docs/design/draft-kkasatument in the GStreamer core source
tree for details and examples.

A brief description of the purpose of the element.

The name of the author of the element, optionally followedlmpntact email address in angle
brackets.

For example:

gst _el ement _cl ass_set _static_netadata (klass,

"An exanpl e plugin",

" Exanpl e/ Fi r st Exanpl e",

"Shows the basic structure of a plugin",
"your name <your.name@our.isp>");

The element details are registered with the plugin durieg th ass_i nit () function, which is part
of the GObject system. Thecl ass_i nit () function should be set for this GObject in the function
where you register the type with GLib.

static void
gst_ny _filter_class_init (GstMFilterC ass » Kkl ass)

{

[..

Gst El enent Cl ass *el ement _cl ass = GST_ELEMENT_CLASS (kl ass);

]

gst _el ement _cl ass_set _static_netadata (el ement _kl ass,
"An exanpl e plugin",
" Exanpl e/ Fi r st Exanpl e",
"Shows the basic structure of a plugin",
"your name <your.name@our.isp>");

3.5. GstStaticPadTemplate

A GstStaticPadTemplate is a description of a pad that theéwill (or might) create and use. It
contains:

15

Chapter 3. Constructing the Boilerplate

« A short name for the pad.
- Pad direction.

- Existence property. This indicates whether the pad exiai@ya (an “always” pad), only in some
cases (a “sometimes” pad) or only if the application reqeatstich a pad (a “request” pad).

- Supported types by this element (capabilities).

For example:

static GstStati cPadTenpl ate sink_factory =
GST_STATI C_PAD_TEMPLATE (

"sink",

GST_PAD _SI NK,

GST_PAD_ALWAYS,

GST_STATI C_CAPS (" ANY")

)

Those pad templates are registered during tHeass_i nit () function with the

gst _el enent _cl ass_add_pad_t enpl ate (). For this function you need a handle the
Gst PadTenpl at e which you can create from the static pad template with

gst _static_pad_tenpl ate_get ().See belowfor more details on this.

Pads are created from these static templates in the eleament’'t () function using

gst_pad_new from static_tenplate ().Inorderto create a new pad from this template using
gst _pad_new from static_tenplate (),Yyouwill need to declare the pad template as a global
variable. More on this subject @hapter 4

static GstStaticPadTenpl ate sink_factory =[..1],
src_factory =[..];

static void
gst_ny filter_class_init (GstMFilterC ass * klass)

{
Gst El enent Cl ass *el ement _cl ass = GST_ELEMENT_CLASS (kl ass);

[.-]

gst _el ement _cl ass_add_pad_tenpl ate (el enent _cl ass,
gst _static_pad_tenplate_get (&src_factory));

gst _el ement _cl ass_add_pad_tenpl ate (el enent _cl ass,
gst _static_pad_tenpl ate_get (&sink_factory));

}

The last argument in a template is its type or list of supgmbtypes. In this example, we use 'ANY’,
which means that this element will accept all input. In rifalsituations, you would set a media type

16

Chapter 3. Constructing the Boilerplate

and optionally a set of properties to make sure that only stpd input will come in. This

representation should be a string that starts with a megi& then a set of comma-separates properties
with their supported values. In case of an audio filter thapsuts raw integer 16-bit audio, mono or
stereo at any samplerate, the correct template would l&ektiis:

static GstStaticPadTenpl ate sink_factory =
GST_STATI C_PAD_TEMPLATE (
"sink",
GST_PAD_SI NK,
GST_PAD_ALVAYS,
GST_STATI C_CAPS (
"audi o/ x-r aw,
"format = (string) " GST_AUDI O NE (S16) ",
"channels = (int) { 1, 2},
"rate = (int) [8000, 96000]"

Values surrounded by curly brackets (*{” and “}") are listslues surrounded by square brackets (“[’
and “]") are ranges. Multiple sets of types are supportedanad should be separated by a semicolon
(;7). Later, in the chapter on pads, we will see how to useetypp know the exact format of a stream:
Chapter 4

3.6. Constructor Functions

Each element has two functions which are used for constructian element. Thecl ass_i nit ()
function, which is used to initialise the class only onces(sfying what signals, arguments and virtual
functions the class has and setting up global state); and thiet () function, which is used to initialise
a specific instance of this type.

3.7. The plugin_init function

Once we have written code defining all the parts of the plugaéneed to write the plugin_init()
function. This is a special function, which is called as sasithe plugin is loaded, and should return
TRUE or FALSE depending on whether it loaded initialized dependencies correctly. Also, in this
function, any supported element type in the plugin shoulteéstered.

static gbool ean
plugin_init (GstPlugin *plugin)
{

17

Chapter 3. Constructing the Boilerplate

return gst_elenent _register (plugin, "my_filter",
GST_RANK_NONE,
GST_TYPE_MY_FI LTER) ;

}

GST_PLUG N_DEFI NE (
GST_VERSI ON_MAJOR,
GST_VERSI ON_M NOR,
ny_filter,

"My filter plugin",
plugin_init,

VERSI ON,

"LGPL",

"GStreaner"”,
"http://gstreaner.net/"

)

Note that the information returned by the plugin_init() étion will be cached in a central registry. For
this reason, it is important that the same information issgsweturned by the function: for example, it
must not make element factories available based on runimeitions. If an element can only work in
certain conditions (for example, if the soundcard is nohgeised by some other process) this must be
reflected by the element being unable to enter the READY #tatevailable, rather than the plugin
attempting to deny existence of the plugin.

18

Chapter 4. Specifying the pads

As explained before, pads are the port through which data igoend out of your element, and that
makes them a very important item in the process of elemeatiore In the boilerplate code, we have
seen how static pad templates take care of registering pgaldaees with the element class. Here, we will
see how to create actual elements, useerent () -function to configure for a particular format and
how to register functions to let data flow through the element

In the elementinit () function, you create the pad from the pad template that has tesgistered
with the element class in thel ass_i nit () function. After creating the pad, you have to set a
_chain () function pointer that will receive and process the inputdat the sinkpad. You can
optionally also set anevent () function pointer and aquery () function pointer. Alternatively,
pads can also operate in looping mode, which means that #repul data themselves. More on this
topic later. After that, you have to register the pad withetement. This happens like this:

static void
gst_ny_filter_init (GstMyFilter xfilter)
{
/+ pad through which data conmes in to the elenment */
filter->sinkpad = gst_pad_new fromstatic_tenplate (
&sink_tenplate, "sink");
/= pads are configured here with gst_pad_set_x_function () =*/

gst _el ement _add_pad (GST_ELEMENT (filter), filter->sinkpad);
/+ pad through which data goes out of the elenment */
filter->srcpad = gst_pad_new fromstatic_tenplate (

&src_tenplate, "src");
/+ pads are configured here with gst_pad_set_x_function () =*/

gst _el ement _add_pad (GST_ELEMENT (filter), filter->srcpad);

/* properties initial value */
filter->silent = FALSE;

19

Chapter 5. The chain function

The chain function is the function in which all data procegdiakes place. In the case of a simple filter,
_chain () functions are mostly linear functions - so for each incontinéfer, one buffer will go out,
too. Below is a very simple implementation of a chain funetio

static GstFlowReturn gst_ny_filter_chain (GstPad *pad,
Gst Obj ect =*parent,
Gst Buf fer =buf);

[..]

static void
gst_mny filter_init (GstMFilter » filter)

{
[]
/+ configure chain function on the pad before addi ng
* the pad to the el enent =/
gst _pad_set _chain_function (filter->sinkpad,
gst_ny_filter_chain);
[..]
}

static GstFlowReturn
gst_mny_filter_chain (GstPad *pad,
Gst Obj ect *parent,
Gst Buf fer *buf)

{
Gst MFilter =filter = GST_MY_FILTER (parent);

if (Ifilter->silent)
g_print ("Have data of size % G _GSIZE FORVAT" bytes!\n",
gst _buffer_get_size (buf));

return gst_pad_push (filter->srcpad, buf);
}

Obviously, the above doesn’t do much useful. Instead otipigrthat the data is in, you would normally
process the data there. Remember, however, that buffer®tadways writeable.

In more advanced elements (the ones that do event procissingnay want to additionally specify an
event handling function, which will be called when streavesds are sent (such as caps, end-of-stream,
newsegment, tags, etc.).

static void
gst_ny_filter_init (GstMyFilter = filter)
{

20

Chapter 5. The chain function

[--]
gst _pad_set _event _function (filter->sinkpad,
gst_nmy_filter_sink_event);
[--]
}

static gbool ean

gst_ny _filter_sink_event (GstPad *pad,
Gst Obj ect *parent,
Gst Event *event)

{
Gst MFilter =filter = GST_MY_FILTER (parent);
switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_CAPS:
/+* we should handle the format here */
br eak;
case GST_EVENT_ECs:
[+ end-of -stream we should cl ose down all streamleftovers here */
gst_ny _filter_stop_processing (filter);
br eak;
def aul t:
br eak;
}
return gst_pad_event _default (pad, parent, event);
}

static GstFlowReturn
gst_mny_filter_chain (GstPad *pad,
Gst Obj ect *parent,
Gst Buf f er xbuf)

{
Gst MyFilter =filter = GST_MY_FILTER (parent);
Gst Buf f er =*out buf;
outbuf = gst_ny filter_process_data (filter, buf);
gst _buffer_unref (buf);
if (loutbuf) {
/+* sonet hing went wong - signal an error =*/
GST_ELEMENT_ERROR (GST_ELEMENT (filter), STREAM FAILED, (NULL), (NULL));
return GST_FLOW ERROR;
}
return gst_pad_push (filter->srcpad, outbuf);
}

In some cases, it might be useful for an element to have dantew the input data rate, too. In that case,
you probably want to write a so-calléoop-basedlement. Source elements (with only source pads) can

21

Chapter 5. The chain function

also beget-basealements. These concepts will be explained in the advaremibe of this guide, and
in the section that specifically discusses source pads.

22

Chapter 6. The event function

The event function notifies you of special events that hajpéme datastream (such as caps,
end-of-stream, newsegment, tags, etc.). Events can tratleupstream and downstream, so you can
receive them on sink pads as well as source pads.

Below follows a very simple event function that we installtbe sink pad of our element.

static gbool ean gst_ny_filter_sink_event (GstPad *pad,
Gst Obj ect =*parent,
Gst Event *event);

[--]

static void
gst_ny filter_init (GstMFilter » filter)

{
[--]
/+ configure event function on the pad before adding
* the pad to the el enent =/
gst _pad_set _event _function (filter->sinkpad,
gst_nmy _filter_sink_event);
[--]
}

static gbool ean
gst_ny_filter_sink_event (GstPad *pad,
Gst Obj ect *parent,
Gst Event *event)
{
gbool ean ret;
Gst MFilter =filter = GST_MY_FILTER (parent);

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_CAPS:
/* we should handl e the format here */

[+ push the event downstream */
ret = gst_pad_push_event (filter->srcpad, event);
br eak;
case GST_EVENT_ECs:
[+ end-of -stream we should close down all streamleftovers here */
gst_nmy filter_stop_processing (filter);

ret = gst_pad_event _default (pad, parent, event);
br eak;
defaul t:
[+ just call the default handler =*/
ret = gst_pad_event _default (pad, parent, event);

23

Chapter 6. The event function

br eak;

}

return ret;

}

Itis a good idea to call the default event handjst _pad_event _def ault () for unknown events.
Depending on the event type, the default handler will fooitéie event or simply unref it. The CAPS
event is by default not forwarded so we need to do this in tle@elvandler ourselves.

24

Chapter 7. The query function

Through the query function, your element will receive gesthat it has to reply to. These are queries
like position, duration but also about the supported fomaaitd scheduling modes your element supports.
Queries can travel both upstream and downstream, so yowecaive them on sink pads as well as
source pads.

Below follows a very simple query function that we install the source pad of our element.

static gbool ean gst_ny_filter_src_query (GstPad *pad,
Gst Obj ect *parent,

Gst Query =xquery);
[]

static void
gst_ny filter_init (GstMFilter » filter)
{
[--]

/+ configure event function on the pad before adding

* the pad to the el enent =/
gst _pad_set _query_function (filter->srcpad,
gst_ny _filter_src_query);

[--]
}

static gbool ean
gst_ny filter_src_query (GstPad *pad,
Gst Obj ect =*parent,
Gst Query =*query)
{
gbool ean ret;
Gst MyFilter =filter = GST_MY_FILTER (parent);

switch (GST_QUERY_TYPE (query)) {

case GST_QUERY_PCSI TI ON:
[+ we should report the current position */
[...]
br eak;

case GST_QUERY_DURATI ON:
[+ we should report the duration here */
[...]
br eak;

case GST_QUERY_CAPS:
[+ we should report the supported caps here =/
[...]
br eak;

defaul t:
[+ just call the default handler =*/

25

Chapter 7. The query function

ret = gst_pad_query_default (pad, parent, query);
br eak;

}

return ret;

}

It is a good idea to call the default query handjst _pad_query_defaul t () for unknown queries.
Depending on the query type, the default handler will foidhidue query or simply unref it.

26

Chapter 8. What are states?

A state describes whether the element instance is ingidJiwhether it is ready to transfer data and
whether it is currently handling data. There are four std&fged in GStreamer:

. GST_STATE_NULL

. GST_STATE_READY
. GST_STATE_PAUSED
. GST_STATE_PLAYING

which will from now on be referred to simply as “NULL”, “READY “PAUSED” and “PLAYING".

GST_STATE_NULL is the default state of an element. In thégestit has not allocated any runtime
resources, it has not loaded any runtime libraries and ipb&iously not handle data.

GST_STATE_READY is the next state that an element can banithd READY state, an element has all
default resources (runtime-libraries, runtime-memotgcated. However, it has not yet allocated or
defined anything that is stream-specific. When going from Ntd READY state
(GST_STATE_CHANGE_NULL_TO_READY), an element shouldatte any non-stream-specific
resources and should load runtime-loadable libraries{ij.aNVhen going the other way around (from
READY to NULL, GST_STATE_CHANGE_READY_TO_NULL), an elemeshould unload these
libraries and free all allocated resources. Examples df segources are hardware devices. Note that
files are generally streams, and these should thus be coedide stream-specific resources; therefore,
they shouldhotbe allocated in this state.

GST_STATE_PAUSED is the state in which an element is readgtept and handle data. For most
elements this state is the same as PLAYING. The only exaeptithis rule are sink elements. Sink
elements only accept one single buffer of data and then blidkis point the pipeline is 'prerolled’ and
ready to render data immediately.

GST_STATE_PLAYING is the highest state that an element @imbFor most elements this state is
exactly the same as PAUSED, they accept and process eversifiers with data. Only sink elements
need to differentiate between PAUSED and PLAYING state.ULARNG state, sink elements actually
render incoming data, e.g. output audio to a sound card dererndeo pictures to an image sink.

8.1. Managing filter state

If at all possible, your element should derive from one oftiees base classeBie-made base clases
There are ready-made general purpose base classes foeuliffgoes of sources, sinks and
filter/transformation elements. In addition to those, sglesed base classes exist for audio and video
elements and others.

27

Chapter 8. What are states?

If you use a base class, you will rarely have to handle staaegs yourself. All you have to do is
override the base class’s start() and stop() virtual famstimight be called differently depending on the
base class) and the base class will take care of everythinygto

If, however, you do not derive from a ready-made base claggrdm GstElement or some other class
not built on top of a base class, you will most likely have t@iement your own state change function to
be notified of state changes. This is definitively necessamur plugin is a demuxer or a muxer, as there
are no base classes for muxers or demuxers yet.

An element can be notified of state changes through a virtunaition pointer. Inside this function, the
element can initialize any sort of specific data needed bgl#ment, and it can optionally fail to go
from one state to another.

Do not g_assert for unhandled state changes; this is takerotay the GstElement base class.

static Gst StateChangeReturn
gst_ny _filter_change_state (GstEl ement *el enment, GstStateChange transition);

static void
gst_nmy filter_class_init (GstMFilterd ass *kl ass)

{
Gst El enent Cl ass *el enment _cl ass = GST_ELEMENT_CLASS (kl ass);

el enent _cl ass->change_state = gst_ny_filter_change_state;

}

static Gst StateChangeReturn
gst_mnmy_filter_change_state (GstEl ement *el ement, GstStateChange transition)
{

Gst St at eChangeReturn ret = GST_STATE CHANGE_ SUCCESS;

Gst WFilter =filter = GST_MY_FILTER (el enent);

switch (transition) {
case GST_STATE_CHANGE_NULL_TO READY:
if ('gst_ny filter_allocate_nenory (filter))
return GST_STATE_CHANGE_FAI LURE;
br eak;
defaul t:
br eak;

}

ret = GST_ELEMENT_CLASS (parent_cl ass)->change_state (el enent, transition);
if (ret == GST_STATE_CHANGE_FAI LURE)
return ret;

switch (transition) {

case GST_STATE CHANGE READY TO NULL:
gst_ny filter_free_nenory (filter);

28

Chapter 8. What are states?

br eak;
defaul t:
br eak;

}

return ret;

}

Note that upwards (NULL=>READY, READY=>PAUSED, PAUSED=RYING) and downwards
(PLAYING=>PAUSED, PAUSED=>READY, READY=>NULL) state cinges are handled in two
separate blocks with the downwards state change handlgaftei we have chained up to the parent
class’s state change function. This is necessary in ordsfedy handle concurrent access by multiple
threads.

The reason for this is that in the case of downwards stategesayou don’t want to destroy allocated
resources while your plugin’s chain function (for exampéestill accessing those resources in another
thread. Whether your chain function might be running or regehds on the state of your plugin’s pads,
and the state of those pads is closely linked to the stateec#ldment. Pad states are handled in the
GstElement class’s state change function, including primo&ing, that's why it is essential to chain up
before destroying allocated resources.

29

Chapter 9. Adding Properties

The primary and most important way of controlling how an edatrbehaves, is through GObject
properties. GObject properties are defined in thleass_i nit () function. The element optionally
implements aget _property () anda set_property () function. These functions will be

notified if an application changes or requests the value obpgrty, and can then fill in the value or take
action required for that property to change value inteynall

You probably also want to keep an instance variable aroutidtivé currently configured value of the
property that you use in the get and set functions. Note@baitect will not automatically set your
instance variable to the default value, you will have to dai th the i nit () function of your element.

/* properties */

enum {
PROP_0,
PROP_SI LENT
[+ FILL ME */
S
static void gst_ny filter_set_property (GObject *0bj ect,
gui nt prop_id,
const Gval ue *val ue,
GPar anfspec *pspec) ;
static void gst_ny filter_get_property (GObject *0obj ect,
gui nt prop_id,
Gval ue xval ue,

GPar anfspec *pspec) ;

static void
gst_nmy filter_class_init (GstMFilterd ass *kl ass)

{
Ghj ect Cl ass *obj ect_class = G OBJECT_CLASS (kl ass);

/* define virtual function pointers =/
obj ect _cl ass->set_property = gst_ny_filter_set_property;
obj ect _cl ass->get _property = gst_ny_filter_get_property;

/* define properties */
g_object_class_install _property (object_class, PROP_SILENT,
g_param spec_bool ean ("silent", "Silent",
"Whet her to be very verbose or not",
FALSE, G PARAM READWRI TE | G_PARAM STATI C STRINGS));

}

static void

gst_nmy filter_set_property (GObject *0bj ect,
gui nt prop_id,

const Gval ue *val ue,
GPar anfspec *pspec)

30

Chapter 9. Adding Properties

{
Gst MFilter =filter = GST_MY_FILTER (object);

switch (prop_id) {
case PROP_SI LENT:
filter->silent = g_val ue_get_bool ean (val ue);
g_print ("Silent argunent was changed to %s\n",

filter->silent ? "true" : "false");
br eak;
def aul t:
G _OBJECT_WARN_| NVALI D_PROPERTY_I D (object, prop_id, pspec);
br eak;

}
}

static void
gst_nmy _filter_get_property (GObject *0obj ect,
gui nt prop_id,
Gval ue xval ue,
GPar anfSpec *pspec)
{
Gst MFilter =filter = GST_MY_FILTER (object);

switch (prop_id) {
case PROP_SI LENT:
g_val ue_set _bool ean (value, filter->silent);
br eak;
defaul t:
G _OBJECT_WARN_| NVALI D_PROPERTY_I D (obj ect, prop_id, pspec);
br eak;

The above is a very simple example of how properties are @eghhical applications will use these
properties and will display a user-controllable widgetwithich these properties can be changed. This
means that - for the property to be as user-friendly as plessifou should be as exact as possible in the
definition of the property. Not only in defining ranges in beem which valid properties can be located
(for integers, floats, etc.), but also in using very desiiptbetter yet: internationalized) strings in the
definition of the property, and if possible using enums argsfiastead of integers. The GObject
documentation describes these in a very complete way, tmwvbee’ll give a short example of where
this is useful. Note that using integers here would probabiypletely confuse the user, because they
make no sense in this context. The example is stolen fronotédésrc.

t ypedef enum {
GST_VI DECTESTSRC_SMPTE,
GST_VI DEOCTESTSRC_SNOW
GST_VI DECTESTSRC_BLACK
} GstVideotestsrcPattern;

[..]

