User’s Guide

to

PARI / GP

(version 2.9.1)
The PARI Group

Institut de Mathématiques de Bordeaux, UMR, 5251 du CNRS.
Université de Bordeaux, 351 Cours de la Libération
F-33405 TALENCE Cedex, FRANCE

e-mail: pari@math.u-bordeaux.fr

Home Page:
http://pari.math.u-bordeaux.fr/

Copyright © 2000-2016 The PARI Group

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions, or translations, of this manual
under the conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

PARI/GP is Copyright © 2000-2016 The PARI Group

PARI/GP is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation. It is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY WHATSOEVER.

Table of Contents

Chapter 1: Overview of the PARI system, 5
1.1 Introduction o L e e e)
1.2 Multiprecision kernels / Portability L oL 6
1.3 The PARI types o e 7
1.4 The PARI philosophy e 9
1.5 Operations and functions 10

Chapter 2: The gp Calculator 0 i i i i it i i it et ettt oo o 13
2.1 Introductiono 13
2.2 The general gp input line 15
2.3 The PARI types o i e e e 17
2.4 GP operators e e e e e 28
2.5 Variables and symbolic expressionso 31
2.6 Variables and Scope 34
2.7 User defined functions 37
2.8 Member functions L L 44
2.9 Strings and Keywords 45
2.10 Errors and error reCOVEry i e e e e 47
2.11 Interfacing GP with other languages 53
212 Defaults L 54
2.13 Simple metacommands L e e e e 99
2.14 The preferences file L 58
2.15 Using readline 60
2.16 GNU Emacs and PariEmacs 62

Chapter 3: Functions and Operations Available in PARITand GP 63
3.1 Standard monadic or dyadic operators oo 65
3.2 Conversions and similar elementary functions or commands 71
3.3 Transcendental functions L L 94
3.4 Arithmetic functions L 107
3.5 Elliptic curves e e 150
3.6 L-functions 185
3.7 Modular symbolso 201
3.8 General number fields L L 216
3.9 Associative and central simple algebras L0000 288
3.10 Polynomials and power serieso 0oL e e 310
3.11 Vectors, matrices, linear algebra and sets L. 326
3.12 Sums, products, integrals and similar functions 0oL L. 357
3.13 Plotting functions 378
3.14 Programming in GP: control statementso L. 384
3.15 Programming in GP: other specific functions o000, 394
3.16 Parallel programming L 417
317 GP defaults L 419

Appendix A: Installation Guide for the UNIX Versions 429

Index . . . L e e 440

Chapter 1:
Overview of the PARI system

1.1 Introduction.

PARI/GP is a specialized computer algebra system, primarily aimed at number theorists, but has
been put to good use in many other different fields, from topology or numerical analysis to physics.

Although quite an amount of symbolic manipulation is possible, PARI does badly compared
to systems like Axiom, Magma, Maple, Mathematica, Maxima, or Reduce on such tasks, e.g. mul-
tivariate polynomials, formal integration, etc. On the other hand, the three main advantages of
the system are its speed, the possibility of using directly data types which are familiar to mathe-
maticians, and its extensive algebraic number theory module (from the above-mentioned systems,
only Magma provides similar features).

Non-mathematical strong points include the possibility to program either in high-level scripting
languages or with the PARI library, a mature system (development started in the mid eighties) that
was used to conduct and disseminate original mathematical research, while building a large user
community, linked by helpful mailing lists and a tradition of great user support from the developers.
And, of course, PARI/GP is Free Software, covered by the GNU General Public License, either
version 2 of the License or (at your option) any later version.

PARI is used in three different ways:

1) as a library libpari, which can be called from an upper-level language application, for
instance written in ANST C or C++;

2) as a sophisticated programmable calculator, named gp, whose language GP contains most
of the control instructions of a standard language like C;

3) the compiler gp2c translates GP code to C, and loads it into the gp interpreter. A
typical script compiled by gp2c runs 3 to 10 times faster. The generated C code can be edited and
optimized by hand. It may also be used as a tutorial to 1ibpari programming.

The present Chapter 1 gives an overview of the PARI/GP system; gp2c is distributed separately
and comes with its own manual. Chapter 2 describes the GP programming language and the gp
calculator. Chapter 3 describes all routines available in the calculator. Programming in library
mode is explained in Chapters 4 and 5 in a separate booklet: User’s Guide to the PARI library
(libpari.dvi.

A tutorial for gp is provided in the standard distribution: A tutorial for PARI/GP (tuto-
rial.dvi) and you should read this first. You can then start over and read the more boring stuff
which lies ahead. You can have a quick idea of what is available by looking at the gp reference card
(refcard.dvi or refcard.ps). In case of need, you can refer to the complete function description
in Chapter 3.

How to get the latest version. Everything can be found on PARI’s home page:
http://pari.math.u-bordeaux.fr/.

From that point you may access all sources, some binaries, version information, the complete mailing
list archives, frequently asked questions and various tips. All threaded and fully searchable.

How to report bugs. Bugs are submitted online to our Bug Tracking System, available from
PARTI’s home page, or directly from the URL

http://pari.math.u-bordeaux.fr/Bugs/.

Further instructions can be found on that page.

1.2 Multiprecision kernels / Portability.

The PARI multiprecision kernel comes in three non exclusive flavors. See Appendix A for how
to set up these on your system; various compilers are supported, but the GNU gcc compiler is the
definite favorite.

A first version is written entirely in ANSI C, with a C++-compatible syntax, and should be
portable without trouble to any 32 or 64-bit computer having no drastic memory constraints. We
do not know any example of a computer where a port was attempted and failed.

In a second version, time-critical parts of the kernel are written in inlined assembler. At present
this includes

e the whole ix86 family (Intel, AMD, Cyrix) starting at the 386, up to the Xbox gaming
console, including the Opteron 64 bit processor.

e three versions for the Sparc architecture: version 7, version 8 with SuperSparc processors,
and version 8 with MicroSparc I or II processors. UltraSparcs use the MicroSparc II version;

e the DEC Alpha 64-bit processor;

e the Intel Itanium 64-bit processor;

e the PowerPC equipping old macintoshs (G3, G4, etc.);
e the HPPA processors (both 32 and 64 bit);

A third version uses the GNU MP library to implement most of its multiprecision kernel. It
improves significantly on the native one for large operands, say 100 decimal digits of accuracy or
more. You should enable it if GMP is present on your system. Parts of the first version are still in
use within the GMP kernel, but are scheduled to disappear.

A historical version of the PARI/GP kernel, written in 1985, was specific to 680x0 based
computers, and was entirely written in MC68020 assembly language. It ran on SUN-3/xx, Sony
News, NeXT cubes and on 680x0 based Macs. It is no longer part of the PARI distribution; to run
PARI with a 68k assembler micro-kernel, use the GMP kernel!

1.3 The PARI types.

The GP language is not typed in the traditional sense; in particular, variables have no type.
In library mode, the type of all PARI objects is GEN, a generic type. On the other hand, it is
dynamically typed: each object has a specific internal type, depending on the mathematical object
it represents.

The crucial word is recursiveness: most of the PARI types are recursive. For example, the basic
internal type t_COMPLEX exists. However, the components (i.e. the real and imaginary part) of such
a “complex number” can be of any type. The only sensible ones are integers (we are then in Z[i]),
rational numbers (Q][i]), real numbers (R[i] = C), or even elements of Z/nZ (in (Z/nZ)[t]/(t*+1)),
or p-adic numbers when p = 3mod4 (Q,[i]). This feature must not be used too rashly in library
mode: for example you are in principle allowed to create objects which are “complex numbers of
complex numbers”. (This is not possible under gp.) But do not expect PARI to make sensible use
of such objects: you will mainly get nonsense.

On the other hand, it is allowed to have components of different, but compatible, types, which
can be freely mixed in basic ring operations + or x. For example, taking again complex numbers,
the real part could be an integer, and the imaginary part a rational number. On the other hand,
if the real part is a real number, the imaginary part cannot be an integer modulo n !

Let us now describe the types. As explained above, they are built recursively from basic
types which are as follows. We use the letter T' to designate any type; the symbolic names t_xxx
correspond to the internal representations of the types.

type t_INT Z Integers (with arbitrary precision)

type t_REAL R Real numbers (with arbitrary precision)
type t_INTMOD Z/nZ Intmods (integers modulo n)

type t_FRAC Q Rational numbers (in irreducible form)
type t_FFELT F, Finite field element

type t_COMPLEX T7i] Complex numbers

type t_PADIC Q, p-adic numbers

type t_QUAD Qw] Quadratic Numbers (where [Z[w] : Z] = 2)
type t_POLMOD T[X]/(P) Polmods (polynomials modulo P € T[X])
type t_POL T[X] Polynomials

type t_SER T((X)) Power series (finite Laurent series)

type t_RFRAC T(X) Rational functions (in irreducible form)
type t_VEC ™ Row (i.e. horizontal) vectors

type t_COL ™ Column (i.e. vertical) vectors

type t_MAT Mo (T) Matrices

type t_LIST ™ Lists

type t_STR Character strings

type t_CLOSURE Functions

type t_ERROR Error messages

type t_INFINITY —o0 and +oo

and where the types 1" in recursive types can be different in each component. The first nine basic
types, from t_INT to t_POLMOD, are called scalar types because they essentially occur as coefficients
of other more complicated objects. Type t_POLMOD is used to define algebraic extensions of a base
ring, and as such is a scalar type.

In addition, there exist types t_QFR and t_QFI for integral binary quadratic forms, and the in-
ternal type t_VECSMALL. The latter holds vectors of small integers, whose absolute value is bounded

7

by 231 (resp. 2%%) on 32-bit, resp. 64-bit, machines. They are used internally to represent permu-
tations, polynomials or matrices over a small finite field, etc.

Every PARI object (called GEN in the sequel) belongs to one of these basic types. Let us have
a closer look.

1.3.1 Integers and reals. They are of arbitrary and varying length (each number carrying in its
internal representation its own length or precision) with the following mild restrictions (given for
32-bit machines, the restrictions for 64-bit machines being so weak as to be considered nonexistent):
integers must be in absolute value less than 2536870815 (i e, roughly 161614219 decimal digits). The
precision of real numbers is also at most 161614219 significant decimal digits, and the binary
exponent must be in absolute value less than 229, resp. 2°!, on 32-bit, resp. 64-bit machines.

Integers and real numbers are non-recursive types.

1.3.2 Intmods, rational numbers, p-adic numbers, polmods, and rational functions.
These are recursive, but in a restricted way.

For intmods or polmods, there are two components: the modulus, which must be of type
integer (resp. polynomial), and the representative number (resp. polynomial).

For rational numbers or rational functions, there are also only two components: the numerator
and the denominator, which must both be of type integer (resp. polynomial).

Finally, p-adic numbers have three components: the prime p, the “modulus” p*, and an ap-
proximation to the p-adic number. Here Z, is considered as the projective limit <li_mZ /P*FZ via

its finite quotients, and Q,, as its field of fractions. Like real numbers, the codewords contain an
exponent, giving the p-adic valuation of the number, and also the information on the precision of
the number, which is redundant with p*, but is included for the sake of efficiency.

1.3.3 Finite field elements. The exact internal format depends of the finite field size, but it
includes the field characteristic p, an irreducible polynomial T' € F,[X] defining the finite field
F,[X]/(T) and the element expressed as a polynomial in (the class of) X.

1.3.4 Complex numbers and quadratic numbers. Quadratic numbers are numbers of the
form a + bw, where w is such that [Z[w] : Z] = 2, and more precisely w = v/d/2 when d = 0mod 4,
and w = (1 4+ v/d)/2 when d = 1 mod 4, where d is the discriminant of a quadratic order. Complex
numbers correspond to the important special case w = +/—1.

Complex numbers are partially recursive: the two components a and b can be of type t_INT,
t_REAL, t_INTMOD, t_FRAC, or t_PADIC, and can be mixed, subject to the limitations mentioned
above. For example, a+bi with a and b p-adic is in Q,[¢], but this is equal to Q, when p = 1 mod 4,
hence we must exclude these p when one explicitly uses a complex p-adic type. Quadratic numbers
are more restricted: their components may be as above, except that t_REAL is not allowed.

1.3.5 Polynomials, power series, vectors, matrices and lists. They are completely recur-
sive: their components can be of any type, and types can be mixed (however beware when doing
operations). Note in particular that a polynomial in two variables is simply a polynomial with
polynomial coefficients.

In the present version 2.9.1 of PARI, it is not possible to handle conveniently power series of
power series, i.e. power series in several variables. However power series of polynomials (which are
power series in several variables of a special type) are OK. This is a difficult design problem: the
mathematical problem itself contains some amount of imprecision, and it is not easy to design an
intuitive generic interface for such beasts.

1.3.6 Strings. These contain objects just as they would be printed by the gp calculator.

1.3.7 Zero. What is zero? This is a crucial question in all computer systems. The answer we
give in PARI is the following. For exact types, all zeros are equivalent and are exact, and thus
are usually represented as an integer zero. The problem becomes non-trivial for imprecise types:
there are infinitely many distinct zeros of each of these types! For p-adics and power series the
answer is as follows: every such object, including 0, has an exponent e. This p-adic or X-adic zero
is understood to be equal to O(p®) or O(X¢) respectively.

Real numbers also have exponents and a real zero is in fact O(2¢) where e is now usually a
negative binary exponent. This of course is printed as usual for a floating point number (0.00 - - - or
0.Exx depending on the output format) and not with a O symbol as with p-adics or power series.
With respect to the natural ordering on the reals we make the following convention: whatever its
exponent a real zero is smaller than any positive number, and any two real zeroes are equal.

1.4 The PARI philosophy.

The basic principles which govern PARI is that operations and functions should, firstly, give
as exact a result as possible, and secondly, be permitted if they make any kind of sense.

In this respect, we make an important distinction between exact and inexact objects: by
definition, types t_REAL, t_PADIC or t_SER are imprecise. A PARI object having one of these
imprecise types anywhere in its tree is inexact, and ezact otherwise. No loss of accuracy (rounding
error) is involved when dealing with exact objects. Specifically, an exact operation between exact
objects will yield an exact object. For example, dividing 1 by 3 does not give 0.333-- -, but the
rational number (1/3). To get the result as a floating point real number, evaluate 1./3 or 0.+1/3.

Conversely, the result of operations between imprecise objects, although inexact by nature,
will be as precise as possible. Consider for example the addition of two real numbers x and y. The
accuracy of the result is a priori unpredictable; it depends on the precisions of and y, on their
sizes, and also on the size of z + y. From this data, PARI works out the right precision for the
result. Even if it is working in calculator mode gp, where there is a notion of default precision, its
value is only used to convert exact types to inexact ones.

In particular, if an operation involves objects of different accuracies, some digits will be dis-
regarded by PARI. It is a common source of errors to forget, for instance, that a real number is
given as r + 2°¢ where r is a rational approximation, e a binary exponent and ¢ is a nondescript
real number less than 1 in absolute value. Hence, any number less than 2¢ may be treated as an
exact zero:

7 0.E-28 + 1.E-100

%1 = 0.E-28
7 0.E100 + 1
%2 = 0.E100

As an exercise, if a = 27(-100), why doa + 0. and a * 1. differ?

The second principle is that PARI operations are in general quite permissive. For instance
taking the exponential of a vector should not make sense. However, it frequently happens that one
wants to apply a given function to all elements in a vector. This is easily done using a loop, or
using the apply built-in function, but in fact PARI assumes that this is exactly what you want to
do when you apply a scalar function to a vector. Taking the exponential of a vector will do just
that, so no work is necessary. Most transcendental functions work in the same way*.

In the same spirit, when objects of different types are combined they are first automatically
mapped to a suitable ring, where the computation becomes meaningful:

? 1/3 + Mod(1,5)

%1 = Mod(3, 5)

71+ 0(579)

%2 =2 + 5 + 2x5"2 + 573 + 3x574 + 4%5°5 + 2%5°6 + 3%5°7 + 0(5°9)
? Mod(1,15) + Mod(1,10)

%3 = Mod(2, 5)

The first example is straightforward: since 3 is invertible mod 5, (1/3) is easily mapped to
Z/5Z. In the second example, I stands for the customary square root of —1; we obtain a 5-adic
number, 5-adically close to a square root of —1. The final example is more problematic, but there
are natural maps from Z/15Z and Z/10Z to Z/5Z, and the computation takes place there.

1.5 Operations and functions.

The available operations and functions in PARI are described in detail in Chapter 3. Here is
a brief summary:

1.5.1 Standard arithmetic operations.

Of course, the four standard operators +, —, *, / exist. We emphasize once more that division is, as
far as possible, an exact operation: 4 divided by 3 gives (4/3). In addition to this, operations on
integers or polynomials, like \ (Euclidean division), % (Euclidean remainder) exist; for integers, \/
computes the quotient such that the remainder has smallest possible absolute value. There is also
the exponentiation operator ~, when the exponent is of type integer; otherwise, it is considered as a
transcendental function. Finally, the logical operators ! (not prefix operator), && (and operator),
|| (or operator) exist, giving as results 1 (true) or 0 (false).

1.5.2 Conversions and similar functions.

Many conversion functions are available to convert between different types. For example floor,
ceiling, rounding, truncation, etc.... Other simple functions are included like real and imaginary
part, conjugation, norm, absolute value, changing precision or creating an intmod or a polmod.

* An ambiguity arises with square matrices. PARI always considers that you want to do com-
ponentwise function evaluation in this context, hence to get for example the standard exponential
of a square matrix you would need to implement a different function.

10

1.5.3 Transcendental functions.

They usually operate on any complex number, power series, and some also on p-adics. The list is
ever-expanding and of course contains all the elementary functions (exp/log, trigonometric func-
tions), plus many others (modular functions, Bessel functions, polylogarithms...). Recall that by
extension, PARI usually allows a transcendental function to operate componentwise on vectors or
matrices.

1.5.4 Arithmetic functions.

Apart from a few like the factorial function or the Fibonacci numbers, these are functions which
explicitly use the prime factor decomposition of integers. The standard functions are included. A
number of factoring methods are used by a rather sophisticated factoring engine (to name a few,
Shanks’s SQUFOF, Pollard’s rho, Lenstra’s ECM, the MPQS quadratic sieve). These routines
output strong pseudoprimes, which may be certified by the APRCL test.

There is also a large package to work with algebraic number fields. All the usual operations on
elements, ideals, prime ideals, etc. are available. More sophisticated functions are also implemented,
like solving Thue equations, finding integral bases and discriminants of number fields, computing
class groups and fundamental units, computing in relative number field extensions, Galois and class
field theory, and also many functions dealing with elliptic curves over Q or over local fields.

1.5.5 Other functions.

Quite a number of other functions dealing with polynomials (e.g. finding complex or p-adic roots,
factoring, etc), power series (e.g. substitution, reversion), linear algebra (e.g. determinant, charac-
teristic polynomial, linear systems), and different kinds of recursions are also included. In addi-
tion, standard numerical analysis routines like univariate integration (using the double exponential
method), real root finding (when the root is bracketed), polynomial interpolation, infinite series
evaluation, and plotting are included.

And now, you should really have a look at the tutorial before proceeding.

11

12

EMACS:

Chapter 2:
The gp Calculator

2.1 Introduction.

Originally, gp was designed as a debugging device for the PARI system library. Over the
years, it has become a powerful user-friendly stand-alone calculator. The mathematical functions
available in PARI and gp are described in the next chapter. In the present one, we describe the
specific use of the gp programmable calculator.

If you have GNU Emacs and use the PariEmacs package, you can work in a special Emacs shell,
described in Section 2.16. Specific features of this Emacs shell are indicated by an EMACS sign in
the left margin.

We briefly mention at this point GNU TeXmacs (http://www.texmacs.org/), a free wysiwyg
editing platform that allows to embed an entire gp session in a document, and provides a nice
alternative to PariEmacs.

2.1.1 Startup.
To start the calculator, the general command line syntax is:
gp [-D key=wvall L[files]

where items within brackets are optional. The [files] argument is a list of files written in the GP
scripting language, which will be loaded on startup. There can be any number of arguments of the
form -D key=wal, setting some internal parameters of gp, or defaults: each sets the default key to
the value val. See Section 2.12 below for a list and explanation of all defaults. These defaults can
be changed by adding parameters to the input line as above, or interactively during a gp session,
or in a preferences file also known as gprc.

If a preferences file (to be discussed in Section 2.14) is found, gp then reads it and executes the
commands it contains. This provides an easy way to customize gp. The files argument is processed
right after the gpre.

A copyright banner then appears which includes the version number, and a lot of useful tech-
nical information. After the copyright, the computer writes the top-level help information, some
initial defaults, and then waits after printing its prompt, which is ’? ’ by default . Whether ex-
tended on-line help and line editing are available or not is indicated in this gp banner, between the
version number and the copyright message. Consider investigating the matter with the person who
installed gp if they are not. Do this as well if there is no mention of the GMP kernel.

13

2.1.2 Getting help.

To get help, type a 7 and hit return. A menu appears, describing the main categories of
available functions and how to get more detailed help. If you now type ?n with n = 1,2,..., you
get the list of commands corresponding to category n and simultaneously to Section 3.n of this
manual. If you type ?functionname where functionname is the name of a PARI function, you will
get a short explanation of this function.

If extended help (see Section 2.13.1) is available on your system, you can double or triple the ?
sign to get much more: respectively the complete description of the function (e.g. ??sqrt), or a list
of gp functions relevant to your query (e.g. ?777"elliptic curve" or ??7?"quadratic field").

If gp was properly installed (see Appendix A), a line editor is available to correct the command
line, get automatic completions, and so on. See Section 2.15 or 7??readline for a short summary
of the line editor’s commands.

If you type 7\ you will get a short description of the metacommands (keyboard shortcuts).

Finally, typing ?. will return the list of available (pre-defined) member functions. These
are functions attached to specific kind of objects, used to retrieve easily some information from
complicated structures (you can define your own but they won’t be shown here). We will soon
describe these commands in more detail.

More generally, commands starting with the symbols \ or 7, are not computing commands, but
are metacommands which allow you to exchange information with gp. The available metacommands
can be divided into default setting commands (explained below) and simple commands (or keyboard
shortcuts, to be dealt with in Section 2.13).

2.1.3 Input.

Just type in an instruction, e.g. 1 + 1, or Pi. No action is undertaken until you hit the
<Return> key. Then computation starts, and a result is eventually printed. To suppress printing
of the result, end the expression with a ; sign. Note that many systems use ; to indicate end of
input. Not so in gp: a final semicolon means the result should not be printed. (Which is certainly
useful if it occupies several screens.)

2.1.4 Interrupt, Quit.

Typing quit at the prompt ends the session and exits gp. At any point you can type Ctrl-C
(that is press simultaneously the Control and C keys): the current computation is interrupted and
control given back to you at the gp prompt, together with a message like

***x at top-level: gcd(a,b)
koK T

**xx gcd: user interrupt after 236 ms.

telling you how much time elapsed since the last command was typed in and in which GP function
the computation was aborted. It does not mean that that much time was spent in the function,
only that the evaluator was busy processing that specific function when you stopped it.

14

2.2 The general gp input line.

The gp calculator uses a purely interpreted language GP. The structure of this language is
reminiscent of LISP with a functional notation, f(x,y) rather than (f x y): all programming
constructs, such as if, while, etc...are functions*, and the main loop does not really execute,
but rather evaluates (sequences of) expressions. Of course, it is by no means a true LISP, and has
been strongly influenced by C and Perl since then.

2.2.1 Introduction. User interaction with a gp session proceeds as follows. First, one types a
sequence of characters at the gp prompt; see Section 2.15 for a description of the line editor. When
you hit the <Return> key, gp gets your input, evaluates it, then prints the result and assigns it to
an “history” array.

More precisely, the input is case-sensitive and, outside of character strings, blanks are com-
pletely ignored. Inputs are either metacommands or sequences of expressions. Metacommands are
shortcuts designed to alter gp’s internal state, such as the working precision or general verbosity
level; we shall describe them in Section 2.13, and ignore them for the time being.

The evaluation of a sequence of instructions proceeds in two phases: your input is first digested
(byte-compiled) to a bytecode suitable for fast evaluation, in particular loop bodies are compiled
only once but a priori evaluated many times; then the bytecode is evaluated.

An expression is formed by combining constants, variables, operator symbols, functions and
control statements. It is evaluated using the conventions about operator priorities and left to right
associativity. An expression always has a value, which can be any PARI object:

71+ 1

%1 = 2 \\ an ordinary integer

7 x

%2 = x \\ a polynomial of degree 1 in the unknown x

? print("Hello")

Hello \\ void return value, 'Hello’ printed as side effect
7 f(x) = x72

W = (x)->x"2 \\ a user function

In the third example, Hello is printed as a side effect, but is not the return value. The print
command is a procedure, which conceptually returns nothing. But in fact procedures return a
special void object, meant to be ignored (but which evaluates to 0 in a numeric context, and
stored as 0 in the history or results). The final example assigns to the variable £ the function
x — x2, the alternative form £ = x->x"2 achieving the same effect; the return value of a function
definition is, unsurprisingly, a function object (of type t_CLOSURE).

Several expressions are combined on a single line by separating them with semicolons (’;’).
Such an expression sequence will be called a seq. A seq also has a value, which is the value of the
last expression in the sequence. Under gp, the value of the seq, and only this last value, becomes
an history entry. The values of the other expressions in the seq are discarded after the execution
of the seq is complete, except of course if they were assigned into variables. In addition, the value
of the seq is printed if the line does not end with a semicolon ;.

* Not exactly, since not all their arguments need be evaluated. For instance it would be stupid
to evaluate both branches of an if statement: since only one will apply, only this one is evaluated.

15

2.2.2 The gp history of results.

This is not to be confused with the history of your commands, maintained by readline. The
gp history contains the results they produced, in sequence.

The successive elements of the history array are called %1, %2, ...As a shortcut, the latest
computed expression can also be called %, the previous one % ¢, the one before that % ¢ and so on.

When you suppress the printing of the result with a semicolon, it is still stored in the history,
but its history number will not appear either. It is a better idea to assign it to a variable for later
use than to mentally recompute what its number is. Of course, on the next line, you may just use

/s

The time used to compute that history entry is also stored as part of the entry and can be
recovered using the %# operator: %#1, %#2 %#‘; %# by itself returns the time needed to compute
the last result (the one returned by %).

Remark. The history “array” is in fact better thought of as a queue: its size is limited to 5000
entries by default, after which gp starts forgetting the initial entries. So %1 becomes unavailable as
gp prints %5001. You can modify the history size using histsize.

2.2.3 Special editing characters. A GP program can of course have more than one line. Since
your commands are executed as soon as you have finished typing them, there must be a way to tell
gp to wait for the next line or lines of input before doing anything. There are three ways of doing
this.

The first one is to use the backslash character \ at the end of the line that you are typing,
just before hitting <Return>. This tells gp that what you will write on the next line is the physical
continuation of what you have just written. In other words, it makes gp forget your newline
character. You can type a \ anywhere. It is interpreted as above only if (apart from ignored
whitespace characters) it is immediately followed by a newline. For example, you can type

7 3+ \
4

instead of typing 3 + 4.

The second one is a variation on the first, and is mostly useful when defining a user function
(see Section 2.7): since an equal sign can never end a valid expression, gp disregards a newline
immediately following an =.

7 a=
123
%1 = 123

The third one is in general much more useful, and uses braces { and }. An opening brace {
signals that you are typing a multi-line command, and newlines are ignored until you type a closing
brace }. There are two important, but easily obeyed, restrictions: first, braces do not nest; second,
inside an open brace-close brace pair, all input lines are concatenated, suppressing any newlines.
Thus, all newlines should occur after a semicolon (;), a comma (,) or an operator (for clarity’s
sake, never split an identifier over two lines in this way). For instance, the following program

{

16

}

would silently produce garbage, since this is interpreted as a=bb=c which assigns the value of ¢ to
both bb and a. It should have been written

{

2.3 The PARI types.

We see here how to input values of the different data types known to PARI. Recall that blanks are
ignored in any expression which is not a string (see below).

A note on efficiency. The following types are provided for convenience, not for speed: t_INTMOD,
t_FRAC, t_PADIC, t_QUAD, t_POLMOD, t_RFRAC. Indeed, they always perform a reduction of some
kind after each basic operation, even though it is usually more efficient to perform a single reduction
at the end of some complex computation. For instance, in a convolution product }, — in
Z/NZ — common when multiplying polynomials! —, it is quite wasteful to perform n reductions
modulo N. In short, basic individual operations on these types are fast, but recursive objects
with such components could be handled more efficiently: programming with libpari will save large
constant factors here, compared to GP.

2.3.1 Integers (t_INT). After an (optional) leading + or -, type in the decimal digits of your
integer. No decimal point!

? 1234567

%1 = 1234567

? -3

%2 = -3

7 1. \\ oops, not an integer
%3 = 1.000000000000000000000000000

Integers can be input in hexadecimal notation by prefixing them with 0x; hexadecimal digits
(a,..., f) can be input either in lowercase or in uppercase:

7 OxF

%4 = 15

7 Oxlabcd
%5 = 109517

Integers can also be input in binary by prefixing them with Ob:

7 0b010101
6 =21

17

2.3.2 Real numbers (t_REAL).

Real numbers are represented (approximately) in a floating point system, internally in base 2,
but converted to base 10 for input / output purposes. A t_REAL object has a given accuracy (or
precision) £ > 0; it comprises

e a sign s: +1, —1 or O;
e a mantissa m: a multiprecision integer, 0 < m < 10;

e an exponent e: a small integer in [—-E, E], where E ~ 281log;,2, and B = 32 on a 32-bit
machine and 64 otherwise.

This data may represent any real number x such that
|z — sm10°] < 10°~*,

We consider that a t_REAL with sign s = 0 has accuracy ¢ = 0, so that its mantissa is useless, but
it still has an exponent e and acts like a machine epsilon for all accuracies < e.

After an (optional) leading + or -, type a number with a decimal point. Leading zeroes may
be omitted, up to the decimal point, but trailing zeroes are important: your t_REAL is assigned
an internal precision, which is the supremum of the input precision, one more than the number of
decimal digits input, and the default realprecision. For example, if the default precision is 28
digits, typing 2. yields a precision of 28 digits, but 2.0...0 with 45 zeros gives a number with
internal precision at least 45, although less may be printed.

You can also use scientific notation with the letter E or e. As usual, en is interpreted as x10™
for all integers n. Since the result is converted to a t_REAL, you may often omit the decimal point
in this case: 6.02 E 23 or le-5 are fine, but 10 is not.

By definition, 0.E n returns a real 0 of exponent n, whereas 0. returns a real 0 “of default
precision” (of exponent —realprecision), see Section 1.3.7, behaving like the machine epsilon for
the current default accuracy: any float of smaller absolute value is indistinguishable from 0.

Note on output formats. A zero real number is printed in e format as 0. Exzx where xx is the
(usually negative) decimal exponent of the number (cf. Section 1.3.7). This allows the user to check
the accuracy of that particular zero.

When the integer part of a real number z is not known exactly because the exponent of z is
greater than the internal precision, the real number is printed in e format.

Technical note. The internal precision is actually expressed in bits and can be viewed and
manipulated globally in interactive use via realprecision (decimal digits, as explained above;
shortcut \p) or realbitprecision (bits; shortcut \ps), the latter allowing finer granularity. See
Section 3.3 for details. In programs we advise to leave this global variable alone and adapt precision
locally for a given sequence of computations using localbitprec.

2.3.3 Intmods (t_INTMOD). To create the image of the integer a in Z/bZ (for some non-zero
integer b), type Mod(a,b); not a%b. Internally, all operations are done on integer representatives
belonging to [0,b — 1].

Note that this type is available for convenience, not for speed: each elementary operation
involves a reduction modulo b.

If x is a t_INTMOD Mod (a,b), the following member function is defined:

x.mod: return the modulus b.

18

2.3.4 Rational numbers (t_FRAC). All fractions are automatically reduced to lowest terms, so it
is impossible to work with reducible fractions. To enter n/m just type it as written. As explained
in Section 3.1.5, floating point division is not performed, only reduction to lowest terms.

Note that rational computation are almost never the fastest method to proceed: in the PARI
implementation, each elementary operation involves computing a gcd. It is generally a little more
efficient to cancel denominators and work with integers only:

7 P = Pol(vector(1073,i, 1/i)); \\ big polynomial with small rational coeffs
? P°2

time = 1,392 ms.

? ¢ = content(P); c”2 * (P/c)"2; \\ same computation in integers

time = 1,116 ms.

And much more efficient (but harder to setup) to use homomorphic imaging schemes and modular
computations. As the simple example below indicates, if you only need modular information, it
is very worthwhile to work with t_INTMODs directly, rather than deal with t_FRACs all the way
through:

7 p = nextprime(1077);

? sum(i=1, 1075, 1/i) % p
time = 13,288 ms.

%1 = 2759492

? sum(i=1, 1075, Mod(1/i, p))
time = 60 ms.

%2 = Mod (2759492, 10000019)

2.3.5 Finite field elements (t_FFELT). Let T € F,[X] be a monic irreducible polynomial defining
your finite field over F,,, for instance obtained using ffinit. Then the ffgen function creates a
generator of the finite field as an F-algebra, namely the class of X in F,[X]/(1"), from which you
can build all other elements. For instance, to create the field Fys, we write

7 T = ££init(2, 8);

7 y = ffgen(T, ’y);

7 y70 \\ the unit element in the field
w3 =1

?y°8

W =y6+yb5+y4+y3+y+1

The second (optional) parameter to ffgen is only used to display the result; it is customary to
use the name of the variable we assign the generator to. If g is a t_FFELT, the following member
functions are defined:

g.pol: the polynomial (with reduced integer coefficients) expressing g in term of the field
generator.

g.p: the characteristic of the finite field.

g.f: the dimension of the definition field over its prime field; the cardinality of the definition
field is thus p/.

g.mod: the minimal polynomial (with reduced integer coefficients) of the field generator.

19

2.3.6 Complex numbers (t_COMPLEX). To enter x + iy, type x + I*xy. (That’s I, not i!) The
letter I stands for +/—1. The “real” and “imaginary” parts z and y can be of type t_INT, t_REAL,
t_INTMOD, t_FRAC, or t_PADIC.

2.3.7 p-adic numbers (t_PADIC):. Typing 0(p~k), where p and k are integers, yields a p-adic
0 of accuracy k, representing any p-adic number whose valuation is > k. To input a general non-0
p-adic number, write a suitably precise rational or integer approximation and add 0(p~k) to it.

Note that it is not checked whether p is indeed prime but results are undefined if this is not the
case: you can work on 10-adics if you want, but disasters will happen as soon as you do something
non-trivial like taking a square root. Note that 0(25) is not the same as 0(572); you want the
latter!

For example, you can type in the 7-adic number
2%x7°(=1) + 3 + 4*x7 + 2%7°2 + 0(7°3)
exactly as shown, or equivalently as 905/7 + 0(773).
If a is a t_PADIC, the following member functions are defined:
a.mod: returns the modulus p*.
a.p: returns p.

Note that this type is available for convenience, not for speed: internally, t_PADICs are stored
as p-adic units modulo some p*. Each elementary operation involves updating p* (multiplying or
dividing by powers of p) and a reduction mod p*. In particular, additions are slow.

? n = 1+0(2720); for (i=1,10"6, n++)
time = 841 ms.
? n = Mod(1,2°20); for (i=1,10"6, n++)
time = 441 ms.
?n=1; for (i=1,10"6, n++)
time = 328 ms.

The penalty attached to maintaining p* decreases steeply as p increases (and updates become
rare). But t_INTMODs remain at least 25% more efficient. (On the other hand, they do not allow
denominators!)

2.3.8 Quadratic numbers (t_QUAD). This type is used to work in the quadratic order of discrim-
inant d, where d is a non-square integer congruent to 0 or 1 (modulo 4). The command

w = quadgen(d)

assigns to w the “canonical” generator for the integer basis of the order of discriminant d, i.e. w =
Vd/2if d = 0mod4, and w = (14+/d)/2 if d = 1 mod 4. The name w is of course just a suggestion,
but corresponds to traditional usage. You can use any variable name that you like, but quadgen (d)
is always printed as w, regardless of the discriminant. So beware, two t_QUADs can be printed in
the same way and not be equal; however, gp will refuse to add or multiply them for example.

Since the order is Z + wZ, any other element can be input as z = x+y*w for some integers x
and y. In fact, you may work in its fraction field Q(v/d) and use t_FRAC values for = and .

The member function z.disc retrieves the discriminant d; and y are obtained via real (z)
and imag(z) respectively.

20

2.3.9 Polmods (t_POLMOD). Exactly as for intmods, to enter x mody (where z and y are poly-
nomials), type Mod(x,y), not x%y. Note that when y is an irreducible polynomial in one variable,
polmods whose modulus is y are simply algebraic numbers in the finite extension defined by the
polynomial y. This allows us to work easily in number fields, finite extensions of the p-adic field
Q,, or finite fields.

Note that this type is available for convenience, not for speed: each elementary operation
involves a reduction modulo y. If p is a t_POLMOD, the following member functions are defined:

p-pol: return a representative of the polynomial class of minimal degree.

p.mod: return the modulus.

Important remark. Mathematically, the variables occurring in a polmod are not free variables.
But internally, a congruence class in R[t]/(y) is represented by its representative of lowest degree,
which is a t_POL in R[t], and computations occur with polynomials in the variable ¢. PARI will not
recognize that Mod(y, y~2 + 1) is “the same” as Mod(x, x"2 + 1), since x and y are different
variables.

To avoid inconsistencies, polmods must use the same variable in internal operations (i.e. be-
tween polmods) and variables of lower priority for external operations, typically between a poly-
nomial and a polmod. See Section 2.5.3 for a definition of “priority” and a discussion of (PARI’s
idea of) multivariate polynomial arithmetic. For instance:

? Mod(x, x"2+ 1) + Mod(x, x"2 + 1)

%1 = Mod(2*x, x°2 + 1) \\ 2i (or —2i), with i* = —1
7 x + Mod(y, y°2 + 1)

2 = x + Mod(y, y°2 + 1) \\ in Q(4)[z]

7y + Mod(x, x72 + 1)

w3 = Mod(x + y, x°2 + 1) \\ in Q(y)[{]

The first two are straightforward, but the last one may not be what you want: y is treated here as
a numerical parameter, not as a polynomial variable.

If the main variables are the same, it is allowed to mix t_POL and t_POLMODs. The result is
the expected t_POLMOD. For instance

? x + Mod(x, x°2 + 1)
%1 = Mod(2*x, x"2 + 1)
2.3.10 Polynomials (t_POL). Type the polynomial in a natural way, not forgetting to put a “x”

between a coefficient and a formal variable;

71 + 2%x + 3*%x72
%1 = 3%xx"2 + 2%xx + 1

This assumes that x is still a "free variable”.

7 x =1; 1 4+ 2*%x + 3*x72
%2 =6

generates an integer, not a polynomial! It is good practice to never assign values to polynomial
variables to avoid the above problem, but a foolproof construction is available using ’x instead of x:
’x is a constant evaluating to the free variable with name x, independently of the current value
of x.

21

7x=1; 1 + 2%¥’x + 3%’x"2
%3 = 1 + 2%x + 3%x72
7 x =7x; 1+ 2%x + 3%x72
We = 1 + 2%x + 3%x72

You may also use the functions Pol or Polrev:

? Pol([1,2,3]) \\ Pol creates a polynomial in x by default
%1 = x72 + 2%x + 3

? Polrev([1,2,3])

%2 = 3*x"2 + 2*%x + 1

? Pol([1,2,3], ’y) \\ we use ’y, safer than y

%3 = y°2 + 2%y + 3

The latter two are much more efficient constructors than an explicit summation (the latter is
quadratic in the degree, the former linear):

? for (i=1, 1074, Polrev(vector(100, i,i)))
time = 124ms

? for (i=1, 1074, sum(i = 1, 100, (i+1) * ’x~i))
time = 3,98bms

Polynomials are always printed as univariate polynomials, with monomials sorted by decreasing
degree:

7 (x+y+1)°2
%= x72 + (2%xy + 2)*x + (y°2 + 2%y + 1)

(Univariate polynomial in x whose coefficients are polynomials in y.) See Section 2.5 for valid
variable names, and a discussion of multivariate polynomial rings.

2.3.11 Power series (t_SER). Typing 0(X"k), where k is an integer, yields an X-adic 0 of
accuracy k, representing any power series in X whose valuation is > k. Of course, X can be replaced
by any other variable name! To input a general non-0 power series, type in a polynomial or rational
function (in X, say), and add 0(X"k) to it. The discussion in the t_POL section about variables
remains valid; a constructor Ser replaces Pol and Polrev.

Caveat. Power series with inexact coefficients sometimes have a non-intuitive behavior: if k
significant terms are requested, an inexact zero is counted as significant, even if it is the coefficient
of lowest degree. This means that useful higher order terms may be disregarded.

If a series with a zero leading coefficient must be inverted, then as a desperation measure that
coeflicient is discarded, and a warning is issued:

?7C=0. +y+0F"2);
? 1/C

%% _/_: Warning: normalizing a series with O leading term.
%2 =y -1 + 0(1)

The last output could be construed as a bug since it is a priori impossible to deduce such a result
from the input (0. represents any sufficiently small real number). But it was thought more useful
to try and go on with an approximate computation than to raise an early exception.

If the series precision is insufficient, errors may occur (mostly division by 0), which could have
been avoided by a better global understanding of the computation:

22

?7A=1/(y +0.); B
? B * denominator(A)
»2 = 0.E-28 + 0(y)
7 A/B

*x*x _/_: Warning: normalizing a series with 0 leading term.
%3 = 1.000000000000000000000000000*y~-1 + 0(1)
7 AxB

**x% _x_: Warning: normalizing a series with O leading term.
4 = 1.000000000000000000000000000*y~-1 + 0(1)

1. + 0(y);

2.3.12 Rational functions (t_RFRAC). As for fractions, all rational functions are automatically
reduced to lowest terms. All that was said about fractions in Section 2.3.4 remains valid here.

2.3.13 Binary quadratic forms of positive or negative discriminant (t_QFR and t_QFI).
These are input using the function Qfb. For example Qfb(1,2,3) creates the binary form g =
2% + 22y + 3y%. Tt is imaginary (of internal type t_QFI) since its discriminant 22 — 4 x 3 = —8 is
negative. Although imaginary forms could be positive or negative definite, only positive definite
forms are implemented.

The discriminant can be retrieved via poldisc or q.disc. The individual components are
obtained via either of

[a,b,c] = Vec(q);

a = component(q,1);
b = component(q,2);
¢ = component(q,3);

In the case of forms with positive discriminant (t_QFR), you may add an optional fourth
component (related to the regulator, more precisely to Shanks and Lenstra’s “distance”), which
must be a real number. See also the function qfbprimeform which directly creates a prime form
of given discriminant.

2.3.14 Row and column vectors (t_VEC and t_COL).) To enter a row vector, type the com-

[

ponents separated by commas “,”, and enclosed between brackets “[” and “1”, e.g. [1,2,3]. To

enter a column vector, type the vector horizontally, and add a tilde “~” to transpose. [] yields the
empty (row) vector. The function Vec can be used to transform any object into a vector (see Chap-
ter 3). The construction [i..j], where ¢ < j are two integers returns the vector [¢,7 4+ 1,...,j — 1, 7]

? [1,2,3]

%l = [1, 2, 3]

7 [-2..3]

%2 = [-2, -1, 0, 1, 2, 3]
Let the variable v contain a (row or column) vector:

e v[m] refers to its m-th entry; you can assign any value to v[m], i.e. write something like
v[m] = expr.

e v[i..jl, where i < j, returns the vector slice containing elements v[i], ..., v[j]; you can not
assign a result to v[i..j].

e v["1i] returns the vector whose i-th entry has been removed; you can not assign a result to
v[~i].

23

In the last two constructions v[i..j] and v[~i], ¢ and j are allowed to be negative integers, in
which case, we start counting from the end of the vector: e.g., —1 is the index of the last element.

7 v = [1,2,3,4];

? v[2..4]

%2 = [2, 3, 4]
? v[~3]

%3 = [1, 2, 4]
? v[~-1]

%3 = [1, 2, 3]
7 v[-3..-1]

»4 = [2, 3, 4]

Remark. vector is the standard constructor for row vectors whose i-th entry is given by a simple
function of ¢; vectorv is similar for column vectors:

? vector (10, i, i"2+1)
%1 = [2, 5, 10, 17, 26, 37, 50, 65, 82, 101]

The functions Vec and Col convert objects to row and column vectors respectively (as well as
Vecrev and Colrev, which revert the indexing):

? T = poltchebi(b) \\ 5-th Chebyshev polynomial
%1 = 16%x"5 - 20*x"3 + b*x

7 Vec(T)

%2 = [16, 0, -20, 0, 5, 0] \\ coefficients of T

? Vecrev(T)

%3 = [0, 5, 0, -20, 0, 16] \\ ... in reverse order

Remark. For v a t_VEC, t_COL, t_LIST or t_MAT, the alternative set-notations

[gx) | x <- v, £(x)]
[x | x <- v, £(x)]
[g(x) | x <= v]

are available as shortcuts for

apply(g, select(f, Vec(v)))
select(f, Vec(v))
apply(g, Vec(v))

respectively, and may serve as t_VEC constructors:

? [p | p <- primes(10), isprime(p+2)]
%2 = [3, 5, 11, 17, 29]

returns the primes p (among the first 10 primes) such that (p,p + 2) is a twin pair;

? [p°2 | p <- primes(10), p % 4 == 1]
%1 = [25, 169, 289, 841]

24

returns the squares of the primes congruent to 1 modulo 4, where p runs among the first 10 primes.

2.3.15 Matrices (t_MAT). To enter a matrix, type the components row by row, the components

“on [y

being separated by commas “,”, the rows by semicolons “;”, and everything enclosed in brackets
“[” and “17, e.g. [x,y; z,t; u,v]. [;] yields an empty (0 x 0) matrix. The function Mat
transforms any object into a matrix, and matrix creates matrices whose (i, j)-th entry is described
by a function f(i,j):

? Mat(1)

%1 =

[1]

7 matrix(2,2, 1i,j, 2*i+j)
%2 =

[3 4]

[5 6]
Let the variable M contain a matrix, and let 4, j, k,! denote four integers:
e M[i,j] refers to its (4, 7)-th entry; you can assign any result to M[1i,j].
e M[i,] refers to its i-th row; you can assign a t_VEC of the right dimension to M[i,].
e M[, j] refers to its j-th column; you can assign a t_COL of the right dimension to M[, j].

But M[i] is meaningless and triggers an error. The “range” .. and “caret” ~c¢ notations are
available as for vectors; you can not assign to any of these:

e M[i..j, k..11,¢ < j, k <, returns the submatrix built from the rows 7 to j and columns
ktolof M.

e M[i..j,] returns the submatrix built from the rows i to j of M.
e M[,i..j] returns the submatrix built from the columns ¢ to j of M.
e M[i..j, “k],i < 7, returns the submatrix built from the rows ¢ to j and column & removed.
e M["k,] returns the submatrix with row k removed.
e M[, k] returns the submatrix with column k& removed.
Finally,
e M[i..j, k] returns the t_COL built from the k-th column (entries i to j).
e M["i, k] returns the t_COL built from the k-th column (entry i removed).
e M[k, i..j] returns the t_VEC built from the k-th row (entries i to j).
e M[k, ~i] returns the t_VEC built from the k-th row (entry i removed).

?M=11,2,3;4,5,6;7,8,9];
? M[1..2, 2..3]

%2 =

[2 3]

[5 6]
? M[1..2,]

25

3 =
[1 2 3]

[4 5 6]

? M[,2..3]
%4 =

[2 3]

[5 6]
[8 9]

All this is recursive, so if M is a matrix of matrices of ..., an expression such as M[1,1] [, 3] [4]
= 1is perfectly valid (and actually identical to M[1,1] [4,3] = 1), assuming that all matrices along
the way have compatible dimensions.

Technical note (design flaw). Matrices are internally represented as a vector of columns. All
matrices with 0 columns are thus represented by the same object (internally, an empty vector), and
there is no way to distinguish between them. Thus it is not possible to create or represent matrices
with zero columns and an actual nonzero number of rows. The empty matrix [;] is handled as
though it had an arbitrary number of rows, exactly as many as needed for the current computation
to make sense:

? [1,2,3; 4,5,6] * [;]
%= [;]

The empty matrix on the first line is understood as a 3 x 0 matrix, and the result as a 2 x 0 matrix.
On the other hand, it is possible to create matrices with a given positive number of columns, each
of which has zero rows, e.g. using Mat as above or using the matrix function.

Note that although the internal representation is essentially the same, a row vector of column
vectors is not a matrix; for example, multiplication will not work in the same way. It is easy to go
from one representation to the other using Vec / Mat, though:

7 [1,2,3;4,5,6]

W=
[1 2 3]

[4 5 6]

? Vec(%)

%2 = [[1, 4]~, [2, B]~, [3, 6]~]
? Mat (%)

%3 =

[1 2 3]

[4 5 6]
2.3.16 Lists (t_LIST). Lists can be input directly, as in List ([1,2,3,4]); but in most cases, one
creates an empty list, then appends elements using listput:

7?7 a = List(); listput(a,l); listput(a,2);
7 a

%2 = List([1, 2])

Elements can be accessed directly as with the vector types described above.

26

2.3.17 Strings (t_STR). To enter a string, enclose it between double quotes ", like this: "this is
a string". The function Str can be used to transform any object into a string.

2.3.18 Small vectors (t_VECSMALL). This is an internal type, used to code in an efficient way
vectors containing only small integers, such as permutations. Most gp functions will refuse to
operate on these objects.

2.3.19 Functions (t_CLOSURE). We will explain this at length in Section 2.7. For the time being,
suffice it to say that functions can be assigned to variables, as any other object, and the following
equivalent basic forms are available to create new ones

f=(x,y) > x"2 + y~2
f(x,y) = x72 + y°2
2.3.20 Error contexts (t_ERROR). An object of this type is created whenever an error occurs: it

contains some information about the error and the error context. Usually, an appropriate error is
printed immediately, the computation is aborted, and GP enters the “break loop”:

?1/0; 1 + 1
**%* at top-level: 1/0;1+1
* kK o

%% _/_: division by a non-invertible object
% Break loop: type ’break’ to go back to the GP prompt

Here the computation is aborted as soon as we try to evaluate 1/0, and 1 + 1 is never executed.
Exceptions can be trapped using iferr, however: we can evaluate some expression and either
recover an ordinary result (no error occurred), or an exception (an error did occur).

? i = Mod(6,12); iferr(i1/i, E, print(E)); 1 + 1
error("impossible inverse modulo: Mod(6, 12).")
W= 2

One can ignore the exception, print it as above, or extract non trivial information from the error
context:

? i = Mod(6,12); iferr(i1/i, E, print(component(E,1)));
Mod (6, 12)

We can also rethrow the exception: error (E).

2.3.21 Infinity (t_INFINITY).

There are only two objects of this type +oo and -oo, representing +o0o0. This type only contain
only two elements oo and -oo, They are used in functions sur as intnum or polrootsreal, to
encode infinite real intervals. These objects can only be negated and compared to real numbers
(t_INT, t_REAL, t_FRAC), but not included in any computation, i.e. 1+oo is an error, not kbdoo
again.

27

2.4 GP operators.

Loosely speaking, an operator is a function, usually attached to basic arithmetic operations, whose
name contains only non-alphanumeric characters. For instance + or -, but also = or +=, or even []
(the selection operator). As all functions, operators take arguments, and return a value; assignment
operators also have side effects: besides returning a value, they change the value of some variable.

Each operator has a fixed and unchangeable priority, which means that, in a given expression,
the operations with the highest priority is performed first. Unless mentioned otherwise, opera-
tors at the same priority level are left-associative (performed from left to right), unless they are
assignments, in which case they are right-associative. Anything enclosed between parenthesis is
considered a complete subexpression, and is resolved recursively, independently of the surrounding
context. For instance,

a+b+c -—> (a+b) +c \\ left-associative
a=b=c --> a= (b =c) \\ right-associative

Assuming that opy, op=2, ops are binary operators with increasing priorities (think of +, *, ~),

X op, Yy opa 2 0ps X OP3 Y

is equivalent to
z opy ((y opy 2) op, (T ops Y)).

GP contains many different operators, either unary (having only one argument) or binary, plus
a few special selection operators. Unary operators are defined as either prefiz or postfix, meaning
that they respectively precede (op x) and follow (z op) their single argument. Some symbols are
syntactically correct in both positions, like !, but then represent different operators: the ! symbol
represents the negation and factorial operators when in prefix and postfix position respectively.
Binary operators all use the (infix) syntax z op y.

Most operators are standard (+, %, =), some are borrowed from the C language (++, <<),
and a few are specific to GP (\, #). Beware that some GP operators differ slightly from their C
counterparts. For instance, GP’s postfix ++ returns the new value, like the prefix ++ of C, and the
binary shifts <<, >> have a priority which is different from (higher than) that of their C counterparts.
When in doubt, just surround everything by parentheses; besides, your code will be more legible.

Here is the list of available operators, ordered by decreasing priority, binary and left-associative
unless mentioned otherwise. An expression is an lvalue if something can be assigned to it. (The
name comes from left-value, to the left of a = operator; e.g. x, or v[1] are lvalues, but x + 1 is
not.)

e Priority 14

: as in x:small, is used to indicate to the GP2C compiler that the variable on the left-hand
side always contains objects of the type specified on the right hand-side (here, a small integer) in
order to produce more efficient or more readable C code. This is ignored by GP.

e Priority 13
() is the function call operator. If f is a closure and args is a comma-separated list of
arguments (possibly empty), f(args) evaluates f on those arguments.

e Priority 12
++ and -- (unary, postfix): if x is an lvalue, z++ assigns the value x + 1 to x, then returns

28

the new value of z. This corresponds to the C statement ++z: there is no prefix ++ operator in GP.
x-- does the same with x — 1. These operators are not associative, i.e. x++++ is invalid, since x++
is not an lvalue.

e Priority 11
.member (unary, postfix): x.member extracts member from structure x (see Section 2.8).

[1 is the selection operator. x[i] returns the i-th component of vector z; x[i,j], z[,J]
and z[i,] respectively return the entry of coordinates (4,), the j-th column, and the i-th row of
matrix z. If the assignment operator (=) immediately follows a sequence of selections, it assigns its
right hand side to the selected component. E.g x[1]1[1] = 0 is valid; but beware that (x[1]) [1]
= 0 is not (because the parentheses force the complete evaluation of x[1], and the result is not
modifiable).

e Priority 10

> (unary, postfix): derivative with respect to the main variable. If f is a function (t_CLOSURE),
f' is allowed and defines a new function, which will perform numerical derivation when evaluated
at a scalar z; this is defined as (f(z +¢) — f(x — ¢))/2¢ for a suitably small epsilon depending on
current precision.

7 (x72 + y*xx + y°2)° \\ derive with respect to main variable x
%l = 2%x + y

? SIN = cos’

%2 = cos’

7 SIN(Pi/6) \\ numerical derivation

%3 = -0.5000000000000000000000000000

? cos’ (Pi/6) \\ works directly: no need for intermediate SIN

%4 = -0.5000000000000000000000000000
~ (unary, postfix): vector/matrix transpose.
!' (unary, postfix): factorial. ! = x(x —1)--- 1.

! (unary, prefix): logical not. 'z returns 1 if x is equal to 0 (specifically, if gequalO(z)==1),
and 0 otherwise.

e Priority 9
(unary, prefix): cardinality; #x returns length(z).

e Priority 8
~: powering. This operator is right associative: 2 ~374 is understood as 2 ~(374).

e Priority 7
+, = (unary, prefix): - toggles the sign of its argument, + has no effect whatsoever.

e Priority 6
*: multiplication.

/: exact division (3/2 yields 3/2, not 1.5).

\, %: Euclidean quotient and remainder, i.e. if z = qy + r, then x\y = ¢, x%y =r. If z and y
are scalars, then ¢ is an integer and r satisfies 0 < r < |y|; if z and y are polynomials, then ¢ and
r are polynomials such that degr < degy and the leading terms of r and = have the same sign.

\/: rounded Euclidean quotient for integers (rounded towards +oo when the exact quotient
would be a half-integer).

29

<<, >>: left and right binary shift. By definition, x<<n = z 2" if n > 0, and truncate(z2™ ")
otherwise. Right shift is defined by x>>n = x<<(-n).

e Priority 5

+, —: addition/subtraction.
e Priority 4

<, >, <=, >=: the usual comparison operators, returning 1 for true and 0 for false. For
instance, x<=1 returns 1 if x < 1 and 0 otherwise.

<>, 1= test for (exact) inequality.

==: test for (exact) equality. t_QFR having the same coefficients but a different distance
component are tested as equal.

=: for
=, but

===: test whether two objects are identical component-wise. This is stricter than
instance, the integer 0, a 0 polynomial or a vector with 0 entries, are all tested equal by
they are not identical.

e Priority 3
&&: logical and.

| I: logical (inclusive) or. Any sequence of logical or and and operations is evaluated from left
to right, and aborted as soon as the final truth value is known. Thus, for instance,

x == || test(1/x)

will never produce an error since test (1/x) is not even evaluated when the first test is true (hence
the final truth value is true). Similarly

type(p) == "t_INT" && isprime(p)
does not evaluate isprime(p) if p is not an integer.

e Priority 2

= (assignment, lvalue = expr). The result of x = y is the value of the expression y, which
is also assigned to the variable x. This assignment operator is right-associative. This is not the
equality test operator; a statement like x = 1 is always true (i.e. non-zero), and sets x to 1; the
equality test would be x == 1. The right hand side of the assignment operator is evaluated before
the left hand side.

It is crucial that the left hand-side be an lvalue there, it avoids ambiguities in expressions like
1 + x = 1. The latter evaluates as 1 + (x = 1), not as (1 + x) = 1, even though the priority
of = is lower than the priority of +: 1 + x is not an lvalue.

If the expression cannot be parsed in a way where the left hand side is an lvalue, raise an error.

Tx+1=1
Fokok syntax error, unexpected ’=’, expecting $end or ’;’: x+l=1
*okok ~——

op=, where op is any binary operator among +, -, *, %, /, \, \/, <<, or >> (composed assignment
lvalue op= expr). The expression x op= y assigns (x op y) to x, and returns the new value of x.
The result is not an lvalue; thus

(x += 2) = 3

is invalid. These assignment operators are right-associative:

30

7 X =7’x; X += x x= 2
%1 = 3x%x

e Priority 1
-> (function definition): (wvars)->expr returns a function object, of type t_CLOSURE.

Remark. Use the op= operators as often as possible since they make complex assignments more
legible: one needs not parse complicated expressions twice to make sure they are indeed identical.
Compare

v[i+j-1] = v[i+j-1] + 1 -—> v[i+j-1]++

M[i,i+j] = M[i,i+j] * 2 -—> M[i,i+j] *= 2
Remark. Less important but still interesting. The ++, -- and op= operators are slightly more
efficient:

7 a = 1076;

7 i = 0; while(i<a, i=i+1)
time = 365 ms.

? i = 0; while(i<a, i++)
time = 352 ms.

For the same reason, the shift operators should be preferred to multiplication:

? a = 1<<(10°5);

7 i =1; while(i<a, i=ix*2);
time = 1,052 ms.

7 i = 1; while(i<a, i<<=1);
time = 617 ms.

2.5 Variables and symbolic expressions.

In this section we use wvariable in the standard mathematical sense, symbols representing
algebraically independent elements used to build rings of polynomials and power series, and explain
the all-important concept of variable priority. In the next Section 2.6, we shall no longer consider
only free variables, but adopt the viewpoint of computer programming and assign values to these
symbols: (bound) variables are names attached to values in a given scope.

2.5.1 Variable names. A valid name starts with a letter, followed by any number of keyword
characters: _ or alphanumeric characters ([A-Za-z0-9]). The built-in function names are reserved
and cannot be used; see the list with \c, including the constants Pi, Euler, Catalan, I = 1/—1
and oo = 0.

GP names are case sensitive. For instance, the symbol i is perfectly safe to use, and will not
be mistaken for I = +/—1; analogously, o is not synonymous to 0.

In GP you can use up to 16383 variable names (up to 65535 on 64-bit machines). If you ever
need thousands of variables and this becomes a serious limitation, you should probably be using
vectors instead: e.g. instead of variables X1, X2, X3, ..., you might equally well store their values
in X[11, X[2], X[31, ...

2.5.2 Variables and polynomials. The quote operator ’t registers a new free variable with the
interpreter, which will be written as t, and evaluates to a monomial of degree 1 in the said variable.

31

Caveat. For reasons of backward compatibility, there is no such thing as an “unbound” (unini-
tialized) variable in GP. If you use a valid variable name in an expression, t say, for the first time
before assigning a value into it, it is interpreted as ’t rather than raising an exception. One should
not rely on this feature in serious programs, which would otherwise break if some unexpected as-
signment (e.g. t = 1) occurs: use ’t directly or t = ’t first, then t. A statement like t = ’t in
effect restores t as a free variable.

7t =0t; t72 + 1
%1 =t"2+ 1

7t =2 t°2+ 1
%2 =5

Al

%3 =t"2 + 1

? eval(%1)

%4 =5

In the above, we initialize t to a monomial, then bind it to 2. Assigning a value to a polynomial
variable does not affect previous expressions involving it; to take into account the new variable’s
value, one must force a new evaluation, using the function eval (see Section 3.10.5).

Caveat2. The use of an explicit quote operator avoids the following kind of problems:

?t="7t; p=t"2+1; subst(p, t, 2)

% =5

7Tt =2

7 subst(p, t, 3) \\ t is no longer free: it evaluates to 2
ok ok at top-level: subst(p,t,3)
3k 3k 3k e

**%k variable name expected.
7 subst(p, ’t, 3) \\ 0K
w3 = 10

2.5.3 Variable priorities, multivariate objects. A multivariate polynomial in PARI is just a
polynomial (in one variable), whose coefficients are themselves polynomials, arbitrary but for the
fact that they do not involve the main variable. (PARI currently has no sparse representation for
polynomials, listing only non-zero monomials.) All computations are then done formally on the
coefficients as if the polynomial was univariate.

This is not symmetrical. So if T enter ’x + ’y in a clean session, what happens? This is
understood as
o+ (yt +0xy") x 2 € (Z[y])[]

but how do we know that x is “more important” than y ? Why not ' + x * y°, which is the same
mathematical entity after all?

The answer is that variables are ordered implicitly by the interpreter: when a new identifier
(e.g x, or y as above) is input, the corresponding variable is registered as having a strictly lower
priority than any variable in use at this point*. To see the ordering used by gp at any given time,
type variable().

* This is not strictly true: the variables z and y are predefined, and satisfy x > y. Variables of
higher priority than = can be created using varhigher.

32

Given such an ordering, multivariate polynomials are stored so that the variable with the
highest priority is the main variable. And so on, recursively, until all variables are exhausted. A
different storage pattern (which could only be obtained via libpari programming and low-level
constructors) would produce an invalid object, and eventually a disaster.

In any case, if you are working with expressions involving several variables and want to have
them ordered in a specific manner in the internal representation just described, the simplest is just
to write down the variables one after the other under gp before starting any real computations.
You may also define variables from your gprc to have a consistent ordering of common variable
names in all your gp sessions, e.g read in a file variables.gp containing

) .) .) .) . 2 .
X3 ys Zj; t; aj

There is no way to change the priority of existing variables, but you may always create new ones
with well-defined priorities using varhigher or varlower.

Important note. PARI allows Euclidean division of multivariate polynomials, but assumes that
the computation takes place in the fraction field of the coefficient ring (if it is not an integral
domain, the result will a priori not make sense). This can become tricky. For instance assume z
has highest priority, then y:

?xhy

%1 =0

7y hx

h2 =y \\ these two take place in Q(y)|[x]
? x * Mod(1,y)

%3 = Mod(1, y)*x \\in (Q(y)/yQ(y))[z] ~ Qlz]
? Mod(x,y)

W =0

In the last example, the division by y takes place in Q(y)[z], hence the Mod object is a coset
in (Q(y)[=])/(yQ(y)[z]), which is the null ring since y is invertible! So be very wary of variable
ordering when your computations involve implicit divisions and many variables. This also affects
functions like numerator/denominator or content:

7 denominator(x / y)

% =1

? denominator(y / x)
%2 = x

? content(x / y)

%3 = 1/y

? content(y / x)
W=y

? content(2 / x)

%5 =2

Can you see why? Hint: z/y = (1/y) * = is in Q(y)[z] and denominator is taken with respect to
Q(y)(z); y/z = (y*2°)/z is in Q(y)(x) so y is invertible in the coefficient ring. On the other hand,
2/x involves a single variable and the coefficient ring is simply Z.

These problems arise because the variable ordering defines an implicit variable with respect
to which division takes place. This is the price to pay to allow % and / operators on polynomials
instead of requiring a more cumbersome divrem(z, y, war) (which also exists). Unfortunately,

33

in some functions like content and denominator, there is no way to set explicitly a main variable
like in divrem and remove the dependence on implicit orderings. This will hopefully be corrected
in future versions.

2.5.4 Multivariate power series. Just like multivariate polynomials, power series are funda-
mentally single-variable objects. It is awkward to handle many variables at once, since PARI’s
implementation cannot handle multivariate error terms like O(z’y?). (It can handle the polyno-
mial O(y’) x o which is a very different thing, see below.)

The basic assumption in our model is that if variable 2 has higher priority than y, then y does
not depend on z: setting y to a function of z after some computations with bivariate power series
does not make sense a priori. This is because implicit constants in expressions like O(z?) depend
on y (whereas in O(y?) they can not depend on z). For instance

? 0(x) *y
hl = 0(x)

7 0(y) * x
%2 = 0(y)*x

Here is a more involved example:

?A=1/x"2+1+0(x); B=1/x+ 1+ 0(x"3);
? subst(z*A, z, B)

%2 = x"=-3 + x7-2 + x7-1 + 1 + 0(x)

7B *x A

%3 = x"-3 + x*-2 + x~-1 + 0(1)

7z x A

% = z%x"-2 + z + 0(x)

The discrepancy between %2 and %3 is surprising. Why does %2 contain a spurious constant term,
which cannot be deduced from the input? Well, we ignored the rule that forbids to substitute
an expression involving high-priority variables to a low-priority variable. The result %4 is correct
according to our rules since the implicit constant in O(z) may depend on z. It is obviously wrong
if z is allowed to have negative valuation in z. Of course, the correct error term should be O(zz),
but this is not possible in PARI.

2.6 Variables and Scope.

This section is rather technical, and strives to explain potentially confusing concepts. Skip to
the last subsection for practical advice, if the next discussion does not make sense to you. After
learning about user functions, study the example in Section 2.7.3 then come back.

34

Definitions.

A scope is an enclosing context where names and values are attached. A user’s function body,
the body of a loop, an individual command line, all define scopes; the whole program defines the
global scope. The argument of eval is evaluated in the enclosing scope.

Variables are bound to values within a given scope. This is traditionally implemented in two
different ways:

o lexical (or static) scoping: the binding makes sense within a given block of program text.
The value is private to the block and may not be accessed from outside. Where to find the value
is determined at compile time.

e dynamic scoping: introducing a local variable, say x, pushes a new value on a stack attached
to the name x (possibly empty at this point), which is popped out when the control flow leaves the
scope. Evaluating x in any context, possibly outside of the given block, always yields the top value
on this dynamic stack.

GP implements both lexical and dynamic scoping, using the keywords* my (lexical) and local
(dynamic):

x = 0;
fO) = x
gO) = my(x = 1); £0O
h() = local(x = 1); £(O)

The function g returns 0 since the global x binding is unaffected by the introduction of a private
variable of the same name in g. On the other hand, h returns 1; when it calls £ (), the binding stack
for the x identifier contains two items: the global binding to 0, and the binding to 1 introduced in
h, which is still present on the stack since the control flow has not left h yet.

2.6.1 Scoping rules.

Named parameters in a function definition, as well as all loop indices**, have lexical scope
within the function body and the loop body respectively.

p=0;
forprime (p = 2, 11, print(p)); p \\ prints O at the end
x = 0;

f(x) = x++;
£(1) \\ returns 2, and leave global x unaffected (= 0)

If you exit the loop prematurely, e.g. using the break statement, you must save the loop index in
another variable since its value prior the loop will be restored upon exit. For instance

for(i = 1, n,
it (ok(i), break);
)

if (i > n, return(failure));

* The names are borrowed from the Perl scripting language.
** More generally, in all iterative constructs which use a variable name (for, prod, sum, vector,
matrix, plot, etc.) the given variable is lexically scoped to the construct’s body.

35

is incorrect, since the value of i tested by the (i > n) is quite unrelated to the loop index. One ugly
workaround is

for(i =1, n,
if (ok(i), isave = i; break);
);

if (isave > n, return(failure));
But it is usually more natural to wrap the loop in a user function and use return instead of break:

try() =
{
for(i = 1, n,
if (ok(i), return (i));
)
0 \\ failure
}

A list of variables can be lexically or dynamically scoped (to the block between the declaration
and the end of the innermost enclosing scope) using a my or local declaration:

for (1 =1, 10,
my(x, y, z, i2 = i"2); \\ temps needed within the loop body
)

Note how the declaration can include (optional) initial values, i2 = i~2 in the above. Variables
for which no explicit default value is given in the declaration are initialized to 0. It would be more
natural to initialize them to free variables, but this would break backward compatibility. To obtain
this behavior, you may explicitly use the quoting operator:

my(x = ’x, y =y, 2= 72);
A more complicated example:

for (1 =1, 3,
print ("main loop");

my(x = i); \\ local to the outermost loop
for (j = 1, 3,
my (y = x7°2); \\ local to the innermost loop
print (y + y~2);
X++;
)

)
When we leave the loops, the values of x, y, i, j are the same as before they were started.

Note that eval is evaluated in the given scope, and can access values of lexical variables:

?7x=1;
? my(x = 0); eval("x")
%2 =0 \\ we see the local x scoped to this command line, not the global one

Variables dynamically scoped using local should more appropriately be called temporary val-
ues since they are in fact local to the function declaring them and any subroutine called from

36

within. In practice, you almost certainly want true private variables, hence should use almost
exclusively my.

We strongly recommended to explicitly scope (lexically) all variables to the smallest possible
block. Should you forget this, in expressions involving such “rogue” variables, the value used will
be the one which happens to be on top of the value stack at the time of the call; which depends on
the whole calling context in a non-trivial way. This is in general not what you want.

2.7 User defined functions.

The most important thing to understand about user-defined functions is that they are ordinary
GP objects, bound to variables just like any other object. Those variables are subject to scoping
rules as any other: while you can define all your functions in global scope, it is usually possible
and cleaner to lexically scope your private helper functions to the block of text where they will be
needed.

