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Chapter 1:

Overview of the PARI system

1.1 Introduction.

PARI/GP is a specialized computer algebra system, primarily aimed at number theorists, but has
been put to good use in many other di�erent �elds, from topology or numerical analysis to physics.

Although quite an amount of symbolic manipulation is possible, PARI does badly compared
to systems like Axiom, Magma, Maple, Mathematica, Maxima, or Reduce on such tasks, e.g. mul-
tivariate polynomials, formal integration, etc. On the other hand, the three main advantages of
the system are its speed, the possibility of using directly data types which are familiar to mathe-
maticians, and its extensive algebraic number theory module (from the above-mentioned systems,
only Magma provides similar features).

Non-mathematical strong points include the possibility to program either in high-level scripting
languages or with the PARI library, a mature system (development started in the mid eighties) that
was used to conduct and disseminate original mathematical research, while building a large user
community, linked by helpful mailing lists and a tradition of great user support from the developers.
And, of course, PARI/GP is Free Software, covered by the GNU General Public License, either
version 2 of the License or (at your option) any later version.

PARI is used in three di�erent ways:

1) as a library libpari, which can be called from an upper-level language application, for
instance written in ANSI C or C++;

2) as a sophisticated programmable calculator, named gp, whose language GP contains most
of the control instructions of a standard language like C;

3) the compiler gp2c translates GP code to C, and loads it into the gp interpreter. A
typical script compiled by gp2c runs 3 to 10 times faster. The generated C code can be edited and
optimized by hand. It may also be used as a tutorial to libpari programming.

The present Chapter 1 gives an overview of the PARI/GP system; gp2c is distributed separately
and comes with its own manual. Chapter 2 describes the GP programming language and the gp

calculator. Chapter 3 describes all routines available in the calculator. Programming in library
mode is explained in Chapters 4 and 5 in a separate booklet: User's Guide to the PARI library
(libpari.dvi.

A tutorial for gp is provided in the standard distribution: A tutorial for PARI/GP (tuto-
rial.dvi) and you should read this �rst. You can then start over and read the more boring stu�
which lies ahead. You can have a quick idea of what is available by looking at the gp reference card
(refcard.dvi or refcard.ps). In case of need, you can refer to the complete function description
in Chapter 3.
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How to get the latest version. Everything can be found on PARI's home page:

http://pari.math.u-bordeaux.fr/:

From that point you may access all sources, some binaries, version information, the complete mailing
list archives, frequently asked questions and various tips. All threaded and fully searchable.

How to report bugs. Bugs are submitted online to our Bug Tracking System, available from
PARI's home page, or directly from the URL

http://pari.math.u-bordeaux.fr/Bugs/:

Further instructions can be found on that page.

1.2 Multiprecision kernels / Portability.

The PARI multiprecision kernel comes in three non exclusive 
avors. See Appendix A for how
to set up these on your system; various compilers are supported, but the GNU gcc compiler is the
de�nite favorite.

A �rst version is written entirely in ANSI C, with a C++-compatible syntax, and should be
portable without trouble to any 32 or 64-bit computer having no drastic memory constraints. We
do not know any example of a computer where a port was attempted and failed.

In a second version, time-critical parts of the kernel are written in inlined assembler. At present
this includes

� the whole ix86 family (Intel, AMD, Cyrix) starting at the 386, up to the Xbox gaming
console, including the Opteron 64 bit processor.

� three versions for the Sparc architecture: version 7, version 8 with SuperSparc processors,
and version 8 with MicroSparc I or II processors. UltraSparcs use the MicroSparc II version;

� the DEC Alpha 64-bit processor;

� the Intel Itanium 64-bit processor;

� the PowerPC equipping old macintoshs (G3, G4, etc.);

� the HPPA processors (both 32 and 64 bit);

A third version uses the GNU MP library to implement most of its multiprecision kernel. It
improves signi�cantly on the native one for large operands, say 100 decimal digits of accuracy or
more. You should enable it if GMP is present on your system. Parts of the �rst version are still in
use within the GMP kernel, but are scheduled to disappear.

A historical version of the PARI/GP kernel, written in 1985, was speci�c to 680x0 based
computers, and was entirely written in MC68020 assembly language. It ran on SUN-3/xx, Sony
News, NeXT cubes and on 680x0 based Macs. It is no longer part of the PARI distribution; to run
PARI with a 68k assembler micro-kernel, use the GMP kernel!
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1.3 The PARI types.

The GP language is not typed in the traditional sense; in particular, variables have no type.
In library mode, the type of all PARI objects is GEN, a generic type. On the other hand, it is
dynamically typed: each object has a speci�c internal type, depending on the mathematical object
it represents.

The crucial word is recursiveness: most of the PARI types are recursive. For example, the basic
internal type t_COMPLEX exists. However, the components (i.e. the real and imaginary part) of such
a \complex number" can be of any type. The only sensible ones are integers (we are then in Z[i]),
rational numbers (Q[i]), real numbers (R[i] = C), or even elements of Z=nZ (in (Z=nZ)[t]=(t2+1)),
or p-adic numbers when p � 3mod 4 (Qp[i]). This feature must not be used too rashly in library
mode: for example you are in principle allowed to create objects which are \complex numbers of
complex numbers". (This is not possible under gp.) But do not expect PARI to make sensible use
of such objects: you will mainly get nonsense.

On the other hand, it is allowed to have components of di�erent, but compatible, types, which
can be freely mixed in basic ring operations + or �. For example, taking again complex numbers,
the real part could be an integer, and the imaginary part a rational number. On the other hand,
if the real part is a real number, the imaginary part cannot be an integer modulo n !

Let us now describe the types. As explained above, they are built recursively from basic
types which are as follows. We use the letter T to designate any type; the symbolic names t_xxx
correspond to the internal representations of the types.

type t_INT Z Integers (with arbitrary precision)
type t_REAL R Real numbers (with arbitrary precision)
type t_INTMOD Z=nZ Intmods (integers modulo n)
type t_FRAC Q Rational numbers (in irreducible form)
type t_FFELT Fq Finite �eld element
type t_COMPLEX T [i] Complex numbers
type t_PADIC Qp p-adic numbers
type t_QUAD Q[w] Quadratic Numbers (where [Z[w] : Z] = 2)
type t_POLMOD T [X]=(P ) Polmods (polynomials modulo P 2 T [X])
type t_POL T [X] Polynomials
type t_SER T ((X)) Power series (�nite Laurent series)
type t_RFRAC T (X) Rational functions (in irreducible form)
type t_VEC Tn Row (i.e. horizontal) vectors
type t_COL Tn Column (i.e. vertical) vectors
type t_MAT Mm;n(T ) Matrices
type t_LIST Tn Lists
type t_STR Character strings
type t_CLOSURE Functions
type t_ERROR Error messages
type t_INFINITY �1 and +1

and where the types T in recursive types can be di�erent in each component. The �rst nine basic
types, from t_INT to t_POLMOD, are called scalar types because they essentially occur as coe�cients
of other more complicated objects. Type t_POLMOD is used to de�ne algebraic extensions of a base
ring, and as such is a scalar type.

In addition, there exist types t_QFR and t_QFI for integral binary quadratic forms, and the in-
ternal type t_VECSMALL. The latter holds vectors of small integers, whose absolute value is bounded
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by 231 (resp. 263) on 32-bit, resp. 64-bit, machines. They are used internally to represent permu-
tations, polynomials or matrices over a small �nite �eld, etc.

Every PARI object (called GEN in the sequel) belongs to one of these basic types. Let us have
a closer look.

1.3.1 Integers and reals. They are of arbitrary and varying length (each number carrying in its
internal representation its own length or precision) with the following mild restrictions (given for
32-bit machines, the restrictions for 64-bit machines being so weak as to be considered nonexistent):
integers must be in absolute value less than 2536870815 (i.e. roughly 161614219 decimal digits). The
precision of real numbers is also at most 161614219 signi�cant decimal digits, and the binary
exponent must be in absolute value less than 229, resp. 261, on 32-bit, resp. 64-bit machines.

Integers and real numbers are non-recursive types.

1.3.2 Intmods, rational numbers, p-adic numbers, polmods, and rational functions.
These are recursive, but in a restricted way.

For intmods or polmods, there are two components: the modulus, which must be of type
integer (resp. polynomial), and the representative number (resp. polynomial).

For rational numbers or rational functions, there are also only two components: the numerator
and the denominator, which must both be of type integer (resp. polynomial).

Finally, p-adic numbers have three components: the prime p, the \modulus" pk, and an ap-
proximation to the p-adic number. Here Zp is considered as the projective limit lim �Z=p

kZ via

its �nite quotients, and Qp as its �eld of fractions. Like real numbers, the codewords contain an
exponent, giving the p-adic valuation of the number, and also the information on the precision of
the number, which is redundant with pk, but is included for the sake of e�ciency.

1.3.3 Finite �eld elements. The exact internal format depends of the �nite �eld size, but it
includes the �eld characteristic p, an irreducible polynomial T 2 Fp[X] de�ning the �nite �eld
Fp[X]=(T ) and the element expressed as a polynomial in (the class of) X.