31

Chapter 9. Adding Properties

#define GST_TYPE_VI DEOTESTSRC PATTERN (gst_vi deotestsrc_pattern_get_type ())
static Glype

gst _vi deotestsrc_pattern_get _type (void)

{

static GIype videotestsrc_pattern_type = O;

if (!videotestsrc_pattern_type) {
static GEnunVal ue pattern_types[] = {

{ GST_VI DEOTESTSRC_SMPTE, "SMPTE 100% col or bars", "snpte" },
{ GST_VI DECTESTSRC_SNOW " Random (tel evi sion snow)", "snow' 1},
{ GST_VI DEOTESTSRC_BLACK, "0% Bl ack", "bl ack" },
{ 0, NULL, NULL },

b

vi deotestsrc_pattern_type =
g_enumregister_static ("GstVideotestsrcPattern",
pattern_types);
}

return videotestsrc_pattern_type;

}
[..]

static void
gst _videotestsrc_class_init (GstvideotestsrcC ass *kl ass)
{
[--]
g_object_class_install_property (G OBJECT_CLASS (klass), PROP_PATTERN,
g_param spec_enum ("pattern”, "Pattern",
"Type of test pattern to generate",
GST_TYPE_VI DEOTESTSRC_PATTERN, GST_VI DEOTESTSRC_SMPTE,
G_PARAM READVRI TE | G_PARAM STATI C_STRINGS)) ;

32

Chapter 10. Signals

GObject signals can be used to notify applications of evepesific to this object. Note, however, that
the application needs to be aware of signals and their mgasinif you're looking for a generic way for
application-element interaction, signals are probabtywitat you're looking for. In many cases,
however, signals can be very useful. See the GObject dodatieam
(http://library.gnome.org/devel/gobject/stable/) &irinternals about signals.

33

Chapter 11. Building a Test Application

Often, you will want to test your newly written plugin in an stmall setting as possible. Usually,

gst -1 aunch- 1. 0is a good first step at testing a plugin. If you have not insthjlour plugin in a
directory that GStreamer searches, then you will need tthegilugin path. Either set
GST_PLUGIN_PATH to the directory containing your plugim,use the command-line option
--gst-plugin-path. If you based your plugin off of the gétigin template, then this will look something
like gst-launch-1.0--gst-plugin-path=$HOM E/gst-template/gst-plugin/src/.libs TESTPIPELINE
However, you will often need more testing features thari@stch-1.0 can provide, such as seeking,
events, interactivity and more. Writing your own small iegtprogram is the easiest way to accomplish
this. This section explains - in a few words - how to do that.&oomplete application development
guide, see the Application Development Manual (../../nsdimtml/index.html).

At the start, you need to initialize the GStreamer core tptay callinggst _init (). Youcan
alternatively callgst _i nit _get _opti on_group (), which will return a pointer to GOptionGroup.
You can then use GOption to handle the initialization, anslwhll finish the GStreamer initialization.

You can create elements usiggt _el enent _factory_make (), where the first argument is the
element type that you want to create, and the second argusreefree-form name. The example at the
end uses a simple filesource - decoder - soundcard outpuitgipleut you can use specific debugging
elements if that's necessary. For examplej dent i t y element can be used in the middle of the
pipeline to act as a data-to-application transmitter. This be used to check the data for misbehaviours
or correctness in your test application. Also, you can usek&si nk element at the end of the pipeline
to dump your data to the stdout (in order to do this, setitiep property to TRUE). Lastly, you can use
valgrind to check for memory errors.

During linking, your test application can use filtered capsiavay to drive a specific type of data to or
from your element. This is a very simple and effective wayhwaking multiple types of input and
output in your element.

Note that during running, you should listen for at least tagdr” and “eos” messages on the bus and/or
your plugin/element to check for correct handling of thiss@ you should add events into the pipeline
and make sure your plugin handles these correctly (withe@dp clocking, internal caching, etc.).

Never forget to clean up memory in your plugin or your testligagion. When going to the NULL state,
your element should clean up allocated memory and cachss, Akhould close down any references
held to possible support libraries. Your application skaulr ef () the pipeline and make sure it
doesn’t crash.

#i ncl ude <gst/gst. h>
static gbool ean

bus_cal |l (GstBus xpus,
Cst Message *nsg,

34

Chapter 11. Building a Test Application

gpoi nter dat a)

{
Gvai nLoop *l oop = dat a;

switch (GST_MESSACGE_TYPE (nsg)) {
case GST_MESSAGE ECS:
g_print ("End-of-streamn");
g_mai n_|l oop_quit (loop);
br eak;
case GST_MESSAGE_ERROR: {
gchar x*debug = NULL;
Gerror xerr = NULL;

gst _nmessage_parse_error (nsg, &err, &debug);

g_print ("Error: 9%\n", err->nessage);
g_error_free (err);

i f (debug) {
g_print ("Debug details: %\n", debug);
g_free (debug);

}

g_nmain_l oop_quit (loop);
br eak;

}

defaul t:
br eak;

}

return TRUE;
}

gi nt
mai n (gint argc,
gchar =xargv[])
{
Gst St at eChangeRet urn ret;
Gst El enent =pipeline, xfilesrc, »decoder, xfilter, =*sink;
Gst El enent *convertl, *convert2, xresanple;
Gwvai nLoop x| oop;
Gst Bus *bus;
guint watch_id;

/* initialization */

gst_init (&rgc, &argv);

| oop = g_mai n_l oop_new (NULL, FALSE);

if (argc !'= 2) {
g_print ("Usage: % <nmp3 filenane>\n", argv[0]);
return 01;

}

/+ create elenents */

35

Chapter 11. Building a Test Application
pi peline = gst_pipeline_new ("ny_pipeline");

/+ watch for nmessages on the pipeline’s bus (note that this will only
* work like this when a GLib main |l oop is running) */

bus = gst_pi peline_get_bus (GST_PI PELI NE (pipeline));

wat ch_id = gst_bus_add_watch (bus, bus_call, |oop);

gst _obj ect _unref (bus);

filesrc gst _el ement _factory_nake ("filesrc", "nmy_filesource");
decoder = gst_elenent_factory_nake ("mad", "ny_decoder");

/* putting an audi oconvert el enent here to convert the output of the
x decoder into a format that ny_filter can handle (we are assunming it
* Wi |l handl e any sanple rate here though) =/

convertl = gst_el enent _factory_make ("audi oconvert"”, "audioconvertl1");

/* use "identity" here for a filter that does nothing */
filter = gst_elenent _factory_make ("ny_filter", "my_filter");

/* there shoul d al ways be audi oconvert and audi oresanpl e el enents before
* the audio sink, since the capabilities of the audio sink usually vary
* dependi ng on the environment (output used, sound card, driver etc.) */

convert2 = gst_el enent _factory_neke ("audi oconvert", "audioconvert2");
resanpl e = gst_el enent _factory_nake ("audi oresanple", "audi oresanple");
si nk = gst_el enent _factory_make ("pul sesink", "audiosink");

if (!sink || !decoder) {

g_print ("Decoder or output could not be found - check your install\n");
return -1;
} else if (lconvertl || 'convert2 || !resanple) {
g_print ("Could not create audi oconvert or audi oresanple elenent, "
"check your installation\n");
return -1,
} else if (!filter) {
g_print ("Your self-witten filter could not be found. Make sure it "
"is installed correctly in $(libdir)/gstreaner-1.0/ or "
"~/ .gstreanmer-1.0/plugins/ and that gst-inspect-1.0 lists it. "
"I'f it doesn’t, check with * GST_DEBUG=*:2 gst-inspect-1.0" for "
"the reason why it is not being | oaded.");
return -1,

}
g_object_set (G OBJECT (filesrc), "location", argv[1], NULL);

gst _bin_add_many (GST_BIN (pipeline), filesrc, decoder, convertl, filter,
convert?2, resanple, sink, NULL);

/* link everything together =/
if ('gst_elenment_link_many (filesrc, decoder, convertl, filter, convert2
resampl e, sink, NULL)) {
g print ("Failed to link one or nore elenents!\n");
return -1;

36

Chapter 11. Building a Test Application

[* run x/
ret = gst_el enent_set_state (pipeline, GST_STATE_PLAYI NG ;
if (ret == GST_STATE_CHANGE_FAI LURE) {

Gst Message *nsgQ;

g print ("Failed to start up pipelinel\n");

/* check if there is an error nessage with details on the bus */
nmsg = gst_bus_pol | (bus, GST_MESSAGE ERROR, 0);
it (msg) {

Gerror xerr = NULL;

gst _nessage_parse_error (nmsg, &err, NULL);
g_print ("ERROR 9%\n", err->nessage);
g_error_free (err);
gst _nmessage_unref (nsg);

}

return -1;

}

g_mai n_| oop_run (I oop);

/* clean up */

gst _el ement _set_state (pipeline, GST_STATE NULL);
gst _obj ect _unref (pipeline);

g_source_renove (watch_id);

g_nmai n_| oop_unref (1 oop);

return O;

37

lll. Advanced Filter Concepts

By now, you should be able to create basic filter elementscrateceive and send data. This is the
simple model that GStreamer stands for. But GStreamer camudt more than only this! In this

chapter, various advanced topics will be discussed, susbresiuling, special pad types, clocking,
events, interfaces, tagging and more. These topics areitfae that makes GStreamer so easy to use for
applications.

Chapter 12. Request and Sometimes pads

Until now, we've only dealt with pads that are always avd#dablowever, there’s also pads that are only
being created in some cases, or only if the application reguke pad. The first is calledsametimes

the second is calledraquestpad. The availability of a pad (always, sometimes or request be seen in

a pad’s template. This chapter will discuss when each ofiteed useful, how they are created and when
they should be disposed.

12.1. Sometimes pads

A “sometimes” pad is a pad that is created under certain ¢iongi but not in all cases. This mostly
depends on stream content: demuxers will generally paesstteam header, decide what elementary
(video, audio, subtitle, etc.) streams are embedded itls&lsystem stream, and will then create a
sometimes pad for each of those elementary streams. At iichwice, it can also create more than one
instance of each of those per element instance. The onltaliion is that each newly created pad should
have a unique name. Sometimes pads are disposed when #ra gl is disposed, too (i.e. when going
from PAUSED to the READY state). You shoumbt dispose the pad on EOS, because someone might
re-activate the pipeline and seek back to before the ersdreém point. The stream should still stay
valid after EOS, at least until the stream data is disposedny case, the element is always the owner of
such a pad.

The example code below will parse a text file, where the fing is a number (n). The next lines all start
with a number (0 to n-1), which is the number of the source pesl which the data should be sent.

foo
bar
boo
bye

NOERO®

The code to parse this file and create the dynamic “sometipess, looks like this:

typedef struct _GstMFilter {
[..]

gbool ean firstrun;

GLi st *srcpadli st;
} GstMWFilter;

static GstStaticPadTenpl ate src_factory =
GST_STATI C_PAD_TEMPLATE (

"src_%",

GST_PAD_SRC,

GST_PAD_SOVETI MES,

GST_STATI C_CAPS (" ANY")

39

Chapter 12. Request and Sometimes pads

)

static void
gst_mnmy filter_class_init (GstMFilterd ass *kl ass)
{
Gst El enent Cl ass *el ement _cl ass = GST_ELEMENT_CLASS (kl ass);
[..]
gst _el ement _cl ass_add_pad_tenpl ate (el ement _cl ass,
gst _static_pad_tenplate_get (&src_factory));
[..]
}

static void
gst_ny_filter_init (GstMyFilter =filter)

{

[--]
filter->firstrun = TRUE;
filter->srcpadlist = NULL;

}

| *

* GCet one line of data - without newine.
*/

static GstBuffer =
gst_ny_filter_getline (GstMFilter *filter)

{
guint 8 +dat a;
gint n, num
/+ max. line length is 512 characters - for safety */
for (n = 0; n < 512; n++) {
num = gst_bytestream peek_bytes (filter->bs, &data, n + 1);
if (num!=n + 1)
return NULL;
/* newine? =/
if (data[n] =="'\n") {
Gst Buf fer =buf = gst_buffer_new allocate (NULL, n + 1, NULL);
gst _byt estream peek_bytes (filter->bs, &data, n);
gst_buffer_fill (buf, 0, data, n);
gst _buffer_nenset (buf, n, "\0', 1);
gst _bytestream flush_fast (filter->bs, n + 1);
return buf;
}
}
}

static void
gst_mny_filter_|l oopfunc (GstEl enent *el ement)

{

40

Chapter 12. Request and Sometimes pads

Gst WFilter =filter = GST_MY_FILTER (el enent);
Gst Buf fer *buf;

Gst Pad +pad;

Gst Mapl nf o map;

gint num n;

|+ parse header */

if (filter->firstrun) {
gchar *padnane;
guint8 id;

if (!'(buf = gst_ny filter_getline (filter))) {
gst _element _error (el ement, STREAM READ, (NULL),
("Stream contains no header"));
return;
}
gst _buffer_extract (buf, 0, & d, 1);
num = atoi (id);
gst _buffer_unref (buf);

/+* for each of the streans, create a pad */
for (n =0; n < num n++) {
padname = g_strdup_printf ("src_%", n);

pad = gst_pad_new fromstatic_tenplate (src_factory,

g_free (padnane);

[+ here, you would set _event () and _query () functions =*/

/+* need to activate the pad before adding */
gst _pad_set _active (pad, TRUE);

gst _el ement _add_pad (el enent, pad);

filter->srcpadlist = g_list_append (filter->srcpadlist,

}
}

/+* and now, sinply parse each |line and push over =*/
if (!(buf = gst_ny filter_getline (filter))) {
Gst Event *event = gst_event_new (GST_EVENT_EOCS);
GLi st *padlist;

for (padlist = srcpadlist;

padlist !'= NULL; padlist = g_list_next (padlist)) {

pad = GST_PAD (padlist->data);
gst _pad_push_event (pad, gst_event_ref (event));
}
gst _event _unref (event);
/= pause the task here */
return;

}

/= parse stream nunber and go beyond the ':’ in the data */

gst _buffer_map (buf, &map, GST_NAP_READ);

41

Chapter 12. Request and Sometimes pads
num = atoi (nmap.data[O0]);
if (num>=0 & num< g_list_length (filter->srcpadlist)) {
pad = GST_PAD (g _list_nth_data (filter->srcpadlist, nun);

/+* magi ¢ buffer parsing foo */

for (n = 0; map.data[n] '=":" &&
map.data[n] !'="'\0"; n++) ;
if (map.data[n] !'="\0") {

Gst Buf fer *sub;

[+ create region copy that starts right past the space. The reason
* that we don’t just forward the data pointer is because the
* pointer is no longer the start of an allocated bl ock of menory,
* but just a pointer to a position sonewhere in the nmddle of it.
* That cannot be freed upon disposal, so we’'d either crash or have
* a menl eak. Creating a region copy is a sinple way to solve that. x/
sub = gst_buffer_copy_regi on (buf, GST_BUFFER COPY_ALL,
n+ 1, map.size - n - 1);
gst _pad_push (pad, sub);
}

}
gst _buffer_unmap (buf, &map);

gst _buffer_unref (buf);

Note that we use a lot of checks everywhere to make sure thabithtent in the file is valid. This has two
purposes: first, the file could be erroneous, in which caserexept a crash. The second and most
important reason is that - in extreme cases - the file couldsbd maliciously to cause undefined
behaviour in the plugin, which might lead to security issudwaysassume that the file could be used to
do bad things.

12.2. Request pads

“Request” pads are similar to sometimes pads, except thaest are created on demand of something
outside of the element rather than something inside theexerihis concept is often used in muxers,
where - for each elementary stream that is to be placed inutpribsystem stream - one sink pad will be
requested. It can also be used in elements with a variabl®euaf input or outputs pads, such as the

t ee (multi-output) ori nput - sel ect or (multi-input) elements.

To implement request pads, you need to provide a padtenwittea GST_PAD_REQUEST presence
and implement theequest _new_pad virtual method inGst El enent . To clean up, you will need to
implement the el ease_pad virtual method.

static GstPad * gst_ny_filter_request_new pad (GstEl enent el ement ,
Gst PadTenpl ate *tenpl,

42

Chapter 12. Request and Sometimes pads

const gchar *nane,
const GstCaps =*caps);

static void gst_ny filter_rel ease_pad (GstEl ement *el ement,
Gst Pad *pad);

static GstStati cPadTenpl ate sink_factory =
GST_STATI C_PAD_TEMPLATE (

"sink_ %",

GST_PAD_SI NK,

GST_PAD REQUEST,

GST_STATI C_CAPS (" ANY")
)

static void
gst_my filter_class_init (GstMFilterd ass *kl ass)
{
Gst El enent Cl ass *el ement _cl ass = GST_ELEMENT_CLASS (kl ass);
[..]
gst _el ement _cl ass_add_pad_t enpl ate (kl ass,
gst _static_pad_tenpl ate_get (&sink_factory));
[--]
el enment _cl ass->request _new _pad = gst_ny_filter_request_new pad;
el enment _cl ass->rel ease_pad = gst_ny_filter_rel ease_pad;

}
static GstPad *
gst_ny_filter_request_new pad (GstEl enent el enent,
Gst PadTenpl ate *tenpl,
const gchar *namne,
const GstCaps *caps)
{
Gst Pad +*pad;

Gst MyFi | ter | nput Cont ext *cont ext;

context = g_new0 (GstMFilterlnputContext, 1);

pad = gst_pad_new fromtenplate (tenpl, nane);

gst _pad_set _el ement _private (pad, context);

/+* normally, you would set _chain () and _event () functions here */

gst _el ement _add_pad (el enent, pad);

return pad;

}

static void
gst_ny filter_rel ease_pad (GstEl enent *el ement,
Gst Pad *pad)

{
Gst MyFi | ter | nput Cont ext *cont ext;

context = gst_pad_get_el enent _private (pad);

43

Chapter 12. Request and Sometimes pads
g_free (context);

gst _el ement _renove_pad (el enent, pad);

}

44

Chapter 13. Different scheduling modes

The scheduling mode of a pad defines how data is retrieved(@ource) or given to (sink) pads.
GStreamer can operate in two scheduling mode, called pushpal-mode. GStreamer supports
elements with pads in any of the scheduling modes where hpad$ need to be operating in the same
mode.

So far, we have only discussedhai n () -operating elements, i.e. elements that have a chainitumct
set on their sink pad and push buffers on their source patstall this the push-mode because a peer
element will useyst _pad_push () on a srcpad, which will cause ouchai n () -function to be

called, which in turn causes our element to push out a bufféhe source pad. The initiative to start the
dataflow happens somewhere upstream when it pushes outa doéf all downstream elements get
scheduled when theirchai n () -functions are called in turn.

Before we explain pull-mode scheduling, let’s first undansthow the different scheduling modes are
selected and activated on a pad.

13.1. The pad activation stage

During the element state change of READY->PAUSED, the p&ds @lement will be activated. This
happens first on the source pads and then on the sink padsedéthent. GStreamer calls the
_activate () ofapad. By default this function will activate the pad in puaode by calling

gst _pad_acti vate_nmode () withthe GST_PAD_MODE_PUSH scheduling mode. It is posdible
override the acti vate () of a pad and decide on a different scheduling mode. You caw kmahat
scheduling mode a pad is activated by overriding thet i vat e_node () -function.

GStreamer allows the different pads of an element to operatiéerent scheduling modes. This allows
for many different possible use-cases. What follows is aandgew of some typical use-cases.

- If all pads of an element are activated in push-mode schaglulie element as a whole is operating in
push-mode. For source elements this means that they wil toestart a task that pushes out buffers on
the source pad to the downstream elements. Downstreammiemil have data pushed to them by
upstream elements using the sinkpadsai n () -function which will push out buffers on the source
pads. Prerequisites for this scheduling mode are that a-¢baction was set for each sinkpad using
gst _pad_set _chai n_function () and that all downstream elements operate in the same mode.

- Alternatively, sinkpads can be the driving force behind@epne by operating in pull-mode, while the
sourcepads of the element still operate in push-mode. lerdocbe the driving force, those pads start
aGst Task when they are activated. This task is a thread, which wille&@linction specified by the
element. When called, this function will have random dataeas (throughst _pad_pul | _range
()) over all sinkpads, and can push data over the sourcepadd) effectively means that this
element controls data flow in the pipeline. Prerequisiteshic mode are that all downstream
elements can act in push mode, and that all upstream eleerate in pull-mode (see below).

45

Chapter 13. Different scheduling modes

Source pads can be activated in PULL mode by a downstreaneatamien they return
GST_PAD_MODE_PULL from the GST_QUERY_SCHEDULING queryefequisites for this
scheduling mode are that a getrange-function was set faahee pad using

gst _pad_set _getrange_function ().

. Lastly, all pads in an element can be activated in PULL-méfisvever, contrary to the above, this
does not mean that they start a task on their own. Ratheraheat they are pull slave for the
downstream element, and have to provide random data acci$oin their_get _r ange
() -function. Requirements are that theget _r ange () -function was set on this pad using the
functiongst _pad_set _getrange_function (). Also, if the element has any sinkpads, all those
pads (and thereby their peers) need to operate in PULL anoeds, too.