Whenever gp meets a construction of the form expr (argument list) and the expression expr
evaluates to a function (an object of type t_CLOSURE), the function is called with the proper
arguments. For instance, constructions like funcs[i] (x) are perfectly valid, assuming funcs is an
array of functions.

2.7.1 Defining a function.
A user function is defined as follows:

(list of formal variables) -> seq.

The list of formal variables is a comma-separated list of distinct variable names and allowed to be
empty. It there is a single formal variable, the parentheses are optional. This list corresponds to
the list of parameters you will supply to your function when calling it.

In most cases you want to assign a function to a variable immediately, as in

R = (x,y) -> sqrt(x"2+y"2);
sq = x -> x°2; \\ or equivalently (x) -> x"2

but it is quite possible to define (a priori short-lived) anonymous functions. The trailing semicolon
is not part of the definition, but as usual prevents gp from printing the result of the evaluation, i.e.
the function object. The construction

f (list of formal variables) = seq
is available as an alias for
f = (list of formal variables) -> seq

Using that syntax, it is not possible to define anonymous functions (obviously), and the above two
examples become:

R(x,y) = sqrt(x"2+y"2);
sq(x) = x72;

The semicolon serves the same purpose as above: preventing the printing of the resulting function
object; compare

? sq(x) = x72; \\ no output

37

7 s8q(x) = x~2 A\ print the result: a function object
%2 = (x)->x"2

Of course, the sequence seq can be arbitrarily complicated, in which case it will look better written
on consecutive lines, with properly scoped variables:

{
£(x0, x1, ...) =
my (t0, t1, ...); \\ wvariables lexically scoped to the function body

¥

Note that the following variant would also work:

f(x0, x1, ...) =
{
my (t0, t1, ...); \\ wariables lexically scoped to the function body

}

(the first newline is disregarded due to the preceding = sign, and the others because of the enclosing
braces). The my statements can actually occur anywhere within the function body, scoping the
variables to more restricted blocks than the whole function body.

Arguments are passed by value, not as variables: modifying a function’s argument in the
function body is allowed, but does not modify its value in the calling scope. In fact, a copy of
the actual parameter is assigned to the formal parameter when the function is called. Formal
parameters are lexically scoped to the function body. It is not allowed to use the same variable
name for different parameters of your function:

? f(x,x) =1
**x%x variable declared twice: f(x,x)=1
*okok o

Functions taking an unlimited number of arguments.

A function taking an unlimited number of arguments is called variadic. To create such a
function, use the syntax

(list of formal variables, var[..]) -> seq
The parameter var is replaced by a vector containing all the remaining arguments.

? £(c[..]) = sum(i=1,#c,c[i]);

7 £(1,2,3)

%1l =6

7 sep(s,v[..]) = for(i=1,#v-1,printl1(v[il,s)); if (#v, print(v[#v]));
7 sep(":", 1, 2, 3)

1:2:3

Finishing touch. You can add a specific help message for your function using addhelp, but the
online help system already handles it. By default ?name will print the definition of the function
name: the list of arguments, as well as their default values, the text of seq as you input it. Just as
\c prints the list of all built-in commands, \u outputs the list of all user-defined functions.

38

Backward compatibility (lexical scope). Lexically scoped variables were introduced in ver-
sion 2.4.2. Before that, the formal parameters were dynamically scoped. If your script depends on
this behavior, you may use the following trick: replace the initial £(x) = by

f(x_orig) = local(x = x_orig)

Backward compatibility (disjoint namespaces). Before version 2.4.2, variables and functions
lived in disjoint namespaces and it was not possible to have a variable and a function share the
same name. Hence the need for a kill function allowing to reuse symbols. This is no longer the
case.

There is now no distinction between variable and function names: we have PARI objects
(functions of type t_CLOSURE, or more mundane mathematical entities, like t_INT, etc.) and
variables bound to them. There is nothing wrong with the following sequence of assignments:

?7f =1 \\ assigns the integer 1 to £

hl = 1;

70 =1 \\ a function with a constant value
w2 = (O->1

?7f =x"2 \\ £ now holds a polynomial

%3 = x"2

7 £(x) = x°2 \\ ... and now a polynomial function

W= (x)->x"2

7 g(fun) = fun(Pi);\\ a function taking o function as argument
? g(cos)

%6 = -1.000000000000000000000000000

Previously used names can be recycled as above: you are just redefining the variable. The previous
definition is lost of course.

Important technical note. Built-in functions are a special case since they are read-only (you
cannot overwrite their default meaning), and they use features not available to user functions, in
particular pointer arguments. In the present version 2.9.1, it is possible to assign a built-in function
to a variable, or to use a built-in function name to create an anonymous function, but some special
argument combinations may not be available:

? issquare(9, &e)

=1

7 e

h2 =3

? g = issquare;
7 g(9
=1

7 g(9, &e) \\ pointers are not implemented for user functions
*** unexpected &: g(9,&e)
*okok ~o

39

2.7.2 Function call, Default arguments.

You may now call your function, as in £(1,2), supplying values for the formal variables.
The number of parameters actually supplied may be less than the number of formal variables in
the function definition. An uninitialized formal variable is given an implicit default value of (the
integer) 0, i.e. after the definition

fx, y) = ...
you may call £(1, 2), supplying values for the two formal parameters, or for example
£(2) equivalent to £(2,0),
0O £(0,0),
£(,3) £(0,3). (“Empty argument” trick)

This implicit default value of 0, is actually deprecated and setting
default(strictargs, 1)
allows to disable it (see Section 3.17.41).

The recommended practice is to ezplicitly set a default value: in the function definition, you
can append =ezpr to a formal parameter, to give that variable a default value. The expression gets
evaluated the moment the function is called, and may involve the preceding function parameters:
a default value for z; may involve x; for j < ¢. For instance, after

fx=1,y=2, z=y+1) =

typing in £(3,4) would give you £(3,4,5). In the rare case when you want to set some far
away argument, and leave the defaults in between as they stand, use the “empty argument” trick:
£(6,,1) would yield £(6,2,1). Of course, £ () by itself yields £(1,2,3) as was to be expected.

In short, the argument list is filled with user supplied values, in order. A comma or closing
parenthesis, where a value should have been, signals we must use a default value. When no input
arguments are left, the defaults are used instead to fill in remaining formal parameters. A final
example:

f(x, y=2, 2z=3) = print(x, ":", y, ":", 2);
defines a function which prints its arguments (at most three of them), separated by colons.

7 £(6,7)
6:7:3
7 £(,5)
0:5:3
? £()
0:2:3

If strictargs is set (recommended), x is now a mandatory argument, and the above becomes:

default(strictargs,1)
£(6,7)

:7:3

£(,5)

ok ok at top-level: f(,5)
* kK S

N Oy N N

%ok k in function f: x,y=2,z=3
*k K R

% missing mandatory argument ’x’ in user function.

40

Example. We conclude with an amusing example, intended to illustrate both user-defined func-
tions and the power of the sumalt function. Although the Riemann zeta-function is included (as
zeta) among the standard functions, let us assume that we want to check other implementations.
Since we are highly interested in the critical strip, we use the classical formula

27 = 1)¢(s) =D (D)™, Rs>0.

The implementation is obvious:
ZETA(s) = sumalt(n=1, (-1)"n*n~(-s)) / (2°(1-s) - 1)

Note that n is automatically lexically scoped to the sumalt “loop”, so that it is unnecessary to add
a my(n) declaration to the function body. Surprisingly, this gives very good accuracy in a larger
region than expected:

? check = z -> ZETA(z) / zeta(z);

? check(2)

%1 = 1.000000000000000000000000000

? check(200)

%2 = 1.000000000000000000000000000

? check(0)

%3 = 0.9999999999999999999999999994

? check(-5)

%4 = 1.00000000000000007549266557

? check(-11)

%5 = 0.9999752641047824902660847745

7 check(1/2+14.134xI) \\ wery close to a non-trivial zero
%6 = 1.000000000000000000003747432 + 7.62329066 E-21x*I
? check(-1+10%1I)

%7 = 1.000000000000000000000002511 + 2.989950968 E-24xI

Now wait a minute; not only are we summing a series which is certainly no longer alternating (it
has complex coefficients), but we are also way outside of the region of convergence, and still get
decent results! No programming mistake this time: sumalt is a “magic” function*®, providing very
good convergence acceleration; in effect, we are computing the analytic continuation of our original
function. To convince ourselves that sumalt is a non-trivial implementation, let us try a simpler
example:

? sum(n=1, 1077, (-1)"n/n, 0.) / (-log(2)) \\ approzimates the well-known formula
time = 7,417 ms.

%1 = 0.9999999278652515622893405457

? sumalt(n=1, (-1)"n/n) / (-log(2)) \\ accurate and fast

time = 0 ms.

%#2 = 1.000000000000000000000000000

No, we are not using a powerful simplification tool here, only numerical computations. Remember,
PARI is not a computer algebra system!

* sumalt is heuristic, but its use can be rigorously justified for a given function, in particular our
¢(s) formula. Indeed, Peter Borwein (An efficient algorithm for the Riemann zeta function, CMS
Conf. Proc. 27 (2000), pp. 29-34) proved that the formula used in sumalt with n terms computes
(1 —2'7%)((s) with a relative error of the order of (3 4 v/8)~"|T'(s)| ™.

41

2.7.3 Beware scopes. Be extra careful with the scopes of variables. What is wrong with the
following definition?

FirstPrimeDiv(x) =

{ my(p);
forprime(p=2, x, if (x)p == 0, break));
p

}

? FirstPrimeDiv(10)

%1 =0

Hint. The function body is equivalent to

{ my(newp = 0);
forprime(p=2, x, if (x¥p == 0, break));
newp

}

Detailed explanation. The index p in the forprime loop is lexically scoped to the loop and is
not visible to the outside world. Hence, it will not survive the break statement. More precisely,
at this point the loop index is restored to its preceding value. The initial my (p), although well-
meant, adds to the confusion: it indeed scopes p to the function body, with initial value 0, but the
forprime loop introduces another variable, unfortunately also called p, scoped to the loop body,
which shadows the one we wanted. So we always return 0, since the value of the p scoped to the
function body never changes and is initially 0.

To sum up, the routine returns the p declared local to it, not the one which was local to
forprime and ran through consecutive prime numbers. Here is a corrected version:

7 FirstPrimeDiv(x) = forprime(p=2, x, if (x¥%p == 0, return(p)))
2.7.4 Recursive functions. Recursive functions can easily be written as long as one pays proper

attention to variable scope. Here is an example, used to retrieve the coefficient array of a multivari-
ate polynomial (a non-trivial task due to PARI’s unsophisticated representation for those objects):

coeffs(P, nbvar) =

{
if (type(P) !'= "t_POL",
for (i=1, nbvar, P = [P]);
return (P)
);
vector(poldegree(P)+1, i, coeffs(polcoeff(P, i-1), nbvar-1))
}

If P is a polynomial in k variables, show that after the assignment v = coeffs(P,k), the coefficient
of 1 ...x}* in P is given by v[n;+11[...1[ng+1].

The operating system automatically limits the recursion depth:
? dive(n) = dive(n+1)

7 dive(0);

42

* Kok [...] at: dive(n+1)

* kK Ao

*** in function dive: dive(n+1)
*kk "emeem—maa
\\ (last 2 lines repeated 19 times)

*** deep recursion.

There is no way to increase the recursion limit (which may be different on your machine) from
within gp. To increase it before launching gp, you can use ulimit or limit, depending on your
shell, and raise the process available stack space (increase stacksize).

2.7.5 Function which take functions as parameters. This is done as follows:

? calc(f, x) = £(x)
? calc(sin, Pi)
%2 = -5.04870979 E-29

7 g(x) = x72;
7 calc(g, 3)
%4 =9

If we do not need g elsewhere, we should use an anonymous function here, calc(x->x"2, 3). Here
is a variation:

? funs = [cos, sin, tan, x->x"3+1]; \\ an array of functions
? call(i, x) = funs[i] (%)

evaluates the appropriate function on argument x, provided 1 < i < 4. Finally, a more useful
example:

APPLY(f, v) = vector(#v, i, f(v[il))
applies the function f to every element in the vector v. (The built-in function apply is more
powerful since it also applies to lists and matrices.)
2.7.6 Defining functions within a function. Defining a single function is easy:

init(x) = (add = y -> x+y);

Basically, we are defining a global variable add whose value is the function y->x+y. The parentheses
were added for clarity and are not mandatory.

? init(5);
? add(2)
%2 =7

A more refined approach is to avoid global variables and return the function:

init(x) =y -> x+y
add = init(5)

Then add(2) still returns 7, as expected! Of course, if add is in global scope, there is no gain, but
we can lexically scope it to the place where it is useful:

my (add = init(5));

How about multiple functions then? We can use the last idea and return a vector of functions,
but if we insist on global variables? The first idea

43

init(x) = add(y) = x+y; mul(y) = x*y;

does not work since in the construction £() = seq, the function body contains everything until
the end of the expression. Hence executing init defines the wrong function add (itself defining a
function mul). The way out is to use parentheses for grouping, so that enclosed subexpressions will
be evaluated independently:

7 init(x) = (add(y) = x+y); (mul(y) = x*y);
? init(5);

? add(2)

w3 =17

? mul(3)

4 = 15

This defines two global functions which have access to the lexical variables private to init! The
following would work in exactly the same way:

? inits() = my(x = 5); (add(y) = x+y); (mul(y) = x*y);

2.7.7 Closures as Objects. Contrary to what you might think after the preceding examples, GP’s
closures may not be used to simulate true “objects”, with private and public parts and methods
to access and manipulate them. In fact, closures indeed incorporate an existing context (they may
access lexical variables that existed at the time of their definition), but then may not change it.
More precisely, they access a copy, which they are welcome to change, but a further function call
still accesses the original context, as it existed at the time the function was defined:

init() =

{ my(count = 0);
inc()=count++;
dec()=count—-;

}

? inc()
%=1
? inc()
%2 =1
? inc()
%3 =1

2.8 Member functions.

Member functions use the ‘dot’ notation to retrieve information from complicated structures.
The built-in structures are bid, ell, galois, ff, nf, bnf, bnr and prid, which will be described at length
in Chapter 3. The syntax structure.member is taken to mean: retrieve member from structure,
e.g. E.j returns the j-invariant of the elliptic curve E, or outputs an error message if E is not a
proper ell structure. To define your own member functions, use the syntax

var.member = seq,

where the formal variable var is scoped to the function body seq. This is of course reminiscent of
a user function with a single formal variable var. For instance, the current implementation of the
ell type is a vector, the j-invariant being the thirteenth component. It could be implemented as

44

X.] =
{

if (type(x) !'= "t_VEC" || #x < 14, error("not an elliptic curve: " x));
x[13]

}

As for user functions, you can redefine your member functions simply by typing new definitions.
On the other hand, as a safety measure, you cannot redefine the built-in member functions, so
attempting to redefine x.j as above would in fact produce an error; you would have to call it
e.g. x.myj in order for gp to accept it.

Rationale. In most cases, member functions are simple accessors of the form

x.a = x[1];
x.b = x[2];
x.c = x[3];

where x is a vector containing relevant data. There are at least three alternative approaches to the
above member functions: 1) hardcode x[1], etc. in the program text, 2) define constant global
variables AINDEX = 1, BINDEX = 2 and hardcode x[AINDEX], 3) user functions a(x) = x[1] and
SO o1.

Even if 2) improves on 1), these solutions are neither elegant nor flexible, and they scale badly.
3) is a genuine possibility, but the main advantage of member functions is that their namespace is
independent from the variables (and functions) namespace, hence we can use very short identifiers
without risk. The j-invariant is a good example: it would clearly not be a good idea to define j (E)
= E[13], because clashes with loop indices are likely.

Note. Typing \um will output all user-defined member functions.

Member function names. A valid name starts with a letter followed by any number of keyword
characters: _ or alphanumeric characters ([A-Za-z0-9]). The built-in member function names are
reserved and cannot be used (see the list with ?.). Finally, names starting with e or E followed
by a digit are forbidden, due to a clash with the floating point exponent notation: we understand
1.e2 as 100.000.. ., not as extracting member e2 of object 1.

2.9 Strings and Keywords.

2.9.1 Strings. GP variables can hold values of type character string (internal type t_STR). This
section describes how they are actually used, as well as some convenient tricks (automatic concate-
nation and expansion, keywords) valid in string context.

As explained above, the general way to input a string is to enclose characters between quotes ".
This is the only input construct where whitespace characters are significant: the string will contain
the exact number of spaces you typed in. Besides, you can “escape” characters by putting a \ just
before them; the translation is as follows

\e: <Escape>
\n: <Newline>
\t: <Tab>

45

For any other character x, \z is expanded to z. In particular, the only way to put a " into a
string is to escape it. Thus, for instance, "\"a\"" would produce the string whose content is “a”.
This is definitely not the same thing as typing "a", whose content is merely the one-letter string a.

You can concatenate two strings using the concat function. If either argument is a string, the
other is automatically converted to a string if necessary (it will be evaluated first).

? concat("ex", 1+1)

%1 = Ngx2"

?7a=2; b="ex"; concat(b, a)
%2 - lleX2"

? concat(a, b)

%3 = "oex"

Some functions expect strings for some of their arguments: print would be an obvious example,
Str is a less obvious but useful one (see the end of this section for a complete list). While typing
in such an argument, you will be said to be in string context. The rest of this section is devoted to
special syntactical tricks which can be used with such arguments (and only here; you will get an
error message if you try these outside of string context):

e Writing two strings alongside one another will just concatenate them, producing a longer
string. Thus it is equivalent to type in "a " "b" or "a b". A little tricky point in the first
expression: the first whitespace is enclosed between quotes, and so is part of a string; while the
second (before the "b") is completely optional and gp actually suppresses it, as it would with any
number of whitespace characters at this point (i.e. outside of any string).

e If you insert any expression when a string is expected, it gets “expanded”: it is evaluated
as a standard GP expression, and the final result (as would have been printed if you had typed
it by itself) is then converted to a string, as if you had typed it directly. For instance "a" 1+1
"b" is equivalent to "a2b": three strings get created, the middle one being the expansion of 1+1,
and these are then concatenated according to the rule described above. Another tricky point here:
assume you did not assign a value to aaa in a GP expression before. Then typing aaa by itself in
a string context will actually produce the correct output (i.e. the string whose content is aaa), but
in a fortuitous way. This aaa gets expanded to the monomial of degree one in the variable aaa,
which is of course printed as aaa, and thus will expand to the three letters you were expecting.

Warning. Expression involving strings are not handled in a special way; even in string context,
the largest possible expression is evaluated, hence print ("a"[1]) is incorrect since "a" is not an
object whose first component can be extracted. On the other hand print("a", [1]) is correct
(two distinct argument, each converted to a string), and so is print("a" 1) (since "a"1 is not
a valid expression, only "a" gets expanded, then 1, and the result is concatenated as explained
above).

2.9.2 Keywords. Since there are cases where expansion is not desirable, we now distinguish
between “Keywords” and “Strings”. String is what has been described so far. Keywords are
special relatives of Strings which are automatically assumed to be quoted, whether you actually
type in the quotes or not. Thus expansion is never performed on them. They get concatenated,
though. The analyzer supplies automatically the quotes you have “forgotten” and treats Keywords
just as normal strings otherwise. For instance, if you type "a"b+b in Keyword context, you will get
the string whose contents are ab+b. In String context, on the other hand, you would get a2#*b.

All GP functions have prototypes (described in Chapter 3 below) which specify the types of
arguments they expect: either generic PARI objects (GEN), or strings, or keywords, or unevaluated

46

expression sequences. In the keyword case, only a very small set of words will actually be meaningful
(the default function is a prominent example).

Reference. The arguments of the following functions are processed in string context:
Str
addhelp (second argument)
default (second argument)
error
extern
plotstring (second argument)
plotterm (first argument)
read and readvec
system
all the printzzz functions
all the writezzz functions

The arguments of the following functions are processed as keywords:
alias
default (first argument)
install (all arguments but the last)
trap (first argument)
whatnow

2.9.3 Useful example. The function Str converts its arguments into strings and concatenate
them. Coupled with eval, it is very powerful. The following example creates generic matrices:

? genmat(u,v,s="x") = matrix(u,v,i,j, eval(Str(s,i,j)))
7 genmat(2,3) + genmat(2,3,"m"

%1 =

[x11 + m11 x12 + m12 x13 + m13]

[x21 + m21 x22 + m22 x23 + m23]

2.10 Errors and error recovery.

2.10.1 Errors. Your input program is first compiled to a more efficient bytecode; then the latter
is evaluated, calling appropriate functions from the PARI library. Accordingly, there are two kind
of errors: syntax errors produced by the compiler, and runtime errors produced by the PARI
library either by the evaluator itself, or in a mathematical function. Both kinds are fatal to your
computation: gp will report the error and perform some cleanup (restore variables modified while
evaluating the erroneous command, close open files, reclaim unused memory, etc.).

At this point, the default is to return to the usual prompt, but if the recover option (Sec-
tion 3.17.36) is off then gp exits immediately. This can be useful for batch-mode operation to make
untrapped errors fatal.

When reporting a syntaz error, gp gives meaningful context by copying (part of) the expression
it was trying to compile, indicating where the error occurred with a caret ~-, as in

? factor()
*** too few arguments: factor()

%k %k -

47

7 1+
* %k syntax error, unexpected $end: 1+

~

*kK -
possibly enlarged to a full arrow given enough trailing context

? if (isprime(1+, do_something())
ok k syntax error, unexpected ’,’: if(isprime(1+,do_something()))
sokk e

These error messages may be mysterious, because gp cannot guess what you were trying to do, and
the error may occur once gp has been sidetracked. The first error is straightforward: factor has
one mandatory argument, which is missing.

The other two are simple typos involving an ill-formed addition 1 + missing its second
operand. The error messages differ because the parsing context is slightly different: in the first case
we reach the end of input ($end) while still expecting a token, and in the second one, we received
an unexpected token (the comma).

Here is a more complicated one:

? factor(x
**%* syntax error, unexpected $end, expecting)-> or ’,’ or ’)’: factor(x

% %k %k -

The error is a missing parenthesis, but from gp’s point of view, you might as well have intended to
give further arguments to factor (this is possible and useful, see the description of the function).
In fact gp expected either a closing parenthesis, or a second argument separated from the first by
a comma. And this is essentially what the error message says: we reached the end of the input
($end) while expecting a >)’ ora ’,’.

Actually, a third possibility is mentioned in the error message)->, which could never be valid
in the above context, but a subexpression like (x)->sin(x), defining an inline closure would be
valid, and the parser is not clever enough to rule that out, so we get the same message as in

7 (x
x** syntax error, unexpected $end, expecting)-> or ’,’ or ’)’: (x

~

ok 3k %k -
where all three proposed continuations would be valid.

Runtime errors from the evaluator are nicer because they answer a correctly worded query,
otherwise the bytecode compiler would have protested first; here is a slightly pathological case:

7 if (siN(x) < eps, do_something())
%ok >k at top-level: if(siN(x)<eps,do_someth
*okok N
%k % not a function in function call

(no arrow!) The code is syntactically correct and compiled correctly, even though the siN function,
a typo for sin, was not defined at this point. When trying to evaluate the bytecode, however, it
turned out that siN is still undefined so we cannot evaluate the function call siN(x).

Library runtime errors are even nicer because they have more mathematical content, which is
easier to grasp than a parser’s logic:

? 1/Mod(2,4)

48

*** at top-level: 1/Mod(2,4)
*okk T

*xx _/_: impossible inverse in Fp_inv: Mod(2, 4).

telling us that a runtime error occurred while evaluating the binary / operator (the _ surrounding
the operator are placeholders), more precisely the Fp_inv library function was fed the argument
Mod(2,4) and could not invert it. More context is provided if the error occurs deep in the call
chain:

7 £(x) = 1/x;
? g(N) = for(i = -N, N, £(i + 0(5)));
7 g(10)

*** at top-level: g(10)

K okok it

ok ok in function g: for(i=-N,N,f(i))
*ok ok ~

*okok in function f: 1/x

% %k %k -

x% _/ : impossible inverse in ginv: 0(5).

In this example, the debugger reports (at least) 3 enclosed frames: last (innermost) is the body of
user function f, the body of g, and the top-level (global scope). In fact, the for loop in g’s body
defines an extra frame, since there exist variables scoped to the loop body.

2.10.2 Error recovery.

It is annoying to wait for a program to finish and find out the hard way that there was a
mistake in it (like the division by 0 above), sending you back to the prompt. First you may lose
some valuable intermediate data. Also, correcting the error may not be obvious; you might have to
change your program, adding a number of extra statements and tests to narrow down the problem.

A different situation, still related to error recovery, is when you actually foresee that some
error may occur, are unable to prevent it, but quite capable of recovering from it, given the chance.
Examples include lazy factorization, where you knowingly use a pseudo prime N as if it were prime;
you may then encounter an “impossible” situation, but this would usually exhibit a factor of IV,
enabling you to refine the factorization and go on. Or you might run an expensive computation
at low precision to guess the size of the output, hence the right precision to use. You can then
encounter errors like “precision loss in truncation”, e.g when trying to convert 1E1000, known to
28 digits of accuracy, to an integer; or “division by 07, e.g inverting OE1000 when all accuracy has
been lost, and no significant digit remains. It would be enough to restart part of the computation
at a slightly higher precision.

We now describe error trapping, a useful mechanism which alleviates much of the pain in the
first situation (the break loop debugger), and provides satisfactory ways out of the second one (the
iferr exception handler).

49

2.10.3 Break loop.

A break loop is a special debugging mode that you enter whenever a user interrupt (Control-C)
or runtime error occurs, freezing the gp state, and preventing cleanup until you get out of the loop.
By runtime error, we mean an error from the evaluator, the library or a user error (from error),
not syntax errors. When a break loop starts, a prompt is issued (break>). You can type in a gp
command, which is evaluated when you hit the <Return> key, and the result is printed as during
the main gp loop, except that no history of results is kept. Then the break loop prompt reappears
and you can type further commands as long as you do not exit the loop. If you are using readline,
the history of commands is kept, and line editing is available as usual. If you type in a command
that results in an error, you are sent back to the break loop prompt: errors do not terminate the
loop.

To get out of a break loop, you can use next, break, return, or type C-d (EOF), any of which
will let gp perform its usual cleanup, and send you back to the gp prompt. Note that C-d is slightly
dangerous, since typing it twice will not only send you back to the gp prompt, but to your shell
prompt! (Since C-d at the gp prompt exits the gp session.)

If the break loop was started by a user interrupt Control-C, and not by an error, inputting an
empty line, i.e hitting the <Return> key at the break> prompt, resumes the temporarily interrupted
computation. A single empty line has no effect in case of a fatal error, to avoid getting get out of
the loop prematurely, thereby losing valuable debugging data. Any of next, break, return, or C-d
will abort the computation and send you back to the gp prompt as above.

Break loops are useful as a debugging tool. You may inspect the values of gp variables to
understand why an error occurred, or change gp’s state in the middle of a computation (increase
debugging level, start storing results in a log file, set variables to different values. ..): hit C-c, type
in your modifications, then let the computation go on as explained above. A break loop looks like
this:

?v=0; 1/v
*k*x at top-level: v=0;1/v
®okok ==

k% _/_: impossible inverse in gdiv: 0.
*x**x Break loop (type ’break’ to go back to the GP prompt)
break>

So the standard error message is printed first. The break> at the bottom is a prompt, and hitting
v then <Return>, we see:

break> v
0

explaining the problem. We could have typed any gp command, not only the name of a variable,
of course. Lexically-scoped variables are accessible to the evaluator during the break loop:

? for(v = -2, 2, print(1/v))
-1/2
-1
ook k at top-level: for(v=-2,2,print(1/v))
*ok ok o—
*kk _/ 2 impossible inverse in gdiv: O.
x** Break loop (type ’break’ to go back to the GP prompt)

50

break> v
0

Even though loop indices are automatically lexically scoped and no longer exist when the break
loop is run, enough debugging information is retained in the bytecode to reconstruct the evaluation
context. Of course, when the error occurs in a nested chain of user function calls, lexically scoped
variables are available only in the corresponding frame:

7 f(x) = 1/x;

7 g(x) = for(i = 1, 10, f(x+i));

? for(j = -5,5, g(j))
*ok K at top-level: for(j=-5,5,g(j))
Kok ok -
kK in function g: for(i=1,10,f(x+i))
KoKk S
*** in function f: 1/x
*okok ~——
%% _/_: impossible inverse in gdiv: O.
*xx Break loop: type ’break’ to go back to GP prompt

break> [i,j,x] \\ the x in f’s body.
(i, j, 0]
break> dbg_up \\ go up one frame
*ok K at top-level: for(j=-5,5,g(j))
*okok e
*k ok in function g: for(i=1,10,f(x+i))
*okok P
break> [i,j,x] \\ the x in g’s body, i in the for loop.
(5, j, -5]

The following GP commands are available during a break loop to help debugging:
dbg_up(n): go up n frames, as seen above.

dbg_down(n): go down n frames, cancelling previous dbg up’s.

dbg_x(t): examine ¢, as \x but more flexible

dbg_err(): returns the current error context t_ERROR. The error components often provide
useful additional information:

7 0(2) + 0(3)
*x*x at top-level: 0(2)+0(3)
EEE ——
**%% _+_: inconsistent addition t_PADIC + t_PADIC.
x Break loop: type ’break’ to go back to GP prompt
break> E = dbg_err()
error("inconsistent addition t_PADIC + t_PADIC.")
break> Vec(E)

["e_0OP", "+", 0(2), 0(3)]

ol

Note. The debugger is enabled by default, and fires up as soon as a runtime error occurs. If you
do not like this behavior, you may disable it by setting the default breakloop to 0 in for gprc. A
runtime error will send you back to the prompt. Note that the break loop is automatically disabled
when running gp in non interactive mode, i.e. when the program’s standard input is not attached
to a terminal.

Technical Note. When you enter a break loop due to a PARI stack overflow, the PARI stack is
reset so that you can run commands. Otherwise the stack would immediately overflow again! Still,
as explained above, you do not lose the value of any gp variable in the process.

2.10.4 Protecting code. The expression
iferr(statements, ERR, recovery)

evaluates and returns the value of statements, unless an error occurs during the evaluation in which
case the value of recovery is returned. As in an if/else clause, with the difference that statements
has been partially evaluated, with possible side effects. We shall give a lot more details about
the ERR argument shortly; it is the name of a variable, lexically scoped to the recovery expression
sequence, whose value is set by the exception handler to help the recovery code decide what to do
about the error.

For instance one can define a fault tolerant inversion function as follows:

? inv(x) = iferr(1/x, ERR, "oo") \\ ERR is unused...
? for (i=-1,1, print(inv(i)))

-1

0o

1

Protected codes can be nested without adverse effect. Let’s now see how ERR can be used; as
written, inv is too tolerant:

? inv("blah")
%2 = "oo"

Let’s improve it by checking that we caught a “division by 0” exception, and not an unrelated
one like the type error 1 / "blah".

7 inv2(x) = {
iferr(1/x,
ERR, if (errname(ERR) != "e_INV", error(ERR)); "oo")
}
? inv2(0)
%3 = "oo" \\ as before
? inv2("blah")
*** at top-level: inv2("blah")
*okok [T T ———
*ok ok in function inv2: ...f(errname(ERR)'!="e_INV",error(ERR));"oo")
*okok R
*%x% error: forbidden division t_INT / t_STR.

In the inv2("blah") example, the error type was not expected, so we rethrow the exception:
error (ERR) triggers the original error that we mistakenly trapped. Since the recovery code should

52

always check whether the error is the one expected, this construction is very common and can be
simplified to

? inv3(x) = iferr(1/x,
ERR, "oo",
errname (ERR) == "e_INV")

More generally
iferr(statements, ERR, recovery, predicate)

only catches the exception if predicate (allowed to check various things about ERR, not only its
name) is non-zero.

Rather than trapping everything, then rethrowing whatever we do not like, we advise to only
trap errors of a specific kind, as above. Of course, sometimes, one just want to trap everything
because we do not know what to expect. The following function check whether install works
correctly in your gp:

broken_install() =
{ \\ can we install?
iferr(install(addii,GG),
ERR, return ("0S"));
\\ can we use the installed function?
iferr(if (addii(1,1) '= 2, return("BROKEN")),
ERR, return("USE"));
return (0);

¥

The function returns 08 if the operating system does not support install, USE if using an installed
function triggers an error, BROKEN if the installed function did not behave as expected, and 0 if
everything works.

The ERR formal parameter contains more useful data than just the error name, which we
recovered using errname (ERR). In fact, a t_ERROR object usually has extra components, which can
be accessed as component (ERR, 1), component (ERR,2), and so on. Or globally by casting the error
to a t_VEC: Vec(ERR) returns the vector of all components at once. See Section 3.14.17 for the list
of all exception types, and the corresponding contents of ERR.

2.11 Interfacing GP with other languages.

The PARI library was meant to be interfaced with C programs. This specific use is dealt with
extensively in the User’s guide to the PARI library. Of course, gp itself provides a convenient
interpreter to execute rather intricate scripts (see Section 3.14).

Scripts, when properly written, tend to be shorter and clearer than C programs, and are
certainly easier to write, maintain or debug. You don’t need to deal with memory management,
garbage collection, pointers, declarations, and so on. Because of their intrinsic simplicity, they
are more robust as well. They are unfortunately somewhat slower. Thus their use will remain
complementary: it is suggested that you test and debug your algorithms using scripts, before
actually coding them in C if speed is paramount. The GP2C compiler often eases this part.

93

The install command (see Section 3.15.24) efficiently imports foreign functions for use under
gp, which can of course be written using other libraries than PARI. Thus you may code only critical
parts of your program in C, and still maintain most of the program as a GP script.

We are aware of three PARI-related Free Software packages to embed PARI in other lan-
guages. We neither endorse nor support any of them, but you may want to give them a try if you
are familiar with the languages they are based on. The first is the Python-based SAGE system
(http://sagemath.org/). The second is the Math::Pari Perl module (see any CPAN mirror),
written by Ilya Zakharevich. Finally, Michael Stoll and Sam Steingold have integrated PARI into
CLISP (http://clisp.cons.org/), a Common Lisp implementation.

These provide interfaces to gp functions for use in python, perl, or Lisp programs, respectively.

2.12 Defaults.

There are many internal variables in gp, defining how the system will behave in certain situations,
unless a specific override has been given. Most of them are a matter of basic customization (colors,
prompt) and will be set once and for all in your preferences file (see Section 2.14), but some of
them are useful interactively (set timer on, increase precision, etc.).

The function used to manipulate these values is called default, which is described in Sec-
tion 3.15.8. The basic syntax is

default(def, wvalue),

which sets the default def to value. In interactive use, most of these can be abbreviated using gp
metacommands (mostly, starting with \), which we shall describe in the next section.

Available defaults are described in the reference guide, Section 3.17, the most important one
being parisizemax. Just be aware that typing default by itself will list all of them, as well as
their current values (see \d).

Note. The suffixes k, M or G can be appended to a value which is a numeric argument, with the
effect of multiplying it by 10%, 106 and 10° respectively. Case is not taken into account there, so
for instance 30k and 30K both stand for 30000. This is mostly useful to modify or set the defaults
parisize and parisizemax which typically involve a lot of trailing zeroes.

(somewhat technical) Note. As we saw in Section 2.9, the second argument to default is
subject to string context expansion, which means you can use run-time values. In other words,
something like

a = 3;
default(logfile, "file" a ".log")

logs the output in file3.log.

Some special defaults, corresponding to file names and prompts, expand further the resulting
value at the time they are set. Two kinds of expansions may be performed:

¢ time expansion: the string is sent through the library function strftime. This means that
%char combinations have a special meaning, usually related to the time and date. For instance, %H
= hour (24-hour clock) and %M = minute [00,59] (on a Unix system, you can try man strftime at
your shell prompt to get a complete list). This is applied to prompt, psfile, and logfile. For
instance,

54

default (prompt," (4H:%M) 7 ")
will prepend the time of day, in the form (hh:mm) to gp’s usual prompt.

e environment expansion: When the string contains a sequence of the form $SOMEVAR,
e.g. $HOME, the environment is searched and if SOMEVAR is defined, the sequence is replaced by
the corresponding value. Also the ~ symbol has the same meaning as in many shells — ~ by itself
stands for your home directory, and ~user is expanded to user’s home directory. This is applied
to all file names.

2.13 Simple metacommands.

Simple metacommands are meant as shortcuts and should not be used in GP scripts (see Sec-
tion 3.14). Beware that these, as all of gp input, are case sensitive. For example, \Q is not identical
to \q. In the following list, braces are used to denote optional arguments, with their default values
when applicable, e.g. {n = 0} means that if n is not there, it is assumed to be 0. Whitespace (or
spaces) between the metacommand and its arguments and within arguments is optional. (This can
cause problems only with \w, when you insist on having a file name whose first character is a digit,
and with \r or \w, if the file name itself contains a space. In such cases, just use the underlying
read or write function; see Section 3.15.58).

2.13.1 7{command}. The gp on-line help interface. If you type ?n where n is a number from 1 to
11, you will get the list of functions in Section 3.n of the manual (the list of sections being obtained

by simply typing 7).

These names are in general not informative enough. More details can be obtained by typing
?function, which gives a short explanation of the function’s calling convention and effects. Of
course, to have complete information, read Chapter 3 of this manual (the source code is at your
disposal as well, though a trifle less readable).

If the line before the copyright message indicates that extended help is available (this means
perl is present on your system and the PARI distribution was correctly installed), you can add
more 7 signs for extended functionality:

77 keyword yields the function description as it stands in this manual, usually in Chapter 2
or 3. If you're not satisfied with the default chapter chosen, you can impose a given chapter by
ending the keyword with @ followed by the chapter number, e.g. 77 Hello@2 will look in Chapter 2
for section heading Hello (which doesn’t exist, by the way).

All operators (e.g. +, &&, etc.) are accepted by this extended help, as well as a few other
keywords describing key gp concepts, e.g. readline (the line editor), integer, nf (“number field”
as used in most algebraic number theory computations), ell (elliptic curves), etc.

In case of conflicts between function and default names (e.g log, simplify), the function has
higher priority. To get the default help, use

77 default(log)
7?7 default(simplify)

7?77 pattern produces a list of sections in Chapter 3 of the manual related to your query. As
before, if pattern ends by @ followed by a chapter number, that chapter is searched instead; you
also have the option to append a simple @ (without a chapter number) to browse through the whole
manual.

95

If your query contains dangerous characters (e.g 7 or blanks) it is advisable to enclose it within
double quotes, as for GP strings (e.g 777 "elliptic curve").

Note that extended help is much more powerful than the short help, since it knows about
operators as well: you can type 7?7 * or 77 &&, whereas a single 7 would just yield a not too
helpful

&&: unknown identifier.}

message. Also, you can ask for extended help on section number n in Chapter 3, just by typing
7?7 n (where ?n would yield merely a list of functions). Finally, a few key concepts in gp are
documented in this way: metacommands (e.g 77 "77"), defaults (e.g 77 psfile) and type names
(e.g t_INT or integer), as well as various miscellaneous keywords such as edit (short summary of
line editor commands), operator, member, "user defined", nf, ell, ...

Last but not least: 7?7 without argument will open a dvi previewer (xdvi by default, $GPXDVI
if it is defined in your environment) containing the full user’s manual. ?7tutorial and ??refcard
do the same with the tutorial and reference card respectively.

Technical note. This functionality is provided by an external perl script that you are free to
use outside any gp session (and modify to your liking, if you are perl-knowledgeable). It is called
gphelp, lies in the doc subdirectory of your distribution (just make sure you run Configure first,
see Appendix A) and is really two programs in one. The one which is used from within gp is
gphelp which runs TEX on a selected part of this manual, then opens a previewer. gphelp -detex
is a text mode equivalent, which looks often nicer especially on a colour-capable terminal (see
misc/gprc.dft for examples). The default help selects which help program will be used from
within gp. You are welcome to improve this help script, or write new ones (and we would like to
know about it so that we may include them in future distributions). By the way, outside of gp you
can give more than one keyword as argument to gphelp.

2.13.2 /*...*/. A comment. Everything between the stars is ignored by gp. These comments
can span any number of lines.

2.13.3 \\. A one-line comment. The rest of the line is ignored by gp.

2.13.4 \a {n}. Prints the object number n (%n) in raw format. If the number n is omitted, print
the latest computed object (%).

2.13.5 \c. Prints the list of all available hardcoded functions under gp, not including opera-
tors written as special symbols (see Section 2.4). More information can be obtained using the ?

metacommand (see above). For user-defined functions / member functions, see \u and \um.

2.13.6 \d. Prints the defaults as described in the previous section (shortcut for default(), see
Section 3.15.8).

2.13.7 \e {n}. Switches the echo mode on (1) or off (0). If n is explicitly given, set echo to n.
2.13.8 \g {n}. Sets the debugging level debug to the non-negative integer n.

2.13.9 \gf {n}. Sets the file usage debugging level debugfiles to the non-negative integer n.

96

2.13.10 \gn {n}. Sets the memory debugging level debugmem to the non-negative integer n.

2.13.11 \h {m-n}. Outputs some debugging info about the hashtable. If the argument is a number
n, outputs the contents of cell n. Ranges can be given in the form m-n (from cell m to cell n, $
= last cell). If a function name is given instead of a number or range, outputs info on the internal
structure of the hash cell this function occupies (a struct entree in C). If the range is reduced to
a dash (’-’), outputs statistics about hash cell usage.

2.13.12 \1 {logfile}. Switches log mode on and off. If a logfile argument is given, change the
default logfile name to logfile and switch log mode on.

2.13.13 \m. As \a, but using prettymatrix format.

2.13.14 \o {n}. Sets output mode to n (0: raw, 1: prettymatrix, 3: external prettyprint).
2.13.15 \p {n}. Sets realprecision to n decimal digits. Prints its current value if n is omitted.
2.13.16 \pb {n}. Sets realbitprecision to n bits. Prints its current value if n is omitted.

2.13.17 \ps {n}. Sets seriesprecision to n significant terms. Prints its current value if n is
omitted.

2.13.18 \g. Quits the gp session and returns to the system. Shortcut for quit() (see Sec-
tion 3.15.44).

2.13.19 \r {filename}. Reads into gp all the commands contained in the named file as if they had
been typed from the keyboard, one line after the other. Can be used in combination with the \w
command (see below). Related but not equivalent to the function read (see Section 3.15.45); in
particular, if the file contains more than one line of input, there will be one history entry for each of
them, whereas read would only record the last one. If filename is omitted, re-read the previously
used input file (fails if no file has ever been successfully read in the current session). If a gp binary
file (see Section 3.15.60) is read using this command, it is silently loaded, without cluttering the
history.

Assuming gp figures how to decompress files on your machine, this command accepts com-
pressed files in compressed (.Z) or gzipped (.gz or .z) format. They will be uncompressed on
the fly as gp reads them, without changing the files themselves.

2.13.20 \s. Prints the state of the PARI stack and heap. This is used primarily as a debugging
device for PARI.

2.13.21 \t. Prints the internal longword format of all the PARI types. The detailed bit or byte
format of the initial codeword(s) is explained in Chapter 4, but its knowledge is not necessary for
a gp user.

2.13.22 \u. Prints the definitions of all user-defined functions.

2.13.23 \um. Prints the definitions of all user-defined member functions.

57

2.13.24 \v. Prints the version number and implementation architecture (680x0, Sparc, Alpha,
other) of the gp executable you are using.

2.13.25 \w {n} {filename}. Writes the object number n (%n) into the named file, in raw format.
If the number n is omitted, writes the latest computed object (%). If filename is omitted, appends
to logfile (the GP function write is a trifle more powerful, as you can have arbitrary file names).

2.13.26 \x {n}. Prints the complete tree with addresses and contents (in hexadecimal) of the
internal representation of the object number n (%n). If the number n is omitted, uses the latest
computed object in gp. As for \s, this is used primarily as a debugging device for PARI, and the
format should be self-explanatory. The underlying GP function dbg_x is more versatile, since it
can be applied to other objects than history entries.

2.13.27 \y {n}. Switches simplify on (1) or off (0). If n is explicitly given, set simplify to n.
2.13.28 #. Switches the timer on or off.

2.13.29 ##. Prints the time taken by the latest computation. Useful when you forgot to turn on
the timer.

2.14 The preferences file.

This file, called gprc in the sequel, is used to modify or extend gp default behavior, in all gp
sessions: e.g customize default values or load common user functions and aliases. gp opens the
gpre file and processes the commands in there, before doing anything else, e.g. creating the PARI
stack. If the file does not exist or cannot be read, gp will proceed to the initialization phase at
once, eventually emitting a prompt. If any explicit command line switches are given, they override
the values read from the preferences file.

2.14.1 Syntax. The syntax in the gprc file (and valid in this file only) is simple-minded, but
should be sufficient for most purposes. The file is read line by line; as usual, white space is ignored
unless surrounded by quotes and the standard multiline constructions using braces, \, or = are
available (multiline comments between /* ... */ are also recognized).

2.14.1.1 Preprocessor:. Two types of lines are first dealt with by a preprocessor:

e comments are removed. This applies to all text surrounded by /* ... */ as well as to
everything following \\ on a given line.

e lines starting with #if boolean are treated as comments if boolean evaluates to false, and
read normally otherwise. The condition can be negated using either #if not (or #if !). If the
rest of the current line is empty, the test applies to the next line (same behavior as = under gp).
The following tests can be performed:

EMACS: true if gp is running in an Emacs or TeXmacs shell (see Section 2.16).
READL: true if gp is compiled with readline support (see Section 2.15).

VERSION op number: where op is in the set {>, <, <=, >=}, and number is a PARI version
number of the form Major. Minor.patch, where the last two components can be omitted (i.e. 1 is
understood as version 1.0.0). This is true if gp’s version number satisfies the required inequality.

BITS_IN_LONG == number: number is 32 (resp. 64). This is true if gp was built for a 32-bit
(resp. 64-bit) architecture.

o8

2.14.1.2 Commands:. After preprocessing, the remaining lines are executed as sequence of ex-
pressions (as usual, separated by ; if necessary). Only two kinds of expressions are recognized:

e default = value, where default is one of the available defaults (see Section 2.12), which will
be set to value on actual startup. Don’t forget the quotes around strings (e.g. for prompt or help).

e read "some_GP_file" where some_GP_file is a regular GP script this time, which will be
read just before gp prompts you for commands, but after initializing the defaults. In particular,
file input is delayed until the gprc has been fully loaded. This is the right place to input files
containing alias commands, or your favorite macros.

For instance you could set your prompt in the following portable way:

\\ self modifying prompt looking like (18:03) gp >
prompt = "(%H:%M) \el[ilmgp\e[m > "

\\ readline wants non-printing characters to be braced between "A/"B pairs
#if READL prompt = "(%H:%M) ~“A\e[im"Bgp~A\e[m"B > "

\\ escape sequences not supported under emacs
#if EMACS prompt = "(JH:%M) gp > "

Note that any of the last two lines could be broken in the following way

#if EMACS
prompt = "(%H:%M) gp > "

since the preprocessor directive applies to the next line if the current one is empty.

A sample gprc file called misc/gprc.dft is provided in the standard distribution. It is a good
idea to have a look at it and customize it to your needs. Since this file does not use multiline
constructs, here is one (note the terminating ; to separate the expressions):

#if VERSION > 2.2.3

{
read "my_scripts"; \\ syntax errors in older versions
new_galois_format = 1; \\ default introduced in 2.2.4
}
#if ! EMACS
{
colors = "9, 5, no, no, 4, 1, 2";
help = "gphelp -detex -ch 4 -cb 0 -cu 2";
}

2.14.2 The gprc location. When gp is started, it looks for a customization file, or gprc in the
following places (in this order, only the first one found will be loaded):

e gp checks whether the environment variable GPRC is set. On Unix, this can be done with something
like:

GPRC=/my/dir/anyname; export GPRC in sh syntax (for instance in your .profile),
setenv GPRC /my/dir/anyname in csh syntax (in your .login or .cshrc file).
env GPRC=/my/dir/anyname gp on the command line launching gp.

If so, the file named by $GPRC is the gprc.

o If GPRC is not set, and if the environment variable HOME is defined, gp then tries

99

$HOME/ . gprc on a Unix system
$HOME\gprc.txt on a DOS, 0OS/2, or Windows system.

o If no gprc was found among the user files mentioned above we look for /etc/gprc for a system-
wide gpre file (you will need root privileges to set up such a file yourself).

e Finally, we look in pari’s datadir for a file named
.gprc on a Unix system

gprc.txt on a DOS, 0OS/2, or Windows system. If you are using our Windows installer, this
is where the default preferences file is written.

)

Note that on Unix systems, the gprc’s default name starts with a ’.
1s commands; you need to type 1s -a to list it.

and thus is hidden to regular

2.15 Using readline.

This very useful library provides line editing and contextual completion to gp. You are en-
couraged to read the readline user manual, but we describe basic usage here.

A (too) short introduction to readline. In the following, C- stands for “the Control key
combined with another” and the same for M- with the Meta key; generally C- combinations act
on characters, while the M- ones operate on words. The Meta key might be called A1t on some
keyboards, will display a black diamond on most others, and can safely be replaced by Esc in any
case.

Typing any ordinary key inserts text where the cursor stands, the arrow keys enabling you
to move in the line. There are many more movement commands, which will be familiar to the
Emacs user, for instance C-a/C-e will take you to the start/end of the line, M-b/M-f move the
cursor backward/forward by a word, etc. Just press the <Return> key at any point to send your
command to gp.

All the commands you type at the gp prompt are stored in a history, a multiline command
being saved as a single concatenated line. The Up and Down arrows (or C-p/C-n) will move you
through the history, M-</M-> sending you to the start/end of the history. C-r/C-s will start an
incremental backward/forward search. You can kill text (C-k kills till the end of line, M-d to the
end of current word) which you can then yank back using the C-y key (M-y will rotate the kill-ring).
C-_ will undo your last changes incrementally (M-r undoes all changes made to the current line).
C-t and M-t will transpose the character (word) preceding the cursor and the one under the cursor.

Keeping the M- key down while you enter an integer (a minus sign meaning reverse behavior)
gives an argument to your next readline command (for instance M-- C-k will kill text back to the
start of line). If you prefer Vi-style editing, M-C-j will toggle you to Vi mode.

Of course you can change all these default bindings. For that you need to create a file named
.inputrc in your home directory. For instance (notice the embedding conditional in case you would
want specific bindings for gp):

$if Pari-GP
set show-all-if-ambiguous
"\C-h": backward-delete-char
"\e\C-h": backward-kill-word

60

"\C-xd": dump-functions

(: "\C-vO\C-b" # can be annoying when copy-pasting!
[: "\C-v[I\C-b"
$endif

C-x C-r will re-read this init file, incorporating any changes made to it during the current session.

Note. By default, (and [are bound to the function pari-matched-insert which, if “electric
parentheses” are enabled (default: off) will automatically insert the matching closure (respectively
) and 1). This behavior can be toggled on and off by giving the numeric argument —2 to ((M--2(),
which is useful if you want, e.g to copy-paste some text into the calculator. If you do not want a
toggle, you can use M--0 / M--1 to specifically switch it on or off).

Note. In some versions of readline (2.1 for instance), the Alt or Meta key can give funny re-
sults (output 8-bit accented characters for instance). If you do not want to fall back to the Esc
combination, put the following two lines in your .inputrc:

set convert-meta on
set output-meta off

Command completion and online help. Hitting <TAB> will complete words for you. This
mechanism is context-dependent: gp will strive to only give you meaningful completions in a given
context (it will fail sometimes, but only under rare and restricted conditions).

For instance, shortly after a ~, we expect a user name, then a path to some file. Directly after
default(has been typed, we would expect one of the default keywords. After a ’.’, we expect a
member keyword. And generally of course, we expect any GP symbol which may be found in the
hashing lists: functions (both yours and GP’s), and variables.

If, at any time, only one completion is meaningful, gp will provide it together with
¢ an ending comma if we are completing a default,

¢ a pair of parentheses if we are completing a function name. In that case hitting <TAB> again
will provide the argument list as given by the online help. (Recall that you can always undo the
effect of the preceding keys by hitting C-_; this applies here.)

Otherwise, hitting <TAB> once more will give you the list of possible completions. Just ex-
periment with this mechanism as often as possible, you will probably find it very convenient. For
instance, you can obtain default(seriesprecision,10), just by hitting def<TAB>se<TAB>10,
which saves 18 keystrokes (out of 27).

Hitting M-h will give you the usual short online help concerning the word directly beneath the
cursor, M-H will yield the extended help corresponding to the help default program (usually opens
a dvi previewer, or runs a primitive tex-to-ASCII program). None of these disturb the line you
were editing.

61

2.16 GNU Emacs and PariEmacs.

If you install the PariEmacs package (see Appendix A), you may use gp as a subprocess in
Emacs. You then need to include in your .emacs file the following lines:

(autoload ’gp-mode "pari" nil t)
(autoload ’gp-script-mode "pari" nil t)
(autoload ’gp "pari" nil t)
(autoload ’gpman "pari" nil t)

gp p

(setq auto-mode-alist
(cons 7 ("\\.gp$" . gp-script-mode) auto-mode-alist))

which autoloads functions from the PariEmacs package and ensures that file with the .gp suffix
are edited in gp-script mode.

Once this is done, under GNU Emacs if you type M-x gp (where as usual M is the Meta key), a
special shell will be started launching gp with the default stack size and prime limit. You can then
work as usual under gp, but with all the facilities of an advanced text editor. See the PariEmacs
documentation for customizations, menus, etc.

62

Chapter 3:
Functions and Operations Available in PARI and GP

The functions and operators available in PARI and in the GP/PARI calculator are numerous and
ever-expanding. Here is a description of the ones available in version 2.9.1. It should be noted that
many of these functions accept quite different types as arguments, but others are more restricted.
The list of acceptable types will be given for each function or class of functions. Except when stated
otherwise, it is understood that a function or operation which should make natural sense is legal.

On the other hand, many routines list explicit preconditions for some of their argument, e.g.
p is a prime number, or ¢ is a positive definite quadratic form. For reasons of efficiency, all trust
the user input and only perform minimal sanity checks. When a precondition is not satisfied, any
of the following may occur: a regular exception is raised, the PARI stack overflows, a SIGSEGV or
SIGBUS signal is generated, or we enter an infinite loop. The function can also quietly return a
mathematically meaningless result: junk in, junk out.

In this chapter, we will describe the functions according to a rough classification. The general
entry looks something like:

foo(z,{flag = 0}): short description.
The library syntax is GEN foo(GEN x, long fl = 0).

This means that the GP function foo has one mandatory argument x, and an optional one, flag,
whose default value is 0. (The {} should not be typed, it is just a convenient notation we will use
throughout to denote optional arguments.) That is, you can type foo(x,2), or foo(x), which is
then understood to mean foo(x,0). As well, a comma or closing parenthesis, where an optional
argument should have been, signals to GP it should use the default. Thus, the syntax foo(x,) is
also accepted as a synonym for our last expression. When a function has more than one optional
argument, the argument list is filled with user supplied values, in order. When none are left, the
defaults are used instead. Thus, assuming that foo’s prototype had been

foo({z =1}, {y = 2},{z = 3}),

typing in foo(6,4) would give you foo(6,4,3). In the rare case when you want to set some far
away argument, and leave the defaults in between as they stand, you can use the “empty arg”
trick alluded to above: foo(6,,1) would yield foo(6,2,1). By the way, foo() by itself yields
foo(1,2,3) as was to be expected.

In this rather special case of a function having no mandatory argument, you can even omit
the (): a standalone foo would be enough (though we do not recommend it for your scripts, for
the sake of clarity). In defining GP syntax, we strove to put optional arguments at the end of the
argument list (of course, since they would not make sense otherwise), and in order of decreasing
usefulness so that, most of the time, you will be able to ignore them.

Finally, an optional argument (between braces) followed by a star, like {z}*, means that any
number of such arguments (possibly none) can be given. This is in particular used by the various
print routines.

63

Flags. A flag is an argument which, rather than conveying actual information to the routine,
instructs it to change its default behavior, e.g. return more or less information. All such flags are
optional, and will be called flag in the function descriptions to follow. There are two different kind
of flags

e generic: all valid values for the flag are individually described (“If flag is equal to 1, then...”).

e binary: use customary binary notation as a compact way to represent many toggles with
just one integer. Let (po,...,pn) be a list of switches (i.e. of properties which take either the value
0 or 1), the number 23 + 25 = 40 means that ps; and ps are set (that is, set to 1), and none of the
others are (that is, they are set to 0). This is announced as “The binary digits of flag mean 1: py,
2: p1, 4: p2”, and so on, using the available consecutive powers of 2.

Mnemonics for flags. Numeric flags as mentioned above are obscure, error-prone, and quite
rigid: should the authors want to adopt a new flag numbering scheme (for instance when noticing
flags with the same meaning but different numeric values across a set of routines), it would break
backward compatibility. The only advantage of explicit numeric values is that they are fast to type,
so their use is only advised when using the calculator gp.

As an alternative, one can replace a numeric flag by a character string containing symbolic
identifiers. For a generic flag, the mnemonic corresponding to the numeric identifier is given after
it as in

fun(x, {flag = 0}):

If flag is equal to 1 = AGM, use an agm formula ...

which means that one can use indifferently fun(a, 1) or fun(x, "AGM").

For a binary flag, mnemonics corresponding to the various toggles are given after each of them.
They can be negated by prepending no_ to the mnemonic, or by removing such a prefix. These
toggles are grouped together using any punctuation character (such as’,” or ’;’). For instance (taken
from description of ploth(X = a,b, expr, {flag = 0}, {n = 0}))

Binary digits of flags mean: 1 = Parametric, 2 = Recursive, ...

so that, instead of 1, one could use the mnemonic "Parametric; no_Recursive", or simply "Para-
metric" since Recursive is unset by default (default value of flag is 0, i.e. everything unset).
People used to the bit-or notation in languages like C may also use the form "Parametric |
no_Recursive".

Pointers. If a parameter in the function prototype is prefixed with a & sign, as in
foo(z, &e)

it means that, besides the normal return value, the function may assign a value to e as a side effect.
When passing the argument, the & sign has to be typed in explicitly. As of version 2.9.1, this
pointer argument is optional for all documented functions, hence the & will always appear between
brackets as in Z_issquare(z, {&e}).

About library programming. The library function foo, as defined at the beginning of this
section, is seen to have two mandatory arguments, z and flag: no function seen in the present
chapter has been implemented so as to accept a variable number of arguments, so all arguments
are mandatory when programming with the library (usually, variants are provided corresponding
to the various flag values). We include an = default value token in the prototype to signal how
a missing argument should be encoded. Most of the time, it will be a NULL pointer, or -1 for a
variable number. Refer to the User’s Guide to the PARI library for general background and details.

64

3.1 Standard monadic or dyadic operators.

3.1.1 +/-. The expressions +z and -z refer to monadic operators (the first does nothing, the second
negates).

The library syntax is GEN gneg(GEN x) for -z.

3.1.2 +. The expression x + y is the sum of x and y. Addition between a scalar type x and a t_COL
or t_MAT y returns respectively [y[1] + z,y[2],...] and y + 2Id. Other additions between a scalar
type and a vector or a matrix, or between vector/matrices of incompatible sizes are forbidden.

The library syntax is GEN gadd (GEN x, GEN y).

3.1.3 -. The expression = - y is the difference of z and y. Subtraction between a scalar type z
and a t_COL or t_MAT y returns respectively [y[1] — z,y[2],...] and y — zId. Other subtractions
between a scalar type and a vector or a matrix, or between vector/matrices of incompatible sizes
are forbidden.

The library syntax is GEN gsub(GEN x, GEN y) for z - y.

3.1.4 x. The expression z * y is the product of £ and y. Among the prominent impossibilities are
multiplication between vector/matrices of incompatible sizes, between a t_INTMOD or t_PADIC Re-
stricted to scalars, * is commutative; because of vector and matrix operations, it is not commutative
in general.

Multiplication between two t_VECs or two t_COLs is not allowed; to take the scalar product of
two vectors of the same length, transpose one of the vectors (using the operator ~ or the function
mattranspose, see Section 3.11) and multiply a line vector by a column vector:

7?7 a-= [132’315

7 a*x a

*okk at top-level: axa

Kok k g

%k _*_: forbidden multiplication t_VEC * t_VEC.
7 a * a~
w2 = 14

If z,y are binary quadratic forms, compose them; see also gfbnucomp and gqfbnupow. If z,y
are t_VECSMALL of the same length, understand them as permutations and compose them.

The library syntax is GEN gmul (GEN x, GEN y) for z * y. Also available is GEN gsqr(GEN x)
for x * x.

3.1.5 /. The expression = / y is the quotient of z and y. In addition to the impossibilities for
multiplication, note that if the divisor is a matrix, it must be an invertible square matrix, and in
that case the result is z*y~!. Furthermore note that the result is as exact as possible: in particular,
division of two integers always gives a rational number (which may be an integer if the quotient
is exact) and not the Euclidean quotient (see x \ y for that), and similarly the quotient of two
polynomials is a rational function in general. To obtain the approximate real value of the quotient
of two integers, add 0. to the result; to obtain the approximate p-adic value of the quotient of two
integers, add 0(p~k) to the result; finally, to obtain the Taylor series expansion of the quotient of
two polynomials, add 0(X"k) to the result or use the taylor function (see Section 3.10.48).

The library syntax is GEN gdiv(GEN x, GEN y) for z / y.

65

3.1.6 \. The expression x \ y is the Euclidean quotient of x and y. If y is a real scalar, this is
defined as floor(x/y) if y > 0, and ceil(z/y) if y < 0 and the division is not exact. Hence the
remainder z - (z\y)*y is in [0, |y|[.

Note that when y is an integer and z a polynomial, y is first promoted to a polynomial of
degree 0. When z is a vector or matrix, the operator is applied componentwise.

The library syntax is GEN gdivent(GEN x, GEN y) for x \ y.

3.1.7 \/. The expression \/ y evaluates to the rounded Euclidean quotient of z and y. This is
the same as x \ y except for scalar division: the quotient is such that the corresponding remainder
is smallest in absolute value and in case of a tie the quotient closest to 400 is chosen (hence the
remainder would belong to |—|y|/2, |y|/2]).

When z is a vector or matrix, the operator is applied componentwise.

The library syntax is GEN gdivround (GEN x, GEN y) for x \/ y.

3.1.8 %. The expression x % y evaluates to the modular Euclidean remainder of z and y, which we
now define. When z or y is a non-integral real number, %y is defined as x - (z\y)*y. Otherwise,
if y is an integer, this is the smallest non-negative integer congruent to z modulo y. (This actually
coincides with the previous definition if and only if x is an integer.) If y is a polynomial, this is the
polynomial of smallest degree congruent to modulo y. For instance:

7 (1/2) % 3

% =2

?0.5% 3

%2 = 0.5000000000000000000000000000
? (1/2) % 3.0

%3 = 1/2

Note that when gy is an integer and z a polynomial, y is first promoted to a polynomial of
degree 0. When z is a vector or matrix, the operator is applied componentwise.

The library syntax is GEN gmod (GEN x, GEN y) for x % y.

3.1.9 ~. The expression z"n is powering.

e If the exponent n is an integer, then exact operations are performed using binary (left-shift)
powering techniques. If z is a p-adic number, its precision will increase if v,(n) > 0. Powering
a binary quadratic form (types t_QFI and t_QFR) returns a representative of the class, which is
always reduced if the input was. (In particular, x ~1 returns x itself, whether it is reduced or not.)

PARI is able to rewrite the multiplication z * z of two identical objects as z2, or sqr(x). Here,
identical means the operands are two different labels referencing the same chunk of memory; no
equality test is performed. This is no longer true when more than two arguments are involved.

e If the exponent n is not an integer, powering is treated as the transcendental function
exp(nlogz), and in particular acts componentwise on vector or matrices, even square matrices !
(See Section 3.3.)

e As an exception, if the exponent is a rational number p/q and z an integer modulo a prime
or a p-adic number, return a solution y of y¢ = P if it exists. Currently, ¢ must not have large
prime factors. Beware that

66

? Mod(7,19)"(1/2)

%1 = Mod(11, 19) /* is any square root */

7 sqrt(Mod(7,19))

%2 = Mod(8, 19) /* is the smallest square root */

? Mod(7,19)"(3/5)

%3 = Mod(1, 19)

? %3°(5/3)

%4 = Mod(1, 19) /* Mod(7,19) is just another cubic root */

o If the exponent is a negative integer, an inverse must be computed. For non-invertible
t_INTMOD z, this will fail and implicitly exhibit a non trivial factor of the modulus:

? Mod(4,6) " (-1)
ok ok at top-level: Mod(4,6)"(-1)
T

%%k %k

impossible inverse modulo: Mod(2, 6).

(Here, a factor 2 is obtained directly. In general, take the gcd of the representative and the
modulus.) This is most useful when performing complicated operations modulo an integer N
whose factorization is unknown. Either the computation succeeds and all is well, or a factor d is
discovered and the computation may be restarted modulo d or N/d.

For non-invertible t_POLMOD z, the behaviour is the same:

? Mod(x~2, x"3-x)"(-1)
*okk at top-level: Mod(x"2,x"3-x)"(-1)
wkk
*** _~_: impossible inverse in RgXQ_inv: Mod(x"2, x"3 - x).

Note that the underlying algorihm (subresultant) assumes the base ring is a domain:

7 a = Mod(3*xy~3+1, 4); b = y 6+y b+y 4+y " 3+y~2+y+1; c = Mod(a,b);
? ¢~ (-1)

*** at top-level: Mod(a,b)”(-1)

Kk T

*** _~_: impossible inverse modulo: Mod(2, 4).

In fact ¢ is invertible, but Z/4Z is not a domain and the algorithm fails. It is possible for the
algorithm to succeed in such situations and any returned result will be correct, but chances are an
error will occur first. In this specific case, one should work with 2-adics. In general, one can also
try the following approach

? inversemod(a, b) =
{ my(m, v = variable(b));
m = polsylvestermatrix(polrecip(a), polrecip(b));
m = matinverseimage(m, matid(#m)[,1]);
Polrev(m[1l..poldegree(b)], v);
}
? inversemod(a,b)
%2 = Mod(2,4)*y"5 + Mod(3,4)*y"3 + Mod(1,4)*y"2 + Mod(3,4)*y + Mod(2,4)

This is not guaranteed to work either since matinverseimage must also invert pivots. See Sec-
tion 3.11.

67

For a t_MAT z, the matrix is expected to be square and invertible, except in the special case
x~(-1) which returns a left inverse if one exists (rectangular z with full column rank).

? x = Mat([1;2])
%1 =

[1]

[2]

7?7 x"(-1)

%2 =

[1 0]

The library syntax is GEN gpow(GEN x, GEN n, long prec) for x"n.

3.1.10 cmp(x,y). Gives the result of a comparison between arbitrary objects z and y (as —1, 0
or 1). The underlying order relation is transitive, the function returns 0 if and only if z === y,
and its restriction to integers coincides with the customary one. Besides that, it has no useful
mathematical meaning.

In case all components are equal up to the smallest length of the operands, the more complex
is considered to be larger. More precisely, the longest is the largest; when lengths are equal, we
have matrix > vector > scalar. For example:

? cmp(1l, 2)

%1 = -1

? cmp(2, 1)

%2 =1

? cmp(1l, 1.0) \\ note that 1 == 1.0, but (1===1.0) is false.
%3 = -1

? cmp(x + Pi, [])

%= -1

This function is mostly useful to handle sorted lists or vectors of arbitrary objects. For instance, if
v is a vector, the construction vecsort (v, cmp) is equivalent to Set(v).

The library syntax is GEN cmp_universal(GEN x, GEN y).
3.1.11 divrem(z,y,{v}). Creates a column vector with two components, the first being the
Euclidean quotient (z \ y), the second the Euclidean remainder (z - (z\y)*y), of the division of

x by y. This avoids the need to do two divisions if one needs both the quotient and the remainder.
If v is present, and z, y are multivariate polynomials, divide with respect to the variable v.

Beware that divrem(z,y) [2] is in general not the same as ¢ % y; no GP operator corresponds
to it:

7 divrem(1/2, 3)[2]

wo=1/2
7 (1/2) % 3
w2 =2

? divrem(Mod(2,9), 3)[2]
*ok ok at top-level: divrem(Mod(2,9),3)[2
*okok N
*ok ok forbidden division t_INTMOD \ t_INT.

68

7 Mod(2,9) % 6
%3 = Mod(2,3)

The library syntax is GEN divrem(GEN x, GEN y, long v = -1) where v is a variable number.
Also available is GEN gdiventres(GEN x, GEN y) when v is not needed.

3.1.12 lex(z,y). Gives the result of a lexicographic comparison between = and y (as —1, 0 or 1).
This is to be interpreted in quite a wide sense: It is admissible to compare objects of different types
(scalars, vectors, matrices), provided the scalars can be compared, as well as vectors/matrices of
different lengths. The comparison is recursive.

In case all components are equal up to the smallest length of the operands, the more complex
is considered to be larger. More precisely, the longest is the largest; when lengths are equal, we
have matrix > vector > scalar. For example:

? lex([1,3], [1,2,5])

% =1

? lex([1,3], [1,3,-11)
%2 = -1

7 lex([1], [[11D)

%3 = -1

? lex([1], [11~)

%4 =0

The library syntax is GEN lexcmp(GEN x, GEN y).

3.1.13 max(z,y). Creates the maximum of # and y when they can be compared.

The library syntax is GEN gmax (GEN x, GEN y).

3.1.14 min(z,y). Creates the minimum of z and y when they can be compared.

The library syntax is GEN gmin (GEN x, GEN y).

3.1.15 powers(z,n,{z0}). For non-negative n, return the vector with n + 1 components
[1,z,...,2"] if x0 is omitted, and [zg,xg * , ..., g * "] otherwise.

7 powers(Mod(3,17), 4)

Y1 = [Mod(1, 17), Mod(3, 17), Mod(9, 17), Mod(10, 17), Mod(13, 17)]

7 powers(Mat([1,2;3,4]), 3)

%2 = [[1, o; 0, 11, [1, 2; 3, 41, [7, 10; 15, 221, [37, b4; 81, 118]]
? powers(3, 5, 2)

%3 = [2, 6, 18, 54, 162, 486]

When n < 0, the function returns the empty vector [].
The library syntax is GEN gpowersO(GEN x, long n, GEN xO = NULL). Also available is GEN
gpowers (GEN x, long n) when x0 is NULL.

3.1.16 shift(z,n). Shifts x componentwise left by n bits if n > 0 and right by |n| bits if n < 0.
May be abbreviated as << n or z >> (—n). A left shift by n corresponds to multiplication by 2™.
A right shift of an integer « by |n| corresponds to a Euclidean division of 2 by 2"l with a remainder
of the same sign as x, hence is not the same (in general) as x\2".

The library syntax is GEN gshift(GEN x, long n).