1.3.4 Complex numbers and quadratic numbers. Quadratic numbers are numbers of the
form a+ bw, where w is such that [Z[w] : Z] = 2, and more precisely w =

p
d=2 when d � 0mod 4,

and w = (1 +
p
d)=2 when d � 1mod 4, where d is the discriminant of a quadratic order. Complex

numbers correspond to the important special case w =
p�1.

Complex numbers are partially recursive: the two components a and b can be of type t_INT,
t_REAL, t_INTMOD, t_FRAC, or t_PADIC, and can be mixed, subject to the limitations mentioned
above. For example, a+bi with a and b p-adic is in Qp[i], but this is equal to Qp when p � 1mod 4,
hence we must exclude these p when one explicitly uses a complex p-adic type. Quadratic numbers
are more restricted: their components may be as above, except that t_REAL is not allowed.
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1.3.5 Polynomials, power series, vectors, matrices and lists. They are completely recur-
sive: their components can be of any type, and types can be mixed (however beware when doing
operations). Note in particular that a polynomial in two variables is simply a polynomial with
polynomial coe�cients.

In the present version 2.9.1 of PARI, it is not possible to handle conveniently power series of
power series, i.e. power series in several variables. However power series of polynomials (which are
power series in several variables of a special type) are OK. This is a di�cult design problem: the
mathematical problem itself contains some amount of imprecision, and it is not easy to design an
intuitive generic interface for such beasts.

1.3.6 Strings. These contain objects just as they would be printed by the gp calculator.

1.3.7 Zero. What is zero? This is a crucial question in all computer systems. The answer we
give in PARI is the following. For exact types, all zeros are equivalent and are exact, and thus
are usually represented as an integer zero. The problem becomes non-trivial for imprecise types:
there are in�nitely many distinct zeros of each of these types! For p-adics and power series the
answer is as follows: every such object, including 0, has an exponent e. This p-adic or X-adic zero
is understood to be equal to O(pe) or O(Xe) respectively.

Real numbers also have exponents and a real zero is in fact O(2e) where e is now usually a
negative binary exponent. This of course is printed as usual for a 
oating point number (0:00 � � � or
0:Exx depending on the output format) and not with a O symbol as with p-adics or power series.
With respect to the natural ordering on the reals we make the following convention: whatever its
exponent a real zero is smaller than any positive number, and any two real zeroes are equal.

1.4 The PARI philosophy.

The basic principles which govern PARI is that operations and functions should, �rstly, give
as exact a result as possible, and secondly, be permitted if they make any kind of sense.

In this respect, we make an important distinction between exact and inexact objects: by
de�nition, types t_REAL, t_PADIC or t_SER are imprecise. A PARI object having one of these
imprecise types anywhere in its tree is inexact , and exact otherwise. No loss of accuracy (rounding
error) is involved when dealing with exact objects. Speci�cally, an exact operation between exact
objects will yield an exact object. For example, dividing 1 by 3 does not give 0:333 � � �, but the
rational number (1=3). To get the result as a 
oating point real number, evaluate 1./3 or 0.+1/3.

Conversely, the result of operations between imprecise objects, although inexact by nature,
will be as precise as possible. Consider for example the addition of two real numbers x and y. The
accuracy of the result is a priori unpredictable; it depends on the precisions of x and y, on their
sizes, and also on the size of x + y. From this data, PARI works out the right precision for the
result. Even if it is working in calculator mode gp, where there is a notion of default precision, its
value is only used to convert exact types to inexact ones.

In particular, if an operation involves objects of di�erent accuracies, some digits will be dis-
regarded by PARI. It is a common source of errors to forget, for instance, that a real number is
given as r + 2e" where r is a rational approximation, e a binary exponent and " is a nondescript
real number less than 1 in absolute value. Hence, any number less than 2e may be treated as an
exact zero:

? 0.E-28 + 1.E-100

9



%1 = 0.E-28

? 0.E100 + 1

%2 = 0.E100

As an exercise, if a = 2^(-100), why do a + 0. and a * 1. di�er?

The second principle is that PARI operations are in general quite permissive. For instance
taking the exponential of a vector should not make sense. However, it frequently happens that one
wants to apply a given function to all elements in a vector. This is easily done using a loop, or
using the apply built-in function, but in fact PARI assumes that this is exactly what you want to
do when you apply a scalar function to a vector. Taking the exponential of a vector will do just
that, so no work is necessary. Most transcendental functions work in the same way*.

In the same spirit, when objects of di�erent types are combined they are �rst automatically
mapped to a suitable ring, where the computation becomes meaningful:

? 1/3 + Mod(1,5)

%1 = Mod(3, 5)

? I + O(5^9)

%2 = 2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + O(5^9)

? Mod(1,15) + Mod(1,10)

%3 = Mod(2, 5)

The �rst example is straightforward: since 3 is invertible mod 5, (1=3) is easily mapped to
Z=5Z. In the second example, I stands for the customary square root of �1; we obtain a 5-adic
number, 5-adically close to a square root of �1. The �nal example is more problematic, but there
are natural maps from Z=15Z and Z=10Z to Z=5Z, and the computation takes place there.

1.5 Operations and functions.

The available operations and functions in PARI are described in detail in Chapter 3. Here is
a brief summary:

1.5.1 Standard arithmetic operations.

Of course, the four standard operators +, -, *, / exist. We emphasize once more that division is, as
far as possible, an exact operation: 4 divided by 3 gives (4/3). In addition to this, operations on
integers or polynomials, like \ (Euclidean division), % (Euclidean remainder) exist; for integers, \/
computes the quotient such that the remainder has smallest possible absolute value. There is also
the exponentiation operator ^, when the exponent is of type integer; otherwise, it is considered as a
transcendental function. Finally, the logical operators ! (not pre�x operator), && (and operator),
|| (or operator) exist, giving as results 1 (true) or 0 (false).

1.5.2 Conversions and similar functions.

Many conversion functions are available to convert between di�erent types. For example 
oor,
ceiling, rounding, truncation, etc: : : . Other simple functions are included like real and imaginary
part, conjugation, norm, absolute value, changing precision or creating an intmod or a polmod.

* An ambiguity arises with square matrices. PARI always considers that you want to do com-
ponentwise function evaluation in this context, hence to get for example the standard exponential
of a square matrix you would need to implement a di�erent function.
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1.5.3 Transcendental functions.

They usually operate on any complex number, power series, and some also on p-adics. The list is
ever-expanding and of course contains all the elementary functions (exp/log, trigonometric func-
tions), plus many others (modular functions, Bessel functions, polylogarithms: : : ). Recall that by
extension, PARI usually allows a transcendental function to operate componentwise on vectors or
matrices.

1.5.4 Arithmetic functions.

Apart from a few like the factorial function or the Fibonacci numbers, these are functions which
explicitly use the prime factor decomposition of integers. The standard functions are included. A
number of factoring methods are used by a rather sophisticated factoring engine (to name a few,
Shanks's SQUFOF, Pollard's rho, Lenstra's ECM, the MPQS quadratic sieve). These routines
output strong pseudoprimes, which may be certi�ed by the APRCL test.

There is also a large package to work with algebraic number �elds. All the usual operations on
elements, ideals, prime ideals, etc. are available. More sophisticated functions are also implemented,
like solving Thue equations, �nding integral bases and discriminants of number �elds, computing
class groups and fundamental units, computing in relative number �eld extensions, Galois and class
�eld theory, and also many functions dealing with elliptic curves over Q or over local �elds.

1.5.5 Other functions.

Quite a number of other functions dealing with polynomials (e.g. �nding complex or p-adic roots,
factoring, etc), power series (e.g. substitution, reversion), linear algebra (e.g. determinant, charac-
teristic polynomial, linear systems), and di�erent kinds of recursions are also included. In addi-
tion, standard numerical analysis routines like univariate integration (using the double exponential
method), real root �nding (when the root is bracketed), polynomial interpolation, in�nite series
evaluation, and plotting are included.

And now, you should really have a look at the tutorial before proceeding.
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Chapter 2:

The gp Calculator

2.1 Introduction.

Originally, gp was designed as a debugging device for the PARI system library. Over the
years, it has become a powerful user-friendly stand-alone calculator. The mathematical functions
available in PARI and gp are described in the next chapter. In the present one, we describe the
speci�c use of the gp programmable calculator.

EMACS: If you have GNU Emacs and use the PariEmacs package, you can work in a special Emacs shell,
described in Section 2.16. Speci�c features of this Emacs shell are indicated by an EMACS sign in
the left margin.

We brie
y mention at this point GNU TeXmacs (http://www.texmacs.org/), a free wysiwyg
editing platform that allows to embed an entire gp session in a document, and provides a nice
alternative to PariEmacs.

2.1.1 Startup.

To start the calculator, the general command line syntax is:

gp [-D key=val] [�les]

where items within brackets are optional. The [�les] argument is a list of �les written in the GP
scripting language, which will be loaded on startup. There can be any number of arguments of the
form -D key=val , setting some internal parameters of gp, or defaults: each sets the default key to
the value val . See Section 2.12 below for a list and explanation of all defaults. These defaults can
be changed by adding parameters to the input line as above, or interactively during a gp session,
or in a preferences �le also known as gprc.