When a sink element is activated in PULL mode, it should staaisk that calls
gst _pad_pul | _range () onits sinkpad. It can only do this when the upstream SCHENGG. |
query returns support for the GST_PAD_MODE_PULL schedufitode.

In the next two sections, we will go closer into pull-modeexthling (elements/pads driving the pipeline,
and elements/pads providing random access), and somécpeei cases will be given.

13.2. Pads driving the pipeline

Sinkpads operating in pull-mode, with the sourcepads dipgran push-mode (or it has no sourcepads
when it is a sink), can start a task that will drive the pipel@ata flow. Within this task function, you
have random access over all of the sinkpads, and push datthev®urcepads. This can come in useful
for several different kinds of elements:

- Demuxers, parsers and certain kinds of decoders where alasan unparsed (such as MPEG-audio
or video streams), since those will prefer byte-exact (eamdaccess from their input. If possible,
however, such elements should be prepared to operate iampodh mode, too.

« Certain kind of audio outputs, which require control ovesitlinput data flow, such as the Jack sound
server.

First you need to perform a SCHEDULING query to check if thettgam element(s) support pull-mode
scheduling. If that is possible, you can activate the sidkpgull-mode. Inside the activate_mode
function you can then start the task.

#include "filter.h"
#i ncl ude <string. h>

static gbool ean gst_ny_filter_activate (Gst Pad * pad,
Gst Obj ect * parent);
static gbool ean gst_ny_filter_activate_npde (GstPad * pad,

Gst Obj ect * parent,

46

Chapter 13. Different scheduling modes

Gst Padvbde node
gbool ean active);
static void gst_ny filter_loop (GstMFilter = filter);

G DEFI NE_TYPE (GstMyFilter, gst_ny filter, GST_TYPE ELEMENT);

static void
gst_mny filter_init (GstMFilter » filter)

{
[..]
gst _pad_set _activate_function (filter->sinkpad, gst_ny filter_activate);
gst _pad_set _activatenonde_function (filter->sinkpad,
gst_ny_filter_activate_node);
[..]
}

static gbool ean
gst_ny _filter_activate (GstPad * pad, GstObject * parent)
{

Gst Query =query,;

gbool ean pul | _node;

[+ first check what upstream scheduling is supported */
query = gst_query_new _scheduling ();

if (!gst_pad_peer_query (pad, query)) {
gst _query_unref (query);
goto activate_push;

}

/* see if pull-npde is supported */

pul | _node = gst_query_has_schedul i ng_node_wi th_fl ags (query,
GST_PAD _MODE_PULL, GST_SCHEDULI NG FLAG SEEKABLE) ;

gst _query_unref (query);

if (!pull_node)
goto activate_push;

/* now we can activate in pull-npde. GStreaner will also
* activate the upstream peer in pull-node */
return gst_pad_activate_node (pad, GST_PAD MODE_PULL, TRUE);

activat e_push:

{

/* something not right, we fallback to push-node */
return gst_pad_activate_node (pad, GST_PAD MODE_PUSH, TRUE);

47

Chapter 13. Different scheduling modes

}
}

static gbool ean
gst_ny filter_activate_pull (GstPad * pad,
Gst Obj ect * parent,
Gst PadMbde node,
gbool ean active)
{
gbool ean res;
Gst MFilter =filter = GST_MY_FILTER (parent);

switch (node) {
case GST_PAD_MODE_PUSH:
res = TRUE;
br eak;
case GST_PAD _MODE PULL:
if (active) {
filter->of fset = 0;
res = gst_pad_start_task (pad,
(Gst TaskFunction) gst_ny filter_loop, filter, NULL);
} else {
res = gst_pad_stop_task (pad);
}
br eak;
defaul t:
[* unknown schedul i ng node */
res = FALSE;
br eak;

}

return res;

Once started, your task has full control over input and otifplie most simple case of a task function is
one that reads input and pushes that over its source padottal that useful, but provides some more
flexibility than the old push-mode case that we've been Iogkit so far.

#def i ne BLOCKSI ZE 2048

static void
gst_mny filter_loop (GstMFilter » filter)
{

Gst Fl owReturn ret;

gui nt 64 | en;

Gst Format fnt = GST_FORVAT BYTES;

Gst Buf fer xbuf = NULL;

if (!gst_pad_query_duration (filter->sinkpad, fnt, & en)) {
GST_DEBUG OBJECT (filter, "failed to query duration, pausing");
goto stop;

}

48

Chapter 13. Different scheduling modes

if (filter->offset >= len) {

GST_DEBUG OBJECT (filter, "at end of input, sending ECS, pausing");
gst _pad_push_event (filter->srcpad, gst_event_new eos ());

goto stop;

}

/* now, read BLOCKSIZE bytes frombyte offset filter->offset */
ret = gst_pad_pull _range (filter->sinkpad, filter->offset,
BLOCKSI ZE, &buf);

if (ret '= GST_FLOW.CK) {
GST_DEBUG OBJECT (filter, "pull _range failed: %", gst_flow get_nanme (ret));
goto stop;

}

/+* now push buffer downstream */
ret = gst_pad_push (filter->srcpad, buf);

buf = NULL; /* gst_pad_push() took ownership of buffer */

if (ret 1= GST_FLOW OK) {
GST_DEBUG OBJECT (filter, "pad_push failed: %", gst_flow get_nane (ret));
goto stop;

}

/* everything is fine, increase offset and wait for us to be called again */
filter->offset += BLOCKSI ZE;
return;

st op:
GST_DEBUG OBJECT (filter, "pausing task");
gst _pad_pause_task (filter->sinkpad);

}

13.3. Providing random access

In the previous section, we have talked about how elemenfsa@s) that are activated to drive the
pipeline using their own task, must use pull-mode scheduwimtheir sinkpads. This means that all pads
linked to those pads need to be activated in pull-mode. &quads activated in pull-mode must
implement a get _range () -function set usingst _pad_set _get range_function (), and that
function will be called when the peer pad requests some dithiagat _pad_pul | _range (). The
element is then responsible for seeking to the right offsdt@oviding the requested data. Several
elements can implement random access:

- Data sources, such as a file source, that can provide dataafigmffset with reasonable low latency.

- Filters that would like to provide a pull-mode schedulingothe whole pipeline.

49

Chapter 13. Different scheduling modes

« Parsers who can easily provide this by skipping a small gahteir input and are thus essentially
"forwarding" getrange requests literally without any owngessing involved. Examples include tag
readers (e.g. ID3) or single output parsers, such as a WAV&epa

The following example will show how aget _r ange () -function can be implemented in a source
element:

#include "filter.h"
static GstFl owReturn

gst_ny filter_get_range (GstPad * pad,
Gst Obj ect =+ parent,
gui nt 64 of f set,
gui nt | engt h,

Gst Buf fer ** buf);

G DEFI NE_TYPE (GstMyFilter, gst_ny filter, GST_TYPE ELEMENT);

static void
gst_ny_filter_init (GstMyFilter = filter)

{
[..]
gst _pad_set _getrange_function (filter->srcpad,
gst_ny_filter_get_range);
[..]
}
static GstFl owReturn
gst_ny filter_get_range (GstPad * pad,
Gst Obj ect * parent,
gui nt 64 of f set,
gui nt | engt h,
Gst Buf fer *+ buf)
{
Gst MFilter =filter = GST_MY_FILTER (parent);
[.. here, you would fill xbuf ..]
return GST_FLOW OK;
}

In practice, many elements that could theoretically do camdccess, may in practice often be activated
in push-mode scheduling anyway, since there is no dowmsted@ment able to start its own task.
Therefore, in practice, those elements should implemethtdéoget _r ange () -function and a chai n

50

Chapter 13. Different scheduling modes

() -function (for filters and parsers) or @et _r ange () -function and be prepared to start their own
task by providing acti vate_* () -functions (for source elements).

51

Chapter 14. Caps negotiation

Caps negotiation is the act of finding a media format (GstChgsveen elements that they can handle.
This process in GStreamer can in most cases find an optimdaiaofor the complete pipeline. In this
section we explain how this works.

14.1. Caps negotiation basics

In GStreamer, negotiation of the media format always foidlae following simple rules:

- A downstream element suggest a format on its sinkpad andptae suggestion in the result of the
CAPS query performed on the sinkpad. See &splementing a CAPS query function

« An upstream element decides on a format. It sends the selertdia format downstream on its
source pad with a CAPS event. Downstream elements recoafigemselves to handle the media type
in the CAPS event on the sinkpad.

« A downstream element can inform upstream that it would likeuggest a new format by sending a
RECONFIGURE event upstream. The RECONFIGURE event sinmdfyuicts an upstream element
to restart the negotiation phase. Because the elementthiadgt the RECONFIGURE event is now
suggesting another format, the format in the pipeline majiainge.

In addition to the CAPS and RECONFIGURE event and the CAP®yqtieere is an ACCEPT_CAPS
query to quickly check if a certain caps can be accepted byeanesnt.

All negotiation follows these simple rules. Let’s take ak@i some typical uses cases and how
negotiation happens.

14.2. Caps negotiation use cases

In what follows we will look at some use cases for push-modiedaling. The pull-mode scheduling
negotiation phase is discussed3action 14.5nd is actually similar as we will see.

Since the sink pads only suggest formats and the source paddmdecide, the most complicated work
is done in the source pads. We can identify 3 caps negotiatiercases for the source pads:

- Fixed negotiation. An element can output one format onlg Section 14.2.1

- Transform negotiation. There is a (fixed) transform betwberinput and output format of the
element, usually based on some element property. The capthéhelement will produce depend on
the upstream caps and the caps that the element can acceptidepthe downstream caps. See
Section 14.2.2

- Dynamic negotiation. An element can output many formate.S&tion 14.2.3

52

Chapter 14. Caps negotiation

14.2.1. Fixed negotiation

In this case, the source pad can only produce a fixed formagllyshis format is encoded inside the
media. No downstream element can ask for a different forthatonly way that the source pad will
renegotiate is when the element decides to change the seffs it

Elements that could implement fixed caps (on their source)pa@, in general, all elements that are not
renegotiable. Examples include:

- Atypefinder, since the type found is part of the actual datsast and can thus not be re-negotiated.
The typefinder will look at the stream of bytes, figure out §peet send a CAPS event with the caps
and then push buffers of the type.

- Pretty much all demuxers, since the contained elementaaystiams are defined in the file headers,
and thus not renegotiable.

- Some decoders, where the format is embedded in the datenstrenot part of the peercagsd
where the decoder itself is not reconfigurable, too.

« Some sources that produce a fixed format.

gst _pad_use_fi xed_caps() is used on the source pad with fixed caps. As long as the pad is no
negotiated, the default CAPS query will return the capset in the padtemplate. As soon as the pad
is negotiated, the CAPS query will return the negotiateds¢apd nothing else). These are the relevant
code snippets for fixed caps source pads.

[--]

pad = gst_pad_new fromstatic_tenplate (..);
gst _pad_use_fixed_caps (pad);
[..]

The fixed caps can then be set on the pad by caflstg pad_set _caps ().

caps = gst_caps_new sinple ("audi o/ x-raw",
“format", G TYPE STRING GST_AUDI O NE(F32),
"rate", G TYPE_INT, <sanplerate>,
"channel s", G_TYPE_I NT, <num channel s>, NULL);
if (!gst_pad_set_caps (pad, caps)) {
GST_ELEMENT_ERRCR (el ement, CORE, NEGOTI ATION, (NULL),
("Some debug infornmation here"));
return GST_FLOW ERROR;
}

53

Chapter 14. Caps negotiation

These types of elements also don't have a relation betweenplut format and the output format, the
input caps simply don’t contain the information needed tadpice the output caps.

All other elements that need to be configured for the formaukhimplement full caps negotiation,
which will be explained in the next few sections.

14.2.2. Transform negotiation

In this negotiation technique, there is a fixed transformvieen the element input caps and the output
caps. This transformation could be parameterized by elepreperties but not by the content of the
stream (se&ection 14.2.%or that use-case).

The caps that the element can accept depend on the (fixetbimraasion) downstream caps. The caps
that the element can produce depend on the (fixed transfiomat) the upstream caps.

This type of element can usually set caps on its source pattfie_event () function on the sink pad
when it received the CAPS event. This means that the capsforam function transforms a fixed caps
into another fixed caps. Examples of elements include:

- Videobox. It adds configurable border around a video franpedding on object properties.

- |dentity elements. All elements that don’t change the fdrofigthe data, only the content. Video and
audio effects are an example. Other examples include eksrtieat inspect the stream.

- Some decoders and encoders, where the output format is défjrieput format, like mulawdec and
mulawenc. These decoders usually have no headers that trefinentent of the stream. They are
usually more like conversion elements.

Below is an example of a negotiation steps of a typical t@msfelement. In the sink pad CAPS event
handler, we compute the caps for the source pad and set those.

[...]

static gbool ean
gst_ny filter_setcaps (GstMFilter *filter,
Gst Caps *caps)
{
Gst Structure xstructure;
int rate, channels;
gbool ean ret;
Gst Caps *out caps;

structure = gst_caps_get_structure (caps, 0);

ret = gst_structure_get_int (structure, "rate", &rate);

ret = ret &% gst_structure_get_int (structure, "channels", &channels);
if (!ret)

54

Chapter 14. Caps negotiation

return FALSE;

out caps = gst_caps_new sinple ("audi o/ x-raw',
"format", G TYPE _STRI NG GST_AUDI O NE(S16),
"rate", G_TYPE_INT, rate,
"channel s", G TYPE_INT, channels, NULL);

ret = gst_pad_set_caps (filter->srcpad, outcaps);

gst _caps_unref (outcaps);

return ret;

}

static gbool ean

gst_nmy _filter_sink_event (GstPad *pad,
Gst Obj ect *parent,
Gst Event *event)

{
gbool ean ret;
Gst MFilter =filter = GST_MY_FILTER (parent);

switch (GST_EVENT_TYPE (event)) ({
case GST_EVENT _CAPS:

{
Gst Caps *caps;

gst _event _parse_caps (event, &caps);
ret = gst_ny filter_setcaps (filter, caps);
br eak;

}

def aul t:
ret = gst_pad_event _default (pad, parent, event);
br eak;

}

return ret;

}

14.2.3. Dynamic negotiation
A last negotiation method is the most complex and powerfakaiyic negotiation.

Like with the transform negotiation i8ection 14.2.2dynamic negotiation will perform a transformation
on the downstream/upstream caps. Unlike the transformtiagign, this transform will convert fixed
caps to unfixed caps. This means that the sink pad input cagseceonverted into unfixed (multiple)
formats. The source pad will have to choose a format fronhallptossibilities. It would usually like to
choose a format that requires the least amount of effortddyare but it does not have to be. The

55

Chapter 14. Caps negotiation

selection of the format should also depend on the caps thaieaccepted downstream (see a
QUERY_CAPS function inmplementing a CAPS query functipn

A typical flow goes like this:

. Caps are received on the sink pad of the element.

- If the element prefers to operate in passthrough mode, dhdolwnstream accepts the caps with the
ACCEPT_CAPS query. If it does, we can complete negotiatiahvae can operate in passthrough
mode.

« Calculate the possible caps for the source pad.
- Query the downstream peer pad for the list of possible caps.

- Select from the downstream list the first caps that you carstoam to and set this as the output caps.
You might have to fixate the caps to some reasonable defaultsistruct fixed caps.

Examples of this type of elements include:

- Converter elements such as videoconvert, audioconvelip@sample, videoscale, ...

« Source elements such as audiotestsrc, videotestsrcroAtzgsesrc, ...

Let’s look at the example of an element that can convert betveamplerates, so where input and output
samplerate don’t have to be the same:

static ghool ean
gst_ny filter_setcaps (GstMFilter *filter,
Gst Caps *caps)
{
if (gst_pad_set_caps (filter->sinkpad, caps)) {
filter->passthrough = TRUE;
} else {
Gst Caps =*ot hercaps, *newcaps;
Gst Structure *s = gst_caps_get _structure (caps, 0), *others

/* no passthrough, setup internal conversion */
gst _structure_get _int (s, "channels", &filter->channels);
ot hercaps = gst_pad_get _all owed_caps (filter->srcpad);
ot hers = gst_caps_get_structure (othercaps, 0);
gst _structure_set (others,
"channel s", G TYPE_INT, filter->channels, NULL);

/* now, the sanplerate value can optionally have multiple val ues, so
* we "fixate" it, which nmeans that one fixed value is chosen */
newcaps = gst_caps_copy_nth (othercaps, 0);
gst _caps_unref (ot hercaps);
gst _pad_fixate_caps (filter->srcpad, newcaps);
if (lgst_pad_set_caps (filter->srcpad, newcaps))
return FALSE;

56

Chapter 14. Caps negotiation

/* we are now set up, configure internally =/
filter->passthrough = FALSE;

gst _structure_get_int (s, "rate", &ilter->fromsanplerate);

ot hers = gst_caps_get_structure (newcaps, 0);

gst _structure_get _int (others, "rate", &ilter->to_sanplerate);

}

return TRUE;
}

static gbool ean
gst_ny_filter_sink_event (GstPad *pad,
Gst Obj ect =*parent,
Gst Event *event)
{
gbool ean ret;
Gst WFilter =filter = GST_MY_FILTER (parent);

switch (GST_EVENT_TYPE (event)) ({
case GST_EVENT _CAPS:

{
Cst Caps *caps;

gst _event _parse_caps (event, &caps);
ret = gst_ny filter_setcaps (filter, caps);
br eak;

}

defaul t:
ret = gst_pad_event_default (pad, parent, event);
br eak;

}

return ret;

}

static GstFlowReturn
gst_mny_filter_chain (GstPad *pad,
Gst Obj ect *parent,
Gst Buf f er xbuf)

{
Gst MyFilter =filter = GST_MY_FILTER (parent);
Gst Buf fer *out;
/* push on if in passthrough node */
if (filter->passthrough)
return gst_pad_push (filter->srcpad, buf);
/* convert, push =/
out = gst_ny_filter_convert (filter, buf);
gst _buffer_unref (buf);
return gst_pad_push (filter->srcpad, out);
}

57

Chapter 14. Caps negotiation

14.3. Upstream caps (re)negotiation

Upstream negotiation’s primary use is to renegotiate (@du&n already-negotiated pipeline to a new
format. Some practical examples include to select a diftereleo size because the size of the video
window changed, and the video output itself is not capabtesdaling, or because the audio channel
configuration changed.

Upstream caps renegotiation is requested by sending a GENE RECONFIGURE event upstream.
The idea is that it will instruct the upstream element to réicure its caps by doing a new query for the
allowed caps and then choosing a new caps. The element titlt eat the RECONFIGURE event
would influence the selection of the new caps by returningiéve preferred caps from its
GST_QUERY_CAPS query function. The RECONFIGURE event séli the
GST_PAD_FLAG_NEED_RECONFIGURE on all pads that it trav@ler.

It is important to note here that different elements acyuadive different responsibilities here:

- Elements that want to propose a new format upstream needtaliieck if the new caps are
acceptable upstream with an ACCEPT_CAPS query. Then theydveend a RECONFIGURE event
and be prepared to answer the CAPS query with the new prdfemmaat. It should be noted that
when there is no upstream element that can (or wants) to otiatgy the element needs to deal with
the currently configured format.

- Elements that operate in transform negotiation accordir8gettion 14.2.»ass the RECONFIGURE
event upstream. Because these elements simply do a fixedfianarnbased on the upstream caps, they
need to send the event upstream so that it can select a neatform

- Elements that operate in fixed negotiati@e¢tion 14.2.1drop the RECONFIGURE event. These
elements can’t reconfigure and their output caps don’t d&parthe upstream caps so the event can be
dropped.

- Elements that can be reconfigured on the source pad (soutsérpplementing dynamic negotiation
in Section 14.2 Bshould check its NEED_RECONFIGURE flag with
gst _pad_check_reconfigure () and it should start renegotiation when the function returns
TRUE.

14.4. Implementing a CAPS query function

A _query () -function with the GST_QUERY_CAPS query type is called whegreer element would
like to know which formats this pad supports, and in what oafereference. The return value should
be all formats that this elements supports, taking into actimitations of peer elements further
downstream or upstream, sorted by order of preferenceekigiteference first.

58

Chapter 14. Caps negotiation

static gbool ean
gst_ny _filter_query (GstPad *pad, GstObject * parent, GstQuery * query)

{

gbool ean ret;
Gst MFilter =filter = GST_MY_FILTER (parent);

switch (GST_QUERY_TYPE (query)) {
case GST_QUERY_CAPS

{

}

Gst Pad *ot her pad
Gst Caps *tenp, =*caps, *filt, *tcaps;
gint i;

otherpad = (pad == filter->srcpad) ? filter->sinkpad :
filter->srcpad
caps = gst_pad_get _al |l owed_caps (ot herpad);

gst _query_parse_caps (query, &filt);

[+ W& support *any* sanplerate, indifferent fromthe sanplerate
* supported by the |linked el enents on both sides. */
for (i = 0; i < gst_caps_get_size (caps); i++) {
Gst Structure *structure = gst_caps_get_structure (caps, i);

gst _structure_renove_field (structure, "rate");

}

[+ make sure we only return results that intersect our
* padtenpl ate =/
tcaps = gst_pad_get _pad_t enpl ate_caps (pad);
if (tcaps) {
tenp = gst_caps_intersect (caps, tcaps);
gst _caps_unref (caps);
gst _caps_unref (tcaps);

caps = tenp;
}
[+ filter against the query filter when needed x/
if (filt) {

tenp = gst_caps_intersect (caps, filt);
gst _caps_unref (caps);
caps = tenp;
}
gst _query_set _caps_result (query, caps);
gst _caps_unref (caps);
ret = TRUE;
br eak;

defaul t:

}

ret = gst_pad_query_default (pad, parent, query);
br eak;

return ret;

59

Chapter 14. Caps negotiation

14.5. Pull-mode Caps negotiation
WRITEME, the mechanism of pull-mode negotiation is not ygtyfunderstood.

Using all the knowledge you've acquired by reading this ¢egyou should be able to write an element
that does correct caps negotiation. If in doubt, look at othements of the same type in our git
repository to get an idea of how they do what you want to do.