69

3.1.17 shiftmul(z,n). Multiplies z by 2”. The difference with shift is that when n < 0, ordinary
division takes place, hence for example if x is an integer the result may be a fraction, while for
shifts Euclidean division takes place when n < 0 hence if x is an integer the result is still an integer.

The library syntax is GEN gmul2n(GEN x, long n).
3.1.18 sign(x). sign (0, 1 or —1) of &, which must be of type integer, real or fraction; t_QUAD with
positive discriminants and t_INFINITY are also supported.

The library syntax is GEN gsigne(GEN x).
3.1.19 vecmax(z,{&v}). If x is a vector or a matrix, returns the largest entry of z, otherwise
returns a copy of . Error if z is empty.

If v is given, set it to the index of a largest entry (indirect maximum), when z is a vector. If
x is a matrix, set v to coordinates [i, j] such that x[i,j] is a largest entry. This flag is ignored if z
is not a vector or matrix.

? vecmax([10, 20, -30, 40])

%1 =40

? vecmax([10, 20, -30, 401, &v); v
%2 =4

? vecmax([10, 20; -30, 40], &v); v
%3 = [2, 2]

The library syntax is GEN vecmaxO(GEN x, GEN *v = NULL). When v is not needed, the
function GEN vecmax (GEN x) is also available.

3.1.20 vecmin(z, {&v}). If = is a vector or a matrix, returns the smallest entry of x, otherwise
returns a copy of . Error if is empty.

If v is given, set it to the index of a smallest entry (indirect minimum), when « is a vector. If
z is a matrix, set v to coordinates [i,j] such that z[i, j] is a smallest entry. This is ignored if x is
not a vector or matrix.

? vecmin([10, 20, -30, 40])

%1 = =30

? vecmin([10, 20, -30, 40], &v); v
%2 =3

? vecmin([10, 20; -30, 40], &v); v
%3 = [2, 1]

The library syntax is GEN vecminO(GEN x, GEN *v = NULL). When v is not needed, the
function GEN vecmin(GEN x) is also available.

70

3.1.21 Comparison and Boolean operators. The six standard comparison operators <=, <, >=,
>, ==, I= are available in GP. The result is 1 if the comparison is true, 0 if it is false. The operator
== ig quite liberal : for instance, the integer 0, a 0 polynomial, and a vector with O entries are all
tested equal.

The extra operator === tests whether two objects are identical and is much stricter than == :
objects of different type or length are never identical.

For the purpose of comparison, t_STR objects are compared using the standard lexicographic
order, and comparing them to objects of a different type raises an exception.

GP accepts <> as a synonym for !'=. On the other hand, = is definitely not a synonym for ==:
it is the assignment statement.

The standard boolean operators || (inclusive or), && (and) and ! (not) are also available.

3.2 Conversions and similar elementary functions or commands.

Many of the conversion functions are rounding or truncating operations. In this case, if the argu-
ment is a rational function, the result is the Euclidean quotient of the numerator by the denomi-
nator, and if the argument is a vector or a matrix, the operation is done componentwise. This will
not be restated for every function.

3.2.1 Col(z,{n}). Transforms the object x into a column vector. The dimension of the resulting
vector can be optionally specified via the extra parameter n.

If n is omitted or 0, the dimension depends on the type of x; the vector has a single component,
except when x is

e a vector or a quadratic form (in which case the resulting vector is simply the initial object
considered as a row vector),

¢ a polynomial or a power series. In the case of a polynomial, the coefficients of the vector start
with the leading coefficient of the polynomial, while for power series only the significant coefficients
are taken into account, but this time by increasing order of degree. In this last case, Vec is the
reciprocal function of Pol and Ser respectively,

e a matrix (the column of row vector comprising the matrix is returned),
e a character string (a vector of individual characters is returned).

In the last two cases (matrix and character string), n is meaningless and must be omitted or
an error is raised. Otherwise, if n is given, 0 entries are appended at the end of the vector if n > 0,
and prepended at the beginning if n < 0. The dimension of the resulting vector is |n|.

Note that the function Colrev does not exist, use Vecrev.
The library syntax is GEN gtocolO(GEN x, long n). GEN gtocol(GEN x) is also available.
3.2.2 Colrev(z, {n}). AsCol(z, —n), then reverse the result. In particular, Colrev is the reciprocal

function of Polrev: the coeflicients of the vector start with the constant coefficient of the polynomial
and the others follow by increasing degree.

The library syntax is GEN gtocolrevO(GEN x, long n). GEN gtocolrev(GEN x) is also
available.

71

3.2.3 List({z = []}). Transforms a (row or column) vector z into a list, whose components are the
entries of x. Similarly for a list, but rather useless in this case. For other types, creates a list with
the single element x. Note that, except when x is omitted, this function creates a small memory
leak; so, either initialize all lists to the empty list, or use them sparingly.

The library syntax is GEN gtolist(GEN x = NULL). The variant GEN mklist(void) creates
an empty list.

3.2.4 Map({z}). A “Map” is an associative array, or dictionary: a data type composed of a
collection of (key, value) pairs, such that each key appears just once in the collection. This function
converts the matrix [ai, b1; a2, be;. .. ;ay,by] to the map a; — b;.

? M = Map(factor(13!));
7 mapget (M,3)
%2 =5

If the argument z is omitted, creates an empty map, which may be filled later via mapput.

The library syntax is GEN gtomap(GEN x = NULL).

3.2.5 Mat({z = []|}). Transforms the object z into a matrix. If z is already a matrix, a copy of
x is created. If = is a row (resp. column) vector, this creates a l-row (resp. l-column) matrix,
unless all elements are column (resp. row) vectors of the same length, in which case the vectors are
concatenated sideways and the attached big matrix is returned. If z is a binary quadratic form,
creates the attached 2 x 2 matrix. Otherwise, this creates a 1 x 1 matrix containing x.

7?7 Mat(x + 1)

%1 =

[x + 1]

? Vec(matid(3))

%»2 = [[1, 0, O]~, [O, 1, O]~, [0, O, 1]~]
? Mat (%)

%3 =

[1 0 0]

[0 1 0]

[0 0 1]

? Col([1,2; 3,4])
%4 = [[1, 21, [3, 411~
? Mat (%)

%5 =

[1 2]

[3 4]
7 Mat(Qfb(1,2,3))
e =
[1 1]

[1 3]

The library syntax is GEN gtomat(GEN x = NULL).

72

3.2.6 Mod(a,b). In its basic form, creates an intmod or a polmod (amod b); b must be an integer
or a polynomial. We then obtain a t_INTMOD and a t_POLMOD respectively:

7 t = Mod(2,17); t°8

%1 = Mod(1, 17)

7?7t = Mod(x,x"2+1); t°2
%2 = Mod(-1, x"2+1)

If a%b makes sense and yields a result of the appropriate type (t _INT or scalar/t_POL), the operation
succeeds as well:

? Mod(1/2, 5)

%3 = Mod(3, 5)

? Mod(7 + 0(376), 3)

%4 = Mod(1, 3)

? Mod(Mod(1,12), 9)

%5 = Mod(1, 3)

? Mod(1/x, x"2+41)

%6 = Mod(-1, x"2+1)

? Mod(exp(x), x74)

%7 = Mod(1/6*x"3 + 1/2*x"2 + x + 1, x74)

If a is a complex object, “base change” it to Z/bZ or K[z]/(b), which is equivalent to, but
faster than, multiplying it by Mod (1,b):

? Mod([1,2;3,4]1, 2)
%8 =
[Mod (1, 2) Mod(0, 2)]

[Mod (1, 2) Mod(0, 2)]

7 Mod(3%x+5, 2)

%9 = Mod(1, 2)*x + Mod(1, 2)

? Mod(x™2 + y¥x + y°3, y 2+1)

%10 = Mod(1, y°2 + 1)*x"2 + Mod(y, y°2 + 1)*x + Mod(-y, y~2 + 1)

This function is not the same as x % y, the result of which has no knowledge of the intended
modulus y. Compare

?7x=49%5; x+1

%1l =5

7?7 x = Mod(4,5); x + 1
%2 = Mod(0,5)

Note that such “modular” objects can be lifted via 1ift or centerlift. The modulus of a
t_INTMOD or t_POLMOD z can be recovered via z.mod.

The library syntax is GEN gmodulo(GEN a, GEN b).

73

3.2.7 Pol(t,{v =" x}). Transforms the object t into a polynomial with main variable v. If ¢ is
a scalar, this gives a constant polynomial. If ¢ is a power series with non-negative valuation or
a rational function, the effect is similar to truncate, i.e. we chop off the O(X*) or compute the
Euclidean quotient of the numerator by the denominator, then change the main variable of the
result to v.

The main use of this function is when ¢ is a vector: it creates the polynomial whose coefficients
are given by ¢, with ¢[1] being the leading coefficient (which can be zero). It is much faster to
evaluate Pol on a vector of coefficients in this way, than the corresponding formal expression
ap X" + ...+ ag, which is evaluated naively exactly as written (linear versus quadratic time in n).
Polrev can be used if one wants z[1] to be the constant coefficient:

? Pol([1,2,3])

5l = x72 + 2xx + 3

? Polrev([1,2,3])

h2 = 3%x72 + 2%x + 1

The reciprocal function of Pol (resp. Polrev) is Vec (resp. Vecrev).

? Vec(Pol([1,2,3]1))

o= [1, 2, 3]

? Vecrev(Polrev([1,2,3]))
%2 = [1, 2, 3]

Warning. This is not a substitution function. It will not transform an object containing variables
of higher priority than v.

7 Pol(x + vy, y)
*x*x at top-level: Pol(x+y,y)
%k %k Tm———————
%x Pol: variable must have higher priority in gtopoly.

The library syntax is GEN gtopoly(GEN t, long v = -1) where v is a variable number.

3.2.8 Polrev(t, {v =' z}). Transform the object ¢ into a polynomial with main variable v. If ¢ is a
scalar, this gives a constant polynomial. If ¢ is a power series, the effect is identical to truncate,
i.e. it chops off the O(X*).

The main use of this function is when ¢ is a vector: it creates the polynomial whose coefficients
are given by ¢, with ¢[1] being the constant term. Pol can be used if one wants #[1] to be the leading
coefficient:

? Polrev([1,2,3])

%1 = 3*%x"2 + 2%xx + 1
7 Pol([1,2,3])

Y2 = x"2 + 2%xx + 3

The reciprocal function of Pol (resp. Polrev) is Vec (resp. Vecrev).

The library syntax is GEN gtopolyrev(GEN t, long v = -1) where v is a variable number.

74

3.2.9 Qfb(a,b,c,{D = 0.}). Creates the binary quadratic form az? + bzy + cy?. If b*> — dac > 0,
initialize Shanks’ distance function to D. Negative definite forms are not implemented, use their
positive definite counterpart instead.

The library syntax is GEN QfbO(GEN a, GEN b, GEN c, GEN D = NULL, long prec)
. Also available are GEN qfi(GEN a, GEN b, GEN c) (assumes b? —4ac < 0) and GEN qfr(GEN a,
GEN b, GEN c, GEN D) (assumes b* — 4ac > 0).

3.2.10 Ser(s,{v =' x},{d = seriesprecision}). Transforms the object s into a power series with
main variable v (x by default) and precision (number of significant terms) equal to d > 0 (d =
seriesprecision by default). If s is a scalar, this gives a constant power series in v with precision
d. If s is a polynomial, the polynomial is truncated to d terms if needed

? Ser(1, ’y, 5)

%1 = 1 + 0(y"5)

? Ser(x"2,, b)

%2 = x72 + 0(x"7)

7 T = polcyclo(100)

%3 = x40 - x730 + x°20 - x710 + 1
? Ser(T, ’x, 11)

%4 =1 - x710 + 0(x"11)

The function is more or less equivalent with multiplication by 1+ O(v?) in theses cases, only faster.

If s is a vector, on the other hand, the coefficients of the vector are understood to be the
coefficients of the power series starting from the constant term (as in Polrev(z)), and the precision
d is ignored: in other words, in this case, we convert t_VEC / t_COL to the power series whose
significant terms are exactly given by the vector entries. Finally, if s is already a power series in
v, we return it verbatim, ignoring d again. If d significant terms are desired in the last two cases,
convert /truncate to t_POL first.

?7v=1_[1,2,3]; Ser(v, t, 7)

#5 =1+ 2%t + 3*%t"2 + 0(t"3) \\ 3 terms: 7 is ignored!
? Ser(Polrev(v,t), t, 7)

%6 =1+ 2%t + 3*t"2 + 0(t°7)

7?7 s = 1+x+0(x"2); Ser(s, x, 7)

%7 =1+ x + 0(x"2) \\ 2 terms: 7 ignored

? Ser(truncate(s), x, 7)

% =1+x+ 0&x"7)

The warning given for Pol also applies here: this is not a substitution function.

The library syntax is GEN gtoser(GEN s, long v = -1, long precdl) where v is a variable
number.

75

3.2.11 Set({z =[]}). Converts x into a set, i.e. into a row vector, with strictly increasing entries
with respect to the (somewhat arbitrary) universal comparison function cmp. Standard container
types t_VEC, t_COL, t_LIST and t_VECSMALL are converted to the set with corresponding elements.
All others are converted to a set with one element.

7 Set([1,2,4,2,1,3])

%1 = [1, 2, 3, 4]

? Set(x)

%2 = [x]

? Set(Vecsmall([1,3,2,1,3]))
%3 = [1, 2, 3]

The library syntax is GEN gtoset(GEN x = NULL).
3.2.12 Str({z}*). Converts its argument list into a single character string (type t_STR, the empty

string if 2 is omitted). To recover an ordinary GEN from a string, apply eval to it. The arguments
of Str are evaluated in string context, see Section 2.9.

?x2 =0; 1i=2; Str(x, i)

Y1 = "xon
? eval(%)
%2 =0

This function is mostly useless in library mode. Use the pair strtoGEN/GENtostr to convert
between GEN and charx*. The latter returns a malloced string, which should be freed after usage.

3.2.13 Strchr(z). Converts x to a string, translating each integer into a character.

? Strchr(97)

%1 = "a"

? Vecsmall("hello world")

%2 = Vecsmall([104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100])
? Strchr (%)

%3 = "hello world"

The library syntax is GEN Strchr (GEN x).
3.2.14 Strexpand({z}x). Converts its argument list into a single character string (type t_STR,

the empty string if x is omitted). Then perform environment expansion, see Section 2.12. This
feature can be used to read environment variable values.

7 Strexpand ("$HOME/doc")
%1 = "/home/pari/doc"

The individual arguments are read in string context, see Section 2.9.

3.2.15 Strtex({z}x). Translates its arguments to TeX format, and concatenates the results into
a single character string (type t_STR, the empty string if z is omitted).

The individual arguments are read in string context, see Section 2.9.

76

3.2.16 Vec(z,{n}). Transforms the object z into a row vector. The dimension of the resulting
vector can be optionally specified via the extra parameter n.

If n is omitted or 0, the dimension depends on the type of x; the vector has a single component,
except when z is

e 3 vector or a quadratic form: returns the initial object considered as a row vector,

e a polynomial or a power series: returns a vector consisting of the coefficients. In the case of a
polynomial, the coefficients of the vector start with the leading coefficient of the polynomial, while
for power series only the significant coefficients are taken into account, but this time by increasing
order of degree. Vec is the reciprocal function of Pol for a polynomial and of Ser for a power series,

e a matrix: returns the vector of columns comprising the matrix,

e a character string: returns the vector of individual characters,

e a map: returns the vector of the domain of the map,

e an error context (t_ERROR): returns the error components, see iferr.

In the last four cases (matrix, character string, map, error), n is meaningless and must be
omitted or an error is raised. Otherwise, if n is given, 0 entries are appended at the end of the
vector if n > 0, and prepended at the beginning if n < 0. The dimension of the resulting vector is
|n|. Variant: GEN gtovec(GEN x) is also available.

The library syntax is GEN gtovecO(GEN x, long n).
3.2.17 Vecrev(z,{n}). As Vec(z,—n), then reverse the result. In particular, Vecrev is the

reciprocal function of Polrev: the coefficients of the vector start with the constant coefficient of
the polynomial and the others follow by increasing degree.

The library syntax is GEN gtovecrevO(GEN x, long n). GEN gtovecrev(GEN x) is also
available.

3.2.18 Vecsmall(z, {n}). Transforms the object x into a row vector of type t_VECSMALL. The
dimension of the resulting vector can be optionally specified via the extra parameter n.

This acts as Vec(z,n), but only on a limited set of objects: the result must be representable
as a vector of small integers. If = is a character string, a vector of individual characters in ASCII
encoding is returned (Strchr yields back the character string).

The library syntax is GEN gtovecsmallO(GEN x, long n). GEN gtovecsmall(GEN x) is also
available.

7

3.2.19 binary(z). Outputs the vector of the binary digits of |z|. Here z can be an integer, a
real number (in which case the result has two components, one for the integer part, one for the
fractional part) or a vector/matrix.

7 binary(10)
%1 = [1, 0, 1, 0]

7 binary(3.14)
%»2 = [[1, 11, [0, O, 1, O, O, O, [...1]

? binary([1,2])
»3 = [[11, [1, 0]]

By convention, 0 has no digits:

? binary(0)
W =[]

The library syntax is GEN binaire(GEN x).

3.2.20 bitand(z,y). Bitwise and of two integers x and y, that is the integer

Z(l‘z and y;)2'

i

Negative numbers behave 2-adically, i.e. the result is the 2-adic limit of bitand(z,,y,), where
x, and y, are non-negative integers tending to = and y respectively. (The result is an ordinary
integer, possibly negative.)

? bitand(5, 3)

%=1

? bitand(-5, 3)
%2 =3

? bitand(-5, -3)
%3 = -7

The library syntax is GEN gbitand(GEN x, GEN y). Also available is GEN ibitand(GEN x,
GEN y), which returns the bitwise and of |z| and |y|, two integers.

3.2.21 bitneg(z, {n = —1}). bitwise negation of an integer z, truncated to n bits, n > 0, that is
the integer

n—1
Z not(xz;)2'.
i=0

The special case n = —1 means no truncation: an infinite sequence of leading 1 is then represented
as a negative number.

See Section 3.2.20 for the behavior for negative arguments.

The library syntax is GEN gbitneg(GEN x, long n).

78

3.2.22 bitnegimply(z,y). Bitwise negated imply of two integers x and y (or not (z = y)), that
is the integer

z:(a:Z andnot(y;))2°
See Section 3.2.20 for the behavior for negative arguments.
The library syntax is GEN gbitnegimply(GEN x, GEN y). Also available is GEN ibitnegim-

ply(GEN x, GEN y), which returns the bitwise negated imply of |z| and |y|, two integers.

3.2.23 bitor(xz,y). bitwise (inclusive) or of two integers = and y, that is the integer
Z(l‘z or y;)2"

See Section 3.2.20 for the behavior for negative arguments.
The library syntax is GEN gbitor (GEN x, GEN y). Also available is GEN ibitor (GEN x, GEN

y), which returns the bitwise ir of |z| and |y|, two integers.

3.2.24 bitprecision(z, {n}). The function behaves differently according to whether n is present
and positive or not. If n is missing, the function returns the (floating point) precision in bits of the
PARI object z. If z is an exact object, the function returns +oo.

7 bitprecision(exp(le-100))

%1 = 512 \\ 512 bits

7 bitprecision([exp(1e-100), 0.5])

%2 = 128 \\ minimal accuracy among components
7 bitprecision(2 + x)

%3 = +oo0 \\ exact object

If n is present and positive, the function creates a new object equal to x with the new bit-
precision roughly n. In fact, the smallest multiple of 64 (resp. 32 on a 32-bit machine) larger than
or equal to n.

For x a vector or a matrix, the operation is done componentwise; for series and polynomials,
the operation is done coefficientwise. For real z, n is the number of desired significant bits. If n
is smaller than the precision of x, x is truncated, otherwise x is extended with zeros. For exact or
non-floating point types, no change.

7 bitprecision(Pi, 10) \\ actually 64 bits ~ 19 decimal digits
%1 = 3.141592653589793239

? bitprecision(1l, 10)

w2 =1

7 bitprecision(l + 0(x), 10)

%3 =1+ 0(x)

7 bitprecision(2 + 0(375), 10)

%4 = 2 + 0(3°5)

The library syntax is GEN bitprecisionO(GEN x, long n).

79

3.2.25 bittest(z,n). Outputs the n'" bit of starting from the right (i.e. the coefficient of 2" in
the binary expansion of). The result is 0 or 1.

? bittest(7, 0)
%#1 = 1 \\ the bit 0 is 1
? bittest(7, 2)
%#2 = 1 \\ the bit 2 is 1
? bittest (7, 3)
%3 = 0 \\ the bit 3 is 0

See Section 3.2.20 for the behavior at negative arguments.

The library syntax is GEN gbittest(GEN x, 1long n). For a t_INT z, the variant long
bittest (GEN x, long n) is generally easier to use, and if furthermore n > 0 the low-level function
ulong int_bit(GEN x, long n) returns bittest(abs(x),n).

3.2.26 bitxor(z,y). Bitwise (exclusive) or of two integers = and y, that is the integer
> (& xor y;)2'

See Section 3.2.20 for the behavior for negative arguments.

The library syntax is GEN gbitxor (GEN x, GEN y). Also available is GEN ibitxor(GEN x,
GEN y), which returns the bitwise zor of |z| and |y|, two integers.

3.2.27 ceil(x). Ceiling of . When z is in R, the result is the smallest integer greater than or equal
to x. Applied to a rational function, ceil(z) returns the Euclidean quotient of the numerator by
the denominator.

The library syntax is GEN gceil(GEN x).
3.2.28 centerlift(x, {v}). Same as 1ift, except that t_INTMOD and t_PADIC components are lifted
using centered residues:

e for a t_INTMOD = € Z/nZ, the lift y is such that —n/2 <y <n/2.

e a t_PADIC z is lifted in the same way as above (modulo pP2d<Prec(x)) if its valuation v is non-
negative; if not, returns the fraction p? centerlift(xp~"); in particular, rational reconstruction is
not attempted. Use bestappr for this.

For backward compatibility, centerlift(x,’v) is allowed as an alias for 1ift(x,’v).
The library syntax is centerlift(GEN x).
3.2.29 characteristic(z). Returns the characteristic of the base ring over which = is defined (as

defined by t_INTMOD and t_FFELT components). The function raises an exception if incompatible
primes arise from t_FFELT and t_PADIC components.

7 characteristic(Mod(1,24)*x + Mod(1,18)x*y)
%1 =6

The library syntax is GEN characteristic(GEN x).

80

3.2.30 component(z,n). Extracts the n'"-component of . This is to be understood as follows:
every PARI type has one or two initial code words. The components are counted, starting at 1,
after these code words. In particular if = is a vector, this is indeed the n'"-component of z, if =
is a matrix, the n*® column, if # is a polynomial, the n*® coefficient (i.e. of degree n — 1), and for
power series, the n'!* significant coefficient.

For polynomials and power series, one should rather use polcoeff, and for vectors and matri-
ces, the [] operator. Namely, if x is a vector, then x[n] represents the n'® component of z. If x is
a matrix, x[m,n] represents the coefficient of row m and column n of the matrix, x[m,] represents
the m'™ row of x, and x[,n] represents the nt® column of z.

Using of this function requires detailed knowledge of the structure of the different PARI types,
and thus it should almost never be used directly. Some useful exceptions:

7?7 x =3+ 0(3°5);

7 component(x, 2)

#2 = 81 \\ p~(p-adic accuracy)
? component(x, 1)

%3 =3 \\ p

7 q = Qfb(1,2,3);

7 component(q, 1)

W =1

The library syntax is GEN compo(GEN x, long n).
3.2.31 conj(x). Conjugate of z. The meaning of this is clear, except that for real quadratic

numbers, it means conjugation in the real quadratic field. This function has no effect on integers,
reals, intmods, fractions or p-adics. The only forbidden type is polmod (see conjvec for this).

The library syntax is GEN gconj (GEN x).
3.2.32 conjvec(z). Conjugate vector representation of z. If z is a polmod, equal to Mod(a, "), this
gives a vector of length degree(T') containing;:

e the complex embeddings of z if 7' has rational coefficients, i.e. the a(r[i]) where r =
polroots(T);

e the conjugates of z if T' has some intmod coefficients;

if z is a finite field element, the result is the vector of conjugates [z, 2P, zp2, ...,2P" "] where n =
degree(T).

If z is an integer or a rational number, the result is z. If z is a (row or column) vector, the result
is a matrix whose columns are the conjugate vectors of the individual elements of z.

The library syntax is GEN conjvec(GEN z, long prec).
3.2.33 denominator(z). Denominator of . The meaning of this is clear when z is a rational

number or function. If x is an integer or a polynomial, it is treated as a rational number or function,
respectively, and the result is equal to 1. For polynomials, you probably want to use

denominator(content(x))

instead. As for modular objects, t_INTMOD and t_PADIC have denominator 1, and the denominator
of a t_POLMOD is the denominator of its (minimal degree) polynomial representative.

If x is a recursive structure, for instance a vector or matrix, the lcm of the denominators of its
components (a common denominator) is computed. This also applies for t_COMPLEXs and t_QUADs.

81

Warning. Multivariate objects are created according to variable priorities, with possibly surprising
side effects (z/y is a polynomial, but y/x is a rational function). See Section 2.5.3.

The library syntax is GEN denom(GEN x).
3.2.34 digits(z, {b = 10}). Outputs the vector of the digits of |z| in base b, where x and b are
integers (b = 10 by default). See fromdigits for the reverse operation.

7 digits(123)
%1 = [1, 2, 3, 0]

7 digits(10, 2) \\ base 2
%2 = [1, 0, 1, 0]

By convention, 0 has no digits:

7 digits(0)
%3 =[]

The library syntax is GEN digits(GEN x, GEN b = NULL).
3.2.35 floor(x). Floor of x. When z is in R, the result is the largest integer smaller than or equal

to x. Applied to a rational function, floor(z) returns the Euclidean quotient of the numerator by
the denominator.

The library syntax is GEN gfloor(GEN x).

3.2.36 frac(x). Fractional part of z. Identical to — floor(z). If is real, the result is in [0, 1[.
The library syntax is GEN gfrac(GEN x).

3.2.37 fromdigits(x, {b = 10}). Gives the integer formed by the elements of = seen as the digits

of a number in base b (b = 10 by default). This is the reverse of digits:

7 digits(1234,5)

%1 = [1,4,4,1,4]

? fromdigits([1,4,4,1,4],5)
%2 = 1234

By convention, 0 has no digits:

? fromdigits([])
%3 =0

The library syntax is GEN fromdigits(GEN x, GEN b = NULL).

82

3.2.38 hammingweight(x). If x is a t_INT, return the binary Hamming weight of |z|. Otherwise
x must be of type t_POL, t_VEC, t_COL, t _VECSMALL, or t_MAT and the function returns the number
of non-zero coefficients of z.

7 hammingweight (15)

W= 4

? hammingweight (x"100 + 2*x + 1)

%2 =3

? hammingweight ([Mod(1,2), 2, Mod(0,3)])
w3 =2

? hammingweight (matid(100))

%4 = 100

The library syntax is long hammingweight (GEN x).
3.2.39 imag(x). Imaginary part of x. When z is a quadratic number, this is the coefficient of w
in the “canonical” integral basis (1,w).

The library syntax is GEN gimag(GEN x).

3.2.40 length(z). Length of x; #x is a shortcut for length(x). This is mostly useful for
e vectors: dimension (0 for empty vectors),
e lists: number of entries (0 for empty lists),
e matrices: number of columns,

e character strings: number of actual characters (without trailing \0, should you expect it
from C charx).

? #"a string"

%l =38

? #[3,2,1]

%2 =3

? #[]

%3 =0

? #matrix(2,5)

% =5

? L = List([1,2,3,4]); #L
%5 =4

The routine is in fact defined for arbitrary GP types, but is awkward and useless in other
cases: it returns the number of non-code words in z, e.g. the effective length minus 2 for integers
since the t_INT type has two code words.

The library syntax is long glength(GEN x).

83

3.2.41 lift(x,{v}). If v is omitted, lifts intmods from Z/nZ in Z, p-adics from Q, to Q (as
truncate), and polmods to polynomials. Otherwise, lifts only polmods whose modulus has main
variable v. t_FFELT are not lifted, nor are List elements: you may convert the latter to vectors
first, or use apply(1ift,L). More generally, components for which such lifts are meaningless (e.g.
character strings) are copied verbatim.

7 1ift(Mod(5,3))

Wo=2

7 1ift(3 + 0(379))
%2 = 3

7?7 1lift(Mod(x,x"2+1))
%3 =x

? 1lift(Mod(x,x"2+1))
% = x

Lifts are performed recursively on an object components, but only by one level: once a
+t_POLMOD is lifted, the components of the result are not lifted further.

? lift(x *
% =x + 2
7 1lift(x * Mod(y,y"2+1) + Mod(2,3))

%5 = y*x + Mod(2, 3) \\ do you understand this one?
? 1lift(x * Mod(y,y"2+1) + Mod(2,3), ’x)

%6 = Mod(y, y~2 + 1)*x + Mod(Mod(2, 3), y"2 + 1)
7 1ift (%, y)

%7 = y*x + Mod(2, 3)

Mod(1,3) + Mod(2,3))

To recursively lift all components not only by one level, but as long as possible, use 1iftall. To
lift only t_INTMODs and t_PADICs components, use liftint. To lift only t_POLMODs components,
use 1iftpol. Finally, centerlift allows to lift t_INTMODs and t_PADICs using centered residues
(lift of smallest absolute value).

The library syntax is GEN 1ift0(GEN x, long v = -1) where v is a variable number. Also
available is GEN 1ift (GEN x) corresponding to 1ift0(x,-1).

3.2.42 liftall(z). Recursively lift all components of from Z/nZ to Z, from Q,, to Q (as truncate),
and polmods to polynomials. t_FFELT are not lifted, nor are List elements: you may convert the
latter to vectors first, or use apply(1iftall,L). More generally, components for which such lifts
are meaningless (e.g. character strings) are copied verbatim.

? liftall(x * (1 + 0(3)) + Mod(2,3))

%1 =x+ 2

7 1liftall(x * Mod(y,y"2+1) + Mod(2,3)*Mod(z,z"2))
%2 = y*X + 2%z

The library syntax is GEN 1iftall(GEN x).

84

3.2.43 liftint(z). Recursively lift all components of « from Z/nZ to Z and from Q, to Q (as
truncate). t_FFELT are not lifted, nor are List elements: you may convert the latter to vectors
first, or use apply(liftint,L). More generally, components for which such lifts are meaningless
(e.g. character strings) are copied verbatim.

? liftint(x * (1 + 0(3)) + Mod(2,3))

%1 =x+ 2

7 liftint(x * Mod(y,y"2+1) + Mod(2,3)*Mod(z,z"2))

%2 = Mod(y, y°2 + 1)*x + Mod(Mod(2*z, z"2), y™2 + 1)

The library syntax is GEN 1liftint (GEN x).

3.2.44 liftpol(x). Recursively lift all components of z which are polmods to polynomials. t_FFELT
are not lifted, nor are List elements: you may convert the latter to vectors first, or use ap-
ply(1iftpol,L). More generally, components for which such lifts are meaningless (e.g. character
strings) are copied verbatim.

7 1liftpol(x * (1 + 0(3)) + Mod(2,3))

%1 = (1 + 0(3))*x + Mod(2, 3)

7 liftpol(x * Mod(y,y"2+1) + Mod(2,3)*Mod(z,z"2))
%2 = y*x + Mod(2, 3)*z

The library syntax is GEN 1iftpol(GEN x).
3.2.45 norm(z). Algebraic norm of z, i.e. the product of x with its conjugate (no square roots
are taken), or conjugates for polmods. For vectors and matrices, the norm is taken componentwise

and hence is not the L?-norm (see norm12). Note that the norm of an element of R is its square,
S0 as to be compatible with the complex norm.

The library syntax is GEN gnorm(GEN x).
3.2.46 numerator(z). Numerator of z. The meaning of this is clear when x is a rational number

or function. If x is an integer or a polynomial, it is treated as a rational number or function,
respectively, and the result is x itself. For polynomials, you probably want to use

numerator(content(x))
instead.

In other cases, numerator(x) is defined to be denominator(x)*x. This is the case when x is
a vector or a matrix, but also for t_COMPLEX or t_QUAD. In particular since a t_PADIC or t_INTMOD
has denominator 1, its numerator is itself.

Warning. Multivariate objects are created according to variable priorities, with possibly surprising
side effects (z/y is a polynomial, but y/z is a rational function). See Section 2.5.3.

The library syntax is GEN numer (GEN x).
3.2.47 numtoperm(n, k). Generates the k-th permutation (as a row vector of length n) of the

numbers 1 to n. The number k is taken modulo n!, i.e. inverse function of permtonum. The
numbering used is the standard lexicographic ordering, starting at 0.

The library syntax is GEN numtoperm(long n, GEN k).

85

3.2.48 o0o. Returns an object meaning +o00, for use in functions such as intnum. It can be negated
(-oo represents —o0), and compared to real numbers (t_INT, t_FRAC, t_REAL), with the expected
meaning: +oo is greater than any real number and —oo is smaller.

The library syntax is GEN mkoo ().
3.2.49 padicprec(z, p). Returns the absolute p-adic precision of the object z; this is the minimum
precision of the components of z. The result is +oo if z is an exact object (as a p-adic):

7 padicprec((1 + 0(2°5)) * x + (2 + 0(274)), 2)

%1 =4

? padicprec(x + 2, 2)

%2 = +oo

7 padicprec(2 + x + 0(x"2), 2)
%3 = +oo

The function raises an exception if it encounters an object incompatible with p-adic computations:

? padicprec(0(3), 2)
*ok ok at top-level: padicprec(0(3),2)
koK S
x%% padicprec: inconsistent moduli in padicprec: 3 != 2

7 padicprec(1.0, 2)
**x at top-level: padicprec(1.0,2)
%ok k Sm———————————
***x padicprec: incorrect type in padicprec (t_REAL).

The library syntax is GEN gppadicprec(GEN x, GEN p). Also available is the function long
padicprec(GEN x, GEN p), which returns LONG_MAX if = 0 and the p-adic precision as a long
integer.

3.2.50 permtonum(z). Given a permutation xz on n elements, gives the number k such that
x = numtoperm(n, k), i.e. inverse function of numtoperm. The numbering used is the standard
lexicographic ordering, starting at 0.

The library syntax is GEN permtonum(GEN x).
3.2.51 precision(z, {n}). The function behaves differently according to whether n is present and

positive or not. If n is missing, the function returns the precision in decimal digits of the PARI
object z. If x is an exact object, the function returns +oo.

7 precision(exp(1e-100))

%1 = 154 \\ 154 significant decimal digits

7 precision(2 + x)

%2 = +oo \\ exact object

? precision(0.5 + 0(x))

%3 = 38 \\ floating point accuracy, NOT series precision
7 precision([exp(le-100), 0.5 1)

%4 = 38 \\ minimal accuracy among components

If n is present, the function creates a new object equal to = with a new floating point precision
n: n is the number of desired significant decimal digits. If n is smaller than the precision of a t _REAL

86

component of z, it is truncated, otherwise it is extended with zeros. For exact or non-floating point
types, no change.

The library syntax is GEN precisionO(GEN x, long n). Also available are GEN gprec(GEN
x, long n) and long precision(GEN x). In both, the accuracy is expressed in words (32-bit or
64-bit depending on the architecture).

3.2.52 random({N = 23'}). Returns a random element in various natural sets depending on the
argument N.

e t_INT: returns an integer uniformly distributed between 0 and N —1. Omitting the argument
is equivalent to random(2~31).

e t_REAL: returns a real number in [0, 1] with the same accuracy as N (whose mantissa has
the same number of significant words).

e t_INTMOD: returns a random intmod for the same modulus.
e t_FFELT: returns a random element in the same finite field.
e t_VEC of length 2, N = [a, b]: returns an integer uniformly distributed between a and b.

e t_VEC generated by ellinit over a finite field k (coefficients are t_INTMODs modulo a prime
or t_FFELTSs): returns a “random” k-rational affine point on the curve. More precisely if the curve
has a single point (at infinity!) we return it; otherwise we return an affine point by drawing an
abscissa uniformly at random until ellordinate succeeds. Note that this is definitely not a uniform
distribution over E(k), but it should be good enough for applications.

e t_POL return a random polynomial of degree at most the degree of N. The coefficients are
drawn by applying random to the leading coefficient of N.

? random(10)

% =9

? random(Mod(0,7))

%2 = Mod(1l, 7)

7 a = ffgen(£ffinit(3,7), ’a); random(a)

%3 = a6 + 2xa”5 + a4 + a”3 + a2 + 2xa

? E = ellinit([3,7]*Mod(1,109)); random(E)

%4 = [Mod (103, 109), Mod(10, 109)]

? E = ellinit([1,7]*a"0); random(E)

%5 = [a™6 + a”b + 2¥xa”4 + 2xa”2, 2*%a”6 + 2*¥a”"4 + 2%a”3 + a"2 + 2%a]
? random(Mod(1,7)*x"4)

%6 = Mod(5, T)*x"4 + Mod(6, 7)*x"3 + Mod(2, 7)*x~2 + Mod(2, 7)*x + Mod(b, 7)

These variants all depend on a single internal generator, and are independent from your oper-
ating system’s random number generators. A random seed may be obtained via getrand, and reset
using setrand: from a given seed, and given sequence of randoms, the exact same values will be
generated. The same seed is used at each startup, reseed the generator yourself if this is a problem.
Note that internal functions also call the random number generator; adding such a function call in
the middle of your code will change the numbers produced.

87

Technical note. Up to version 2.4 included, the internal generator produced pseudo-random
numbers by means of linear congruences, which were not well distributed in arithmetic pro-
gressions. We now use Brent’s XORGEN algorithm, based on Feedback Shift Registers, see
http://wwwmaths.anu.edu.au/ brent/random.html. The generator has period 2% — 1, passes
the Crush battery of statistical tests of L’Ecuyer and Simard, but is not suitable for cryptographic
purposes: one can reconstruct the state vector from a small sample of consecutive values, thus
predicting the entire sequence.

The library syntax is GEN genrand(GEN N = NULL).

Also available: GEN ellrandom(GEN E) and GEN ffrandom(GEN a).

3.2.53 real(z). Real part of z. In the case where z is a quadratic number, this is the coefficient
of 1 in the “canonical” integral basis (1, w).

The library syntax is GEN greal (GEN x).

3.2.54 round(z,{&e}). If z is in R, rounds z to the nearest integer (rounding to +oo in case
of ties), then and sets e to the number of error bits, that is the binary exponent of the difference
between the original and the rounded value (the “fractional part”). If the exponent of z is too large
compared to its precision (i.e. e > 0), the result is undefined and an error occurs if e was not given.

Important remark. Contrary to the other truncation functions, this function operates on every
coefficient at every level of a PARI object. For example

24%x X217

t cate
run (X

) =2.4x%X,

whereas

d 24% X2 —-1.7 2x X2 -2
roun = .
k X X

An important use of round is to get exact results after an approximate computation, when theory
tells you that the coefficients must be integers.

The library syntax is GEN roundO(GEN x, GEN *e = NULL). Also available are GEN grnd-
toi(GEN x, long *e) and GEN ground(GEN x).

3.2.55 serprec(z, v). Returns the absolute precision of z with respec to power series in the variable
v; this is the minimum precision of the components of z. The result is +oo if x is an exact object
(as a series in v):

? serprec(x + 0(y~2), y)

%1 =2

? serprec(x + 2, x)

%2 = +oo

? serprec(2 + x + 0(x"2), y)
%3 = +oo

The library syntax is GEN gpserprec(GEN x, long v) where v is a variable number. Also
available is long serprec(GEN x, GEN p), which returns LONG_MAX if z = 0 and the series precision
as a long integer.

88

3.2.56 simplify(z). This function simplifies as much as it can. Specifically, a complex or
quadratic number whose imaginary part is the integer 0 (i.e. not Mod (0,2) or 0.E-28) is converted
to its real part, and a polynomial of degree 0 is converted to its constant term. Simplifications
occur recursively.

This function is especially useful before using arithmetic functions, which expect integer argu-
ments:

?7x=2+y-y
ho=2
? isprime(x)
kK at top-level: isprime(x)
*kk T
% isprime: not an integer argument in an arithmetic function
7 type(x)
%2 = "t_POL"
7 type(simplify(x))
%3 = "t_INT"

Note that GP results are simplified as above before they are stored in the history. (Unless you
disable automatic simplification with \y, that is.) In particular

7 type(%1)
%4 = "t_INT"

The library syntax is GEN simplify(GEN x).
3.2.57 sizebyte(z). Outputs the total number of bytes occupied by the tree representing the PARI
object x.

The library syntax is long gsizebyte(GEN x). Also available is long gsizeword(GEN x)
returning a number of words.
3.2.58 sizedigit(z). This function is DEPRECATED, essentially meaningless, and provided for
backwards compatibility only. Don’t use it!

outputs a quick upper bound for the number of decimal digits of (the components of) z, off
by at most 1. More precisely, for a positive integer x, it computes (approximately) the ceiling of

floor(1 + log, z)log,, 2,

To count the number of decimal digits of a positive integer z, use #digits(x). To estimate
(recursively) the size of z, use normlp(x).

The library syntax is long sizedigit(GEN x).

89

3.2.59 truncate(z, {&e}). Truncates z and sets e to the number of error bits. When z is in R,
this means that the part after the decimal point is chopped away, e is the binary exponent of the
difference between the original and the truncated value (the “fractional part”). If the exponent of
x is too large compared to its precision (i.e. ¢ > 0), the result is undefined and an error occurs if
e was not given. The function applies componentwise on vector / matrices; e is then the maximal
number of error bits. If z is a rational function, the result is the “integer part” (Euclidean quotient
of numerator by denominator) and e is not set.

Note a very special use of truncate: when applied to a power series, it transforms it into a
polynomial or a rational function with denominator a power of X, by chopping away the O(X*).
Similarly, when applied to a p-adic number, it transforms it into an integer or a rational number
by chopping away the O(p*).

The library syntax is GEN truncO(GEN x, GEN *e = NULL). The following functions are also
available: GEN gtrunc(GEN x) and GEN gcvtoi(GEN x, long *e).

3.2.60 valuation(z,p). Computes the highest exponent of p dividing x. If p is of type integer, =
must be an integer, an intmod whose modulus is divisible by p, a fraction, a ¢-adic number with
g = p, or a polynomial or power series in which case the valuation is the minimum of the valuation
of the coefficients.

If p is of type polynomial, x must be of type polynomial or rational function, and also a power
series if x is a monomial. Finally, the valuation of a vector, complex or quadratic number is the
minimum of the component valuations.

If x = 0, the result is +oo if z is an exact object. If z is a p-adic numbers or power series, the
result is the exponent of the zero. Any other type combinations gives an error.

The library syntax is GEN gpvaluation(GEN x, GEN p). Also available is long gvalua-
tion(GEN x, GEN p), which returns LONG_MAX if z = 0 and the valuation as a long integer.

3.2.61 varhigher(name, {v}). Return a variable name whose priority is higher than the priority
of v (of all existing variables if v is omitted). This is a counterpart to varlower.

? Pol([x,x], t)
*ok ok at top-level: Pol([x,x],t)
%ok k Sm———————————
x%% Pol: incorrect priority in gtopoly: variable x <= t
? t = varhigher("t", x);
? Pol([x,x], t)
%3 = x*xt + x

This routine is useful since new GP variables directly created by the interpreter always have lower
priority than existing GP variables. When some basic objects already exist in a variable that is
incompatible with some function requirement, you can now create a new variable with a suitable
priority instead of changing variables in existing objects:

? K = nfinit(x"2+1);
7 rnfequation(K,y"2-2)

*x** at top-level: rnfequation(K,y"2-2)

%ok k S ————————

x%x% rnfequation: incorrect priority in rnfequation: variable y >= x
? y = varhigher("y", x);

90

7 rnfequation(K, y~2-2)
Y3 = y 4 - 2%y°2 + 9

Caution 1. The name is an arbitrary character string, only used for display purposes and need
not be related to the GP variable holding the result, nor to be a valid variable name. In particular
the name can not be used to retrieve the variable, it is not even present in the parser’s hash tables.

? x = varhigher ("#");
7T x72
W2 = #°2

Caution 2. There are a limited number of variables and if no existing variable with the given
display name has the requested priority, the call to varhigher uses up one such slot. Do not create
new variables in this way unless it’s absolutely necessary, reuse existing names instead and choose
sensible priority requirements: if you only need a variable with higher priority than z, state so
rather than creating a new variable with highest priority.

\\ quickly use up all variables

7?7 n = 0; while(1l,varhigher ("tmp"); n++)
Hok ok at top-level: n=0;while(1,varhigher("tmp") ;n++)
kK T
x%% varhigher: no more variables available.
x*x*x Break loop: type ’break’ to go back to GP prompt

break> n

65510

\\ infinite loop: here we reuse the same ’tmp’

7?7 n = 0; while(l,varhigher ("tmp", x); n++)

The library syntax is GEN varhigher (const char *name, long v = -1) where v is a variable
number.
3.2.62 variable({z}). Gives the main variable of the object x (the variable with the highest

priority used in z), and p if x is a p-adic number. Return 0 if x has no variable attached to it.

7 variable(x"2 + y)

%1 = x

? variable(1 + 0(572))
%2 =5

? variable([x,y,z,t])
%3 = x

? variable(1)

%4 =0

The construction
if (!'variable(x),...)
can be used to test whether a variable is attached to z.

If x is omitted, returns the list of user variables known to the interpreter, by order of decreasing
priority. (Highest priority is initially z, which come first until varhigher is used.) If varhigher or
varlower are used, it is quite possible to end up with different variables (with different priorities)
printed in the same way: they will then appear multiple times in the output:

91

7 varhigher ("y");
? varlower("y");
? variable()

w4 = [y, x, yl

Using v = variable() then v[1], v[2], etc. allows to recover and use existing variables.

The library syntax is GEN gpolvar (GEN x = NULL). However, in library mode, this function
should not be used for x non-NULL, since gvar is more appropriate. Instead, for z a p-adic (type
t_PADIC), p is gel(x,2); otherwise, use long gvar (GEN x) which returns the variable number of z
if it exists, NO_VARIABLE otherwise, which satisfies the property varncmp(NO_VARIABLE,v) > 0 for
all valid variable number v, i.e. it has lower priority than any variable.

3.2.63 variables({z}). Returns the list of all variables occuring in object z (all user variables
known to the interpreter if is omitted), sorted by decreasing priority.

? variables([x"2 + y*z + 0(t), a+x])
=[x, vy, z, t, al

The construction
if (!'variables(x),...)
can be used to test whether a variable is attached to x.

If varhigher or varlower are used, it is quite possible to end up with different variables (with
different priorities) printed in the same way: they will then appear multiple times in the output:

7 y1 varhigher ("y");
7 y2 = varlower("y");
? variables (y*yl*y2)
%4 = [y, Y. y]

The library syntax is GEN variables_vec(GEN x = NULL).

Also available is GEN variables_vecsmall(GEN x) which returns the (sorted) variable num-
bers instead of the attached monomials of degree 1.

3.2.64 varlower(name, {v}). Return a variable name whose priority is lower than the priority of
v (of all existing variables if v is omitted). This is a counterpart to varhigher.

New GP variables directly created by the interpreter always have lower priority than existing
GP variables, but it is not easy to check whether an identifier is currently unused, so that the
corresponding variable has the expected priority when it’s created! Thus, depending on the session
history, the same command may fail or succeed:

?7t;2z; \\nowt >z
7 rnfequation(t~2+1,z"2-t)
*okok at top-level: rnfequation(t™2+1,z"
®kkk T
%% rnfequation: incorrect priority in rnfequation: variable t >= t

Restart and retry:
7 z; t; \\ nowz >t

? rnfequation(t™2+1,z72-t)

92

%2 =z"4 + 1

It is quite annoying for package authors, when trying to define a base ring, to notice that the
package may fail for some users depending on their session history. The safe way to do this is as
follows:

? z; t; \\ In new session: now z > t

? t = varlower("t", ’z);

? rnfequation(t™2+1,z72-2)
%2 =274 - 2xz"2 + 9

? variable()

%3 =[x, vy, z, t]

? t; z; \\ In new session: now t > z

7 t = varlower("t", ’z); \\ create a new variable, still printed "t"
? rnfequation(t~2+1,z"2-2)

%2 =274 - 2xz"2 + 9

? variable()

% =[x, vy, t, z, t]

Now both constructions succeed. Note that in the first case, varlower is essentially a no-op,
the existing variable ¢ has correct priority. While in the second case, two different variables are
displayed as t, one with higher priority than z (created in the first line) and another one with lower
priority (created by varlower).

Caution 1. The name is an arbitrary character string, only used for display purposes and need
not be related to the GP variable holding the result, nor to be a valid variable name. In particular
the name can not be used to retrieve the variable, it is not even present in the parser’s hash tables.

? x = varlower("#");
7 x72
%2 = #°2

Caution 2. There are a limited number of variables and if no existing variable with the given
display name has the requested priority, the call to varlower uses up one such slot. Do not create
new variables in this way unless it’s absolutely necessary, reuse existing names instead and choose
sensible priority requirements: if you only need a variable with higher priority than z, state so
rather than creating a new variable with highest priority.

\\ quickly use up all variables
?n = 0; while(1l,varlower("x"); n++)
*ok ok at top-level: n=0;while(1,varlower ("x") ;n++)
%ok k S——————————
*** varlower: no more variables available.
x*x*x Break loop: type ’break’ to go back to GP prompt
break> n
65510
\\ infinite loop: here we reuse the same ’tmp’
? n = 0; while(1,varlower ("tmp", x); n++)

The library syntax is GEN varlower (const char *name, long v = -1) where v is a variable
number.

93

3.3 Transcendental functions.

Since the values of transcendental functions cannot be exactly represented, these functions will
always return an inexact object: a real number, a complex number, a p-adic number or a power
series. All these objects have a certain finite precision.

As a general rule, which of course in some cases may have exceptions, transcendental functions
operate in the following way:

e If the argument is either a real number or an inexact complex number (like 1.0 + I or
PixI but not 2 - 3*I), then the computation is done with the precision of the argument. In the
example below, we see that changing the precision to 50 digits does not matter, because x only had
a precision of 19 digits.

7 \p 15

realprecision = 19 significant digits (15 digits displayed)
? x = Pi/4
%1 = 0.785398163397448
7 \p 50

realprecision = 57 significant digits (50 digits displayed)
7 sin(x)

%2 = 0.7071067811865475244

Note that even if the argument is real, the result may be complex (e.g. acos(2.0) or acosh(0.0)).
See each individual function help for the definition of the branch cuts and choice of principal value.

o If the argument is either an integer, a rational, an exact complex number or a quadratic
number, it is first converted to a real or complex number using the current precision, which can be
view and manipulated using the defaults realprecision (in decimal digits) or realbitprecision
(in bits). This precision can be changed indifferently

e in decimal digits: use \p or default(realprecision,...).
e in bits: use \pb or default(realbitprecision,...).
After this conversion, the computation proceeds as above for real or complex arguments.

In library mode, the realprecision does not matter; instead the precision is taken from the
prec parameter which every transcendental function has. Asin gp, this prec is not used when the
argument to a function is already inexact. Note that the argument prec stands for the length in
words of a real number, including codewords. Hence we must have prec > 3. (Some functions allow
a bitprec argument instead which allow finer granularity.)

Some accuracies attainable on 32-bit machines cannot be attained on 64-bit machines for parity
reasons. For example the default gp accuracy is 28 decimal digits on 32-bit machines, corresponding
to prec having the value 5, but this cannot be attained on 64-bit machines.

o If the argument is a polmod (representing an algebraic number), then the function is evaluated
for every possible complex embedding of that algebraic number. A column vector of results is
returned, with one component for each complex embedding. Therefore, the number of components
equals the degree of the t_POLMOD modulus.

e If the argument is an intmod or a p-adic, at present only a few functions like sqrt (square
root), sqr (square), log, exp, powering, teichmuller (Teichmiiller character) and agm (arithmetic-
geometric mean) are implemented.

94

Note that in the case of a 2-adic number, sqr(z) may not be identical to z * z: for example if
z=1+0(2% and y = 1+ O(2°) then xxy = 1+ O(2%) while sqr(z) = 1+ O(2%). Here, z*xz yields
the same result as sqr(z) since the two operands are known to be identical. The same statement
holds true for p-adics raised to the power n, where v,(n) > 0.

Remark. If we wanted to be strictly consistent with the PARI philosophy, we should have x xy =
(4mod 8) and sqr(z) = (4mod 32) when both z and y are congruent to 2 modulo 4. However,
since intmod is an exact object, PARI assumes that the modulus must not change, and the result is
hence (0 mod 4) in both cases. On the other hand, p-adics are not exact objects, hence are treated
differently.

e If the argument is a polynomial, a power series or a rational function, it is, if necessary,
first converted to a power series using the current series precision, held in the default series-
precision. This precision (the number of significant terms) can be changed using \ps or de-
fault(seriesprecision,...). Then the Taylor series expansion of the function around X = 0
(where X is the main variable) is computed to a number of terms depending on the number of
terms of the argument and the function being computed.

Under gp this again is transparent to the user. When programming in library mode, however,
it is strongly advised to perform an explicit conversion to a power series first, as in x = gtoser(x,
seriesprec), where the number of significant terms seriesprec can be specified explicitly. If
you do not do this, a global variable precdl is used instead, to convert polynomials and rational
functions to a power series with a reasonable number of terms; tampering with the value of this
global variable is deprecated and strongly discouraged.

o If the argument is a vector or a matrix, the result is the componentwise evaluation of the
function. In particular, transcendental functions on square matrices, which are not implemented
in the present version 2.9.1, will have a different name if they are implemented some day.

3.3.1 ~. If y is not of type integer, x"y has the same effect as exp(y*log(x)). It can be applied
to p-adic numbers as well as to the more usual types.

The library syntax is GEN gpow(GEN x, GEN n, long prec) for x"n.

3.3.2 Catalan. Catalan’s constant G =) . _, % = 0.91596 - - -. Note that Catalan is one

of the few reserved names which cannot be used for user variables.

The library syntax is GEN mpcatalan(long prec).

3.3.3 Euler. Euler’s constant v = 0.57721---. Note that Euler is one of the few reserved names
which cannot be used for user variables.

The library syntax is GEN mpeuler(long prec).

3.3.4 1. The complex number /—1.
The library syntax is GEN gen_I().

3.3.5 Pi. The constant 7 (3.14159 - - -). Note that Pi is one of the few reserved names which cannot
be used for user variables.

The library syntax is GEN mppi(long prec).

95

3.3.6 abs(x). Absolute value of z (modulus if z is complex). Rational functions are not allowed.
Contrary to most transcendental functions, an exact argument is not converted to a real number
before applying abs and an exact result is returned if possible.

? abs(-1)

%=1

? abs(3/7 + 4/7%I)

%2 = 5/7

? abs(l + I)

%3 = 1.414213562373095048801688724

If x is a polynomial, returns —z if the leading coefficient is real and negative else returns x. For a
power series, the constant coefficient is considered instead.

The library syntax is GEN gabs(GEN x, long prec).
3.3.7 acos(x). Principal branch of cos™!(z) = —ilog(z + iv/1 — 22). In particular, R(acos(z)) €
[0,7] and if z € R and |z| > 1, then acos(z) is complex. The branch cut is in two pieces:

] — o0, —1] , continuous with quadrant II, and [1,+oo[, continuous with quadrant IV. We have
acos(z) = w/2 — asin(z) for all z.

The library syntax is GEN gacos(GEN x, long prec).

3.3.8 acosh(z). Principal branch of cosh™' (z) = 2log(\/(z +1)/2 + /(z — 1)/2). In particular,
R(acosh(x)) > 0 and J(acosh(z)) €] — 7, n]; if z € R and = < 1, then acosh(x) is complex.

The library syntax is GEN gacosh(GEN x, long prec).
3.3.9 agm(x,y). Arithmetic-geometric mean of z and y. In the case of complex or negative
numbers, the optimal AGM is returned (the largest in absolute value over all choices of the signs of
the square roots). p-adic or power series arguments are also allowed. Note that a p-adic agm exists

only if #/y is congruent to 1 modulo p (modulo 16 for p = 2). = and y cannot both be vectors or
matrices.

The library syntax is GEN agm(GEN x, GEN y, long prec).

3.3.10 arg(z). Argument of the complex number z, such that —7 < arg(z) < 7.

The library syntax is GEN garg(GEN x, long prec).
3.3.11 asin(z). Principal branch of sin™*(z) = —ilog(iz + /1 — #2). In particular, R(asin(z)) €
[—7/2,7/2] and if z € R and |z| > 1 then asin(z) is complex. The branch cut is in two pieces:

] — 00, —1], continuous with quadrant II, and [1, +o0[continuous with quadrant IV. The function
satisfies jasin(z) = asinh(iz).

The library syntax is GEN gasin(GEN x, long prec).
3.3.12 asinh(z). Principal branch of sinh ' (z) = log(z + /1 + 22). In particular S(asinh(z)) €

[-7/2,7/2]. The branch cut is in two pieces: | — ioco, —i], continuous with quadrant III and
[+1i, +i00[, continuous with quadrant I.

The library syntax is GEN gasinh(GEN x, long prec).

96

3.3.13 atan(z). Principal branch of tan™!(x) = log((1 +ix)/(1 — iz))/2i. In particular the real
part of atan(z) belongs to | — w/2,7/2[. The branch cut is in two pieces: | — ioco, —i[, continuous
with quadrant IV, and]i, +ioo[continuous with quadrant II. The function satisfies atan(z) =
—iatanh(iz) for all z # +i.

The library syntax is GEN gatan(GEN x, long prec).
3.3.14 atanh(z). Principal branch of tanh™'(z) = log((1 + #)/(1 — z))/2. In particular the
imaginary part of atanh(z) belongs to [—7/2,7/2]; if + € R and |z| > 1 then atanh(x) is complex.
The library syntax is GEN gatanh(GEN x, long prec).
3.3.15 bernfrac(z). Bernoulli number B,, where By =1, By = —1/2, B, =1/6,.. ., expressed as
a rational number. The argument x should be of type integer.

The library syntax is GEN bernfrac(long x).

3.3.16 bernpol(n, {v =' z}). Bernoulli polynomial B,, in variable v.

? bernpol(1)
% =x-1/2
7 bernpol(3)
h2 = x"3 - 3/2*x"2 + 1/2xx

The library syntax is GEN bernpol(long n, long v = -1) where v is a variable number.
3.3.17 bernreal(z). Bernoulli number B,, as bernfrac, but B, is returned as a real number
(with the current precision).

The library syntax is GEN bernreal(long x, long prec).

3.3.18 bernvec(x). This routine is obsolete, kept for backward compatibility only.
The library syntax is GEN bernvec(long x).

3.3.19 besselhl(nu,z). H!'-Bessel function of index nu and argument z.

The library syntax is GEN hbessell(GEN nu, GEN x, long prec).

3.3.20 besselh2(nu,z). H?-Bessel function of index nu and argument z.
The library syntax is GEN hbessel2(GEN nu, GEN x, long prec).
3.3.21 besseli(nu,x). I-Bessel function of index nu and argument z. If z converts to a power

series, the initial factor (x/2)"/I'(v 4+ 1) is omitted (since it cannot be represented in PARI when
v is not integral).

The library syntax is GEN ibessel(GEN nu, GEN x, long prec).
3.3.22 besselj(nu,x). J-Bessel function of index nu and argument x. If x converts to a power

series, the initial factor (/2)"/I'(v + 1) is omitted (since it cannot be represented in PARI when
v is not integral).

The library syntax is GEN jbessel(GEN nu, GEN x, long prec).

97

3.3.23 besseljh(n,z). J-Bessel function of half integral index. More precisely, besseljh(n, z)
computes Jy,11/2(x) where n must be of type integer, and z is any element of C. In the present
version 2.9.1, this function is not very accurate when z is small.

The library syntax is GEN jbesselh(GEN n, GEN x, long prec).

3.3.24 besselk(nu,z). K-Bessel function of index nu and argument z.

The library syntax is GEN kbessel(GEN nu, GEN x, long prec).

3.3.25 besseln(nu, z). N-Bessel function of index nu and argument z.

The library syntax is GEN nbessel (GEN nu, GEN x, long prec).

3.3.26 cos(z). Cosine of z.
The library syntax is GEN gcos(GEN x, long prec).

3.3.27 cosh(z). Hyperbolic cosine of z.
The library syntax is GEN gcosh(GEN x, long prec).

3.3.28 cotan(x). Cotangent of x.
The library syntax is GEN gcotan(GEN x, long prec).

3.3.29 cotanh(z). Hyperbolic cotangent of z.
The library syntax is GEN gcotanh(GEN x, long prec).

3.3.30 dilog(x). Principal branch of the dilogarithm of z, i.e. analytic continuation of the power
series log,(z) = Y, a™/n*.

The library syntax is GEN dilog(GEN x, long prec).

3.3.31 eint1(z, {n}). Exponential integral [? dt = incgam(0,x), where the latter expression
extends the function definition from real z > 0 to all complex z # 0.

If n is present, we must have z > 0; the function returns the n-dimensional vector
[eint1(z),...,eint1(nx)]. Contrary to other transcendental functions, and to the default case
(n omitted), the values are correct up to a bounded absolute, rather than relative, error 10",
where n is precision(z) if x is a t_REAL and defaults to realprecision otherwise. (In the most
important application, to the computation of L-functions via approximate functional equations,
those values appear as weights in long sums and small individual relative errors are less useful
than controlling the absolute error.) This is faster than repeatedly calling eint1(i * x), but less
precise.

The library syntax is GEN veceint1(GEN x, GEN n = NULL, long prec). Also available is
GEN eint1(GEN x, long prec).

3.3.32 erfc(z). Complementary error function, analytic continuation of (2//x) [° e dt =
incgam(1/2,x?)//7, where the latter expression extends the function definition from real z to all
complex x # 0.

The library syntax is GEN gerfc(GEN x, long prec).

98

3.3.33 eta(z, {flag = 0}). Variants of Dedekind’s 5 function. If flag = 0, return [] (1 — ¢"),
where ¢ depends on x in the following way:

o g = €% if 1 is a complex number (which must then have positive imaginary part); notice

that the factor ¢*/2* is missing!

e ¢ =z if x is a t_PADIC, or can be converted to a power series (which must then have positive
valuation).

If flag is non-zero, z is converted to a complex number and we return the true 7 function,
/T2 (1 — g"), where g = €™,

The library syntax is GEN etaO(GEN z, long flag, long prec).

Also available is GEN trueeta(GEN x, long prec) (flag =1).

3.3.34 exp(x). Exponential of z. p-adic arguments with positive valuation are accepted.

The library syntax is GEN gexp(GEN x, 1long prec). For a t_PADIC z, the function GEN
Qp_exp(GEN x) is also available.

3.3.35 expml(x). Return exp(x)—1, computed in a way that is also accurate when the real part of
2 is near 0. A naive direct computation would suffer from catastrophic cancellation; PARI’s direct
computation of exp(x) alleviates this well known problem at the expense of computing exp(zx) to a
higher accuracy when z is small. Using expm1 is recommended instead:

? default(realprecision, 10000); x = 1e-100;
7?7 a = expml(x);

time = 4 ms.

7 b = exp(x)-1;

time = 28 ms.

7 default(realprecision, 10040); x = 1e-100;

7 ¢ = expml(x); \\ reference point

7 abs(a-c)/c \\ relative error in expml (x)
%7 = 0.E-10017

? abs(b-c)/c \\ relative error in exp(x)-1
%8 = 1.7907031188259675794 E-9919

As the example above shows, when z is near 0, expml is both faster and more accurate than
exp(x)-1.

The library syntax is GEN gexpml (GEN x, long prec).

99

3.3.36 gamma(s). For s a complex number, evaluates Euler’s gamma function

I'(s) = /000 t*~ 1 exp(—t) dt.

Error if s is a non-positive integer, where I' has a pole.

For s a t_PADIC, evaluates the Morita gamma function at s, that is the unique continuous
p-adic function on the p-adic integers extending I',(k) = (—1)* H;<kj, where the prime means
that p does not divide j.

? gamma(1/4 + 0(5710))

%1= 1 + 45 + 3%x5°4 + 576 + 577 + 4*x5"9 + 0(5710)
7 algdep(%,4)

%2 = x"4 + 4xx"2 + 5

The library syntax is GEN ggamma(GEN s, long prec). For a t_PADIC z, the function GEN
Qp_gamma (GEN x) is also available.
3.3.37 gammah(z). Gamma function evaluated at the argument z + 1/2.

The library syntax is GEN ggammah(GEN x, long prec).
3.3.38 gammamellininv(G, ¢, {m = 0}). Returns the value at ¢ of the inverse Mellin transform
G initialized by gammamellininvinit.

7 G = gammamellininvinit([0]);
? gammamellininv(G, 2) - 2*exp(-Pi*272)
%2 = -4.484155085839414627 E-44

The alternative shortcut
gammamellininv (A,t,m)
for
gammamellininv(gammamellininvinit(A,m), t)
is available.
The library syntax is GEN gammamellininv(GEN G, GEN t, long m, long bitprec).

3.3.39 gammamellininvasymp(A4,n,{m = 0}). Return the first n terms of the asymptotic
expansion at infinity of the m-th derivative K (") (t) of the inverse Mellin transform of the function

f(S) = FR(S + Cll) ‘e FR(S + ad) s

where A is the vector [ai,...,aq] and Tr(s) = 7*/?I'(s/2) (Euler’s gamma). The result is a vector
[M[1]...M[n]] with M[1]=1, such that

Km) (t) = /2d+1/dta+m(2/d—1)e—dﬂt2/d Z Mln + 1](7Tt2/d)_n
n>0
with a = (1 —d+ 32, ;<4a5)/d.
The library syntax is GEN gammamellininvasymp(GEN A, long precdl, long n).

100

3.3.40 gammamellininvinit(A,{m = 0}). Initialize data for the computation by gam-
mamellininv of the m-th derivative of the inverse Mellin transform of the function

f(s) =Tr(s+a1)...Tr(s + aq)

where A is the vector [ag,...,aq] and Tr(s) = 7=%/?T'(s/2) (Euler’s gamma). This is the special
case of Meijer’s G functions used to compute L-values via the approximate functional equation.

Caveat. Contrary to the PARI convention, this function guarantees an absolute (rather than
relative) error bound.

For instance, the inverse Mellin transform of T'r(s) is 2 exp(—m2?):

7?7 G = gammamellininvinit([0]);
? gammamellininv(G, 2) - 2*exp(-Pi*272)
%2 = -4.484155085839414627 E-44

The inverse Mellin transform of I'r(s + 1) is 2zexp(—7z?), and its second derivative is
dnzexp(—m2?)(2w2? — 3):

7 G = gammamellininvinit([1], 2);

7 a(z) = 4xPixzxexp(-Pi*z"2)*(2xPixz"2-3);
? b(z) gammamellininv(G,z);

? t(z) = b(z) - a(z);

7 t(3/2)

%3 = -1.4693679385278593850 E-39

The library syntax is GEN gammamellininvinit(GEN A, long m, long bitprec).
3.3.41 hyperu(a,b,z). U-confluent hypergeometric function with parameters a and b. The pa-
rameters a and b can be complex but the present implementation requires z to be positive.

The library syntax is GEN hyperu(GEN a, GEN b, GEN x, long prec).
3.3.42 incgam(s,z,{g}). Incomplete gamma function [~ e~'t*~!dt, extended by analytic con-
tinuation to all complex x,s not both 0. The relative error is bounded in terms of the precision of

s (the accuracy of x is ignored when determining the output precision). When g is given, assume
that g = I'(s). For small |z|, this will speed up the computation.

The library syntax is GEN incgamO(GEN s, GEN x, GEN g = NULL, long prec). Also
available is GEN incgam(GEN s, GEN x, long prec).

3.3.43 incgamc(s,z). Complementary incomplete gamma function. The arguments z and s are
complex numbers such that s is not a pole of I and |z|/(|s| +1) is not much larger than 1 (otherwise
the convergence is very slow). The result returned is [e ‘¢*~! dt.

The library syntax is GEN incgamc(GEN s, GEN x, long prec).

3.3.44 lambertw(y). Lambert W function, solution of the implicit equation xze® =y, for y > 0.

The library syntax is GEN glambertW(GEN y, long prec).

101

3.3.45 Ingamma(z). Principal branch of the logarithm of the gamma function of z. This function
is analytic on the complex plane with non-positive integers removed, and can have much larger
arguments than gamma itself.

For x a power series such that z(0) is not a pole of gamma, compute the Taylor expansion.
(PARI only knows about regular power series and can’t include logarithmic terms.)

? lngamma(1+x+0(x"2))
%1 = -0.57721566490153286060651209008240243104*x + 0(x"2)
? 1lngamma(x+0(x"2))
***x at top-level: lngamma(x+0(x"2))
%ok k Sm——————————————
x%% Ingamma: domain error in lngamma: valuation != 0
7 lngamma(-1+x+0(x"2))
x%% Ingamma: Warning: normalizing a series with O leading term.
*ok ok at top-level: lngamma(-1+x+0(x"2))
ok ok -
x*% Ingamma: domain error in intformal: residue(series, pole) != 0

The library syntax is GEN glngamma(GEN x, long prec).

3.3.46 log(z). Principal branch of the natural logarithm of z € C*, i.e. such that S(log(z)) €
| — w,). The branch cut lies along the negative real axis, continuous with quadrant 2, i.e. such
that lim,_,q+ log(a + bi) = loga for a € R*. The result is complex (with imaginary part equal to
7)if z € R and x < 0. In general, the algorithm uses the formula

™

N ——— —mlog?2
2agm(1,4/s) miog s

log(z)

if s = 22" is large enough. (The result is exact to B bits provided s > 25/2.) At low accuracies,
the series expansion near 1 is used.

p-adic arguments are also accepted for z, with the convention that log(p) = 0. Hence in
particular exp(log(z))/z is not in general equal to 1 but to a (p — 1)-th root of unity (or £1 if
p = 2) times a power of p.

The library syntax is GEN glog(GEN x, 1long prec). For a t_PADIC z, the function GEN
Qp_log(GEN x) is also available.

3.3.47 polylog(m,x,{flag = 0}). One of the different polylogarithms, depending on flag:

If flag = 0 or is omitted: m*™ polylogarithm of z, i.e. analytic continuation of the power series

Lip,(z) = 3,5, 2™/n™ (z < 1). Uses the functional equation linking the values at = and 1/ to
restrict to the case |x| < 1, then the power series when |z|? < 1/2, and the power series expansion
in log(z) otherwise.