If a preferences file (to be discussed in Section 2.14) is found, gp then reads it and executes the
commands it contains. This provides an easy way to customize gp. The �les argument is processed
right after the gprc.

A copyright banner then appears which includes the version number, and a lot of useful tech-
nical information. After the copyright, the computer writes the top-level help information, some
initial defaults, and then waits after printing its prompt, which is '? ' by default . Whether ex-
tended on-line help and line editing are available or not is indicated in this gp banner, between the
version number and the copyright message. Consider investigating the matter with the person who
installed gp if they are not. Do this as well if there is no mention of the GMP kernel.
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2.1.2 Getting help.

To get help, type a ? and hit return. A menu appears, describing the main categories of
available functions and how to get more detailed help. If you now type ?n with n = 1; 2; : : :, you
get the list of commands corresponding to category n and simultaneously to Section 3:n of this
manual. If you type ?functionname where functionname is the name of a PARI function, you will
get a short explanation of this function.

If extended help (see Section 2.13.1) is available on your system, you can double or triple the ?
sign to get much more: respectively the complete description of the function (e.g. ??sqrt), or a list
of gp functions relevant to your query (e.g. ???"elliptic curve" or ???"quadratic field").

If gp was properly installed (see Appendix A), a line editor is available to correct the command
line, get automatic completions, and so on. See Section 2.15 or ??readline for a short summary
of the line editor's commands.

If you type ?\ you will get a short description of the metacommands (keyboard shortcuts).

Finally, typing ?. will return the list of available (pre-de�ned) member functions. These
are functions attached to speci�c kind of objects, used to retrieve easily some information from
complicated structures (you can de�ne your own but they won't be shown here). We will soon
describe these commands in more detail.

More generally, commands starting with the symbols \ or ?, are not computing commands, but
are metacommands which allow you to exchange information with gp. The available metacommands
can be divided into default setting commands (explained below) and simple commands (or keyboard
shortcuts, to be dealt with in Section 2.13).

2.1.3 Input.

Just type in an instruction, e.g. 1 + 1, or Pi. No action is undertaken until you hit the
<Return> key. Then computation starts, and a result is eventually printed. To suppress printing
of the result, end the expression with a ; sign. Note that many systems use ; to indicate end of
input. Not so in gp: a �nal semicolon means the result should not be printed. (Which is certainly
useful if it occupies several screens.)

2.1.4 Interrupt, Quit.

Typing quit at the prompt ends the session and exits gp. At any point you can type Ctrl-C
(that is press simultaneously the Control and C keys): the current computation is interrupted and
control given back to you at the gp prompt, together with a message like

*** at top-level: gcd(a,b)

*** ^--------

*** gcd: user interrupt after 236 ms.

telling you how much time elapsed since the last command was typed in and in which GP function
the computation was aborted. It does not mean that that much time was spent in the function,
only that the evaluator was busy processing that speci�c function when you stopped it.
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2.2 The general gp input line.

The gp calculator uses a purely interpreted language GP. The structure of this language is
reminiscent of LISP with a functional notation, f(x,y) rather than (f x y): all programming
constructs, such as if, while, etc: : : are functions*, and the main loop does not really execute,
but rather evaluates (sequences of) expressions. Of course, it is by no means a true LISP, and has
been strongly in
uenced by C and Perl since then.

2.2.1 Introduction. User interaction with a gp session proceeds as follows. First, one types a
sequence of characters at the gp prompt; see Section 2.15 for a description of the line editor. When
you hit the <Return> key, gp gets your input, evaluates it, then prints the result and assigns it to
an \history" array.

More precisely, the input is case-sensitive and, outside of character strings, blanks are com-
pletely ignored. Inputs are either metacommands or sequences of expressions. Metacommands are
shortcuts designed to alter gp's internal state, such as the working precision or general verbosity
level; we shall describe them in Section 2.13, and ignore them for the time being.

The evaluation of a sequence of instructions proceeds in two phases: your input is �rst digested
(byte-compiled) to a bytecode suitable for fast evaluation, in particular loop bodies are compiled
only once but a priori evaluated many times; then the bytecode is evaluated.

An expression is formed by combining constants, variables, operator symbols, functions and
control statements. It is evaluated using the conventions about operator priorities and left to right
associativity. An expression always has a value, which can be any PARI object:

? 1 + 1

%1 = 2 \\ an ordinary integer
? x

%2 = x \\ a polynomial of degree 1 in the unknown x

? print("Hello")

Hello \\ void return value, 'Hello' printed as side e�ect
? f(x) = x^2

%4 = (x)->x^2 \\ a user function

In the third example, Hello is printed as a side e�ect, but is not the return value. The print

command is a procedure, which conceptually returns nothing. But in fact procedures return a
special void object, meant to be ignored (but which evaluates to 0 in a numeric context, and
stored as 0 in the history or results). The �nal example assigns to the variable f the function
x 7! x2, the alternative form f = x->x^2 achieving the same e�ect; the return value of a function
de�nition is, unsurprisingly, a function object (of type t_CLOSURE).

Several expressions are combined on a single line by separating them with semicolons (';').
Such an expression sequence will be called a seq . A seq also has a value, which is the value of the
last expression in the sequence. Under gp, the value of the seq , and only this last value, becomes
an history entry. The values of the other expressions in the seq are discarded after the execution
of the seq is complete, except of course if they were assigned into variables. In addition, the value
of the seq is printed if the line does not end with a semicolon ;.

* Not exactly, since not all their arguments need be evaluated. For instance it would be stupid
to evaluate both branches of an if statement: since only one will apply, only this one is evaluated.

15



2.2.2 The gp history of results.

This is not to be confused with the history of your commands, maintained by readline. The
gp history contains the results they produced, in sequence.

The successive elements of the history array are called %1, %2, : : :As a shortcut, the latest
computed expression can also be called %, the previous one %`, the one before that %`` and so on.

When you suppress the printing of the result with a semicolon, it is still stored in the history,
but its history number will not appear either. It is a better idea to assign it to a variable for later
use than to mentally recompute what its number is. Of course, on the next line, you may just use
%.

The time used to compute that history entry is also stored as part of the entry and can be
recovered using the %# operator: %#1, %#2, %#`; %# by itself returns the time needed to compute
the last result (the one returned by %).

Remark. The history \array" is in fact better thought of as a queue: its size is limited to 5000
entries by default, after which gp starts forgetting the initial entries. So %1 becomes unavailable as
gp prints %5001. You can modify the history size using histsize.

2.2.3 Special editing characters. A GP program can of course have more than one line. Since
your commands are executed as soon as you have �nished typing them, there must be a way to tell
gp to wait for the next line or lines of input before doing anything. There are three ways of doing
this.

The �rst one is to use the backslash character \ at the end of the line that you are typing,
just before hitting <Return>. This tells gp that what you will write on the next line is the physical
continuation of what you have just written. In other words, it makes gp forget your newline
character. You can type a \ anywhere. It is interpreted as above only if (apart from ignored
whitespace characters) it is immediately followed by a newline. For example, you can type

? 3 + \

4

instead of typing 3 + 4.

The second one is a variation on the �rst, and is mostly useful when de�ning a user function
(see Section 2.7): since an equal sign can never end a valid expression, gp disregards a newline
immediately following an =.

? a =

123

%1 = 123

The third one is in general much more useful, and uses braces { and }. An opening brace {

signals that you are typing a multi-line command, and newlines are ignored until you type a closing
brace }. There are two important, but easily obeyed, restrictions: �rst, braces do not nest; second,
inside an open brace-close brace pair, all input lines are concatenated, suppressing any newlines.
Thus, all newlines should occur after a semicolon (;), a comma (,) or an operator (for clarity's
sake, never split an identi�er over two lines in this way). For instance, the following program

{

a = b

b = c
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}

would silently produce garbage, since this is interpreted as a=bb=c which assigns the value of c to
both bb and a. It should have been written

{

a = b;

b = c;

}

2.3 The PARI types.

We see here how to input values of the di�erent data types known to PARI. Recall that blanks are
ignored in any expression which is not a string (see below).

A note on e�ciency. The following types are provided for convenience, not for speed: t_INTMOD,
t_FRAC, t_PADIC, t_QUAD, t_POLMOD, t_RFRAC. Indeed, they always perform a reduction of some
kind after each basic operation, even though it is usually more e�cient to perform a single reduction
at the end of some complex computation. For instance, in a convolution product

P
i+j=n xiyj in

Z=NZ | common when multiplying polynomials! |, it is quite wasteful to perform n reductions
modulo N . In short, basic individual operations on these types are fast, but recursive objects
with such components could be handled more e�ciently: programming with libpari will save large
constant factors here, compared to GP.

2.3.1 Integers (t_INT). After an (optional) leading + or -, type in the decimal digits of your
integer. No decimal point!

? 1234567

%1 = 1234567

? -3

%2 = -3

? 1. \\ oops, not an integer

%3 = 1.000000000000000000000000000

Integers can be input in hexadecimal notation by pre�xing them with 0x; hexadecimal digits
(a; : : : ; f) can be input either in lowercase or in uppercase:

? 0xF

%4 = 15

? 0x1abcd

%5 = 109517

Integers can also be input in binary by pre�xing them with 0b:

? 0b010101

%6 = 21
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2.3.2 Real numbers (t_REAL).