60

Chapter 15. Memory allocation

Memory allocation and management is a very important topiaidltimedia. High definition video uses
many magabytes to store one single frame of video. It is itambto reuse the memory when possible
instead of constantly allocating and freeing the memory.

Multimedia systems usually use special purpose chips, asi@SPs or GPUs to perform the heavy
lifting (especially for video). These special purpose shipve usually strict requirements for the
memory that they can operate on and how the memory is accessed

This chapter talks about the memory management feature€8teeamer plugins can use. We will first
talk about the lowlevest Menor y object that manages access to a piece of memory. We themaenti
with Gst Buf f er thatis used to exchange data between plugins (and the apipfitand that uses

Gst Menory. We talk abouGst Met a that can be placed on buffers to give extra info about thesadid
its memory. For efficiently managing buffers of the same,sizetake a look aGst Buf f er Pool . To
conclude this chapter we take a look at the GST_QUERY_ALLDION query that is used to negotiate
memory management options between elements.

15.1. GstMemory

Gst Menory is an object that manages a region of memory. The memory tghgéats to a region of
memory of “maxsize”. The area in this memory starting at$eff and for “size” bytes is the accessible
region in the memory. the maxsize of the memory can never aeggd after the object is created,
however, the offset and size can be changed.

15.1.1. GstAllocator

Gst Menor y objects are created byGat Al | ocat or object. Most allocators implement the default
gst_al | ocat or _al | oc() method but some allocator might implement a different metar
example when additional parameters are needed to alldwspecific memory.

Different allocators exist for, for example, system memehared memory and memory backed by a
DMADbuf file descriptor. To implement support for a new kindoémory type, you must implement a
new allocator object as shown below.

15.1.2. GstMemory APl example

Data access to the memory wrapped by@eMenor y object is always protected with a
gst_menory_nap() andgst _nenmory_unmap() pair. An access mode (read/write) must be given

61

Chapter 15. Memory allocation

when mapping memory. The map function returns a pointeréaétid memory region that can then be
accessed according to the requested access mode.

Below is an example of making@st Menor y object and using thgst _nmenory_nmap() to access the
memory region.

[...]

Gst Menory *nmem
Gst Mapl nfo i nfo;
gint i;

/+ allocate 100 bytes */
mem = gst_al l ocator _al l oc (NULL, 100, NULL);

/* get access to the nenory in wite node */
gst_nmenory_map (nmem & nfo, GST_MAP_VRI TE);

[+ fill with pattern =/
for (i =0; i <info.size; i++)
info.data[i] =i;

/* rel ease nenmory */
gst _nmenory_unnmap (nem & nfo);

[...]

15.1.3. Implementing a GstAllocator

WRITEME

15.2. GstBuffer

A Gst Buf f er is an lightweight object that is passed from an upstream madtream element and
contains memory and metadata. It represents the multincedignt that is pushed or pull downstream
by elements.

The buffer contains one or mo@ast Menor y objects thet represent the data in the buffer.

Metadata in the buffer consists of:

62

Chapter 15. Memory allocation

» DTS and PTS timestamps. These represent the decoding esehpation timestamps of the buffer
content and is used by synchronizing elements to schedtfler&uBoth these timestamps can be
GST_CLOCK_TIME_NONE when unknown/undefined.

» The duration of the buffer contents. This duration can b& G3.OCK_TIME_NONE when
unknown/undefined.

» Media specific offsets and offset_end. For video this idtame number in the stream and for audio
the sample number. Other definitions for other media exist.

* Arbitrary structures vi&st Met a, see below.

15.2.1. GstBuffer writability

A buffer is writable when the refcount of the object is expdt] meaning that only one object is holding
a ref to the buffer. You can only modify anything in the bufégren the buffer is writable. This means
that you need to calist _buf f er _make_wri t abl e() before changing the timestamps, offsets,
metadata or adding and removing memory blocks.

15.2.2. GstBuffer APl examples

You can create a buffer wittpst _buf f er _new () and then add memory objects to it or you can use a
convenience functiogst _buf f er _new_al | ocate () which combines the two. It's also possible to
wrap existing memory witlgst _buf f er _new wrapped_ful | () where you can give the function to
call when the memory should be freed.

You can access the memory of the buffer by getting and magha@st Menor y objects individually or
by usinggst _buffer_map (). The latter merges all the memory into one big block and thessgyou
a pointer to this block.

Below is an example of how to create a buffer and access itsanem

]
Gst Buf fer *buffer;

Gst Menory *nmem
Gst Mapl nfo i nfo;

/+* make enpty buffer =/
buffer = gst_buffer_new ();

/+ make nenory hol ding 100 bytes =/
mem = gst_al l ocator_al l oc (NULL, 100, NULL);

/* add the buffer =*/
gst _buffer_append_nenory (buffer, nem;

63

Chapter 15. Memory allocation

[...]
/+ get WRITE access to the nenory and fill with Oxff =/
gst _buffer_map (buffer, & nfo, GST_MAP_WRI TE);

nenset (info.data, Oxff, info.size);
gst _buffer_unmap (buffer, & nfo);

[...]

/+ free the buffer =/
gst _buffer_unref (buffer);

[...]

15.3. GstMeta

With the Gst Met a system you can add arbitrary structures on buffers. Thegetstes describe extra
properties of the buffer such as cropping, stride, regiontefest etc.

The metadata system separates API specification (what ttaelata and its API look like) and the
implementation (how it works). This makes it possible to mdkKferent implementations of the same
API, for example, depending on the hardware you are running o

15.3.1. GstMeta APl example

After allocating a new buffer, you can add metadata to théebufith the metadata specific API. This
means that you will need to link to the header file where theanegta is defined to use its API.

By convention, a metadata API with namReoBar should provide two methods, a
gst_buffer_add _foo_bar_neta () andagst _buffer_get foo_bar_neta ().Bothfunctions
should return a pointer toRooBar Met a structure that contains the metadata fields. Some of the
add»_neta () can have extra parameters that will usually be used to caefitpe metadata
structure for you.

Let's have a look at the metadata that is used to specify goangpegion for video frames.

#i ncl ude <gst/video/ gstvi deonet a. h>

[...]

Gst Vi deoCr opMet a *net a;

64

Chapter 15. Memory allocation

/* buffer points to a video frane, add some cropping netadata */
neta = gst_buffer_add_vi deo_crop_neta (buffer);

/+ configure the cropping netadata =/
net a->x = 8;
neta->y = 8;
met a->w dth = 120;
net a- >hei ght = 80;
[...]

An element can then use the metadata on the buffer when iegdkee frame like this:

#i ncl ude <gst/video/ gstvi deonet a. h>

[...]

Gst Vi deoCr opMet a *net a;

/* buffer points to a video frane, get the cropping netadata */
neta = gst_buffer_get_video_crop_neta (buffer);

if (meta) {

/* render frame with cropping */

_render _frame_cropped (buffer, neta->x, nmeta->y, nmeta->w dth, neta->height);
} else {

[+ render frame */

_render _frame (buffer);

}
[...]

15.3.2. Implementing new GstMeta

In the next sections we show how you can add new metadata system and use it on buffers.

15.3.2.1. Define the metadata API

First we need to define what our API will look like and we willMeato register this API to the system.
This is important because this API definition will be used wieéments negotiate what kind of
metadata they will exchange. The API definition also corstaibitrary tags that give hints about what
the metadata contains. This is important when we see howdatetés preserved when buffers pass
through the pipeline.

65

Chapter 15. Memory allocation

If you are making a new implementation of an existing API, yan skip this step and move on to the
implementation step.

First we start with making they- exanpl e- met a. h header file that will contain the definition of the
API and structure for our metadata.

#i ncl ude <gst/gst.h>

typedef struct _M/Exanpl eMeta MyExanpl eMet a;

struct _MyExanpl eMeta {

Gst Met a net a;
gi nt age;

gchar *nane;

b

Glype ny_exanpl e_neta_api _get _type (void);
#defi ne MY_EXAMPLE_META APl _TYPE (ny_exanpl e_neta_api _get _type())

#define gst_buffer_get_my_exanpl e_nmeta(b) \
((MyExanpl eMet a*) gst _buf fer_get _meta((b), My_EXAMPLE_META APl _TYPE))

The metadata API definition consists of the definition of tihecture that holds a gint and a string. The
first field in the structure must &st Met a.

We also define ay_exanpl e_net a_api _get _type () function that will register out metadata API
definition. We also define a convenience magso_buf f er _get _nmy_exanpl e_nmeta () that simply
finds and returns the metadata with our new API.

Next let’s have a look at how they_exanpl e_nmet a_api _get _type () functionis implemented in
theny- exanpl e- net a. c file.

#i ncl ude "ny-exanpl e-nmeta. h"

Glype
ny_exanpl e_net a_api _get _type (void)
{
static volatile GIype type;
static const gchar *tags[] = { "foo", "bar", NULL };

if (g_once_init_enter (& ype)) {
Glype _type = gst_neta_api _type_register ("MExanpl eMetaAPl ", tags);
g_once_init_l eave (& ype, _type);

}

66

Chapter 15. Memory allocation

return type;

}

As you can see, it simply uses thet _net a_api _t ype_regi ster () function to register a name for
the api and some tags. The result is a new pointer GType tlfiaedehe newly registered API.

15.3.2.2. Implementing a metadata API

Next we can make an implementation for a registered met&dit& Type. The implementation detail

of a metadata API are kept inGat Met al nf o structure that you will make available to the users of your
metadata APl implementation withng_exanpl e_net a_get _i nf o () function and a convenience
MY_EXAMPLE_META | NFOmacro. You will also make a method to add your metadata imefgation to
aGst Buf f er. Yourny- exanpl e- net a. h header file will need thse additions:

[...]

/+ inplenmentation */
const GstMetalnfo *nmy_exanpl e_nmeta_get_info (void);
#define MY_EXAMPLE_META | NFO (my_exanpl e_neta_get _info())

MyExanpl eMeta * gst_buffer_add_mny_exanpl e_neta (GstBuffer *buf fer,
gi nt age,
const gchar *name) ;

Let's have a look at how these functions are implementedamyh exanpl e- net a. c file.

[...]

static gbool ean
my_exanple_neta_init (GstMeta * nmeta, gpointer parans, GstBuffer * buffer)

{
MyExanpl eMeta *emeta = (MyExanpl eMeta *) neta;

enet a- >age = 0;
enmet a- >nane = NULL;

return TRUE;
}

static gbool ean

my_exanpl e_neta_transform (GstBuffer * transbuf, GstMeta * neta,
GstBuffer = buffer, GQuark type, gpointer data)

{

67

Chapter 15. Memory allocation
MyExanpl eMeta remeta = (MyExanpl eMeta *) neta;

/+ we al ways copy no matter what transform x/
gst _buffer_add_ny_exanpl e_neta (transbuf, emneta->age, eneta->nane);

return TRUE;
}

static void
my_exanpl e_neta_free (GstMeta * neta, GstBuffer * buffer)

{
MyExanpl eMeta *emeta = (MyExanpl eMeta *) neta;

g_free (emeta->nane)
enmet a- >nane = NULL;

}

const GstMetalnfo *
my_exanpl e_neta_get_info (void)

{
static const GstMetalnfo *nmeta_info = NULL;

if (g_once_init_enter (&meta_info)) {
const GstMetalnfo »m = gst_neta_register (MY_EXAMPLE_META_API| _TYPE,
" MyExanpl eMet a",
si zeof (MyExanpl eMet a),
nmy_exanple_meta_init,
nmy_exanpl e_neta_free,
nmy_exanpl e_neta_transforny;
g_once_init_leave (&reta_info, m);
}

return meta_info;

}

MyExanpl eMet a *
gst _buffer_add_mny_exanpl e_neta (GstBuffer *puf fer,
gi nt age,
const gchar *namne)
MyExanpl eMet a *net a;
g_return_val _if_fail (GST_IS BUFFER (buffer), NULL);

meta = (MyExanpl eMeta *) gst_buffer_add_neta (buffer,
MY_EXAMPLE_META | NFO, NULL);

net a- >age = age;
net a- >name = g_strdup (nane);

return neta;

68

Chapter 15. Memory allocation

gst_neta_register () registersthe implementation details, like the API that yoplement and the
size of the metadata structure along with methods to iidgadnd free the memory area. You can also
implement a transform function that will be called when aa&iertransformation (identified by the quark
and quark specific data) is performed on a buffer.

Lastly, you implement gst _buf f er _add_x_net a() that adds the metadata implementation to a
buffer and sets the values of the metadata.

15.4. GstBufferPool

TheGst Buf f er Pool object provides a convenient base class for managing liseugable buffers.
Essential for this object is that all the buffers have theesanoperties such as size, padding, metadata
and alignment.

A bufferpool object can be configured to manage a minimum aaximmum amount of buffers of a
specific size. A bufferpool can also be configured to use afipest Al | ocat or for the memory of the
buffers. There is support in the bufferpool to enable byl specific options, such as addi@gt Met a
to the buffers in the pool or such as enabling specific padaintpe memory in the buffers.

A Bufferpool can be inactivate and active. In the inactiaestyou can configure the pool. In the active
state, you can’t change the configuration anymore but yowacgnire and release buffers from/to the
pool.

In the following sections we take a look at how you can use &bpdol.

15.4.1. GstBufferPool APl example

Many different bufferpool implementations can exist; tlaeg all subclasses of the base class

Gst Buf f er Pool . For this example, we will assume we somehow have accessufeainol, either
because we created it ourselves or because we were gives arresult of the ALLOCATION query as
we will see below.

The bufferpool is initially in the inactive state so that wanaonfigure it. Trying to configure a
bufferpool that is not in the inactive state will fail. Likése, trying to activate a bufferpool that is not
configured will fail.

Gst Structure xconfi g;

[...]

69

Chapter 15. Memory allocation

/* get config structure =/
config = gst_buffer_pool _get_config (pool);

/* set caps, size, mninumand nmaxi numbuffers in the pool =/
gst _buffer_pool _config_set_parans (config, caps, size, mn, max);

/+ configure allocator and paraneters x/
gst _buffer_pool _config_set_allocator (config, allocator, ¶ns);

/* store the updated configuration again */
gst _buffer_pool _set_config (pool, config);

[...]

The configuration of the bufferpool is maintained in a gemésit St r uct ur e that can be obtained with
gst _buffer_pool get_config().Convenience methods exist to get and set the configuration
options in this structure. After updating the structurés get as the current configuration in the
bufferpool again withyst _buf f er _pool _set _config().

The following options can be configured on a bufferpool:

» The caps of the buffers to allocate.

» The size of the buffers. This is the suggested size of thietsii the pool. The pool might decide to
allocate larger buffers to add padding.

e The minimum and maximum amount of buffers in the pool. Whémimmum is set to > 0, the
bufferpool will pre-allocate this amount of buffers. Wheaximum is not 0, the bufferpool will
allocate up to maximum amount of buffers.

» The allocator and parameters to use. Some bufferpoolstrgigbre the allocator and use its internal
one.

» Other arbitrary bufferpool options identified with a sgira bufferpool lists the supported options with
gst _buf f er _pool _get _options() and you can ask if an option is supported with
gst _buf f er _pool _has_opti on(). The option can be enabled by adding it to the configuration
structure withgst _buf f er _pool _confi g_add_opti on (). These options are used to enable
things like letting the pool set metadata on the buffers @dd extra configuration options for
padding, for example.

After the configuration is set on the bufferpool, the pool baractivated with
gst _buffer_pool _set_active (pool, TRUE).From that point on you can use
gst _buffer_pool _acquire_buffer () toretrieve a buffer from the pool, like this:

[...]

Gst Fl owReturn ret;
Gst Buffer xbuffer;

70

Chapter 15. Memory allocation

ret = gst_buffer_pool _acquire_buffer (pool, &buffer, NULL);
if (G UNLIKELY (ret != GST_FLOW OK))
goto pool _fail ed;

[...]

It is important to check the return value of the acquire fioxcbecause it is possible that it fails: When
your element shuts down, it will deactivate the bufferpaal ¢hen all calls to acquire will return
GST_FLOW_FLUSHNG.

All buffers that are acquired from the pool will have theigbmember set to the original pool. When the
last ref is decremented on the buffer, GStreamer will autaaldy call

gst _buf fer_pool _rel ease_buffer () to release the buffer back to the pool. You (or any other
downstream element) don’t need to know if a buffer came frgeoal, you can just unref it.

15.4.2. Implementing a new GstBufferPool

WRITEME

15.5. GST_QUERY_ALLOCATION

The ALLOCATION query is used to negotia@t Met a, Gst Buf f er Pool andGst Al | ocat or between
elements. Negotiation of the allocation strategy is alwaiteted and decided by a srcpad after it has
negotiated a format and before it decides to push bufferilpad can suggest an allocation strategy
but it is ultimately the source pad that will decide basedhmsuggestions of the downstream sink pad.

The source pad will do a GST_QUERY_ALLOCATION with the negt#d caps as a parameter. This is
needed so that the downstream element knows what mediastyyednig handled. A downstream sink
pad can answer the allocation query with the following ressul

» An array of possibleést Buf f er Pool suggestions with suggested size, minimum and maximum
amount of buffers.

» An array of GstAllocator objects along with suggestedadtion parameters such as flags, prefix,
alignment and padding. These allocators can also be coatignma bufferpool when this is supported
by the bufferpool.

» An array of supportedst Met a implementations along with metadata specific parametgss. |
important that the upstream element knows what kind of nagteid supported downstream before it
places that metadata on buffers.

71

Chapter 15. Memory allocation

When the GST_QUERY_ALLOCATION returns, the source pad select from the available
bufferpools, allocators and metadata how it will allocaiéfdrs.

15.5.1. ALLOCATION query example
Below is an example of the ALLOCATION query.

#i ncl ude <gst/video/ vi deo. h>
#i ncl ude <gst/video/ gstvi deoneta. h>
#i ncl ude <gst/vi deo/ gstvi deopool . h>

Gst Caps *caps;

Gst Query =query;

Gst Structure *structure;
Gst Buf f er Pool *pool ;

Gst Structure *config;
guint size, mn, max;

[...]

/+ find a pool for the negotiated caps now */
query = gst_query_new al | ocation (caps, TRUE);

if (lgst_pad_peer_query (scope->srcpad, query)) {
/* query failed, not a problem we use the query defaults */

}

if (gst_query_get_n_allocation_pools (query) > 0) {
/* we got configuration fromour peer, parse them */
gst _query_parse_nth_al |l ocation_pool (query, 0, &pool, &size, &nrn, &max);

} else {
pool = NULL;
size = 0;
mn = max = 0;
}
if (pool == NULL) {
/* we did not get a pool, make one ourselves then */
pool = gst_vi deo_buffer_pool _new ();
}

config = gst_buffer_pool _get_config (pool);

gst _buffer_pool _config_add_option (config, GST_BUFFER POOL_OPTI ON_VI DEO META);
gst _buffer_pool _config_set_parans (config, caps, size, mn, max);

gst _buffer_pool _set_config (pool, config);

/* and activate */
gst _buffer_pool _set_active (pool, TRUE);

[...]

72

Chapter 15. Memory allocation

This particular implementation will make a cust@st Vi deoBuf f er Pool object that is specialized in
allocating video buffers. You can also enable the pool todstivi deoMet a metadata on the buffers
from the pool doingyst _buf f er _pool _confi g_add_option (confi g,

GST_BUFFER_POOL_OPTI ON_VI DEQ_META) .

15.5.2. The ALLOCATION query in base classes

In many baseclasses you will see the following virtual mdthior influencing the allocation strategy:

. propose_al |l ocation () should suggest allocation parameters for the upstreanealem

- decide_al l ocation () should decide the allocation parameters from the suggesteceived
from downstream.

Implementors of these methods should modify the gi&nQuer y object by updating the pool options
and allocation options.

73

Chapter 16. Types and Properties

There is a very large set of possible types that may be useas®dgata between elements. Indeed, each
new element that is defined may use a new data format (thoughsuat least one other element
recognises that format, it will be most likely be uselessainothing will be able to link with it).

In order for types to be useful, and for systems like autogéuig to work, it is necessary that all elements
agree on the type definitions, and which properties are reqfior each type. The GStreamer framework
itself simply provides the ability to define types and parterse but does not fix the meaning of types
and parameters, and does not enforce standards on the@aoreftiew types. This is a matter for a policy
to decide, not technical systems to enforce.