Using flag, computes a modified m'® polylogarithm of . We use Zagier’s notations; let #,,
denote R or & depending on whether m is odd or even:

If flag = 1: compute D,,(z), defined for |z| < 1 by

m-1, k _ m—1
R (Z(g 2" oy + (108D 1og|1_x|>.

k!
k=0

102

If flag = 2: compute D,,(z), defined for |z| <1 by

. (’"Z (“loglel* | 1(—1og|w|>m> |

k! 2 m!
k=0

If flag = 3: compute P,,(z), defined for |z| < 1 by

m—1 QkBk .
R [3 L2 g o) Lipy (2 -

k=0

mel

B, m
T(loglxl)) .

These three functions satisfy the functional equation f,,(1/x) = (=1)™ 1 f,(x).

The library syntax is GEN polylogO(long m, GEN x, long flag, long prec). Also available
is GEN gpolylog(long m, GEN x, long prec) (flag= 0).
3.3.48 psi(z). The y-function of z, i.e. the logarithmic derivative I''(z) /T'(x).

The library syntax is GEN gpsi(GEN x, long prec).

3.3.49 sin(z). Sine of z.
The library syntax is GEN gsin(GEN x, long prec).
3.3.50 sinc(z). Cardinal sine of z, i.e. sin(z)/x if x # 0, 1 otherwise. Note that this function also

allows to compute
(1 —cos(x))/x* = sinc(x/2)?/2

accurately near x = 0.

The library syntax is GEN gsinc(GEN x, long prec).

3.3.51 sinh(x). Hyperbolic sine of z.
The library syntax is GEN gsinh(GEN x, long prec).

3.3.52 sqr(x). Square of z. This operation is not completely straightforward, i.e. identical to x *z,
since it can usually be computed more efficiently (roughly one-half of the elementary multiplications
can be saved). Also, squaring a 2-adic number increases its precision. For example,

7 (1 +0(274))"2

%1 =1+ 0(2°5)

7 (1 +0(274)) = (1 + 0(274))

%2 =1+ 0(274)
Note that this function is also called whenever one multiplies two objects which are known to be
identical, e.g. they are the value of the same variable, or we are computing a power.

?7x=(1+0(2°4)); x * x
%3 =1 + 0(2°5)

7 (1 +0(274))"4

%4 =1 + 0(2°6)

(note the difference between %2 and %3 above).

The library syntax is GEN gsqr (GEN x).

103

3.3.53 sqrt(z). Principal branch of the square root of z, defined as \/r = exp(logz/2). In
particular, we have Arg(sqrt(z)) € | —x/2,7/2], and if z € R and z < 0, then the result is complex
with positive imaginary part.

Intmod a prime p, t_PADIC and t_FFELT are allowed as arguments. In the first 2 cases
(t_INTMOD, t_PADIC), the square root (if it exists) which is returned is the one whose first p-adic
digit is in the interval [0,p/2]. For other arguments, the result is undefined.

The library syntax is GEN gsqrt(GEN x, long prec). For a t_PADIC z, the function GEN
Qp_sqrt (GEN x) is also available.

3.3.54 sqrtn(z,n,{&=z}). Principal branch of the nth root of z, i.e. such that Arg(sqrtn(z)) €
| — 7 /n,7/n]. Intmod a prime and p-adics are allowed as arguments.

If z is present, it is set to a suitable root of unity allowing to recover all the other roots. If it
was not possible, z is set to zero. In the case this argument is present and no nth root exist, 0 is
returned instead of raising an error.

? sqrtn(Mod(2,7), 2)
%1 = Mod(3, 7)
? sqrtn(Mod(2,7), 2, &z); =z
%2 = Mod(6, 7)
? sqrtn(Mod(2,7), 3)
*x*x at top-level: sqrtn(Mod(2,7),3)
koK B e e
% sqrtn: nth-root does not exist in gsqrtn.
7 sqrtn(Mod(2,7), 3, &=z)
%2 =0

7z
%3 =0

The following script computes all roots in all possible cases:

sqrtnall (x,n)=
{ my(V,r,z,r2);
r = sqrtn(x,n, &z);
if (!'z, error("Impossible case in sqrtn"));
if (type(x) == "t_INTMOD" || type(x)=="t_PADIC",
r2 = r*xz; n = 1;
while (r2'=r, r2%=z;n++));
V = vector(n); V[1] = r;
for(i=2, n, V[i] = V[i-1]*z);
v
}
addhelp(sqrtnall,"sqrtnall(x,n):compute the vector of nth-roots of x");

The library syntax is GEN gsqrtn(GEN x, GEN n, GEN *z = NULL, long prec). If zis a
t_PADIC, the function GEN Qp_sqrtn(GEN x, GEN n, GEN *z) is also available.

3.3.55 tan(z). Tangent of x.
The library syntax is GEN gtan(GEN x, long prec).

104

3.3.56 tanh(z). Hyperbolic tangent of z.

The library syntax is GEN gtanh(GEN x, long prec).

3.3.57 teichmuller(z, {tab}). Teichmiiller character of the p-adic number z, i.e. the unique
(p — 1)-th root of unity congruent to z/p"»(*) modulo p. If z is of the form [p,n], for a prime p
and integer n, return the lifts to Z of the images of i + O(p™) for i = 1,...,p— 1, i.e. all roots of 1
ordered by residue class modulo p. Such a vector can be fed back to teichmuller, as the optional
argument tab, to speed up later computations.

? z = teichmuller(2 + 0(101°5))

%1 = 2 + 83%101 + 18%101°2 + 69%101"3 + 62%101"4 + 0(101°5)
7 z7100

%2 =1+ 0(101°5)

? T = teichmuller([101, 5]);

? teichmuller(2 + 0(101°5), T)

%4 = 2 + 83%101 + 18%101°2 + 69*101°3 + 62%x101°4 + 0(101°5)

As a rule of thumb, if more than

p/2(logy(p) + hammingweight(p))

values of teichmuller are to be computed, then it is worthwile to initialize:

7 p=101; n = 100; T = teichmuller([p,n]); \\ instantaneous
? for(i=1,10"3, vector(p-1, i, teichmuller(i+0(p°n), T)))
time = 60 ms.

? for(i=1,10"3, vector(p-1, i, teichmuller(i+0(p~n))))

time = 1,293 ms.

7 1 + 2%(log(p)/log(2) + hammingweight (p))

%8 = 22.316[...]

Here the precompuation induces a speedup by a factor 1293/60 ~ 21.5.

Caveat. If the accuracy of tab (the argument n above) is lower than the precision of x, the former
is used, i.e. the cached value is not refined to higher accuracy. It the accuracy of tab is larger,
then the precision of x is used:

? Tlow = teichmuller([101, 2]1); \\ lower accuracy !
? teichmuller(2 + 0(101°5), Tlow)
%10 = 2 + 83%101 + 0(101"5) \\ no longer a root of 1

7 Thigh = teichmuller([101, 10]); \\ higher accuracy
? teichmuller(2 + 0(101°5), Thigh)
%12 = 2 + 83%101 + 18%101°2 + 69%101°3 + 62%101°4 + 0(101°5)

The library syntax is GEN teichmuller (GEN x, GEN tab = NULL).

Also available are the functions GEN teich(GEN x) (tab is NULL) as well as GEN teichmul-
lerinit(long p, long n).

105

3.3.58 theta(q, z). Jacobi sine theta-function

01(2,q) = 2674 3 (=1)"g" "D sin((2n + 1)z).
n>0

The library syntax is GEN theta(GEN ¢q, GEN z, long prec).

3.3.59 thetanullk(q, k). k-th derivative at z = 0 of theta(g, 2).
The library syntax is GEN thetanullk(GEN q, long k, long prec).

GEN vecthetanullk(GEN q, long k, long prec) returns the vector of all %(q,O) for all odd
t=1,3,...,2k—1. GEN vecthetanullk_tau(GEN tau, long k, long prec) returns vecthetan-
ullk_tau at ¢ = exp(2imtau).

3.3.60 weber(z, {flag = 0}). One of Weber’s three f functions. If flag = 0, returns

f(a) = exp(—in/24) - n((z +1)/2) /n(z) such that j=(f** —16)°/F*,
where j is the elliptic j-invariant (see the function e11j). If flag = 1, returns
fi(z) =n(z/2) /n(z) suchthat j= (ff*+16)°/f7".
Finally, if flag = 2, returns
fal@) = V20(22) [n(x) such that j = (f3* +16)/f5*.

Note the identities f® = f8 4+ f5 and ffifo = V2.

The library syntax is GEN weberO(GEN x, long flag, long prec). Also available are GEN
weberf (GEN x, long prec), GEN weberf1(GEN x, long prec) and GEN weberf2(GEN x, long
prec).

3.3.61 zeta(s). For s a complex number, Riemann’s zeta function ((s) =), -, n*, computed
using the Euler-Maclaurin summation formula, except when s is of type integer, in which case it is
computed using Bernoulli numbers for s < 0 or s > 0 and even, and using modular forms for s > 0
and odd.

For s a p-adic number, Kubota-Leopoldt zeta function at s, that is the unique continuous p-
adic function on the p-adic integers that interpolates the values of (1—p~*)((k) at negative integers
k such that k=1 (mod p— 1) (resp. k is odd) if p is odd (resp. p = 2).

The library syntax is GEN gzeta(GEN s, long prec).

3.3.62 zetamult(s). For s a vector of positive integers such that s[1] > 2, returns the multiple
zeta value (MZV)

C(s1y-..,8k) = Z ng oo k.

ni>...>nE>0

? zetamult([2,1]) - zeta(3) \\ Euler’s identity
%1 = 0.E-38

The library syntax is GEN zetamult(GEN s, long prec).

106

3.4 Arithmetic functions.

These functions are by definition functions whose natural domain of definition is either Z (or
Z.,). The way these functions are used is completely different from transcendental functions in
that there are no automatic type conversions: in general only integers are accepted as arguments.
An integer argument N can be given in the following alternate formats:

e t_MAT: its factorization fa = factor(V),
e t_VEC: a pair [N, fa] giving both the integer and its factorization.

This allows to compute different arithmetic functions at a given N while factoring the latter
only once.

? N = 10!'; faN = factor(N);
7 eulerphi (N)

%2 = 829440

? eulerphi(faN)

%3 = 829440

7 eulerphi(S = [N, faN])

%4 = 829440

7 sigma(S)

%5 = 15334088

3.4.1 Arithmetic functions and the factoring engine. All arithmetic functions in the narrow
sense of the word — Euler’s totient function, the Moebius function, the sums over divisors or
powers of divisors etc.— call, after trial division by small primes, the same versatile factoring
machinery described under factorint. It includes Shanks SQUFOF, Pollard Rho, ECM and
MPQS stages, and has an early exit option for the functions moebius and (the integer function
underlying) issquarefree. This machinery relies on a fairly strong probabilistic primality test, see
ispseudoprime, but you may also set

default (factor_proven, 1)
to ensure that all tentative factorizations are fully proven. This should not slow down PARI too
much, unless prime numbers with hundreds of decimal digits occur frequently in your application.
3.4.2 Orders in finite groups and Discrete Logarithm functions.

The following functions compute the order of an element in a finite group: ellorder (the
rational points on an elliptic curve defined over a finite field), fforder (the multiplicative group of
a finite field), znorder (the invertible elements in Z/nZ). The following functions compute discrete
logarithms in the same groups (whenever this is meaningful) elllog, fflog, znlog.

All such functions allow an optional argument specifying an integer N, representing the order
of the group. (The order functions also allows any non-zero multiple of the order, with a minor
loss of efficiency.) That optional argument follows the same format as given above:

e t_INT: the integer IV,
e t_MAT: the factorization fa = factor(NN),

e t_VEC: this is the preferred format and provides both the integer N and its factorization in
a two-component vector [N, fa].

107

When the group is fixed and many orders or discrete logarithms will be computed, it is much
more efficient to initialize this data once and for all and pass it to the relevant functions, as in

7 p = nextprime(10740);

7 v = [p-1, factor(p-1)1; \\ data for discrete log & order computations
7 znorder (Mod(2,p), v)

%3 = 500000000000000000000000000028

7 g = znprimroot(p);

7 znlog(2, g, v)

%5 = 543038070904014908801878611374

3.4.3 Dirichlet characters.

The finite abelian group G = (Z/NZ)* can be written G = ®;<n(Z/d;Z)g;, with d,, | ... | da |
di (SNF condition), all d; > 0, and [], d; = ¢(N).

The SNF condition makes the d; unique, but the generators g;, of respective order d;, are
definitely not unique. The @ notation means that all elements of G can be written uniquely as
I, 9;" where n; € Z/d;Z. The g; are the so-called SNF generators of G.

k2

e a character on the abelian group ©(Z/d;Z)g; is given by a row vector x = [a1,...,a,] of
integers 0 < a; < d; such that x(g;) = e(a;/d;) for all j, with the standard notation e(z) :=
exp(2imz). In other words, x([] g;”) =e(> ajn;/d;).

This will be generalized to more general abelian groups in later sections (Hecke characters),
but in the present case of (Z/NZ)*, there is a useful alternate convention : namely, it is not
necessary to impose the SNF condition and we can use Chinese reminders instead. If N = [[p®» is
the factorization of N into primes, the so-called Conrey generators of G are the generators of the
(Z/pe*Z)* lifted to (Z/NZ)* by requesting that they be congruent to 1 modulo N/p¢» (for p odd
we take the smallest positive primitive root, and for p = 2 we take —1 if e5 > 1 and additionally 5
if e, > 2). We can again write G = ®;<n(Z/D;Z)G;, where again [[, D; = ¢(IN). These generators
don’t satisfy the SNF condition in general since their orders are now (p — 1)p¢ ! for p odd; for
p = 2, the generator —1 has order 2 and 5 has order 2¢272 (es > 2). Nevertheless, any m € (Z/NZ)*
can be uniquely decomposed as [[G} for some m; modulo D; and we can define a character by
x(G;) = e(m;/Dy) for all j.

e The column vector of the mj;, 0 < m; < Dj is called the Conrey logarithm of m (discrete
logarithm in terms of the Conrey generators). Note that discrete logarithms in PARI/GP are
always expressed as t_COLs.

e The attached character is called the Conrey character attached to m.

To sum up a Dirichlet character can be defined by a t_INT (the Conrey label m), a t_COL
(the Conrey logarithm of m, in terms of the Conrey generators) or a t_VEC (in terms of the SNF
generators). The t_COL format, i.e. Conrey logarithms, is the preferred (fastest) representation.

Concretely, this works as follows:

G = idealstar(,N) initializes (Z/NZ)*, which must be given as first arguments to all func-
tions handling Dirichlet characters.

znconreychar transforms t_INT and t_COL to a SNF character.
znconreylog transforms t_INT and t_VEC to a Conrey logarithm.

znconreyexp transforms t_VEC and t_COL to a Conrey label.

108

Also available are charconj, chardiv, charmul, charker, chareval, charorder, zncharin-
duce, znconreyconductor (also computes the primitive character attached to the input character).
The prefix char indicates that the function applies to all characters, the prefix znchar that it is
specific to Dirichlet characters (on (Z/NZ)*) and the prefix znconrey that it is specific to Conrey
representation.

3.4.4 addprimes({z = []|}). Adds the integers contained in the vector x (or the single integer z) to
a special table of “user-defined primes”, and returns that table. Whenever factor is subsequently
called, it will trial divide by the elements in this table. If z is empty or omitted, just returns the
current list of extra primes.

The entries in must be primes: there is no internal check, even if the factor_proven default
is set. To remove primes from the list use removeprimes.

The library syntax is GEN addprimes(GEN x = NULL).

3.4.5 bestappr(z,{B}). Using variants of the extended Euclidean algorithm, returns a rational
approximation a/b to z, whose denominator is limited by B, if present. If B is omitted, return the
best approximation affordable given the input accuracy; if you are looking for true rational numbers,
presumably approximated to sufficient accuracy, you should first try that option. Otherwise, B
must be a positive real scalar (impose 0 < b < B).

o If x is a t_REAL or a t_FRAC, this function uses continued fractions.

7 bestappr(Pi, 100)

%1 = 22/7
? bestappr (0.1428571428571428571428571429)
%2 = 1/7

7 bestappr([Pi, sqrt(2) + ’x], 1073)
%3 = [3565/113, x + 1393/985]

By definition, a/b is the best rational approximation to z if |bz — a| < |vax — u] for all integers
(u,v) with 0 < v < B. (Which implies that n/d is a convergent of the continued fraction of z.)

e If is a t_INTMOD modulo N or a t_PADIC of precision N = p*, this function performs
rational modular reconstruction modulo N. The routine then returns the unique rational number
a/b in coprime integers |a| < N/2B and b < B which is congruent to x modulo N. Omitting B
amounts to choosing it of the order of \/N/2. If rational reconstruction is not possible (no suitable
a/b exists), returns [|.

7 bestappr (Mod (18526731858, 11°10))

%1 = 1/7

? bestappr(Mod (18526731858, 11720))

%2 =[]

7 bestappr(3 + 5 + 3%572 + 573 + 3%574 + 575 + 3%576 + 0(577))
%2 = -1/3

In most concrete uses, B is a prime power and we performed Hensel lifting to obtain z.

The function applies recursively to components of complex objects (polynomials, vectors, ...).
If rational reconstruction fails for even a single entry, return [|.

The library syntax is GEN bestappr(GEN x, GEN B = NULL).

109

3.4.6 bestapprPade(z,{B}). Using variants of the extended Euclidean algorithm, returns a
rational function approximation a/b to x, whose denominator is limited by B, if present. If B is
omitted, return the best approximation affordable given the input accuracy; if you are looking for
true rational functions, presumably approximated to sufficient accuracy, you should first try that
option. Otherwise, B must be a non-negative real (impose 0 < degree(b) < B).

e If x is a t_RFRAC or t_SER, this function uses continued fractions.

? bestapprPade((1-x"11)/(1-x)+0(x"11))

o= 1/(-x + 1)

? bestapprPade([1/(1+x+0(x~10)), (x73-2)/(x"3+1)]1, 1)
%2 = [1/(&x+ 1), -2]

e If 2 is a t_POLMOD modulo N or a t_SER of precision N = t*, this function performs rational
modular reconstruction modulo N. The routine then returns the unique rational function a/b in
coprime polynomials, with degree(b) < B which is congruent to modulo N. Omitting B amounts
to choosing it of the order of N/2. If rational reconstruction is not possible (no suitable a/b exists),
returns [|.

7 bestapprPade (Mod (1+x+x"2+x"3+x"4, x74-2))

W= (2*xx - 1D/(x - 1)

? % * Mod(1,x"4-2)

%2 = Mod(x"3 + x"2 + x + 3, x4 - 2)

? bestapprPade (Mod (1+x+x"2+x"3+x"5, x"9))

%2 =[]

? bestapprPade (Mod (1+x+x~2+x"3+x"5, x~10))

%3 = (2%x"4 + x"3 - x - 1)/(-x"6 + x"3 + x"2 - 1)

The function applies recursively to components of complex objects (polynomials, vectors, ...). If
rational reconstruction fails for even a single entry, return [|.

The library syntax is GEN bestapprPade(GEN x, long B).

3.4.7 bezout(z,y). Deprecated alias for gcdext

The library syntax is GEN gcdextO(GEN x, GEN y).

3.4.8 bigomega(x). Number of prime divisors of the integer |z| counted with multiplicity:

? factor(392)
%1 =
[2 3]

[7 2]

? bigomega(392)

%2 =5; \\ = 3+2

7 omega(392)

%3 = 2; \\ without multiplicity

The library syntax is long bigomega(GEN x).

110

3.4.9 binomial(x,y). binomial coefficient (5) Here y must be an integer, but z can be any
PARI object.

The library syntax is GEN binomial (GEN x, long y). The function GEN binomialuu(ulong
n, ulong k) is also available, and so is GEN vecbinome(long n), which returns a vector v with
n + 1 components such that v[k + 1] = binomial(n, k) for k from 0 up to n.

3.4.10 charconj(cyc, chi). Let cyc represent a finite abelian group by its elementary divisors,
i.e. (d;) represents ., Z/d;Z with dy | ... | di; any object which has a .cyc method is also
allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector
X = [a1,...,ay] such that x([] g;j) = exp(2mi)_a;n;/d;), where g; denotes the generator (of
order dj) of the j-th cyclic component.

This function returns the conjugate character.

7 cyc = [15,5]; chi = [1,1];
? charconj(cyc, chi)

w2 = [14, 4]

? bnf = bnfinit(x"2+23);

? bnf.cyc

W4 = [3]

7 charconj(bnf, [1])

5 = [2]

For Dirichlet characters (when cyc is idealstar(,q)), characters in Conrey representation are
available, see Section 3.4.3 or ?7character:

? G = idealstar(,8); \\ (Z/8Z) %

? charorder (G, 3) \\ Conrey label

%2 = 2

? chi = znconreylog(G, 3);

? charorder(G, chi) \\ Conrey logarithm
% =2

The library syntax is GEN charconjO(GEN cyc, GEN chi). Also available is GEN char-
conj(GEN cyc, GEN chi), when cyc is known to be a vector of elementary divisors and chi a
compatible character (no checks).

3.4.11 chardiv(cyc,a,b). Let cyc represent a finite abelian group by its elementary divisors,
i.e. (dj) represents >, Z/d;Z with dj | ... | di; any object which has a .cyc method is also
allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector
a = [a,...,ay] such that x(]] g}”) =exp(2ni) ajn;/d;), where g; denotes the generator (of order
d;) of the j-th cyclic component.

Given two characters a and b, return the character a/b = ab.

? cyc = [15,5]; a = [1,1]; b = [2,4];
? chardiv(cyc, a,b)

%2 = [14, 2]

? bnf = bnfinit(x"2+23);

? bnf.cyc

%4 = [3]

111

? chardiv(bnf, [1], [2])
%5 = [2]

For Dirichlet characters on (Z/NZ)*, additional representations are available (Conrey labels, Con-
rey logarithm), see Section 3.4.3 or ?7character. If the two characters are in the same format, the
result is given in the same format, otherwise a Conrey logarithm is used.

? G = idealstar(,100);
? G.cyc

%2 = [20, 2]

? a = [10, 1]; \\ usual representation for characters
? b =7; \\ Conrey label;

? ¢ = znconreylog(G, 11); \\ Conrey log

? chardiv(G, b,b)

%6 =1 \\ Conrey label

? chardiv(G, a,b)

%7 = [0, 5]~ \\ Conrey log

? chardiv(G, a,c)

%7 = [0, 141~ \\ Conrey log

The library syntax is GEN chardivO(GEN cyc, GEN a, GEN b). Also available is GEN
chardiv(GEN cyc, GEN a, GEN b), when cyc is known to be a vector of elementary divisors
and a, b are compatible characters (no checks).

3.4.12 chareval(G, chi,x,{z})). Let G be an abelian group structure affording a discrete logarithm
method, e.g G = idealstar(,N) for (Z/NZ)* or a bnr structure, let be an element of G and let
chi be a character of G (see the note below for details). This function returns the value of chi at
x.

Note on characters. Let K be some field. If G is an abelian group, let y : G = K* be a character
of finite order and let o be a multiple of the character order such that x(n) = ¢ ¢(n) for some fixed
¢ € K* of multiplicative order o and a unique morphism ¢ : G — (Z/0Z,+). Our usual convention
is to write

G=(Z/o1Z)g1 & - ® (Z]0oaZ)ga
for some generators (g;) of respective order d;, where the group has exponent o := lem;o;. Since

¢° = 1, the vector (¢;) in [[(Z/0;Z) defines a character x on G via x(g;) = ¢%(°/%) for all i.
Classical Dirichlet characters have values in K = C and we can take = exp(2i7/o).

112

Note on Dirichlet characters. In the special case where bid is attached to G = (Z/qZ)* (as per
bid = idealstar(,q)), the Dirichlet character chi can be written in one of the usual 3 formats:
a t_VEC in terms of bid.gen as above, a t_COL in terms of the Conrey generators, or a t_INT
(Conrey label); see Section 3.4.3 or ??character.

The character value is encoded as follows, depending on the optional argument z:

e If z is omitted: return the rational number ¢(z)/o for z coprime to ¢, where we normalize
0 < ¢(z) < 0. If x can not be mapped to the group (e.g. x is not coprime to the conductor of a
Dirichlet or Hecke character) we return the sentinel value —1.

o If 2 is an integer o, then we assume that o is a multiple of the character order and we return
the integer ¢(z) when z belongs to the group, and the sentinel value —1 otherwise.

e z can be of the form [zeta, o], where zeta is an o-th root of 1 and o is a multiple of the character
order. We return ¢¢*) if z belongs to the group, and the sentinel value 0 otherwise. (Note that this
coincides with the usual extension of Dirichlet characters to Z, or of Hecke characters to general
ideals.)

e Finally, z can be of the form [vzeta, o], where vzeta is a vector of powers (°,...,(°! of some
o-th root of 1 and o is a multiple of the character order. As above, we return (¢(*) after a table
lookup. Or the sentinel value 0.

The library syntax is GEN chareval (GEN G, GEN chi, GEN x, GEN z) = NULL).

3.4.13 charker(cyc, chi). Let cyc represent a finite abelian group by its elementary divisors,
ie. (d;) represents ., Z/d;Z with dy | ... | di; any object which has a .cyc method is also
allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector
X = [a1,...,ay] such that x([] g?j) = exp(2mi)_a;n;/d;), where g; denotes the generator (of
order d;) of the j-th cyclic component.

This function returns the kernel of y, as a matrix K in HNF which is a left-divisor of matdiag-
onal(d). Its columns express in terms of the g; the generators of the subgroup. The determinant
of K is the kernel index.

? cyc = [15,5]; chi = [1,1];
? charker(cyc, chi)

W2 =

[15 12]

[0 1]

? bnf = bnfinit(x"2+23);
7 bnf.cyc

%4 = [3]

? charker (bnf, [1])

%5 =

[3]

Note that for Dirichlet characters (when cyc is idealstar(,q)), characters in Conrey representa-
tion are available, see Section 3.4.3 or ?7character.

? G = idealstar(,8); \\ (Z/8Z) %
? charker(G, 1) \\ Conrey label for trivial character
W2 =

113

[1 0]
[0 1]

The library syntax is GEN charkerO(GEN cyc, GEN chi). Also available is GEN charker (GEN
cyc, GEN chi), when cyc is known to be a vector of elementary divisors and chi a compatible
character (no checks).

3.4.14 charmul(cyc,a,b). Let cyc represent a finite abelian group by its elementary divisors,
i.e. (dj) represents > ., Z/d;Z with dj | ... | di; any object which has a .cyc method is also
allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector
a = [a,...,ay] such that x(]] g}”) =exp(2nmi) ajn;/d;), where g; denotes the generator (of order
d;) of the j-th cyclic component.

Given two characters a and b, return the product character ab.

? cyc = [15,5]; a = [1,1]1; b = [2,4];
? charmul (cyc, a,b)

%2 = [3, 0]

? bnf = bnfinit(x"2+23);

7 bnf.cyc

%4 = [3]

? charmul(bnf, [1], [2])

%5 = [0]

For Dirichlet characters on (Z/NZ)*, additional representations are available (Conrey labels, Con-
rey logarithm), see Section 3.4.3 or 7??character. If the two characters are in the same format,
their product is given in the same format, otherwise a Conrey logarithm is used.

? G = idealstar(,100);

? G.cyc

%2 = [20, 2]

? a = [10, 1]; \\ usual representation for characters
? b =7; \\ Conrey label;

? ¢ = znconreylog(G, 11); \\ Conrey log
? charmul(G, b,b)

%6 = 49 \\ Conrey label

? charmul(G, a,b)

%7 = [0, 1561~ \\ Conrey log

? charmul(G, a,c)

%7 = [0, 6]~ \\ Conrey log

The library syntax is GEN charmulO(GEN cyc, GEN a, GEN b). Also available is GEN char-
mul (GEN cyc, GEN a, GEN b), when cyc is known to be a vector of elementary divisors and a, b
are compatible characters (no checks).

114

3.4.15 charorder(cyc, chi). Let cyc represent a finite abelian group by its elementary divisors,
i.e. (dj) represents >, Z/d;Z with dj | ... | di; any object which has a .cyc method is also
allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector
X = [a1,...,a,] such that x(]] g;”) = exp(2mi) a;n;/d;), where g; denotes the generator (of
order dj) of the j-th cyclic component.

This function returns the order of the character chi.

? cyc = [15,5]; chi = [1,1];
? charorder(cyc, chi)
w2 = 15

? bnf = bnfinit(x~2+23);

? bnf.cyc

%4 = [3]

? charorder(bnf, [1])

%5 =3

For Dirichlet characters (when cyc is idealstar(,q)), characters in Conrey representation are
available, see Section 3.4.3 or ?7character:

? G = idealstar(,100); \\ (Z/100Z) " *
? charorder (G, 7) \\ Conrey label
%2 = 4

The library syntax is GEN charorderO(GEN cyc, GEN chi). Also available is GEN
charorder (GEN cyc, GEN chi), when cyc is known to be a vector of elementary divisors and
chi a compatible character (no checks).

3.4.16 chinese(z,{y}). If x and y are both intmods or both polmods, creates (with the same
type) a z in the same residue class as z and in the same residue class as y, if it is possible.

? chinese(Mod(1,2), Mod(2,3))

%1 = Mod(5, 6)

? chinese(Mod(x,x"2-1), Mod(x+1,x"2+1))
%2 = Mod(-1/2%x"2 + x + 1/2, x4 - 1)

This function also allows vector and matrix arguments, in which case the operation is recursively
applied to each component of the vector or matrix.

? chinese([Mod(1,2),Mod(1,3)], [Mod(1,5),Mod(2,7)])
%3 = [Mod(1, 10), Mod(16, 21)]

For polynomial arguments in the same variable, the function is applied to each coefficient; if the
polynomials have different degrees, the high degree terms are copied verbatim in the result, as if
the missing high degree terms in the polynomial of lowest degree had been Mod(0,1). Since the
latter behavior is usually not the desired one, we propose to convert the polynomials to vectors of
the same length first:

7P =x+1; Q = x724+2%x+1;

? chinese(P*xMod(1,2), Q*Mod(1,3))

%4 = Mod(1, 3)*x"2 + Mod(5, 6)*x + Mod(3, 6)

? chinese(Vec(P,3)*Mod(1,2), Vec(Q,3)*Mod(1,3))
%5 = [Mod(1, 6), Mod(5, 6), Mod(4, 6)]

? Pol(%)

115

%6 = Mod(1, 6)*x"2 + Mod(5, 6)*x + Mod(4, 6)

If y is omitted, and x is a vector, chinese is applied recursively to the components of x,
yielding a residue belonging to the same class as all components of .

Finally chinese(z,x) = = regardless of the type of z; this allows vector arguments to contain
other data, so long as they are identical in both vectors.

The library syntax is GEN chinese(GEN x, GEN y = NULL). GEN chinesel(GEN x) is also
available.

3.4.17 content(z). Computes the ged of all the coeflicients of z, when this gcd makes sense. This
is the natural definition if x is a polynomial (and by extension a power series) or a vector/matrix.
This is in general a weaker notion than the ideal generated by the coefficients:

? content (2*x+y)
%1 =1 \\ = gcd(2,y) over Qly]

If is a scalar, this simply returns the absolute value of x if x is rational (t_INT or t_FRAC),
and either 1 (inexact input) or z (exact input) otherwise; the result should be identical to ged(x,
0).

The content of a rational function is the ratio of the contents of the numerator and the de-
nominator. In recursive structures, if a matrix or vector coefficient x appears, the gcd is taken not
with 2, but with its content:

? content ([[2], 4*matid(3) 1)
%1 =2

The content of a t_VECSMALL is computed assuming the entries are signed integers.

The library syntax is GEN content (GEN x).

3.4.18 contfrac(xz, {b}, {nmaz}). Returns the row vector whose components are the partial quo-
tients of the continued fraction expansion of z. In other words, a result [ag,...,a,] means that
z=~ag+1/(ar+...+1/a,). The output is normalized so that a,, # 1 (unless we also have n = 0).

The number of partial quotients n + 1 is limited by nmax. If nmax is omitted, the expansion
stops at the last significant partial quotient.

7 \p19

realprecision = 19 significant digits
? contfrac(Pi)
=103, 7, 15, 1, 292, 1, 1,
? contfrac(Pi,, 3) \\ n =2
%2 = [3, 7, 15]

1, 2,1, 3, 1, 14, 2, 1, 1, 2, 2]

x can also be a rational function or a power series.

If a vector b is supplied, the numerators are equal to the coefficients of b, instead of all equal to
1 as above; more precisely, « &~ (1/bg)(ao+b1/(a1 +...+b,/ay)); for a numerical continued fraction
(x real), the a; are integers, as large as possible; if x is a rational function, they are polynomials
with dega; = degb; + 1. The length of the result is then equal to the length of b, unless the next
partial quotient cannot be reliably computed, in which case the expansion stops. This happens
when a partial remainder is equal to zero (or too small compared to the available significant digits
for x a t_REAL).

116

A direct implementation of the numerical continued fraction contfrac(x,b) described above
would be

\\ "greedy" generalized continued fraction

cf(x, b) =
{ my(a= vector(#b), t);
x *= b[1];
for (i = 1, #b,
ali] = floor(x);
t =x - alil]; if ('t || 1 == #b, break);
x = b[i+1] / t;
); a;
}

There is some degree of freedom when choosing the a;; the program above can easily be modified to
derive variants of the standard algorithm. In the same vein, although no builtin function implements
the related Engel expansion (a special kind of Egyptian fraction decomposition: =z = 1/a; +
1/(aia2) + ...), it can be obtained as follows:

\\ n terms of the Engel expansion of x
engel(x, n = 10) =
{my(u=x, a=vector(n));
for (k = 1, n,
alk] = ceil(1/u);
u = uxalk] - 1;
if ('u, break);
); a

¥

Obsolete hack. (don’t use this): if bis an integer, nmaz is ignored and the command is understood
as contfrac(x,,b).

The library syntax is GEN contfracO(GEN x, GEN b = NULL, long nmax). Also available
are GEN gboundcf (GEN x, long nmax), GEN gcf(GEN x) and GEN gcf2(GEN b, GEN x).

3.4.19 contfracpnqn(z, {n = —1}). When z is a vector or a one-row matrix, z is considered as
the list of partial quotients [ag,a1,...,a,] of a rational number, and the result is the 2 by 2 matrix
[Pns Prn—1; qn,qn—1] in the standard notation of continued fractions, so p,/q, = ap + 1/(a; + ... +
1/ay,). If z is a matrix with two rows [bg, b1,...,b,] and [ag,a1,...,a,], this is then considered as
a generalized continued fraction and we have similarly p, /¢, = (1/bo)(ao +b1/(a1 + ...+ by /ay)).
Note that in this case one usually has by = 1.

If n > 0 is present, returns all convergents from pg/qo up to p,,/¢,. (All convergents if z is too
small to compute the n + 1 requested convergents.)

? a=contfrac(Pi,20)

w»l =103, 7, 15, 1, 292, 1, 1, 1, 2,1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2]
7 contfracpngn(a,3)

%2 =

[3 22 333 355]

[1 7 106 113]

117

7 contfracpnqgn(a,7)
h3 =
[3 22 333 355 103993 104348 208341 312689]

[1 7 106 113 33102 33215 66317 99532]

The library syntax is GEN contfracpnqn(GEN x, long n). also available is GEN pnqn(GEN x)
forn = —1.

3.4.20 core(n,{flag = 0}). If n is an integer written as n = df? with d squarefree, returns d. If
flag is non-zero, returns the two-element row vector [d, f]. By convention, we write 0 = 0 x 1%, so
core(0, 1) returns [0,1].

The library syntax is GEN coreO(GEN n, long flag). Also available are GEN core(GEN n)
(flag = 0) and GEN core2(GEN n) (flag = 1)

3.4.21 coredisc(n, {flag = 0}). A fundamental discriminant is an integer of the form ¢ = 1mod 4
or 4t = 8,12mod 16, with ¢ squarefree (i.e. 1 or the discriminant of a quadratic number field).
Given a non-zero integer n, this routine returns the (unique) fundamental discriminant d such that
n = df?, f a positive rational number. If flag is non-zero, returns the two-element row vector [d, f].
If n is congruent to 0 or 1 modulo 4, f is an integer, and a half-integer otherwise.

By convention, coredisc(0, 1)) returns [0, 1].

Note that quaddisc(n) returns the same value as coredisc(n), and also works with rational
inputs n € Q*.

The library syntax is GEN corediscO(GEN n, long flag). Also available are GEN core-
disc(GEN n) (flag = 0) and GEN coredisc2(GEN n) (flag = 1)

3.4.22 dirdiv(z,y). x and y being vectors of perhaps different lengths but with y[1] # 0 considered
as Dirichlet series, computes the quotient of x by y, again as a vector.

The library syntax is GEN dirdiv(GEN x, GEN y).

3.4.23 direuler(p = a, b, expr,{c}). Computes the Dirichlet series attached to the Euler product
of expression expr as p ranges through the primes from a to b. ezpr must be a polynomial or
rational function in another variable than p (say X) and expr(X) is understood as the local factor
expr(p”*).

The series is output as a vector of coefficients. If ¢ is omitted, output the first b coefficients of
the series; otherwise, output the first ¢ coefficients. The following command computes the sigma
function, attached to ((s)((s — 1):

7 direuler(p=2, 10, 1/((1-X)*(1-p*X)))
% =1[1, 3, 4, 7, 6, 12, 8, 15, 13, 18]

? direuler(p=2, 10, 1/((1-X)*(1-p*X)), 5) \\ fewer terms
%2 =11, 3, 4, 7, 6]

Setting ¢ < b is useless (the same effect would be achieved by setting b = ¢). If ¢ > b, the computed
coefficients are “missing” Fuler factors:

7 direuler(p=2, 10, 1/((1-X)*(1-p*X)), 15) \\ more terms, no longer = sigma !
#»3 =111, 3, 4, 7, 6, 12, 8, 15, 13, 18, 0, 28, 0, 24, 24]

The library syntax is direuler(void *E, GEN (xeval) (void*,GEN), GEN a, GEN b)

118

3.4.24 dirmul(z, y). = and y being vectors of perhaps different lengths representing the Dirichlet
series x,n"% and) y,n~°, computes the product of z by y, again as a vector.

? dirmul (vector(10,n,1), vector(10,n,moebius(n)))
%» = [1, 0, O, O, O, O, O, O, O, O]

The product length is the minimum of #z*v(y) and #y*v(z), where v(x) is the index of the first
non-zero coefficient.

? dirmul([0,1], [0,11);
%2 = [0, 0, O, 1]

The library syntax is GEN dirmul (GEN x, GEN y).

3.4.25 divisors(z). Creates a row vector whose components are the divisors of . The factorization
of z (as output by factor) can be used instead.

By definition, these divisors are the products of the irreducible factors of n, as produced by
factor(n), raised to appropriate powers (no negative exponent may occur in the factorization). If
n is an integer, they are the positive divisors, in increasing order.

The library syntax is GEN divisors(GEN x).

3.4.26 eulerphi(z). Euler’s ¢ (totient) function of the integer |z|, in other words |(Z/xZ)*|.

7 eulerphi(40)
%1 = 16

According to this definition we let ¢(0) := 2, since Z* = {—1, 1}; this is consistent with znstar (0):
we have znstar(n).no = eulerphi(n) for all n € Z.

The library syntax is GEN eulerphi(GEN x).

3.4.27 factor(z, {lim}). General factorization function, where z is a rational (including integers),
a complex number with rational real and imaginary parts, or a rational function (including polyno-
mials). The result is a two-column matrix: the first contains the irreducibles dividing z (rational
or Gaussian primes, irreducible polynomials), and the second the exponents. By convention, 0 is
factored as 0'.

Q and Q(i). See factorint for more information about the algorithms used. The rational or
Gaussian primes are in fact pseudoprimes (see ispseudoprime), a priori not rigorously proven
primes. In fact, any factor which is < 2%¢ (whose norm is < 2% for an irrational Gaussian prime)
is a genuine prime. Use isprime to prove primality of other factors, as in

? fa = factor(2°2°7 + 1)
W=
[59649589127497217 1]

[5704689200685129054721 1]

? isprime(fal[,1])
%#2 = [1, 11~ \\ both entries are proven primes

Another possibility is to set the global default factor_proven, which will perform a rigorous
primality proof for each pseudoprime factor.

119

A t_INT argument lim can be added, meaning that we look only for prime factors p < lim.
The limit l#m must be non-negative. In this case, all but the last factor are proven primes, but
the remaining factor may actually be a proven composite! If the remaining factor is less than lim?,
then it is prime.

? factor(2°2°7 +1, 10°5)

h3 =
[340282366920938463463374607431768211457 1]

Deprecated feature. Setting lim = 0 is the same as setting it to primelimit + 1. Don’t use this:
it is unwise to rely on global variables when you can specify an explicit argument.

This routine uses trial division and perfect power tests, and should not be used for huge values
of lim (at most 10°, say): factorint(, 1 + 8) will in general be faster. The latter does not
guarantee that all small prime factors are found, but it also finds larger factors, and in a much
more efficient way.

7 F = (27277 + 1) * 1009 * 100003; factor(F, 10°5) \\ fast, incomplete
time = 0 ms.

W4 =

[1009 1]

[34029257539194609161727850866999116450334371 1]

7 factor(F, 1079) \\ very slow
time = 6,892 ms.

W6 =

[1009 1]

(100003 1]
[340282366920938463463374607431768211457 1]

? factorint(F, 1+8) \\ much faster, all small primes were found
time = 12 ms.

4T =

[1009 1]

(100003 1]
[340282366920938463463374607431768211457 1]

7 factor(F) \\ complete factorisation
time = 112 ms.

YASIE

[1009 1]

[100003 1]
[69649589127497217 1]
[6704689200685129054721 1]

Over Q, the prime factors are sorted in increasing order.

120

Rational functions. The polynomials or rational functions to be factored must have scalar
coeflicients. In particular PARI does not know how to factor multivariate polynomials. The
following domains are currently supported: Q, R, C, Q,, finite fields and number fields. See
factormod and factorff for the algorithms used over finite fields, factornf for the algorithms
over number fields. Over Q, van Hoeij’s method is used, which is able to cope with hundreds of
modular factors.

The routine guesses a sensible ring over which to factor: the smallest ring containing all
coefficients, taking into account quotient structures induced by t_INTMODs and t_POLMODs (e.g. if a
coefficient in Z/nZ is known, all rational numbers encountered are first mapped to Z/nZ; different
moduli will produce an error). Factoring modulo a non-prime number is not supported; to factor
in Q,, use t_PADIC coefficients not t_INTMOD modulo p™.

7T =x"2+1;

? factor(T); \\ over Q

? factor(T*Mod(1,3)) \\ over F_3

7 factor(T*ffgen(£ffinit(3,2,’t))"0) \\ over F_{372}

? factor(T*Mod(Mod(1,3), t~2+t+2)) \\ over F_{3°2}, again

? factor(Tx(1 + 0(376)) \\ over Q_3, precision 6

? factor(Tx*1.) \\ over R, current precision
? factor(Tx(1.+0.*1)) \\ over C

? factor (T*Mod(1, y~3-2)) \\ over Q(2°{1/3})

In most cases, it is clearer and simpler to call an explicit variant than to rely on the generic factor
function and the above detection mechanism:

? factormod(T, 3) \\ over F_3

? factorff(T, 3, t 2+t+2)) \\ over F_{372}

? factorpadic(T, 3,6) \\ over Q_3, precision 6
? nffactor(y~3-2, T) \\ over Q(2°{1/3})

7 polroots(T) \\ over C

Note that factorization of polynomials is done up to multiplication by a constant. In particular,
the factors of rational polynomials will have integer coefficients, and the content of a polynomial
or rational function is discarded and not included in the factorization. If needed, you can always
ask for the content explicitly:

? factor(t"2 + 5/2%t + 1)
Wl o=
[2xt + 1 1]

[t + 2 1]

? content(t"2 + 5/2%t + 1)
%2 = 1/2

The irreducible factors are sorted by increasing degree. See also nffactor.

The library syntax is GEN gp_factor0(GEN x, GEN lim = NULL). This function should only be
used by the gp interface. Use directly GEN factor (GEN x) or GEN boundfact(GEN x, ulong lim)
. The obsolete function GEN factorO(GEN x, long lim) is kept for backward compatibility.

121

3.4.28 factorback(f, {e}). Gives back the factored object corresponding to a factorization. The
integer 1 corresponds to the empty factorization.

If e is present, e and f must be vectors of the same length (e being integral), and the corre-
sponding factorization is the product of the f[i]¢l.

If not, and f is vector, it is understood as in the preceding case with e a vector of 1s: we return
the product of the f[i]. Finally, f can be a regular factorization, as produced with any factor
command. A few examples:

? factor(12)
%1 =
[2 2]

[3 1]

? factorback(%)

w2 = 12

? factorback([2,3], [2,1]) \\ 273 * 371
%3 = 12

? factorback([5,2,3])

%4 = 30

The library syntax is GEN factorback2(GEN f, GEN e = NULL). Also available is GEN fac-
torback (GEN f) (case e = NULL).

3.4.29 factorcantor(z,p). Factors the polynomial x modulo the prime p, using distinct degree
plus Cantor-Zassenhaus. The coefficients of x must be operation-compatible with Z/pZ. The
result is a two-column matrix, the first column being the irreducible polynomials dividing z, and
the second the exponents. If you want only the degrees of the irreducible polynomials (for example
for computing an L-function), use factormod(z, p, 1). Note that the factormod algorithm is usually
faster than factorcantor.

The library syntax is GEN factcantor(GEN x, GEN p).

3.4.30 factorff(z, {p}, {a}). Factors the polynomial z in the field F, defined by the irreducible
polynomial a over F,,. The coefficients of must be operation-compatible with Z/pZ. The result
is a two-column matrix: the first column contains the irreducible factors of x, and the second their
exponents. If all the coefficients of = are in F,, a much faster algorithm is applied, using the
computation of isomorphisms between finite fields.

Either a or p can omitted (in which case both are ignored) if x has t_FFELT coefficients; the
function then becomes identical to factor:

? factorff(x"2 + 1, 5, y"2+3) \\ over F_5[yl/(y"2+3) ~ F_25
Wl o=

[Mod (Mod (1, 5), Mod(1l, 5)*y~2 + Mod(3, b))*x

+ Mod(Mod (2, 5), Mod(1, B)*y~2 + Mod(3, 5)) 1]

[Mod (Mod(1, 5), Mod(1, 5)*y~2 + Mod(3, 5))*x
+ Mod(Mod (3, 5), Mod(1, B)*y~2 + Mod(3, 5)) 1]
7 t = ffgen(y~2 + Mod(3,5), ’t); \\ a generator for F_25 as a t_FFELT
? factorff(x"2 + 1) \\ not enough information to determine the base field
*ok K at top-level: factorff(x"2+1)

122

*kk e
*¥x% factorff: incorrect type in factorff.

? factorff(x~"2 + t~0) \\ make sure a coeff. is a t_FFELT

%3 =

[x + 2 1]

[x + 3 1]

? factorff(x"2 + t + 1)

%11 =

[x + (2%t + 1) 1]

[x + (3%t + 4) 1]
Notice that the second syntax is easier to use and much more readable.

The library syntax is GEN factorff(GEN x, GEN p = NULL, GEN a = NULL).

3.4.31 factorial(x). Factorial of z. The expression z! gives a result which is an integer, while
factorial(z) gives a real number.

The library syntax is GEN mpfactr (long x, long prec). GEN mpfact(long x) returns z! as
a t_INT.

3.4.32 factorint(z, {flag = 0}). Factors the integer n into a product of pseudoprimes (see ispseu-
doprime), using a combination of the Shanks SQUFOF and Pollard Rho method (with modifications
due to Brent), Lenstra’s ECM (with modifications by Montgomery), and MPQS (the latter adapted
from the LiDIA code with the kind permission of the LiDTA maintainers), as well as a search for
pure powers. The output is a two-column matrix as for factor: the first column contains the
“prime” divisors of n, the second one contains the (positive) exponents.

By convention 0 is factored as 0!, and 1 as the empty factorization; also the divisors are by
default not proven primes is they are larger than 294, they only failed the BPSW compositeness
test (see ispseudoprime). Use isprime on the result if you want to guarantee primality or set the
factor_proven default to 1. Entries of the private prime tables (see addprimes) are also included
as is.

This gives direct access to the integer factoring engine called by most arithmetical functions.
flag is optional; its binary digits mean 1: avoid MPQS, 2: skip first stage ECM (we may still
fall back to it later), 4: avoid Rho and SQUFOF, 8&: don’t run final ECM (as a result, a huge
composite may be declared to be prime). Note that a (strong) probabilistic primality test is used;
thus composites might not be detected, although no example is known.

You are invited to play with the flag settings and watch the internals at work by using gp’s
debug default parameter (level 3 shows just the outline, 4 turns on time keeping, 5 and above show
an increasing amount of internal details).

The library syntax is GEN factorint(GEN x, long flag).

3.4.33 factormod(z, p, {flag = 0}). Factors the polynomial modulo the prime integer p, using
Berlekamp. The coefficients of must be operation-compatible with Z/pZ. The result is a two-
column matrix, the first column being the irreducible polynomials dividing x, and the second the
exponents. If flag is non-zero, outputs only the degrees of the irreducible polynomials (for example,
for computing an L-function). A different algorithm for computing the mod p factorization is
factorcantor which is sometimes faster.

The library syntax is GEN factormodO(GEN x, GEN p, long flag).

123

3.4.34 ffgen(q, {v}). Return a t_FFELT generator for the finite field with ¢ elements; ¢ = pf must
be a prime power. This functions computes an irreducible monic polynomial P € F,[X] of degree f
(via £finit) and returns g = X (mod P(X)). If v is given, the variable name is used to display
g, else the variable x is used.

7 g = ffgen(8, ’t);

? g.mod

%2 =t"3+t72+ 1

7g.p

w3 =2

7 g.f

W4 =3

7 ffgen(6)
*x**x at top-level: ffgen(6)
kK N

x**xx ffgen: not a prime number in ffgen: 6.
Alternative syntax: instead of a prime power ¢ = p/, one may input the pair [p, f]:

7 g = ffgen([2,4], ’t);
7g.p

w2 =2

7 g.mod
#MNB=t74+t73+t72+t+ 1

Finally, one may input directly the polynomial P (monic, irreducible, with t_INTMOD coefficients),
and the function returns the generator ¢ = X (mod P(X)), inferring p from the coefficients of
P. If v is given, the variable name is used to display g, else the variable of the polynomial P is
used. If P is not irreducible, we create an invalid object and behaviour of functions dealing with
the resulting t_FFELT is undefined; in fact, it is much more costly to test P for irreducibility than
it would be to produce it via ffinit.

The library syntax is GEN ffgen(GEN q, long v = -1) where v is a variable number.
To create a generator for a prime finite field, the function GEN p_to_GEN(GEN p, long v)
returns 1+ffgen (x*Mod (1,p),v).

3.4.35 flinit(p,n,{v =" z}). Computes a monic polynomial of degree n which is irreducible over
F,, where p is assumed to be prime. This function uses a fast variant of Adleman and Lenstra’s
algorithm.

It is useful in conjunction with ffgen; for instance if P = £finit(3,2), you can represent
elements in Fs2 in term of g = ffgen(P,’t). This can be abbreviated as g = ffgen(372, ’t),
where the defining polynomial P can be later recovered as g.mod.

The library syntax is GEN ffinit(GEN p, long n, long v = -1) where v is a variable
number.

124

3.4.36 fHog(z, g, {o}). Discrete logarithm of the finite field element x in base g, i.e. an e in Z such
that g¢ = o. If present, o represents the multiplicative order of g, see Section 3.4.2; the preferred
format for this parameter is [ord, factor(ord)], where ord is the order of g. It may be set as a
side effect of calling ffprimroot.

If no o is given, assume that g is a primitive root. The result is undefined if e does not exist.
This function uses

e a combination of generic discrete log algorithms (see znlog)
e a cubic sieve index calculus algorithm for large fields of degree at least 5.
e Coppersmith’s algorithm for fields of characteristic at most 5.

7t ffgen(£ffinit(7,5));

? 0 fforder(t)

%2 = 5602 \\ not a primitive root.
7 fflog(t~10,t)

%3 = 10
7 fflog(t~10,t, o)
%4 = 10

7 g = ffprimroot(t, &o);

70 \\ order is 16806, bundled with its factorization matrix
%6 = [16806, [2, 1; 3, 1; 2801, 1]]

7 fforder(g, o)

%7 = 16806
? fflog(g~10000, g, o)
%8 = 10000

The library syntax is GEN fflog(GEN x, GEN g, GEN o = NULL).

3.4.37 ffnbirred(q,n{, fl = 0}). Computes the number of monic irreducible polynomials over F,
of degree exactly n, (flag = 0 or omitted) or at most n (flag = 1).

The library syntax is GEN ffnbirred0(GEN q, long n, long f1). Also available are GEN
ffnbirred(GEN q, long n) (for flag = 0) and GEN ffsumnbirred(GEN q, long n) (for flag = 1).

3.4.38 fforder(z, {o}). Multiplicative order of the finite field element x. If o is present, it represents
a multiple of the order of the element, see Section 3.4.2; the preferred format for this parameter
is [N, factor(N)], where N is the cardinality of the multiplicative group of the underlying finite
field.

7 t = ffgen(ffinit(nextprime(107°8), 5));

? g = ffprimroot(t, &o); \\ o will be useful!

7 fforder(g~1000000, o)

time = 0 ms.

%5 = 5000001750000245000017150000600250008403

? fforder(g~1000000)

time = 16 ms. \\ noticeably slower, same result of course
%6 = 5000001750000245000017150000600250008403

The library syntax is GEN fforder (GEN x, GEN o = NULL).

125

3.4.39 fprimroot(z, {&o0}). Return a primitive root of the multiplicative group of the definition
field of the finite field element x (not necessarily the same as the field generated by x). If present, o is
set to a vector [ord, fal, where ord is the order of the group and fa its factorisation factor (ord).
This last parameter is useful in fflog and fforder, see Section 3.4.2.

7 t = ffgen(ffinit(nextprime(1077), 5));
7 g = ffprimroot(t, &o);

7 o[1]

%3 = 100000950003610006859006516052476098
? o[2]

=

[2 1]

[7 2]

[31 1]

[41 1]

[67 1]

[1523 1]
(10498781 1]
[15992881 1]
[46858913131 1]

7 £flog(g~1000000, g, o)
time = 1,312 ms.
%5 = 1000000

The library syntax is GEN ffprimroot(GEN x, GEN *o = NULL).

3.4.40 fibonacci(x). z'" Fibonacci number.

The library syntax is GEN fibo(long x).

3.4.41 ged(z, {y}). Creates the greatest common divisor of z and y. If you also need the u and v
such that x * u + y *v = ged(z, y), use the bezout function. and y can have rather quite general
types, for instance both rational numbers. If y is omitted and «x is a vector, returns the ged of all
components of x, i.e. this is equivalent to content (x).

When z and y are both given and one of them is a vector/matrix type, the GCD is again taken
recursively on each component, but in a different way. If y is a vector, resp. matrix, then the result
has the same type as y, and components equal to gcd(x, y[il), resp. gcd(x, y[,i]). Else if z is
a vector/matrix the result has the same type as « and an analogous definition. Note that for these
types, ged is not commutative.

The algorithm used is a naive Euclid except for the following inputs:
e integers: use modified right-shift binary (“plus-minus” variant).

e univariate polynomials with coefficients in the same number field (in particular rational):
use modular ged algorithm.

e general polynomials: use the subresultant algorithm if coefficient explosion is likely (non
modular coefficients).

126

If u and v are polynomials in the same variable with inexact coefficients, their ged is defined
to be scalar, so that

7 a=x+0.0; gcd(a,a)

%=1

7 b = y*x + 0(y); gcd(b,b)
W2 =y

7 ¢ = 4xx + 0(273); gcd(c,c)
%3 =4

A good quantitative check to decide whether such a ged “should be” non-trivial, is to use polre-
sultant: a value close to 0 means that a small deformation of the inputs has non-trivial gcd. You
may also use gcdext, which does try to compute an approximate ged d and provides u, v to check
whether ux + vy is close to d.

The library syntax is GEN ggcdO(GEN x, GEN y = NULL). Also available are GEN ggcd (GEN
X, GEN y), if y is not NULL, and GEN content (GEN x), if y = NULL.

3.4.42 gcdext(x,y). Returns [u,v,d] such that d is the ged of z,y, z *u +y *x v = ged(z, y), and
w and v minimal in a natural sense. The arguments must be integers or polynomials.

? [u, v, d] = gcdext(32,102)
%1 = [16, -5, 2]

7 d

%2 = 2

7 gcdext(x™2-x, x"2+x-2)

%3 = [-1/2, 1/2, x - 1]

If ,y are polynomials in the same variable and inexact coefficients, then compute u, v, d such
that = * u + y * v = d, where d approximately divides both and x and y; in particular, we do not
obtain gcd(x,y) which is defined to be a scalar in this case:

7 a=x+0.0; gcd(a,a)
%1 =1

7 gcdext(a,a)
%2 = [0, 1, x + 0.E-28]

7 gcdext(x-Pi, 6*x"2-zeta(2))
%3 = [-6%x - 18.8495559, 1, 57.5726923]

For inexact inputs, the output is thus not well defined mathematically, but you obtain explicit
polynomials to check whether the approximation is close enough for your needs.

The library syntax is GEN gcdextO(GEN x, GEN y).
3.4.43 hilbert(z,y, {p}). Hilbert symbol of # and y modulo the prime p, p = 0 meaning the place
at infinity (the result is undefined if p # 0 is not prime).

It is possible to omit p, in which case we take p = 0 if both = and y are rational, or one of them
is a real number. And take p = ¢ if one of x, y is a t_INTMOD modulo ¢ or a g-adic. (Incompatible
types will raise an error.)

The library syntax is long hilbert(GEN x, GEN y, GEN p = NULL).

127

3.4.44 isfundamental(z). True (1) if z is equal to 1 or to the discriminant of a quadratic field,
false (0) otherwise.

The library syntax is long isfundamental (GEN x).

3.4.45 ispolygonal(z, s, {&N}). True (1) if the integer x is an s-gonal number, false (0) if not.
The parameter s > 2 must be a t_INT. If N is given, set it to n if x is the n-th s-gonal number.

7 ispolygonal(36, 3, &N)
=1
7N

The library syntax is long ispolygonal(GEN x, GEN s, GEN *N = NULL).
3.4.46 ispower(z, {k},{&n}). If k is given, returns true (1) if = is a k-th power, false (0) if not.
What it means to be a k-th power depends on the type of x; see issquare for details.

If k£ is omitted, only integers and fractions are allowed for z and the function returns the
maximal k > 2 such that z = n* is a perfect power, or 0 if no such k exist; in particular ispower (-
1), ispower(0), and ispower (1) all return 0.

If a third argument &n is given and x is indeed a k-th power, sets n to a k-th root of z.

For a t_FFELT x, instead of omitting k (which is not allowed for this type), it may be natural to
set

k = (x.p "~ x.f - 1) / fforder(x)

The library syntax is long ispower (GEN x, GEN k = NULL, GEN *n = NULL). Also available
is long gisanypower (GEN x, GEN *pty) (k omitted).

3.4.47 ispowerful(z). True (1) if x is a powerful integer, false (0) if not; an integer is powerful if
and only if its valuation at all primes dividing x is greater than 1.

7 ispowerful(50)

% =0

7 ispowerful(100)

w2 =1

? ispowerful (573*(1071000+1)"2)
w3 =1

The library syntax is long ispowerful (GEN x).

128

3.4.48 isprime(z, {flag = 0}). True (1) if z is a prime number, false (0) otherwise. A prime number
is a positive integer having exactly two distinct divisors among the natural numbers, namely 1 and
itself.

This routine proves or disproves rigorously that a number is prime, which can be very slow
when z is indeed prime and has more than 1000 digits, say. Use ispseudoprime to quickly check
for compositeness. See also factor. It accepts vector/matrices arguments, and is then applied
componentwise.

If flag = 0, use a combination of Baillie-PSW pseudo primality test (see ispseudoprime),
Selfridge “p — 1”7 test if x — 1 is smooth enough, and Adleman-Pomerance-Rumely-Cohen-Lenstra
(APRCL) for general z.

If flag = 1, use Selfridge-Pocklington-Lehmer “p — 1” test and output a primality certificate
as follows: return

e 0 if z is composite,

e 1 if z is small enough that passing Baillie-PSW test guarantees its primality (currently
r < 2% as checked by Jan Feitsma),

e 2 if x is a large prime whose primality could only sensibly be proven (given the algorithms
implemented in PARI) using the APRCL test.

e Otherwise (z is large and z — 1 is smooth) output a three column matrix as a primality
certificate. The first column contains prime divisors p of z — 1 (such that [] plre=l) > g1/3)
the second the corresponding elements a, as in Proposition 8.3.1 in GTM 138 , and the third the
output of isprime(p,1).

The algorithm fails if one of the pseudo-prime factors is not prime, which is exceedingly unlikely
and well worth a bug report. Note that if you monitor isprime at a high enough debug level, you
may see warnings about untested integers being declared primes. This is normal: we ask for partial
factorisations (sufficient to prove primality if the unfactored part is not too large), and factor
warns us that the cofactor hasn’t been tested. It may or may not be tested later, and may or may
not be prime. This does not affect the validity of the whole isprime procedure.

If flag = 2, use APRCL.
The library syntax is GEN gisprime(GEN x, long flag).

3.4.49 isprimepower(z, {&n}). If z = p* is a prime power (p prime, k > 0), return k, else return
0. If a second argument &n is given and zx is indeed the k-th power of a prime p, sets n to p.

The library syntax is long isprimepower (GEN x, GEN *n = NULL).

3.4.50 ispseudoprime(z, {flag}). True (1) if x is a strong pseudo prime (see below), false (0)
otherwise. If this function returns false, z is not prime; if, on the other hand it returns true, it
is only highly likely that z is a prime number. Use isprime (which is of course much slower) to
prove that z is indeed prime. The function accepts vector/matrices arguments, and is then applied
componentwise.

If flag = 0, checks whether = has no small prime divisors (up to 101 included) and is a Baillie-
Pomerance-Selfridge-Wagstaff pseudo prime. Such a pseudo prime passes a Rabin-Miller test for
base 2, followed by a Lucas test for the sequence (P,—1), P smallest positive integer such that
P? — 4 is not a square mod).

129

There are no known composite numbers passing the above test, although it is expected that
infinitely many such numbers exist. In particular, all composites < 24 are correctly detected
(checked using http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html).

If flag > 0, checks whether z is a strong Miller-Rabin pseudo prime for flag randomly chosen
bases (with end-matching to catch square roots of —1).

The library syntax is GEN gispseudoprime(GEN x, long flag).

3.4.51 ispseudoprimepower(z, {&n}). If z = p* is a pseudo-prime power (p pseudo-prime as
per ispseudoprime, k > 0), return k, else return 0. If a second argument &n is given and z is
indeed the k-th power of a prime p, sets n to p.

More precisely, k is always the largest integer such that z = n* for some integer n and, when
n < 264 the function returns k& > 0 if and only if n is indeed prime. When n > 2% is larger
than the threshold, the function may return 1 even though n is composite: it only passed an
ispseudoprime(n) test.

The library syntax is long ispseudoprimepower (GEN x, GEN *n = NULL).

3.4.52 issquare(z, {&n}). True (1) if x is a square, false (0) if not. What “being a square” means
depends on the type of x: all t_COMPLEX are squares, as well as all non-negative t_REAL; for exact
types such as t_INT, t_FRAC and t_INTMOD, squares are numbers of the form s? with s in Z, Q and
Z/NZ respectively.

? issquare(3) \\ as an integer

%l =0

7 issquare(3.) \\ as a real number
w2 =1

7 issquare(Mod(7, 8)) \\ in Z/8Z

%3 =0

7 issquare(5 + 0(1374)) \\ in Q_13

W4 =0

If n is given, a square root of x is put into n.

7 issquare(4, &n)

%1 =1
7n
%2 =2

For polynomials, either we detect that the characteristic is 2 (and check directly odd and
even-power monomials) or we assume that 2 is invertible and check whether squaring the truncated
power series for the square root yields the original input.

For t_POLMOD z, we only support t_POLMODs of t_INTMODs encoding finite fields, assuming
without checking that the intmod modulus p is prime and that the polmod modulus is irreducible
modulo p.

7 issquare(Mod(Mod(2,3), x"2+1), &n)

%1 =1

7n

%2 = Mod(Mod (2, 3)*x, Mod(1, 3)*x~2 + Mod(1, 3))

130

The library syntax is long issquareall(GEN x, GEN *n = NULL). Also available is long is-
square (GEN x). Deprecated GP-specific functions GEN gissquare(GEN x) and GEN gissquare-
all(GEN x, GEN #*pt) return gen O and gen_1 instead of a boolean value.

3.4.53 issquarefree(z). True (1) if x is squarefree, false (0) if not. Here 2 can be an integer or a
polynomial.

The library syntax is long issquarefree(GEN x).

3.4.54 istotient(z, {&N}). True (1) if z = ¢(n) for some integer n, false (0) if not.

7 istotient(14)

%1 =0
? istotient (100)
%2 =0

If N is given, set N = n as well.

? istotient(4, &n)

%1 =1
7?7 n
%2 = 10

The library syntax is long istotient(GEN x, GEN *N = NULL).

3.4.55 kronecker(z,y). Kronecker symbol (z|y), where and y must be of type integer. By
definition, this is the extension of Legendre symbol to Z x Z by total multiplicativity in both
arguments with the following special rules for y = 0, —1 or 2:

e (z]0) =1if |z| =1 and 0 otherwise.
o (z| —1)=1if z > 0 and —1 otherwise.
e (z|2)=0if xiseven and 1 if x = 1,—1mod8 and —1 if z = 3, =3 mod 8.
The library syntax is long kronecker (GEN x, GEN y).
3.4.56 lem(x, {y}). Least common multiple of z and y, i.e. such that lem(x,y) * gcd(z,y) = x x y,

up to units. If y is omitted and x is a vector, returns the lem of all components of z. For integer
arguments, return the non-negative lem.

When z and y are both given and one of them is a vector/matrix type, the LCM is again taken
recursively on each component, but in a different way. If y is a vector, resp. matrix, then the result
has the same type as y, and components equal to lcm(x, y[il), resp. lem(x, y[,i]). Else if z is
a vector/matrix the result has the same type as « and an analogous definition. Note that for these
types, lcm is not commutative.

Note that lem(v) is quite different from
1 =v[1]; for (i =1, #v, 1 = 1lem(1, v[il))

Indeed, 1cm(v) is a scalar, but 1 may not be (if one of the v[i] is a vector/matrix). The computa-
tion uses a divide-conquer tree and should be much more efficient, especially when using the GMP
multiprecision kernel (and more subquadratic algorithms become available):

? v = vector(10°5, i, random);

131

? lem(v);

time = 546 ms.

7?71 =v[1]; for (i =1, #v, 1 = 1lcm(1l, v[il))
time = 4,561 ms.

The library syntax is GEN glcmO(GEN x, GEN y = NULL).
3.4.57 logint(x,b,{&z}). Return the largest integer e so that b < x, where the parameters b > 1
and x > 0 are both integers. If the parameter z is present, set it to b°.

7 logint (1000, 2)

%1 =9

7 279

w2 = 512

? logint (1000, 2, &=z)
%3 =9

7z

%4 = 512

The number of digits used to write b in base z is 1 + logint(x,b):

7 #digits(1000!, 10)

%5 = 2568
? logint(1000!, 10)
%6 = 2567

This function may conveniently replace
floor(log(x) / log(b))
which may not give the correct answer since PARI does not guarantee exact rounding.

The library syntax is long logintO(GEN x, GEN b, GEN *z = NULL).

3.4.58 moebius(z). Moebius p-function of |z|. must be of type integer.

The library syntax is long moebius(GEN x).

3.4.59 nextprime(z). Finds the smallest pseudoprime (see ispseudoprime) greater than or equal
to x. x can be of any real type. Note that if z is a pseudoprime, this function returns z and not
the smallest pseudoprime strictly larger than x. To rigorously prove that the result is prime, use
isprime.

The library syntax is GEN nextprime(GEN x).

3.4.60 numbpart(n). Gives the number of unrestricted partitions of n, usually called p(n) in the
literature; in other words the number of nonnegative integer solutions to a + 2b+ 3¢ + --- = n.
n must be of type integer and n < 10® (with trivial values p(n) = 0 for n < 0 and p(0) = 1).
The algorithm uses the Hardy-Ramanujan-Rademacher formula. To explicitly enumerate them, see
partitions.

The library syntax is GEN numbpart (GEN n).

132

3.4.61 numdiv(z). Number of divisors of |z|. must be of type integer.

The library syntax is GEN numdiv(GEN x).

3.4.62 omega(z). Number of distinct prime divisors of |z|. must be of type integer.

7 factor(392)

o=

[2 3]

[7 2]

7 omega(392)

%2 = 2; \\ without multiplicity

7 bigomega(392)

%3 = 5; \\ = 3+2, with multiplicity

The library syntax is long omega(GEN x).

3.4.63 partitions(k,{a = k},{n = k})). Returns the vector of partitions of the integer k as a
sum of positive integers (parts); for k < 0, it returns the empty set [1, and for k = 0 the trivial
partition (no parts). A partition is given by a t _VECSMALL, where parts are sorted in nondecreasing
order:

7 partitions(3)
%1 = [Vecsmall([3]), Vecsmall([1, 2]), Vecsmall([1, 1, 1]1)]

correspond to 3, 1 + 2 and 1+ 1+ 1. The number of (unrestricted) partitions of k is given by
numbpart:

? #partitions(50)

%1 = 204226
? numbpart (50)
%2 = 204226

Optional parameters n and a are as follows:

e n = nmazx (resp. n = [nmin,nmaz]) restricts partitions to length less than nmaxz (resp.
length between nmin and nmax), where the length is the number of nonzero entries.

e a = amaz (resp. a = [amin, amaz]) restricts the parts to integers less than amaz (resp.
between amin and amaz).

7 partitions(4, 2) \\ parts bounded by 2

%1 = [Vecsmall([2, 2]), Vecsmall([1, 1, 2]), Vecsmall([1, 1, 1, 11)]
? partitions(4,, 2) \\ at most 2 parts

%2 = [Vecsmall([4]), Vecsmall([1, 3]), Vecsmall([2, 2])]

? partitions(4,[0,3], 2) \\ at most 2 parts

%3 = [Vecsmall([4]), Vecsmall([1, 3]), Vecsmall([2, 2])]

By default, parts are positive and we remove zero entries unless amin < 0, in which case nmin is
ignored and X is of constant length nmaz:

7 partitions(4, [0,3]) \\ parts between O and 3
%1 = [Vecsmall([O, O, 1, 3]), Vecsmall([O, O, 2, 21),\
Vecsmall([O0, 1, 1, 2]), Vecsmall([1l, 1, 1, 11)]

The library syntax is GEN partitions(long k, GEN a = NULL, GEN n) = NULL).