Real numbers are represented (approximately) in a 
oating point system, internally in base 2,
but converted to base 10 for input / output purposes. A t_REAL object has a given accuracy (or
precision) ` � 0; it comprises

� a sign s: +1, �1 or 0;
� a mantissa m: a multiprecision integer, 0 � m < 10`;

� an exponent e: a small integer in [�E;E], where E � 2B log10 2, and B = 32 on a 32-bit
machine and 64 otherwise.

This data may represent any real number x such that

jx� sm10ej < 10e�`:

We consider that a t_REAL with sign s = 0 has accuracy ` = 0, so that its mantissa is useless, but
it still has an exponent e and acts like a machine epsilon for all accuracies < e.

After an (optional) leading + or -, type a number with a decimal point. Leading zeroes may
be omitted, up to the decimal point, but trailing zeroes are important: your t_REAL is assigned
an internal precision, which is the supremum of the input precision, one more than the number of
decimal digits input, and the default realprecision. For example, if the default precision is 28
digits, typing 2. yields a precision of 28 digits, but 2.0: : : 0 with 45 zeros gives a number with
internal precision at least 45, although less may be printed.

You can also use scienti�c notation with the letter E or e. As usual, en is interpreted as �10n
for all integers n. Since the result is converted to a t_REAL, you may often omit the decimal point
in this case: 6.02 E 23 or 1e-5 are �ne, but e10 is not.

By de�nition, 0.E n returns a real 0 of exponent n, whereas 0. returns a real 0 \of default
precision" (of exponent �realprecision), see Section 1.3.7, behaving like the machine epsilon for
the current default accuracy: any 
oat of smaller absolute value is indistinguishable from 0.

Note on output formats. A zero real number is printed in e format as 0:Exx where xx is the
(usually negative) decimal exponent of the number (cf. Section 1.3.7). This allows the user to check
the accuracy of that particular zero.

When the integer part of a real number x is not known exactly because the exponent of x is
greater than the internal precision, the real number is printed in e format.

Technical note. The internal precision is actually expressed in bits and can be viewed and
manipulated globally in interactive use via realprecision (decimal digits, as explained above;
shortcut \p) or realbitprecision (bits; shortcut \ps), the latter allowing �ner granularity. See
Section 3.3 for details. In programs we advise to leave this global variable alone and adapt precision
locally for a given sequence of computations using localbitprec.

2.3.3 Intmods (t_INTMOD). To create the image of the integer a in Z=bZ (for some non-zero
integer b), type Mod(a,b); not a%b. Internally, all operations are done on integer representatives
belonging to [0; b� 1].

Note that this type is available for convenience, not for speed: each elementary operation
involves a reduction modulo b.

If x is a t_INTMOD Mod(a,b), the following member function is de�ned:

x.mod: return the modulus b.
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2.3.4 Rational numbers (t_FRAC). All fractions are automatically reduced to lowest terms, so it
is impossible to work with reducible fractions. To enter n=m just type it as written. As explained
in Section 3.1.5, 
oating point division is not performed, only reduction to lowest terms.

Note that rational computation are almost never the fastest method to proceed: in the PARI
implementation, each elementary operation involves computing a gcd. It is generally a little more
e�cient to cancel denominators and work with integers only:

? P = Pol( vector(10^3,i, 1/i) ); \\ big polynomial with small rational coe�s
? P^2

time = 1,392 ms.

? c = content(P); c^2 * (P/c)^2; \\ same computation in integers
time = 1,116 ms.

And much more e�cient (but harder to setup) to use homomorphic imaging schemes and modular
computations. As the simple example below indicates, if you only need modular information, it
is very worthwhile to work with t_INTMODs directly, rather than deal with t_FRACs all the way
through:

? p = nextprime(10^7);

? sum(i=1, 10^5, 1/i) % p

time = 13,288 ms.

%1 = 2759492

? sum(i=1, 10^5, Mod(1/i, p))

time = 60 ms.

%2 = Mod(2759492, 10000019)

2.3.5 Finite �eld elements (t_FFELT). Let T 2 Fp[X] be a monic irreducible polynomial de�ning
your �nite �eld over Fp, for instance obtained using ffinit. Then the ffgen function creates a
generator of the �nite �eld as an Fp-algebra, namely the class of X in Fp[X]=(T ), from which you
can build all other elements. For instance, to create the �eld F28 , we write

? T = ffinit(2, 8);

? y = ffgen(T, 'y);

? y^0 \\ the unit element in the field

%3 = 1

? y^8

%4 = y^6 + y^5 + y^4 + y^3 + y + 1

The second (optional) parameter to ffgen is only used to display the result; it is customary to
use the name of the variable we assign the generator to. If g is a t_FFELT, the following member
functions are de�ned:

g.pol: the polynomial (with reduced integer coe�cients) expressing g in term of the �eld
generator.

g.p: the characteristic of the �nite �eld.

g.f: the dimension of the de�nition �eld over its prime �eld; the cardinality of the de�nition
�eld is thus pf .

g.mod: the minimal polynomial (with reduced integer coe�cients) of the �eld generator.
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2.3.6 Complex numbers (t_COMPLEX). To enter x + iy, type x + I*y. (That's I, not i!) The
letter I stands for

p�1. The \real" and \imaginary" parts x and y can be of type t_INT, t_REAL,
t_INTMOD, t_FRAC, or t_PADIC.

2.3.7 p-adic numbers (t_PADIC):. Typing O(p^k), where p and k are integers, yields a p-adic
0 of accuracy k, representing any p-adic number whose valuation is � k. To input a general non-0
p-adic number, write a suitably precise rational or integer approximation and add O(p^k) to it.

Note that it is not checked whether p is indeed prime but results are unde�ned if this is not the
case: you can work on 10-adics if you want, but disasters will happen as soon as you do something
non-trivial like taking a square root. Note that O(25) is not the same as O(5^2); you want the
latter!

For example, you can type in the 7-adic number

2*7^(-1) + 3 + 4*7 + 2*7^2 + O(7^3)

exactly as shown, or equivalently as 905/7 + O(7^3).

If a is a t_PADIC, the following member functions are de�ned:

a.mod: returns the modulus pk.

a.p: returns p.

Note that this type is available for convenience, not for speed: internally, t_PADICs are stored
as p-adic units modulo some pk. Each elementary operation involves updating pk (multiplying or
dividing by powers of p) and a reduction mod pk. In particular, additions are slow.

? n = 1+O(2^20); for (i=1,10^6, n++)

time = 841 ms.

? n = Mod(1,2^20); for (i=1,10^6, n++)

time = 441 ms.

? n = 1; for (i=1,10^6, n++)

time = 328 ms.

The penalty attached to maintaining pk decreases steeply as p increases (and updates become
rare). But t_INTMODs remain at least 25% more e�cient. (On the other hand, they do not allow
denominators!)

2.3.8 Quadratic numbers (t_QUAD). This type is used to work in the quadratic order of discrim-
inant d, where d is a non-square integer congruent to 0 or 1 (modulo 4). The command

w = quadgen(d)

assigns to w the \canonical" generator for the integer basis of the order of discriminant d, i.e. w =p
d=2 if d � 0mod 4, and w = (1+

p
d)=2 if d � 1mod 4. The name w is of course just a suggestion,

but corresponds to traditional usage. You can use any variable name that you like, but quadgen(d)
is always printed as w, regardless of the discriminant. So beware, two t_QUADs can be printed in
the same way and not be equal; however, gp will refuse to add or multiply them for example.

Since the order is Z + wZ, any other element can be input as z = x+y*w for some integers x
and y. In fact, you may work in its fraction �eld Q(

p
d) and use t_FRAC values for x and y.

The member function z.disc retrieves the discriminant d; x and y are obtained via real(z)

and imag(z) respectively.
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2.3.9 Polmods (t_POLMOD). Exactly as for intmods, to enter xmod y (where x and y are poly-
nomials), type Mod(x,y), not x%y. Note that when y is an irreducible polynomial in one variable,
polmods whose modulus is y are simply algebraic numbers in the �nite extension de�ned by the
polynomial y. This allows us to work easily in number fields, �nite extensions of the p-adic �eld
Qp, or �nite fields.

Note that this type is available for convenience, not for speed: each elementary operation
involves a reduction modulo y. If p is a t_POLMOD, the following member functions are de�ned:

p.pol: return a representative of the polynomial class of minimal degree.

p.mod: return the modulus.

Important remark. Mathematically, the variables occurring in a polmod are not free variables.
But internally, a congruence class in R[t]=(y) is represented by its representative of lowest degree,
which is a t_POL in R[t], and computations occur with polynomials in the variable t. PARI will not
recognize that Mod(y, y^2 + 1) is \the same" as Mod(x, x^2 + 1), since x and y are di�erent
variables.