For now, the policy is simple:

- Do not create a new type if you could use one which already®xis

- If creating a new type, discuss it first with the other GStrendevelopers, on at least one of: IRC,
mailing lists.

- Try to ensure that the name for a new format is as unlikely tdlax with anything else created
already, and is not a more generalised name than it shoukbbexample: "audio/compressed"
would be too generalised a name to represent audio data essgat with an mp3 codec. Instead
"audio/mp3" might be an appropriate name, or "audio/cosg®@" could exist and have a property
indicating the type of compression used.

- Ensure that, when you do create a new type, you specify itlgleand get it added to the list of known
types so that other developers can use the type correctly whigng their elements.

16.1. Building a Simple Format for Testing

If you need a new format that has not yet been defined irLmtiiof Defined Typesyou will want to

have some general guidelines on media type naming, prepetid such. A media type would ideally be
equivalent to the Mime-type defined by IANA,; else, it shouddib the form type/x-name, where type is
the sort of data this media type handles (audio, video,nd)reame should be something specific for this
specific type. Audio and video media types should try to suigbe general audio/video properties (see
the list), and can use their own properties, too. To get aa @devhat properties we think are useful, see
(again) the list.

Take your time to find the right set of properties for your typkere is no reason to hurry. Also,
experimenting with this is generally a good idea. Experngdiearns that theoretically thought-out types
are good, but they still need practical use to assure thgtsteve their needs. Make sure that your
property names do not clash with similar properties usedhrraypes. If they match, make sure they
mean the same thing; properties with different types buséme names areot allowed.

74

Chapter 16. Types and Properties

16.2. Typefind Functions and Autoplugging

With only definingthe types, we're not yet there. In order for a random datadileetrecognized and
played back as such, we need a way of recognizing their typefdle blue. For this purpose,
“typefinding” was introduced. Typefinding is the process effietting the type of a data stream.
Typefinding consists of two separate parts: first, theresrdimited number of functions that we call
typefind functionswhich are each able to recognize one or more types from arn gtggam. Then,
secondly, there’s a small engine which registers and caflb ef those functions. This is the typefind
core. On top of this typefind core, you would normally writeaarioplugger, which is able to use this
type detection system to dynamically build a pipeline acban input stream. Here, we will focus only
on typefind functions.

A typefind function usually lives in

gst - pl ugi ns- base/ gst/typefind/ gsttypefindfunctions. c,unlessthere’s a good reason (like
library dependencies) to put it elsewhere. The reason fectntralization is to reduce the number of
plugins that need to be loaded in order to detect a streapés Below is an example that will recognize
AVI files, which start with a “RIFF” tag, then the size of thesfiand then an “AVI " tag:

static void
gst _mny_typefind_function (GstTypeFind *tf,

gpoi nt er dat a)
{
guint8 xdata = gst_type_find_peek (tf, 0, 12);
if (data &&
GUI NT32_FROM LE (&((guint32 *) data)[0]) == GST_MAKE_FOURCC ("R ,’I","F ,"F) &&
GUI NT32_FROM LE (&((guint32 x) data)[2]) == GST_MAKE_FOURCC (A" ,"V ., 1"," ")) {

gst _type_find_suggest (tf, GST_TYPE_FI ND_MAXI MUM
gst _caps_new_si npl e ("video/ x-nsvi deo", NULL));
}
}

static gbool ean
plugin_init (GstPlugin *plugin)

{
static gchar xexts[] = { "avi", NULL };
if ('gst_type_find_ register (plugin, "", GST_RANK PRI MARY,
gst _nmy_typefind_function, exts,
gst _caps_new_si npl e ("vi deo/ x- msvi deo",
NULL), NULL))
return FALSE;
}

Note thatgst - pl ugi ns/ gst/ t ypefi nd/ gsttypefi ndfuncti ons. c has some simplification
macros to decrease the amount of code. Make good use of thasewant to submit typefinding
patches with new typefind functions.

75

Chapter 16. Types and Properties

Autoplugging has been discussed in great detail in the &pfiin Development Manual.

16.3. List of Defined Types

Below is a list of all the defined types in GStreamer. They afi¢ sp in separate tables for audio, video,
container, subtitle and other types, for the sake of reditiatidelow each table might follow a list of
notes that apply to that table. In the definition of each typeiry to follow the types and rules as
defined by IANA (http://www.iana.org/assignments/metjiges) for as far as possible.

Jump directly to a specific table:

« Table of Audio Types

- Table of Video Types

« Table of Container Types
- Table of Subtitle Types

« Table of Other Types

Note that many of the properties are mequired but rathetoptionalproperties. This means that most of
these properties can be extracted from the container hdadehat - in case the container header does
not provide these - they can also be extracted by parsingreens header or the stream content. The
policy is that your element should provide the data that @vie about by only parsing its own content,
not another element’s content. Example: the AVI headeriges/samplerate of the contained audio
stream in the header. MPEG system streams don’t. This meanhan AVI stream demuxer would
provide samplerate as a property for MPEG audio streamseai@n MPEG demuxer would not. A
decoder needing this data would require a stream parsetweba two extract this from the header or
calculate it from the stream.

Table 16-1. Table of Audio Types

Media | DescriptiBroperty Property Property Property Description
Type Type |Values

All audio types.

audio/* | All rate integer | greater | The sample rate of the data, in samples (per channel)
audio than O |per second.
types | channeldnteger | greater | The number of channels of audio data.
than O
channel-bitmask| Channel positions present. See
mask “GstAudioChannelPosition”. 0 means unpositioned.

76

Chapter 16. Types and Properties

Media | DescriptiBroperty Property Property Property Description
Type Type |Values

format |string | S8 U8 | The format of the sample data
S16LE
S16BE
U16LE
U16BE
S24 321 E
S24 _32BE
u24_32LE
U24_32BE
S32LE
S32BE
U32LE
U32BE
S24LE
S24BE
U24LE
U24BE
S20LE
S20BE
U20LE
U20BE
S18LE
S18BE
U18LE
U18BE
F32LE
F32BE
F64LE
F64BE

layout |string |"interlegvedyout of channels within a buffer.
or

"non-
interleayed"

All raw audio types.

77

Chapter 16. Types and Properti

es

[1]

nles

use

Media | DescriptiBroperty Property Property Property Description
Type Type |Values
audio/xq Un- All properties (except channel-mask, in the mono a
raw struc- stereo cases) are mandatory.
tured
and
uncom-
pressed
raw
audio
data.
All encoded audio types.
audio/x{ AC-3 There are currently no specific properties defined o
ac3 or A52 needed for this type.
audio
streams.
audio/x{ ADPCM layout |string The layout defines the packing of the samples in th
adpcm | Audio “quick- |stream. In ADPCM, most formats store multiple
streams. time”, |samples per channel together. This number of samy
“dvi”, |differs per format, hence the different layouts. On th
“mi- long term, we probably want this variable to die and
crosoft”| something more descriptive, but this will do for now.
or
“4xm”.
block_aligrteger | Any Chunk buffer size.
audio/x4 Audio There are currently no specific properties defined o
cinepak| as pro- needed for this type.
vided
ina
Cinepak
(Quick-
time)
stream.
audio/x4 Audio There are currently no specific properties defined o
dv as pro- needed for this type.
vided
ina
Digital
Video
stream.

78

Chapter 16. Types and Properties

de

1%

ctly

Media | DescriptiBroperty Property Property Property Description
Type Type |Values
audio/xq Free There are currently no specific properties defined o
flac Loss- needed for this type.
less
Audio
codec
(FLAC).
audio/x Data There are currently no specific properties defined o
gsm en- needed for this type.
coded
by the
GSM
codec.
audio/x4 A-Law There are currently no specific properties defined o
alaw | Audio. needed for this type.
audio/x4{ Mu- There are currently no specific properties defined o
mulaw | Law needed for this type.
Audio.
audio/x{ MACE | maceversiteger | 3or6 | The version of the MACE audio codec used to encg
mace |Audio the stream.
(used in|
Quick-
time).
audio/mpAgdio | mpegversitager | 1, 2 or | The MPEG-version used for encoding the data. Thg
data 4 value 1 refers to MPEG-1, -2 and -2.5 layer 1, 2 or 3.
com- The values 2 and 4 refer to the MPEG-AAC audio
pressed encoding schemes.
using |framed | boolean O or 1 | A true value indicates that each buffer contains exa
the one frame. A false value indicates that frames and
MPEG buffers do not necessarily match up.
:ﬁg;od_ layer |integer |1, 2, or | The compression scheme layer used to compress the
ing 3 data(only if mpegversion=1)
schemel
bitrate |integer | greater| The bitrate, in bits per second. For VBR (variable
than 0 |bitrate) MPEG data, this is the average bitrate.

79

Chapter 16. Types and Properties

]

=

Media | DescriptiBroperty Property Property Property Description
Type Type |Values
audio/x Data There are currently no specific properties defined o
gdm2 |en- needed for this type.

coded

by the

QDM

version

2

codec.
audio/x{ Realmegiaversiorinteger | 1 or 2 | The version of the Real Audio codec used to encod
pn- Audio the stream. 1 stands for a 14k4 stream, 2 stands for a
realaudialata. 28Kk8 stream.
audio/x4 Data There are currently no specific properties defined of
speex |en- needed for this type.

coded

by the

Speex

audio

codec
audio/x- Vorbis There are currently no specific properties defined o
vorbis |audio needed for this type.

data
audio/xq Windowsvmavergiateger | 1,2 or 3| The version of the WMA codec used to encode the
wma | Media stream.

Audio
audio/x4{ Ensonig There are currently no specific properties defined of
paris | PARIS needed for this type.

audio
audio/xq{ Amiga There are currently no specific properties defined o
SVX IFF/ needed for this type.

SVX8/

SV16

audio
audio/xq Sphere There are currently no specific properties defined o
nist NIST needed for this type.

audio
audio/x4 Sound There are currently no specific properties defined o
voc Blaster needed for this type.

VOC

audio

80

Chapter 16. Types and Properti

es

Media | DescriptiBroperty Property Property Property Description
Type Type |Values
audio/x- Berkeley/IRCAM/CARL There are currently no specific properties defined o
ircam | audio needed for this type.
audio/xq Sonic There are currently no specific properties defined o
w64 Foundry’s needed for this type.

64 bit

RIFF/WAV

Table 16-2. Table of Video Types

s that
[e.

atis

Media | DescriptiBroperty Property Property Property Description
Type Type |Values
All video types.
video/* | All width | integer | greater | The width of the video image
video than 0
types |height |integer | greater | The height of the video image
than 0
frameratéraction | greater | The (average) framerate in frames per second. Nofj
or that this property does not guaranteairyway that it
equal O; will actually come close to this value. If you need a
default |fixed framerate, please use an element that provide
0/1 (such as “videorate”). 0/1 means a variable framera
max- |fraction|greater | For variable framerates, the maximum framerate th
framerate or expected. Only valid when framerate is 0/1.
equal 0O;
default
as
framer-
ate
views |integer | greater | The number of views for multiview video. Each buff
than O; | contains multiple “GstVideoMeta” buffers that descr
default | each view. Use the frame ID to get access to the
1 different views.

be

81

Chapter 16. Types and Properties

Media | DescriptiBroperty Property Property Property Description
Type Type |Values

interlacestring | progressiVége interlace mode. Extra buffer flags describe the
mode inter- | frame and fields.

leaved,
mixed,
fields;
default
pro-
gres-
sive

chromas string | jpeg, The chroma siting of the video frames.
site mpeg2,
dv;
default
UN-
KNOWN

colorimestring | bt601, | The colorimetry of the video frames.
bt709,
smpte240m;
default
UN-

KNOWN

pixel- |fraction|greater | The pixel aspect ratio of the video.

aspect- than O;
ratio default
1/1

82

Chapter 16. Types and Properties

Media | DescriptiBroperty Property Property Property Description
Type Type |Values

format |string | 1420 The format of the video. See FourCC definition site
YV12 | (http://lwww.fourcc.org/) for references and definitions.
YUY2 [YUY2, YVYU and UYVY are 4:2:2 packed-pixel,
UYVY |Y41Pis 4:1:1 packed-pixel and IYU2 is 4:4:4
AYUV | packed-pixel. Y42B is 4:2:2 planar, YV12 and 1420 are
RGBx |4:2:0 planar, Y41B is 4:1:1 planar and YUV9 and
BGRx |YVU9 are 4:1:0 planar. Y800 contains Y-samples of
XRGB | (black/white).
XBGR
RGBA
BGRA
ARGB
ABGR
RGB
BGR
Y41B
Y42B
YVYU
Y444
v210
v216
NV12
NV21
GRAYS8
GRAY 1¢
GRAY 1¢
v308
RGB16
BGR16
RGB15
BGR15
UYVP
A420
RGB8P
YUV9
YVU9
YUl
ARGB64
AYUV64
r210
1420_10LE
1420_10BE
1422_10LE
1422_10BE

Yy

83

Chapter 16. Types and Properti

es

Media | DescriptiBroperty Property Property Property Description
Type Type |Values
All raw video types.
video/x-| Unstructured The properties width, height and format are mandatory.
raw and
uncom-
pressed
raw
video
data.
All encoded video types.
video/x- 3ivx There are currently no specific properties defined of
3ivx video. needed for this type.
video/x-{ DivX |divxversiotteger | 3, 4 or | Version of the DivX codec used to encode the stream.
divx video. 5
video/x- Digital | systemstbeatean FALSE | Indicates that this streami®ta system container
dv Video. stream.
video/x-| FFMped ffvversigimteger | 1 Version of the FFMpeg video codec used to encode the
ffv video. stream.
video/x-| H-263 |variant |string |itu, Vendor specific variant of the format. 'itu’ is the
h263 |video. lead, |standard.
mi-
crosoft,
vdolive,
vivo,
xirlink
h263verstting | h263, | Enhanced versions of the h263 codec.
h263p,
h263pp
video/x-| H-264 |variant |string |itu, Vendor specific variant of the format. 'itu’ is the
h264 |video. videosofstandard.
video/x-| Huffyuv There are currently no specific properties defined o
huffyuv | video. needed for this type.
video/x- Indeo |indeoversiteger | 3 Version of the Indeo codec used to encode this stream.
indeo |video.

84

es

Chapter 16. Types and Properti
Media | DescriptiBroperty Property Property Property Description
Type Type |Values
video/x-| H-263 |variant |string |intel Vendor specific variant of the format.
intel- | video.
h263
video/x-| Motion- There are currently no specific properties defined o
jpeg JPEG needed for this type. Note that video/x-jpeg only
video. applies to Motion-JPEG pictures (YUY2 colourspac
RGB colourspace JPEG images are referred to as
image/jpeg (JPEG image).
video/mpd®EG | mpegversiteger | 1, 2 or | Version of the MPEG codec that this stream was
video. 4 encoded with. Note that we have different media tyges
for 3ivx, XviD, DivX and "standard" ISO MPEG-4.
This isnota good thing and we’re fully aware of this.
However, we do not have a solution yet.
systemstbemhean FALSE | Indicates that this streamimta system container
stream.
video/x-| Microsoftnsmpegirgegien | 41, 42 | Version of the MS-MPEG-4-like codec that was usgd
msmpegMPEG- or 43 |to encode this version. A value of 41 refers to MS
4 video MPEG 4.1, 42 to 4.2 and 43 to version 4.3.
devia-
tions.
video/x-| Microsoftnsvideoueteien | 1 Version of the codec - always 1.
msvideo&btdeac 1
(oldish
codec).
video/x-| Realmegimversiomteger | 1, 2 or | Version of the Real Video codec that this stream was
pn- video. 3 encoded with.
realvideo
video/x- RLE layout |string |"microsof’he RLE format inside the Microsoft AVI container
rle anima- or has a different byte layout than the RLE format insid
tion "quick- | Apple’s Quicktime container; this property keeps tral
format. time" | of the layout.
depth |integer | 1to 64 | Bit depth of the used palette. This means that the
palette that belongs to this format defines 2*depth
colors.
palette |dasiBuffer Buffer containing a color palette (in native-endian
RGBA) used by this format. The buffer is of size
4*27depth.

85

Chapter 16. Types and Properti

es

Media | DescriptiBroperty Property Property Property Description
Type Type |Values
video/x-| Sorensesvqgversjameger | 1 or 3 | Version of the Sorensen codec that the stream was
svq Video. encoded with.
video/x-| Tarkin There are currently no specific properties defined o
tarkin | video. needed for this type.
video/x-| Theora There are currently no specific properties defined o
theora |video. needed for this type.
video/x-| VP-3 There are currently no specific properties defined of
vp3 video. needed for this type. Note that we have different media
types for VP-3 and Theora, which is not necessarily|a
good idea. This could probably be improved.
video/x- Windowsvmvversioteger | 1,2 or 3| Version of the WMV codec that the stream was
wmy Media encoded with.
Video
video/x-| XviD There are currently no specific properties defined o
xvid video. needed for this type.
All image types.
image/gifGraphics There are currently no specific properties defined of
Inter- needed for this type.
change
Format.
image/jpdgint There are currently no specific properties defined of
Picture needed for this type. Note that image/jpeg only applies
Expert to RGB-colourspace JPEG images; YUY2-colourspace
Group JPEG pictures are referred to as video/x-jpeg ("Motjon
Image. JPEG").
image/prigprtable There are currently no specific properties defined o
Net- needed for this type.
work
Graph-
ics
Image.
imagetftiffagged There are currently no specific properties defined o
Image needed for this type.
File
Format.

86

Table 16-3. Table of Container Types

Chapter 16. Types and Properties

er

er

=

Media | DescriptiBroperty Property Property Property Description
Type Type | Values
video/x-| Advanced There are currently no specific properties defined o
ms-asf | Stream- needed for this type.
ing
Format
(ASF).
video/x-| AVI. There are currently no specific properties defined o
msvided needed for this type.
video/x- Digital |systemstbeatean TRUE | Indicates that this is a container system stream rath
dv Video. than an elementary video stream.
video/x-| Matroska. There are currently no specific properties defined o
matroska needed for this type.
video/mpdgtion | systemstbeahean TRUE | Indicates that this is a container system stream rath
Pic- than an elementary video stream.
tures
Expert
Group
System
Stream.
applicatj@gogg There are currently no specific properties defined o
needed for this type.
video/quiQktickéme. There are currently no specific properties defined o
needed for this type.
applicatjéreatdedia. There are currently no specific properties defined o
realmedia needed for this type.
audio/x{ WAV. There are currently no specific properties defined o
wav needed for this type.
Table 16-4. Table of Subtitle Types
Media | DescriptiBroperty Property Property Property Description
Type Type |Values

None defined yet.

87

Chapter 16. Types and Properties

Table 16-5. Table of Other Types

Media | DescriptiBroperty Property Property Property Description
Type Type |Values

None defined yet.

88

Chapter 17. Events: Seeking, Navigation and

There are many different event types but only two ways theytigvel in the pipeline: downstream or
upstream. It is very important to understand how both of¢hesthods work because if one element in
the pipeline is not handling them correctly the whole evgstam of the pipeline is broken. We will try
to explain here how these methods work and how elements pp@sed to implement them.

17.1. Downstream events

Downstream events are received through the sink pad’s éegrtier, as set using
gst _pad_set _event _function () when the pad was created.

Downstream events can travel in two ways: they can be in-fseriblised with the buffer flow) or
out-of-band (travelling through the pipeline instantlgsgibly not in the same thread as the streaming
thread that is processing the buffers, skipping ahead détsibeing processed or queued in the
pipeline). The most common downstream events (SEGMENT,E£ARG, EOS) are all serialised with
the buffer flow.

Here is a typical event function:

static gbool ean
gst_mny_filter_sink_event (GstPad =+pad, GstCbject * parent, GstEvent * event)
{

Gst WyFilter *filter;

gbool ean ret;

filter = GST_MY_FILTER (parent);

switch (GST_EVENT_TYPE (event)) {

case GST_EVENT_SEGVENT:
[+ maybe save and/or update the current segnent (e.g. for output
* clipping) or convert the event into one in a different format
* (e.g. BYTES to TIME) or drop it and set a flag to send a segnent
* event in a different format later =/
ret = gst_pad_push_event (filter->src_pad, event);
br eak;

case GST_EVENT_ECS:
/* end-of -stream we should close down all stream|eftovers here */
gst_nmy filter_stop_processing (filter);
ret = gst_pad_push_event (filter->src_pad, event);
br eak;

case GST_EVENT_FLUSH STOP:
gst_ny filter_clear_tenporary_buffers (filter);

89

Chapter 17. Events: Seeking, Navigation and More

ret = gst_pad_push_event (filter->src_pad, event);
br eak;

defaul t:
ret = gst_pad_event_default (pad, parent, event);
br eak;

return ret;

}

If your element is chain-based, you will almost always haviertplement a sink event function, since
that is how you are notified about segments, caps and the ¢hd sfream.

If your element is exclusively loop-based, you may or maywant a sink event function (since the
element is driving the pipeline it will know the length of tegeam in advance or be notified by the flow
return value ofyst _pad_pul | _range() . In some cases even loop-based element may receive events
from upstream though (for example audio decoders with aded8ix or apedemux element in front of
them, or demuxers that are being fed input from sources é&mat additional information about the

stream in custom events, as DVD sources do).