133

3.4.64 polrootsff(z, {p}, {a}). Returns the vector of distinct roots of the polynomial z in the
field F, defined by the irreducible polynomial a over F,. The coefficients of z must be operation-
compatible with Z/pZ. Either a or p can omitted (in which case both are ignored) if x has t_FFELT
coefficients:

? polrootsff(x”2 + 1, 5, y"2+3) \\ over F_5[y]l/(y"2+3) ~ F_25
%1 = [Mod(Mod(3, 5), Mod(1l, 5)*y~2 + Mod(3, 5)),
Mod (Mod (2, 5), Mod(1, 5)*y~2 + Mod(3, 5))]
7?7 t = ffgen(y™2 + Mod(3,5), ’t); \\ a generator for F_25 as a t_FFELT
7 polrootsff(x~"2 + 1) \\ not enough information to determine the base field
%ok ok at top-level: polrootsff(x“2+1)
Kk B

%x% polrootsff: incorrect type in factorff.
7 polrootsff(x~2 + t70) \\ make sure one coeff. is a t_FFELT
#3 = [3, 2]
? polrootsff(x”2 + t + 1)
%4 = [2%t + 1, 3xt + 4]

Notice that the second syntax is easier to use and much more readable.

The library syntax is GEN polrootsff(GEN x, GEN p = NULL, GEN a = NULL).
3.4.65 precprime(z). Finds the largest pseudoprime (see ispseudoprime) less than or equal to
x. z can be of any real type. Returns 0 if x < 1. Note that if z is a prime, this function returns z

and not the largest prime strictly smaller than x. To rigorously prove that the result is prime, use
isprime.

The library syntax is GEN precprime(GEN x).

3.4.66 prime(n). The n'" prime number

? prime(1079)
%1 = 22801763489

Uses checkpointing and a naive O(n) algorithm.

The library syntax is GEN prime(long n).

3.4.67 primepi(z). The prime counting function. Returns the number of primes p, p < z.

7 primepi(10)

hl = 4;

7 primes(5)

%2 =[2, 3, 5, 7, 11]
? primepi(10°~11)

%3 = 4118054813

Uses checkpointing and a naive O(x) algorithm.

The library syntax is GEN primepi(GEN x).

134

3.4.68 primes(n). Creates a row vector whose components are the first n prime numbers. (Returns
the empty vector for n < 0.) A t_VEC n = [a,] is also allowed, in which case the primes in [a, b]
are returned

? primes(10) \\ the first 10 primes
%l =[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes([0,29]) \\ the primes up to 29
%2 =[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes([15,30])

%3 = [17, 19, 23, 29]

The library syntax is GEN primesO(GEN n).

3.4.69 gfbclassno(D, {flag = 0}). Ordinary class number of the quadratic order of discriminant
D, for “small” values of D.

e if D > 0 or flag = 1, use a O(|D|'/?) algorithm (compute L(1,xp) with the approximate
functional equation). This is slower than quadclassunit as soon as |D| ~ 10 or so and is not
meant to be used for large D.

e if D < 0 and flag = 0 (or omitted), use a O(|D|'/*) algorithm (Shanks’s baby-step/giant-step
method). It should be faster than quadclassunit for small values of D, say |D| < 10!8.

Important warning. In the latter case, this function only implements part of Shanks’s method
(which allows to speed it up considerably). It gives unconditionnally correct results for |D| < 2-101°,
but may give incorrect results for larger values if the class group has many cyclic factors. We thus
recommend to double-check results using the function quadclassunit, which is about 2 to 3 times
slower in the above range, assuming GRH. We currently have no counter-examples but they should
exist: we’d appreciate a bug report if you find one.

Warning. Contrary to what its name implies, this routine does not compute the number of classes
of binary primitive forms of discriminant D, which is equal to the narrow class number. The two
notions are the same when D < 0 or the fundamental unit £ has negative norm; when D > 0 and
Ne > 0, the number of classes of forms is twice the ordinary class number. This is a problem
which we cannot fix for backward compatibility reasons. Use the following routine if you are only
interested in the number of classes of forms:

QFBclassno(D) =
gfbclassno(D) * if (D < 0 || norm(quadunit(D)) < 0, 1, 2)

Here are a few examples:

7 qfbclassno(400000028)

time = 3,140 ms.

=1

7 quadclassunit(400000028) .no
time = 20 ms. \\ much faster

w2 =1

7 gqfbclassno(-400000028)

time = 0 ms.

%3 = 7253 \\ correct, and fast enough
7 quadclassunit(-400000028) .no
time = 0 ms.

135

%4 = 7253
See also gfbhclassno.

The library syntax is GEN qfbclassno0(GEN D, long flag). The following functions are also
available:

GEN classno(GEN D) (flag = 0)

GEN classno2(GEN D) (flag =1).

Finally

GEN hclassno(GEN D) computes the class number of an imaginary quadratic field by counting

reduced forms, an O(|D|) algorithm.

3.4.70 gfbcompraw(z, y). composition of the binary quadratic forms x and y, without reduction
of the result. This is useful e.g. to compute a generating element of an ideal. The result is undefined
if x and y do not have the same discriminant.

The library syntax is GEN qfbcompraw(GEN x, GEN y).

3.4.71 gfbhclassno(z). Hurwitz class number of x, where x is non-negative and congruent to 0 or
3 modulo 4. For z > 5-10°, we assume the GRH, and use quadclassunit with default parameters.

The library syntax is GEN hclassno(GEN x).

3.4.72 gfbnucomp(z,y, L). composition of the primitive positive definite binary quadratic forms
z and y (type t_QFI) using the NUCOMP and NUDUPL algorithms of Shanks, a la Atkin.
L is any positive constant, but for optimal speed, one should take L = |D/4|'/%, ie. sqrt-
nint (abs(D)>>2,4), where D is the common discriminant of z and y. When z and y do not have
the same discriminant, the result is undefined.

The current implementation is slower than the generic routine for small D, and becomes faster
when D has about 45 bits.

The library syntax is GEN nucomp(GEN x, GEN y, GEN L). Also available is GEN nudupl (GEN
X, GEN L) when z = y.

3.4.73 gfbnupow(z,n,{L}). n-th power of the primitive positive definite binary quadratic
form z using Shanks’s NUCOMP and NUDUPL algorithms; if set, L should be equal to sqrt-
nint (abs(D)>>2,4), where D < 0 is the discriminant of x.

The current implementation is slower than the generic routine for small discriminant D, and
becomes faster for D ~ 245,

The library syntax is GEN nupow(GEN x, GEN n, GEN L = NULL).

3.4.74 gfbpowraw(x,n). n-th power of the binary quadratic form x, computed without doing
any reduction (i.e. using qgfbcompraw). Here n must be non-negative and n < 23

The library syntax is GEN qfbpowraw(GEN x, long n).

136

3.4.75 gfbprimeform(z, p). Prime binary quadratic form of discriminant & whose first coefficient
is p, where |p| is a prime number. By abuse of notation, p = £1 is also valid and returns the unit
form. Returns an error if x is not a quadratic residue mod p, or if z < 0 and p < 0. (Negative
definite t_QFI are not implemented.) In the case where x > 0, the “distance” component of the
form is set equal to zero according to the current precision.

The library syntax is GEN primeform(GEN x, GEN p, long prec).
3.4.76 qfbred(z,{flag = 0},{d}, {isd},{sd}). Reduces the binary quadratic form z (updating
Shanks’s distance function if is indefinite). The binary digits of flag are toggles meaning
1: perform a single reduction step
2: don’t update Shanks’s distance

The arguments d, isd, sd, if present, supply the values of the discriminant, [\/&J, and Vd

respectively (no checking is done of these facts). If d < 0 these values are useless, and all references
to Shanks’s distance are irrelevant.

The library syntax is GEN qfbredO(GEN x, long flag, GEN d = NULL, GEN isd = NULL,
GEN sd = NULL). Also available are

GEN redimag(GEN x) (for definite),

and for indefinite forms:

GEN redreal (GEN x)

GEN rhoreal(GEN x) (= qfbred(x,1)),

GEN redrealnod(GEN x, GEN isd) (= gfbred(x,2,,isd)),

GEN rhorealnod(GEN x, GEN isd) (= qfbred(x,3,,isd)).

3.4.77 gfbredsl2(z, {data}). Reduction of the (real or imaginary) binary quadratic form z, return
[y, g] where y is reduced and g in SL(2,Z) is such that g - ¢ = y; data, if present, must be equal to

[D, sqrtint(D)], where D > 0 is the discriminant of z. In case « is t_QFR, the distance component
is unaffected.

The library syntax is GEN qfbreds12(GEN x, GEN data = NULL).
3.4.78 qfbsolve(Q,p). Solve the equation Q(z,y) = p over the integers, where () is a binary
quadratic form and p a prime number.

Return [z, y] as a two-components vector, or zero if there is no solution. Note that this function
returns only one solution and not all the solutions.

Let D = disc@. The algorithm used runs in probabilistic polynomial time in p (through the
computation of a square root of D modulo p); it is polynomial time in D if @ is imaginary, but
exponential time if @ is real (through the computation of a full cycle of reduced forms). In the
latter case, note that bnfisprincipal provides a solution in heuristic subexponential time in D
assuming the GRH.

The library syntax is GEN qfbsolve(GEN Q, GEN p).

137

3.4.79 quadclassunit(D, {flag = 0}, {tech = []}). Buchmann-McCurley’s sub-exponential algo-
rithm for computing the class group of a quadratic order of discriminant D.

This function should be used instead of qfbclassno or quadregula when D < —10%%, D >
10'°, or when the structure is wanted. It is a special case of bnfinit, which is slower, but more
robust.

The result is a vector v whose components should be accessed using member functions:
e v.no: the class number

e v.cyc: a vector giving the structure of the class group as a product of cyclic groups;
e v.gen: a vector giving generators of those cyclic groups (as binary quadratic forms).

e v.reg: the regulator, computed to an accuracy which is the maximum of an internal accuracy
determined by the program and the current default (note that once the regulator is known to a
small accuracy it is trivial to compute it to very high accuracy, see the tutorial).

The flag is obsolete and should be left alone. In older versions, it supposedly computed the
narrow class group when D > 0, but this did not work at all; use the general function bnfnarrow.

Optional parameter tech is a row vector of the form [c;, ¢2], where ¢; < ¢; are non-negative real
numbers which control the execution time and the stack size, see 3.8.7. The parameter is used as a
threshold to balance the relation finding phase against the final linear algebra. Increasing the default
c1 means that relations are easier to find, but more relations are needed and the linear algebra will
be harder. The default value for ¢; is 0 and means that it is taken equal to ¢5. The parameter c¢s is
mostly obsolete and should not be changed, but we still document it for completeness: we compute
a tentative class group by generators and relations using a factorbase of prime ideals < ¢ (log |D|)?,
then prove that ideals of norm < ¢o(log|D|)? do not generate a larger group. By default an optimal
¢ is chosen, so that the result is provably correct under the GRH — a famous result of Bach states
that ¢o = 6 is fine, but it is possible to improve on this algorithmically. You may provide a smaller
¢o, it will be ignored (we use the provably correct one); you may provide a larger ¢o than the default
value, which results in longer computing times for equally correct outputs (under GRH).

The library syntax is GEN quadclassunitO(GEN D, long flag, GEN tech = NULL, long
prec). If you really need to experiment with the tech parameter, it is usually more convenient to
use GEN Buchquad(GEN D, double cl, double c2, long prec)

3.4.80 quaddisc(z). Discriminant of the étale algebra Q(y/x), where z € Q*. This is the same as
coredisc(d) where d is the integer square-free part of z, so x=df? with f € Q* and d € Z. This
returns 0 for # = 0, 1 for square and the discriminant of the quadratic field Q(/x) otherwise.

7 quaddisc(7)

%l = 28
7 quaddisc(-T7)
w2 = -7

The library syntax is GEN quaddisc(GEN x).

3.4.81 quadgen(D). Creates the quadratic number w = (a ++v/D)/2 where a = 0 if D = 0mod 4,
a=1if D = 1mod4, so that (1,w) is an integral basis for the quadratic order of discriminant D.
D must be an integer congruent to 0 or 1 modulo 4, which is not a square.

The library syntax is GEN quadgen(GEN D).

138

3.4.82 quadhilbert(D). Relative equation defining the Hilbert class field of the quadratic field of
discriminant D.

If D < 0, uses complex multiplication (Schertz’s variant).

If D > 0 Stark units are used and (in rare cases) a vector of extensions may be returned whose
compositum is the requested class field. See bnrstark for details.

The library syntax is GEN quadhilbert(GEN D, long prec).

3.4.83 quadpoly (D, {v =" z}). Creates the “canonical” quadratic polynomial (in the variable v)
corresponding to the discriminant D, i.e. the minimal polynomial of quadgen(D). D must be an
integer congruent to 0 or 1 modulo 4, which is not a square.

The library syntax is GEN quadpolyO(GEN D, long v = -1) where v is a variable number.

3.4.84 quadray(D, f). Relative equation for the ray class field of conductor f for the quadratic
field of discriminant D using analytic methods. A bnf for 2> — D is also accepted in place of D.

For D < 0, uses the o function and Schertz’s method.

For D > 0, uses Stark’s conjecture, and a vector of relative equations may be returned. See
bnrstark for more details.

The library syntax is GEN quadray(GEN D, GEN f, long prec).

3.4.85 quadregulator(z). Regulator of the quadratic field of positive discriminant z. Returns an
error if z is not a discriminant (fundamental or not) or if x is a square. See also quadclassunit if
x is large.

The library syntax is GEN quadregulator (GEN x, long prec).

3.4.86 quadunit(D). Fundamental unit of the real quadratic field Q(v/D) where D is the positive
discriminant of the field. If D is not a fundamental discriminant, this probably gives the funda-
mental unit of the corresponding order. D must be an integer congruent to 0 or 1 modulo 4, which
is not a square; the result is a quadratic number (see Section 3.4.81).

The library syntax is GEN quadunit(GEN D).

3.4.87 ramanujantau(n). Compute the value of Ramanujan’s tau function at an individual n,
assuming the truth of the GRH (to compute quickly class numbers of imaginary quadratic fields
using quadclassunit). Algorithm in O(n'/?) using O(logn) space. If all values up to N are

required, then
> g =q [T -aH*
n>1

will produce them in time O(N), against O(N?/?) for individual calls to ramanujantau; of course
the space complexity then becomes O(N).

7 tauvec(N) = Vec(g*eta(q + 0(q°N))"24);
? N =10"4; v = tauvec(N);

time = 26 ms.

? ramanujantau(N)

%3 = —-482606811957501440000

139

7 w = vector(N, n, ramanujantau(n)); \\ much slower !
time = 13,190 ms.
? v ==

%=1

The library syntax is GEN ramanujantau(GEN n).

3.4.88 randomprime({N = 23'}). Returns a strong pseudo prime (see ispseudoprime) in [2, N —
1]. A t_VEC N = [a,] is also allowed, with a < bin which case a pseudo prime a < p < bis returned;
if no prime exists in the interval, the function will run into an infinite loop. If the upper bound is
less than 254 the pseudo prime returned is a proven prime.

The library syntax is GEN randomprime (GEN N = NULL).

3.4.89 removeprimes({z = []}). Removes the primes listed in z from the prime number table.
In particular removeprimes (addprimes()) empties the extra prime table. x can also be a single
integer. List the current extra primes if z is omitted.

The library syntax is GEN removeprimes(GEN x = NULL).

3.4.90 sigma(z, {k = 1}). Sum of the k*® powers of the positive divisors of |z|. = and k must be
of type integer.

The library syntax is GEN sumdivk (GEN x, long k). Also available is GEN sumdiv(GEN n)
for k = 1.
2

3.4.91 sqrtint(z). Returns the integer square root of z, i.e. the largest integer y such that y* < z,
where z a non-negative integer.

7 N = 120938191237; sqrtint(N)

%1 = 347761

7 sqrt(N)

%2 = 347761.68741970412747602130964414095216

The library syntax is GEN sqrtint (GEN x).
3.4.92 sqrtnint(z,n). Returns the integer n-th root of z, i.e. the largest integer y such that
y"™ < z, where x is a non-negative integer.

? N = 120938191237; sqrtnint(N, 5)

W = 164

7 N~ (1/5)

%2 = 164.63140849829660842958614676939677391

The special case n = 2 is sqrtint

The library syntax is GEN sqrtnint(GEN x, long n).

140

3.4.93 stirling(n, k, {flag = 1}). Stirling number of the first kind s(n,k) (flag = 1, default) or
of the second kind S(n, k) (flag=2), where n, k are non-negative integers. The former is (—1)"~*
times the number of permutations of n symbols with exactly k cycles; the latter is the number
of ways of partitioning a set of n elements into k non-empty subsets. Note that if all s(n, k) are
needed, it is much faster to compute

Zs(n,k‘)xk =z(z—1)...(x —n+1).

k
Similarly, if a large number of S(n, k) are needed for the same k, one should use

.%'k

;S(”’k)‘”": 1—2)...(1—ka)

(Should be implemented using a divide and conquer product.) Here are simple variants for n fixed:

/* list of s(n,k), k = 1..n */
vecstirling(n) = Vec(factorback(vector(n-1,i,1-i*’x)))

/* list of S(n,k), k = 1..n */
vecstirling2(n) =
{my(Q = x"(n-1), t);
vector(n, i, t = divrem(Q, x-i); Q=t[1]; simplify(t[2]1));
}

The library syntax is GEN stirling(long n, long k, long flag). Also available are GEN
stirlingl(ulong n, ulong k) (flag = 1) and GEN stirling2(ulong n, ulong k) (flag = 2).

3.4.94 sumdedekind(h, k). Returns the Dedekind sum attached to the integers h and k, corre-
sponding to a fast implementation of

s(h,k) = sum(n = 1, k-1, (n/k)*(frac(h*n/k) - 1/2))

The library syntax is GEN sumdedekind (GEN h, GEN k).

3.4.95 sumdigits(n, {B = 10}). Sum of digits in the integer n, when written in base B > 1.

? sumdigits(123456789)

%1 = 45
7 sumdigits (123456789, 2)
%1 = 16

Note that the sum of bits in n is also returned by hammingweight. This function is much faster
than vecsum(digits(n,B)) when B is 10 or a power of 2, and only slightly faster in other cases.

The library syntax is GEN sumdigitsO(GEN n, GEN B = NULL). Also available is GEN sumdig-
its(GEN n), for B = 10.

141

3.4.96 zncharinduce(G, chi, N). Let G be attached to (Z/qZ)* (as per G = idealstar(,q)) and
let chi be a Dirichlet character on (Z/qZ)*, given by

e a t_VEC: a standard character on bid.gen,

e a t_INT or a t_COL: a Conrey index in (Z/qZ)* or its Conrey logarithm; see Section 3.4.3 or
?7character.

Let N be a multiple of ¢, return the character modulo N induced by chi. As usual for
arithmetic functions, the new modulus /N can be given as a t_INT, via a factorization matrix or a
pair [N, factor(N)], or by idealstar(,N).

? G = idealstar(,4);

7 chi = znconreylog(G,1); \\ trivial character mod 4

? zncharinduce(G, chi, 80) \\ now mod 80

%3 = [0, 0, 0]~

7 zncharinduce(G, 1, 80) \\ same using directly Conrey label
%4 = [0, 0, 0]~

? G2 = idealstar(,80);

? zncharinduce(G, 1, G2) \\ same

%4 = [0, 0, 0]~

? chi = zncharinduce(G, 3, G2) \\ induce the non-trivial character mod 4
%5 = [1, 0, 0]~

7 znconreyconductor (G2, chi, &chiO)

%6 = [4, Mat([2, 2]1)]

? chiO

W= [1]~

Here is a larger example:

? G = idealstar(,126000) ;

7 label = 1009;

? chi = znconreylog(G, label)

%3 = [0, 0, O, 14, 0]~

? NO = znconreyconductor (G, label, &chiO)
%4 = [125, Mat([5, 3])]

? chiO \\ primitive character mod 573 attached to chi
%5 = [14]~

? GO = idealstar(,NO);

? zncharinduce(GO, chiO, G) \\ induce back
%7 = [0, O, 0, 14, 0]~

7 znconreyexp(G, %)

%8 = 1009

The library syntax is GEN zncharinduce(GEN G, GEN chi, GEN N).

142

3.4.97 zncharisodd(G, chi). Let G be attached to (Z/NZ)* (as per G = idealstar(,N)) and let
chi be a Dirichlet character on (Z/NZ)*, given by

e a t_VEC: a standard character on bid.gen,

e a t_INT or a t_COL: a Conrey index in (Z/qZ)* or its Conrey logarithm; see Section 3.4.3 or
?7character.

Return 1 if and only if chi(—1) = —1 and 0 otherwise.

? G = idealstar(,8);
? zncharisodd(G, 1) \\ trivial character

%2 =0

? zncharisodd (G, 3)
%3 =1

? chareval(G, 3, -1)
%4 = 1/2

The library syntax is long zncharisodd(GEN G, GEN chi).
3.4.98 znchartokronecker(G, chi, {flag = 0}). Let G be attached to (Z/NZ)* (as per G =
idealstar(,N)) and let chi be a Dirichlet character on (Z/NZ)*, given by

e a t_VEC: a standard character on bid.gen,

e a t_INT or a t_COL: a Conrey index in (Z/qZ)* or its Conrey logarithm; see Section 3.4.3 or
?7character.

If flag = 0, return the discriminant D if chi is real equal to the Kronecker symbol (D/.) and
0 otherwise. The discriminant D is fundamental if and only if chi is primitive.

If flag = 1, return the fundamental discriminant attached to the corresponding primitive
character.

? G = idealstar(,8); CHARS = [1,3,5,7]; \\ Conrey labels
? apply(t->znchartokronecker(G,t), CHARS)

%2 = [4, -8, 8, -4]

? apply(t->znchartokronecker(G,t,1), CHARS)

%3 = [1, -8, 8, -4]

The library syntax is GEN znchartokronecker(GEN G, GEN chi, long flag).
3.4.99 znconreychar(bid, m). Given a bid attached to (Z/qZ)* (as per bid = idealstar(,q)),

this function returns the Dirichlet character attached to m € (Z/qZ)* via Conrey’s logarithm,
which establishes a “canonical” bijection between (Z/qZ)* and its dual.

Let g = Hp p°r be the factorization of ¢ into distinct primes. For all odd p with e, > 0, let g,
be the element in (Z/¢Z)* which is

e congruent to 1 mod ¢/p°»,
e congruent mod p°» to the smallest integer whose order is ¢(p°?).

For p = 2, we let g4 (if 2°2 > 4) and gg (if furthermore (2°2 > 8) be the elements in (Z/q¢Z)*
which are

e congruent to 1 mod ¢/2°2,

143

e g4 = —1mod 2%,
® gg = dmod 2°2.

Then the g, (and the extra g4 and gs if 2°> > 2) are independent generators of (Z/qZ)*, i.e.
every m in (Z/qZ)* can be written uniquely as Hp gp ¥, where m,, is defined modulo the order o,
of g, and p € S, the set of prime divisors of ¢ together with 4 if 4 | ¢ and 8 if 8 | ¢. Note that
the g, are in general not SNF generators as produced by znstar or idealstar whenever w(q) > 2,
although their number is the same. They however allow to handle the finite abelian group (Z/qZ)*
in a fast and elegant way. (Which unfortunately does not generalize to ray class groups or Hecke
characters.)

The Conrey logarithm of m is the vector (my),es,, obtained via znconreylog. The Conrey
character x,(m,-) attached to m mod ¢ maps each g,, p € S, to e(m,/0,), where e(z) = exp(2inz).
This function returns the Conrey character expressed in the standard PARI way in terms of the
SNF generators bid.gen.

Note. It is useless to include the generators in the bid, except for debugging purposes: they are
well defined from elementary matrix operations and Chinese remaindering, their explicit value as
elements in (Z/gZ)* is never used.

7 G = idealstar(,8,2); /*add generators for debugging:*/

? G.cyc

%2 = [2, 21 \\ Z/2 x Z/2

? G.gen

w3 = [7, 3]

7 znconreychar(G,1) \\ 1 is always the trivial character
w4 = [0, O]

?

? znconreychar(G,2) \\ 2 is not coprime to 8 !!!
*ok % at top-level: znconreychar(G,2)
*okok N
¥ znconreychar: elements not coprime in Zideallog:
2
8
x% Break loop: type ’break’ to go back to GP prompt
break>

? znconreychar(G,3)

%5 = [0, 1]

? znconreychar(G,5)

w6 = [1, 1]

? znconreychar(G,7)

w7 = [1, 0]

We indeed get all 4 characters of (Z/8Z)*.
For convenience, we allow to input the Conrey logarithm of m instead of m:

7 G = idealstar(,55);
? znconreychar(G,7)

w2 = [7, 0]
? znconreychar(G, znconreylog(G,7))
#3 = [7, 0]

The library syntax is GEN znconreychar (GEN bid, GEN m).

144

3.4.100 znconreyconductor(bid, chi,{&chi0}). Let bid be attached to (Z/¢Z)* (as per bid =
idealstar(,q)) and chi be a Dirichlet character on (Z/qZ)*, given by

e a t_VEC: a standard character on bid.gen,

e a t_INT or a t_COL: a Conrey index in (Z/qZ)* or its Conrey logarithm; see Section 3.4.3 or
7?7?character.

Return the conductor of chi, as the t_INT bid.mod if chi is primitive, and as a pair [N, faN]
(with faN the factorization of N) otherwise.

If chiO is present, set it to the Conrey logarithm of the attached primitive character.

? G = idealstar(,126000);

? znconreyconductor(G,11) \\ primitive
%2 = 126000
? znconreyconductor (G, 1) \\ trivial character, not primitive!

%3 = [1, matrix(0,2)]

? NO = znconreyconductor(G,1009, &chi0) \\ character mod 573
%4 = [125, Mat([5, 31)]

? chiO

%5 = [14]~

? GO = idealstar(,NO); \\ format [N,factor(N)] accepted
7 znconreyexp(GO, chiO)

% =9

7 znconreyconductor (GO, chiO) \\ now primitive, as expected
%8 = 125

The group GO is not computed as part of znconreyconductor because it needs to be computed
only once per conductor, not once per character.

The library syntax is GEN znconreyconductor (GEN bid, GEN chi, GEN *chiO = NULL)

3.4.101 znconreyexp(bid, chi). Given a bid attached to (Z/qZ)* (as per bid = idealstar(,q)),
this function returns the Conrey exponential of the character chi: it returns the integer m €
(Z/qZ)* such that znconreylog(bid, m) is chi.

The character chi is given either as a
e t_VEC: in terms of the generators bid . gen;
e t_COL: a Conrey logarithm.

? G = idealstar(,126000)

7 znconreylog(G,1)

%2 = [0, 0, O, O, O]~

7 znconreyexp(G,%)

%3 =1

? G.cyc \\ SNF generators

%4 = [300, 12, 2, 2, 2]

? chi = [100, 1, 0, 1, O]; \\ some random character on SNF generators
? znconreylog(G, chi) \\ in terms of Conrey generators

%6 = [0, 3, 3, 0, 2]~

145

7 znconreyexp(G, %) \\ apply to a Conrey log

%7 = 182561
7 znconreyexp(G, chi) \\ ... or a char on SNF generators
%8 = 182561

? znconreychar(G,%)
%9 = [100, 1, 0, 1, 0]

The library syntax is GEN znconreyexp(GEN bid, GEN chi).

3.4.102 znconreylog(bid, m). Given a bid attached to (Z/gZ)* (as per bid = idealstar(,q)),
this function returns the Conrey logarithm of m € (Z/qZ)*.

Let ¢ = prep be the factorization of ¢ into distinct primes, where we assume e; = 0 or
ea > 2. (If e = 1, we can ignore 2 from the factorization, as if we replaced ¢ by ¢/2, since

(2/q2)" ~(2/(q/2)Z)".)
For all odd p with e, > 0, let g, be the element in (Z/¢Z)* which is
e congruent to 1 mod ¢/p°,

e congruent mod p°? to the smallest integer whose order is ¢(p®?) for p odd,

For p = 2, we let g4 (if 2°2 > 4) and gg (if furthermore (2°2 > 8) be the elements in (Z/qZ)*
which are

e congruent to 1 mod ¢/2°2,
e g4 = —1mod 2,
® g3 = dmod 2°2,

Then the g, (and the extra g, and gs if 2°2 > 2) are independent generators of Z/qZ*, i.e.
every m in (Z/qZ)* can be written uniquely as]_[p gp'", where m,, is defined modulo the order o,
of g, and p € S, the set of prime divisors of ¢ together with 4 if 4 | ¢ and 8 if 8 | ¢. Note that
the g, are in general not SNF generators as produced by znstar or idealstar whenever w(q) > 2,
although their number is the same. They however allow to handle the finite abelian group (Z/qZ)*
in a fast and elegant way. (Which unfortunately does not generalize to ray class groups or Hecke
characters.)

The Conrey logarithm of m is the vector (my)pes,. The inverse function znconreyexp recovers
the Conrey label m from a character.

7 G = idealstar(,126000);

? znconreylog(G,1)

%2 = [0, 0, 0, O, O]~

? znconreyexp(G, %)

%3 =1

7 znconreylog(G,2) \\ 2 is not coprime to modulus !!!
*** at top-level: znconreylog(G,2)
* %k %k S———————————————
% znconreylog: elements not coprime in Zideallog:

2
126000
*%x% Break loop: type ’break’ to go back to GP prompt
break>

146

7 znconreylog(G,11) \\ wrt. Conrey generators

% = [0, 3, 1, 76, 4]~

? logll = ideallog(,11,G) \\ wrt. SNF generators
%5 = [178, 3, -75, 1, O]~

For convenience, we allow to input the ordinary discrete log of m, ideallog(,m, bid), which
allows to convert discrete logs from bid.gen generators to Conrey generators.

7 znconreylog(G, logll)
%7 = [0, 3, 1, 76, 4]~

We also allow a character (t_VEC) on bid.gen and return its representation on the Conrey gener-
ators.

? G.cyc

%8 = [300, 12, 2, 2, 2]

? chi = [10,1,0,1,1];

7 znconreylog(G, chi)

%10 = [1, 3, 3, 10, 2]~

7 n = znconreyexp(G, chi)
%11 = 84149

? znconreychar (G, n)

%12 = [10, 1, 0, 1, 1]

The library syntax is GEN znconreylog(GEN bid, GEN m).

3.4.103 zncoppersmith(P, N, X, {B = N}). N being an integer and P € Z[X], finds all integers
z with |z| < X such that

ged(N, P(z)) > B,

using Coppersmith’s algorithm (a famous application of the LLL algorithm). X must be smaller
than exp(log® B/(deg(P)log N)): for B = N, this means X < N1/ d(P) Some z larger than X
may be returned if you are very lucky. The smaller B (or the larger X), the slower the routine will
be. The strength of Coppersmith method is the ability to find roots modulo a general composite
N: if N is a prime or a prime power, polrootsmod or polrootspadic will be much faster.

We shall now present two simple applications. The first one is finding non-trivial factors of IV,
given some partial information on the factors; in that case B must obviously be smaller than the
largest non-trivial divisor of N.

setrand(1); \\ to make the example reproducible

interval = [10730, 10731];

p = randomprime(interval);

q = randomprime(interval); N = px*q;

pO = p % 10720; \\ assume we know 1) p > 10729, 2) the last 19 digits of p
L = zncoppersmith(10719*x + p0O, N, 10712, 10729)

\\ result in 10ms.

%6 = [738281386540]

? gcd(L[1] * 10719 + p0, N) ==p
%7 =1

and we recovered p, faster than by trying all possibilities < 10'2.

147

The second application is an attack on RSA with low exponent, when the message x is short
and the padding P is known to the attacker. We use the same RSA modulus N as in the first
example:

setrand(1);

P = random(N); \\ known padding

e = 3; \\ small public encryption exponent
X = floor(N"0.3); \\ N"(1/e - epsilon)

x0 = random(X); \\ unknown short message

C = 1lift((Mod(xO,N) + P)"e); \\ known ciphertext, with padding P
zncoppersmith((P + x)°3 - C, N, X)

\\ result in 244ms.
%14 = [2679982004001230401]

7 hl1] == x0
%16 =1

We guessed an integer of the order of 10'®, almost instantly.

The library syntax is GEN zncoppersmith(GEN P, GEN N, GEN X, GEN B = NULL).

3.4.104 znlog(z, g, {o}). This functions allows two distinct modes of operation depending on g:

e if g is the output of znstar (with initialization), we compute the discrete logarithm of z
with respect to the generators contained in the structure. See ideallog for details.

e else g is an explicit element in (Z/NZ)*, we compute the discrete logarithm of z in (Z/NZ)*
in base g. The rest of this entry describes the latter possibility.

The result is [| when z is not a power of g, though the function may also enter an infinite loop
in this case.

If present, o represents the multiplicative order of g, see Section 3.4.2; the preferred format
for this parameter is [ord, factor(ord)], where ord is the order of g. This provides a definite
speedup when the discrete log problem is simple:

7 p = nextprime(1074); g = znprimroot(p); o = [p-1, factor(p-1)1;
7 for(i=1,10"4, znlog(i, g, o))

time = 205 ms.

? for(i=1,10"4, znlog(i, g))

time = 244 ms. \\ a little slower

The result is undefined if g is not invertible mod N or if the supplied order is incorrect.
This function uses
e a combination of generic discrete log algorithms (see below).

e in (Z/NZ)* when N is prime: a linear sieve index calculus method, suitable for N < 1059,
say, is used for large prime divisors of the order.

The generic discrete log algorithms are:

e Pohlig-Hellman algorithm, to reduce to groups of prime order ¢, where ¢|p — 1 and p is an
odd prime divisor of NV,
232

e Shanks baby-step/giant-step (¢ < is small),

148

e Pollard rho method (g > 23?).

The latter two algorithms require O(,/q) operations in the group on average, hence will not
be able to treat cases where ¢ > 103°, say. In addition, Pollard rho is not able to handle the case
where there are no solutions: it will enter an infinite loop.

? g = znprimroot(101)

%1 = Mod(2,101)

? znlog(5, g)

h2 = 24

7 g 24

%3 = Mod(5, 101)

? G = znprimroot(2 * 101710)

%4 = Mod(110462212541120451003, 220924425082240902002)
? znlog(5, G)

%5 = 76210072736547066624

?G% =25

%6 =1

? N = 274x372%573%x774x11; g = Mod (13, N); znlog(g”llO, g)
W7 = 110

7 znlog(6, Mod(2,3)) \\ no solution

%8 = [

For convenience, g is also allowed to be a p-adic number:

7?7 g = 3+0(5710); znlog(2, g)
%1 = 1015243

?7 g%

%2 = 2 + 0(5°10)

The library syntax is GEN znlogO(GEN x, GEN g, GEN o = NULL). The function GEN zn-
log(GEN x, GEN g, GEN o) is also available

3.4.105 znorder(z,{o}). = must be an integer mod n, and the result is the order of z in the
multiplicative group (Z/nZ)*. Returns an error if x is not invertible. The parameter o, if present,
represents a non-zero multiple of the order of z, see Section 3.4.2; the preferred format for this
parameter is [ord, factor(ord)], where ord = eulerphi(n) is the cardinality of the group.

The library syntax is GEN znorder (GEN x, GEN o = NULL). Also available is GEN order (GEN
x).

3.4.106 znprimroot(n). Returns a primitive root (generator) of (Z/nZ)*, whenever this latter
group is cyclic (n = 4 or n = 2p* or n = p*, where p is an odd prime and k£ > 0). If the group is
not cyclic, the result is undefined. If n is a prime power, then the smallest positive primitive root
is returned. This may not be true for n = 2p*, p odd.

Note that this function requires factoring p — 1 for p as above, in order to determine the exact
order of elements in (Z/nZ)*: this is likely to be costly if p is large.

The library syntax is GEN znprimroot (GEN n).

149

3.4.107 znstar(n,{flag = 0}). Gives the structure of the multiplicative group (Z/nZ)*. The
output G depends on the value of flag:

e flag = 0 (default), an abelian group structure [h, d, g], where h = ¢(n) is the order (G.no), d
(G.cyc) is a k-component row-vector d of integers d; such that d; > 1, d; | d;—1 for i > 2 and

k

(z/nz)* = [[(2/d:2),

=1

and g (G.gen) is a k-component row vector giving generators of the image of the cyclic groups
Z/d;Z.

o flag = 1 the result is a bid structure without generators (which are well defined but not
explicitly computed, which saves time); this allows computing discrite logarithms using znlog (also
in the non-cyclic case!).

e flag = 2 same as flag = 1 with generators.

7 G = znstar(40)

%1 = [16, [4, 2, 2], [Mod(17, 40), Mod(21, 40), Mod(11, 40)1]
7 G.no \\ eulerphi(40)

W2 = 16

7 G.cyc \\ cycle structure

w3 = [4, 2, 2]

? G.gen \\ generators for the cyclic components

#4 = [Mod(17, 40), Mod(21, 40), Mod(11, 40)]

7 apply(znorder, G.gen)

W = [4, 2, 2]

According to the above definitions, znstar(0) is [2, [2], [-11], corresponding to Z*.

The library syntax is GEN znstarO(GEN n, long flag). Instead the above hardcoded nu-
merical flags, one should rather use GEN ZNstar(GEN N, long flag), where flag is an or-ed
combination of nf _GEN (include generators) and nf _INIT (return a full bid, not a group), possibly
0. This offers one more combination: no gen and no init.

3.5 Elliptic curves.

3.5.1 Elliptic curve structures. An elliptic curve is given by a Weierstrass model
y* + a1zy + azy = 2 + asx® + a4z + ae,

whose discriminant is non-zero. Affine points on E are represented as two-component vectors [x,y];
the point at infinity, i.e. the identity element of the group law, is represented by the one-component,
vector [0].

Given a vector of coefficients [ay, as, as, as, agl, the function ellinit initializes and returns an
ell structure. (An additional optional argument allows to specify the base field in case it cannot be
inferred from the curve coefficients.) This structure contains data needed by elliptic curve related
functions, and is generally passed as a first argument. Expensive data are skipped on initialization:
they will be dynamically computed when (and if) needed, and then inserted in the structure. The
precise layout of the ell structure is left undefined and should never be used directly. The following
member functions are available, depending on the underlying domain.

150

3.5.1.1 All domains.
e al, a2, a3, a4, a6: coefficients of the elliptic curve.

e b2, b4, b6, b8: b-invariants of the curve; in characteristic # 2, for Y = 2y 4+ a;z + a3, the
curve equation becomes
Y2 =422 + bya? + 2byz + bg =: g9(x).

e c4, c6: c-invariants of the curve; in characteristic # 2,3, for X = z + b3/12 and ¥V =
2y 4+ a1x + a3, the curve equation becomes

Y =4X% — (cs/12)X — (c5/216).

e disc: discriminant of the curve. This is only required to be non-zero, not necessarily a unit.
e j: j-invariant of the curve.
These are used as follows:

? E = e11init([0,0,0, a4,a6]);
7 E.b4

%2 = 2xa4d

? E.disc

%3 = -64%a4"~3 - 432%a6"2

3.5.1.2 Curves over R.

This in particular includes curves defined over Q. All member functions in this section return
data, as it is currently stored in the structure, if present; and otherwise compute it to the default
accuracy, that was fixed at the time of ellinit (via a t_REAL D domain argument, or realprecision
by default). The function ellperiods allows to recompute (and cache) the following data to current
realprecision.

e area: volume of the complex lattice defining E.

e roots is a vector whose three components contain the complex roots of the right hand side
g(z) of the attached b-model Y? = g(z). If the roots are all real, they are ordered by decreasing
value. If only one is real, it is the first component.

e omega: [wp,ws], periods forming a basis of the complex lattice defining E. The first
component w; is the (positive) real period, in other words the integral of the Néron differential
dx/(2y + a1z + a3) over the connected component of the identity component of E(R). The second
component w» is a complex period, such that 7 = Z—; belongs to Poincaré’s half-plane (positive
imaginary part); not necessarily to the standard fundamental domain. It is normalized so that
Fwe) < 0 and either R(wy) = 0, when E.disc > 0 (E(R) has two connected components), or
R(wa) =w1/2

e cta is a row vector containing the quasi-periods 1, and 72 such that n; = 2¢(w;/2), where
¢ is the Weierstrass zeta function attached to the period lattice; see ellzeta. In particular, the
Legendre relation holds: now; — niwe = 2mi.

151

Warning. As for the orientation of the basis of the period lattice, beware that many sources use
the inverse convention where w, /w; has positive imaginary part and our ws is the negative of theirs.
Our convention 7 = wy /wy ensures that the action of PSLs is the natural one:

[a,b;c,d] -7 = (ar +b)/(cT + d) = (aw1 + bws) [(cwy + dws),

instead of a twisted one. (Our tau is —1/7 in the above inverse convention.)
3.5.1.3 Curves over Q,.

We advise to input a model defined over Q for such curves. In any case, if you input an
approximate model with t_PADIC coefficients, it will be replaced by a lift to Q (an exact model
“close” to the one that was input) and all quantities will then be computed in terms of this lifted
model.

For the time being only curves with multiplicative reduction (split or non-split), i.e. Up (j) <0,
are supported by non-trivial functions. In this case the curve is analytically isomorphic to Qj/ g% =
E,(Q,), for some p-adic integer q (the Tate period). In particular, we have j(q) = j(E).

¢ p is the residual characteristic

e roots is a vector with a single component, equal to the p-adic root e; of the right hand side
g(z) of the attached b-model Y? = g(x). The point (e1,0) corresponds to —1 € Q};/¢”* under the
Tate parametrization.

e tate returns [u?,u,q,[a,b], L, Ei] in the notation of Henniart-Mestre (CRAS t. 308, p. 391
395, 1989): ¢ is as above, u € Qp(v/—c¢g) is such that ¢*dz/(2y + a1z + a3) = udt/t, where
¢ : E;, — E is an isomorphism (well defined up to sign) and dt/¢ is the canonical invariant
differential on the Tate curve; u? € Q, does not depend on ¢. (Technicality: if u & Q,, it is
stored as a quadratic t_POLMOD.) The parameters [a,b] satisfy 4u®b - agm(y/a/b,1)> = 1 as in
Theorem 2 (loc. cit.). Ei describes the sequence of 2-isogenous curves (with kernel generated by
[0,0]) E; : y* = x(x + A;)(z + A; — B;) converging quadratically towards the singular curve E..
Finally, L is Mazur-Tate-Teitelbaum’s L-invariant, equal to log, ¢/v,(q)-

3.5.1.4 Curves over F,.

e p is the characteristic of F,.

e no is #E(F,).

e cyc gives the cycle structure of E(F,).

e gen returns the generators of E(F,).

e group returns [no, cyc,gen|, i.e. E(F,) as an abelian group structure.
3.5.1.5 Curves over Q.

All functions should return a correct result, whether the model is minimal or not, but it is a
good idea to stick to minimal models whenever ged(cy, ¢g) is easy to factor (minor speed-up). The
construction

E = ellminimalmodel (EQ, &v)

replaces the original model Ey by a minimal model E, and the variable change v allows to go
between the two models:

ellchangepoint (PO, v)

152

ellchangepointinv(P, v)

respectively map the point Fy on Ejy to its image on E, and the point P on E to its pre-image on
Fy.

A few routines — namely ellgenerators, ellidentify, ellsearch, forell — require the
optional package elldata (John Cremona’s database) to be installed. In that case, the function
ellinit will allow alternative inputs, e.g. e11init("11a1"). Functions using this package need to
load chunks of a large database in memory and require at least 2MB stack to avoid stack overflows.

e gen returns the generators of E(Q), if known (from John Cremona’s database)
3.5.1.6 Curves over number fields.
e nf return the nf structure attached to the number field over which E is defined.

e bnf return the bnf structure attached to the number field over which E is defined or raise
an error (if only an nf is available).

3.5.2 ellL1(e, {r = 0}). Returns the value at s = 1 of the derivative of order r of the L-function
of the elliptic curve e.

? e = ellinit("11al"); \\ order of vanishing is 0

7 ellLi(e)

%2 = 0.2538418608559106843377589233

7 e = ellinit("389al"); \\ order of vanishing is 2
? ellLi(e)

%4 = -5.384067311837218089235032414 E-29

? elllLi(e, 1)

%5 =0

? elllL1(e, 2)

%6 = 1.518633000576853540460385214

The main use of this function, after computing at low accuracy the order of vanishing using el-
lanalyticrank, is to compute the leading term at high accuracy to check (or use) the Birch and
Swinnerton-Dyer conjecture:

7 \p18
realprecision = 18 significant digits
7 e = ellinit("5077al"); ellanalyticrank(e)
time = 8 ms.
%1 = [3, 10.3910994007158041]
7 \p200
realprecision = 202 significant digits (200 digits displayed)
7 ellli(e, 3)
time = 104 ms.
%3 = 10.3910994007158041387518505103609170697263563756570092797|. .]

The library syntax is GEN ellL1_bitprec(GEN e, long r, long bitprec).

3.5.3 elladd(E, z1, 22). Sum of the points z1 and 22 on the elliptic curve corresponding to E.
The library syntax is GEN elladd(GEN E, GEN zl, GEN z2).

153

3.5.4 ellak(E,n). Computes the coefficient a,, of the L-function of the elliptic curve E/Q, i.e. coef-
ficients of a newform of weight 2 by the modularity theorem (Taniyama-Shimura-Weil conjecture).
FE must be an ell structure over Q as output by ellinit. E must be given by an integral model,
not necessarily minimal, although a minimal model will make the function faster.

? E = ellinit([0,1]);

7 ellak(E, 10)

%2 =0

? e = ellinit([574,576]1); \\ not minimal at 5
? ellak(e, 5) \\ wasteful but works

%3 = -3

? E = ellminimalmodel(e); \\ now minimal

? ellak(E, 5)

%5 = -3

If the model is not minimal at a number of bad primes, then the function will be slower on those
n divisible by the bad primes. The speed should be comparable for other n:

? for(i=1,10"6, ellak(E,5))

time = 820 ms.

7 for(i=1,10"6, ellak(e,5)) \\ 5 is bad, markedly slower
time = 1,249 ms.

? for(i=1,10"5,ellak(E,5%i))

time = 977 ms.

7 for(i=1,10"5,ellak(e,5*1i)) \\ still slower but not so much on average
time = 1,008 ms.

The library syntax is GEN akell(GEN E, GEN n).

3.5.5 ellan(F,n). Computes the vector of the first n Fourier coefficients aj, corresponding to the
elliptic curve E defined over a number field. If E is defined over Q, the curve may be given by an
arbitrary model, not necessarily minimal, although a minimal model will make the function faster.
Over a more general number field, the model must be locally minimal at all primes above 2 and 3.

The library syntax is GEN ellan(GEN E, long n). Also available is GEN ellanQ_zv(GEN e,
long n), which returns a t_VECSMALL instead of a t_VEC, saving on memory.

3.5.6 ellanalyticrank(e, {eps}). Returns the order of vanishing at s = 1 of the L-function of the
elliptic curve e and the value of the first non-zero derivative. To determine this order, it is assumed
that any value less than eps is zero. If no value of eps is given, a value of half the current precision
is used.

7 e = ellinit("11a1"); \\ rank O

7 ellanalyticrank(e)

%2 = [0, 0.2538418608559106843377589233]
? e = ellinit("37al1"); \\ rank 1

7 ellanalyticrank(e)

%4 = [1, 0.3059997738340523018204836835]
7 e = ellinit("389a1"); \\ rank 2

? ellanalyticrank(e)

%6 = [2, 1.518633000576853540460385214]
7 e = ellinit ("5077a1"); \\ rank 3

154

7 ellanalyticrank(e)
%8 = [3, 10.39109940071580413875185035]

The library syntax is GEN ellanalyticrank_bitprec(GEN e, GEN eps = NULL, long bit-
prec).

3.5.7 ellap(E, {p}). Let E be an ell structure as output by ellinit, defined over a number field
or a finite field F,. The argument p is best left omitted if the curve is defined over a finite field,
and must be a prime number or a maximal ideal otherwise. This function computes the trace of
Frobenius ¢ for the elliptic curve E, defined by the equation #E(F;) = ¢+ 1—t (for primes of good
reduction).

When the characteristic of the finite field is large, the availability of the seadata package will
speed the computation.

If the curve is defined over Q, p must be explicitly given and the function computes the trace
of the reduction over F,. The trace of Frobenius is also the a, coefficient in the curve L-series
L(E,s) =), ayn~*, whence the function name. The equation must be integral at p but need not
be minimal at p; of course, a minimal model will be more efficient.

7 E = ellinit([0,1]1); \\ y°2 = x"3 + 0.x + 1, defined over Q
7 ellap(E, 7) \\ 7 necessary here

%2 = -4 \\ #E(F_7) = 7+1-(-4) = 12

? ellcard(E, 7)

%3 = 12 \\ 0K

? E = ellinit([0,1], 11); \\ defined over F_11
? ellap(E) \\ no need to repeat 11

% =0

7 ellap(E, 11) \\ ... but it also works

%5 =0

7 ellgroup(E, 13) \\ ouch, inconsistent input!
*** at top-level: ellap(E,13)
*ok ok N
% ellap: inconsistent moduli in Rg_to_Fp:
11
13

? Fq = ffgen(ffinit(11,3), ’a); \\ defines F_q := F_{11°3}

7 E = ellinit([a+l,al, Fq); \\ y°2 = x"3 + (a+1)x + a, defined over F_q
7 ellap(E)

%8 = -3

If the curve is defined over a more general number field than Q, the maximal ideal p must
be explicitly given in idealprimedec format. If p is above 2 or 3, the function currently assumes
(without checking) that the given model is locally minimal at p. There is no restriction at other
primes.

? K = nfinit(a"2+1); E = ellinit([1+a,0,1,0,0], K);
? fa = idealfactor(X, E.disc)

%2 =

[[5, [-2, 11~, 1, 1, [2, -1; 1, 211 1]

(i3, 5, t1~, 1, 1, [-5, -1; 1, =511 2]

155

7 ellap(E, fa[1,1])

%3 = -1 \\ non-split multiplicative reduction

7 ellap(E, fal[2,1])

%4 =1 \\ split multiplicative reduction

7 P17 = idealprimedec(X,17)[1];

? ellap(E, P17)

%6 = 6 \\ good reduction

7 E2 = ellchangecurve(E, [17,0,0,0]);

? ellap(E2, P17)

%8 = 6 \\ same, starting from a non-miminal model

? P3 = idealprimedec(K,3)[1];

7 E3 = ellchangecurve(E, [3,0,0,0]);

7 ellap(E, P3) \\ OK: E is minimal at P3

1= -2

7 ellap(E3, P3) \\ junk: E3 is not minimal at P3 | 3
%12 =0

Algorithms used. If E/F, has CM by a principal imaginary quadratic order we use a fast
explicit formula (involving essentially Kronecker symbols and Cornacchia’s algorithm), in O(log q)*.
Otherwise, we use Shanks-Mestre’s baby-step/giant-step method, which runs in time O(q'/*) using
O(q'/*) storage, hence becomes unreasonable when ¢ has about 30 digits. Above this range, the
SEA algorithm becomes available, heuristically in O(log q)*, and primes of the order of 200 digits
become feasible. In small characteristic we use Mestre’s (p=2), Kohel’s (p=3,5,7,13), Satoh-Harley
(all in O(p*n?)) or Kedlaya’s (in O(pn?®)) algorithms.

The library syntax is GEN ellap(GEN E, GEN p = NULL).

3.5.8 ellbil(E, 21, 22). Deprecated alias for ellheight(E,P,Q).
The library syntax is GEN bilhell(GEN E, GEN z1, GEN z2, long prec).

3.5.9 ellcard(E, {p}). Let E be an ell structure as output by ellinit, defined over Q or a finite
field F,. The argument p is best left omitted if the curve is defined over a finite field, and must
be a prime number otherwise. This function computes the order of the group E(F,) (as would be
computed by ellgroup).

When the characteristic of the finite field is large, the availability of the seadata package will
speed the computation.

If the curve is defined over Q, p must be explicitly given and the function computes the
cardinality of the reduction over F,; the equation need not be minimal at p, but a minimal model
will be more efficient. The reduction is allowed to be singular, and we return the order of the group
of non-singular points in this case.

The library syntax is GEN ellcard(GEN E, GEN p = NULL). Also available is GEN ell-
card(GEN E, GEN p) where p is not NULL.

3.5.10 ellchangecurve(E,v). Changes the data for the elliptic curve E by changing the coordi-
nates using the vector v=[u,r,s,t], i.e. if 2’ and y' are the new coordinates, then z = u?z’ +r,
y = u?y' + su?z’ +t. E must be an ell structure as output by ellinit. The special case v = 1 is
also used instead of [1,0,0,0] to denote the trivial coordinate change.

The library syntax is GEN ellchangecurve(GEN E, GEN v).

156

3.5.11 ellchangepoint(z,v). Changes the coordinates of the point or vector of points x using the
vector v=[u,r,s,t],i.e. if 2’ and 3’ are the new coordinates, then z = w2z’ +r, y = u3y' 4+ sux’ +1
(see also ellchangecurve).

? EO = ellinit([1,1]1); PO = [0,1]; v = [1,2,3,4];

7 E = ellchangecurve(EQ, v);
? P = ellchangepoint(P0,v)
%3 = [-2, 3]

? ellisoncurve(E, P)

W =1

7 ellchangepointinv(P,v)

%5 = [0, 1]

The library syntax is GEN ellchangepoint(GEN x, GEN v). The reciprocal function GEN
ellchangepointinv(GEN x, GEN ch) inverts the coordinate change.

3.5.12 ellchangepointinv(z,v). Changes the coordinates of the point or vector of points x using
the inverse of the isomorphism attached to v=[u,r,s,t], i.e. if ' and 3’ are the old coordinates,
then & = v?x’ + 7, y = vy’ + suz’ +t (inverse of ellchangepoint).

? E0 = ellinit([1,1]); PO = [0,1]; v = [1,2,3,4];

? E = ellchangecurve(E0, v);

7 P = ellchangepoint(PO,v)

%3 = [-2, 3]
? ellisoncurve(E, P)
%4 =1

7 ellchangepointinv(P,v)
%5 = [0, 11 \\ we get back PO

The library syntax is GEN ellchangepointinv(GEN x, GEN v).
3.5.13 ellconvertname(name). Converts an elliptic curve name, as found in the elldata

database, from a string to a triplet [conductor, isogeny class, indez]. It will also convert a triplet
back to a curve name. Examples:

? ellconvertname('"123b1")
%1 = [123, 1, 1]

? ellconvertname (%)

%2 = "123b1"

The library syntax is GEN ellconvertname (GEN name).

3.5.14 elldivpol(E,n,{v =" z}). n-division polynomial f,, for the curve E in the variable v. In
standard notation, for any affine point P = (X,Y’) on the curve, we have

[n]P = (n(P)1n(P) : wn(P) : 95 (P)?)
for some polynomials ¢,,,wy, ¥y in Za1,as,as, a4, a6][X,Y]. We have f,(X) = ¢, (X) for n odd,
and frn(X) = (X, Y)(2Y + a1 X + a3) for n even. We have

fi=1, fo=4X34bX> 4+ 204X +bg, f3=3X"+0X>43b,X>+3bsX + b8,
f4 = fz(QXG + b2X5 + 5b4X4 + 10b6X3 + 10b8X2 + (bzbg - b4be)X + (b8b4 — b%)), ..
For n > 2, the roots of f, are the X-coordinates of points in E[n].

The library syntax is GEN el11divpol(GEN E, long n, long v = -1) where v is a variable
number.

157

3.5.15 elleisnum(w, k, {flag = 0}). k being an even positive integer, computes the numerical value
of the Eisenstein series of weight k at the lattice w, as given by ellperiods, namely

(2imfwn)* (14 2/ = k) > 0" g™/ (1 = g)),

n>1

where ¢ = exp(2in7) and 7 := w; /ws belongs to the complex upper half-plane. It is also possible
to directly input w = [wy,ws], or an elliptic curve E as given by ellinit.

7?7 w = ellperiods([1,I]);

? elleisnum(w, 4)

%2 = 2268.8726415508062275167367584190557607
? elleisnum(w, 6)

%3 = -3.977978632282564763 E-33

? E = ellinit([1, 0]);

? elleisnum(E, 4, 1)

%5 = -47.999999999999999999999999999999999998

When flag is non-zero and k = 4 or 6, returns the elliptic invariants g, or gs, such that
y® = 41® — gow — g3

is a Weierstrass equation for FE.

The library syntax is GEN elleisnum(GEN w, long k, long flag, long prec).

3.5.16 elleta(w). Returns the quasi-periods [n;,72] attached to the lattice basis w = [wq,ws].
Alternatively, w can be an elliptic curve E as output by ellinit, in which case, the quasi periods
attached to the period lattice basis E.omega (namely, E.eta) are returned.

? elleta([1, I1)
%1 = [3.141592653589793238462643383, 9.424777960769379715387930149*1I]

The library syntax is GEN elleta(GEN w, long prec).

3.5.17 ellformaldifferential(E, {n = seriesprecision}, {t =' z}). Let w :=dz/(2y + a1z + a3) be
the invariant differential form attached to the model E of some elliptic curve (ellinit form), and
n := x(t)w. Return n terms (seriesprecision by default) of f(¢), g(t) two power series in the
formal parameter ¢t = —x/y such that w = f(t)dt, n = g(t)dt:

f@) =1+ait+(af+a)t?>+..., glt)=t*+...

7 E = ellinit([-1,1/4]1); [f,g] = ellformaldifferential(E,7,’t);
7 £
%2 =1 - 2%xt™4 + 3/4xt"6 + 0(£"7)
”g
%3 = t°-2 - t72 + 1/2%t"4 + 0(t"5)
The library syntax is GEN ellformaldifferential(GEN E, long precdl, long n = -1)
where n is a variable number.

158

3.5.18 ellformalexp(E,{n = seriesprecision},{z =" z}). The elliptic formal exponential Exp
attached to E is the isomorphism from the formal additive law to the formal group of E. It is
normalized so as to be the inverse of the elliptic logarithm (see ellformallog): Expo L = Id.
Return n terms of this power series:

? E=ellinit([-1,1/4]); Exp = ellformalexp(E,10,’z)
%1l =z + 2/6*%z"5 - 3/28%z"7 + 2/15%xz"9 + 0(z"11)

7 L = ellformallog(E,10,’t);

7 subst(Exp,z,L)

%3 =t + 0(t"11)

The library syntax is GEN ellformalexp(GEN E, long precdl, long n = -1) wherenis a
variable number.

3.5.19 ellformallog(E, {n = seriesprecision},{v =' x}). The formal elliptic logarithm is a series
L in tK[[t]] such that dL = w = dx/(2y + a1 + a3), the canonical invariant differential attached
to the model E. It gives an isomorphism from the formal group of E to the additive formal group.

? E = ellinit([-1,1/4]); L = ellformallog(E, 9, ’t)
%1 =t - 2/5%t"5 + 3/28%t"7 + 2/3%t"9 + 0(t~10)

7 [f,g] = ellformaldifferential(E,8,’t);

? L - f

%3 = 0(t"8)

The library syntax is GEN ellformallog(GEN E, long precdl, long n = -1) wherenis a
variable number.

3.5.20 ellformalpoint(E, {n = seriesprecision},{v =" z}). If E is an elliptic curve, return the
coordinates z(t), y(t) in the formal group of the elliptic curve E in the formal parameter ¢t = —x/y
at oo:

-2

r=t —alt_l—a2—a3t+...

y=—t2—at7 2 —axt t—az+...

Return n terms (seriesprecision by default) of these two power series, whose coefficients are in
Z[ala az,0a3,04, a/ﬁ]-

? E = el1init([0,0,1,-1,0]); [x,y] = ellformalpoint(E,8,°t);
7 x

W2 =t"-2 -t +t72 - t74 + 2xt"5 + 0(+76)

7y

3 =-t"-3+1-t+t"3 - 2%t"4 + 0(t"5)

7 E = ellinit([0,1/2]); ellformalpoint(E,7)

%4 = [x°-2 - 1/2%x”4 + 0(x"5), -x"-3 + 1/2*x"3 + 0(x"4)]

The library syntax is GEN ellformalpoint(GEN E, long precdl, long n = -1) where n is
a variable number.

159

3.5.21 ellformalw(E, {n = seriesprecision},{t =" x}). Return the formal power series w attached
to the elliptic curve F, in the variable ¢:

w(t) = £ + art* + (as +) + - + O™,

which is the formal expansion of —1/y in the formal parameter ¢ := —z/y at oo (take n =
seriesprecision if n is omitted). The coefficients of w belong to Z[ay, as, as, a4, ag).

? E=ellinit([3,2,-4,-2,5]); ellformalw(E, 5, ’t)
%1 = t73 + 3*%t"4 + 11%t°5 + 35%t”6 + 101*t~7 + 0(t"8)

The library syntax is GEN ellformalw(GEN E, long precdl, long n = -1) where n is a
variable number.

3.5.22 ellfromeqn(P). Given a genus 1 plane curve, defined by the affine equation f(z,y) = 0,
return the coefficients [a1, a2, a3, a4, a6] of a Weierstrass equation for its Jacobian. This allows to
recover a Weierstrass model for an elliptic curve given by a general plane cubic or by a binary
quartic or biquadratic model. The function implements the f — f* formulae of Artin, Tate and
Villegas (Advances in Math. 198 (2005), pp. 366-382).

In the example below, the function is used to convert between twisted Edwards coordinates
and Weierstrass coordinates.

7 e = ellfromeqn(a*x”~2+y"2 - (1+d*x"2xy~2))

%1 = [0, -a - d, 0, -4*d*xa, 4*d*a"2 + 4*xd"2*a]

7 E = ellinit(ellfromeqn(y~2-x"2 - 1 +(121665/121666*x"2*y~2)) ,27255-19);
? isprime(ellcard(E) / 8)

w3 =1

The elliptic curve attached to the sum of two cubes is given by

7 ellfromeqn(x~3+y~3 - a)
%1 = [0, 0, -9%a, 0, -27*a"2]

Congruent number problem:. Let n be an integer, if a®> + b2 = ¢ and ab = 2n, then by
substituting b by 2n/a in the first equation, we get ((a* + (2n/a)?) — ¢?)a® = 0. We set z = q,
Yy = ac.

7 En = ellfromeqn((x"2 + (2*n/x)"2 - (y/x)"2)*x"2)
%1 = [0, 0, 0, -16%n"2, 0]

For example 23 is congruent since the curve has a point of infinite order, namely:

7 ellheegner(ellinit(subst(En, n, 23)))
%2 = [168100/289, 68053440/4913]

The library syntax is GEN ellfromeqn(GEN P).

3.5.23 ellfromj(j). Returns the coefficients [a1,az,as3,a4,a6] of a fixed elliptic curve with j-
invariant j.

The library syntax is GEN ellfromj(GEN j).

160

3.5.24 ellgenerators(£). If £ is an elliptic curve over the rationals, return a Z-basis of the free
part of the Mordell-Weil group attached to E. This relies on the elldata database being installed
and referencing the curve, and so is only available for curves over Z of small conductors. If E is
an elliptic curve over a finite field F, as output by ellinit, return a minimal set of generators for
the group E(F,).

The library syntax is GEN ellgenerators(GEN E).

3.5.25 ellglobalred(F). Let E be an ell structure as output by ellinit attached to an elliptic
curve defined over a number field. This function calculates the arithmetic conductor and the global
Tamagawa number c¢. The result [NV, v, ¢, F, L] is slightly different if E is defined over Q (domain
D = 1 in ellinit) or over a number field (domain D is a number field structure, including
nfinit(x) representing Q !):

e N is the arithmetic conductor of the curve,

e v is an obsolete field, left in place for backward compatibility. If E is defined over Q, v gives
the coordinate change for E to the standard minimal integral model (ellminimalmodel provides
it in a cheaper way); if F is defined over another number field, v gives a coordinate change to an
integral model (ellintegral model provides it in a cheaper way).

e c is the product of the local Tamagawa numbers cp,, a quantity which enters in the Birch and
Swinnerton-Dyer conjecture,

e I is the factorization of IV,

e [is a vector, whose i-th entry contains the local data at the i-th prime ideal divisor of IV,
i.e. L[1] = elllocalred(E,F[i,1]). If F is defined over Q, the local coordinate change has been
deleted and replaced by a 0; if £ is defined over another number field the local coordinate change
to a local minimal model is given relative to the integral model afforded by v (so either start from
an integral model so that v be trivial, or apply v first).

The library syntax is GEN ellglobalred(GEN E).

3.5.26 ellgroup(E, {p},{flag}). Let E be an ell structure as output by ellinit, defined over
Q or a finite field F;. The argument p is best left omitted if the curve is defined over a finite

field, and must be a prime number otherwise. This function computes the structure of the group
E(Fq) ~ Z/d1Z X Z/ng, with d2 | dl.

If the curve is defined over Q, p must be explicitly given and the function computes the
structure of the reduction over F,; the equation need not be minimal at p, but a minimal model
will be more efficient. The reduction is allowed to be singular, and we return the structure of the
(cyclic) group of non-singular points in this case.

If the flag is 0 (default), return [di] or [dy,d2], if do > 1. If the flag is 1, return a triple
[h, cyc, gen], where h is the curve cardinality, cyc gives the group structure as a product of cyclic
groups (as per flag = 0). More precisely, if do > 1, the output is [d1ds, [d1,ds2], [P, Q]] where P is
of order d; and [P, Q)] generates the curve.

161

Caution. It is not guaranteed that ¢} has order ds, which in the worst case requires an expensive
discrete log computation. Only that ellweilpairing(E, P, Q, d1) has order ds.

7 E = ellinit([0,1]); \\ y72 = x"3 + 0.x + 1, defined over Q
? ellgroup(E, 7)

%2 = [6, 21 \\ Z/6 x Z/2, non-cyclic

? E = ellinit([0,1] * Mod(1,11)); \\ defined over F_11

? ellgroup(E) \\ no need to repeat 11

W = [12]
7 ellgroup(E, 11) \\ ... but it also works
w5 = [12]

7 ellgroup(E, 13) \\ ouch, inconsistent input!
*** at top-level: ellgroup(E,13)
sokok B e
*%x% ellgroup: inconsistent moduli in Rg_to_Fp:
11
13
7 ellgroup(E, 7, 1)
%6 = [12, [6, 2], [[Mod(2, 7), Mod(4, 7)1, [Mod(4, 7), Mod(4, 7)11]

If E is defined over Q, we allow singular reduction and in this case we return the structure of the
group of non-singular points, satisfying #E,s(F,) = p — a,.

7 E = ellinit([0,5]);

7 ellgroup(E, 5, 1)

%2 = [6, [6], [[Mod(4, 5), Mod(2, 5)]1]

? ellap(E, 5)

%3 = 0 \\ additive reduction at 5

? E = ellinit([0,-1,0,35,0]);

7 ellgroup(E, 5, 1)

%5 = [4, [4], [[Mod(2, 5), Mod(2, 5)]11]

? ellap(E, 5)

%6 = 1 \\ split multiplicative reduction at 5
7 ellgroup(E, 7, 1)

w7 = [8, [8], [[Mod(3, 7), Mod(5, 7)]11]

? ellap(E, 7)

%8 = -1 \\ non-split multiplicative reduction at 7

The library syntax is GEN ellgroupO(GEN E, GEN p = NULL, long flag). Also available is
GEN ellgroup(GEN E, GEN p), corresponding to flag= 0.

3.5.27 ellheegner(E). Let E be an elliptic curve over the rationals, assumed to be of (analytic)
rank 1. This returns a non-torsion rational point on the curve, whose canonical height is equal to
the product of the elliptic regulator by the analytic Sha.

This uses the Heegner point method, described in Cohen GTM 239; the complexity is propor-
tional to the product of the square root of the conductor and the height of the point (thus, it is
preferable to apply it to strong Weil curves).

? E = ellinit([-157"2,0]);
7 u = ellheegner(E); print(ul[l], "\n", u[2])
69648970982596494254458225/166136231668185267540804

162

538962435089604615078004307258785218335/67716816556077455999228495435742408

? ellheegner(ellinit([0,1])) \\ E has rank O !
*okok at top-level: ellheegner(E=ellinit
kK -

x*x*x ellheegner: The curve has even analytic rank.
The library syntax is GEN ellheegner (GEN E).
3.5.28 ellheight(F, P, {@}). Global Néron-Tate height h(P) of the point P on the elliptic curve
E/Q, using the normalization in Cremona’s Algorithms for modular elliptic curves. E must be an

ell as output by ellinit; it needs not be given by a minimal model although the computation
will be faster if it is.

If the argument @ is present, computes the value of the bilinear form (h(P+Q)—h(P—Q))/4.
The library syntax is GEN ellheightO(GEN E, GEN P, GEN Q = NULL, long prec). Also
available is GEN ellheight(GEN E, GEN P, long prec) () omitted).

3.5.29 ellheightmatrix(E, x). x being a vector of points, this function outputs the Gram matrix of
x with respect to the Néron-Tate height, in other words, the (i,) component of the matrix is equal
to el1bil (&£ ,x[4],x[j]1). The rank of this matrix, at least in some approximate sense, gives the
rank of the set of points, and if x is a basis of the Mordell-Weil group of E, its determinant is equal
to the regulator of E. Note our height normalization follows Cremona’s Algorithms for modular
elliptic curves: this matrix should be divided by 2 to be in accordance with, e.g., Silverman’s
normalizations.

The library syntax is GEN ellheightmatrix(GEN E, GEN x, long prec).

3.5.30 ellidentify(E). Look up the elliptic curve E, defined by an arbitrary model over Q, in
the elldata database. Return [[N, M, G], C] where NN is the curve name in Cremona’s elliptic
curve database, M is the minimal model, GG is a Z-basis of the free part of the Mordell-Weil group
E(Q) and C is the change of coordinates change, suitable for ellchangecurve.

The library syntax is GEN ellidentify (GEN E).

3.5.31 ellinit(z, {D = 1}). Initialize an ell structure, attached to the elliptic curve E. E is either

e a 5-component vector [a1, a9, as, as,ag] defining the elliptic curve with Weierstrass equation

Y2+ XY 4+ a3Y = X2+ @ X? + ay X + ag,

e a 2-component vector [a4,ag] defining the elliptic curve with short Weierstrass equation

Y2 = X3 +as X + ag,

e a character string in Cremona’s notation, e.g. "11al", in which case the curve is retrieved
from the elldata database if available.

The optional argument D describes the domain over which the curve is defined:
e the t_INT 1 (default): the field of rational numbers Q.

e a t_INT p, where p is a prime number: the prime finite field F,,.