To avoid inconsistencies, polmods must use the same variable in internal operations (i.e. be-
tween polmods) and variables of lower priority for external operations, typically between a poly-
nomial and a polmod. See Section 2.5.3 for a de�nition of \priority" and a discussion of (PARI's
idea of) multivariate polynomial arithmetic. For instance:

? Mod(x, x^2+ 1) + Mod(x, x^2 + 1)

%1 = Mod(2*x, x^2 + 1) \\ 2i (or �2i), with i2 = �1
? x + Mod(y, y^2 + 1)

%2 = x + Mod(y, y^2 + 1) \\ in Q(i)[x]
? y + Mod(x, x^2 + 1)

%3 = Mod(x + y, x^2 + 1) \\ in Q(y)[i]

The �rst two are straightforward, but the last one may not be what you want: y is treated here as
a numerical parameter, not as a polynomial variable.

If the main variables are the same, it is allowed to mix t_POL and t_POLMODs. The result is
the expected t_POLMOD. For instance

? x + Mod(x, x^2 + 1)

%1 = Mod(2*x, x^2 + 1)

2.3.10 Polynomials (t_POL). Type the polynomial in a natural way, not forgetting to put a \�"
between a coe�cient and a formal variable;

? 1 + 2*x + 3*x^2

%1 = 3*x^2 + 2*x + 1

This assumes that x is still a "free variable".

? x = 1; 1 + 2*x + 3*x^2

%2 = 6

generates an integer, not a polynomial! It is good practice to never assign values to polynomial
variables to avoid the above problem, but a foolproof construction is available using 'x instead of x:
'x is a constant evaluating to the free variable with name x, independently of the current value
of x.
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? x = 1; 1 + 2*'x + 3*'x^2

%3 = 1 + 2*x + 3*x^2

? x = 'x; 1 + 2*x + 3*x^2

%4 = 1 + 2*x + 3*x^2

You may also use the functions Pol or Polrev:

? Pol([1,2,3]) \\ Pol creates a polynomial in x by default
%1 = x^2 + 2*x + 3

? Polrev([1,2,3])

%2 = 3*x^2 + 2*x + 1

? Pol([1,2,3], 'y) \\ we use 'y, safer than y

%3 = y^2 + 2*y + 3

The latter two are much more e�cient constructors than an explicit summation (the latter is
quadratic in the degree, the former linear):

? for (i=1, 10^4, Polrev( vector(100, i,i) ) )

time = 124ms

? for (i=1, 10^4, sum(i = 1, 100, (i+1) * 'x^i) )

time = 3,985ms

Polynomials are always printed as univariate polynomials, with monomials sorted by decreasing
degree:

? (x+y+1)^2

%1 = x^2 + (2*y + 2)*x + (y^2 + 2*y + 1)

(Univariate polynomial in x whose coe�cients are polynomials in y.) See Section 2.5 for valid
variable names, and a discussion of multivariate polynomial rings.

2.3.11 Power series (t_SER). Typing O(X^k), where k is an integer, yields an X-adic 0 of
accuracy k, representing any power series in X whose valuation is � k. Of course, X can be replaced
by any other variable name! To input a general non-0 power series, type in a polynomial or rational
function (in X, say), and add O(X^k) to it. The discussion in the t_POL section about variables
remains valid; a constructor Ser replaces Pol and Polrev.

Caveat. Power series with inexact coe�cients sometimes have a non-intuitive behavior: if k
signi�cant terms are requested, an inexact zero is counted as signi�cant, even if it is the coe�cient
of lowest degree. This means that useful higher order terms may be disregarded.

If a series with a zero leading coe�cient must be inverted, then as a desperation measure that
coe�cient is discarded, and a warning is issued:

? C = 0. + y + O(y^2);

? 1/C

*** _/_: Warning: normalizing a series with 0 leading term.

%2 = y^-1 + O(1)

The last output could be construed as a bug since it is a priori impossible to deduce such a result
from the input (0: represents any su�ciently small real number). But it was thought more useful
to try and go on with an approximate computation than to raise an early exception.

If the series precision is insu�cient, errors may occur (mostly division by 0), which could have
been avoided by a better global understanding of the computation:
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? A = 1/(y + 0.); B = 1. + O(y);

? B * denominator(A)

%2 = 0.E-28 + O(y)

? A/B

*** _/_: Warning: normalizing a series with 0 leading term.

%3 = 1.000000000000000000000000000*y^-1 + O(1)

? A*B

*** _*_: Warning: normalizing a series with 0 leading term.

%4 = 1.000000000000000000000000000*y^-1 + O(1)

2.3.12 Rational functions (t_RFRAC). As for fractions, all rational functions are automatically
reduced to lowest terms. All that was said about fractions in Section 2.3.4 remains valid here.

2.3.13 Binary quadratic forms of positive or negative discriminant (t_QFR and t_QFI).
These are input using the function Qfb. For example Qfb(1,2,3) creates the binary form q =
x2 + 2xy + 3y2. It is imaginary (of internal type t_QFI) since its discriminant 22 � 4 � 3 = �8 is
negative. Although imaginary forms could be positive or negative de�nite, only positive de�nite
forms are implemented.

The discriminant can be retrieved via poldisc or q.disc. The individual components are
obtained via either of

[a,b,c] = Vec(q);

a = component(q,1);

b = component(q,2);

c = component(q,3);

In the case of forms with positive discriminant (t_QFR), you may add an optional fourth
component (related to the regulator, more precisely to Shanks and Lenstra's \distance"), which
must be a real number. See also the function qfbprimeform which directly creates a prime form
of given discriminant.

2.3.14 Row and column vectors (t_VEC and t_COL).) To enter a row vector, type the com-
ponents separated by commas \,", and enclosed between brackets \[ " and \ ]", e.g. [1,2,3]. To
enter a column vector, type the vector horizontally, and add a tilde \~" to transpose. [ ] yields the
empty (row) vector. The function Vec can be used to transform any object into a vector (see Chap-
ter 3). The construction [i::j], where i � j are two integers returns the vector [i; i+ 1; : : : ; j � 1; j]

? [1,2,3]

%1 = [1, 2, 3]

? [-2..3]

%2 = [-2, -1, 0, 1, 2, 3]

Let the variable v contain a (row or column) vector:

� v[m] refers to its m-th entry; you can assign any value to v[m], i.e. write something like
v[m] = expr .

� v[i..j], where i � j, returns the vector slice containing elements v[i]; : : : ; v[j]; you can not
assign a result to v[i..j].

� v[^i] returns the vector whose i-th entry has been removed; you can not assign a result to
v[^i].
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In the last two constructions v[i..j] and v[^i], i and j are allowed to be negative integers, in
which case, we start counting from the end of the vector: e.g., �1 is the index of the last element.

? v = [1,2,3,4];

? v[2..4]

%2 = [2, 3, 4]

? v[^3]

%3 = [1, 2, 4]

? v[^-1]

%3 = [1, 2, 3]

? v[-3..-1]

%4 = [2, 3, 4]

Remark. vector is the standard constructor for row vectors whose i-th entry is given by a simple
function of i; vectorv is similar for column vectors:

? vector(10, i, i^2+1)

%1 = [2, 5, 10, 17, 26, 37, 50, 65, 82, 101]

The functions Vec and Col convert objects to row and column vectors respectively (as well as
Vecrev and Colrev, which revert the indexing):

? T = poltchebi(5) \\ 5-th Chebyshev polynomial

%1 = 16*x^5 - 20*x^3 + 5*x

? Vec(T)

%2 = [16, 0, -20, 0, 5, 0] \\ coefficients of T

? Vecrev(T)

%3 = [0, 5, 0, -20, 0, 16] \\ ... in reverse order

Remark. For v a t_VEC, t_COL, t_LIST or t_MAT, the alternative set-notations

[g(x) | x <- v, f(x)]

[x | x <- v, f(x)]

[g(x) | x <- v]

are available as shortcuts for

apply(g, select(f, Vec(v)))

select(f, Vec(v))

apply(g, Vec(v))

respectively, and may serve as t_VEC constructors:

? [ p | p <- primes(10), isprime(p+2) ]

%2 = [3, 5, 11, 17, 29]

returns the primes p (among the �rst 10 primes) such that (p; p+ 2) is a twin pair;

? [ p^2 | p <- primes(10), p % 4 == 1 ]

%1 = [25, 169, 289, 841]
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returns the squares of the primes congruent to 1 modulo 4, where p runs among the �rst 10 primes.

2.3.15 Matrices (t_MAT). To enter a matrix, type the components row by row, the components
being separated by commas \,", the rows by semicolons \;", and everything enclosed in brackets
\[ " and \ ]", e.g. [x,y; z,t; u,v]. [;] yields an empty (0 � 0) matrix. The function Mat

transforms any object into a matrix, and matrix creates matrices whose (i; j)-th entry is described
by a function f(i; j):

? Mat(1)

%1 =

[1]

? matrix(2,2, i,j, 2*i+j)

%2 =

[3 4]

[5 6]

Let the variable M contain a matrix, and let i; j; k; l denote four integers:

� M[i,j] refers to its (i; j)-th entry; you can assign any result to M[i,j].

� M[i,] refers to its i-th row; you can assign a t_VEC of the right dimension to M[i,].

� M[,j] refers to its j-th column; you can assign a t_COL of the right dimension to M[,j].

But M[i] is meaningless and triggers an error. The \range" i::j and \caret" ^c notations are
available as for vectors; you can not assign to any of these:

� M[i..j, k..l], i � j, k � l, returns the submatrix built from the rows i to j and columns
k to l of M .