17.2. Upstream events

Upstream events are generated by an element somewheretdeanmén the pipeline (example: a video
sink may generate navigation events that informs upstréamemnts about the current position of the
mouse pointer). This may also happen indirectly on requesicapplication, for example when the
application executes a seek on a pipeline this seek reqilebeypassed on to a sink element which will
then in turn generate an upstream seek event.

The most common upstream events are seek events, QualBgruice (QoS) and reconfigure events.

An upstream event can be sent usingdhe_pad_send_event function. This function simply call the
default event handler of that pad. The default event harmdlpads isgst _pad_event _def aul t, and it
basically sends the event to the peer of the internally tink&d. So upstream events always arrive on the
src pad of your element and are handled by the default evedidéraexcept if you override that handler

to handle it yourself. There are some specific cases wherbaerito do that :

« If you have multiple sink pads in your element. In that case will have to decide which one of the
sink pads you will send the event to (if not all of them).

* If you need to handle that event locally. For example a retiog event that you will want to convert
before sending it upstream, or a QoS event that you want tdléan

90

Chapter 17. Events: Seeking, Navigation and More

The processing you will do in that event handler does notyeatter but there are important rules you
have to absolutely respect because one broken elementtevatier is breaking the whole pipeline
event handling. Here they are :

» Always handle events you won't handle using the defasilt_pad_event _def aul t method. This
method will depending on the event, forward the event or drop

« If you are generating some new event based on the one youedaon't forget to gst_event_unref
the event you received.

» Event handler function are supposed to return TRUE or FAlt8li€ating if the event has been
handled or not. Never simply return TRUE/FALSE in that hanaixcept if you really know that you
have handled that event.

» Remember that the event handler might be called from ardiftehread than the streaming thread, so
make sure you use appropriate locking everywhere.

17.3. All Events Together

In this chapter follows a list of all defined events that areently being used, plus how they should be
used/interpreted. You can check the what type a certaint é&esing the GST_EVENT_TYPE macro
(or if you need a string for debugging purposes you can use GSENT_TYPE_NAME).

In this chapter, we will discuss the following events:

+ Stream Start

. Caps

- Segment

- Tag (metadata)

- End of Stream (EOS)
+ Table Of Contents

- Gap

«+ Flush Start

« Flush Stop

« Quality Of Service (QOS)
« Seek Request

- Navigation

For more comprehensive information about events and hoywsheuld be used correctly in various
circumstances please consult the GStreamer design dotatanThis section only gives a general
overview.

91

Chapter 17. Events: Seeking, Navigation and More

17.3.1. Stream Start

WRITEME

17.3.2. Caps

The CAPS event contains the format description of the falgwbuffers. Se€aps negotiatiofor more
information about negotiation.

17.3.3. Segment

A segment event is sent downstream to announce the rangédfirgestamps in the stream and how
they should be transformed into running-time and streame-tiA segment event must always be sent
before the first buffer of data and after a flush (see above).

The first segment event is created by the element drivingifiedipe, like a source operating in
push-mode or a demuxer/decoder operating pull-basedséhiment event then travels down the
pipeline and may be transformed on the way (a decoder, fanple might receive a segment eventin
BYTES format and might transform this into a segment eveMiMES format based on the average
bitrate).

Depending on the element type, the event can simply be foledansingyst _pad_event _def aul t

(), oritshould be parsed and a modified event should be senthenlast is true for demuxers, which
generally have a byte-to-time conversion concept. Thewtiis usually byte-based, so the incoming
event will have an offset in byte units (GST_FORMAT_BYTE®). Elements downstream, however,
expect segment events in time units, so that it can be usaghthsonize against the pipeline clock.
Therefore, demuxers and similar elements should not fahtvee event, but parse it, free it and send a
segment event (in time units, GST_FORMAT _TIME) further catveam.

The segment event is created using the fungjiin_event _new _segnent (). See the API reference
and design document for details about its parameters.

Elements parsing this event can use gst_event_parse_sgjtoextract the event details. Elements
may find the GstSegment API useful to keep track of the cusegnent (if they want to use it for
output clipping, for example).

17.3.4. Tag (metadata)

Tagging events are being sent downstream to indicate tseatagarsed from the stream data. This is
currently used to preserve tags during stream transcodingéne format to the other. Tags are

92

Chapter 17. Events: Seeking, Navigation and More

discussed extensively @hapter 22Most elements will simply forward the event by calling
gst _pad_event _default ().

The tag event is created using the functien _event _new tag (), but more often elements will send
a tag event downstream that will be converted into a messagjfeedous by sink elements. All of these
functions require a filled-in taglist as argument, whichytiagll take ownership of.

Elements parsing this event can use the funajiin event _parse_tag () to acquire the taglist that
the event contains.

17.3.5. End of Stream (EOS)

End-of-stream events are sent if the stream that an elererds ®ut is finished. An element receiving
this event (from upstream, so it receives it on its sinkpaitl)generally just process any buffered data (if
there is any) and then forward the event further downstrddmagst _pad_event _default () takes
care of all this, so most elements do not need to support¥kisteExceptions are elements that
explicitly need to close a resource down on EOS, and N-tefehts. Note that the stream itselfista
resource that should be closed down on EOS! Applicationsihsigek back to a point before EOS and
continue playing again.

The EOS event has no properties, which makes it one of thdesstrgvents in GStreamer. It is created
using thegst _event _new_eos() function.

It is important to note thadnly elements driving the pipeline should ever send an E@8tdfryour
element is chain-based, it is not driving the pipeline. GHaased elements should just return
GST_FLOW_EOS from their chain function at the end of theastréor the configured segment), the
upstream element that is driving the pipeline will then teliee of sending the EOS event (or
alternatively post a SEGMENT_DONE message on the bus dépgod the mode of operation). If you
are implementing your own source element, you also do nat teeever manually send an EOS event,
you should also just return GST_FLOW_EOS in your create ldiufilction (assuming your element
derives from GstBaseSrc or GstPushSrc).

17.3.6. Table Of Contents

WRITEME

17.3.7. Gap

WRITEME

93

Chapter 17. Events: Seeking, Navigation and More

17.3.8. Flush Start

The flush start event is sent downstream (in push mode) oragwst(in pull mode) if all buffers and
caches in the pipeline should be emptied. “Queue” elemeititempty their internal list of buffers when
they receive this event, for example. File sink elements (&lesink”) will flush the kernel-to-disk
cachef{datasync () orfflush ())when they receive this event. Normally, elements recgitfiris
event will simply just forward it, since most filter or filtéike elements don’t have an internal cache of
data.gst _pad_event _default () does justthat, so for most elements, itis enough to forwaed t
event using the default event handler.

As a side-effect of flushing all data from the pipeline, thiemt unblocks the streaming thread by
making all pads reject data until they receivelash Stopsignal (elements trying to push data will get a
FLUSHING flow return and stop processing data).

The flush-start event is created with et _event _new flush_start (). Like the EOS event, it has
no properties. This event is usually only created by elemériting the pipeline, like source elements
operating in push-mode or pull-range based demuxers/eéesod

17.3.9. Flush Stop

The flush-stop event is sent by an element driving the pipeliter a flush-start and tells pads and
elements downstream that they should accept events aretbafjain (there will be at least a
SEGMENT event before any buffers first though).

If your element keeps temporary caches of stream data, uldletear them when it receives a
FLUSH-STOP event (and also whenever its chain functionivese buffer with the DISCONT flag set).

The flush-stop event is created wight _event _new fl ush_stop (). It has one parameter that
controls if the running-time of the pipeline should be rase or not. Normally aftera flushing seek, the
running_time is set back to 0.

17.3.10. Quality Of Service (QOS)

The QOS event contains a report about the current real-terfeppnance of the stream. See more info in
Chapter 19

17.3.11. Seek Request

Seek events are meant to request a new stream position tergkerithis new position can be set in
several formats (time, bytes or “default units” [a term tating frames for video, channel-independent

94

Chapter 17. Events: Seeking, Navigation and More

samples for audio, etc.]). Seeking can be done with respebetend-of-file or start-of-file, and usually
happens in upstream direction (downstream seeking is dpgeritling a SEGMENT event with the
appropriate offsets for elements that support that, lilesifilk).

Elements receiving seek events should, depending on threeatdype, either just forward it upstream
(filters, decoders), change the format in which the evenivisrgand then forward it (demuxers), or
handle the event by changing the file pointer in their intestream resource (file sources,
demuxers/decoders driving the pipeline in pull-mode) onething else.

Seek events are built up using positions in specified foriftiate, bytes, units). They are created using
the functiongst _event _new_seek (). Note that many plugins do not support seeking from the end of
the stream. An element not driving the pipeline and forwagdi seek request should not assume that the
seek succeeded or actually happened, it should operate baske SEGMENT events it receives.

Elements parsing this event can do this ugiag_event _parse_seek().

17.3.12. Navigation

Navigation events are sent upstream by video sinks to infgrstream elements of where the mouse
pointer is, if and where mouse pointer clicks have happenreitikeys have been pressed or released.

All this information is contained in the event structure wlhcan be obtained with
gst _event _get _structure ().

Check out the navigationtest element in gst-plugins-good idea how to extract navigation
information from this event.

95

Chapter 18. Clocking

When playing complex media, each sound and video samplebeysitiyed in a specific order at a
specific time. For this purpose, GStreamer provides a spnéhation mechanism.

18.1. Clocks

Time in GStreamer is defined as the value returned from acpéatiGst Cl ock object from the method
gst _clock_get _tine ().

In a typical computer, there are many sources that can beassadme source, e.g., the system time,
soundcards, CPU performance counters, ... For this retisme, are mangst Cl ock implementations

available in GStreamer. The clock time doesn’t always $tanh 0 or from some known value. Some

clocks start counting from some known start date, otherkslatart counting since last reboot, etc...

As clocks return an absolute measure of time, they are natllysised directly. Instead, differences
between two clock times are used to measure elapsed timedangto a clock.

18.2. Clock running-time

A clock returns theabsolute-time according to that clock witgst _cl ock_get _ti me (). From the
absolute-time is aunning-time calculated, which is simply the difference between a prevgnapshot
of the absolute-time called thmse-time. So:

running-time = absolute-time - base-time

A GStreametGst Pi pel i ne object maintains &st Cl ock object and a base-time when it goes to the
PLAYING state. The pipeline gives a handle to the sele@add ock to each element in the pipeline
along with selected base-time. The pipeline will selectsebiime in such a way that the running-time
reflects the total time spent in the PLAYING state. As a resultten the pipeline is PAUSED, the
running-time stands still.

Because all objects in the pipeline have the same clock aseltirae, they can thus all calculate the
running-time according to the pipeline clock.

96

Chapter 18. Clocking

18.3. Buffer running-time

To calculate a buffer running-time, we need a buffer tinegtand the SEGMENT event that preceeded
the buffer. First we can convert the SEGMENT event intgsaSegnent object and then we can use the
gst_segnent _to_runni ng_time () functionto perform the calculation of the buffer running.

Synchronization is now a matter of making sure that a bufiér & certain running-time is played when
the clock reaches the same running-time. Usually this @dbne by sink elements. Sink also have to
take into account the latency configured in the pipeline altbithis to the buffer running-time before
synchronizing to the pipeline clock.

18.4. Obligations of each element.

Let us clarify the contract between GStreamer and each eleméhe pipeline.

18.4.1. Non-live source elements

Non-live source elements must place a timestamp in eackrthfit they deliver when this is possible.
They must choose the timestamps and the values of the SEGMEST in such a way that the
running-time of the buffer starts from 0.

Some sources, such as filesrc, is not able to generate timestn all buffers. It can and must however
create a timestamp on the first buffer (with a running-time)of

The source then pushes out the SEGMENT event followed byirttestamped buffers.

18.4.2. Live source elements

Live source elements must place a timestamp in each bufiettiby deliver. They must choose the
timestamps and the values of the SEGMENT event in such a veaytte running-time of the buffer
matches exactly the running-time of the pipeline clock wtienfirst byte in the buffer was captured.

18.4.3. Parser/Decoder/Encoder elements

Parser/Decoder elements must use the incoming timestamdpgsaasfer those to the resulting output
buffers. They are allowed to interpolate or reconstrucetamps on missing input buffers when they
can.

97

Chapter 18. Clocking

18.4.4. Demuxer elements

Demuxer elements can usually set the timestamps storettitige media file onto the outgoing buffers.
They need to make sure that outgoing buffers that are to lyeglat the same time have the same
running-time. Demuxers also need to take into account thenring timestamps on buffers and use that
to calculate an offset on the outgoing buffer timestamps.

18.4.5. Muxer elements

Muxer elements should use the incoming buffer running-tionaux the different streams together. They
should copy the incoming running-time to the outgoing husife

18.4.6. Sink elements

If the element is intended to emit samples at a specific tiea (e playing), the element should
require a clock, and thus implement the metked_cl ock.

The sink should then make sure that the sample with runrimg-is played exactly when the pipeline
clock reaches that running-time + latency. Some elemerghtmise the clock APl such as

gst_cl ock_i d_wai t () to perform this action. Other sinks might need to use othemmaef
scheduling timely playback of the data.

98

Chapter 19. Quality Of Service (Qo0S)

Quality of Service in GStreamer is about measuring andiagitihe real-time performance of a pipeline.
The real-time performance is always measured relativeapifeline clock and typically happens in the
sinks when they synchronize buffers against the clock.

When buffers arrive late in the sink, i.e. when their runnfimge is smaller than that of the clock, we say
that the pipeline is having a quality of service problem.Sehare a few possible reasons:

- High CPU load, there is not enough CPU power to handle tharstreausing buffers to arrive late in
the sink.

« Network problems

« Other resource problems such as disk load, memory bot#sretc

The measurements result in QOS events that aim to adjusatheate in one or more upstream
elements. Two types of adjustments can be made:

- Short time "emergency" corrections based on latest obsenvia the sinks.

Long term rate corrections based on trends observed inrks.si

It is also possible for the application to artificially inthace delay between synchronized buffers, this is
called throttling. It can be used to limit or reduce the fraate, for example.

19.1. Measuring QoS

Elements that synchronize buffers on the pipeline clockwsilially measure the current QoS. They will
also need to keep some statistics in order to generate thecQ€s

For each buffer that arrives in the sink, the element needaltmlate how late or how early it was. This
is called the jitter. Negative jitter values mean that thidywwas early, positive values mean that the
buffer was late. the jitter value gives an indication of hawlg/late a buffer was.

A synchronizing element will also need to calculate how miilcle elapsed between receiving two
consecutive buffers. We call this the processing time bee#hat is the amount of time it takes for the
upstream element to produce/process the buffer. We canareripis processing time to the duration of
the buffer to have a measurement of how fast upstream campeatita, called the proportion. If, for
example, upstream can produce a buffer in 0.5 seconds obhdéang, it is operating at twice the
required speed. If, on the other hand, it takes 2 second®thupe a buffer with 1 seconds worth of data,

99

Chapter 19. Quality Of Service (QoS)

upstream is producing buffers too slow and we won’t be ablesp sycnhronization. Usually, a running
average is kept of the proportion.

A synchronizing element also needs to measure its own pedice in order to figure out if the
performace problem is upstream of itself.

These measurements are used to construct a QOS event thiat ispstream. Note that a QoS event is
sent for each buffer that arrives in the sink.

19.2. Handling QoS

An element will have to install an event function on its seupads in order to receive QOS events.
Usually, the element will need to store the value of the QC&heand use them in the data processing
function. The element will need to use a lock to protect t@s8 values as shown in the example below.
Also make sure to pass the QoS event upstream.

[...]

case GST_EVENT_QOCs:

{
Gst QOSType type;
gdoubl e proportion;
GstCl ockTineDi ff diff;
Gst Cl ockTi me ti nmestanp;

gst _event _parse_qos (event, & ype, &proportion, &diff, & inestanp);
GST_OBJECT_LOCK (decoder);

priv->qos_proportion = proportion;

priv->qos_tinmestanp = tinmestanp;

priv->qos_diff = diff;

GST_OBJECT_UNLOCK (decoder);

res = gst_pad_push_event (decoder->sinkpad, event);
br eak;

With the QoS values, there are two types of corrections thalement can do:

100

Chapter 19. Quality Of Service (QoS)

19.2.1. Short term correction

The timestamp and the jitter value in the QOS event can betogeetform a short term correction. If the
jitter is positive, the previous buffer arrived late and ve@ de sure that a buffer with a timestamp <
timestamp + jitter is also going to be late. We can thus drbpudfers with a timestamp less than
timestamp + jitter.

If the buffer duration is known, a better estimation for tlextlikely timestamp as: timestamp + 2 * jitter
+ duration.

A possible algorithm typically looks like this:

[...]

GST_OBJECT_LCOCK (dec);

gos_proportion = priv->qos_proportion;
gos_tinestanp = priv->qos_tinestanp;
qos_diff = priv->qos_diff;
GST_OBJECT_UNLOCK (dec);

/+ calculate the earliest valid tinmestanp */
if (GLIKELY (GST_CLOCK TIME IS VALID (qos_tinmestanp))) {
if (G_UNLIKELY (qos_diff > 0)) {
earliest_tine = qos_tinestanp + 2 » qos_diff + frame_duration;
} else {
earliest_time = qos_timestanp + qos_diff;

}

} else {
earliest _tinme = GST_CLOCK TI ME_NONE;

}

/+* conpare earliest_tine to running-tine of next buffer =/
if (earliest_time > tinestanp)
goto drop_buffer;

[...]

19.2.2. Long term correction

Long term corrections are a bit more difficult to perform. ¥iely on the value of the proportion in the
QOS event. Elements should reduce the amount of resouiegsdimsume by the proportion field in the
QoS message.

101

Chapter 19. Quality Of Service (QoS)

Here are some possible strategies to achieve this:

- Permanently dropping frames or reducing the CPU or bantiwatjuirements of the element. Some
decoders might be able to skip decoding of B frames.

« Switch to lower quality processing or reduce the algorithogmplexity. Care should be taken that
this doesn’t introduce disturbing visual or audible glash

- Switch to a lower quality source to reduce network bandwidth

- Assign more CPU cycles to critical parts of the pipeline.si¢ould, for example, be done by
increasing the thread priority.

In all cases, elements should be prepared to go back to theiral processing rate when the proportion
member in the QOS event approaches the ideal proportioafdgain.

19.3. Throttling

Elements synchronizing to the clock should expose a prgpetonfigure them in throttle mode. In
throttle mode, the time distance between buffers is kepttmrdigurable throttle interval. This means
that effectively the buffer rate is limited to 1 buffer perdittle interval. This can be used to limit the
framerate, for example.

When an element is configured in throttling mode (this is Ugwaly implemented on sinks) it should
produce QoS events upstream with the jitter field set to trattth interval. This should instruct
upstream elements to skip or drop the remaining buffersarctimfigured throttle interval.

The proportion field is set to the desired slowdown needeétdhg desired throttle interval.
Implementations can use the QoS Throttle type, the prapoaind the jitter member to tune their
implementations.

The default sink base class, has the “throttle-time” prypfer this feature. You can test this with:
gst-launch-1.0 videotestsrc ! xvimagesink throttle-time=500000000

19.4. QoS Messages

In addition to the QOS events that are sent between elenretits pipeline, there are also QOS
messages posted on the pipeline bus to inform the applicafiQoS decisions. The QOS message
contains the timestamps of when something was dropped alithghe amount of dropped vs processed
items. Elements must post a QOS message under these coaditio

« The element dropped a buffer because of QoS reasons.

102

Chapter 19. Quality Of Service (QoS)
- An element changes its processing strategy because of @e&®(quality). This could include a

decoder that decides to drop every B frame to increase itepsing speed or an effect element
switching to a lower quality algorithm.

103

Chapter 20. Supporting Dynamic Parameters

Warning, this part describes 0.10 and is outdated.

Sometimes object properties are not powerful enough tachthie parameters that affect the behaviour
of your element. When this is the case you can mark these gaeasras being Controllable. Aware
applications can use the controller subsystem to dynalyiadjust the property values over time.

20.1. Getting Started

The controller subsystem is contained within ¢3¢ cont r ol | er library. You need to include the
header in your element’s source file:

#i ncl ude <gst/gst. h>
#i ncl ude <gst/controller/gstcontroller.h>

Even though thegst cont rol | er library may be linked into the host application, you shoulake sure
it is initialized in yourpl ugi n_i ni t function:

static gbool ean
plugin_init (GstPlugin *plugin)
{

/+ initialize library */
gst_controller_init (NULL, NULL);

It makes no sense for all GObject parameter to be real-timgaited. Therefore the next step is to mark
controllable parameters. This is done by using the speaigG3T_PARAM CONTROLLABLE. when
setting up GObject params in thel ass_i ni t method.

g_object_class_install_property (gobject_class, PROP_FREQ
g_param spec_double ("freq", "Frequency", "Frequency of test signal",
0.0, 20000.0, 440.0,
G _PARAM READWRI TE | GST_PARAM CONTROLLABLE | G _PARAM STATI C_STRINGS)) ;

104

Chapter 20. Supporting Dynamic Parameters

20.2. The Data Processing Loop

In the last section we learned how to mark GObject paramsrasatiable. Application developers can
then queue parameter changes for these parameters. Tloaelpgiie controller subsystem takes is to
make plugins responsible for pulling the changes in. Thgsiires just one action:

gst _obj ect _sync_val ues(el ement, ti nest anp) ;

This call makes all parameter-changes for the given timgstactive by adjusting the GObject
properties of the element. Its up to the element to deterthimsynchronisation rate.