163

e an t_INTMOD Mod(a, p), where p is a prime number: the prime finite field F,,.
e a t_FFELT, as returned by ffgen: the corresponding finite field F,.

e a t_PADIC, O(p™): the field Q,, where p-adic quantities will be computed to a relative
accuracy of n digits. We advise to input a model defined over Q for such curves. In any case, if
you input an approximate model with t_PADIC coefficients, it will be replaced by a lift to Q (an
exact model “close” to the one that was input) and all quantities will then be computed in terms
of this lifted model, at the given accuracy.

e a t_REAL z: the field C of complex numbers, where floating point quantities are by default
computed to a relative accuracy of precision(x). If no such argument is given, the value of
realprecision at the time ellinit is called will be used.

e a number field K, given by a nf or bnf structure; a bnf is required for ellminimalmodel.

e a prime ideal p, given by a prid structure; valid if = is a curve defined over a number field
K and the equation is integral and minimal at p.

This argument D is indicative: the curve coeflicients are checked for compatibility, possibly
changing D; for instance if D = 1 and an t_INTMOD is found. If inconsistencies are detected, an
error is raised:

? ellinit([1 + 0(5), 1], 0(7));
*ok ok at top-level: ellinit([1+0(5),1]1,0
KoKk g

¥x ellinit: inconsistent moduli in ellinit: 7 != 5

If the curve coefficients are too general to fit any of the above domain categories, only basic
operations, such as point addition, will be supported later.

If the curve (seen over the domain D) is singular, fail and return an empty vector [|.

? E = e11init([0,0,0,0,11); \\ y°2 = x"3 + 1, over Q

? E = ellinit([0,1]); \\ the same curve, short form

? E = ellinit("36a1"); \\ sill the same curve, Cremona’s notations
7?7 E = ellinit([0,1], 2) \\ over F2: singular curve

% =[]

? E = ellinit([’a4,’a6] * Mod(1,5)); \\ over F_5[a4,a6], basic support !

The result of el1init is an ell structure. It contains at least the following information in its
components:
a17a27a37a47a67b27b47b67b87647667A7j'

All are accessible via member functions. In particular, the discriminant is F.disc, and the j-
invariant is E. j.

? E = ellinit([a4, a6]);

7 E.disc

%2 = -64%a4d~3 - 432*a6"2

? E.j

%3 = -6912*a4~3/(-4*a4"~3 - 27*a6"2)

Further components contain domain-specific data, which are in general dynamic: only com-
puted when needed, and then cached in the structure.

164

7 E = ellinit([2,3], 10760+7); \\ E over F_p, p large
7 ellap(E)

time = 4,440 ms.

%2 = -1376268269510579884904540406082

? ellcard(E); \\ now instantaneous !

time = 0 ms.

7 ellgenerators(E);

time = 5,965 ms.

7 ellgenerators(E); \\ second time instantaneous

time = 0 ms.

See the description of member functions related to elliptic curves at the beginning of this
section.

The library syntax is GEN ellinit(GEN x, GEN D = NULL, long prec).

3.5.32 ellintegralmodel(E, {&v}). Let E be an ell structure over a number field K. This
function returns an integral model. If v is present, sets v = [u, 0,0, 0] to the corresponding change
of variable: the return value is identical to that of ellchangecurve(E, v).

The library syntax is GEN ellintegralmodel(GEN E, GEN *v = NULL).
3.5.33 ellisdivisible(£, P,n,{&Q})). Given E/K a number field and P in E(K) return 1 if

P = [n]R for some R in E(K) and set) to one such R; and return 0 otherwise. The integer n > 0
may be given as ellxn(E,n), if many points need to be tested.

? K = nfinit(polcyclo(11,t));

? E = ellinit([0,-1,1,0,0], K);
? P = [0,0];

? ellorder(E,P)

%4 =5

? ellisdivisible(E,P,5, &Q)

% =1

7 1ift(Q)

%6 = [-t°7-t"6-t"5-t"4+1, -t"9-2%t"8-2%t"7-3*%t"6-3*%t"5-2%t"4-2%t"3-t"2-1]
? ellorder(E, Q)
%7 = 25

The algebraic complexity of the underlying algorithm is in O(n*), so it is advisable to first factor
n, then use a chain of checks attached to the prime divisors of n: the function will do it itself unless
n is given in ellxn form.

The library syntax is long ellisdivisible(GEN E, GEN P, GEN n, GEN *Q) = NULL)

165

3.5.34 ellisogeny(E, G, {only_image = 0}, {z =" z},{y =" y}). Given an elliptic curve E, a finite
subgroup G of E is given either as a generating point P (for a cyclic G) or as a polynomial whose
roots vanish on the z-coordinates of the non-zero elements of G (general case and more efficient if
available). This function returns the [a1, a2, a3, a4, ag] invariants of the quotient elliptic curve E/G
and (if only_image is zero (the default)) a vector of rational functions [f, g, h] such that the isogeny
E - E/G is given by (z,y) - (f(2)/h(x)?, g(a,4)/h(2)*).

? E = ellinit([0,1]);

? elltors(E)

%2 = [6, [6], [[2, 3]1]1]

? ellisogeny(E, [2,3], 1) \\ Welerstrass model for E/<P>

%3 = [0, 0, 0, —-135, -594]

7 ellisogeny(E, [-1,0]1)

%4 = [[0,0,0,-15,22], [x7"3+2*%x"2+4xx+3, y*x"3+3*y*x"2-2xy, x+1]]

The library syntax is GEN ellisogeny(GEN E, GEN G, long only_image, long x = -1,
long y = -1) where x, y are variable numbers.

3.5.35 ellisogenyapply(f,g). Given an isogeny of elliptic curves f : E' — E (being the result of
a call to ellisogeny), apply f to g:

e if g is a point P in the domain of f, return the image f(P);
e if g: B — E' is a compatible isogeny, return the composite isogeny fog: E" — E.

7 one = ffgen(101, ’t)~0;

? E = ellinit([6, 53, 85, 32, 34] * one);
? P = [84, 71] * one;

? ellorder(E, P)

% =5

? [F, f] = ellisogeny(E, P); \\ f: E->F
7 ellisogenyapply(f, P)

%6 = [0]

? F = ellinit(F);

? Q = [89, 44] * one;

? ellorder(F, Q)

%9 =2

? [G, gl = ellisogeny(F, Q); \\ g: F->G = F/<Q>
7 gof = ellisogenyapply(g, £); \\ gof: E -> G

E/<P>

The library syntax is GEN ellisogenyapply(GEN f, GEN g).

3.5.36 ellisomat(E, {fi = 0}). Given an elliptic curve £ defined over QQ, compute representatives
of the isomorphism classes of elliptic curves Q-isogenous to E. The function returns a vector [L, M|
where L is a list of triples [E;, fi, g;], where E; is an elliptic curve in [ay4, ag] form, f; : E — E; is a
rational isogeny, g; : E; — E is the dual isogeny of f;, and M is the matrix such that M; ; is the
degree of the isogeny between E; and E;. Furthermore the first curve £ is isomorphic to E by f;.
If the flag fl =1, the f; and g¢; are not computed, which saves time, and L is the list of the curves
E;.

? E = ellinit("14a1");
? [L,M] = ellisomat(E);

166

7 LE = apply(x->x[1], L) \\ list of curves
%3 = [[215/48,-5291/864]1,[-675/16,6831/32],[-8185/48,-742643/864] ,

[-1705/48,-57707/864] , [-13635/16,306207/32] , [-131065/48,-47449331/864]]
7 L[21[2] \\ isogeny f_2
%4 = [x73+3/4*x"2+19/2%x-311/12,

1/2%x "4+ (y+1) *x" 3+ (y-4) *x" 2+ (-9*y+23) *x+ (55*y+55/2) ,x+1/3]

? L[2][3] \\ dual isogeny g_2
%5 = [1/9%x73-1/4*x"2-141/16%x+5613/64,

~1/18%x~4+(1/2T*y-1/3) ¥x"3+(-1/12%y+87/16) ¥x "2+ (49/16%y-48) *x

+(-3601/64%y+16947/512) ,x-3/4]
? apply(E->ellidentify(ellinit(E))[1]1[1], LE)
%6 = ["14a1","14a4","14a3","14a2","14a6","14a5"]

7 M

4T =

[1 3 32 6 6]
3 1 96 2 18]
3 9 1618 2]
2 6 61 3 3]
6 2183 1 9]
[6 18 23 9 1]

The library syntax is GEN ellisomat (GEN E, long £f1).

3.5.37 ellisoncurve(F, z). Gives 1 (i.e. true) if the point z is on the elliptic curve £, 0 otherwise.
If E or z have imprecise coeflicients, an attempt is made to take this into account, i.e. an imprecise
equality is checked, not a precise one. It is allowed for z to be a vector of points in which case a
vector (of the same type) is returned.

The library syntax is GEN ellisoncurve(GEN E, GEN z). Also available is int oncurve (GEN
E, GEN z) which does not accept vectors of points.

3.5.38 ellissupersingular(E, {p}). Return 1 if the elliptic curve E defined over a number field or
a finite field is supersingular at p, and 0 otherwise. If the curve is defined over a number field, p
must be explicitly given, and must be a prime number, resp. a maximal ideal, if the curve is defined
over Q, resp. a general number field: we return 1 if and only if F has supersingular good reduction
at p.

Alternatively, E can be given by its j-invariant in a finite field. In this case p must be omitted.

7 g = ffprimroot(ffgen(775))

%1 = x"3 + 2%x"2 + 3%x + 1

7?7 gn | n<-[1..75-1], ellissupersingular(g™n)]

%2 = [6]

7?7 K = nfinit(y~3-2); P = idealprimedec(K, 2)[1];

7 E = ellinit([y,1], K);

? ellissupersingular(E, P)

%=1

The library syntax is GEN ellissupersingular(GEN E, GEN p = NULL). Also available is int
elljissupersingular(GEN j) where j is a j-invariant of a curve over a finite field.

167

3.5.39 ellj(z). Elliptic j-invariant. must be a complex number with positive imaginary part, or
convertible into a power series or a p-adic number with positive valuation.

The library syntax is GEN jell(GEN x, long prec).

3.5.40 elllocalred(F, p). Calculates the Kodaira type of the local fiber of the elliptic curve E at
p. E must be an ell structure as output by ellinit, over Q (p a rational prime) or a number
field K (p a maximal ideal given by a prid structure), and is assumed to have all its coefficients
a; integral. The result is a 4-component vector [f, kod,v,c|. Here f is the exponent of p in the
arithmetic conductor of F, and kod is the Kodaira type which is coded as follows:

1 means good reduction (type Iy), 2, 3 and 4 mean types II, III and IV respectively, 4 4+ v with
v > 0 means type I,,; finally the opposite values —1, —2, etc. refer to the starred types If;, IT*, etc.
The third component v is itself a vector [u,r,s,t] giving the coordinate changes done during the
local reduction; u = 1 if and only if the given equation was already minimal at p. Finally, the last
component c is the local Tamagawa number c,.

The library syntax is GEN elllocalred(GEN E, GEN p).

3.5.41 elllog(E, P,G, {o}). Given two points P and G on the elliptic curve E/F,, returns the
discrete logarithm of P in base G, i.e. the smallest non-negative integer n such that P = [n]G.
See znlog for the limitations of the underlying discrete log algorithms. If present, o represents the
order of (G, see Section 3.4.2; the preferred format for this parameter is [N, factor(N)], where N
is the order of G.

If no o is given, assume that G generates the curve. The function also assumes that P is a
multiple of G.

ffgen(£ffinit(2,8),%a);

= ellinit([a,1,0,0,1]1); \\ over F_{2°8}

a"3; y = ellordinate(E,x) [1];

[x,y]; G = ellmul(E, P, 113);

ord = [242, factor(242)]; \\ P generates a group of order 242. Initialize.
? ellorder(E, G, ord)

%4 = 242

T XM M oE
|

NN N N N

7 e = elllog(E, P, G, ord)
%5 = 15

? ellmul (E,G,e) == P

%6 =1

The library syntax is GEN elllog(GEN E, GEN P, GEN G, GEN o = NULL).

3.5.42 elllseries(E, s, {A = 1}). This function is deprecated, use 1fun(E,s) instead.

E being an elliptic curve, given by an arbitrary model over Q as output by ellinit, this
function computes the value of the L-series of F at the (complex) point s. This function uses an
O(N'/?) algorithm, where N is the conductor.

The optional parameter A fixes a cutoff point for the integral and is best left omitted; the result
must be independent of A, up to realprecision, so this allows to check the function’s accuracy.

The library syntax is GEN elllseries(GEN E, GEN s, GEN A = NULL, long prec).

168

3.5.43 ellminimalmodel(E, {&v}). Let E be an ell structure over a number field K. This
function determines whether E admits a global minimal integral model. If so, it returns it and
sets v = [u, T, 5,t] to the corresponding change of variable: the return value is identical to that of
ellchangecurve(E, v).

Else return the (non-principal) Weierstrass class of F, i.e. the class of Hp<va—5P)/12 where
A = E.disc is the model’s discriminant and pg is the local minimal discriminant. This function
requires either that E be defined over the rational field Q (with domain D = 1 in ellinit), in
which case a global minimal model always exists, or over a number field given by a bnf structure.
The Weierstrass class is given in bnfisprincipal format, i.e. in terms of the K.gen generators.

The resulting model has integral coefficients and is everywhere minimal, the coefficients a; and
as are reduced modulo 2 (in terms of the fixed integral basis K.zk) and as is reduced modulo 3.
Over Q, we further require that a; and as be 0 or 1, that as be 0 or +1 and that v > 0 in the
change of variable: both the model and the change of variable v are then unique.

7 e = ellinit([6,6,12,55,233]1); \\ over Q
? E = ellminimalmodel (e, &v);

7 E[1..5]

%3 = [0, 0, O, 1, 1]

7 v

W = [2, -5, -3, 9]

? K = bnfinit(a”2-65); \\ over a non-principal number field
7 K.cyc
%2 = [2]

7 u = Mod(8+a, K.pol);
? E = ellinit([1,40%u+1,0,25%u"2,0], K);
? ellminimalmodel(E) \\ no global minimal model exists over Z_K

w6 = [11~
The library syntax is GEN ellminimalmodel (GEN E, GEN *v = NULL).
3.5.44 ellminimaltwist(E, {flag = 0}). Let E be an elliptic curve defined over Q, return a

discriminant D such that the twist of £ by D is minimal among all possible quadratic twists, i.e.
if flag = 0, its minimal model has minimal discriminant, or if flag = 1, it has minimal conductor.

In the example below, we find a curve with j-invariant 3 and minimal conductor.

7 E=ellminimalmodel(ellinit(ellfromj(3)));
? ellglobalred(E) [1]

%2 = 357075
? D = ellminimaltwist(E, 1)
%3 = -15

? E2=ellminimalmodel(ellinit(elltwist(E,D)));
7 ellglobalred(E2) [1]
%5 = 14283

The library syntax is GEN ellminimaltwistO(GEN E, long flag). Also available are GEN
ellminimaltwist (E) for flag = 0, and GEN ellminimaltwistcond(E) for flag = 1.

169

3.5.45 ellmoddegree(e). e being an elliptic curve defined over Q output by ellinit, compute
the modular degree of e divided by the square of the Manin constant. Return [D, err], where D is
a rational number and err is exponent of the truncation error.

The library syntax is GEN ellmoddegree(GEN e, long bitprec).

3.5.46 ellmodulareqn(N, {z},{y}). Given a prime N < 500, return a vector [P, t] where P(z,y)
is a modular equation of level NV, i.e. a bivariate polynomial with integer coefficients; ¢ indicates
the type of this equation: either canonical (t = 0) or Atkin (t = 1). This function requires the
seadata package and its only use is to give access to the package contents. See polmodular for a
more general and more flexible function.

Let j be the j-invariant function. The polynomial P satisfies the functional equation,

for some modular function f = fy (hand-picked for each fixed N to minimize its size, see below),
where Wy (1) = —1/(NT) is the Atkin-Lehner involution. These two equations allow to compute
the values of the classical modular polynomial ®y, such that ®x(j(7),7(N7)) = 0, while being
much smaller than the latter. More precisely, we have j(Wn(7)) = j(N7); the function f is
invariant under I'g(V) and also satisfies

o for Atkin type: f| Wn = f;

e for canonical type: let s = 12/gcd(12, N — 1), then f | Wy = N?/f. In this case, f has a
simple definition: f(7) = N°* (H(NT)/U(T))QS, where 7 is Dedekind’s eta function.

The following GP function returns values of the classical modular polynomial by eliminating
fn(7) in the above functional equation, for N < 31 or N € {41,47,59,71}.

classicaleqn(N, X=X, Y=’Y)=
{
my ([P,t] = ellmodulareqn(N), Q, d);
if (poldegree(P,’y) > 2, error("level unavailable in classicaleqn"));
if (t == 0, \\ Canonical
my(s = 12/gcd(12,N-1));
Q = ’x"(N+1) * substvec(P,[’x,’y],[N"s/’x,Y]);
d = N~ (s*x(2¥N+1)) * (-1)"(N+1);
, \\ Atkin
Q = subst(P,’y,Y);
d = (X-Y)"(N+1));
polresultant (subst(P,’y,X), Q) / 4;
}

The library syntax is GEN ellmodulareqn(long N, long x = -1, long y = -1) where x, y
are variable numbers.

170

3.5.47 ellmul(F, z,n). Computes [n]z, where z is a point on the elliptic curve E. The exponent
n is in Z, or may be a complex quadratic integer if the curve F has complex multiplication by n
(if not, an error message is issued).

? Ei = e11init([1,0]1); =z = [0,0];
? ellmul(Ei, =z, 10)
%2 = [0] \\ unsurprising: z has order 2
? ellmul(Ei, z, I)
%3 = [0, 0] \\ Ei has complex multiplication by Z[i]
? ellmul(Ei, z, quadgen(-4))
%4 = [0, 01 \\ an alternative syntax for the same query
? Ej = ellinit([0,1]1); z = [-1,0];
7 ellmul(Ej, z, I)
*k ok at top-level: ellmul(Ej,z,I)
* %k %k Sm———————————
**%% ellmul: not a complex multiplication in ellmul.
7 ellmul(Ej, z, l+quadgen(-3))
%6 = [1 - w, 0]

The simple-minded algorithm for the CM case assumes that we are in characteristic 0, and
that the quadratic order to which n belongs has small discriminant.

The library syntax is GEN ellmul (GEN E, GEN z, GEN n).

3.5.48 ellneg(E, z). Opposite of the point z on elliptic curve E.

The library syntax is GEN ellneg(GEN E, GEN z).

3.5.49 ellnonsingularmultiple(E, P). Given an elliptic curve E/Q (more precisely, a model
defined over Q of a curve) and a rational point P € E(Q), returns the pair [R,n], where n is the
least positive integer such that R := [n]P has good reduction at every prime. More precisely, its
image in a minimal model is everywhere non-singular.

? e = ellinit("57a1"); P = [2,-2];

7 ellnonsingularmultiple(e, P)

%2 = [[1, -11, 2]

? e = ellinit("396b2"); P = [35, -198];
? [R,n] = ellnonsingularmultiple(e, P);
?n

%5 = 12

The library syntax is GEN ellnonsingularmultiple(GEN E, GEN P).

171

3.5.50 ellorder(E,z,{o}). Gives the order of the point z on the elliptic curve E, defined over a
finite field or a number field. Return (the impossible value) zero if the point has infinite order.

7 E = ellinit([-15772,0]1); \\ the "1b57-is-congruent" curve
7?7 P =[2,2]; ellorder(E, P)

%2 =2

7 P = ellheegner(E); ellorder(E, P) \\ infinite order

%3 =0

? K = nfinit(polcyclo(11,t)); E=ellinit("11a3", K); T = elltors(E);
7 ellorder(E, T.gen[1])

%5 = 25

7 E = ellinit(ellfromj(ffgen(5710)));

? ellcard(E)

%7 = 9762580

? P = random(E); ellorder(E, P)

%8 = 4881290

? p = 27160+7; E = ellinit([1,2], p);

?7 N = ellcard(E)

%9 = 1461501637330902918203686560289225285992592471152
? o = [N, factor(N)];

? for(i=1,100, ellorder(E,random(E)))

time = 260 ms.

The parameter o, is now mostly useless, and kept for backward compatibility. If present,
it represents a non-zero multiple of the order of z, see Section 3.4.2; the preferred format for this
parameter is [ord, factor(ord)], where ord is the cardinality of the curve. It is no longer needed
since PARI is now able to compute it over large finite fields (was restricted to small prime fields
at the time this feature was introduced), and caches the result in £ so that it is computed and
factored only once. Modifying the last example, we see that including this extra parameter provides
no improvement:

? o = [N, factor(N)];
? for(i=1,100, ellorder(E,random(E),o0))
time = 260 ms.

The library syntax is GEN ellorder (GEN E, GEN z, GEN o = NULL). The obsolete form GEN
orderell(GEN e, GEN z) should no longer be used.

3.5.51 ellordinate(E, z). Gives a 0, 1 or 2-component vector containing the y-coordinates of the
points of the curve E having x as x-coordinate.

The library syntax is GEN ellordinate(GEN E, GEN x, long prec).

3.5.52 ellpadicL(E,p,n,{s = 0},{r = 0},{D = 1}). Returns the value (or r-th derivative) on a
character x* of Z7 of the p-adic L-function of the elliptic curve E /Q, twisted by D, given modulo

n

p.

172

Characters. The set of continuous characters of Gal(Q(up~)/Q) is identified to Z; via the

cyclotomic character xy with values in Gp*. Denote by 7 : Z; — Z; the Teichmiiller character,
with values in the (p — 1)-th roots of 1 for p # 2, and {—1,1} for p = 2; finally, let (x) = x71,
with values in 1+ 2pZ,. In GP, the continuous character of Gal(Q(up-)/Q) given by (x)**7°* is
represented by the pair of integers s = (s1,s2), with s; € Z, and s mod p — 1 for p > 2, (resp.
mod 2 for p = 2); s may be also an integer, representing (s, s) or x*.

The p-adic L function. The p-adic L function L, is defined on the set of continuous characters
of Gal(Q(pp=)/Q), as [,. x*dp for a certain p-adic distribution p on Z%. The derivative is given

by

LY (Ex) = [Togj(a(@uta).

More precisely:

e When E has good supersingular reduction, L, takes its values in Q, ® HéR(E/Q) and
satisfies
(1=p ' F)2L,(E,X°) = (L(E,1)/9) - w

where F' is the Frobenius, L(FE,1) is the value of the complex L function at 1, w is the Néron
differential and € the attached period on E(R). Here, x° represents the trivial character.

The function returns the components of L](f) (E, x®) in the basis (w, F'(w)).

e When E has ordinary good reduction, this method only defines the projection of L,(E, x*)
on the a-eigenspace, where « is the unit eigenvalue for F. This is what the function returns. We
have

(1 - a™) 2L, 4(B,x°) = L(E, 1)/%,

Two supersingular examples:

7 cxL(e) = bestappr(elllLli(e) / e.omegall]);

7 e = ellinit("17al1"); p=3; \\ supersingular, a3 = 0

7?7 L = ellpadicL(e,p,4);

7?7 F = [0,-p;1,ellap(e,p)]; \\ Frobenius matrix in the basis (omega,F(omega))
7?7 (1-p~(-1)*F)"-2 * L / cxL(e)

%5 = [1 +0(375), 0(3°5)]1~ \\ [1,0]~

7 e = ellinit("116al1"); p=3; \\ supersingular, a3 != O~

7

e
L = ellpadicL(e,p,4);
? F = [0,-p; 1,ellap(e,p)];
7 (1-p~(-1)*F)~-2*L~ / cxL(e)
%9 = [1 + 0(374), 0(3"5)]~

Good ordinary reduction:

7 e = ellinit("17al"); p=5; ap = ellap(e,p)

%1 = -2 \\ ordinary

? L = ellpadicL(e,p,4)

%2 = 4 + 3%5 + 4x572 + 24573 + 0(574)

? al = padicappr(x”2 - ap*x + p, ap + 0(p~7))[1];
7?7 (1-a1"(-1))"(-2) * L / cxL(e)

%4 =1 + 0(574)

173

Twist and Teichmuller:

7?7 e = ellinit("17al1"); p=5; \\ ordinary
\\ 2nd derivative at tau"l, twist by -7
7 ellpadicL(e, p, 4, [0,1], 2, -7)

%2 = 2x5°2 + 573 + 0(574)

This function is a special case of mspadicL, and it also appears as the first term of mspadic-
series:

? e = ellinit("17al"); p=5;

7 L = ellpadicL(e,p,4)

%2 =4 + 3%5 + 4%572 + 2x573 + 0(574)

? [M,phi] = msfromell(e, 1);

7 Mp = mspadicinit(M, p, 4);

7 mu = mspadicmoments(Mp, phi);

? mspadicL (mu)

%6 = 4 + 3%5 + 4x572 + 2x57°3 + 2%574 + 575 + 0(576)

7 mspadicseries(mu)

KT = (4 + 3%5 + 4%572 + 2%x5°3 + 2%x56°4 + 575 + 0(576))
+ (3 + 3%5 + 572 + 573 + 0(574))*x

(2 + 3%¥5 + 572 + 0(573))*x"2

(3 + 4%5 + 4%5°2 + 0(5°3))*x"~3

(3 + 25 + 0(572))*x"4 + 0(x"5)

+ + +

These are more cumbersome than ellpadicL but allow to compute at different characters, or
successive derivatives, or to twist by a quadratic character essentially for the cost of a single call
to ellpadicL due to precomputations.

The library syntax is GEN ellpadicL(GEN E, GEN p, long n, GEN s = NULL, long r, GEN
D = NULL).

3.5.53 ellpadicfrobenius(FE,p,n). If p > 2 is a prime and F is a elliptic curve on Q with good
reduction at p, return the matrix of the Frobenius endomorphism ¢ on the crystalline module
D,(E) = Q, ® H}(E/Q) with respect to the basis of the given model (w,n = zw), where w =
dz/(2y + a;x + a3) is the invariant differential. The characteristic polynomial of ¢ is 2 — ayz + p.
The matrix is computed to absolute p-adic precision p™.

7 E = ellinit([1,-1,1,0,0]);

? F = ellpadicfrobenius(E,5,3);
? 1ift(F)

%3 =

[120 29]

[65 5]

7 charpoly(F)

% = x"2 + 0(673)*x + (5 + 0(573))
? ellap(E, 5)

%5 =0

The library syntax is GEN ellpadicfrobenius(GEN E, long p, long n).

174

3.5.54 ellpadicheight(E, p,n, P,{Q}). Cyclotomic p-adic height of the rational point P on the
elliptic curve E (defined over Q), given to n p-adic digits. If the argument () is present, computes
the value of the bilinear form (h(P + Q) — h(P — Q))/4.

Let Dyr(E) := H}pn(E) ®q Q, be the Q, vector space spanned by w (invariant differential
dz/(2y + a1z + a3) related to the given model) and n = zw. Then the cyclotomic p-adic height
associates to P € E(Q) an element fw + gn in Dgg. This routine returns the vector [f,g] to n
p-adic digits.

If P € E(Q) is in the kernel of reduction mod p and if its reduction at all finite places is non
singular, then g = —(logy P)?, where log, is the logarithm for the formal group of E at p.

If furthermore the model is of the form Y? = X® + aX + b and P = (z,y), then
f = log,(denominator(x)) — 2log, (o (P))

where o(P) is given by ellsigma(FE, P).

Recall (Advanced topics in the arithmetic of elliptic curves, Theorem 3.2) that the local height
function over the complex numbers is of the form

A(z) = —log(|E.disc|)/6 + R(2n(z)) — 2log(o(z).

(N.B. our normalization for local and global heights is twice that of Silverman’s).

? E = ellinit([1,-1,1,0,0]); P = [0,0];

? ellpadicheight(E,5,4, P)

%2 = [3%5 + 572 + 2%5°3 + 0(574), 572 + 4x5”4 + 0(576)]

? E = ellinit("11a1"); P = [5,5]; \\ torsion point

7 ellpadicheight(E,19,6, P)

%4 = 0(1976)

? E = ellinit([0,0,1,-4,2]); P = [-2,1];

? ellpadicheight(E,3,5, P)

%6 = [2%372 + 2%x3°3 + 374 + 0(375), 2*%3"2 + 374 + 2x3°5 + 376 + 0(3°7)]
7 ellpadicheight(E,3,5, P, elladd(E,P,P))

One can replace the parameter p prime by a vector [p, [a, b]], in which case the routine returns
the p-adic number af + bg.

When £ has good ordinary reduction at p, the “canonical” p-adic height is given by

s2 = ellpadics2(E,p,n);
ellpadicheight(E, [p,[1,-s2]], n, P)

Since so does not depend on P, it is preferable to compute it only once:

? E = ellinit("5077al"); p =5; n = 7;

? 82 = ellpadics2(E,p,n);

? M = ellpadicheightmatrix(E, [p,[1,-s2]1], n, E.gen);
matdet (M) \\ p-adic regulator

%4 =5+ 572 + 4%5°3 + 2574 + 2x5°5 + 576 + 0(5°7)

V]

The library syntax is GEN ellpadicheightO(GEN E, GEN p, long n, GEN P, GEN Q = NULL)

175

3.5.55 ellpadicheightmatrix(E,p,n,v). v being a vector of points, this function outputs the
Gram matrix of v with respect to the cyclotomic p-adic height, given to n p-adic digits; in other
words, the (¢, j) component of the matrix is equal to ellpadicheight(E,p,n,v[i],v[j]) = [f,g]-

See ellpadicheight; in particular one can replace the parameter p prime by a vector [p, [a, b]],
in which case the routine returns the matrix containing the p-adic numbers af + bg.

The library syntax is GEN ellpadicheightmatrix(GEN E, GEN p, long n, GEN v).

3.5.56 ellpadiclog(E,p,n, P). Given E defined over K = Q or Q, and P = [z,y] on E(K) in the
kernel of reduction mod p, let t(P) = —xz/y be the formal group parameter; this function returns
L(t), where L denotes the formal logarithm (mapping the formal group of E to the additive formal
group) attached to the canonical invariant differential: dL = dz/(2y + a1z + a3).

The library syntax is GEN ellpadiclog(GEN E, GEN p, long n, GEN P).

3.5.57 ellpadics2(E,p,n). If p > 2 is a prime and E/Q is a elliptic curve with ordinary good
reduction at p, returns the slope of the unit eigenvector of ellpadicfrobenius(E,p,n), i.e. the
action of Frobenius ¢ on the crystalline module D,,(E) = Q, ® H;(E/Q) in the basis of the given
model (w,n = zw), where w is the invariant differential dz/(2y + a1z + as3). In other words, 1+ sow
is an eigenvector for the unit eigenvalue of .

This slope is the unique ¢ € 371Z,, such that the odd solution o(t) = ¢ + O(t?) of

1do

—d(;;) = (z(t) + c)w

is in tZ,[[t]].

It is equal to by /12 — E5 /12 where Es is the value of the Katz p-adic Eisenstein series of weight
2 on (E,w). This is used to construct a canonical p-adic height when E has good ordinary reduction
at p as follows

s2 = ellpadics2(E,p,n);
h(E,p,n, P, s2) = ellpadicheight(E, [p,[1,-s2]]1,n, P);

Since s, does not depend on the point P, we compute it only once.
The library syntax is GEN ellpadics2(GEN E, GEN p, long n).
3.5.58 ellperiods(w, {flag = 0}). Let w describe a complex period lattice (w = [w1,w=] or an

ellinit structure). Returns normalized periods [Wi, W5] generating the same lattice such that
7 := W1 /W5 has positive imaginary part and lies in the standard fundamental domain for SLa(Z).

If flag = 1, the function returns [[Wq, W], [n1,72]], where n; and 7, are the quasi-periods
attached to [Wy, W], satisfying n Wo — oW1 = 2in.

The output of this function is meant to be used as the first argument given to ellwp, ellzeta,
ellsigma or elleisnum. Quasi-periods are needed by ellzeta and ellsigma only.

The library syntax is GEN ellperiods(GEN w, long flag, long prec).

176

3.5.59 ellpointtoz(E, P). If E/C ~ C/A is a complex elliptic curve (A = E.omega), computes a
complex number z, well-defined modulo the lattice A, corresponding to the point P; i.e. such that
P = [pa(z), 9\ (#)] satisfies the equation

y2 =4z® — g2 — g3,

where g-, g3 are the elliptic invariants.

If E is defined over R and P € E(R), we have more precisely, 0 < (¢) < wl and 0 < (t) <
(w2), where (wl,w2) are the real and complex periods of E.

? E = ellinit([0,1]1); P = [2,3];

7 z = ellpointtoz(E, P)

%2 = 3.5054552633136356529375476976257353387

7 ellwp(E, z)

%3 = 2.0000000000000000000000000000000000000

? ellztopoint(E, z) - P

%4 = [6.372367644529809109 E-58, 7.646841173435770930 E-57]
? ellpointtoz(E, [0]) \\ the point at infinity

%5 =0

If £/Q, has multiplicative reduction, then E/Q, is analytically isomorphic to Q}/¢% (Tate
curve) for some p-adic integer ¢q. The behaviour is then as follows:

o If the reduction is split (E.tate[2] is a t_PADIC), we have an isomorphism ¢ : E(Q,) ~ ;/qZ
and the function returns ¢(P) € Q,.

e If the reduction is not split (F.tate[2] is a t_POLMOD), we only have an isomorphism ¢ :
E(K) ~ K*/q% over the unramified quadratic extension K/Q,. In this case, the output ¢(P) € K
is a t_POLMOD.

? E = ellinit([0,-1,1,0,0], 0(11°5)); P = [0,0];

? [u2,u,q] = E.tate; type(u) \\ split multiplicative reduction

%2 = "t_PADIC"

? ellmul(E, P, 5) \\ P has order 5

%3 = [0]

7 z = ellpointtoz(E, [0,0])

%4 = 3 + 1172 + 2%11°3 + 3x11°4 + 0(11°5)

? z°5

%5 =1 + 0(11°5)

? E = ellinit(ellfromj(1/4), 0(276)); x=1/2; y=ellordinate(E,x) [1];
? z = ellpointtoz(E, [x,y]); \\ t_POLMOD of t_POL with t_PADIC coeffs
? liftint(z) \\ 1lift all p-adics

%8 = Mod(8*u + 7, u~2 + 437)

The library syntax is GEN zell(GEN E, GEN P, long prec).

3.5.60 ellpow(E, z,n). Deprecated alias for ellmul.
The library syntax is GEN ellmul (GEN E, GEN z, GEN n).

177

3.5.61 ellrootno(E, {p}). E being an ell structure over Q as output by ellinit, this function
computes the local root number of its L-series at the place p (at the infinite place if p = 0). If
p is omitted, return the global root number. Note that the global root number is the sign of the
functional equation and conjecturally is the parity of the rank of the Mordell-Weil group. The
equation for £ needs not be minimal at p, but if the model is already minimal the function will
run faster.

The library syntax is long ellrootno(GEN E, GEN p = NULL).
3.5.62 ellsea(E, {tors = 0}). Let E be an ell structure as output by ellinit, defined over a finite

field F,. This function computes the order of the group E(F,) using the SEA algorithm and the
tors argument allows to speed up a search for curves having almost prime order.

e If the characteristic is too small (p < 7) the generic algorithm ellcard is used instead and
the tors argument is ignored.

e When tors is set to a non-zero value, the function returns 0 as soon as it detects that the
order has a small prime factor not dividing tors; SEA considers modular polynomials of increasing
prime degree ¢ and we return 0 as soon as we hit an ¢ (coprime to tors) dividing #E(F,).

In particular, you should set tors to 1 if you want a curve with prime order, to 2 if you want
to allow a cofacteur which is a power of two (e.g. for Edwards’s curves), etc.

The availability of the seadata package will speed up the computation, and is strongly rec-
ommended.

The following function returns a curve of prime order over F,,.

cryptocurve(p) =
{
while(1,
my(E, N, j = Mod(random(p), p));
E = ellinit(ellfromj(j));

N = ellsea(E, 1); if (!N, continue);

if (isprime(N), return(E));

\\ try the quadratic twist for free

if (isprime(2*p+2 - N), return(ellinit(elltwist(E))));
)3

NN WY

? p = randomprime([27255, 27256]) ;
? E = cryptocurve(p); \\ insist on prime order
%2 = 47,44Tms

The same example without early abort (using ellsea(E,1) instead of ellsea(E)) runs for about
5 minutes before finding a suitable curve.

The library syntax is GEN ellsea(GEN E, ulong tors).

178

3.5.63 ellsearch(/N). This function finds all curves in the elldata database satisfying the con-
straint defined by the argument N:

e if V is a character string, it selects a given curve, e.g. "11al", or curves in the given isogeny
class, e.g. "11a", or curves with given conductor, e.g. "11";

e if IV is a vector of integers, it encodes the same constraints as the character string above,
according to the ellconvertname correspondance, e.g. [11,0,1] for "11a1", [11,0] for "11a"
and [11] for "11";

¢ if N is an integer, curves with conductor N are selected.

If N codes a full curve name, for instance "11al" or [11,0,1], the output format is
[N, [a1, as,as3,a4,a6], G] where [a1,a2,a3,a4,a6] are the coefficients of the Weierstrass equation
of the curve and G is a Z-basis of the free part of the Mordell-Weil group attached to the curve.

? ellsearch("11a3")

% = ["11a3", [0, -1, 1, 0, 0], []1]
? ellsearch([11,0,3])

%2 = ["11a3", [0, -1, 1, O, 0], (1]

If N is not a full curve name, then the output is a vector of all matching curves in the above
format:

? ellsearch("11a")

%1 = [["11a1", [0, -1, 1, -10, -20], [11,
["11a2", [0, -1, 1, -7820, -2635801, [1],
["11a3", [0, -1, 1, 0, 01, [11]

? ellsearch("11b")

%2 = [

The library syntax is GEN ellsearch(GEN N). Also available is GEN ellsearchcurve(GEN N)
that only accepts complete curve names (as t_STR).

3.5.64 ellsigma(L,{z =" z}, {flag = 0}). Computes the value at z of the Weierstrass ¢ function
attached to the lattice L as given by ellperiods(,1): including quasi-periods is useful, otherwise
there are recomputed from scratch for each new z.

o(z,L) ==z H (1 - 5) ef"';;.

weL*

It is also possible to directly input L = [wy,ws], or an elliptic curve E as given by ellinit
(L = E.omega).

7 w = ellperiods([1,I], 1);

? ellsigma(w, 1/2)

%2 = 0.47494937998792065033250463632798296855

7?7 E = ellinit([1,0]);

7 ellsigma(E) \\ at ’x, implicitly at default seriesprecision
%4 = x + 1/60%x”5 - 1/10080*x"9 - 23/259459200%x~13 + 0(x"17)

If flag = 1, computes an arbitrary determination of log(o(z)).

The library syntax is GEN ellsigma(GEN L, GEN z = NULL, long flag, long prec).

179

3.5.65 ellsub(FE, 21, 22). Difference of the points z1 and 22 on the elliptic curve corresponding to
E.

The library syntax is GEN ellsub(GEN E, GEN zl, GEN z2).

3.5.66 elltaniyama(F, {d = seriesprecision}). Computes the modular parametrization of the el-
liptic curve £/Q, where E is an ell structure as output by ellinit. This returns a two-component
vector [u,v] of power series, given to d significant terms (seriesprecision by default), charac-
terized by the following two properties. First the point (u,v) satisfies the equation of the elliptic
curve. Second, let N be the conductor of E and ® : Xq(N) — E be a modular parametrization;
the pullback by ® of the Néron differential du/(2v + a1u + a3) is equal to 2iw f(2)dz, a holomor-
phic differential form. The variable used in the power series for v and v is x, which is implicitly
understood to be equal to exp(2inz).

The algorithm assumes that F is a strong Weil curve and that the Manin constant is equal to
1: in fact, f(z) = >, -, ellan(&,n)z".

The library syntax is GEN elltaniyama(GEN E, long precdl).

3.5.67 elltatepairing(F, P,,m). Computes the Tate pairing of the two points P and @ on the
elliptic curve E. The point P must be of m-torsion.

The library syntax is GEN elltatepairing(GEN E, GEN P, GEN Q, GEN m).

3.5.68 elltors(E). If E is an elliptic curve defined over a number field or a finite field, outputs
the torsion subgroup of F as a 3-component vector [t,v1,v2], where t is the order of the torsion
group, v1 gives the structure of the torsion group as a product of cyclic groups (sorted by decreasing
order), and v2 gives generators for these cyclic groups. E must be an ell structure as output by
ellinit.

? E = ellinit([-1,0]);
7?7 elltors(E)
%1 = [4, [2, 2], [[0o, 01, [1, 011]

Here, the torsion subgroup is isomorphic to Z/2Z x Z/2Z, with generators [0,0] and [1, 0].

The library syntax is GEN elltors(GEN E).
3.5.69 elltwist(E, { P}). Returns the coefficients [a1, as, a3, as, ag] of the twist of the elliptic curve
E by the quadratic extension of the coefficient ring defined by P (when P is a polynomial) or
quadpoly(P) when P is an integer. If F is defined over a finite field, then P can be omitted,

in which case a random model of the unique non-trivial twist is returned. If E is defined over a
number field, the model should be replaced by a minimal model (if one exists).

Example: Twist by discriminant —3:

? elltwist(ellinit([0,a2,0,a4,a6]),-3)
%1 = [0,-3*a2,0,9*ad,-27*ab]

Twist by the Artin-Shreier extension given by z? 4+ x + T in characteristic 2:

? 1lift(elltwist(ellinit([al,a2,a3,ad,a6]*Mod(1,2)),x"2+x+T))
%1 = [al,a2+al1"2xT,a3,a4,ab+a3"2*T]

Twist of an elliptic curve defined over a finite field:

180

7 E=ellinit([1,7]*Mod(1,19));1ift(elltwist(E))
%1 = [0,0,0,11,12]

The library syntax is GEN elltwist(GEN E, GEN P = NULL).

3.5.70 ellweilpairing(E, P,Q, m). Computes the Weil pairing of the two points of m-torsion P
and () on the elliptic curve E.

The library syntax is GEN ellweilpairing(GEN E, GEN P, GEN Q, GEN m).

3.5.71 ellwp(w,{z =" z},{flag = 0}). Computes the value at z of the Weierstrass g function
attached to the lattice w as given by ellperiods. It is also possible to directly input w = [wq,ws],
or an elliptic curve E as given by ellinit (w = E.omega).

? w = ellperiods([1,I]);

? ellwp(w, 1/2)

%2 = 6.8751858180203728274900957798105571978
? E = ellinit([1,1]);

? ellwp(E, 1/2)

%4 = 3.9413112427016474646048282462709151389

One can also compute the series expansion around z = 0:

? E = ellinit([1,0]);

7 ellwp(E) \\ ’x implicitly at default seriesprecision
%5 = x7-2 - 1/6%x”2 + 1/75%x"6 - 2/4875*x~10 + 0(x"~14)

7 ellwp(E, x + 0(x"12)) \\ explicit precision

%6 = x"-2 - 1/6%x"2 + 1/75%x"6 + 0(x"9)

Optional flag means 0 (default): compute only p(z), 1: compute [p(2), p'(2)].

The library syntax is GEN ellwpO(GEN w, GEN z = NULL, long flag, long prec). For
flag = 0, we also have GEN ellwp(GEN w, GEN z, long prec), and GEN ellwpseries(GEN E,
long v, long precdl) for the power series in variable v.

3.5.72 ellxn(E,n, {v =" x}). In standard notation, for any affine point P = (v, w) on the curve
E, we have

(7P = (¢n(P)1hn(P) : wn(P) : u(P)?)

for some polynomials @,,,wy, ¥, in Z[ay, as,as, as, agl[v,w]. This function returns [¢,(P), 1, (P)?],
which give the numerator and denominator of the abcissa of [n]P and depend only on v.

The library syntax is GEN ellxn(GEN E, long n, long v = -1) where v is a variable number.

181

3.5.73 ellzeta(w,{z =" z}). Computes the value at z of the Weierstrass ¢ function attached to
the lattice w as given by ellperiods(,1): including quasi-periods is useful, otherwise there are
recomputed from scratch for each new z.

1 1
2, L) = -+ 2° _.
weL*
It is also possible to directly input w = [w;i,ws], or an elliptic curve F as given by ellinit

(w = E.omega). The quasi-periods of ¢, such that
C(z + awy + bws) = ((2) + any + by

for integers a and b are obtained as 7; = 2{(w;/2). Or using directly elleta.

7?7 w = ellperiods([1,I],1);

7?7 ellzeta(w, 1/2)

%2 = 1.5707963267948966192313216916397514421
? E = ellinit([1,0]);

7 ellzeta(E, E.omegal1]1/2)

%4 = 0.84721308479397908660649912348219163647

One can also compute the series expansion around z = 0 (the quasi-periods are useless in this case):

? E = ellinit([0,1]);

7 ellzeta(E) \\ at ’x, implicitly at default seriesprecision
% = x"-1 + 1/35xx"5 - 1/7007*x"11 + 0(x"15)

7 ellzeta(E, x + 0(x720)) \\ explicit precision

%5 = x"-1 + 1/35%xx"5 - 1/7007*x"11 + 1/1440257*x~17 + 0(x~18)

The library syntax is GEN ellzeta(GEN w, GEN z = NULL, long prec).

3.5.74 ellztopoint(E, z). E being an ell as output by ellinit, computes the coordinates [z, y]
on the curve E corresponding to the complex number z. Hence this is the inverse function of
ellpointtoz. In other words, if the curve is put in Weierstrass form 3% = 42® — gox — g3, [z, ¥]
represents the Weierstrass gp-function and its derivative. More precisely, we have

r=p(z)—b/12, y=¢'(z)— (a1 +a3z)/2.

If z is in the lattice defining E over C, the result is the point at infinity [0].

The library syntax is GEN pointell(GEN E, GEN z, long prec).
3.5.75 genus2red(PQ, {p}). Let PQ be a polynomial P, resp. a vector [P, Q] of polynomials,
with rational coefficients. Determines the reduction at p > 2 of the (proper, smooth) genus 2 curve

C/Q, defined by the hyperelliptic equation y*> = P(x), resp. y*> + Q(z) xy = P(z). (The special
fiber X, of the minimal regular model X of C over Z.)

If p is omitted, determines the reduction type for all (odd) prime divisors of the discriminant.

This function was rewritten from an implementation of Liu’s algorithm by Cohen and Liu (1994),
genus2reduction-0.3, see http://www.math.u-bordeaux.fr/~1iu/G2R/.

182

CAVEAT. The function interface may change: for the time being, it returns [N, FaN,T, V| where
N is either the local conductor at p or the global conductor, FaN is its factorization, y?> = T defines
a minimal model over Z[1/2] and V' describes the reduction type at the various considered p.
Unfortunately, the program is not complete for p = 2, and we may return the odd part of the
conductor only: this is the case if the factorization includes the (impossible) term 27!; if the
factorization contains another power of 2, then this is the exact local conductor at 2 and IV is the
global conductor.

7 default(debuglevel, 1);
? genus2red(x”6 + 3*x"3 + 63, 3)
(potential) stable reduction: [1, []]
reduction at p: [III{9}] page 184, [3, 3], f = 10
%1 = [59049, Mat([3, 101), x°6 + 3*x~3 + 63, [3, [1, [11,
["[III{9}] page 184", [3, 31111
7 [N, FaN, T, V] = genus2red(x~3-x"2-1, x72-x); \\ X_1(13), global reduction
p = 13
(potential) stable reduction: [5, [Mod(0, 13), Mod(0, 13)]]
reduction at p: [I{0}-II-0] page 159, [1, £ = 2
7N
%3 = 169
? FaN
% = Mat([13, 2]) \\ in particular, good reduction at 2 !
?T
%5 = x"6 + 58*x"5 + 1401*x"4 + 18038*x"3 + 130546*x"2 + 503516*x + 808561
v
%6 = [[13, [5, [Mod(0, 13), Mod(0, 13)]11, ["[I{0}-II-0] page 159", [111]

We now first describe the format of the vector V' =V}, in the case where p was specified (local re-
duction at p): it is a triple [p, stable, red]. The component stable = [type, vecj| contains information
about the stable reduction after a field extension; depending on types, the stable reduction is

e 1: smooth (i.e. the curve has potentially good reduction). The Jacobian J(C') has potentially
good reduction.

e 2: an elliptic curve E with an ordinary double point; vecj contains j mod p, the modular
invariant of E. The (potential) semi-abelian reduction of J(C) is the extension of an elliptic curve
(with modular invariant j mod p) by a torus.

e 3: a projective line with two ordinary double points. The Jacobian J(C') has potentially
multiplicative reduction.

e 4: the union of two projective lines crossing transversally at three points. The Jacobian
J(C) has potentially multiplicative reduction.

e 5: the union of two elliptic curves E; and FEs intersecting transversally at one point; vecy
contains their modular invariants j; and j», which may live in a quadratic extension of F,, and need
not be distinct. The Jacobian J(C) has potentially good reduction, isomorphic to the product of
the reductions of E; and FEs.

e 6: the union of an elliptic curve £ and a projective line which has an ordinary double point,
and these two components intersect transversally at one point; vecj contains 7 mod p, the modular
invariant of E. The (potential) semi-abelian reduction of J(C) is the extension of an elliptic curve
(with modular invariant j mod p) by a torus.

183

e 7: asin type 6, but the two components are both singular. The Jacobian J(C') has potentially
multiplicative reduction.

The component red = [NUtype, neron] contains two data concerning the reduction at p without
any ramified field extension.

The NUtype is a t_STR describing the reduction at p of C, following Namikawa-Ueno, The
complete classification of fibers in pencils of curves of genus two, Manuscripta Math., vol. 9,
(1973), pages 143-186. The reduction symbol is followed by the corresponding page number or
page range in this article.

The second datum neron is the group of connected components (over an algebraic closure of
F,) of the Néron model of J(C'), given as a finite abelian group (vector of elementary divisors).

If p = 2, the red component may be omitted altogether (and replaced by [], in the case where
the program could not compute it. When p was not specified, V' is the vector of all V}, for all
considered p.

Notes about Namikawa-Ueno types.
¢ A lower index is denoted between braces: for instance, [I{2}-II-5] means [I_2-II-5].

o If K and K’ are Kodaira symbols for singular fibers of elliptic curves, then [K-K'-m] and
[K'-K-m] are the same.

We define a total ordering on Kodaira symbol by fixing T < Ix < IT < IIx,.... If the reduction
type is the same, we order by the number of components, e.g. I < I4, etc. Then we normalize our
output so that K < K'.

e [K-K'-—1] is [K-K'-a] in the notation of Namikawa-Ueno.
e The figure [2I_0-m] in Namikawa-Ueno, page 159, must be denoted by [2I_0-(m+1)].

The library syntax is GEN genus2red(GEN PQ, GEN p = NULL).

3.5.76 hyperellcharpoly(X). X being a non-singular hyperelliptic curve defined over a finite
field, return the characteristic polynomial of the Frobenius automorphism. X can be given either
by a squarefree polynomial P such that X : 42 = P(x) or by a vector [P, Q] such that X : y>4+Q(z) x
y = P(z) and Q2 + 4P is squarefree.

The library syntax is GEN hyperellcharpoly(GEN X).

3.5.77 hyperellpadicfrobenius(Q,p,n). Let X be the curve defined by y*> = Q(z), where Q is
a polynomial of degree d over Q and p > d a prime such that X has good reduction at p return
the matrix of the Frobenius endomorphism ¢ on the crystalline module D,(X) = Q, ® H},(X/Q)
with respect to the basis of the given model (w, zw, ...,29 'w), where w = dz/(2y) is the invariant
differential, where g is the genus of X (either d = 2g + 1 or d = 2g + 2). The characteristic
polynomial of ¢ is the numerator of the zeta-function of the reduction of the curve X modulo p.
The matrix is computed to absolute p-adic precision p™.

The library syntax is GEN hyperellpadicfrobenius(GEN @, ulong p, long n).

184

3.6 L-functions.

This section describes routines related to L-functions. We first introduce the basic concept
and notations, then explain how to represent them in GP. Let Tr(s) = 7~%/2T'(s/2), where T is
Euler’s gamma function. Given d > 1 and a d-tuple A = [ay, ..., aq] of complex numbers, we let

Y4(8) = [[oea TR(s +).

Given a sequence a = (ap)p>1 of complex numbers (such that a; = 1), a positive conductor
N € Z, and a gamma factor v4 as above, we consider the Dirichlet series

L(a,s) = Z apn~*®

n>1
and the attached completed function

A(a,s) = N3/ 2y ,(s) - L{a, s).

Such a datum defines an L-function if it satisfies the three following assumptions:

e [Convergence] The a,, = O.(n*17¢) have polynomial growth, equivalently L(s) converges
absolutely in some right half-plane R(s) > k; + 1.

e [Analytic continuation] L(s) has a meromorphic continuation to the whole complex plane
with finitely many poles.

e [Functional equation] There exist an integer k, a complex number ¢ (usually of modulus 1),
and an attached sequence a* defining both an L-function L(a*, s) satisfying the above two assump-
tions and a completed function A(a*,s) = N*/2y4(s) - L(a*, s), such that

A(a, k —s) = eA(a”, s)

for all regular points.

More often than not in number theory we have a* = @ (which forces |¢] = 1), but this needs
not be the case. If a is a real sequence and a = a*, we say that L is self-dual. We do not assume
that the a,, are multiplicative, nor equivalently that L(s) has an Euler product.

Remark. Of course, a determines the L-function, but the (redundant) datum a,a*, A, N, k¢
describes the situation in a form more suitable for fast computations; knowing the polar part r of
A(s) (arational function such that A —r is holomorphic) is also useful. A subset of these, including
only finitely many a,-values will still completely determine L (in suitable families), and we provide
routines to try and compute missing invariants from whatever information is available.

Important Caveat. We currently assume that we can take the growth exponent k; = (k—1)/2 if
L is entire and k1 = k — 1 otherwise, and that the implied constants in the O, are small. This may
be changed and made user-configurable in future versions but the essential point remains that it is
impossible to return proven results in such a generic framework, without more detailed information
about the L function. The intended use of the L-function package is not to prove theorems, but to
experiment and formulate conjectures, so all numerical results should be taken with a grain of salt.
One can always increase realbitprecision and recompute: the difference estimates the actual
absolute error in the original output.

185

Note. The requested precision has a major impact on runtimes. Because of this, most L-function
routines, in particular 1fun itself, specify the requested precision in bits, not in decimal digits.
This is transparent for the user once realprecision or realbitprecision are set. We advise to
manipulate precision via realbitprecision as it allows finer granularity: realprecision increases
by increments of 64 bits, i.e. 19 decimal digits at a time.

3.6.1 Theta functions.

Given an L-function as above, we define an attached theta function via Mellin inversion: for
any positive real ¢t > 0, we let

f(a,t) := t7°A(s)ds

% R(s)=c

where ¢ is any positive real number ¢ > k; + 1 such that ¢ + R(a) > 0 for all @ € A. In fact, we

have

1
f(a,t) = Z anK (nt/NY/?) where K(t):= — t™%va(s) ds.
=1 270 J(s)=c

Note that this function is analytic and actually makes sense for complex ¢, such that §R(t2/ 4) > 0,
i.e. in a cone containing the positive real half-line. The functional equation for A translates into

0(a,1/t) — et*f(a*,t) = Py(2),

where P, is an explicit polynomial in ¢ and logt¢ given by the Taylor development of the polar part
of A: there are no log’s if all poles are simple, and P = 0 if A is entire. The values §(t) are generally
easier to compute than the L(s), and this functional equation provides a fast way to guess possible
values for missing invariants in the L-function definition.

3.6.2 Data structures describing I and theta functions.
We have 3 levels of description:

e an Lmath is an arbitrary description of the underlying mathematical situation (to which e.g.,
we associate the a, as traces of Frobenius elements); this is done via constructors to be described
in the subsections below.

e an Ldata is a computational description of situation, containing the complete datum
(a,a*, A, k, N,e,r). Where a and a* describe the coefficients (given n, b we must be able to compute
[a1,...,a,] with bit accuracy b), A describes the Euler factor, the (classical) weight is &k, N is the
conductor, and r describes the polar part of L(s). This is obtained via the function 1funcreate.
N.B. For motivic L-functions, the motivic weight w is w = k — 1; but we also support non-motivic
L-functions.

186

Design problem. All components of an Ldata should be given exactly since the accuracy to which
they must be computed is not bounded a priori; but this is not always possible, in particular for €
and r.

e an Linit contains an Ldata and everything needed for fast numerical computations. It
specifies the functions to be considered (either L) (s) or 819)(¢) for derivatives of order j < m, where
m is now fixed) and specifies a domain which limits the range of arguments (¢ or s, respectively to
certain cones and rectangular regions) and the output accuracy. This is obtained via the functions
1funinit or 1funthetainit.

All the functions which are specific to L or theta functions share the prefix 1fun. They take
as first argument either an Lmath, an Ldata, or an Linit. If a single value is to be computed, this
makes no difference, but when many values are needed (e.g. for plots or when searching for zeros),
one should first construct an Linit attached to the search range and use it in all subsequent calls.
If you attempt to use an Linit outside the range for which it was initialized, a warning is issued,
because the initialization is performed again, a major inefficiency:

? Z = 1lfuncreate(1); \\ Riemann zeta
? L = 1funinit(Z, [1/2, 0, 1001); \\ zeta(1/2+it), [t] < 100
? 1fun(L, 1/2) \\ OK, within domain
%3 = -1.4603545088095868128894991525152980125
? 1fun(L, 0) \\ not on critical strip !
x 1fun: Warning: 1funinit: insufficient initialization.
%4 = -0.50000000000000000000000000000000000000
7 1fun(L, 1/2, 1) \\ attempt first derivative !
*%% 1fun: Warning: lfuninit: insufficient initialization.
%5 = -3.9226461392091517274715314467145995137

For many L-functions, passing from Lmath to an Ldata is inexpensive: in that case one may
use 1funinit directly from the Lmath even when evaluations in different domains are needed. The
above example could equally have skipped the 1funcreate:

? L = 1funinit(1, [1/2, 0, 1001); \\ zeta(1l/2+it), [t] < 100
In fact, when computing a single value, you can even skip 1funinit:

7 L
7 L

1fun(l, 1/2, 1); \\ zeta’(1/2)
1fun(1l, 1+x+0(x"5)); \\ first 5 terms of Taylor development at 1

Both give the desired results with no warning.

Complexity. The implementation requires O(N(|t| + 1))/? coefficients a,, to evaluate L of con-
ductor N at s = o + it.

We now describe the available high-level constructors, for built-in L functions.

187

3.6.3 Dirichlet L-functions.
Given a Dirichlet character x : (Z/NZ)* — C, we let

L(x,s) =Y x(n)n".

n>1

Only primitive characters are supported. Given a fundamental discriminant D, the function
L((D/.), s), for the quadratic Kronecker symbol, is encoded by the t _INT D. This includes Riemann
¢ function via the special case D = 1.

More general characters can be represented in a variety of ways:
e via Conrey notation (see znconreychar): xn(m,-) is given as the t_INTMOD Mod (m,N).

e via a bid structure describing the abelian group (Z/NZ)*, where the character is given in
terms of the bid generators:

? bid = idealstar(,100,2); \\ (Z/100Z) "*

? bid.cyc \\ ~ Z/20 . g1l + Z/2 . g2 for some generators gl and g2

w2 = [20, 2]

? bid.gen

%3 = [77, 51]

7 chi = [a, b] \\ maps gl to e(a/20) and g2 to e(b/2); e(x) = exp(2ipi x)

More generally, let (Z/NZ)* = ®&(Z/d;Z)g; be given via a bid structure G (G.cyc gives the d;
and G.gen the g;). A character x on G is given by a row vector v = [ay,...,a,] such that
x(ITg"") = exp(2mi) a;n;/d;). The pair [bid,v] encodes the primitive character attached to .

e in fact, this construction [bid, m] describing a character is more general: m is also allowed to
be a Conrey index as seen above, or a Conrey logarithm (see znconreylog), and the latter format
is actually the fastest one.

e it is also possible to view Dirichlet characters as Hecke characters over K = Q (see below),
for a modulus [N, [1]] but this is both more complicated and less efficient.
3.6.4 Hecke L-functions.

The Dedekind zeta function of a number field K = Q[X]/(T) is encoded either by the defining
polynomial 7', or any absolute number fields structure (preferably at least a bnf).

Given a finite order Hecke character x : Cls(K) — C, we let

L(x;s) = Y_ x(4) (Nksqd) "
ACOg

Let Cly(K) = &(Z/d;Z)g; given by a bnr structure with generators: the d; are given by
K.cyc and the g; by K.gen. A character x on the ray class group is given by a row vector v =
[a1,...,ay] such that x([]g;") = exp(2mi)_ a;n;/d;). The pair [bnr,v] encodes the primitive
character attached to x.

? K = bnfinit(x"2-60);
? Cf = boarinit(K, [7, [1,11], 1); \\ £ =7 oo_1 00_2
? Cf.cyc

188

%3 = [6, 2, 2]

7?7 Cf.gen

% = [[2, 1; 0, 11, [22, 9; O, 1], [-6, 71-~]

? 1funcreate([Cf, [1,0,0]11); \\ x(91) = (s, X(92) = x(g3) =1

Dirichlet characters on (Z/NZ)* are a special case, where K = Q:

7 Q
7 Cf

bnfinit(x);
bnrinit(Q, [100, [1]]); \\ for odd characters on (Z/100Z)=*

For even characters, replace by bnrinit (K, N). Note that the simpler direct construction in the
previous section will be more efficient.

3.6.5 Artin L functions.

Given a Galois number field N/Q with group G = galoisinit(V), a representation p of G
over the cyclotomic field Q((,) is specified by the matrices giving the images of G.gen by p. The
corresponding Artin L function is created using 1funartin.

P = quadhilbert(-47); \\ degree 5, Galois group D_5

N = nfinit(nfsplitting(P)); \\ Galois closure

G = galoisinit(N);

[s,t] = G.gen; \\ order 5 and 2

L = 1funartin(N,G, [[a,0;0,a"-1],[0,1;1,0]1]1, 5); \\ irr. degree 2

In the above, the polynomial variable (here a) represents (5 := exp(2im/5) and the two matrices
give the images of s and ¢. Here, priority of a must be lower than the priority of x.

3.6.6 L-functions of algebraic varieties.

L-function of elliptic curves over number fields are supported.

? E = ellinit([1,1]);

? L = 1funcreate(E); \\ L-function of E/Q

? E2 = ellinit([1,a], nfinit(a~2-2));

? L2 = lfuncreate(E2); \\ L-function of E/Q(sqrt(2))

L-function of hyperelliptic genus-2 curve can be created with 1fungenus2. To create the L
function of the curve y* + (2® + 2% + 1)y = 2 + x:

7 L = 1lfungenus2([x"2+x, x"3+x"2+1]);

Currently, the model needs to be minimal at 2, and if the conductor is even, its valuation at
2 might be incorrect (a warning is issued).

3.6.7 Eta quotients / Modular forms.

An eta quotient is created by applying 1funetaquo to a matrix with 2 columns [m,r,,] repre-
senting

f(r) = [T n(mr)™.
It is currently assumed that f is a self-dual cuspidal form on ['o(N) for some N. For instance, the
L-function) 7(n)n~*® attached to Ramanujan’s A function is encoded as follows

? L = lfunetaquo(Mat([1,24]));
? 1funan(L, 100) \\ first 100 values of tau(n)

More general modular forms defined by modular symbols will be added later.

189

3.6.8 Low-level Ldata format.

When no direct constructor is available, you can still input an L function directly by supplying
[a,a*, A, k, N, e, r] to 1funcreate (see ??1funcreate for details).

It is strongly suggested to first check consistency of the created L-function:

? L = 1lfuncreate([a, as, A, k, N, eps, rl);
? 1funcheckfeq(L) \\ check functional equation

3.6.9 lfun(L, s,{D = 0}). Compute the L-function value L(s), or if D is set, the derivative of order
D at s. The parameter L is either an Lmath, an Ldata (created by 1funcreate, or an Linit (created
by 1funinit), preferrably the latter if many values are to be computed.

The argument s is also allowed to be a power series; for instance, if s = o + x + O(z"™), the
function returns the Taylor expansion of order n around «. The result is given with absolute error
less than 2=, where B = realbitprecision.

Caveat. The requested precision has a major impact on runtimes. It is advised to manipulate
precision via realbitprecision as explained above instead of realprecision as the latter allows
less granularity: realprecision increases by increments of 64 bits, i.e. 19 decimal digits at a time.

? 1fun(x"2+1, 2) \\ Lmath: Dedekind zeta for Q(i) at 2
%1 = 1.5067030099229850308865650481820713960

? L = 1funcreate(ellinit("5077a1")); \\ Ldata: Hasse-Weil zeta function
? 1fun(L, 1+x+0(x"4)) \\ zero of order 3 at the central point
%3 = 0.E-58 - 5.[...] E-40*x + 9.[...] E-40*x"2 + 1.7318[...]*x"3 + 0(x~4)

\\ Linit: zeta(1/2+it), |t| < 100, and derivative

? L = 1funinit(1, [100], 1);

? T = 1funzeros(L, [1,25]);

%5 = [14.134725[...]1, 21.022039[...]1]

? z=1/2 + I*T[1];

? abs(1fun(L, z))

%7 = 8.7066865533412207420780392991125136196 E-39

? abs(1fun(L, z, 1))

%8 = 0.79316043335650611601389756527435211412 \\ simple zero

The library syntax is GEN 1funO(GEN L, GEN s, long D, long bitprec).

3.6.10 lfunabelianrelinit(bnfL, bnfK , polrel, sdom,{der = 0}). Returns the Linit structure at-
tached to the Dedekind zeta function of the number field L (see 1funinit), given a subfield K such
that L/K is abelian. Here polrel defines L over K, as usual with the priority of the variable of
bnfK lower than that of polrel. sdom and der are as in 1funinit.

? D = -47; K = bnfinit(y~2-D);

7 rel = quadhilbert(D); T = rnfequation(K.pol, rel); \\ degree 10
? L = 1funabelianrelinit(T,K,rel, [2,0,0]); \\ at 2

time = 84 ms.

? 1fun(L, 2)

%4 = 1.0154213394402443929880666894468182650

7 1fun(T, 2) \\ using parisize > 300MB

time = 652 ms.

190

%5 = 1.0154213394402443929880666894468182656

As the example shows, using the (abelian) relative structure is more efficient than a direct compu-
tation. The difference becomes drastic as the absolute degree increases while the subfield degree
remains constant.

The library syntax is GEN 1funabelianrelinit(GEN bnfL, GEN bnfK, GEN polrel, GEN
sdom, long der, long bitprec).

3.6.11 Ifunan(L,n). Compute the first n terms of the Dirichlet series attached to the L-function
given by L (Lmath, Ldata or Linit).

? 1funan(1l, 10) \\ Riemann zeta

%1 =1011,1, 1, 1, 1,1, 1, 1, 1, 1]

? 1funan(5, 10) \\ Dirichlet L-function for kronecker(5,.)
%2 =11, -1, -1, 1, 0, 1, -1, -1, 1, 0]

The library syntax is GEN 1funan(GEN L, long n, long prec).

3.6.12 lfunartin(nf, gal, M,n). Returns the Ldata structure attached to the Artin L-function
attached to the representation p of the Galois group of the extension K/Q, defined over the cy-
clotomic field Q((,), where nf is the nfinit structure attached to K, gal is the galoisinit structure
attached to K/Q, and M is the vector of the image of the generators gal.gen by p. The elements
of M are matrices with polynomial entries, whose variable is understood as the complex number
exp(2im/n).

In the following example we build the Artin L-functions attached to the two irreducible degree
2 representations of the dihedral group D;o defined over Q((s), for the extension H/Q where H

is the Hilbert class field of Q(v/—47). We show numerically some identities involving Dedekind ¢
functions and Hecke L series.

? P = quadhilbert(-47);

7?7 N = nfinit(nfsplitting(P));

7?7 G = galoisinit(N);

? L1 = 1lfunartin(N,G, [[a,0;0,a"-1],[0,1;1,0]], 5);

? L2 = 1funartin(N,G, [[2"2,0;0,a"-2],[0,1;1,0]1]1, 5);
?7s=1+x + 0(x"4);

? 1fun(1,s)*1fun(-47,s)*1fun(L1l,s) "2*1fun(L2,s)"2 - 1fun(N,s)
%6 ~ 0

? 1fun(1l,s)*1fun(Ll,s)*1fun(l2,s) - 1lfun(P,s)

%7 ~ 0

? bnr = bnrinit(bnfinit(x"2+47),1,1);
? 1fun([bnr, [1]], s) - 1fun(L1l, s)

%9 ~ 0
? 1fun([bnr, [1]], s) - 1fun(L1l, s)
%10 ~ 0

The first identity is the factorisation of the regular representation of Djg, the second the
factorisation of the natural representation of Dy C S5, the next two are the expressions of the
degree 2 representations as induced from degree 1 representations.

The library syntax is GEN 1funartin(GEN nf, GEN gal, GEN M, long n).

191

3.6.13 lfuncheckfeq(L, {t}). Given the data attached to an L-function (Lmath, Ldata or Linit),
check whether the functional equation is satisfied. This is most useful for an Ldata constructed
“by hand”, via 1funcreate, to detect mistakes.

If the function has poles, the polar part must be specified. The routine returns a bit accuracy
b such that |w — | < 2°, where w is the root number contained in data, and is a computed
value derived from () and 6(1/t) at some t # 0 and the assumed functional equation. Of course,
a large negative value of the order of realbitprecision is expected.

If ¢ is given, it should be close to the unit disc for efficiency and such that 6(¢) # 0. We then
check the functional equation at that ¢.

7 \pb 128 \\ 128 bits of accuracy
7 default(realbitprecision)
%1 = 128

? L = 1funcreate(1); \\ Riemann zeta
7 1funcheckfeq(L)
%3 = -124

i.e. the given data is consistent to within 4 bits for the particular check consisting of estimating
the root number from all other given quantities. Checking away from the unit disc will either fail
with a precision error, or give disappointing results (if §(1/t) is large it will be computed with a
large absolute error)

7 1funcheckfeq(L, 2+I)

%4 = -115

7 lfuncheckfeq(L,10)
**xx at top-level: lfuncheckfeq(L,10)
KRk T

%% lfuncheckfeq: precision too low in lfuncheckfeq.

The library syntax is long 1funcheckfeq(GEN L, GEN t = NULL, long bitprec).

3.6.14 lfunconductor(L, {ab = [1,10000]}, {flag = 0}). Compute the conductor of the given
L-function (if the structure contains a conductor, it is ignored); ab = [a,] is the interval where we
expect to find the conductor; it may be given as a single scalar b, in which case we look in [1,b].
Increasing ab slows down the program but gives better accuracy for the result.

If f1agis 0 (default), give either the conductor found as an integer, or a vector (possibly empty)
of conductors found. If flag is 1, same but give the computed floating point approximations to the
conductors found, without rounding to integers. It flag is 2, give all the conductors found, even
those far from integers.