� M[i..j,] returns the submatrix built from the rows i to j of M .

� M[,i..j] returns the submatrix built from the columns i to j of M .

� M[i..j, ^k], i � j, returns the submatrix built from the rows i to j and column k removed.

� M[^k,] returns the submatrix with row k removed.

� M[,^k] returns the submatrix with column k removed.

Finally,

� M[i..j, k] returns the t_COL built from the k-th column (entries i to j).

� M[^i, k] returns the t_COL built from the k-th column (entry i removed).

� M[k, i..j] returns the t_VEC built from the k-th row (entries i to j).

� M[k, ^i] returns the t_VEC built from the k-th row (entry i removed).

? M = [1,2,3;4,5,6;7,8,9];

? M[1..2, 2..3]

%2 =

[2 3]

[5 6]

? M[1..2,]
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%3 =

[1 2 3]

[4 5 6]

? M[,2..3]

%4 =

[2 3]

[5 6]

[8 9]

All this is recursive, so if M is a matrix of matrices of : : : , an expression such as M[1,1][,3][4]
= 1 is perfectly valid (and actually identical to M[1,1][4,3] = 1), assuming that all matrices along
the way have compatible dimensions.

Technical note (design 
aw). Matrices are internally represented as a vector of columns. All
matrices with 0 columns are thus represented by the same object (internally, an empty vector), and
there is no way to distinguish between them. Thus it is not possible to create or represent matrices
with zero columns and an actual nonzero number of rows. The empty matrix [;] is handled as
though it had an arbitrary number of rows, exactly as many as needed for the current computation
to make sense:

? [1,2,3; 4,5,6] * [;]

%1 = [;]

The empty matrix on the �rst line is understood as a 3�0 matrix, and the result as a 2�0 matrix.
On the other hand, it is possible to create matrices with a given positive number of columns, each
of which has zero rows, e.g. using Mat as above or using the matrix function.

Note that although the internal representation is essentially the same, a row vector of column
vectors is not a matrix; for example, multiplication will not work in the same way. It is easy to go
from one representation to the other using Vec / Mat, though:

? [1,2,3;4,5,6]

%1 =

[1 2 3]

[4 5 6]

? Vec(%)

%2 = [[1, 4]~, [2, 5]~, [3, 6]~]

? Mat(%)

%3 =

[1 2 3]

[4 5 6]

2.3.16 Lists (t_LIST). Lists can be input directly, as in List([1,2,3,4]); but in most cases, one
creates an empty list, then appends elements using listput:

? a = List(); listput(a,1); listput(a,2);

? a

%2 = List([1, 2])

Elements can be accessed directly as with the vector types described above.
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2.3.17 Strings (t_STR). To enter a string, enclose it between double quotes ", like this: "this is

a string". The function Str can be used to transform any object into a string.

2.3.18 Small vectors (t_VECSMALL). This is an internal type, used to code in an e�cient way
vectors containing only small integers, such as permutations. Most gp functions will refuse to
operate on these objects.

2.3.19 Functions (t_CLOSURE). We will explain this at length in Section 2.7. For the time being,
su�ce it to say that functions can be assigned to variables, as any other object, and the following
equivalent basic forms are available to create new ones

f = (x,y) -> x^2 + y^2

f(x,y) = x^2 + y^2

2.3.20 Error contexts (t_ERROR). An object of this type is created whenever an error occurs: it
contains some information about the error and the error context. Usually, an appropriate error is
printed immediately, the computation is aborted, and GP enters the \break loop":

? 1/0; 1 + 1

*** at top-level: 1/0;1+1

*** ^------

*** _/_: division by a non-invertible object

*** Break loop: type 'break' to go back to the GP prompt

Here the computation is aborted as soon as we try to evaluate 1=0, and 1 + 1 is never executed.
Exceptions can be trapped using iferr, however: we can evaluate some expression and either
recover an ordinary result (no error occurred), or an exception (an error did occur).

? i = Mod(6,12); iferr(1/i, E, print(E)); 1 + 1

error("impossible inverse modulo: Mod(6, 12).")

%1 = 2

One can ignore the exception, print it as above, or extract non trivial information from the error
context:

? i = Mod(6,12); iferr(1/i, E, print(component(E,1)));

Mod(6, 12)

We can also rethrow the exception: error(E).

2.3.21 In�nity (t_INFINITY).

There are only two objects of this type +oo and -oo, representing �1. This type only contain
only two elements oo and -oo, They are used in functions sur as intnum or polrootsreal, to
encode in�nite real intervals. These objects can only be negated and compared to real numbers
(t_INT, t_REAL, t_FRAC), but not included in any computation, i.e. 1+oo is an error, not kbdoo
again.
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2.4 GP operators.

Loosely speaking, an operator is a function, usually attached to basic arithmetic operations, whose
name contains only non-alphanumeric characters. For instance + or -, but also = or +=, or even [ ]

(the selection operator). As all functions, operators take arguments, and return a value; assignment
operators also have side e�ects: besides returning a value, they change the value of some variable.

Each operator has a �xed and unchangeable priority, which means that, in a given expression,
the operations with the highest priority is performed �rst. Unless mentioned otherwise, opera-
tors at the same priority level are left-associative (performed from left to right), unless they are
assignments, in which case they are right-associative. Anything enclosed between parenthesis is
considered a complete subexpression, and is resolved recursively, independently of the surrounding
context. For instance,

a + b + c --> (a + b) + c \\ left-associative
a = b = c --> a = (b = c) \\ right-associative

Assuming that op1, op2, op3 are binary operators with increasing priorities (think of +, *, ^),

x op1 y op2 z op2 x op3 y

is equivalent to
x op1 ((y op2 z) op2 (x op3 y)):

GP contains many di�erent operators, either unary (having only one argument) or binary, plus
a few special selection operators. Unary operators are de�ned as either pre�x or post�x , meaning
that they respectively precede (op x) and follow (x op) their single argument. Some symbols are
syntactically correct in both positions, like !, but then represent di�erent operators: the ! symbol
represents the negation and factorial operators when in pre�x and post�x position respectively.
Binary operators all use the (in�x) syntax x op y.

Most operators are standard (+, %, =), some are borrowed from the C language (++, <<),
and a few are speci�c to GP (\, #). Beware that some GP operators di�er slightly from their C
counterparts. For instance, GP's post�x ++ returns the new value, like the pre�x ++ of C, and the
binary shifts <<, >> have a priority which is di�erent from (higher than) that of their C counterparts.
When in doubt, just surround everything by parentheses; besides, your code will be more legible.

Here is the list of available operators, ordered by decreasing priority, binary and left-associative
unless mentioned otherwise. An expression is an lvalue if something can be assigned to it. (The
name comes from left-value, to the left of a = operator; e.g. x, or v[1] are lvalues, but x + 1 is
not.)

� Priority 14
: as in x:small, is used to indicate to the GP2C compiler that the variable on the left-hand

side always contains objects of the type speci�ed on the right hand-side (here, a small integer) in
order to produce more e�cient or more readable C code. This is ignored by GP.

� Priority 13
( ) is the function call operator. If f is a closure and args is a comma-separated list of

arguments (possibly empty), f(args) evaluates f on those arguments.

� Priority 12
++ and -- (unary, post�x): if x is an lvalue, x++ assigns the value x+ 1 to x, then returns
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the new value of x. This corresponds to the C statement ++x: there is no pre�x ++ operator in GP.
x-- does the same with x� 1. These operators are not associative, i.e. x++++ is invalid, since x++
is not an lvalue.

� Priority 11
.member (unary, post�x): x.member extracts member from structure x (see Section 2.8).

[ ] is the selection operator. x[i] returns the i-th component of vector x; x[i,j], x[,j]
and x[i,] respectively return the entry of coordinates (i; j), the j-th column, and the i-th row of
matrix x. If the assignment operator (=) immediately follows a sequence of selections, it assigns its
right hand side to the selected component. E.g x[1][1] = 0 is valid; but beware that (x[1])[1]
= 0 is not (because the parentheses force the complete evaluation of x[1], and the result is not
modi�able).

� Priority 10
' (unary, post�x): derivative with respect to the main variable. If f is a function (t_CLOSURE),

f 0 is allowed and de�nes a new function, which will perform numerical derivation when evaluated
at a scalar x; this is de�ned as (f(x+ ")� f(x� "))=2" for a suitably small epsilon depending on
current precision.

? (x^2 + y*x + y^2)' \\ derive with respect to main variable x

%1 = 2*x + y

? SIN = cos'

%2 = cos'

? SIN(Pi/6) \\ numerical derivation
%3 = -0.5000000000000000000000000000

? cos'(Pi/6) \\ works directly: no need for intermediate SIN

%4 = -0.5000000000000000000000000000

~ (unary, post�x): vector/matrix transpose.

! (unary, post�x): factorial. x! = x(x� 1) � � � 1.
! (unary, pre�x): logical not . !x returns 1 if x is equal to 0 (speci�cally, if gequal0(x)==1),

and 0 otherwise.

� Priority 9
# (unary, pre�x): cardinality; #x returns length(x).

� Priority 8
^: powering. This operator is right associative: 2 ^3^4 is understood as 2 ^(3^4).