20.2.1. The Data Processing Loop for Video Elements

For video processing elements it is the best to synchronisevery frame. That means one would add
thegst _obj ect _sync_val ues() call described in the previous section to the data procgdainction
of the element.

20.2.2. The Data Processing Loop for Audio Elements

For audio processing elements the case is not as easy adéormiocessing elements. The problem here
is that audio has a much higher rate. For PAL video one willgrgcess 25 full frames per second, but
for standard audio it will be 44100 samples. It is rarely uk&f synchronise controllable parameters that
often. The easiest solution is also to have just one synédation call per buffer processing. This makes
the control-rate depend on the buffer size.

Elements that need a specific control-rate need to breakdht processing loop to synchronise every
n-samples.

105

Chapter 21. Interfaces

Previously, in the chaptekdding Propertieswe have introduced the concept of GObject properties of
controlling an element’s behaviour. This is very powerkulf it has two big disadvantages: first of all, it
is too generic, and second, it isn’t dynamic.

The first disadvantage is related to the customizabilithefeénd-user interface that will be built to

control the element. Some properties are more importantdtteers. Some integer properties are better
shown in a spin-button widget, whereas others would be hefpeesented by a slider widget. Such
things are not possible because the Ul has no actual meanihg application. A Ul widget that
represents a bitrate property is the same as a Ul widgetepatsents the size of a video, as long as both
are of the samePar anSpec type. Another problem, is that things like parameter grogpfunction
grouping, or parameter coupling are not really possible.

The second problem with parameters are that they are nohdgnbn many cases, the allowed values for
a property are not fixed, but depend on things that can onlyetexted at runtime. The names of inputs
fora TV card in a videodlinux source element, for example, @aly be retrieved from the kernel driver
when we've opened the device; this only happens when theeglegoes into the READY state. This
means that we cannot create an enum property type to shoto tiie user.

The solution to those problems is to create very speciatigeels of controls for certain often-used
controls. We use the concept of interfaces to achieve this.bBsis of this all is the glib

GTypel nt er f ace type. For each case where we think it's useful, we've cremetfaces which can be
implemented by elements at their own will.

One important note: interfaces dotreplace properties. Rather, interfaces should be bext to
properties. There are two important reasons for this. Biratl, properties can be more easily
introspected. Second, properties can be specified on thmaadiine ¢st - | aunch).

21.1. How to Implement Interfaces

Implementing interfaces is initiated in thget _t ype () of your element. You can register one or more
interfaces after having registered the type itself. Sorterfiaces have dependencies on other interfaces
or can only be registered by certain types of elements. Ydbwinotified of doing that wrongly when
using the element: it will quit with failed assertions, whiwill explain what went wrong. If it does, you
need to register support ftnatinterface before registering support for the interfacé yloa're wanting

to support. The example below explains how to add suppoe fmple interface with no further
dependencies.

static void gst_ny filter_sone_interface_init (GstSonelnterface xiface);

GType
gst_ny _filter_get_type (void)

106

Chapter 21. Interfaces

{
static Glype ny_filter_type = 0;

if ('my_filter_type) {
static const GIypelnfo ny_filter_info = {
si zeof (GstMyFilterd ass),
NULL,
NULL,
(GO asslnitFunc) gst_ny filter_class_init,
NULL,
NULL,
sizeof (GstMyFilter),
0,
(G nstancel nitFunc) gst_ny_filter_init
b
static const Anterfacelnfo some_interface_info = {
(G nterfacelnitFunc) gst_ny filter_sone_interface_init,
NULL,
NULL

b

ny_filter_type =
g_type_register_static (GST_TYPE_ELEMENT,
"Gst MyFilter",
&y _filter_info, 0);
g_type_add_interface_static (ny_filter_type,
GST_TYPE_SOVE_| NTERFACE,
&sone_i nterface_info);

}

return ny_filter_type;
}

static void
gst_ny filter_sone_interface_init (GstSonelnterface iface)

{

/* here, you would set virtual function pointers in the interface */

}

Or more conveniently:

static void gst_ny filter_sone_interface_init (GstSonelnterface xiface);
G _DEFI NE_TYPE_W TH_CODE (Gst MyFilter, gst_ny filter, GST_TYPE_ELEMENT,

G_| MPLEMENT_| NTERFACE (GST_TYPE_SOVE_| NTERFACE,
gst_ny filter_sone_interface_init));

107

Chapter 21. Interfaces

21.2. URI interface

WRITEME

21.3. Color Balance Interface

WRITEME

21.4. Video Overlay Interface

The #GstVideoOverlay interface is used for 2 main purposes :

- To get a grab on the Window where the video sink element isggmimender. This is achieved by
either being informed about the Window identifier that theéead sink element generated, or by forcing
the video sink element to use a specific Window identifier émdering.

- To force a redrawing of the latest video frame the video sleknent displayed on the Window. Indeed
if the #GstPipeline is in #GST_STATE_PAUSED state, movimg\Window around will damage its
content. Application developers will want to handle the &sg@events themselves and force the video
sink element to refresh the Window’s content.

A plugin drawing video output in a video window will need toveathat window at one stage or another.
Passive mode simply means that no window has been given fiupm before that stage, so the plugin
created the window by itself. In that case the plugin is resfige of destroying that window when it's
not needed any more and it has to tell the applications thamdow has been created so that the
application can use it. This is done using tieee- wi ndow handl e message that can be posted from
the plugin with thegst _vi deo_over| ay_got _wi ndow_handl e method.

As you probably guessed already active mode just meansrgeadideo window to the plugin so that
video output goes there. This is done usingdbhe_vi deo_over| ay_set _wi ndow_handl e method.

It is possible to switch from one mode to another at any monsenthe plugin implementing this
interface has to handle all cases. There are only 2 methatpltigins writers have to implement and
they most probably look like that :

static void
gst_ny_filter_set_w ndow_handl e (GstVi deoOverlay xoverlay, guintptr handle)

{
Gst MyFilter ny _filter = GST_MY_FILTER (overl ay);

if (my_filter->w ndow)

108

Chapter 21. Interfaces
gst_mny_filter_destroy_w ndow (ny_filter->w ndow);

nmy_filter->w ndow = handl e;

}

static void
gst_nmy_filter_xoverlay_init (GstVideoOverlayC ass *iface)
{

i face->set _w ndow_handl e = gst_my_filter_set_w ndow_handl e;

}

You will also need to use the interface methods to post messajen needed such as when receiving a
CAPS event where you will know the video geometry and maybaterthe window.

static MyFilterWndow =
gst_nmy _filter_wi ndow create (GstMyFilter *ny_filter, gint wdth, gint height)

{
MyFi | t er Wndow *wi ndow = g_new (MyFi | t er Wndow, 1);

gst _vi deo_overl ay_got _w ndow_handl e (GST_VI DEO OVERLAY (ny_filter), w ndow >win);
}

/+ called fromthe event handler for CAPS events */
static gbool ean
gst_nmy filter_sink_set_caps (GstMFilter »ny_filter, GstCaps *caps)

{

gint wi dth, height;

gbool ean ret;

ret = gst_structure_get_int (structure, "width", &wi dth);

ret & gst_structure_get_int (structure, "height", &height);

if (lret) return FALSE;

gst _vi deo_over| ay_prepare_wi ndow_handl e (GST_VI DEO OVERLAY (ny_filter));

if (I'ny_filter->w ndow)

ny_filter->w ndow = gst_ny_filter_create_wi ndow (ny_filter, width, height);

}

21.5. Navigation Interface

WRITEME

109

Chapter 22. Tagging (Metadata and Streaminfo)

22.1. Overview

Tags are pieces of information stored in a stream that artheaontent itself, but they rathdescribe

the content. Most media container formats support taggiragmne way or another. Ogg uses
VorbisComment for this, MP3 uses ID3, AVl and WAV use RIFR$HO list chunk, etc. GStreamer
provides a general way for elements to read tags from thamtesnd expose this to the user. The tags (at
least the metadata) will be part of the stream inside thdipgeThe consequence of this is that
transcoding of files from one format to another will autoroally preserve tags, as long as the input and
output format elements both support tagging.

Tags are separated in two categories in GStreamer, eveghlamplications won't notice anything of
this. The first are callethetadatathe second are callesfreaminfo Metadata are tags that describe the
non-technical parts of stream content. They can be changbdwneeding to re-encode the stream
completely. Examples are “author”, “title” or “album”. Tle®ntainer format might still need to be
re-written for the tags to fit in, though. Streaminfo, on thiees hand, are tags that describe the stream
contents technically. To change them, the stream needsrmé@coded. Examples are “codec” or
“bitrate”. Note that some container formats (like ID3) g@arious streaminfo tags as metadata in the
file container, which means that they can be changed so tatitn’t match the content in the file any
more. Still, they are called metadata becateshnically they can be changed without re-encoding the
whole stream, even though that makes them invalid. Filels suith metadata tags will have the same tag
twice: once as metadata, once as streaminfo.

There is no special name for tag reading elements in GStredinere are specialised elements (e.qg.
id3demux) that do nothing besides tag reading, but any @Biee element may extract tags while
processing data, and most decoders, demuxers and parsers do

A tag writer is calledragSet t er (../../gstreamer/html/GstTagSetter.html). An elemepip®rting both
can be used in a tag editor for quick tag changing (note: aegtag editing is still poorly supported at
the time of writing and usually requires tag extractiomggting and remuxing of the stream with new
tags).

22.2. Reading Tags from Streams

The basic object for tags is@t TagLi st (../../gstreamer/html/GstTagList.html). An elementttisa
reading tags from a stream should create an empty taglidilbtiis with individual tags. Empty tag
lists can be created witlpst _tag_| i st_new (). Then, the element can fill the list using

gst _tag list_add () orgst_tag_list_add_val ues ().Note that elements often read
metadata as strings, but the values in the taglist might ec¢ssarily be strings - they need to be of the
type the tag was registered as (the API documentation fdr paezlefined tag should contain the type).

110

Chapter 22. Tagging (Metadata and Streaminfo)

Be sure to use functions likgst _val ue_t ransf orm () to make sure that your data is of the right
type. After data reading, you can send the tags downstredmtlnd TAG event. When the TAG event
reaches the sink, it will post the TAG message on the pipsli@stBus for the application to pick up.

We currently require the core to know the GType of tags bettoeg are being used, so all tags must be
registered first. You can add new tags to the list of known tesjsggst _t ag_regi ster (). Ifyou

think the tag will be useful in more cases than just your ovemr&nt, it might be a good idea to add it to
gsttag. c instead. That's up to you to decide. If you want to do it in yown element, it's easiest to
register the tag in one of your class init functions, prefgracl ass_init ().

static void
gst_mnmy filter_class_init (GstMFilterd ass *kl ass)

{
[..]
gst _tag_register ("ny_tag_nanme", GST_TAG FLAG META,
G_TYPE_STRI NG

_("ny own tag"),
_("atag that is specific to my own elenent"),
NULL) ;

22.3. Writing Tags to Streams

Tag writers are the opposite of tag readers. Tag writers talkly metadata tags into account, since that's
the only type of tags that have to be written into a stream \ilidigrs can receive tags in three ways:
internal, application and pipeline. Internal tags are tagsl by the element itself, which means that the
tag writer is - in that case - a tag reader, too. Applicatigstare tags provided to the element via the
TagSetter interface (which is just a layer). Pipeline tagsags provided to the element from within the
pipeline. The element receives such tags via the GST_EVHNG event, which means that tags
writers should implment an event handler. The tag writeegponsible for combining all these three into
one list and writing them to the output stream.

The example below will receive tags from both applicatiod pipeline, combine them and write them to
the output stream. It implements the tag setter so applicatian set tags, and retrieves pipeline tags
from incoming events.

Warning, this example is outdated and doesn’t work with til@eversion of GStreamer anymore.

Glype
gst_ny _filter_get_type (void)
{

111

Chapter 22. Tagging (Metadata and Streaminfo)

[--]
static const Anterfacelnfo tag_setter_info = {
NULL,
NULL,
NUL L
s
[..]
g_type_add_interface_static (ny_filter_type,
GST_TYPE_TAG SETTER,
& ag_setter_info);
[--]
}

static void

gst_ny filter_init (GstMFilter *filter)
{

[..]

}

| *
* Wite one tag.
*/

static void
gst_ny filter_wite_ tag (const GstTagList *taglist,

const gchar *t agnamne,
gpoi nt er dat a)
{
Gst WFilter »filter = GST_MY_FILTER (data);
GstBuf fer *buffer;
guint numyvalues = gst_tag |ist_get_tag_size (list, tag_nanme),
const Gval ue *from
Gvalue to = { 0 };
g_value_init (& o, G TYPE_STRI NG ;
for (n = 0; n < numyval ues; n++) {
guint8 * data;
gsi ze si ze;
from= gst_tag_list_get_value_index (taglist, tagnanme, n);
g_value_transform (from &to);
data = g_strdup_printf ("%: %", tagnane,
g_value_get_string (&t o0));
size = strlen (data);
buf = gst_buffer_new w apped (data, size);
gst _pad_push (filter->srcpad, buf);
}
g_val ue_unset (&to);
}

112

Chapter 22. Tagging (Metadata and Streaminfo)

static void
gst_ny _filter_task func (GstEl enent el enent)
{
Gst WFilter =filter = GST_MY_FILTER (el enent);
Gst TagSetter *tagsetter = GST_TAG SETTER (el enent);
Gst Dat a *dat a;
Gst Event *event;
gbool ean eos = FALSE;
Gst TagLi st »taglist = gst_tag_list_new ();

while (!leos) {
data = gst_pad_pull (filter->sinkpad);

/* W’ re not very nmuch interested in data right now */
if (GST_I S _BUFFER (data))

gst _buffer_unref (GST_BUFFER (data));
event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_TAG
gst _tag_list_insert (taglist, gst_event_tag_get_list (event),
GST_TAG_MERGE_PREPEND) ;
gst _event _unref (event);
br eak;
case GST_EVENT_ECS:
eos = TRUE;
gst _event _unref (event);
br eak;
defaul t:
gst _pad_event _default (filter->sinkpad, event);
br eak;
}
}

/* merge tags with the ones retrieved fromthe application */
if ((gst_tag_setter_get tag_ list (tagsetter)) {

gst _tag_ list_insert (taglist,

gst _tag_setter_get_tag list (tagsetter),

gst _tag_setter_get _tag_nerge_node (tagsetter));

}

/* wite tags */
gst _tag list_foreach (taglist, gst_nmy filter_wite_ tag, filter);

/* signal ECS */
gst _pad_push (filter->srcpad, gst_event_new (GST_EVENT_EOS));

113

Chapter 22. Tagging (Metadata and Streaminfo)
Note that normally, elements would not read the full stre@fot®e processing tags. Rather, they would

read from each sinkpad until they've received data (singe tesually come in before the first data
buffer) and process that.

114

V. Creating special element types

By now, we have looked at pretty much any feature that can limedded into a GStreamer element.
Most of this has been fairly low-level and given deep inssghthow GStreamer works internally.
Fortunately, GStreamer contains some easier-to-usddnésrto create such elements. In order to do
that, we will look closer at the element types for which G&tner provides base classes (sources, sinks
and transformation elements). We will also look closer atsdypes of elements that require no specific
coding such as scheduling-interaction or data passingather require specific pipeline control (e.g.
N-to-1 elements and managers).

Chapter 23. Pre-made base classes

So far, we've been looking at low-level concepts of creating type of GStreamer element. Now, let's
assume that all you want is to create an simple audiosinkitbets exactly the same as, say, “esdsink”,
or a filter that simply normalizes audio volume. Such elemen¢ very general in concept and since they
do nothing special, they should be easier to code than tagegour own scheduler activation functions
and doing complex caps negotiation. For this purpose, @Biee provides base classes that simplify
some types of elements. Those base classes will be discng$esichapter.

23.1. Writing a sink

Sinks are special elements in GStreamer. This is becauselsiments have to take careperoll,
which is the process that takes care that elements goinghiatesT_STATE_PAUSED state will have
buffers ready after the state change. The result of thisaissiich elements can start processing data
immediately after going into theST_STATE_PLAYI NGstate, without requiring to take some time to
initialize outputs or set up decoders; all that is done alydsefore the state-change to
GST_STATE_PAUSED successfully completes.

Preroll, however, is a complex process that would requiegesdime code in many elements. Therefore,
sink elements can derive from ti@st BaseSi nk base-class, which does preroll and a few other utility
functions automatically. The derived class only needs f@eément a bunch of virtual functions and will
work automatically.

The base class implement much of the synchronization lbgice sink has to perform.

TheGst BaseSi nk base-class specifies some limitations on elements, though:

« It requires that the sink only has one sinkpad. Sink eleméat:need more than one sinkpad, must
make a manager element with multiple GstBaseSink elemesitig.

Sink elements can derive fro@st BaseSi nk using the usuabObj ect convenience macro
G _DEFI NE_TYPE ():

G DEFI NE_TYPE (Gst MySi nk, gst_ny_sink, GST_TYPE_BASE_SI NK);

[.-]

static void
gst_nmy_sink_class_init (Gst WSinkC ass * kl ass)
{
kl ass->set_caps = [..];
kl ass->render = [..];
[..]
}

116

Chapter 23. Pre-made base classes

The advantages of deriving fro@st BaseSi nk are numerous:

- Derived implementations barely need to be aware of preand,do not need to know anything about
the technical implementation requirements of preroll. bhse-class does all the hard work.

Less code to write in the derived class, shared code (andstiared bugfixes).

There are also specialized base classes for audio and lédfledook at those a bit.

23.1.1. Writing an audio sink

Essentially, audio sink implementations are just a speecis¢ of a general sink. An audio sink has the
added complexity that it needs to schedule playback of sesnfilmust match the clock selected in the
pipeline against the clock of the audio device and calcuatecompensate for drift and jitter.

There are two audio base classes that you can choose to fferivadepending on your needs:

Gst Audi oBasesi nk andGst Audi 0Si nk. The audiobasesink provides full control over how
synchronization and scheduling is handled, by using a tiffgbthat the derived class controls and
provides. The audiosink base-class is a derived class afttimbasesink, implementing a standard
ringbuffer implementing default synchronization and pdavg a standard audio-sample clock. Derived
classes of this base class merely need to providspan (), _close () anda wite () function
implementation, and some optional functions. This shouffice for many sound-server output elements
and even most interfaces. More demanding audio systents asutack, would want to implement the
Gst Audi oBaseSi nk base-class.

TheGst BaseAusi 0Si nk has little to no limitations and should fit virtually everyphlementation, but is
hard to implement. Th&st Audi 0Si nk, on the other hand, only fits those systems with a simpén

() /close () /wite () API (which practically means pretty much all of them), bus liae
advantage that it is a lot easier to implement. The benefitsi®second base class are large:

- Automatic synchronization, without any code in the derigtbs.

« Also automatically provides a clock, so that other sinkg.(i case of audio/video playback) are
synchronized.

- Features can be added to all audiosinks by making a change bese class, which makes
maintenance easy.

- Derived classes require only three small functions, plusesgthj ect boilerplate code.

In addition to implementing the audio base-class virtuattions, derived classes can (should) also
implement thesst BaseSi nk set _caps () andget _caps () virtual functions for negotiation.

117

Chapter 23. Pre-made base classes

23.1.2. Writing a video sink

Writing a videosink can be done using t&t Vi deoSi nk base-class, which derives from

Gst BaseSi nk internally. Currently, it does nothing yet but add anoth@npile dependency, so derived
classes will need to implement all base-sink virtual fumresi. When they do this correctly, this will have
some positive effects on the end user experience with theogidk:

« Because of preroll (and thr er ol | () virtual function), it is possible to display a video frame
already when going into theST_STATE_PAUSED state.

- By adding new features st Vi deoSi nk, it will be possible to add extensions to videosinks that
affect all of them, but only need to be coded once, which isgehunaintenance benefit.

23.2. Writing a source

In the previous part, particularRroviding random acceswae have learned that some types of elements
can provide random access. This applies most definitelyuocselements reading from a randomly
seekable location, such as file sources. However, othecs@lements may be better described as a live
source element, such as a camera source, an audio card aodrsech; those are not seekable and do
not provide byte-exact access. For all such use cases,dB8trerovides two base classes:

Gst BaseSr ¢ for the basic source functionality, adt PushSr ¢, which is a non-byte exact source
base-class. The pushsource base class itself derives &sesdurce as well, and thus all statements
about the basesource apply to the pushsource, too.

The basesrc class does several things automatically fivediezlasses, so they no longer have to worry
about it:

- Fixes toGst BaseSr ¢ apply to all derived classes automatically.

- Automatic pad activation handling, and task-wrapping isecae get assigned to start a task ourselves.

TheGst BaseSr ¢ may not be suitable for all cases, though; it has limitations

- There is one and only one sourcepad. Source elements regjmitiltiple sourcepads must implement
a manager bin and use multiple source elements internattyate a manager element that uses a
source element and a demuxer inside.