192

Caveat. This is a heuristic program and the result is not proven in any way:

? L = 1funcreate(857); \\ Dirichlet L function for kronecker(857,.)
7 \p19
realprecision = 19 significant digits
? 1funconductor (L)
%2 = [17, 857]
? 1funconductor(L,,1) \\ don’t round
%3 = [16.99999999999999999, 857.0000000000000000]

7 \p38

realprecision = 38 significant digits
? lfunconductor (L)
W4 = 857

Note. This program should only be used if the primes dividing the conductor are unknown, which
is rare. If they are known, a direct search through possible prime exponents using 1funcheckfeq
will be more efficient and rigorous:

7 E = ellinit([0,0,0,4,0]); /* Elliptic curve y~2 = x"3+4x */

? E.disc \\ l|disc E| = 2712

%2 = -4096

\\ create Ldata by hand. Guess that root number is 1 and conductor N
? L(N) = lfuncreate([n->ellan(E,n), 0, [0,1], 1, N, 11);

? fordiv(E.disc, d, print(d,": ",lfuncheckfeq(L(d))))
1: 0

2: 0

4: -1

8: -2

16: -3

32: -127

64: -3

128: -2

256: -2

512: -1

1024: -1

2048: 0

4096: 0

? 1funconductor(L(1)) \\ lfunconductor ignores conductor = 1 in Ldata !
%5 = 32

The above code assumed that root number was 1; had we set it to —1, none of the 1funcheckfeq
values would have been acceptable:

? L2(N) = 1funcreate([n->ellan(E,n), O, [0,1], 1, N, -1]1);
7 [1lfuncheckfeq(L2(d)) | d<-divisors(E.disc)]
%7 = 1[0, 0,1, 1,1, 1, 0, O, O, O, O, -1, -1]

The library syntax is GEN lfunconductor(GEN L, GEN ab = NULL, long 10000], 1long
bitprec).

193

3.6.15 lfuncost(L, {sdom},{der = 0}). Estimate the cost of running 1funinit(L,sdom,der) at
current bit precision. Returns [¢,b], to indicate that ¢ coefficients a,, will be computed, as well
as t values of gammamellininv, all at bit accuracy b. A subsequent call to 1fun at s evaluates a
polynomial of degree t at exp(hs) for some real parameter h, at the same bit accuracy b. If L is
already an Linit, then sdom and der are ignored and are best left omitted; the bit accuracy is also
inferred from L: in short we get an estimate of the cost of using that particular Linit.

7 \pb 128

? 1funcost(1l, [100]) \\ for zeta(1l/2+Ixt), |t] < 100

%1 = [7, 2421 \\ 7 coefficients, 242 bits

? 1funcost(l, [1/2, 100]) \\ for zeta(s) in the critical strip, |Im s| < 100
%2 = [7, 2461 \\ now 246 bits

? 1funcost (1, [100], 10) \\ for zeta(1l/2+I*t), |t| < 100

%3 = [8, 263] \\ 10th derivative increases the cost by a small amount

? 1funcost(l, [1075])

%3 = [1568, 113438] \\ larger imaginary part: huge accuracy increase

? L = 1lfuncreate(polcyclo(5)); \\ Dedekind zeta for Q(zeta_5)
? 1funcost (L, [100]) \\ at s = 1/2+I*xt), |t| < 100

%5 = [11457, 582]

? lfuncost(L, [200]) \\ twice higher

%6 = [36294, 1035]

7 1funcost(L, [1074]) \\ much higher: very costly !

%7 = [70256473, 45452]

7 \pb 256

? 1funcost(L, [100]1); \\ doubling bit accuracy

%8 = [17080, 710]

In fact, some L functions can be factorized algebraically by the 1funinit call, e.g. the Dedekind
zeta function of abelian fields, leading to much faster evaluations than the above upper bounds. In
that case, the function returns a vector of costs as above for each individual function in the product
actually evaluated:

7 L = 1lfuncreate(polcyclo(5)); \\ Dedekind zeta for Q(zeta_5)

7 1lfuncost(L, [100]) \\ a priori cost

%2 = [11457, 582]

7?7 L = 1funinit(L, [100]); \\ actually perform all initializations
7 1funcost(L)

w4 = [[16, 242], [16, 2421, [7, 242]]

The Dedekind function of this abelian quartic field is the product of four Dirichlet L-functions
attached to the trivial character, a non-trivial real character and two complex conjugate characters.
The non-trivial characters happen to have the same conductor (hence same evaluation costs), and
correspond to two evaluations only since the two conjugate characters are evaluated simultaneously.
For a total of three L-functions evaluations, which explains the three components above. Note that
the actual cost is much lower than the a priori cost in this case.

The library syntax is GEN 1funcostO(GEN L, GEN sdom = NULL, long der, long bitprec)
. Also available is GEN 1lfuncost(GEN L, GEN dom, long der, long bitprec) when L is not an
Linit; the return value is a t_VECSMALL in this case.

194

3.6.16 lfuncreate(obj). This low-level routine creates Ldata structures, needed by [fun functions,
describing an L-function and its functional equation. You are urged to use a high-level constructor
when one is available, and this function accepts them, see 771fun:

? L = lfuncreate(1); \\ Riemann zeta

7?7 L = 1funcreate(5); \\ Dirichlet L-function for quadratic character (5/.)
? L = 1funcreate(x”2+1); \\ Dedekind zeta for Q(i)

7?7 L = 1funcreate(ellinit([0,1]1)); \\ L-function of E/Q: y~2=x"3+1

One can then use, e.g., Lfun(L,s) to directly evaluate the respective L-functions at s, or
1funinit(L, [c,w,h] to initialize computations in the rectangular box R(s — ¢) < w, S(s) < h.

We now describe the low-level interface, used to input non-builtin L-functions. The input
is now a 6 or 7 component vector V = [a,astar,Vga, k, N,eps, poles], whose components are as
follows:

¢ V[1]=a encodes the Dirichlet series coefficients. The preferred format is a closure of arity 1:
n->vector(n,i,a(i)) giving the vector of the first n coefficients. The closure is allowed to return
a vector of more than n coefficients (only the first n will be considered) or even less than n, in
which case loss of accuracy will occur and a warning that #an is less than expected is issued. This
allows to precompute and store a fixed large number of Dirichlet coefficients in a vector v and use
the closure n->v, which does not depend on n. As a shorthand for this latter case, you can input
the vector v itself instead of the closure.

A second format is limited to multiplicative L functions affording an Euler product. It is a
closure of arity 2 (p,d)->L(p) giving the local factor L, at p as a rational function, to be evaluated
at p~° as in direuler; d is set to the floor of log,(n), where n is the total number of Dirichlet
coefficients (aq,...,a,) that will be computed in this way. This parameter d allows to compute
only part of L, when p is large and L, expensive to compute, but it can of course be ignored by
the closure.

Finally one can describe separately the generic Dirichlet coefficients and the bad local factors
by setting dir = [an, [pl,L;f], oo [P L;kl]], where an describes the generic coefficients in one of
the two formats above, except that coefficients a,, with p; | n for some ¢ < k will be ignored. The
subsequent pairs [Ly 11 give the bad primes and corresponding inverse local factors.

e V[2]=astar is the Dirichlet series coefficients of the dual function, encoded as a above. The
sentinel values 0 and 1 may be used for the special cases where a = a* and a = a*, respectively.

e V[3]=Vga is the vector of ; such that the gamma factor of the L-function is equal to

vals)= [Tr(s+ay),
1<i<d

where Tr(s) = m~°/?T'(s/2). This same syntax is used in the gammamellininv functions. In
particular the length d of Vga is the degree of the L-function. In the present implementation, the
a;j are assumed to be exact rational numbers. However when calling theta functions with complex
(as opposed to real) arguments, determination problems occur which may give wrong results when
the a; are not integral.

e V[4]=k is a positive integer k. The functional equation relates values at s and k& — s. For
instance, for an Artin L-series such as a Dedekind zeta function we have k = 1, for an elliptic curve
k = 2, and for a modular form, k& is its weight. For motivic L-functions, the motivic weight w is
w=k-—1.

195

e V[5]=N is the conductor, an integer N > 1, such that A(s) = N*/?~v4(s)L(s) with v4(s) as
above.

e V[6]=eps is the root number ¢, i.e., the complex number (usually of modulus 1) such that
A(a,k — s) = eA(a*, s).

e The last optional component V[7]=poles encodes the poles of the L or A-functions, and is
omitted if they have no poles. A polar part is given by a list of 2-component vectors [3, Ps(z)], where
(3 is a pole and the power series Pg(z) describes the attached polar part, such that L(s) — Pg(s — 3)
is holomorphic in a neighbourhood of 5. For instance P3 = r/x + O(1) for a simple pole at § or
r1/x* + ra/x + O(1) for a double pole. The type of the list describing the polar part allows to
distinguish between L and A: a t_VEC is attached to L, and a t_COL is attached to A.

The latter is mandatory unless a = a* (coded by astar equal to 0 or 1): otherwise, the poles
of L* cannot be infered from the poles of L ! (Whereas the functional equation allows to deduce
the polar part of A* from the polar part of A.) The special coding poles = r a complex scalar
is available in this case, to describe a L function with at most a single simple pole at s = k and
residue r. (This is the usual situation, for instance for Dedekind zeta functions.) This value r can
be set to 0 if unknown, and it will be computed.

The library syntax is GEN lfuncreate(GEN obj).

3.6.17 lfundiv(L1, L2). Creates the Ldata structure (without initialization) corresponding to the
quotient of the Dirichlet series L; and Ly given by L1 and L2. Assume that v,(L1) > v,(Ls) at all
complex numbers z: the construction may not create new poles, nor increase the order of existing
ones.

The library syntax is GEN 1fundiv(GEN L1, GEN L2, long bitprec).

3.6.18 lfunetaquo(l/). Returns the Ldata structure attached to the L function attached to the
modular form z — [, n(M;12)Mi2 Tt is currently assumed that f is a self-dual cuspidal form on
['y(N) for some N. For instance, the L-function > 7(n)n~° attached to Ramanujan’s A function
is encoded as follows

? L = lfunetaquo(Mat([1,24]1));
? 1funan(L, 100) \\ first 100 values of tau(n)

The library syntax is GEN 1funetaquo (GEN M).
3.6.19 lfungenus2(F’). Returns the Ldata structure attached to the L function attached to the
genus-2 curve defined by y> = F(z) or y> + Q(z)y = P(z) if F = [P,Q]. Currently, the model

needs to be minimal at 2, and if the conductor is even, its valuation at 2 might be incorrect (a
warning is issued).

The library syntax is GEN 1fungenus2(GEN F).

196

3.6.20 lfunhardy(L,t). Variant of the Hardy Z-function given by L, used for plotting or locating
zeros of L(k/2 + it) on the critical line. The precise definition is as follows: if as usual k/2 is the
center of the critical strip, d is the degree, a; the entries of Vga giving the gamma factors, and €
the root number, then if we set s = k/2 + it = pe? and E = (d(k/2 — 1) + di<j<a®i)/2, the
computed function at t is equal to

Z(t) = 12A(s) - |s| Fett/?

which is a real function of ¢ for self-dual A, vanishing exactly when L(k/2 + it) does on the critical
line. The normalizing factor |s| Fe#?/? compensates the exponential decrease of y4(s) as t = 0o
so that Z(t) = 1.

? T = 100; \\ maximal height

? L = 1funinit(1, [T]); \\ initialize for zeta(l/2+it), |[tI<T
7 \p19 \\ no need for large accuracy

? ploth(t = 0, T, lfunhardy(L,t))

Using 1funinit is critical for this particular applications since thousands of values are computed.
Make sure to initialize up to the maximal ¢ needed: otherwise expect to see many warnings for
unsufficient initialization and suffer major slowdowns.

The library syntax is GEN 1funhardy(GEN L, GEN t, long bitprec).

3.6.21 Ifuninit(L, sdom,{der = 0}). Initalization function for all functions linked to the com-
putation of the L-function L(s) encoded by L, where s belongs to the rectangular domain
sdom = [center,w, h] centered on the real axis, |R(s) — center| < w, |J(s)| < h, where all three
components of sdom are real and w, h are non-negative. der is the maximum order of derivation
that will be used. The subdomain [k/2,0, h] on the critical line (up to height h) can be encoded as
[h] for brevity. The subdomain [k/2,w, h] centered on the critical line can be encoded as [w, h| for
brevity.

The argument L is an Lmath, an Ldata or an Linit. See ?7Ldata and ??1funcreate for how
to create it.

The height h of the domain is a crucial parameter: if you only need L(s) for real s, set h to 0.
The running time is roughly proportional to

(B/d + mh/4)?/?+3N1/2

where B is the default bit accuracy, d is the degree of the L-function, and N is the conductor (the
exponent d/2 + 3 is reduced to d/2 + 2 when d = 1 and d = 2). There is also a dependency on w,
which is less crucial, but make sure to use the smallest rectangular domain that you need.

LO = 1lfuncreate(1); \\ Riemann zeta

L = 1funinit(LO, [1/2, 0, 100]); \\ for zeta(l/2+it), [t| < 100
1fun(L, 1/2 + I)

L = 1funinit(LO, [100]); \\ same as above !

NN N N

The library syntax is GEN 1funinitO(GEN L, GEN sdom, long der, long bitprec).

197

3.6.22 Ifunlambda(L, s, {D = 0}). Compute the completed L-function A(s) = N*/?~(s)L(s), or
if D is set, the derivative of order D at s. The parameter L is either an Lmath, an Ldata (created
by lfuncreate, or an Linit (created by 1funinit), preferrably the latter if many values are to be
computed.

The result is given with absolute error less than 2~ 5|v(s) N*/2|, where B = realbitprecision.
The library syntax is GEN 1funlambdaO(GEN L, GEN s, long D, long bitprec).
3.6.23 lfunmfspec(L). Returns [valeven,valodd,omminus,omplus], where valeven (resp.,
valodd) is the vector of even (resp., odd) periods of the modular form given by L, and ommi-

nus and omplus the corresponding real numbers w™ and w™ normalized in a noncanonical way. For
the moment, only for modular forms of even weight.

The library syntax is GEN 1lfunmfspec(GEN L, long bitprec).
3.6.24 lfunmul(L1,L2). Creates the Ldata structure (without initialization) corresponding to
the product of the Dirichlet series given by L1 and L2.

The library syntax is GEN 1funmul (GEN L1, GEN L2, long bitprec).
3.6.25 lfunorderzero(L, {m = —1}). Computes the order of the possible zero of the L-function
at the center k/2 of the critical strip; return 0 if L(k/2) does not vanish.

If m is given and has a non-negative value, assumes the order is at most m. Otherwise, the
algorithm chooses a sensible default:

e if the L argument is an Linit, assume that a multiple zero at s = k/2 has order less than
or equal to the maximal allowed derivation order.

e clse assume the order is less than 4.

You may explicitly increase this value using optional argument m; this overrides the default
value above. (Possibly forcing a recomputation of the Linit.)

The library syntax is long lfunorderzero(GEN L, long m, long bitprec).
3.6.26 lfunqgf(@). Returns the Ldata structure attached to the © function of the lattice attached
to the definite positive quadratic form ().

? L = 1fungf(matid(2));

? 1funqgf (L,2)

%2 = 6.0268120396919401235462601927282855839
? 1fun(x"2+1,2)*4

%3 = 6.0268120396919401235462601927282855839

The library syntax is GEN 1funqgf (GEN Q, long prec).

198

3.6.27 lfunrootres(data). Given the Ldata attached to an L-function (or the output of 1fun-
thetainit), compute the root number and the residues. The output is a 3-component vector
[r, R,w], where r is the residue of L(s) at the unique pole, R is the residue of A(s), and w is the
root number. In the present implementation,

e either the polar part must be completely known (and is then arbitrary): the function deter-
mines the root number,

? L = 1funmul(1,1); \\ zeta"2

? [r,R,w] = 1lfunrootres(L);

7 r \\ single pole at 1, double

%3 = [[1, 1.[...]*x"-2 + 1.1544[...1*x"-1 + 0(x"0)]]
7w

%=1

7 R \\ double pole at 0 and 1

#5 = [[1,[...11, [O,[...1]

e or at most a single pole is allowed: the function computes both the root number and the
residue (0 if no pole).

The library syntax is GEN 1funrootres(GEN data, long bitprec).

3.6.28 Ifuntheta(data,t,{m = 0}). Compute the value of the m-th derivative at ¢ of the theta
function attached to the L-function given by data. data can be either the standard L-function
data, or the output of 1funthetainit. The theta function is defined by the formula ©(t) =
> sy a(n)K(nt/\/(N)), where a(n) are the coefficients of the Dirichlet series, N is the conductor,
and K is the inverse Mellin transform of the gamma product defined by the Vga component. Its
Mellin transform is equal to A(s) — P(s), where A(s) is the completed L-function and the rational
function P(s) its polar part. In particular, if the L-function is the L-function of a modular form
f(1) =32, 50 a(n)g” with ¢ = exp(2mir), we have O(t) = 2(f(it/v/N) — a(0)). Note that an easy
theorem on modular forms implies that a(0) can be recovered by the formula a(0) = —L(f,0).

The library syntax is GEN 1funtheta(GEN data, GEN t, long m, long bitprec).

3.6.29 Ifunthetacost(L, {tdom},{m = 0}). This function estimates the cost of running 1fun-
thetainit(L,tdom,m) at current bit precision. Returns the number of coefficients a,, that would
be computed. This also estimates the cost of a subsequent evaluation 1funtheta, which must com-
pute that many values of gammamellininv at the current bit precision. If L is already an Linit,
then tdom and m are ignored and are best left omitted: we get an estimate of the cost of using
that particular Linit.

7 \pb 1000
? L. = 1funcreate(1); \\ Riemann zeta
? 1funthetacost(L); \\ cost for theta(t), t real >=1
%1 = 15
? 1funthetacost(L, 1 + I); \\ cost for theta(1+I). Domain error !
%ok ok at top-level: lfunthetacost(1,1+I)
*kk T e
x%% lfunthetacost: domain error in lfunthetaneed: arg t > 0.78b
? 1funthetacost(L, 1 + I/2) \\ for theta(1+I/2).
%2 = 23
? 1funthetacost(L, 1 + I/2, 10) \\ for theta”~((10)) (1+I1/2).

199

%3 = 24
7 1funthetacost(L, [2, 1/10]1) \\ cost for theta(t), |t|l >= 2, larg(t)| < 1/10
%4 = 8

? L = 1funcreate(ellinit([1,1]));
? 1funthetacost(L) \\ for t >=1
%6 = 2471

The library syntax is long lfunthetacostO(GEN L, GEN tdom = NULL, long m, long
bitprec).

3.6.30 lfunthetainit(L, {tdom},{m = 0}). Initalization function for evaluating the m-th deriva-
tive of theta functions with argument ¢ in domain tdom. By default (tdom omitted), ¢ is real, ¢t > 1.
Otherwise, tdom may be

e a positive real scalar p: tis real, ¢t > p.

e a non-real complex number: compute at this particular ¢; this allows to compute 6(z) for
any complex z satisfying |z| > |t| and | arg z| < |argt|; we must have |2argz/d| < 7/2, where d is
the degree of the I" factor.

e a pair [p,a]: assume that |t| > p and |argt| < a; we must have |2a/d| < 7 /2, where d is the
degree of the I' factor.

7 \pb00

? L = 1lfuncreate(1); \\ Riemann zeta
7t = 1+I/2;

?

1funtheta(L, t); \\ direct computation
time = 30 ms.
? T = 1funthetainit(L, 1+I/2);
time = 30 ms.
? 1funtheta(T, t); \\ instantaneous

The T structure would allow to quickly compute #(z) for any z in the cone delimited by ¢ as
explained above. On the other hand

? 1funtheta(T,I)
*** at top-level: 1lfuntheta(T,I)
O

xx% lfuntheta: domain error in lfunthetaneed: arg t > 0.785398163397448
The initialization is equivalent to
7 lfunthetainit(L, [abs(t), arg(t)])

The library syntax is GEN 1funthetainit(GEN L, GEN tdom = NULL, long m, long bit-
prec).

200

3.6.31 lfunzeros(L, lim,{divz = 8}). 1im being either a positive upper limit or a non-empty real
interval inside [0, +00[, computes an ordered list of zeros of L(s) on the critical line up to the given
upper limit or in the given interval. Use a naive algorithm which may miss some zeros: it assumes
that two consecutive zeros at height 7' > 1 differ at least by 27 /w, where

w:=divz - (dlog(T/27) + d + 2log(N/(m/2)%)).

To use a finer search mesh, set divz to some integral value larger than the default (= 8).

? 1funzeros(1l, 30) \\ zeros of Rieman zeta up to height 30

%1 = [14.134[...]1, 21.022[...]1, 25.010[...1]

? #1funzeros(1l, [100,110]) \\ count zeros with 100 <= Im(s) <= 110
%2 = 4

The algorithm also assumes that all zeros are simple except possibly on the real axis at s = k/2 and
that there are no poles in the search interval. (The possible zero at s = k/2 is repeated according
to its multiplicity.)

Should you pass an Linit argument to the function, beware that the algorithm needs at least
L = 1funinit(Ldata, T+1)

where T is the upper bound of the interval defined by 1im: this allows to detect zeros near T.
Make sure that your Linit domain contains this one. The algorithm assumes that a multiple zero
at s = k/2 has order less than or equal to the maximal derivation order allowed by the Linit. You
may increase that value in the Linit but this is costly: only do it for zeros of low height or in
lfunorderzero instead.

The library syntax is GEN 1lfunzeros(GEN L, GEN lim, long divz, long bitprec).

3.7 Modular symbols.

Let A := Div’(P'(Q)) be the abelian group of divisors of degree 0 on the rational projective
line. The standard GL(2, Q) action on P1(Q) via homographies naturally extends to A. Given

e (G a finite index subgroup of SL(2,Z),
e a field F' and a finite dimensional representation V/F of GL(2,Q),

we consider the space of modular symbols M := Homg(A, V). This finite dimensional F-vector
space is a G-module, canonically isomorphic to H! (X (G), V'), and allows to compute modular forms
for G.

Currently, we only support the groups I'g(N) (N > 1 an integer) and the representations
Vi = Q[X,Y]r—2 (k > 2 an integer) over Q. We represent a space of modular symbols by an ms
structure, created by the function msinit. It encodes basic data attached to the space: chosen
Z[G]-generators (g;) for A (and relations among those) and an F-basis of M. A modular symbol s
is thus given either in terms of this fixed basis, or as a collection of values s(g;) satisfying certain
relations.

A subspace of M (e.g. the cuspidal or Eisenstein subspaces, the new or old modular symbols,
etc.) is given by a structure allowing quick projection and restriction of linear operators; its first
component is a matrix whose columns form an F-basis of the subspace.

201

3.7.1 msatkinlehner(M,Q,{H}). Let M be a full modular symbol space of level N, as given
by msinit, let @ | N, (Q,N/Q) = 1, and let H be a subspace stable under the Atkin-Lehner
involution wg. Return the matrix of wg acting on H (M if omitted).

7 M = msinit(36,2); \\ M_2(Gamma_0(36))

? w = msatkinlehner(M,4); w2 ==

w2 =1

? #w \\ involution acts on a 13-dimensional space
%3 = 13

7?7 M = msinit (36,2, -1); \\ M_2(Gamma_0(36))"-
? w = msatkinlehner(M,4); w™2 ==

%5 =1
7 #w
%6 =4

The library syntax is GEN msatkinlehner(GEN M, long Q, GEN H = NULL).

3.7.2 mscuspidal(M, {flag = 0}). M being a full modular symbol space, as given by msinit,
return its cuspidal part S. If flag = 1, return [S, E] its decomposition into cuspidal and Eisenstein
parts.

A subspace is given by a structure allowing quick projection and restriction of linear operators;
its first component is a matrix with integer coefficients whose columns form a Q-basis of the
subspace.

? M = msinit (2,8, 1); \\ M_8(Gamma_0(2)) "+
? [S,E] = mscuspidal(M, 1);

? E[1] \\ 2-dimensional

%3 =

[0 -10]

[0 -15]
[0 -3]
[1 o]

? S[1] \\ 1-dimensional
W4 =
[3]

[30]
[6]
[-8]

The library syntax is GEN mscuspidal(GEN M, long flag).

202

3.7.3 mseisenstein(M). M being a full modular symbol space, as given by msinit, return its
Eisenstein subspace. A subspace is given by a structure allowing quick projection and restriction of
linear operators; its first component is a matrix with integer coefficients whose columns form a Q-
basis of the subspace. This is the same basis as given by the second component of mscuspidal(M, 1).

? M = msinit (2,8, 1); \\ M_8(Gamma_0(2)) "+
? E = mseisenstein(M);
? E[1]1 \\ 2-dimensional

%3 =

[0 -10]

[0 -15]

[0 -3]

[1 0]

? E == mscuspidal(M,1) [2]
=1

The library syntax is GEN mseisenstein(GEN M).

3.7.4 mseval(M, s, {p}). Let A := Div’(P*(Q)). Let M be a full modular symbol space, as
given by msinit, let s be a modular symbol from M, i.e. an element of Homg(A, V), and let
p = [a,b] € A be a path between two elements in P1(Q), return s(p) € V. The path extremities a
and b may be given as t_INT, t_FRAC or oo = (1 :0). The symbol s is either

e a t_COL coding an element of a modular symbol subspace in terms of the fixed basis of
Homg (A, V) chosen in M; if M was initialized with a non-zero sign (+ or —), then either the basis
for the full symbol space or the +-part can be used (the dimension being used to distinguish the
two).

e a t_VEC (v;) of elements of V', where the v; = s(g;) give the image of the generators g; of
A, see mspathgens. We assume that s is a proper symbol, i.e. that the v; satisfy the mspathgens
relations.

If p is omitted, convert the symbol s to the second form: a vector of the s(g;).

7?7 M = msinit(2,8,1); \\ M_8(Gamma_0(2)) "+

7 g = mspathgens (M) [1]

%2 = [[+o0, 0], [0, 111

? N = msnew(M) [1]; #N \\ Q-basis of new subspace, dimension 1
%3 =1

7?7 s = N[,1] \\ t_COL representation

%4 = [-3, 6, -8]~

? S = mseval(M, s) \\ t_VEC representation

%5 = [64%x"6-272xx"4+136*%x"2-8, 384*x"5+960*x"4+192%x"3-672%x"2-432*%x-72]
7 mseval(M,s, gl[1])

%6 = 64%xx"6 - 272%x"4 + 136%x"2 - 8

7 mseval(M,S, gl[1])

%7 = 64%x"6 - 272%x"4 + 136%x"2 - 8

Note that the symbol should have values in V' = Q[z,y]x—2, we return the de-homogenized values
corresponding to y = 1 instead.

The library syntax is GEN mseval (GEN M, GEN s, GEN p = NULL).

203

3.7.5 msfromcusp(M,c). Returns the modular symbol attached to the cusp ¢, where M is a
modular symbol space of level N, attached to G = T'o(N). The cusp ¢ in P}(Q)/G can be given
either as oo (= (1:0)), as a rational number a/b (= (a : b)). The attached symbol maps the path
[b] — [a] € Div?(PY(Q)) to E.(b) — E.(a), where E.(r) is 0 when r # ¢ and X*~2 | , otherwise,
where 7, -7 = (1 :0). These symbol span the Eisenstein subspace of M.

? M = msinit(2,8); \\ M_8(Gamma_0(2))
? E = mseisenstein(M);

? E[1] \\ two-dimensional

%3 =

[0 -10]

[0 -15]

[0 -3]

[1 0]

7 s = msfromcusp(M,o00)

%4 = [0, 0, O, 1]~

? mseval(M, s)

%5 = [1, 0]

? s = msfromcusp(M,1)

%6 = [-5/16, -15/32, -3/32, 0]~

? mseval(M,s)

%7 = [-x76, -6%x"5 — 15%xx"4 - 20%x"3 - 15%x"2 - 6xx — 1]

In case M was initialized with a non-zero sign, the symbol is given in terms of the fixed basis
of the whole symbol space, not the + or — part (to which it need not belong).

? M = msinit(2,8, 1); \\ M_8(Gamma_0(2)) "+
? E = mseisenstein(M);

7 E[1] \\ still two-dimensional, in a smaller space

3 =

[0 -10]
[0 3]
-1 0]

7 s = msfromcusp(M,00) \\ in terms of the basis for M_8(Gamma_0(2)) !
% = [0, 0, O, 1]~

7 mseval(M, s) \\ same symbol as before

% = [1, 0]

The library syntax is GEN msfromcusp(GEN M, GEN c).

204

3.7.6 msfromell(E, {sign = 0}). Let E/Q be an elliptic curve of conductor N. For ¢ = 1, we
define the (cuspidal, new) modular symbol z¢ in H!(Xy(N), Q)¢ attached to E. For all primes p
not dividing N we have T),(z°) = apa°, where a, = p+ 1 - #E(F,).

Let QT = E.omega[1] be the real period of E (integration of the Néron differential dz/(2y +
a1z + a3) on the connected component of E(R), i.e. the generator of Hy(E,Z)") normalized by
Q" > 0. Let i)~ the integral on a generator of Hi(E,Z) with Q= € Rsg. If ¢y is the number of
connected components of E(R), 7 is equal to (—2/c) X imag(E.omega[2]). The complex modular
symbol is defined by

F:6— 2i7r/f(z)dz
5
The modular symbols z¢ are normalized so that F = xTQT + 27iQ1~. In particular, we have
z*([0] - [o0]) = L(E, 1) /07,

which defines % unless L(FE, 1) = 0. Furthermore, for all fundamental discriminants D such that
e-D > 0, we also have

Y (Dla)a*([a/|D) ~ [e]) = L(E, (D), 1) /5,

0<a<|D|

where (D|.) is the Kronecker symbol. The period Q7 is also 2/cy, x the real period of the twist
EY = elltwist(E, —4)

This function returns the pair [M,], where M is msinit(N,2) and z is 2519 as above when
sign = +1, and x = [z, 27| when sign is 0. The modular symbols z* are given as a t_COL (in
terms of the fixed basis of Homg (A, Q) chosen in M).

? E=ellinit([0,-1,1,-10,-201); \\ X_0(11)

? [M,xpl= msfromell(E,1);

7 xp

%3 = [1/5, -1/2, -1/2]~

? [M,x]= msfromell(E);

7 x \\ both x"+ and x"-

% = [[1/5, -1/2, -1/2]1~, [0, 1/2, -1/2]-]

7 p = 23; (mshecke(M,p) - ellap(E,p))*x[1]

%6 = [0, 0, 0]~ \\ true at all primes, including p = 11; same for x[2]

The library syntax is GEN msfromell (GEN E, long sign).

3.7.7 msfromhecke(M,v,{H}). Given a msinit M and a vector v of pairs [p, P] (where p is prime
and P is a polynomial with integer coefficients), return a basis of all modular symbols such that
P(T,)(s) =0. If H is present, it must be a Hecke-stable subspace and we restrict to s € H. When
T, has a rational eigenvalue and P(x) = — a,, has degree 1, we also accept the integer a, instead
of P.

? E = ellinit([0,-1,1,-10,-20]1) \\1l1al
7 ellap(E,2)

%2 = -2
7 ellap(E,3)
%3 = -1

205

? M = msinit(11,2);

? S = msfromhecke(M, [[2,-2],[3,-111)
W5 =

[1 1]

[-5 0]

[0 -5]

? mshecke(M, 2, S)

%6 =

[-2 0]

[0 -2]

? M = msinit(23,4);

? S = msfromhecke(M, [[5, x"4-14%x"3-244*x"~2+4832*xx-19904]1]);
? factor(charpoly(mshecke(M,5,3)))

%9 =

[x"4 - 14%x"3 - 244%x"2 + 4832%x - 19904 2]

The library syntax is GEN msfromhecke (GEN M, GEN v, GEN H = NULL).

3.7.8 msgetlevel(M). M being a full modular symbol space, as given by msinit, return its level

N.

The library syntax is long msgetlevel (GEN M).

3.7.9 msgetsign(M). M being a full modular symbol space, as given by msinit, return its sign:
+1 or 0 (unset).

? M = msinit (11,4, 1);
7 msgetsign (M)

w2 =1

? M = msinit(11,4);

7 msgetsign(M)

W =0

The library syntax is long msgetsign(GEN M).

3.7.10 msgetweight(M). M being a full modular symbol space, as given by msinit, return its
weight k.

7 M = msinit(11,4);
7 msgetweight (M)
%2 = 4

The library syntax is long msgetweight (GEN M).

206

3.7.11 mshecke(M,p,{H}). M being a full modular symbol space, as given by msinit, p being a
prime number, and H being a Hecke-stable subspace (M if omitted) return the matrix of 7, acting
on H (U, if p divides N). Result is undefined if H is not stable by T}, (resp. U,).

? M = msinit(11,2); \\ M_2(Gamma_0(11))
? T2 = mshecke(M,2)

%2 =

[3 0 0]
[1 -2 0]
[1 0 -2]

? M = msinit(11,2, 1); \\ M_2(Gamma_0(11))"+
? T2 = mshecke(M,2)

h4 =

[3 0]

[-1 -2]

? N = msnew(M) [1] \\ Q-basis of new cuspidal subspace
W5 =

[-2]

[-5]

7 p = 1009; mshecke(M, p, N) \\ action of T_1009 on N
W6 =

[-10]

7 ellap(ellinit("11al"), p)

% = -10

The library syntax is GEN mshecke(GEN M, long p, GEN H = NULL).

3.7.12 msinit(G,V, {sign = 0}). Given G a finite index subgroup of SL(2,Z) and a finite
dimensional representation V of GL(2,Q), creates a space of modular symbols, the G-module
Homg (Div?(P'(Q)), V). This is canonically isomorphic to H!(X(G), V), and allows to compute
modular forms for G. If sign is present and non-zero, it must be £1 and we consider the subspace
defined by Ker(o — sign), where o is induced by [-1,0;0,1]. Currently the only supported groups
are the I'g(IV), coded by the integer N > 1. The only supported representation is Vj, = Q[X, Y]x_2,
coded by the integer k& > 2.

The library syntax is GEN msinit(GEN G, GEN V, long sign).

3.7.13 msissymbol(M,s). M being a full modular symbol space, as given by msinit, check
whether s is a modular symbol attached to M.

? M = msinit (7,8, 1); \\ M_8(Gamma_0(7))"+
? N = msnew(M) [1];

? s =N[,1];

7 msissymbol(M, s)

%M =1

? S = mseval(M,s);

7 msissymbol(M, S)

%6 =1

? [g,R] = mspathgens(M); g

207

W7 = [[+oo, 0], [0, 1/2], [1/2, 1]1]

7 #R \\ 3 relations among the generators g_i
w8 =3

? T = 8; T[3]++; \\ randomly perturb S(g_3)

7 msissymbol(M, T)

%10 = 0 \\ no longer satisfies the relations

The library syntax is long msissymbol (GEN M, GEN s).

3.7.14 msnew(M). M being a full modular symbol space, as given by msinit, return the new part
of its cuspidal subspace. A subspace is given by a structure allowing quick projection and restriction
of linear operators; its first component is a matrix with integer coefficients whose columns form a
Q-basis of the subspace.

? M = msinit (11,8, 1); \\ M_8(Gamma_0(11))"+
? N = msnew(M);

7 #N[1] \\ 6-dimensional

%3 = 6

The library syntax is GEN msnew(GEN M).

3.7.15 msomseval(Mp, PHI, path). Return the vectors of moments of the p-adic distribution
attached to the path path by the overconvergent modular symbol PHI.

? M = msinit(3,6,1);

? Mp= mspadicinit(M,5,10);

? phi = [5,-3,-1]~;

msissymbol (M,phi)

%=1

7 PHI = mstooms(Mp,phi);

? ME = msomseval (Mp,PHI, [oo, 0]);

-~

The library syntax is GEN msomseval (GEN Mp, GEN PHI, GEN path).

3.7.16 mspadicL(mu, {s = 0}, {r = 0}). Returns the value (or r-th derivative) on a character x*
of Zy, of the p-adic L-function attached to mu.

Let ® be the p-adic distribution-valued overconvergent symbol attached to a modular symbol
¢ for To(NN) (eigenvector for T (p) for the eigenvalue a,). Then L,(®,x*) = L,(u, s) is the p-adic
L function defined by

L) = [()
Z;
where p is the distribution on Z; defined by the restriction of ®([oc]—[0]) to Z;. The r-th derivative
is taken in direction (x):

*
P

L (@, x*) = / ¥*(2) (log 2)7 du(2).

In the argument list,

e mu is as returned by mspadicmoments (distributions attached to ® by restriction to discs
a +pVZp7 (aap) = 1)

208

o s =[sq1,s2] with sy € Z C Z, and s, mod p — 1 or s3 mod 2 for p = 2, encoding the p-adic
character x* := (x)°'7°; here x is the cyclotomic character from Gal(Q,(up~)/Qp) to Z;, and
7 is the Teichmiiller character (for p > 2 and the character of order 2 on (Z/4Z)* if p = 2); for
convenience, the character [s, s] can also be represented by the integer s.

When a,, is a p-adic unit, L, takes its values in Q,. When a, is not a unit, it takes its values
in the two-dimensional Q,-vector space D.,is(M(¢)) where M(¢) is the “motive” attached to @,
and we return the two p-adic components with respect to some fixed Q,-basis.

7?7 M = msinit(3,6,1); phi=[5, -3, -1]~;

? msissymbol(M,phi)

%2 =1

7 Mp = mspadicinit(M, 5, 4);

? mu = mspadicmoments(Mp, phi); \\ no twist
\\ End of initializations

7 mspadicL(mu,0) \\ L_p(chi~0)

%5 =5 4+ 2%5°2 + 2573 + 2%574 + ...

7 mspadicL(mu,1) \\ L_p(chi), zero for parity reasons
w6 = [0(5713)]~

? mspadicL(mu,2) \\ L_p(chi~2)

%7 = 3 + 4x5 + 4x572 + 3*%575 + ...

7 mspadicL (mu, [0,2]) \\ L_p(tau~2)

%8 =3 + 5 + 2%¥572 + 2x5°3 + ..,

7 mspadicL(mu, [1,0]) \\ L_p(<chi>)

%9 = 3%5 + 2572 + 573 + 2x5°7 + 578 + 5710 + 2x5°11 + 0(5°13)
? mspadicL(mu,0,1) \\ L_p’(chi~0)

%10 = 2%5 + 44572 + 3%573 + ...

? mspadicL(mu, 2, 1) \\ L_p’(chi~2)

%11 = 4%5 + 3%5°2 + 5°3 + 574 + ..,

Now several quadratic twists: mstooms is indicated.

7 PHI = mstooms(Mp,phi);

? mu = mspadicmoments(Mp, PHI, 12); \\ twist by 12

? mspadicL (mu)

h14 =5 + 572 + 573 + 2x574 + ...

? mu = mspadicmoments(Mp, PHI, 8); \\ twist by 8

7 mspadicL (mu)

5h16 = 2 + 3%5 + 34572 + 2%574 + ...

? mu = mspadicmoments(Mp, PHI, -3); \\ twist by -3 < 0

7 mspadicL (mu)

%18 = 0(5713) \\ always O, phi is in the + part and D < O

One can locate interesting symbols of level N and weight k& with msnew and mssplit. Note
that instead of a symbol, one can input a 1-dimensional Hecke-subspace from mssplit: the function
will automatically use the underlying basis vector.

M=msinit(5,4,1); \\ M_4(Gamma_0(5)) "+

L = mssplit(M, msnew(M)); \\ list of irreducible Hecke-subspaces
phi = L[1]; \\ one Galois orbit of newforms

#phi[1] \\... this one is rational

EEVEE VRN Y

209

%=1
? Mp = mspadicinit(M, 3, 4);

7 mu = mspadicmoments(Mp, phi);

7 mspadicL (mu)

%7 =1+ 3+ 373+ 374 + 24375 + 376 + 0(379)

? M = msinit (11,8, 1); \\ M_8(Gamma_0(11))"+

? Mp = mspadicinit(M, 3, 4);

7?7 L = mssplit(M, msnew(M));

? phi = L[1]; #phi[1] \\ ... this one is two-dimensional
w1 =2

7 mu = mspadicmoments(Mp, phi);

*o% ok at top-level: mu=mspadicmoments (Mp,ph

Hok ok e

***x mspadicmoments: incorrect type in mstooms [dim_Q (eigenspace) > 1]

The library syntax is GEN mspadicL(GEN mu, GEN s = NULL, long r).

3.7.17 mspadicinit(M,p,n, {flag}). M being a full modular symbol space, as given by msinit,
and p a prime, initialize technical data needed to compute with overconvergent modular symbols,
modulo p™. If flag is unset, allow all symbols; else initialize only for a restricted range of symbols
depending on flag: if flag = 0 restrict to ordinary symbols, else restrict to symbols ¢ such that
T,(¢) = app, with vy(a,) > flag, which is faster as flag increases. (The fastest initialization is
obtained for flag = 0 where we only allow ordinary symbols.) For supersingular eigensymbols, such
that p | ap, we must further assume that p does not divide the level.

? E = ellinit("11al1");

7 [M,phi] = msfromell(E,1);

? ellap(E,3)

w3 = -1

? Mp = mspadicinit(M, 3, 10, 0); \\ commit to ordinary symbols
7 PHI = mstooms(Mp,phi);

If we restrict the range of allowed symbols with flag(for faster initialization), exceptions will
occur if vp(ap) violates this bound:

? E = ellinit("15al1");

? [M,phi] = msfromell(E,1);

? ellap(E,7)

%3 =0

7 Mp = mspadicinit(M,7,5,0); \\ restrict to ordinary symbols
? PHI = mstooms(Mp,phi)

x** at top-level: PHI=mstooms (Mp,phi)

*okok g

**%*x mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag]l (t_VEC).
7 Mp = mspadicinit(M,7,5); \\ no restriction

? PHI = mstooms(Mp,phi);

This function uses O(N?(n + k)?p) memory, where N is the level of M.

The library syntax is GEN mspadicinit(GEN M, long p, long n, long flag).

210

3.7.18 mspadicmoments(Mp, PHI,{D = 1}). Given Mp from mspadicinit, an overconvergent
eigensymbol PHI from mstooms and a fundamental discriminant D coprime to p, let PHI” denote
the twisted symbol. This function computes the distribution p = PHI® ([0] — 00]) | Zj restricted to
Z. More precisely, it returns the moments of the p — 1 distributions PHIP ([0] — [oc]) | (a + pZy),
0 < a < p. We also allow PHI to be given as a classical symbol, which is then lifted to an
overconvergent symbol by mstooms; but this is wasteful if more than one twist is later needed.

The returned data p (p-adic distributions attached to PHI) can then be used in mspadicL or
mspadicseries. This precomputation allows to quickly compute derivatives of different orders or
values at different characters.

? M = msinit (3,6, 1);

? phi = [5,-3,-1]~;

7 msissymbol(M, phi)

w3 =1

7 p = b; mshecke(M,p) * phi \\ eigenvector of T_5, a_5 = 6
%4 = [30, -18, -6]~

7 Mp = mspadicinit(M, p, 10, 0); \\ restrict to ordinary symbols, mod p~10
7 PHI = mstooms(Mp, phi);

7 mu = mspadicmoments(Mp, PHI);

7 mspadicL (mu)

h8 =5 + 2x572 + 2*%573 + ...

? mu = mspadicmoments(Mp, PHI, 12); \\ twist by 12

7 mspadicL (mu)

%10 =5 + 572 + 573 + 2%x574 + ...

The library syntax is GEN mspadicmoments(GEN Mp, GEN PHI, long D).

3.7.19 mspadicseries(mu,{i = 0}). Let ® be the p-adic distribution-valued overconvergent
symbol attached to a modular symbol ¢ for I'g(N) (eigenvector for T (p) for the eigenvalue a,).
If p is the distribution on Z; defined by the restriction of ®([oo] — [0]) to Zj, let

Lyl 7)) = [01+)50 o5 e

*
p

Here, 7 is the Teichmiiller character and u is a specific multiplicative generator of 1+2pZ,. (Namely
1+pifp>2or5if p=2.) To explain the formula, let G, := Gal(Q(up=)/Q), let x : Goo — Z,
be the cyclotomic character (isomorphism) and v the element of G such that x(y) = w; then
x ()08)/ 108, () — ()

The p-padic precision of individual terms is maximal given the precision of the overconvergent
symbol p.

7 [M,phi] = msfromell(ellinit("17al"),1);

? Mp = mspadicinit(M, 5,7);

? mu = mspadicmoments(Mp, phi,1); \\ overconvergent symbol

7 mspadicseries(mu)

%4 = (4 + 3*5 + 4x572 + 2x5°3 + 2%574 + 575 + 4x576 + 3%5°7 + 0(579)) \
+ (3 + 3%5 + 572 + 573 + 2x574 + 576 + 0(577))*x \

+ (2 + 3%5 + 572 + 4%5°3 + 2%574 + 0(575))*x"2 \

+ (3 + 4%5 + 4%572 + 0(573))*x"3 \

211

+ (3 + 0(5))*x"4 + 0(x"5)
An example with non-zero Teichmiiller:

7 [M,phi] = msfromell(ellinit("11lal"),1);

? Mp = mspadicinit(M, 3,10);

? mu = mspadicmoments(Mp, phi,1);

? mspadicseries(mu, 2)

%4 = (2 + 3+ 372 + 24373 + 2%3°5 + 376 + 377 + 3710 + 3711 + 0(3712)) \
+ (1 + 3 + 2%¥372 + 373 + 375 + 24376 + 2%37°8 + 0(379))*x \

+ (1 + 2%3 + 374 + 2%375 + 0(376))*x"2 \

+ (3 + 0(372))*x"3 + 0(x74)

Supersingular example (not checked)

7?7 E = ellinit("17al"); ellap(E,3)

% =0

7 [M,phi] = msfromell(E,1);

7 Mp = mspadicinit(M, 3,7);

7 mu = mspadicmoments(Mp, phi,1);

7 mspadicseries(mu)

%5 = [(2%¥3"-1 + 1 + 3 + 372 + 3"3 + 374 + 375 + 376 + 0(3°7)) \
+ (2 + 373 + 0(375))*x \
+ (1 + 2%3 + 0(372))*x"2 + 0(x73),\
(3-1 +1 +3+32+33+34+35+36+0(37)) \
+ (1 + 2%3 + 2*%372 + 373 + 2*374 + 0(375))*x \
+ (837-2 + 37-1 + 0(372))*x"2 + 0(3"-2)*x"3 + 0(x~4)]

Example with a twist:

? E = ellinit("11a1");

? [M,phi] = msfromell(E,1);

? Mp = mspadicinit(M, 3,10);

? mu = mspadicmoments(Mp, phi,5); \\ twist by 5

7 L = mspadicseries(mu)

%5 = (2%372 + 24374 + 375 + 376 + 2x377 + 2x3710 + 0(3712)) \
+ (2%372 + 2%376 + 377 + 378 + 0(379))*x \

+ (373 + 0(376))*x"2 + 0(372)*x"3 + 0(x"4)

7 mspadicL (mu)

%6 = [2%372 + 2374 + 375 + 376 + 2*3°7 + 2*x3710 + 0(3712)]~
? ellpadicL(E,3,10,,5)

%7 = 2 + 2%372 + 373 + 2%x374 + 2375 + 376 + 2x3°7 + 0(3710)
7 mspadicseries(mu,1) \\ must be 0

%8 = 0(3712) + 0(379)*x + 0(3"6)*x"2 + 0(372)*x"3 + 0(x"4)

The library syntax is GEN mspadicseries(GEN mu, long i).

212

3.7.20 mspathgens(M). Let A := Div®(P'(Q)). Let M being a full modular symbol space, as
given by msinit, return a set of Z[G]-generators for A. The output is [g, R], where g is a minimal
system of generators and R the vector of Z[G]-relations between the given generators. A relation is
coded by a vector of pairs [a;,i] with a; € Z[G] and i the index of a generator, so that), a;g[i] = 0.

An element [v] — [u] in A is coded by the “path” [u,v], where oo denotes the point at infinity
(1 :0) on the projective line. An element of Z[G] is coded by a “factorization matrix”: the first
column contains distinct elements of GG, and the second integers:

? M = msinit(11,8); \\ M_8(Gamma_0(11))

? [g,R] = mspathgens(M);

‘g

%3 = [[+oo, 01, [0, 1/3], [1/3, 1/2]]1 \\ 3 paths
7 #R \\ a single relation

W4 =1

7 r = R[1]; #r \\ ...involving all 3 generators
w5 =3

7 r[1]

% = [[1, 1; [1, 1; o, 11, -1], 1]

7 r[2]

7= [0, 1; [7, -2; 11, -3], -11, 2]

? r[3]

%8 = [[1: 1; [83 _3; 11: _4]’ _1]’ 3]

The given relation is of the form »,(1 —;)g; = 0, with ; € I'g(11). There will always be a single
relation involving all generators (corresponding to a round trip along all cusps), then relations
involving a single generator (corresponding to 2 and 3-torsion elements in the group:

? M = msinit(2,8); \\ M_8(Gamma_0(2))
? [g,R] = mspathgens(M);
7 g
%3 = [[+oo, 01, [0, 11]
Note that the output depends only on the group G, not on the representation V.

The library syntax is GEN mspathgens (GEN M).

3.7.21 mspathlog(M,p). Let A := Div’(P*(Q)). Let M being a full modular symbol space, as
given by msinit, encoding fixed Z[G]-generators (g;) of A (see mspathgens). A path p = [a,b]
between two elements in P'(Q) corresponds to [b] — [a] € A. The path extremities a and b may be
given as t_INT, t_FRAC or oo = (1:0).

Returns (p;) in Z[G] such that p =" p;g;.

7 M = msinit(2,8); \\ M_8(Gamma_0(2))
? [g,R] = mspathgens(M);

”g

%3 = [[+o0, 01, [0, 11]

7 p = mspathlog(M, [1/2,2/3]);

7 pl1]

%5 =

[[1, 0; 2, 1] 1]

7 pl2]

213

e =
[([1, 0; 0, 1] 1]

([s, -1; 4, -1] 1]

Note that the output depends only on the group G, not on the representation V.
The library syntax is GEN mspathlog(GEN M, GEN p).

3.7.22 msqexpansion(M, projH,{B = seriesprecision}). M being a full modular symbol space,
as given by msinit, and projH being a projector on a Hecke-simple subspace (as given by mssplit),
return the Fourier coefficients a,,, n < B of the corresponding normalized newform. If B is omitted,
use seriesprecision.

This function uses a naive O(B?d®) algorithm, where d = O(kN) is the dimension of
My(To(N)).

? M = msinit (11,2, 1); \\ M_2(Gamma_0(11))"+

7?7 L = mssplit(M, msnew(M));

7 msqgexpansion(M,L[1], 20)

%3 =11, -2, -1, 2,1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]
? ellan(ellinit("11al"), 20)

%4 =1, -2, -1, 2,1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]

The shortcut msqexpansion(M, s, B) is available for a symbol s, provided it is a Hecke eigenvector:

? E = ellinit("11al");

? [M,s]=msfromell(E);

? msgexpansion(M,s,10)

%3 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
? ellan(E, 10)

%4 =[1, -2, -1, 2, 1, 2, -2, 0, -2, -2]

The library syntax is GEN msqexpansion(GEN M, GEN projH, long precdl).

3.7.23 mssplit(M, H,{dimlim}). Let M denote a full modular symbol space, as given by
msinit(N,k,1) or msinit(N,k, —1) and let H be a Hecke-stable subspace of msnew(A). This
function split H into Hecke-simple subspaces. If dimlim is present and positive, restrict to sub-
spaces of dimension < dimlim. A subspace is given by a structure allowing quick projection and
restriction of linear operators; its first component is a matrix with integer coefficients whose columns
form a Q-basis of the subspace.

7 M = msinit (11,8, 1); \\ M_8(Gamma_0(11))"+
7?7 L = mssplit(M, msnew(M));

7 #L

%3 = 2

? f = msqexpansion(M,L[1],5); f[1].mod

%4 = x°2 + 8%x - 44

7 1ift(£)

%5 = [1, x, -6xx - 27, -8*xx - 84, 20*x - 155]
7 g = msqexpansion(M,L[2],5); gl[1].mod

%6 = x~4 - 558*%x"2 + 140*x + 51744

214

To a Hecke-simple subspace corresponds an orbit of (normalized) newforms, defined over a number
field. In the above example, we printed the polynomials defining the said fields, as well as the first
5 Fourier coefficients (at the infinite cusp) of one such form.

The library syntax is GEN mssplit(GEN M, GEN H, long dimlim).
3.7.24 msstar(M,{H}). M being a full modular symbol space, as given by msinit, return the

matrix of the * involution, induced by complex conjugation, acting on the (stable) subspace H (M
if omitted).

7?7 M = msinit(11,2); \\ M_2(Gamma_0(11))
? w = msstar(M);

7T w2 ==

%3 =1

The library syntax is GEN msstar(GEN M, GEN H = NULL).

3.7.25 mstooms(Mp, phi). Given Mp from mspadicinit, lift the (classical) eigen symbol phi
to a p-adic distribution-valued overconvergent symbol in the sense of Pollack and Stevens. More
precisely, let ¢ belong to the space W of modular symbols of level N, v,(N) < 1, and weight £ which
is an eigenvector for the Hecke operator T (p) for a non-zero eigenvalue a, and let Ny = lem(N, p).

Under the action of T, (p), ¢ generates a subspace Wy of dimension 1 (if p | IV) or 2 (if p does
not divide N) in the space of modular symbols of level Njy.

Let V, = [p,0;0,1] and C, = [ap, p*~1;—1,0]. When p does not divide N and a, is divisible
by p, mstooms returns the lift ® of (¢, ¢|;V,) such that

Tn,(p)® =Cp®

When p does not divide N and a,, is not divisible by p, mstooms returns the lift ® of p—a 19|V,

which is an eigenvector of T, (p) for the unit eigenvalue where o — a,a + p*=1 = 0.

The resulting overconvergent eigensymbol can then be used in mspadicmoments, then mspadicL
or mspadicseries.

7?7 M = msinit (3,6, 1); p = 5;
? Tp = mshecke(M, p); factor(charpoly(Tp))

%2 =
[x - 3126 2]
[x-61]

7 phi = matker(Tp - 6)[,1] \\ generator of p-Eigenspace, a_p = 6

%3 =[5, -3, -1]~

7 Mp = mspadicinit(M, p, 10, 0); \\ restrict to ordinary symbols, mod p~10
? PHI = mstooms(Mp, phi);

7 mu = mspadicmoments(Mp, PHI);

? mspadicL (mu)

W7 =5 + 2x%572 + 2%573 + ...

A non ordinary symbol.
7?7 M = msinit(4,6,1); p = 3;
? Tp = mshecke(M, p); factor(charpoly(Tp))

215

w2 =
[x - 244 3]
[x + 12 1]
7 phi = matker(Tp + 12)[,1] \\ a_p = -12 is divisible by p = 3
%3 = [-1/32, -1/4, -1/32, 1]~
7 msissymbol(M,phi)
W o=1
? Mp = mspadicinit(M,3,5,0);
7 PHI = mstooms(Mp,phi);
*xkk at top-level: PHI=mstooms (Mp,phi)
*ok ok e
*** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag]l (t_VEC).
7 Mp = mspadicinit(M,3,5,1);
? PHI = mstooms(Mp,phi);

The library syntax is GEN mstooms(GEN Mp, GEN phi).

3.8 General number fields.

In this section, we describe functions related to general number fields. Functions related to
quadratic number fields are found in Section 3.4 (Arithmetic functions).
3.8.1 Number field structures.

Let K = Q[X]/(T) a number field, Zg its ring of integers, T' € Z[X] is monic. Three basic
number field structures can be attached to K in GP:

e nf denotes a number field, i.e. a data structure output by nfinit. This contains the basic
arithmetic data attached to the number field: signature, maximal order (given by a basis nf .zk),
discriminant, defining polynomial 7', etc.

e Onf denotes a “Buchmann’s number field”, i.e. a data structure output by bnfinit. This
contains nf and the deeper invariants of the field: units U(K), class group CL(K), as well as
technical data required to solve the two attached discrete logarithm problems.

e bnr denotes a “ray number field”, i.e. a data structure output by bnrinit, corresponding to
the ray class group structure of the field, for some modulus f. It contains a bnf, the modulus f,
the ray class group Cly(K') and data attached to the discrete logarithm problem therein.
3.8.2 Algebraic numbers and ideals.
An algebraic number belonging to K = Q[X]/(T) is given as

e a t_INT, t_FRAC or t_POL (implicitly modulo T'), or

e a t_POLMOD (modulo T"), or

e a t_COL v of dimension N = [K : Q], representing the element in terms of the computed
integral basis, as sum(i = 1, N, v[i] #* nf.zk[i]). Note that a t_VEC will not be recognized.
An ideal is given in any of the following ways:

e an algebraic number in one of the above forms, defining a principal ideal.

216

e 3 prime ideal, i.e. a 5-component vector in the format output by idealprimedec or ideal-
factor.

e a t_MAT, square and in Hermite Normal Form (or at least upper triangular with non-negative
coefficients), whose columns represent a Z-basis of the ideal.

One may use idealhnf to convert any ideal to the last (preferred) format.

e an extended ideal is a 2-component vector [I,t], where I is an ideal as above and t is
an algebraic number, representing the ideal (¢)I. This is useful whenever idealred is involved,
implicitly working in the ideal class group, while keeping track of principal ideals. Ideal operations
suitably update the principal part when it makes sense (in a multiplicative context), e.g. using
idealmul on [/, ¢], [J,u], we obtain [IJ,tu]. When it does not make sense, the extended part is
silently discarded, e.g. using idealadd with the above input produces / + J.

The “principal part” ¢t in an extended ideal may be represented in any of the above forms,
and also as a factorization matrix (in terms of number field elements, not ideals!), possibly the
empty matrix [;] representing 1. In the latter case, elements stay in factored form, or famat
for factorization matrix, which is a convenient way to avoid coefficient explosion. To recover the
conventional expanded form, try nffactorback; but many functions already accept famats as
input, for instance ideallog, so expanding huge elements should never be necessary.

3.8.3 Finite abelian groups.

A finite abelian group G in user-readable format is given by its Smith Normal Form as a pair
[h,d] or triple [h,d, g]. Here h is the cardinality of G, (d;) is the vector of elementary divisors, and
(9;) is a vector of generators. In short, G = ®i<n(Z/d;Z)g;, with d,, | ... | d2 | dy and [[d; = h.
This information can also be retrieved as GG.no, G.cyc and G.gen.

e a character on the abelian group ®(Z/d;Z)g; is given by a row vector x = [a1, ..., a,] such
that x([] g;”) =exp(2mi)_a;n;/d;).

e given such a structure, a subgroup H is input as a square matrix in HNF, whose columns
express generators of H on the given generators g;. Note that the determinant of that matrix is
equal to the index (G : H).

3.8.4 Relative extensions.

We now have a look at data structures attached to relative extensions of number fields L/ K,
and to projective Zx-modules. When defining a relative extension L/K, the nf attached to the
base field K must be defined by a variable having a lower priority (see Section 2.5.3) than the
variable defining the extension. For example, you may use the variable name y to define the base
field K, and z to define the relative extension L/K.

3.8.4.1 Basic definitions.

e rnf denotes a relative number field, i.e. a data structure output by rnfinit, attached to the
extension L/K. The nf attached to be base field K is rnf.nf.

e A relative matriz is an m X n matrix whose entries are elements of K, in any form. Its m
columns A; represent elements in K".

o An ideal list is a row vector of fractional ideals of the number field nf.

217

e A pseudo-matriz is a 2-component row vector (A,) where A is a relative m x n matrix and
I an ideal list of length n. If I = {a;,...,a,} and the columns of A are (4,,...,A4,), this data
defines the torsion-free (projective) Zx-module a; 4y @ a, 4,,.

e An integral pseudo-matriz is a 3-component row vector w(A,I,J) where A = (a;;) is an
m x n relative matrix and I = (by,...,b,,), J = (a1,...,a,) are ideal lists, such that a; ; € bm;l
for all ¢, j. This data defines two abstract projective Zg-modules N = ajw; & -+ P a,w, in K7,
P=bim ® - - ®bypny, in K™, and a Zg-linear map f: N — P given by

f(z ajw;) = Z (ai,jaj)nz’-

This data defines the Z-module M = P/f(N).

e Any projective Z-module M of finite type in K™ can be given by a pseudo matrix (A4, 7).

e An arbitrary Zjyx modules of finite type in K™, with non-trivial torsion, is given by an
integral pseudo-matrix (A, I, J)

3.8.4.2 Pseudo-bases, determinant.

e The pair (A, 1) is a pseudo-basis of the module it generates if the a; are non-zero, and the A;
are K-linearly independent. We call n the size of the pseudo-basis. If A is a relative matrix, the
latter condition means it is square with non-zero determinant; we say that it is in Hermite Normal
Form (HNF) if it is upper triangular and all the elements of the diagonal are equal to 1.

e For instance, the relative integer basis rnf.zk is a pseudo-basis (A,) of Zj,, where A =
rnf.zk[1] is a vector of elements of L, which are K-linearly independent. Most rnf routines return
and handle Zg-modules contained in L (e.g. Zp-ideals) via a pseudo-basis (A’,I"), where A’ is a
relative matrix representing a vector of elements of L in terms of the fixed basis rnf.zk[1]

e The determinant of a pseudo-basis (A4, I) is the ideal equal to the product of the determinant
of A by all the ideals of I. The determinant of a pseudo-matrix is the determinant of any pseudo-
basis of the module it generates.

3.8.5 Class field theory.

A modulus, in the sense of class field theory, is a divisor supported on the non-complex places
of K. In PARI terms, this means either an ordinary ideal I as above (no Archimedean component),
or a pair [I, a], where a is a vector with r; {0, 1}-components, corresponding to the infinite part of
the divisor. More precisely, the i-th component of a corresponds to the real embedding attached
to the i-th real root of K.roots. (That ordering is not canonical, but well defined once a defining
polynomial for K is chosen.) For instance, [1, [1,1]] is a modulus for a real quadratic field,
allowing ramification at any of the two places at infinity, and nowhere else.

A bid or “big ideal” is a structure output by idealstar needed to compute in (Zy /I)*, where
I is a modulus in the above sense. It is a finite abelian group as described above, supplemented by
technical data needed to solve discrete log problems.

Finally we explain how to input ray number fields (or bnr), using class field theory. These
are defined by a triple A, B, C, where the defining set [A, B,C] can have any of the following
forms: [bnr], [bnr, subgroup], [bnr, character], [bnf, mod], [bnf, mod, subgroup]. The last two forms
are kept for backward compatibility, but no longer serve any real purpose (see example below); no
newly written function will accept them.

218

e bnf is as output by bnfinit, where units are mandatory unless the modulus is trivial; bnr
is as output by bnrinit. This is the ground field K.

e mod is a modulus f, as described above.

o subgroup a subgroup of the ray class group modulo § of K. As described above, this is input
as a square matrix expressing generators of a subgroup of the ray class group bnr.clgp on the
given generators.

The corresponding bnr is the subfield of the ray class field of K modulo §, fixed by the given
subgroup.

7?7 K = bnfinit(y~2+1);

? bnr = bnrinit(K, 13)

? %.clgp

%3 = [36, [12, 3]1]

? bnrdisc(bnr); \\ discriminant of the full ray class field

7 bnrdisc(bnr, [3,1;0,1]1); \\ discriminant of cyclic cubic extension of K
? bnrconductor (bnr, [3,1]1); \\ conductor of chi: gl->zeta_1273, g2->zeta_3

We could have written directly

? bnrdisc(K, 13);
? bnrdisc(X, 13, [3,1;0,1]1);

avoiding one bnrinit, but this would actually be slower since the bnrinit is called internally
anyway. And now twice!

3.8.6 General use.

All the functions which are specific to relative extensions, number fields, Buchmann’s number
fields, Buchmann’s number rays, share the prefix rnf, nf, bnf, bnr respectively. They take as first
argument a number field of that precise type, respectively output by rnfinit, nfinit, bnfinit,
and bnrinit.

However, and even though it may not be specified in the descriptions of the functions below,
it is permissible, if the function expects a nf, to use a bnf instead, which contains much more
information. On the other hand, if the function requires a bnf, it will not launch bnfinit for you,
which is a costly operation. Instead, it will give you a specific error message. In short, the types

nf < bnf < bnr

are ordered, each function requires a minimal type to work properly, but you may always substitute
a larger type.

The data types corresponding to the structures described above are rather complicated. Thus,
as we already have seen it with elliptic curves, GP provides “member functions” to retrieve data
from these structures (once they have been initialized of course). The relevant types of number
fields are indicated between parentheses:

bid (bnr) : bid ideal structure.

bnf (bnr, bnf) : Buchmann’s number field.

clgp (bnr, bnf) : classgroup. This one admits the following three subclasses:
cyc : cyclic decomposition (SNF).
gen : generators.

219

no : number of elements.

diff (bnr, bnf, nf) : the different ideal.

codiff (bnr, bnf, nf) : the codifferent (inverse of the different in the ideal group).
disc (bnr, bnf, nf) : discriminant.

fu (bnr, bnf) : fundamental units.

index (bnr, bnf, nf) : index of the power order in the ring of integers.
mod (bnr) : modulus.

nf (bnr, bnf, nf) : number field.

pol (bnr, bnf, nf) : defining polynomial.

ri (bnr, bnf, nf) : the number of real embeddings.

r2 (bnr, bnf, nf) : the number of pairs of complex embeddings.

reg (bnr, bnf) : regulator.

roots (bnr, bnf, nf) : roots of the polynomial generating the field.

sign (bnr, bnf, nf) : signature [rl,r2].

t2 (bnr, bnf, nf) : the T, matrix (see nfinit).

tu (bnr, bnf) : a generator for the torsion units.

zk (bnr, bnf, nf) : integral basis, i.e. a Z-basis of the maximal order.
zkst (bnr) : structure of (Zgx/m)*.

Deprecated. The following member functions are still available, but deprecated and should not
be used in new scripts :

futu (bnr, bnf,) : [u1,..,u.,w], (u;) is a vector of fundamental units,
w generates the torsion units.
tufu (bnr, bnf,) : [w,uq,...,u,], (u;) is a vector of fundamental units,

w generates the torsion units.

For instance, assume that bnf = bnfinit(pol), for some polynomial. Then bnf .clgp retrieves
the class group, and bnf .clgp.no the class number. If we had set bnf = nfinit(pol), both would
have output an error message. All these functions are completely recursive, thus for instance
bnr.bnf.nf.zk will yield the maximal order of bnr, which you could get directly with a simple
bnr.zk.

3.8.7 Class group, units, and the GRH.

Some of the functions starting with bnf are implementations of the sub-exponential algorithms
for finding class and unit groups under GRH, due to Hafner-McCurley, Buchmann and Cohen-
Diaz-Olivier. The general call to the functions concerning class groups of general number fields
(i.e. excluding quadclassunit) involves a polynomial P and a technical vector

tech = [c1, co, nrpid],

where the parameters are to be understood as follows:

P is the defining polynomial for the number field, which must be in Z[X], irreducible and
monic. In fact, if you supply a non-monic polynomial at this point, gp issues a warning, then
transforms your polynomial so that it becomes monic. The nfinit routine will return a different
result in this case: instead of res, you get a vector [res,Mod(a,Q)], where Mod(a,Q) = Mod(X,P)
gives the change of variables. In all other routines, the variable change is simply lost.

The tech interface is obsolete and you should not tamper with these parameters. Indeed, from
version 2.4.0 on,

220

e the results are always rigorous under GRH (before that version, they relied on a heuristic
strengthening, hence the need for overrides).

e the influence of these parameters on execution time and stack size is marginal. They can
be useful to fine-tune and experiment with the bnfinit code, but you will be better off modifying
all tuning parameters in the C code (there are many more than just those three). We nevertheless
describe it for completeness.

The numbers ¢; < co are non-negative real numbers. By default they are chosen so that the
result is correct under GRH. For i = 1,2, let B; = ¢;(log|dk|)?, and denote by S(B) the set of
maximal ideals of K whose norm is less than B. We want S(Bj) to generate C1(K) and hope that
S(Bs) can be proven to generate CI(K).

More precisely, S(B;) is a factorbase used to compute a tentative CI(K) by generators and
relations. We then check explicitly, using essentially bnfisprincipal, that the elements of S(Bz)
belong to the span of S(B;). Under the assumption that S(Bs) generates Cl(K), we are done.
User-supplied ¢; are only used to compute initial guesses for the bounds B;, and the algorithm
increases them until one can prove under GRH that S(B:) generates CI(X). A uniform result of
Bach says that co = 12 is always suitable, but this bound is very pessimistic and a direct algorithm
due to Belabas-Diaz-Friedman is used to check the condition, assuming GRH. The default values
are ¢; = ¢ = 0. When c¢; is equal to 0 the algorithm takes it equal to cs.

nrpid is the maximal number of small norm relations attached to each ideal in the factor base.
Set it to 0 to disable the search for small norm relations. Otherwise, reasonable values are between
4 and 20. The default is 4.

Warning. Make sure you understand the above! By default, most of the bnf routines depend
on the correctness of the GRH. In particular, any of the class number, class group structure, class
group generators, regulator and fundamental units may be wrong, independently of each other.
Any result computed from such a bnf may be wrong. The only guarantee is that the units given
generate a subgroup of finite index in the full unit group. You must use bnfcertify to certify the
computations unconditionally.

Remarks.

You do not need to supply the technical parameters (under the library you still need to send
at least an empty vector, coded as NULL). However, should you choose to set some of them, they
must be given in the requested order. For example, if you want to specify a given value of nrpid,
you must give some values as well for ¢; and ¢z, and provide a vector [¢1, ¢z, nrpid].

Note also that you can use an nf instead of P, which avoids recomputing the integral basis
and analogous quantities.

3.8.8 bnfcertify(bnf, {flag = 0}). bnf being as output by bnfinit, checks whether the result is
correct, i.e. whether it is possible to remove the assumption of the Generalized Riemann Hypothesis.
It is correct if and only if the answer is 1. If it is incorrect, the program may output some error
message, or loop indefinitely. You can check its progress by increasing the debug level. The bnf
structure must contain the fundamental units:

7 K = bnfinit(x~3+27273+1); bnfcertify(K)
%ok ok at top-level: K=bnfinit(x"3+272"3+1) ;bnfcertify(K)
* ok ok B ettt
%x bnfcertify: missing units in bnf.

221

? K = bnfinit(x"3+2727°3+1, 1); \\ include units
? bnfcertify(X)
%3 =1

If flag is present, only certify that the class group is a quotient of the one computed in bnf
(much simpler in general); likewise, the computed units may form a subgroup of the full unit group.
In this variant, the units are no longer needed:

7 K = bnfinit(x"3+272"3+1); bnfcertify(K, 1)
%4 =1

The library syntax is long bnfcertifyO(GEN bnf, long flag). Also available is GEN bn-
fcertify(GEN bnf) (flag = 0).