� Priority 7
+, - (unary, pre�x): - toggles the sign of its argument, + has no e�ect whatsoever.

� Priority 6
*: multiplication.

/: exact division (3/2 yields 3=2, not 1:5).

\, %: Euclidean quotient and remainder, i.e. if x = qy + r, then xny = q, x%y = r. If x and y
are scalars, then q is an integer and r satis�es 0 � r < jyj; if x and y are polynomials, then q and
r are polynomials such that deg r < deg y and the leading terms of r and x have the same sign.

\/: rounded Euclidean quotient for integers (rounded towards +1 when the exact quotient
would be a half-integer).
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<<, >>: left and right binary shift. By de�nition, x<<n = x � 2n if n > 0, and truncate(x2�n)
otherwise. Right shift is de�ned by x>>n = x<<(-n).

� Priority 5
+, -: addition/subtraction.

� Priority 4
<, >, <=, >=: the usual comparison operators, returning 1 for true and 0 for false. For

instance, x<=1 returns 1 if x � 1 and 0 otherwise.

<>, !=: test for (exact) inequality.

==: test for (exact) equality. t_QFR having the same coe�cients but a di�erent distance
component are tested as equal.

===: test whether two objects are identical component-wise. This is stricter than ==: for
instance, the integer 0, a 0 polynomial or a vector with 0 entries, are all tested equal by ==, but
they are not identical.

� Priority 3
&&: logical and .

||: logical (inclusive) or . Any sequence of logical or and and operations is evaluated from left
to right, and aborted as soon as the �nal truth value is known. Thus, for instance,

x == 0 || test(1/x)

will never produce an error since test(1/x) is not even evaluated when the �rst test is true (hence
the �nal truth value is true). Similarly

type(p) == "t_INT" && isprime(p)

does not evaluate isprime(p) if p is not an integer.

� Priority 2
= (assignment, lvalue = expr). The result of x = y is the value of the expression y, which

is also assigned to the variable x. This assignment operator is right-associative. This is not the
equality test operator; a statement like x = 1 is always true (i.e. non-zero), and sets x to 1; the
equality test would be x == 1. The right hand side of the assignment operator is evaluated before
the left hand side.

It is crucial that the left hand-side be an lvalue there, it avoids ambiguities in expressions like
1 + x = 1. The latter evaluates as 1 + (x = 1), not as (1 + x) = 1, even though the priority
of = is lower than the priority of +: 1 + x is not an lvalue.

If the expression cannot be parsed in a way where the left hand side is an lvalue, raise an error.

? x + 1 = 1

*** syntax error, unexpected '=', expecting $end or ';': x+1=1

*** ^--

op=, where op is any binary operator among +, -, *, %, /, \, \/, <<, or >> (composed assignment
lvalue op= expr). The expression x op= y assigns (x op y) to x, and returns the new value of x.
The result is not an lvalue; thus

(x += 2) = 3

is invalid. These assignment operators are right-associative:
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? x = 'x; x += x *= 2

%1 = 3*x

� Priority 1
-> (function de�nition): (vars)->expr returns a function object, of type t_CLOSURE.

Remark. Use the op= operators as often as possible since they make complex assignments more
legible: one needs not parse complicated expressions twice to make sure they are indeed identical.
Compare

v[i+j-1] = v[i+j-1] + 1 --> v[i+j-1]++

M[i,i+j] = M[i,i+j] * 2 --> M[i,i+j] *= 2

Remark. Less important but still interesting. The ++, -- and op= operators are slightly more
e�cient:

? a = 10^6;

? i = 0; while(i<a, i=i+1)

time = 365 ms.

? i = 0; while(i<a, i++)

time = 352 ms.

For the same reason, the shift operators should be preferred to multiplication:

? a = 1<<(10^5);

? i = 1; while(i<a, i=i*2);

time = 1,052 ms.

? i = 1; while(i<a, i<<=1);

time = 617 ms.

2.5 Variables and symbolic expressions.

In this section we use variable in the standard mathematical sense, symbols representing
algebraically independent elements used to build rings of polynomials and power series, and explain
the all-important concept of variable priority . In the next Section 2.6, we shall no longer consider
only free variables, but adopt the viewpoint of computer programming and assign values to these
symbols: (bound) variables are names attached to values in a given scope.

2.5.1 Variable names. A valid name starts with a letter, followed by any number of keyword
characters: or alphanumeric characters ([A-Za-z0-9]). The built-in function names are reserved
and cannot be used; see the list with \c, including the constants Pi, Euler, Catalan, I =

p�1
and oo =1.

GP names are case sensitive. For instance, the symbol i is perfectly safe to use, and will not
be mistaken for I =

p�1; analogously, o is not synonymous to O.

In GP you can use up to 16383 variable names (up to 65535 on 64-bit machines). If you ever
need thousands of variables and this becomes a serious limitation, you should probably be using
vectors instead: e.g. instead of variables X1, X2, X3, : : : , you might equally well store their values
in X[1], X[2], X[3], : : :

2.5.2 Variables and polynomials. The quote operator 't registers a new free variable with the
interpreter, which will be written as t, and evaluates to a monomial of degree 1 in the said variable.
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Caveat. For reasons of backward compatibility, there is no such thing as an \unbound" (unini-
tialized) variable in GP. If you use a valid variable name in an expression, t say, for the �rst time
before assigning a value into it, it is interpreted as 't rather than raising an exception. One should
not rely on this feature in serious programs, which would otherwise break if some unexpected as-
signment (e.g. t = 1) occurs: use 't directly or t = 't �rst, then t. A statement like t = 't in
e�ect restores t as a free variable.

? t = 't; t^2 + 1

%1 = t^2 + 1

? t = 2; t^2 + 1

%2 = 5

? %1

%3 = t^2 + 1

? eval(%1)

%4 = 5

In the above, we initialize t to a monomial, then bind it to 2. Assigning a value to a polynomial
variable does not a�ect previous expressions involving it; to take into account the new variable's
value, one must force a new evaluation, using the function eval (see Section 3.10.5).

Caveat2. The use of an explicit quote operator avoids the following kind of problems:

? t = 't; p = t^2 + 1; subst(p, t, 2)

%1 = 5

? t = 2;

? subst(p, t, 3) \\ t is no longer free: it evaluates to 2
*** at top-level: subst(p,t,3)

*** ^----

*** variable name expected.

? subst(p, 't, 3) \\ OK

%3 = 10

2.5.3 Variable priorities, multivariate objects. A multivariate polynomial in PARI is just a
polynomial (in one variable), whose coe�cients are themselves polynomials, arbitrary but for the
fact that they do not involve the main variable. (PARI currently has no sparse representation for
polynomials, listing only non-zero monomials.) All computations are then done formally on the
coe�cients as if the polynomial was univariate.

This is not symmetrical. So if I enter 'x + 'y in a clean session, what happens? This is
understood as

x1 + (y1 + 0 � y0) � x0 2 (Z[y])[x]
but how do we know that x is \more important" than y ? Why not y1 + x � y0, which is the same
mathematical entity after all?

The answer is that variables are ordered implicitly by the interpreter: when a new identi�er
(e.g x, or y as above) is input, the corresponding variable is registered as having a strictly lower
priority than any variable in use at this point*. To see the ordering used by gp at any given time,
type variable().

* This is not strictly true: the variables x and y are prede�ned, and satisfy x > y. Variables of
higher priority than x can be created using varhigher.
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Given such an ordering, multivariate polynomials are stored so that the variable with the
highest priority is the main variable. And so on, recursively, until all variables are exhausted. A
di�erent storage pattern (which could only be obtained via libpari programming and low-level
constructors) would produce an invalid object, and eventually a disaster.

In any case, if you are working with expressions involving several variables and want to have
them ordered in a speci�c manner in the internal representation just described, the simplest is just
to write down the variables one after the other under gp before starting any real computations.
You may also de�ne variables from your gprc to have a consistent ordering of common variable
names in all your gp sessions, e.g read in a �le variables.gp containing

'x; 'y; 'z; 't; 'a;

There is no way to change the priority of existing variables, but you may always create new ones
with well-de�ned priorities using varhigher or varlower.

Important note. PARI allows Euclidean division of multivariate polynomials, but assumes that
the computation takes place in the fraction �eld of the coe�cient ring (if it is not an integral
domain, the result will a priori not make sense). This can become tricky. For instance assume x
has highest priority, then y:

? x % y

%1 = 0

? y % x

%2 = y \\ these two take place in Q(y)[x]
? x * Mod(1,y)

%3 = Mod(1, y)*x \\ in (Q(y)=yQ(y))[x] � Q[x]
? Mod(x,y)

%4 = 0

In the last example, the division by y takes place in Q(y)[x], hence the Mod object is a coset
in (Q(y)[x])=(yQ(y)[x]), which is the null ring since y is invertible! So be very wary of variable
ordering when your computations involve implicit divisions and many variables. This also a�ects
functions like numerator/denominator or content:

? denominator(x / y)

%1 = 1

? denominator(y / x)

%2 = x

? content(x / y)

%3 = 1/y

? content(y / x)

%4 = y

? content(2 / x)

%5 = 2

Can you see why? Hint: x=y = (1=y) � x is in Q(y)[x] and denominator is taken with respect to
Q(y)(x); y=x = (y �x0)=x is in Q(y)(x) so y is invertible in the coe�cient ring. On the other hand,
2=x involves a single variable and the coe�cient ring is simply Z.