It is possible to use special memory, such as X server menwnggrs ommap () 'ed memory areas, as
data pointers in buffers returned from ttweeat e() virtual function.

118

Chapter 23. Pre-made base classes

23.2.1. Writing an audio source

An audio source is nothing more but a special case of a pustesoiudio sources would be anything
that reads audio, such as a source reading from a soundsekeznel interface (such as ALSA) or a test
sound / signal generator. GStreamer provides two baseeslasimilar to the two audiosinks described in
Writing an audio sinkone is ringbuffer-based, and requires the derived clatskcare of its own
scheduling, synchronization and such. The other is basé¢hi®@st Audi oBaseSr ¢ and is called

Gst Audi 0Sr ¢, and provides a simplepen (),cl ose () andread () interface, which is rather
simple to implement and will suffice for most soundserverses and audio interfaces (e.g. ALSA or
OSS) out there.

TheGst Audi 0Sr c base-class has several benefits for derived classes, ohttoplenefits of the
Gst PushSr ¢ base-class that it is based on:

« Does syncronization and provides a clock.

- New features can be added to it and will apply to all derivedsts automatically.

23.3. Writing a transformation element

A third base-class that GStreamer provides isGieBaseTr ansf or m This is a base class for elements
with one sourcepad and one sinkpad which act as a filter of somgesuch as volume changing, audio
resampling, audio format conversion, and so on and so oneTifiguite a lot of bookkeeping that such
elements need to do in order for things such as buffer allmté&brwarding, passthrough, in-place
processing and such to all work correctly. This base class db that for you, so that you just need to do
the actual processing.

Since theGst BaseTr ansf or mis based on the 1-to-1 model for filters, it may not apply wektements
such as decoders, which may have to parse properties frostréieam. Also, it will not work for
elements requiring more than one sourcepad or sinkpad.

119

Chapter 24. Writing a Demuxer or Parser

Demuxers are the 1-to-N elements that need very special Theg are responsible for timestamping
raw, unparsed data into elementary video or audio streamdgh&re are many things that you can
optimize or do wrong. Here, several culprits will be men&drand common solutions will be offered.
Parsers are demuxers with only one source pad. Also, thgycanthe stream into buffers, they don't
touch the data otherwise.

As mentioned previously i€aps negotiatigrdemuxers should use fixed caps, since their data type will
not change.

As discussed iifferent scheduling modeslemuxer elements can be written in multiple ways:

« They can be the driving force of the pipeline, by runningtiosin task. This works particularly well
for elements that need random access, for example an AVI xemu

« They can also run in push-based mode, which means that areapstlement drives the pipeline.
This works particularly well for streams that may come froatwork, such as Ogg.

In addition, audio parsers with one output can, in theosg &le written in random access mode.
Although simple playback will mostly work if your elementlgraccepts one mode, it may be required
to implement multiple modes to work in combination with ailts of applications, such as editing. Also,
performance may become better if you implement multiple eso&edifferent scheduling modds

see how an element can accept multiple scheduling modes.

120

Chapter 25. Writing a N-to-1 Element or Muxer

N-to-1 elements have been previously mentioned and diedussothChapter 12and in

Different scheduling mode3he main noteworthy thing about N-to-1 elements is thahgea is
push-based in its own thread, and the N-to-1 element syncdesthose streams by
expected-timestamp-based logic. This means it lets &asts wait except for the one that provides the
earliest next-expected timestamp. When that stream hasgase buffer, the next
earliest-expected-timestamp is calculated, and we stak Where we were, until all streams have
reached EOS. There is a helper base class, cadledol | ect Pads, that will help you to do this.

Note, however, that this helper class will only help you wgthbbing a buffer from each input and
giving you the one with earliest timestamp. If you need amgimore difficult, such as
"don’t-grab-a-new-buffer until a given timestamp” or sdhmeg like that, you’ll need to do this yourself.

121

Chapter 26. Writing a Manager

Managers are elements that add a function or unify the fonaif another (series of) element(s).
Managers are generallyGat Bi n with one or more ghostpads. Inside them is/are the actualesis)
that matters. There is several cases where this is usefubxample:

- To add support for private events with custom event handbranother element.
« To add support for custom padiuery () or_convert () handling to another element.

- To add custom data handling before or after another elesdata handler function (generally its
_chain () function).

« To embed an element, or a series of elements, into sometintpbks and works like a simple
element to the outside world. This is particular handy fopliementing sources and sink elements
with multiple pads.

Making a manager is about as simple as it gets. You can dedwedGst Bi n, and in most cases, you
can embed the required elements in thei t () already, including setup of ghostpads. If you need any
custom data handlers, you can connect signals or embed adselemment which you control.

122

V. Appendices

This chapter contains things that don’t belong anywhere els

Chapter 27. Things to check when writing an
element

This chapter contains a fairly random selection of thingsik@ care of when writing an element. It's up
to you how far you're going to stick to those guidelines. Hoarekeep in mind that when you're writing
an element and hope for it to be included in the mainstreame@®ier distribution, ihas tomeet those
requirements. As far as possible, we will try to explain whgge requirements are set.

27.1. About states

- Make sure the state of an element gets reset when goixgLto. Ideally, this should set all object
properties to their original state. This function shoukbabe called from _init.

- Make sure an element forgedgerythingabout its contained stream when going frBAUSED to
READY. In READY, all stream states are reset. An element that goes PAWSED to READY and back to
PAUSED should start reading the stream from the start again.

- People that usgst-launch for testing have the tendency to not care about cleaninghig.i$wrong.
An element should be tested using various applicationsteviesting not only means to “make sure it
doesn’t crash”, but also to test for memory leaks using teoth avalgrind. Elements have to be
reusable in a pipeline after having been reset.

27.2. Debugging

- Elements shouldeveruse their standard output for debugging (using functioeb sgpri ntf ()
org_print ()).Instead, elements should use the logging functions gea/by GStreamer, named
GST_DEBUG (), GST_LOG (), GST_I NFO (), GST_WARNI NG () andGST_ERRCR (). The various
logging levels can be turned on and off at runtime and canltleussed for solving issues as they turn
up. Instead of5ST_LOG () (as an example), you can also &I LOG OBJECT () to print the
object that you're logging output for.

- ldeally, elements should use their own debugging catedtogt elements use the following code to
do that:

GST_DEBUG_CATEGORY_STATI C (nyel enent _debug) ;
#defi ne GST_CAT_DEFAULT nyel enent _debug

-]

static void
gst _nyel enent _class_init (Gst Wel enent C ass *kl ass)
{
[..]
GST_DEBUG_CATEGORY_INI'T (nyel ement _debug, "nyel enent”,
0, "My own elenment");

124

Chapter 27. Things to check when writing an element

At runtime, you can turn on debugging using the commandlpi®a --gst-debug=myelement:5.

« Elements should use GST_DEBUG_FUNCPTR when setting padifuns or overriding element
class methods, for example:

gst _pad_set _event _func (nyel enent - >srcpad,
GST_DEBUG_FUNCPTR (my_el enent _src_event));

This makes debug output much easier to read later on.

- Elements that are aimed for inclusion into one of the GSteranodules should ensure consistent
naming of the element name, structures and function nansegxample, if the element type is
GstYellowFooDec, functions should be prefixed with gstlowl foo_dec_and the element should be
registered as 'yellowfoodec’. Separate words should bars¢pin this scheme, so it should be
GstFooDec and gst_foo_dec, and not GstFoodec and gst doode

27.3. Querying, events and the like

- All elements to which it applies (sources, sinks, demux&nsuld implement query functions on their
pads, so that applications and neighbour elements cangeitpgecurrent position, the stream length
(if known) and so on.

- Elements should make sure they forward events they do naidarith gst_pad_event_default (pad,
parent, event) instead of just dropping them. Events shoeNer be dropped unless specifically
intended.

- Elements should make sure they forward queries they do mali&avith gst_pad_query_default (pad,
parent, query) instead of just dropping them.

27.4. Testing your element

« gst-launch is nota good tool to show that your element is finished. Applicagisnch as Rhythmbox
and Totem (for GNOME) or AmaroK (for KDEre. gst-launch will not test various things such as
proper clean-up on reset, event handling, querying and so on

« Parsers and demuxers should make sure to check their input. ¢annot be trusted. Prevent possible
buffer overflows and the like. Feel free to error out on unvecable stream errors. Test your demuxer
using stream corruption elements suclbasaknydat a (included in gst-plugins). It will randomly
insert, delete and modify bytes in a stream, and is therefgaod test for robustness. If your element
crashes when adding this element, your element needs fikihgrrors out properly, it's good
enough. Ideally, it'd just continue to work and forward dasamuch as possible.

- Demuxers should not assume that seeking works. Be prepaveatk with unseekable input streams
(e.g. network sources) as well.

125

Chapter 27. Things to check when writing an element

« Sources and sinks should be prepared to be assigned anlottietteen the one they expose
themselves. Always use the provided clock for synchrominatlse you'll get A/V sync issues.

126

Chapter 28. Porting 0.8 plug-ins to 0.10

This section of the appendix will discuss shortly what cresi® plugins will be needed to quickly and
conveniently port most applications from GStreamer-0.8&reamer-0.10, with references to the
relevant sections in this Plugin Writer's Guide where nekdféith this list, it should be possible to port
most plugins to GStreamer-0.10 in less than a day. Excepéiomelements that will require a base class
in 0.10 (sources, sinks), in which case it may take a lot lordgpending on the coder’s skills (however,
when using th&st BaseSi nk andGst BaseSr ¢ base-classes, it shouldn’t be all too bad), and elements
requiring the deprecated bytestream interface, whichlgitake 1-2 days with random access. The
scheduling parts of muxers will also need a rewrite, whichtake about the same amount of time.

28.1. List of changes

- Discont events have been replaced by newsegment eventdOnitds essential that you send a
newsegment event downstream before you send your firstri{urff@.8 the scheduler would invent
discont events if you forgot them, in 0.10 this is no longer thse).

- In 0.10, buffers have caps attached to them. Elements shdlatthte new buffers with
gst _pad_al | oc_buffer ().SeeCaps negotiatiofor more details.

- Most functions returning an object or an object propertyehlagen changed to return its own reference
rather than a constant reference of the one owned by thetatsjel€. The reason for this change is
primarily thread-safety. This means effectively that retualues of functions such as
gst _el ement _get _pad (), gst_pad_get _nane (),gst_pad_get_parent (),
gst _obj ect _get _parent (), and many more like these have to be free’ed or unrefererftard a
use. Check the API references of each function to know far sivether return values should be
free’ed or not.

- In 0.8, scheduling could happen in any way. Source elemenislde_get () -based or | oop
() -based, and any other element could b&ai n () -based or | oop () -based, with no limitations.
Scheduling in 0.10 is simpler for the scheduler, and the eferns expected to do some more work.
Pads get assigned a scheduling mode, based on which theitfeamnoperate in random access-mode,
in pipeline driving mode or in push-mode. all this is docuneelin detail in
Different scheduling mode#s a result of this, the bytestream object no longer exidements
requiring byte-level access should now use random accettgeorsinkpads.

« Negotiation is asynchronous. This means that downstregotiation is done as data comes in and
upstream negotiation is done whenever renegotiation isimed; All details are described in
Caps negotiation

- For as far as possible, elements should try to use existisg tlasses in 0.10. Sink and source
elements, for example, could derive frat BaseSr c andGst BaseSi nk. Audio sinks or sources
could even derive from audio-specific base classes. Altiegibase classes have been discussed in
Pre-made base classasd the next few chapters.

- In 0.10, event handling and buffers are separated once.ag@gmeans that in order to receive
events, one no longer has to set @83_FLAG EVENT_AWARE flag, but can simply set an event
handling function on the element’s sinkpad(s), using tiefiongst _pad_set _event _functi on
(). The_chai n () -function will only receive buffers.

127

Chapter 28. Porting 0.8 plug-ins to 0.10

Although core will wrap most threading-related locking yau (e.g. it takes the stream lock before
calling your data handling functions), you are still resgibfe for locking around certain functions,
e.g. object properties. Be sure to lock properly here, sijpgications will change those properties in
a different thread than the thread which does the actualpdessing! You can use the
GST_OBJECT_LOCK () andGST_OBJECT_UNLOCK () helpers in most cases, fortunately, which
grabs the default property lock of the element.

Gst Val ueFi xedLi st and allx_fixed_|list_» () functionswere renamed t&t Val ueArr ay
and+_array_=* ().

The semantics of GST_STATE_PAUSED and GST_STATE_PLAYIN@echanged for elements

that are not sink elements. Non-sink elements need to baé@btEept and process data already in the
GST_STATE_PAUSED state now (i.e. when prerolling the piggl More details can be found in
Chapter 8

If your plugin’s state change function hasn’t been superdday virtual start() and stop() methods of
one of the new base classes, then your plugin’s state changgédns may need to be changed in order
to safely handle concurrent access by multiple threads: typical state change function will now

first handle upwards state changes, then chain up to thecstatge function of the parent class
(usually GstElementClass in these cases), and only thelldndownwards state changes. See the
vorbis decoder plugin in gst-plugins-base for an example.

The reason for this is that in the case of downwards stategesayou don’t want to destroy allocated
resources while your plugin’s chain function (for exampéestill accessing those resources in another
thread. Whether your chain function might be running or rejgehds on the state of your plugin’s
pads, and the state of those pads is closely linked to the atéhe element. Pad states are handled in
the GstElement class’s state change function, includingerlocking, that's why it is essential to
chain up before destroying allocated resources.

As already mentioned above, you should really rewrite ydugip to derive from one of the new base
classes though, so you don't have to worry about these thasgthe base class will handle it for you.
There are no base classes for decoders and encoders yet admtle paragraphs about state changes
definitively apply if your plugin is a decoder or an encoder.

gst _pad_set _|ink_function (), which used to set a function that would be called when a
format was negotiated between t@et Pads, now sets a function that is called when two elements are
linked together in an application. For all practical pu®s/ou most likely want to use the function

gst _pad_set _set caps_function (), nowadays, which sets a function that is called when the
format streaming over a pad changes (so similarstet _| i nk_f unction () in GStreamer-0.8).

If the element is derived from@st Base class, then override theet _caps ().

gst _pad_use_explicit_caps () hasbeenreplaced logt pad_use_fi xed_caps (). You
can then set the fixed caps to use on a pad wéth pad_set _caps ().

128

Chapter 29. Porting 0.10 plug-ins to 1.0

You can find the list of changes in the Porting to 1.0
(http://cgit.freedesktop.org/gstreamer/gstreanes/ttocs/random/porting-to-1.0.txt) document.

129

Chapter 30. GStreamer licensing

30.1. How to license the code you write for GStreamer

GStreamer is a plugin-based framework licensed under theLL Ghe reason for this choice in licensing
is to ensure that everyone can use GStreamer to build appfisaising licenses of their choice.

To keep this policy viable, the GStreamer community has nagféev licensing rules for code to be
included in GStreamer’s core or GStreamer’s official mosiuike our plugin packages. We require that
all code going into our core package is LGPL. For the plugitkezave require the use of the LGPL for

all plugins written from scratch or linking to external lésfes. The only exception to this is when
plugins contain older code under more liberal licenseg (lile MPL or BSD). They can use those
licenses instead and will still be considered for incluside do not accept GPL code to be added to our
plugins module, but we do accept LGPL-licensed pluginsgiamexternal GPL library. The reason for
demanding plugins be licensed under the LGPL, even wheigasBPL library, is that other developers
might want to use the plugin code as a template for plugigimmto non-GPL libraries.

We also plan on splitting out the plugins using GPL libraifgs a separate package eventually and
implement a system which makes sure an application will Badlide to access these plugins unless it
uses some special code to do so. The point of this is not t&I@&1i -licensed plugins from being used
and developed, but to make sure people are not unintentyjonialating the GPL license of said plugins.

This advisory is part of a bigger advisory with a FAQ which yean find on the GStreamer website
(http://gstreamer.freedesktop.org/documentaticeriiging.html)

130

	GStreamer Plugin Writer's Guide (1.4.3)
	Table of Contents
	List of Tables
	I. Introduction
	Chapter 1. Preface
	1.1. What is GStreamer?
	1.2. Who Should Read This Guide?
	1.3. Preliminary Reading
	1.4. Structure of This Guide

	Chapter 2. Foundations
	2.1. Elements and Plugins
	2.2. Pads
	2.3. GstMiniObject, Buffers and Events
	2.3.1. Buffer Allocation

	2.4. Media types and Properties
	2.4.1. The Basic Types

	II. Building a Plugin
	Chapter 3. Constructing the Boilerplate
	3.1. Getting the GStreamer Plugin Templates
	3.2. Using the Project Stamp
	3.3. Examining the Basic Code
	3.4. Element metadata
	3.5. GstStaticPadTemplate
	3.6. Constructor Functions
	3.7. The plugininit function

	Chapter 4. Specifying the pads
	Chapter 5. The chain function
	Chapter 6. The event function
	Chapter 7. The query function
	Chapter 8. What are states?
	8.1. Managing filter state

	Chapter 9. Adding Properties
	Chapter 10. Signals
	Chapter 11. Building a Test Application
	III. Advanced Filter Concepts
	Chapter 12. Request and Sometimes pads
	12.1. Sometimes pads
	12.2. Request pads

	Chapter 13. Different scheduling modes
	13.1. The pad activation stage
	13.2. Pads driving the pipeline
	13.3. Providing random access

	Chapter 14. Caps negotiation
	14.1. Caps negotiation basics
	14.2. Caps negotiation use cases
	14.2.1. Fixed negotiation
	14.2.2. Transform negotiation
	14.2.3. Dynamic negotiation

	14.3. Upstream caps (re)negotiation
	14.4. Implementing a CAPS query function
	14.5. Pullmode Caps negotiation

	Chapter 15. Memory allocation
	15.1. GstMemory
	15.1.1. GstAllocator
	15.1.2. GstMemory API example
	15.1.3. Implementing a GstAllocator

	15.2. GstBuffer
	15.2.1. GstBuffer writability
	15.2.2. GstBuffer API examples

	15.3. GstMeta
	15.3.1. GstMeta API example
	15.3.2. Implementing new GstMeta
	15.3.2.1. Define the metadata API
	15.3.2.2. Implementing a metadata API

	15.4. GstBufferPool
	15.4.1. GstBufferPool API example
	15.4.2. Implementing a new GstBufferPool

	15.5. GSTQUERYALLOCATION
	15.5.1. ALLOCATION query example
	15.5.2. The ALLOCATION query in base classes

	Chapter 16. Types and Properties
	16.1. Building a Simple Format for Testing
	16.2. Typefind Functions and Autoplugging
	16.3. List of Defined Types

	Chapter 17. Events: Seeking, Navigation and More
	17.1. Downstream events
	17.2. Upstream events
	17.3. All Events Together
	17.3.1. Stream Start
	17.3.2. Caps
	17.3.3. Segment
	17.3.4. Tag (metadata)
	17.3.5. End of Stream (EOS)
	17.3.6. Table Of Contents
	17.3.7. Gap
	17.3.8. Flush Start
	17.3.9. Flush Stop
	17.3.10. Quality Of Service (QOS)
	17.3.11. Seek Request
	17.3.12. Navigation

	Chapter 18. Clocking
	18.1. Clocks
	18.2. Clock runningtime
	18.3. Buffer runningtime
	18.4. Obligations of each element.
	18.4.1. Nonlive source elements
	18.4.2. Live source elements
	18.4.3. Parser/Decoder/Encoder elements
	18.4.4. Demuxer elements
	18.4.5. Muxer elements
	18.4.6. Sink elements

	Chapter 19. Quality Of Service (QoS)
	19.1. Measuring QoS
	19.2. Handling QoS
	19.2.1. Short term correction
	19.2.2. Long term correction

	19.3. Throttling
	19.4. QoS Messages

	Chapter 20. Supporting Dynamic Parameters
	20.1. Getting Started
	20.2. The Data Processing Loop
	20.2.1. The Data Processing Loop for Video Elements
	20.2.2. The Data Processing Loop for Audio Elements

	Chapter 21. Interfaces
	21.1. How to Implement Interfaces
	21.2. URI interface
	21.3. Color Balance Interface
	21.4. Video Overlay Interface
	21.5. Navigation Interface

	Chapter 22. Tagging (Metadata and Streaminfo)
	22.1. Overview
	22.2. Reading Tags from Streams
	22.3. Writing Tags to Streams

	IV. Creating special element types
	Chapter 23. Premade base classes
	23.1. Writing a sink
	23.1.1. Writing an audio sink
	23.1.2. Writing a video sink

	23.2. Writing a source
	23.2.1. Writing an audio source

	23.3. Writing a transformation element

	Chapter 24. Writing a Demuxer or Parser
	Chapter 25. Writing a Nto1 Element or Muxer
	Chapter 26. Writing a Manager
	V. Appendices
	Chapter 27. Things to check when writing an element
	27.1. About states
	27.2. Debugging
	27.3. Querying, events and the like
	27.4. Testing your element

	Chapter 28. Porting 0.8 plugins to 0.10
	28.1. List of changes

	Chapter 29. Porting 0.10 plugins to 1.0
	Chapter 30. GStreamer licensing
	30.1. How to license the code you write for GStreamer