3.8.9 bnfcompress(bnf). Computes a compressed version of bnf (from bnfinit), a “small Buch-
mann’s number field” (or sbnf for short) which contains enough information to recover a full bnf
vector very rapidly, but which is much smaller and hence easy to store and print. Calling bnfinit
on the result recovers a true bnf, in general different from the original. Note that an snbfis useless
for almost all purposes besides storage, and must be converted back to bnf form before use; for
instance, no nf*, bnf* or member function accepts them.

An sbnf is a 12 component vector v, as follows. Let bnf be the result of a full bnfinit,
complete with units. Then v[1] is bnf.pol, v[2] is the number of real embeddings bnf.sign[1],
v[3] is bnf.disc, v[4] is bnf.zk, v[5] is the list of roots bnf.roots, v[7] is the matrix W = bnf[1],
v[8] is the matrix matalpha = bnf[2], v[9] is the prime ideal factor base bnf [56] coded in a compact
way, and ordered according to the permutation bnf [6], v[10] is the 2-component vector giving
the number of roots of unity and a generator, expressed on the integral basis, v[11] is the list
of fundamental units, expressed on the integral basis, v[12] is a vector containing the algebraic
numbers alpha corresponding to the columns of the matrix matalpha, expressed on the integral
basis.

All the components are exact (integral or rational), except for the roots in v[5].

The library syntax is GEN bnfcompress (GEN bnf).

3.8.10 bnfdecodemodule(nf,m). If m is a module as output in the first component of an
extension given by bnrdisclist, outputs the true module.

? K = bnfinit(x"2+23); L = bnrdisclist(K, 10); s = L[1][2]
%1 = [[Mat([8, 11), [[0, 0, 0111, [Mat([9, 11), [[O, O, 01111
7 bnfdecodemodule (X, s[1][1])

%2 =

[2 0]

[0 1]

The library syntax is GEN decodemodule(GEN nf, GEN m).

222

3.8.11 bnfinit(P, {flag = 0}, {tech = []}). Initializes a bnf structure. Used in programs such as
bnfisprincipal, bnfisunit or bnfnarrow. By default, the results are conditional on the GRH,
see 3.8.7. The result is a 10-component vector bnf.

This implements Buchmann’s sub-exponential algorithm for computing the class group, the
regulator and a system of fundamental units of the general algebraic number field K defined by the
irreducible polynomial P with integer coefficients.

If the precision becomes insufficient, gp does not strive to compute the units by default (flag =
0).

When flag = 1, we insist on finding the fundamental units exactly. Be warned that this can
take a very long time when the coefficients of the fundamental units on the integral basis are very
large. If the fundamental units are simply too large to be represented in this form, an error message
is issued. They could be obtained using the so-called compact representation of algebraic numbers
as a formal product of algebraic integers. The latter is implemented internally but not publicly
accessible yet.

tech is a technical vector (empty by default, see 3.8.7). Careful use of this parameter may
speed up your computations, but it is mostly obsolete and you should leave it alone.

The components of a bnf or sbnf are technical and never used by the casual user. In fact:
never access a component directly, always use a proper member function. However, for the sake of
completeness and internal documentation, their description is as follows. We use the notations ex-
plained in the book by H. Cohen, A Course in Computational Algebraic Number Theory, Graduate
Texts in Maths 138, Springer-Verlag, 1993, Section 6.5, and subsection 6.5.5 in particular.

bnf[1] contains the matrix W, i.e. the matrix in Hermite normal form giving relations for the
class group on prime ideal generators (p;)i<i<r-

bnf[2] contains the matrix B, i.e. the matrix containing the expressions of the prime ideal
factorbase in terms of the p;. It is an 7 X ¢ matrix.

bnf[3] contains the complex logarithmic embeddings of the system of fundamental units which
has been found. It is an (ry +72) x (11 + 72 — 1) matrix.

bnf[4] contains the matrix M/ of Archimedean components of the relations of the matrix
(W|B).

bnf[5] contains the prime factor base, i.e. the list of prime ideals used in finding the relations.

bnf[6] used to contain a permutation of the prime factor base, but has been obsoleted. It
contains a dummy 0.

bnf[7] or bnf .nf is equal to the number field data nf as would be given by nfinit.

bnf[8] is a vector containing the classgroup bnf.clgp as a finite abelian group, the regulator
bnf .reg, a 1 (used to contain an obsolete “check number”), the number of roots of unity and a
generator bnf .tu, the fundamental units bnf . fu.

bnf[9] is a 3-element row vector used in bnfisprincipal only and obtained as follows. Let
D = UWYV obtained by applying the Smith normal form algorithm to the matrix W (= bnf[1])
and let U, be the reduction of U modulo D. The first elements of the factorbase are given (in
terms of bnf.gen) by the columns of U,., with Archimedean component g,; let also GD, be the
Archimedean components of the generators of the (principal) ideals defined by the bnf.gen[i]"
bnf.cyc[il. Then bnf[9] = [U,, go, GD,].

223

bnf[10] is by default unused and set equal to 0. This field is used to store further information
about the field as it becomes available, which is rarely needed, hence would be too expensive
to compute during the initial bnfinit call. For instance, the generators of the principal ideals
bnf.gen[i] “bnf.cyc[i] (during a call to bnrisprincipal), or those corresponding to the relations
in W and B (when the bnf internal precision needs to be increased).

The library syntax is GEN bnfinitO(GEN P, long flag, GEN tech = NULL, long prec)

Also available is GEN Buchall(GEN P, 1long flag, long prec), corresponding to tech =
NULL, where flag is either 0 (default) or nf_FORCE (insist on finding fundamental units). The
function GEN Buchall_param(GEN P, double cl, double c2, long nrpid, long flag, long
prec) gives direct access to the technical parameters.

3.8.12 bnfisintnorm(bnf, z). Computes a complete system of solutions (modulo units of positive
norm) of the absolute norm equation Norm(a) = x, where a is an integer in bnf. If bnf has not
been certified, the correctness of the result depends on the validity of GRH.

See also bnfisnorm.

The library syntax is GEN bnfisintnorm(GEN bnf, GEN x). The function GEN bnfisint-
normabs (GEN bnf, GEN a) returns a complete system of solutions modulo units of the abso-
lute norm equation |Norm(z)| = |a|. As fast as bnfisintnorm, but solves the two equations
Norm(z) = +a simultaneously.

3.8.13 bnfisnorm(bnf, x, {flag = 1}). Tries to tell whether the rational number z is the norm of
some element y in bnf. Returns a vector [a,b] where z = Norm(a) * b. Looks for a solution which
is an S-unit, with S a certain set of prime ideals containing (among others) all primes dividing z.
If bnf is known to be Galois, set flag = 0 (in this case, x is a norm iff b = 1). If flag is non zero
the program adds to S the following prime ideals, depending on the sign of flag. If flag > 0, the
ideals of norm less than flag. And if flag < O the ideals dividing flag.

Assuming GRH, the answer is guaranteed (i.e. z is a norm iff b = 1), if S contains all primes
less than 12log(disc(Bnf))?, where Bnf is the Galois closure of bnf.

See also bnfisintnorm.

The library syntax is GEN bnfisnorm(GEN bnf, GEN x, long flag).
3.8.14 bnfisprincipal(bnf,z, {flag = 1}). bnf being the number field data output by bnfinit,
and z being an ideal, this function tests whether the ideal is principal or not. The result is more
complete than a simple true/false answer and solves general discrete logarithm problem. Assume
the class group is ®(Z/d;Z)g; (where the generators g; and their orders d; are respectively given

by bnf.gen and bnf.cyc). The routine returns a row vector [e, t], where e is a vector of exponents
0 <e; < d;, and t is a number field element such that

xz(t)Hgfi-

For given g; (i.e. for a given bnf), the e; are unique, and ¢ is unique modulo units.

In particular, x is principal if and only if e is the zero vector. Note that the empty vector,
which is returned when the class number is 1, is considered to be a zero vector (of dimension 0).

224

? K = bnfinit(y~2+23);

7 K.cyc

%2 = [3]

7 K.gen

%3 = [[2, 0; 0, 11] \\ a prime ideal above 2
7?7 P = idealprimedec(K,3)[1]; \\ a prime ideal above 3
? v = bnfisprincipal(K, P)

%5 = [[2]~, [3/4, 1/4]1-]

? idealmul (K, v[2], idealfactorback(X, K.gen, v[1]))
%6 =

[3 0]

[0 1]
? % == idealhnf (K, P)
% =1

The binary digits of flagmean:

e 1: If set, outputs [e,t] as explained above, otherwise returns only e, which is much easier to
compute. The following idiom only tests whether an ideal is principal:

is_principal(bnf, x) = !bnfisprincipal (bnf,x,0);

e 2: It may not be possible to recover ¢, given the initial accuracy to which the bnf structure
was computed. In that case, a warning is printed and ¢ is set equal to the empty vector [1~. If
this bit is set, increase the precision and recompute needed quantities until ¢ can be computed.
Warning: setting this may induce lengthy computations.

The library syntax is GEN bnfisprincipalO(GEN bnf, GEN x, long flag). Instead of the
above hardcoded numerical flags, one should rather use an or-ed combination of the symbolic flags
nf_GEN (include generators, possibly a place holder if too difficult) and nf _FORCE (insist on finding
the generators).

3.8.15 bnfissunit(bnf, sfu,x). bnf being output by bnfinit, sfu by bnfsunit, gives the column
vector of exponents of x on the fundamental S-units and the roots of unity. If z is not a unit,
outputs an empty vector.

The library syntax is GEN bnfissunit (GEN bnf, GEN sfu, GEN x).

3.8.16 bnfisunit(bnf,z). bnf being the number field data output by bnfinit and z being an
algebraic number (type integer, rational or polmod), this outputs the decomposition of = on the
fundamental units and the roots of unity if z is a unit, the empty vector otherwise. More precisely,
if uy,...,u, are the fundamental units, and ¢ is the generator of the group of roots of unity (bnf .tu),
the output is a vector [x1,..., %, Zr41] such that = uj* ---uf~ - (*+'. The z; are integers for
¢ < r and is an integer modulo the order of ¢ for i =r + 1.

Note that bnf need not contain the fundamental unit explicitly:

? setrand(1l); bnf = bnfinit(x~2-x-100000);
? bnf.fu

*kk at top-level: bnf.fu

* Kok e

%% _.fu: missing units in .fu.

7 u = [119836165644250789990462835950022871665178127611316131167, \

225

379554884019013781006303254896369154068336082609238336] ~;
? bnfisunit(bnf, u)
%3 = [-1, Mod(0, 2)]1~

The given w is the inverse of the fundamental unit implicitly stored in bdnf. In this case, the
fundamental unit was not computed and stored in algebraic form since the default accuracy was
too low. (Re-run the command at “gl or higher to see such diagnostics.)

The library syntax is GEN bnfisunit(GEN bnf, GEN x).

3.8.17 bnflog(bnf,l). Let bnf be attached to a number field F' and let [be a prime number

(hereafter denoted ¢ for typographical reasons). Return the logarithmic ¢-class group Clp of F.
This is an abelian group, conjecturally finite (known to be finite if F'/Q is abelian). The function
returns if and only if the group is indeed finite (otherwise it would run into an infinite loop). Let
S = {p1,...,px} be the set of ¢-adic places (maximal ideals containing ¢). The function returns
[D,G({),G'], where

e D is the vector of elementary divisors for Cl 7
e GG({) is the vector of elementary divisors for the (conjecturally finite) abelian group

ClO) ={a= am;: degpa=0},

i<k

where the p; are the f-adic places of F'; this is a subgroup of QL.

. ,Ci/ is the vector of elementary divisors for the ¢-Sylow Cl’ of the S-class group of F'; the
group Cl maps to Cl’ with a simple co-kernel.

The library syntax is GEN bnflog(GEN bnf, GEN 1).

3.8.18 bnflogdegree(nf, A,1). Let nf be the number field data output by nfinit, attached to
the field F, and let [be a prime number (hereafter denoted ¢). The (-adified group of ideles of
F' quotiented by the group of logarithmic units is identified to the £-group of logarithmic divisors
®Z¢[p], generated by the maximal ideals of F'.

The degree map degy is additive with values in Zy, defined by degpp = fp deg, p, where the
integer f is as in bnflogef and deg, p is log, p for p # £, log,(1 + ¢) for p = £ # 2 and log,(1 + 2?)
forp=4£=2.

Let A = [[p™ be an ideal and let A = 3" ny[p] be the attached logarithmic divisor. Return
the exponential of the f-adic logarithmic degree deg, A, which is a natural number.

The library syntax is GEN bnflogdegree(GEN nf, GEN A, GEN 1).

226

3.8.19 bnflogef(nf, pr). Let I’ be a number field represented by the nf structure, and let pr be
a prid structure attached to the maximal ideal p/p. Return [6(F},/Q,), f(Fp/Qp)] the logarithmic
ramification and residue degrees. Let Qf/Q,, be the cyclotomic Z,-extension, then & = [Fy: FyNQ;]
f= [Fp N Qp:Qp). Note that éf = e(p/p)f(p/p), where e, f denote the usual ramification and
residue degrees.

? F = nfinit(y"6 - 3*xy"b + Bxy"3 - 3%y + 1);
7 bnflogef (F, idealprimedec(F,2)[1])

%2 = [6, 1]
7 bnflogef (F, idealprimedec(F,5)[1])
%3 = [1, 2]

The library syntax is GEN bnflogef (GEN nf, GEN pr).

3.8.20 bnfnarrow(bnf). bnf being as output by bnfinit, computes the narrow class group of bnf.
The output is a 3-component row vector v analogous to the corresponding class group component
bnf .clgp: the first component is the narrow class number v.no, the second component is a vector
containing the SNF cyclic components v.cyc of the narrow class group, and the third is a vector
giving the generators of the corresponding v.gen cyclic groups. Note that this function is a special
case of bnrinit; the bnf need not contain fundamental units.

The library syntax is GEN buchnarrow(GEN bnf)

3.8.21 bnfsignunit(bnf). bnf being as output by bnfinit, this computes an ry x (ry + 79 — 1)
matrix having +1 components, giving the signs of the real embeddings of the fundamental units.
The following functions compute generators for the totally positive units:

/* exponents of totally positive units generators on bnf.tufu */
tpuexpo (bnf)=
{ my(K, S = bnfsignunit(bnf), [m,n] = matsize(S));
\\m = bnf.r1, n = ri+r2-1
S = matrix(m,n, i,j, if (S[i,j] < 0, 1,0));
S concat (vectorv(m,i,1), S); \\ add sign(-1)
K = matker(S * Mod(1,2));
if (K, mathnfmodid(lift(X), 2), 2*matid(n+1))
}

/* totally positive fundamental units */

tpu(bnf)=

{ my(ex = tpuexpo(bnf)[,2..-11); \\ remove ex[,1], corresponds to 1 or -1
vector (#ex, i, nffactorback(bnf, bnf.tufu, ex[,i]));

}

The library syntax is GEN signunits(GEN bnf).

227

3.8.22 bufsunit(bnf,S). Computes the fundamental S-units of the number field bnf (output by
bnfinit), where S is a list of prime ideals (output by idealprimedec). The output is a vector v
with 6 components.

v[1] gives a minimal system of (integral) generators of the S-unit group modulo the unit group.
v[2] contains technical data needed by bnfissunit.

v[3] is an empty vector (used to give the logarithmic embeddings of the generators in v[1] in
version 2.0.16).

v[4] is the S-regulator (this is the product of the regulator, the determinant of v[2] and the
natural logarithms of the norms of the ideals in S).

v[5] gives the S-class group structure, in the usual format (a row vector whose three components
give in order the S-class number, the cyclic components and the generators).

v[6] is a copy of S.
The library syntax is GEN bnfsunit(GEN bnf, GEN S, long prec).

3.8.23 bnrL1(bnr,{H},{flag = 0}). Let bnr be the number field data output by bnrinit(,,1)
and H be a square matrix defining a congruence subgroup of the ray class group corresponding to
bnr (the trivial congruence subgroup if omitted). This function returns, for each character x of
the ray class group which is trivial on H, the value at s = 1 (or s = 0) of the abelian L-function
attached to x. For the value at s = 0, the function returns in fact for each x a vector [r,, ¢,] where

L(s,x) =c-s" +0(s")
near 0.

The argument flag is optional, its binary digits mean 1: compute at s = 0 if unset or s = 1 if
set, 2: compute the primitive L-function attached to x if unset or the L-function with Euler factors
at prime ideals dividing the modulus of bnr removed if set (that is Lg(s,x), where S is the set
of infinite places of the number field together with the finite prime ideals dividing the modulus of
bnr), 3: return also the character if set.

K = bnfinit (x~2-229);

bnr = bnrinit(K,1,1);

bnrLi (bnr)

returns the order and the first non-zero term of L(s, x) at s = 0 where x runs through the characters
of the class group of K = Q(+/229). Then

bnr2 = barinit(K,2,1);
bnrL1(bnr2, ,2)

returns the order and the first non-zero terms of Lg(s,x) at s = 0 where y runs through the
characters of the class group of K and S is the set of infinite places of K together with the finite
prime 2. Note that the ray class group modulo 2 is in fact the class group, so bnrL1(bnr2,0)
returns the same answer as bnrL1 (bnr,0).

This function will fail with the message
**xx bnrLl: overflow in zeta_get_NO [need too many primes].

if the approximate functional equation requires us to sum too many terms (if the discriminant of
K is too large).

The library syntax is GEN bnrL1(GEN bnr, GEN H = NULL, long flag, long prec).

228

3.8.24 burchar(bnr, g, {v}). Returns all characters y on bnr.clgp such that x(g;) = e(v;), where
e(x) = exp(2imx). If v is omitted, returns all characters that are trivial on the g;. Else the vectors
g and v must have the same length, the g; must be ideals in any form, and each v; is a rational
number whose denominator must divide the order of g; in the ray class group. For convenience,
the vector of the g; can be replaced by a matrix whose columns give their discrete logarithm, as
given by bnrisprincipal; this allows to specify abstractly a subgroup of the ray class group.

? bnr = borinit(bnfinit(x), [160,[1]1], 1); /* (Z/160Z)"* */

? bnr.cyc

%2 = [8, 4, 2]

7 g = bnr.gen;

? bnrchar(bnr, g, [1/2,0,0])

%4 = [[4, 0, 011 \\ a unique character

? bnrchar(bnr, [g[1],gl[31]) \\ all characters trivial on g[1] and g[3]
%5 = [[o, 1, 01, [0, 2, O], [0, 3, O], [0, O, 0O]]

? bnrchar (bnr, [1,0,0;0,1,0;0,0,2])

%6 = [[0, 0, 1], [0, O, 0]]1 \\ characters trivial on given subgroup

The library syntax is GEN bnrchar (GEN bnr, GEN g, GEN v = NULL).

3.8.25 bnrclassno(A, {B},{C}). Let A, B, C define a class field L over a ground field K (of
type [bnrl, [bnr, subgroupl, or [bnf, modulus], or [bnf, modulus,subgroup], Section 3.8.5);
this function returns the relative degree [L : K].

In particular if A is a bnf (with units), and B a modulus, this function returns the correspond-
ing ray class number modulo B. One can input the attached bid (with generators if the subgroup
C' is non trivial) for B instead of the module itself, saving some time.

This function is faster than bnrinit and should be used if only the ray class number is desired.
See bnrclassnolist if you need ray class numbers for all moduli less than some bound.

The library syntax is GEN bnrclassnoO(GEN A, GEN B = NULL, GEN C = NULL). Also avail-
able is GEN bnrclassno(GEN bnf, GEN f) to compute the ray class number modulo f.

3.8.26 bnrclassnolist(bnf, list). bnf being as output by bnfinit, and list being a list of moduli
(with units) as output by ideallist or ideallistarch, outputs the list of the class numbers of the
corresponding ray class groups. To compute a single class number, bnrclassno is more efficient.

? bnf = bnfinit(x"2 - 2);

? L = ideallist(bnf, 100, 2);

? H = bnrclassnolist(bnf, L);

? H[98]

% o= [1, 3, 1]

? 1 = L[1]1[98]; ids = vector(#l, i, 1[i].mod[1])

%5 = [[98, 88; 0, 11, [14, 0; O, 7], [98, 10; 0, 11]

The weird 1[i].mod[1], is the first component of 1[i] .mod, i.e. the finite part of the con-
ductor. (This is cosmetic: since by construction the Archimedean part is trivial, I do not want to
see it). This tells us that the ray class groups modulo the ideals of norm 98 (printed as %5) have
respectively order 1, 3 and 1. Indeed, we may check directly:

? bnrclassno(bnf, ids[2])
%6 =3

The library syntax is GEN bnrclassnolist(GEN bnf, GEN list).

229

3.8.27 bnrconductor(A, {B},{C},{flag = 0}). Conductor f of the subfield of a ray class field
as defined by [A, B,C] (of type [bnrl, [bnr, subgroupl, [bnf, modulus] or [bnf, modulus,
subgroup], Section 3.8.5)

If flag = 0, returns f.

If flag = 1, returns [f, Cly, H], where Cly is the ray class group modulo f, as a finite abelian
group; finally H is the subgroup of Cl; defining the extension.

If flag = 2, returns [f, bnr(f), H], as above except Cly is replaced by a bnr structure, as output
by bnrinit(, f,1).

In place of a subgroup H, this function also accepts a character chi = (a;), expressed as usual
in terms of the generators bnr.gen: x(g;) = exp(2ima;/d;), where g; has order d; = bnr.cyc[j].
In which case, the function returns respectively

If flag = 0, the conductor f of Kery.

If flag = 1, [f,Cly, x¢], where s is x expressed on the minimal ray class group, whose modulus
is the conductor.

Ifﬂag =2, [fa b’fL’f‘(f),Xf]-

The library syntax is GEN bnrconductorO(GEN A, GEN B = NULL, GEN C = NULL, 1long
flag).

Also available is GEN bnrconductor (GEN bnr, GEN H, long flag)

3.8.28 bunrconductorofchar(bnr, chi). This function is obsolete, use bnrconductor.

The library syntax is GEN bnrconductorofchar (GEN bnr, GEN chi).

3.8.29 burdisc(A, {B}, {C},{flag = 0}). A, B, C defining a class field L over a ground field K (of
type Lbnr], [bnr, subgroup]l, [bnr, character], [bnf, modulus] or [bnf, modulus, subgroup],
Section 3.8.5), outputs data [N,ry, D] giving the discriminant and signature of L, depending on
the binary digits of flag:

e 1: if this bit is unset, output absolute data related to L/Q: N is the absolute degree [L : Q],
r1 the number of real places of L, and D the discriminant of L/Q. Otherwise, output relative data
for L/K: N is the relative degree [L : K], r1 is the number of real places of K unramified in L (so
that the number of real places of L is equal to ry times N), and D is the relative discriminant ideal
of L/K.

e 2: if this bit is set and if the modulus is not the conductor of L, only return 0.

The library syntax is GEN bnrdiscO(GEN A, GEN B = NULL, GEN C = NULL, long flag)

230

3.8.30 bnrdisclist(bnf, bound, {arch}). bnf being as output by bnfinit (with units), computes
a list of discriminants of Abelian extensions of the number field by increasing modulus norm up to
bound bound. The ramified Archimedean places are given by arch; all possible values are taken if
arch is omitted.

The alternative syntax bnrdisclist(bnf, list) is supported, where list is as output by ideal-
list or ideallistarch (with units), in which case arch is disregarded.

The output v is a vector of vectors, where v[i][4] is understood to be in fact V[2!9(i — 1) + j]
of a unique big vector V. (This awkward scheme allows for larger vectors than could be otherwise
represented.)

V[k] is itself a vector W, whose length is the number of ideals of norm k. We consider first
the case where arch was specified. Each component of W corresponds to an ideal m of norm £,
and gives invariants attached to the ray class field L of bnf of conductor [m, arch]. Namely, each
contains a vector [m,d, r, D] with the following meaning: m is the prime ideal factorization of the
modulus, d = [L : Q] is the absolute degree of L, r is the number of real places of L, and D is the
factorization of its absolute discriminant. We set d = r = D = 0 if m is not the finite part of a
conductor.

If arch was omitted, all ¢t = 2™ possible values are taken and a component of W has the form

[m, [[d1,r1,D1],...,[di, e, Di]]], where m is the finite part of the conductor as above, and [d;, r;, D;]
are the invariants of the ray class field of conductor [m,v;], where v; is the i-th Archimedean
component, ordered by inverse lexicographic order; so v1 = [0,...,0], v = [1,0...,0], etc. Again,

we set d; = r; = D; = 0 if [m,v;] is not a conductor.

Finally, each prime ideal pr = [p, a, e, f, 5] in the prime factorization m is coded as the integer
p-n®>+(f—1)-n+(j—1), where n is the degree of the base field and j is such that

pr = idealprimedec(nf,p)[j].
m can be decoded using bnfdecodemodule.

Note that to compute such data for a single field, either bnrclassno or bnrdisc is more
efficient.

The library syntax is GEN bnrdisclistO(GEN bnf, GEN bound, GEN arch = NULL).

3.8.31 bnrgaloisapply(bnr, mat, H). Apply the automorphism given by its matrix mat to the
congruence subgroup H given as a HNF matrix. The matrix mat can be computed with bnrgalo-
ismatrix.

The library syntax is GEN bnrgaloisapply(GEN bnr, GEN mat, GEN H).

3.8.32 bnrgaloismatrix(bnr, aut). Return the matrix of the action of the automorphism aut
of the base field bnf.nf on the generators of the ray class field bnr.gen. aut can be given as a
polynomial, an algebraic number, or a vector of automorphisms or a Galois group as output by
galoisinit, in which case a vector of matrices is returned (in the later case, only for the generators
aut.gen).

See bnrisgalois for an example.

The library syntax is GEN bnrgaloismatrix(GEN bnr, GEN aut). When aut is a polynomial
or an algebraic number, GEN bnrautmatrix(GEN bnr, GEN aut) is available.

231

3.8.33 burinit(bnf, f,{flag = 0}). bnf is as output by bnfinit (including fundamental units), f
is a modulus, initializes data linked to the ray class group structure corresponding to this module,
a so-called bar structure. One can input the attached bid with generators for f instead of the
module itself, saving some time. (As in idealstar, the finite part of the conductor may be given
by a factorization into prime ideals, as produced by idealfactor.)

The following member functions are available on the result: .bnf is the underlying bnf, .mod
the modulus, .bid the bid structure attached to the modulus; finally, .clgp, .no, .cyc, .gen
refer to the ray class group (as a finite abelian group), its cardinality, its elementary divisors, its
generators (only computed if flag = 1).

The last group of functions are different from the members of the underlying bnf, which refer to
the class group; use bnr.bnf.zzz to access these, e.g. bnr.bnf.cyc to get the cyclic decomposition
of the class group.

They are also different from the members of the underlying bid, which refer to (Zx/f)*; use
bnr.bid.zxz to access these, e.g. bnr.bid.no to get ¢(f).

If flag = 0 (default), the generators of the ray class group are not computed, which saves time.
Hence bnr.gen would produce an error.

If flag = 1, as the default, except that generators are computed.

The library syntax is GEN bnrinitO(GEN bnf, GEN f, 1long flag). Instead the above
hardcoded numerical flags, one should rather use GEN Buchray(GEN bnf, GEN module, 1long
flag) where flag is an or-ed combination of nf GEN (include generators) and nf _INIT (if omitted,
return just the cardinality of the ray class group and its structure), possibly 0.

3.8.34 bnrisconductor(A4,{B}, {C}). Fast variant of bnrconductor(A4, B,C); A, B, C represent
an extension of the base field, given by class field theory (see Section 3.8.5). Outputs 1 if this
modulus is the conductor, and 0 otherwise. This is slightly faster than bnrconductor when the
character or subgroup is not primitive.

The library syntax is long bnrisconductorO(GEN A, GEN B = NULL, GEN C = NULL).

3.8.35 bnrisgalois(bnr, gal, H). Check whether the class field attached to the subgroup H is Galois
over the subfield of bnr.nf fixed by the group gal, which can be given as output by galoisinit,
or as a matrix or a vector of matrices as output by bnrgaloismatrix, the second option being
preferable, since it saves the recomputation of the matrices. Note: The function assumes that the
ray class field attached to bnr is Galois, which is not checked.

In the following example, we lists the congruence subgroups of subextension of degree at most
3 of the ray class field of conductor 9 which are Galois over the rationals.

K=bnfinit (a~4-3*a~2+253009) ;

G=galoisinit(K);

B=bnrinit(K,9,1);

L1=[H|H<-subgrouplist(B,3), bnrisgalois(B,G,H)]
##

M=bnrgaloismatrix(B,G)
L2=[H|H<-subgrouplist(B,3), bnrisgalois(B,M,H)]
##

The second computation is much faster since bnrgaloismatrix(B,G) is computed only once.

The library syntax is long bnrisgalois(GEN bnr, GEN gal, GEN H).

232

3.8.36 bnrisprincipal(bnr, z, {flag = 1}). bnr being the number field data which is output by
bnrinit(,,1) and x being an ideal in any form, outputs the components of x on the ray class group
generators in a way similar to bnfisprincipal. That is a 2-component vector v where v[1] is the
vector of components of x on the ray class group generators, v[2] gives on the integral basis an
element a such that z = a [, ¢;".

If flag = 0, outputs only vy. In that case, bnr need not contain the ray class group generators,
i.e. it may be created with bnrinit(,,0) If = is not coprime to the modulus of bnr the result is
undefined.

The library syntax is GEN bnrisprincipal (GEN bnr, GEN x, long flag). Instead of hard-
coded numerical flags, one should rather use GEN isprincipalray(GEN bnr, GEN x) for flag = 0,
and if you want generators:

borisprincipal (bnr, x, nf_GEN)

3.8.37 barrootnumber(bnr, chi, {flag = 0}). If x = chi is a character over bnr, not necessarily
primitive, let L(s,x) = >_,, x(id)N(id)~* be the attached Artin L-function. Returns the so-called
Artin root number, i.e. the complex number W (x) of modulus 1 such that

Al =s,x) = WH)A(s, X)
where A(s, x) = A(x)*/?7,(s)L(s, x) is the enlarged L-function attached to L.

The generators of the ray class group are needed, and you can set flag = 1 if the character is
known to be primitive. Example:

bnf = bnfinit(x"2 - x - 57);
bnr = bnrinit(bnf, [7,[1,1]1], 1);
bnrrootnumber (bnr, [2,1])

returns the root number of the character x of Clyoo, 00, (Q(1/229)) defined by x(g%g5) = ¢?2¢S. Here
g1,92 are the generators of the ray-class group given by bnr.gen and (; = e2™/N1 ¢, = ¢2im/N
where N1, Ny are the orders of g; and go respectively (N; = 6 and N, = 3 as bar.cyc readily tells
us).

The library syntax is GEN bnrrootnumber (GEN bnr, GEN chi, long flag, long prec)

3.8.38 burstark(bnr, { subgroup}). bnr being as output by bnrinit(,,1), finds a relative equation
for the class field corresponding to the modulus in bnr and the given congruence subgroup (as usual,
omit, subgroup if you want the whole ray class group).

The main variable of bnr must not be x, and the ground field and the class field must be
totally real. When the base field is Q, the vastly simpler galoissubcyclo is used instead. Here is
an example:

bnf = bnfinit(y~"2 - 3);

bnr = bnrinit(bnf, 5, 1);

bnrstark (bnr)
returns the ray class field of Q(v/3) modulo 5. Usually, one wants to apply to the result one of

rnfpolredabs(bnf, pol, 16) \\ compute a reduced relative polynomial
rnfpolredabs(bnf, pol, 16 + 2) \\ compute a reduced absolute polynomial

233

The routine uses Stark units and needs to find a suitable auxiliary conductor, which may not
exist when the class field is not cyclic over the base. In this case bnrstark is allowed to return a
vector of polynomials defining independent relative extensions, whose compositum is the requested
class field. It was decided that it was more useful to keep the extra information thus made available,
hence the user has to take the compositum herself.

Even if it exists, the auxiliary conductor may be so large that later computations become
unfeasible. (And of course, Stark’s conjecture may simply be wrong.) In case of difficulties, try
rnfkummer:

7 bnr = barinit(bnfinit(y~8-12*y~6+36*y~4-36%y~2+9,1), 2, 1);
? bnrstark(bnr)
*ok % at top-level: bnrstark(bnr)
K%k R
x bnrstark: need 3919350809720744 coefficients in initzeta.
%x Computation impossible.
? lift(rnfkummer (bnr))
time = 24 ms.
Y2 = x°2 + (1/3%y"6 - 11/3%y~4 + 8%y~2 - 5)

The library syntax is GEN bnrstark(GEN bnr, GEN subgroup = NULL, long prec).

3.8.39 dirzetak(nf,b). Gives as a vector the first b coefficients of the Dedekind zeta function of
the number field nf considered as a Dirichlet series.

The library syntax is GEN dirzetak(GEN nf, GEN b).

3.8.40 factornf(x,t). This function is obsolete, use nffactor.

factorization of the univariate polynomial x over the number field defined by the (univariate)
polynomial ¢. z may have coefficients in Q or in the number field. The algorithm reduces to
factorization over Q (Trager’s trick). The direct approach of nffactor, which uses van Hoeij’s
method in a relative setting, is in general faster.

The main variable of ¢ must be of lower priority than that of z (see Section 2.5.3). However
if non-rational number field elements occur (as polmods or polynomials) as coefficients of z, the
variable of these polmods must be the same as the main variable of £. For example

? factornf(x"2 + Mod(y, y 2+1), y 2+1);
? factornf(x"2 + y, y~2+1); \\ these two are OK
7 factornf(x"2 + Mod(z,z"2+1), y 2+1)
*ok ok at top-level: factornf (x"2+Mod(z,z
* %k %k S———————
**x* factornf: inconsistent data in rnf function.
? factornf(x"2 + z, y~2+1)
* %k at top-level: factornf(x"2+z,y"2+1
*k ok e e e

**x*x factornf: incorrect variable in rnf function.

The library syntax is GEN polfnf (GEN x, GEN t).

234

3.8.41 galoisexport(gal, {flag}). gal being be a Galois group as output by galoisinit, export
the underlying permutation group as a string suitable for (no flags or flag = 0) GAP or (flag = 1)
Magma. The following example compute the index of the underlying abstract group in the GAP
library:

7 G = galoisinit(x"6+108);

7 s = galoisexport(G)

%2 = "Group((1, 2, 3)(4, 5, 6), (1, 4)(2, 6)(3, 5"
7 extern("echo \"IdGroup("s");\" | gap -q")

»3 = [6, 1]
7 galoisidentify(G)
W = [6, 1]

This command also accepts subgroups returned by galoissubgroups.

To import a GAP permutation into gp (for galoissubfields for instance), the following GAP
function may be useful:

PermToGP := function(p, n)
return Permuted([1..n],p);
end;

gap> p:= (1,26)(2,5)(3,17)(4,32)(6,9)(7,11)(8,24) (10,13) (12,15) (14,27)
(16,22) (18,28) (19,20) (21,29) (23,31) (25,30)

gap> PermToGP(p,32);

[26, 5, 17, 32, 2, 9, 11, 24, 6, 13, 7, 15, 10, 27, 12, 22, 3, 28, 20, 19,
29, 16, 31, 8, 30, 1, 14, 18, 21, 25, 23, 4]

The library syntax is GEN galoisexport(GEN gal, long flag).
3.8.42 galoisfixedfield(gal, perm, {flag},{v = y}). gal being be a Galois group as output by
galoisinit and perm an element of gal.group, a vector of such elements or a subgroup of gal as

returned by galoissubgroups, computes the fixed field of gal by the automorphism defined by the
permutations perm of the roots gal.roots. P is guaranteed to be squarefree modulo gal.p.

If no flags or flag = 0, output format is the same as for nfsubfield, returning [P, z] such that
P is a polynomial defining the fixed field, and z is a root of P expressed as a polmod in gal.pol.

If flag = 1 return only the polynomial P.

If flag = 2 return [P, z, F] where P and z are as above and F' is the factorization of gal.pol
over the field defined by P, where variable v (y by default) stands for a root of P. The priority of
v must be less than the priority of the variable of gal.pol (see Section 2.5.3). Example:

7 G = galoisinit(x"4+1);
7 galoisfixedfield(G,G.group[2],2)
%2 = [x"2 + 2, Mod(x"3 + x, x74 + 1), [x"2 - y*x - 1, x"2 + y*x - 1]]

computes the factorization z* + 1 = (2 — /=22 — 1)(z* + V=22 — 1)

The library syntax is GEN galoisfixedfield(GEN gal, GEN perm, long flag, long v =
-1) where v is a variable number.

235

3.8.43 galoisgetpol(a, {b},{s}). Query the galpol package for a polynomial with Galois group
isomorphic to GAP4(a,b), totally real if s = 1 (default) and totally complex if s = 2. The output
is a vector [pol, den| where

e pol is the polynomial of degree a

e den is the denominator of nfgaloisconj(pol). Pass it as an optional argument to ga-
loisinit or nfgaloisconj to speed them up:

7 [pol,den] = galoisgetpol(64,4,1);

7 G = galoisinit(pol);

time = 352ms

7 galoisinit(pol, den); \\ passing ’den’ speeds up the computation
time = 264ms

7% =%

%4 =1 \\ same answer
If b and s are omitted, return the number of isomorphism classes of groups of order a.

The library syntax is GEN galoisgetpol(long a, long b, long s). Also available is GEN
galoisnbpol(long a) when b and s are omitted.

3.8.44 galoisidentify(gal). gal being be a Galois group as output by galoisinit, output the
isomorphism class of the underlying abstract group as a two-components vector [o,i]|, where o is
the group order, and ¢ is the group index in the GAP4 Small Group library, by Hans Ulrich Besche,
Bettina Eick and Eamonn O’Brien.

This command also accepts subgroups returned by galoissubgroups.

The current implementation is limited to degree less or equal to 127. Some larger “easy” orders
are also supported.

The output is similar to the output of the function IdGroup in GAP4. Note that GAP4
IdGroup handles all groups of order less than 2000 except 1024, so you can use galoisexport and
GAP4 to identify large Galois groups.

The library syntax is GEN galoisidentify(GEN gal).
3.8.45 galoisinit(pol, {den}). Computes the Galois group and all necessary information for com-
puting the fixed fields of the Galois extension K/Q where K is the number field defined by pol
(monic irreducible polynomial in Z[X] or a number field as output by nfinit). The extension K/Q

must be Galois with Galois group “weakly” super-solvable, see below; returns 0 otherwise. Hence
this permits to quickly check whether a polynomial of order strictly less than 36 is Galois or not.

The algorithm used is an improved version of the paper “An efficient algorithm for the com-
putation of Galois automorphisms”, Bill Allombert, Math. Comp, vol. 73, 245, 2001, pp. 359-375.

A group G is said to be “weakly” super-solvable if there exists a normal series
{1}y=Hy<«H;<---<«H,_1<H,

such that each H; is normal in G and for ¢ < n, each quotient group H,11/H; is cyclic, and
either H,, = G (then G is super-solvable) or G/H,, is isomorphic to either A4 or Sy.

In practice, almost all small groups are WKSS, the exceptions having order 36(1 exception),
48(2), 56(1), 60(1), 72(5), 75(1), 80(1), 96(10) and > 108.

236

This function is a prerequisite for most of the galoiszzx routines. For instance:

P =x"6 + 108;
G = galoisinit(P);
L = galoissubgroups(G);

vector(#L, i1, galoisisabelian(L[i],1))
vector(#L, i, galoisidentify(L[i]))

The output is an 8-component vector gal.
gal[1] contains the polynomial pol (gal.pol).

gal[2] is a three-components vector [p, e, ¢] where p is a prime number (gal.p) such that pol
totally split modulo p , e is an integer and ¢ = p® (gal .mod) is the modulus of the roots in gal.roots.

gal[3] is a vector L containing the p-adic roots of pol as integers implicitly modulo gal.mod.
(gal.roots).

gal[4] is the inverse of the Vandermonde matrix of the p-adic roots of pol, multiplied by gal[5].

gal[5] is a multiple of the least common denominator of the automorphisms expressed as
polynomial in a root of pol.

gal[6] is the Galois group G expressed as a vector of permutations of L (gal.group).

gal[7] is a generating subset S = [s1,...,s,] of G expressed as a vector of permutations of L
(gal.gen).
gal[8] contains the relative orders [o1,...,0,4] of the generators of S (gal.orders).

Let H,, be as above, we have the following properties:
o if G/H, ~ A4 then [o1,...,0,] ends by [2,2,3].
o if G/H, ~ S, then [o1,...,04] ends by [2,2,3,2].

o for 1 < i < g the subgroup of G generated by [s1,...,s,] is normal, with the exception of
i =g — 2 in the A4 case and of i = g — 3 in the S4 case.

e the relative order o; of s; is its order in the quotient group G/(s1,...,s;—1), with the same
exceptions.
o for any x € G there exists a unique family [eq, ..., e,4] such that (no exceptions):

—for 1 <i < g wehave 0 <e; <o

-z =995 ...95"

If present den must be a suitable value for gal[5].

The library syntax is GEN galoisinit(GEN pol, GEN den = NULL).
3.8.46 galoisisabelian(gal, {flag = 0}). gal being as output by galoisinit, return 0 if gal is not
an abelian group, and the HNF matrix of gal over gal.gen if fl =0, 1if fl = 1.

This command also accepts subgroups returned by galoissubgroups.

The library syntax is GEN galoisisabelian(GEN gal, long flag).

237

3.8.47 galoisisnormal(gal, subgrp). gal being as output by galoisinit, and subgrp a subgroup
of gal as output by galoissubgroups,return 1 if subgrp is a normal subgroup of gal, else return 0.

This command also accepts subgroups returned by galoissubgroups.

The library syntax is long galoisisnormal(GEN gal, GEN subgrp).

3.8.48 galoispermtopol(gal, perm). gal being a Galois group as output by galoisinit and
perm a element of gal.group, return the polynomial defining the Galois automorphism, as output
by nfgaloisconj, attached to the permutation perm of the roots gal.roots. perm can also be a
vector or matrix, in this case, galoispermtopol is applied to all components recursively.

Note that

G = galoisinit(pol);
galoispermtopol (G, G[6])-~

is equivalent to nfgaloisconj(pol), if degree of pol is greater or equal to 2.

The library syntax is GEN galoispermtopol(GEN gal, GEN perm).

3.8.49 galoissubcyclo(N, H,{fl = 0},{v}). Computes the subextension of Q((,) fixed by the
subgroup H C (Z/nZ)*. By the Kronecker-Weber theorem, all abelian number fields can be
generated in this way (uniquely if n is taken to be minimal).

The pair (n, H) is deduced from the parameters (N, H) as follows

e N an integer: then n = N; H is a generator, i.e. an integer or an integer modulo n; or a
vector of generators.

e N the output of znstar(n). H as in the first case above, or a matrix, taken to be a HNF
left divisor of the SNF for (Z/nZ)* (of type N .cyc), giving the generators of H in terms of N .gen.

e N the output of bnrinit (bnfinit(y), m, 1) where m is a module. H as in the first case,
or a matrix taken to be a HNF left divisor of the SNF for the ray class group modulo m (of type
N .cyc), giving the generators of H in terms of N .gen.

In this last case, beware that H is understood relatively to N; in particular, if the infinite
place does not divide the module, e.g if m is an integer, then it is not a subgroup of (Z/nZ)*, but
of its quotient by {£1}.

If fl =0, compute a polynomial (in the variable v) defining the subfield of Q((,) fixed by the
subgroup H of (Z/nZ)*.
If fl =1, compute only the conductor of the abelian extension, as a module.

If fl = 2, output [pol, N], where pol is the polynomial as output when fI = 0 and N the
conductor as output when fl = 1.

The following function can be used to compute all subfields of Q((,) (of exact degree d, if d is
set):

polsubcyclo(n, 4 = -1)=

{ my(bnr,L, IndexBound) ;
IndexBound = if (d < 0, n, [d]);
bnr = barinit(bnfinit(y), [n,[11], 1);
L = subgrouplist(bnr, IndexBound, 1);

238

vector (#L,i, galoissubcyclo(bnr,L[i]));
}

Setting L = subgrouplist(bnr, IndexBound) would produce subfields of exact conductor noo.

The library syntax is GEN galoissubcyclo(GEN N, GEN H = NULL, long fl, long v = -1)
where v is a variable number.

3.8.50 galoissubfields(G, {flag = 0}, {v}). Outputs all the subfields of the Galois group G, as a
vector. This works by applying galoisfixedfield to all subgroups. The meaning of flag is the
same as for galoisfixedfield.

The library syntax is GEN galoissubfields(GEN G, long flag, long v = -1) where v is
a variable number.

3.8.51 galoissubgroups(G). Outputs all the subgroups of the Galois group gal. A subgroup is
a vector [gen, orders], with the same meaning as for gal.gen and gal.orders. Hence gen is a vector
of permutations generating the subgroup, and orders is the relatives orders of the generators. The
cardinality of a subgroup is the product of the relative orders. Such subgroup can be used instead
of a Galois group in the following command: galoisisabelian, galoissubgroups, galoisexport
and galoisidentify.

To get the subfield fixed by a subgroup sub of gal, use
galoisfixedfield(gal,sub[1])

The library syntax is GEN galoissubgroups(GEN G).

3.8.52 idealadd(nf,z,y). Sum of the two ideals z and y in the number field nf. The result is
given in HNF.

? K = nfinit(x"2 + 1);

7 a = idealadd(K, 2, x + 1) \\ ideal generated by 2 and 1+I
w2 =

[2 1]

[0 1]

? pr = idealprimedec(K, 5)[1]; \\ a prime ideal above 5

7 idealadd(X, a, pr) \\ coprime, as expected

W =

[1 0]

[0 1]

This function cannot be used to add arbitrary Z-modules, since it assumes that its arguments are
ideals:

? b = Mat([1,0]~);

7 idealadd(X, b, b) \\ only square t_MATs represent ideals
%% idealadd: non-square t_MAT in idealtyp.

?7c¢c=1[2, 0; 2, 0]; idealadd(X, c, c) \\ non-sense

W6 =

[2 0]

[0 2]
?7d=1[1, 0; 0, 2]; idealadd(K, d, 4) \\ non-sense

239

W o=
[1 0]

[0 1]

In the last two examples, we get wrong results since the matrices ¢ and d do not correspond to
an ideal: the Z-span of their columns (as usual interpreted as coordinates with respect to the
integer basis K.zk) is not an Og-module. To add arbitrary Z-modules generated by the columns
of matrices A and B, use mathnf (concat(A,B)).

The library syntax is GEN idealadd(GEN nf, GEN x, GEN y).

3.8.53 idealaddtoone(nf,x, {y}). = and y being two co-prime integral ideals (given in any form),
this gives a two-component row vector [a,b] such that a € z,b € y and a + b = 1.

The alternative syntax idealaddtoone(nf,v), is supported, where v is a k-component vector
of ideals (given in any form) which sum to Zg. This outputs a k-component vector e such that
eli] e zli] for 1 <i<kand) ., eli] =1

The library syntax is GEN idealaddtooneO(GEN nf, GEN x, GEN y = NULL).

3.8.54 idealappr(nf,z,{flag}). If = is a fractional ideal (given in any form), gives an element
a in nf such that for all prime ideals p such that the valuation of x at p is non-zero, we have
vp(a) = vp(x), and vp(a) > 0 for all other p.

The argument x may also be given as a prime ideal factorization, as output by idealfactor,
but allowing zero exponents. This yields an element a such that for all prime ideals p occurring in
z, vp(a) = vp(x); for all other prime ideals, vy(a) > 0.

flag is deprecated (ignored), kept for backward compatibility
The library syntax is GEN idealapprO(GEN nf, GEN x, long flag). Use directly GEN
idealappr (GEN nf, GEN x) since flagis ignored.

3.8.55 idealchinese(nf,z,{y}). x being a prime ideal factorization (i.e. a 2 by 2 matrix whose first
column contains prime ideals, and the second column integral exponents), y a vector of elements
in nf indexed by the ideals in z, computes an element b such that

vp(b —yp) > vp(x) for all prime ideals in x and vp(b) > 0 for all other p.

? K = nfinit(t"2-2);

? x = idealfactor (K, 2°2x%3)

%2 =

[[2, [0, 11~, 2, 1, [0, 2; 1, 0]] 4]
[[3, [3, 01~, 1, 2, 1] 1]
7y = [t,1];

7 idealchinese(K, x, y)

%4 = [4, -3]~

The argument z may also be of the form [z, s] where the first component is as above and s is
a vector of signs, with 7, components s; in {—1,0,1}: if o; denotes the i-th real embedding of the
number field, the element b returned satisfies further s;sign(o;(b)) > 0 for all 4. In other words,
the sign is fixed to s; at the i-th embedding whenever s; is non-zero.

? idealchinese(X, [x, [1,111, y)

240

%5 = [16, -3]~

? idealchinese(K, [x, [-1,-111, y)
%6 = [-20, -3]~

7 idealchinese(K, [x, [1,-11]1, ¥)
%7 = [4, -3]~

If y is omitted, return a data structure which can be used in place of x in later calls and allows
to solve many chinese remainder problems for a given x more efficiently.

? C = idealchinese(X, [x, [1,111);

7 idealchinese(K, C, y) \\ as above

%9 = [16, -3]~

? for(i=1,10"4, idealchinese(X,C,y)) \\ ... but faster !
time = 80 ms.

? for(i=1,10"4, idealchinese(K,[x,[1,1]1],y))

time = 224 ms.

Finally, this structure is itself allowed in place of x, the new s overriding the one already
present in the structure. This allows to initialize for different sign conditions more efficiently when
the underlying ideal factorization remains the same.

? D = idealchinese(K, [C, [1,-111); \\ replaces [1,1]
? idealchinese(K, D, y)

513 = [4, -3]~
? for(i=1,10"4,idealchinese(K,[C,[1,-11]1))
time = 40 ms. \\ faster than starting from scratch

? for(i=1,10"4,idealchinese(K, [x,[1,-11]1))
time = 128 ms.

The library syntax is GEN idealchinese(GEN nf, GEN x, GEN y = NULL). Also available is
GEN idealchineseinit(GEN nf, GEN x) when y = NULL.

3.8.56 idealcoprime(nf,z,y). Given two integral ideals x and y in the number field nf, returns
a [in the field, such that 8 - z is an integral ideal coprime to y.

The library syntax is GEN idealcoprime(GEN nf, GEN x, GEN y).

3.8.57 idealdiv(nf,z,y, {flag = 0}). Quotient x -y~ ! of the two ideals x and y in the number
field nf. The result is given in HNF.

If flag is non-zero, the quotient x - y~! is assumed to be an integral ideal. This can be much

faster when the norm of the quotient is small even though the norms of and y are large.

The library syntax is GEN idealdivO(GEN nf, GEN x, GEN y, long flag). Also available
are GEN idealdiv(GEN nf, GEN x, GEN y) (flag = 0) and GEN idealdivexact(GEN nf, GEN x,
GEN y) (flag =1).

3.8.58 idealfactor(nf,z). Factors into prime ideal powers the ideal = in the number field nf. The
output format is similar to the factor function, and the prime ideals are represented in the form
output by the idealprimedec function.

The library syntax is GEN idealfactor (GEN nf, GEN x).

241

3.8.59 idealfactorback(nf, f,{e}, {flag = 0}). Gives back the ideal corresponding to a factor-
ization. The integer 1 corresponds to the empty factorization. If e is present, e and f must be

vectors of the same length (e being integral), and the corresponding factorization is the product of
the f[a]el?.

If not, and f is vector, it is understood as in the preceding case with e a vector of 1s: we return
the product of the f[i]. Finally, f can be a regular factorization, as produced by idealfactor.

7 nf = nfinit(y~2+1); idealfactor(nf, 4 + 2xy)
hl =
(2, 1, 11~, 2, 1, [1, 11-1 21

[[5, [21 1]"" 13 1’ [_23 1:|~] 1]
? idealfactorback(nf, %)

%2 =

[10 4]

o 21

7 f = %1[,1]; e = %1[,2]; idealfactorback(nf, f, e)
%3 =

[10 4]

o 21

? % == idealhnf(nf, 4 + 2xy)

%4 =1

If flag is non-zero, perform ideal reductions (idealred) along the way. This is most useful
if the ideals involved are all extended ideals (for instance with trivial principal part), so that the
principal parts extracted by idealred are not lost. Here is an example:

? f = vector(#f, i, [£f[i], [;11); \\ transform to extended ideals
? idealfactorback(nf, f, e, 1)

%6 = [[1, 0; o0, 1], [2, 1; [2, 1]1~, 1]1]

? nffactorback(nf, %[2]1)

W= [4, 2]~

The extended ideal returned in %6 is the trivial ideal 1, extended with a principal generator
given in factored form. We use nffactorback to recover it in standard form.

The library syntax is GEN idealfactorback(GEN nf, GEN f, GEN e = NULL, long flag)

3.8.60 idealfrobenius(nf, gal, pr). Let K be the number field defined by nf and assume K/Q
be a Galois extension with Galois group given gal=galoisinit(nf), and that pr is an unramified
prime ideal p in prid format. This function returns a permutation of gal.group which defines
the Frobenius element Froby, attached to p. If p is the unique prime number in p, then Frob(z) =
P modp for all z € Zg.

nf = nfinit(polcyclo(31));

gal = galoisinit(nf);

pr = idealprimedec(nf,101)[1];
g = idealfrobenius(nf,gal,pr);
galoispermtopol(gal,g)

)))) N

242

%5 = x"8
This is correct since 101 = 8 mod 31.

The library syntax is GEN idealfrobenius(GEN nf, GEN gal, GEN pr).

3.8.61 idealhnf(nf,u, {v}). Gives the Hermite normal form of the ideal uZ g + vZ g, where u and
v are elements of the number field K defined by nf.

? nf = nfinit(y~3 - 2);
? idealhnf (nf, 2, y+1)
%2 =

[1 0 0]

[0 1 0]

[0 0 1]

? idealhnf (nf, y/2, [0,0,1/3]1~)
%3 =

[1/3 0 0]

[0 1/6 0]
[0 0 1/6]

If b is omitted, returns the HNF of the ideal defined by u: u may be an algebraic number
(defining a principal ideal), a maximal ideal (as given by idealprimedec or idealfactor), or a
matrix whose columns give generators for the ideal. This last format is a little complicated, but
useful to reduce general modules to the canonical form once in a while:

o if strictly less than N = [K : Q] generators are given, u is the Z x-module they generate,

¢ if N or more are given, it is assumed that they form a Z-basis of the ideal, in particular that
the matrix has maximal rank N. This acts as mathnf since the Zx-module structure is (taken for
granted hence) not taken into account in this case.

7 idealhnf (nf, idealprimedec(nf,2)[1])
W =

[2 0 0]

[0 1 0]

[0 0 1]

? idealhnf (nf, [1,2;2,3;3,4])

W5 =

[1 0 0]

[0 1 0]

[0 0 1]

Finally, when K is quadratic with discriminant Dz, we allow © = Qfb(a,b,c), provided b —4ac =
Dg. As usual, this represents the ideal aZ + (1/2)(—=b+ Dk)Z.

? K = nfinit(x"2 - 60); K.disc

%1 = 60

? idealhnf (K, gfbprimeform(60,2))

%2 =

[2 1]

243

[0 1]
? idealhnf (K, Qfb(1,2,3))
*okok at top-level: idealhnf (K,Qfb(1,2,3
* %k %k S———————————
**x*x idealhnf: Qfb(1, 2, 3) has discriminant '= 60 in idealhnf.

The library syntax is GEN idealhnfO(GEN nf, GEN u, GEN v = NULL). Also available is GEN
idealhnf (GEN nf, GEN a).

3.8.62 idealintersect(nf, A, B). Intersection of the two ideals A and B in the number field nf.
The result is given in HNF.

? nf = nfinit(x"2+1);

? idealintersect(nf, 2, x+1)
w2 =

[2 0]

[0 2]

This function does not apply to general Z-modules, e.g. orders, since its arguments are replaced
by the ideals they generate. The following script intersects Z-modules A and B given by matrices
of compatible dimensions with integer coeflicients:

ZM_intersect(A,B) =

{ my(Ker = matkerint(concat(4,B)));
mathnf(A * Ker[1..#A,])

}

The library syntax is GEN idealintersect(GEN nf, GEN A, GEN B).
3.8.63 idealinv(nf,z). Inverse of the ideal z in the number field nf, given in HNF. If z is an
extended ideal, its principal part is suitably updated: i.e. inverting [I,¢], yields [/, 1/¢].

The library syntax is GEN idealinv(GEN nf, GEN x).
3.8.64 ideallist(nf, bound, {flag = 4}). Computes the list of all ideals of norm less or equal to
bound in the number field nf. The result is a row vector with exactly bound components. Each

component is itself a row vector containing the information about ideals of a given norm, in no
specific order, depending on the value of flag:

The possible values of flag are:
0: give the bid attached to the ideals, without generators.
1: as 0, but include the generators in the bid.

2: in this case, nf must be a bnf with units. Each component is of the form [bid, U], where
bid is as case 0 and U is a vector of discrete logarithms of the units. More precisely, it gives the
ideallogs with respect to bid of bnf.tufu. This structure is technical, and only meant to be used
in conjunction with bnrclassnolist or bnrdisclist.

3: as 2, but include the generators in the bid.
4: give only the HNF of the ideal.

? nf = nfinit(x~2+1);

244

? L = ideallist(nf, 100);

? L[1]

%3 = [[1, 0; 0, 111 \\ A single ideal of norm 1

7 #L[65]

W =4 \\ There are 4 ideals of norm 4 in Z[i]

If one wants more information, one could do instead:

? nf = nfinit(x"2+1);

? L = ideallist(nf, 100, 0);

? 1 = L[25]; vector(#l, i, 1[il.clgp)

%3 = [[20, [20]], (16, [4, 411, [20, [20]]]

? 1[1] .mod

%4 = [[25, 18; 0, 11, [1]
7 1[2] .mod

%5 = [[6, 0; 0, 5], [1]
? 1[3] .mod

w6 = [[25, 7; 0, 11, [1]

where we ask for the structures of the (Z[i]/I)* for all three ideals of norm 25. In fact, for all
moduli with finite part of norm 25 and trivial Archimedean part, as the last 3 commands show.
See ideallistarch to treat general moduli.

The library syntax is GEN ideallistO(GEN nf, long bound, long flag).

3.8.65 ideallistarch(nf, list, arch). list is a vector of vectors of bid’s, as output by ideallist
with flag 0 to 3. Return a vector of vectors with the same number of components as the original
list. The leaves give information about moduli whose finite part is as in original list, in the same
order, and Archimedean part is now arch (it was originally trivial). The information contained is
of the same kind as was present in the input; see ideallist, in particular the meaning of flag.

? bnf = bnfinit(x~2-2);

? bnf.sign

%2 = [2, 0] \\ two places at infinity

? L = ideallist(bnf, 100, 0);

7 1 = L[98]; vector(#1l, i, 1[i].clgp)

% = [[42, [42]1]1, [36, [6, 611, [42, [42]1]1]

? La = ideallistarch(bnf, L, [1,1]1); \\ add them to the modulus

7 1 = La[98]; vector(#1, i, 1[i].clgp)

%6 = [[168, [42, 2, 211, [144, [6, 6, 2, 211, [168, [42, 2, 2]]]

Of course, the results above are obvious: adding ¢ places at infinity will add ¢ copies of Z/2Z
to (Zg/f)*. The following application is more typical:

? L = ideallist(bnf, 100, 2); \\ units are required now
? La = ideallistarch(bnf, L, [1,1]);

? H = bnrclassnolist(bnf, La);

? H[98];

= [2, 12, 2]

The library syntax is GEN ideallistarch(GEN nf, GEN list, GEN arch).

245

3.8.66 ideallog({nf},x, bid). nf is a number field, bid is as output by idealstar(nf, D, ...)
and z a non-necessarily integral element of nf which must have valuation equal to 0 at all prime
ideals in the support of D. This function computes the discrete logarithm of z on the generators
given in bid.gen. In other words, if g; are these generators, of orders d; respectively, the result is
a column vector of integers (x;) such that 0 < z; < d; and

xEHgfi (mod *D) .

Note that when the support of D contains places at infinity, this congruence implies also sign
conditions on the attached real embeddings. See znlog for the limitations of the underlying discrete
log algorithms.

When nf is omitted, take it to be the rational number field. In that case, £ must be a t_INT
and bid must have been initialized by idealstar(,N).

The library syntax is GEN ideallog(GEN nf = NULL, GEN x, GEN bid). Also available is
GEN Zideallog(GEN bid, GEN x) when nf is NULL.

3.8.67 idealmin(nf, iz, {vdir}). This function is useless and kept for backward compatibility only,
use idealred. Computes a pseudo-minimum of the ideal x in the direction vdir in the number
field nf.

The library syntax is GEN idealmin(GEN nf, GEN ix, GEN vdir = NULL).

3.8.68 idealmul(nf,z,y, {flag = 0}). Ideal multiplication of the ideals z and y in the number
field nf; the result is the ideal product in HNF. If either x or y are extended ideals, their principal
part is suitably updated: i.e. multiplying [I,], [J,u] yields [I.J, tu]; multiplying I and [J, u] yields
[IJ,u].

? nf = nfinit(x"2 + 1);
? idealmul (nf, 2, x+1)
%2 =

[4 2]

[0 2]

? idealmul(nf, [2, x], x+1) \\ extended ideal * ideal
%3 = [[4, 2; 0, 2], x]

? idealmul(nf, [2, x], [x+1, x1) \\ two extended ideals
% = [[4, 2; 0, 2], [-1, 0]~]

If flag is non-zero, reduce the result using idealred.
The library syntax is GEN idealmulO(GEN nf, GEN x, GEN y, long flag).
See also GEN idealmul (GEN nf, GEN x, GEN y) (flag = 0) and GEN idealmulred(GEN nf, GEN
x, GEN y) (flag # 0).
3.8.69 idealnorm(nf,z). Computes the norm of the ideal z in the number field nf.

The library syntax is GEN idealnorm(GEN nf, GEN x).

246

3.8.70 idealnumden(nf,z). Returns [A, B], where A, B are coprime integer ideals such that
x = A/B, in the number field nf.

? nf = nfinit(x"2+1);
? idealnumden(nf, (x+1)/2)
%2 = [[1’ 0: O: 1]’ [2: 1: 0’ 1]]

The library syntax is GEN idealnumden(GEN nf, GEN x).

3.8.71 idealpow(nf,z, k, {flag = 0}). Computes the k-th power of the ideal z in the number field
nf; k € Z. If x is an extended ideal, its principal part is suitably updated: i.e. raising [/,] to the
k-th power, yields [I*,t*].

If flag is non-zero, reduce the result using idealred, throughout the (binary) powering process;
in particular, this is not the same as idealpow(nf,z, k) followed by reduction.

The library syntax is GEN idealpowO(GEN nf, GEN x, GEN k, long flag).

See also GEN idealpow(GEN nf, GEN x, GEN k) and GEN idealpows(GEN nf, GEN x, long k)
(flag = 0). Corresponding to flag = 1 is GEN idealpowred(GEN nf, GEN vp, GEN k).

3.8.72 idealprimedec(nf,p,{f = 0}). Computes the prime ideal decomposition of the (positive)
prime number p in the number field K represented by nf. If a non-prime p is given the result is
undefined. If f is present and non-zero, restrict the result to primes of residue degree < f.

The result is a vector of prid structures, each representing one of the prime ideals above p in
the number field nf. The representation pr = [p, a, e, f, mb] of a prime ideal means the following: a
and is an algebraic integer in the maximal order Z g and the prime ideal is equal to p = pZ i +aZk;
e is the ramification index; f is the residual index; finally, mb is the multiplication table attached
to the algebraic integer b is such that p~! = Zg + b/pZ, which is used internally to compute
valuations. In other words if p is inert, then mb is the integer 1, and otherwise it’s a square t_MAT
whose j-th column is b - nf.zk[j].

The algebraic number a is guaranteed to have a valuation equal to 1 at the prime ideal (this
is automatic if e > 1).

The components of pr should be accessed by member functions: pr.p, pr.e, pr.f, and pr.gen
(returns the vector [p,al):

? K = nfinit(x~3-2);

7?7 P = idealprimedec(K, 5);

7 #P \\ 2 primes above 5 in Q(27(1/3))
%3 =2

7 [p1,p2] = P;
? [pl.e, pl.f] \\ the first is unramified of degree 1

w5 = [1, 1]

7 [p2.e, p2.f] \\ the second is unramified of degree 2
W = [1, 2]

? pl.gen

%7 = [6, [2, 1, 0]~]

7 nfbasistoalg(X, %[2]) \\ a uniformizer for pl
%8 = Mod(x + 2, x°3 - 2)

? #idealprimedec(K, 5, 1) \\ restrict to f =1

247

h =1 \\ now only pi

The library syntax is GEN idealprimedec_limit_f(GEN nf, GEN p, long f).

3.8.73 idealprincipalunits(nf, pr, k). Given a prime ideal in idealprimedec format, returns the
multiplicative group (1 + pr)/(1 + pr*) as an abelian group. This function is much faster than
idealstar when the norm of pr is large, since it avoids (useless) work in the multiplicative group
of the residue field.

7 K = nfinit(y~2+1);

7 P = idealprimedec(K,2)[1];

? G = idealprincipalunits(X, P, 20);

? G.cyc

%4 = [512, 256, 4] \\ Z/512 x Z/256 x Z/4
? G.gen

%5 = [[-1, -2]~, 1021, [0, -1]~] \\ minimal generators of given order
The library syntax is GEN idealprincipalunits(GEN nf, GEN pr, long k).
3.8.74 idealramgroups(nf, gal, pr). Let K be the number field defined by nf and assume that

K/Q is Galois with Galois group G given by gal=galoisinit(nf). Let pr be the prime ideal B
in prid format. This function returns a vector g of subgroups of gal as follow:

e g[1] is the decomposition group of 9,

e g[2] is Go(B), the inertia group of R,

and for ¢ > 2,

e g[i] is G;—_2(P), the i — 2-th ramification group of PB.

The length of g is the number of non-trivial groups in the sequence, thus is 0 if e = 1 and f =1,
and 1if f > 1 and e = 1. The following function computes the cardinality of a subgroup of G, as
given by the components of g:

card(H) =my(o=H[2]); prod(i=1,#o0,0[i]);

7 nf=nfinit(x"6+3); gal=galoisinit(nf); pr=idealprimedec(nf,3)[1];
7 g = idealramgroups(nf, gal, pr);

7 apply(card,g)

%3 = [6, 6, 3, 3, 3] \\ cardinalities of the G_i

7 nf=nfinit(x"6+108); gal=galoisinit(nf); pr=idealprimedec(nf,2)[1];
? iso=idealramgroups(nf,gal,pr) [2]

%5 = [[Vecsmall([2, 3, 1, 5, 6, 4]1)], Vecsmall([3])]

7 nfdisc(galoisfixedfield(gal,iso,1))

W% = -3

The field fixed by the inertia group of 2 is not ramified at 2.

The library syntax is GEN idealramgroups(GEN nf, GEN gal, GEN pr).

248

3.8.75 idealred(nf, I, {v = 0}). LLL reduction of the ideal I in the number field K attached to
nf, along the direction v. The v parameter is best left omitted, but if it is present, it must be an
nf.r1 + nf.r2-component vector of non-negative integers. (What counts is the relative magnitude
of the entries: if all entries are equal, the effect is the same as if the vector had been omitted.)

This function finds an a € K* such that J = (a)I is “small” and integral (see the end for
technical details). The result is the Hermite normal form of the “reduced” ideal J.

7 K = nfinit(y~2+1);

7?7 P = idealprimedec(K,5)[1];
? idealred (K, P)

%3 =

[1 0]

[0 1]

More often than not, a principal ideal yields the unit ideal as above. This is a quick and dirty way
to check if ideals are principal, but it is not a necessary condition: a non-trivial result does not
prove that the ideal is non-principal. For guaranteed results, see bnfisprincipal, which requires
the computation of a full bnf structure.

If the input is an extended ideal [I, s], the output is [J, sa]; in this way, one keeps track of the
principal ideal part:

? idealred(K, [P, 11)
%5 = [[1’ O; O’ 1], [2’ _1]”]

meaning that P is generated by [2,—1] . The number field element in the extended part is an
algebraic number in any form or a factorization matrix (in terms of number field elements, not
ideals!). In the latter case, elements stay in factored form, which is a convenient way to avoid
coeflicient explosion; see also idealpow.

Technical note. The routine computes an LLL-reduced basis for the lattice I¢ — 1) equipped with
the quadratic form

r1+7r2
lzll; = Y 2eiloi(@)?,
i=1
where as usual the o; are the (real and) complex embeddings and &; = 1, resp. 2, for a real,

resp. complex place. The element @ is simply the first vector in the LLL basis. The only reason
you may want to try to change some directions and set some v; # 0 is to randomize the elements
found for a fixed ideal, which is heuristically useful in index calculus algorithms like bnfinit and
bnfisprincipal.

Even more technical note. In fact, the above is a white lie. We do not use || - ||, exactly but
a rescaled rounded variant which gets us faster and simpler LLLs. There’s no harm since we are
not using any theoretical property of a after all, except that it belongs to I{ — 1) and that af is
“expected to be small”.

The library syntax is GEN idealred0O(GEN nf, GEN I, GEN v = NULL).

249

3.8.76 idealstar({nf}, N, {flag = 1}). Outputs a bid structure, necessary for computing in the
finite abelian group G = (Zx /N)*. Here, nf is a number field and N is a modulus: either an ideal
in any form, or a row vector whose first component is an ideal and whose second component is a
row vector of 1 O or 1. Ideals can also be given by a factorization into prime ideals, as produced
by idealfactor.

This bid is used in ideallog to compute discrete logarithms. It also contains useful information
which can be conveniently retrieved as bid.mod (the modulus), bid.clgp (G as a finite abelian
group), bid.no (the cardinality of G), bid.cyc (elementary divisors) and bid .gen (generators).

If flag = 1 (default), the result is a bid structure without generators: they are well defined
but not explicitly computed, which saves time.

If flag = 2, as flag = 1, but including generators.

If flag = 0, only outputs (Zx /N)* as an abelian group, i.e as a 3-component vector [h,d, g]: h
is the order, d is the vector of SNF cyclic components and g the corresponding generators.

If nf is omitted, we take it to be the rational number fields, N must be an integer and we
return the structure of (Z/NZ)*. In other words idealstar(, N, flag) is short for

idealstar(nfinit(x), N, flag)

but much faster. The alternative syntax znstar (N, flag) is also available for the same effect, but
due to an unfortunate historical oversight, the default value of flag is different in the two functions
(znstar does not initialize by default).

The library syntax is GEN idealstarO(GEN nf = NULL, GEN N, long flag). Instead the
above hardcoded numerical flags, one