These problems arise because the variable ordering de�nes an implicit variable with respect
to which division takes place. This is the price to pay to allow % and / operators on polynomials
instead of requiring a more cumbersome divrem(x, y, var) (which also exists). Unfortunately,

33



in some functions like content and denominator, there is no way to set explicitly a main variable
like in divrem and remove the dependence on implicit orderings. This will hopefully be corrected
in future versions.

2.5.4 Multivariate power series. Just like multivariate polynomials, power series are funda-
mentally single-variable objects. It is awkward to handle many variables at once, since PARI's
implementation cannot handle multivariate error terms like O(xiyj). (It can handle the polyno-
mial O(yj)� xi which is a very di�erent thing, see below.)

The basic assumption in our model is that if variable x has higher priority than y, then y does
not depend on x: setting y to a function of x after some computations with bivariate power series
does not make sense a priori. This is because implicit constants in expressions like O(xi) depend
on y (whereas in O(yj) they can not depend on x). For instance

? O(x) * y

%1 = O(x)

? O(y) * x

%2 = O(y)*x

Here is a more involved example:

? A = 1/x^2 + 1 + O(x); B = 1/x + 1 + O(x^3);

? subst(z*A, z, B)

%2 = x^-3 + x^-2 + x^-1 + 1 + O(x)

? B * A

%3 = x^-3 + x^-2 + x^-1 + O(1)

? z * A

%4 = z*x^-2 + z + O(x)

The discrepancy between %2 and %3 is surprising. Why does %2 contain a spurious constant term,
which cannot be deduced from the input? Well, we ignored the rule that forbids to substitute
an expression involving high-priority variables to a low-priority variable. The result %4 is correct
according to our rules since the implicit constant in O(x) may depend on z. It is obviously wrong
if z is allowed to have negative valuation in x. Of course, the correct error term should be O(xz),
but this is not possible in PARI.

2.6 Variables and Scope.

This section is rather technical, and strives to explain potentially confusing concepts. Skip to
the last subsection for practical advice, if the next discussion does not make sense to you. After
learning about user functions, study the example in Section 2.7.3 then come back.
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De�nitions.

A scope is an enclosing context where names and values are attached. A user's function body,
the body of a loop, an individual command line, all de�ne scopes; the whole program de�nes the
global scope. The argument of eval is evaluated in the enclosing scope.

Variables are bound to values within a given scope. This is traditionally implemented in two
di�erent ways:

� lexical (or static) scoping: the binding makes sense within a given block of program text.
The value is private to the block and may not be accessed from outside. Where to �nd the value
is determined at compile time.

� dynamic scoping: introducing a local variable, say x, pushes a new value on a stack attached
to the name x (possibly empty at this point), which is popped out when the control 
ow leaves the
scope. Evaluating x in any context, possibly outside of the given block, always yields the top value
on this dynamic stack.

GP implements both lexical and dynamic scoping, using the keywords* my (lexical) and local

(dynamic):

x = 0;

f() = x

g() = my(x = 1); f()

h() = local(x = 1); f()

The function g returns 0 since the global x binding is una�ected by the introduction of a private
variable of the same name in g. On the other hand, h returns 1; when it calls f(), the binding stack
for the x identi�er contains two items: the global binding to 0, and the binding to 1 introduced in
h, which is still present on the stack since the control 
ow has not left h yet.

2.6.1 Scoping rules.

Named parameters in a function de�nition, as well as all loop indices**, have lexical scope
within the function body and the loop body respectively.

p = 0;

forprime (p = 2, 11, print(p)); p \\ prints 0 at the end

x = 0;

f(x) = x++;

f(1) \\ returns 2, and leave global x unaffected (= 0)

If you exit the loop prematurely, e.g. using the break statement, you must save the loop index in
another variable since its value prior the loop will be restored upon exit. For instance

for(i = 1, n,

if (ok(i), break);

);

if (i > n, return(failure));

* The names are borrowed from the Perl scripting language.
** More generally, in all iterative constructs which use a variable name (for, prod, sum, vector,
matrix, plot, etc.) the given variable is lexically scoped to the construct's body.
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is incorrect, since the value of i tested by the (i > n) is quite unrelated to the loop index. One ugly
workaround is

for(i = 1, n,

if (ok(i), isave = i; break);

);

if (isave > n, return(failure));

But it is usually more natural to wrap the loop in a user function and use return instead of break:

try() =

{

for(i = 1, n,

if (ok(i), return (i));

);

0 \\ failure

}

A list of variables can be lexically or dynamically scoped (to the block between the declaration
and the end of the innermost enclosing scope) using a my or local declaration:

for (i = 1, 10,

my(x, y, z, i2 = i^2); \\ temps needed within the loop body

...

)

Note how the declaration can include (optional) initial values, i2 = i^2 in the above. Variables
for which no explicit default value is given in the declaration are initialized to 0. It would be more
natural to initialize them to free variables, but this would break backward compatibility. To obtain
this behavior, you may explicitly use the quoting operator:

my(x = 'x, y = 'y, z = 'z);

A more complicated example:

for (i = 1, 3,

print("main loop");

my(x = i); \\ local to the outermost loop

for (j = 1, 3,

my (y = x^2); \\ local to the innermost loop

print (y + y^2);

x++;

)

)

When we leave the loops, the values of x, y, i, j are the same as before they were started.

Note that eval is evaluated in the given scope, and can access values of lexical variables:

? x = 1;

? my(x = 0); eval("x")

%2 = 0 \\ we see the local x scoped to this command line, not the global one

Variables dynamically scoped using local should more appropriately be called temporary val-
ues since they are in fact local to the function declaring them and any subroutine called from
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within. In practice, you almost certainly want true private variables, hence should use almost
exclusively my.

We strongly recommended to explicitly scope (lexically) all variables to the smallest possible
block. Should you forget this, in expressions involving such \rogue" variables, the value used will
be the one which happens to be on top of the value stack at the time of the call; which depends on
the whole calling context in a non-trivial way. This is in general not what you want.

2.7 User de�ned functions.

The most important thing to understand about user-de�ned functions is that they are ordinary
GP objects, bound to variables just like any other object. Those variables are subject to scoping
rules as any other: while you can de�ne all your functions in global scope, it is usually possible
and cleaner to lexically scope your private helper functions to the block of text where they will be
needed.

Whenever gp meets a construction of the form expr(argument list) and the expression expr

evaluates to a function (an object of type t_CLOSURE), the function is called with the proper
arguments. For instance, constructions like funcs[i](x) are perfectly valid, assuming funcs is an
array of functions.

2.7.1 De�ning a function.

A user function is de�ned as follows:

(list of formal variables) -> seq .

The list of formal variables is a comma-separated list of distinct variable names and allowed to be
empty. It there is a single formal variable, the parentheses are optional. This list corresponds to
the list of parameters you will supply to your function when calling it.

In most cases you want to assign a function to a variable immediately, as in

R = (x,y) -> sqrt( x^2+y^2 );

sq = x -> x^2; \\ or equivalently (x) -> x^2

but it is quite possible to de�ne (a priori short-lived) anonymous functions. The trailing semicolon
is not part of the de�nition, but as usual prevents gp from printing the result of the evaluation, i.e.
the function object. The construction

f(list of formal variables) = seq

is available as an alias for

f = (list of formal variables) -> seq

Using that syntax, it is not possible to de�ne anonymous functions (obviously), and the above two
examples become:

R(x,y) = sqrt( x^2+y^2 );

sq(x) = x^2;

The semicolon serves the same purpose as above: preventing the printing of the resulting function
object; compare

? sq(x) = x^2; \\ no output
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? sq(x) = x^2 \\ print the result: a function object
%2 = (x)->x^2

Of course, the sequence seq can be arbitrarily complicated, in which case it will look better written
on consecutive lines, with properly scoped variables:

{

f(x0, x1, : : : ) =

my(t0, t1, : : : ); \\ variables lexically scoped to the function body
: : :

}

Note that the following variant would also work:

f(x0, x1, : : : ) =

{

my(t0, t1, : : : ); \\ variables lexically scoped to the function body
: : :

}

(the �rst newline is disregarded due to the preceding = sign, and the others because of the enclosing
braces). The my statements can actually occur anywhere within the function body, scoping the
variables to more restricted blocks than the whole function body.

Arguments are passed by value, not as variables: modifying a function's argument in the
function body is allowed, but does not modify its value in the calling scope. In fact, a copy of
the actual parameter is assigned to the formal parameter when the function is called. Formal
parameters are lexically scoped to the function body. It is not allowed to use the same variable
name for di�erent parameters of your function:

? f(x,x) = 1

*** variable declared twice: f(x,x)=1

*** ^----

Functions taking an unlimited number of arguments.

A function taking an unlimited number of arguments is called variadic. To create such a
function, use the syntax

(list of formal variables, var[..]) -> seq

The parameter var is replaced by a vector containing all the remaining arguments.

? f(c[..]) = sum(i=1,#c,c[i]);

? f(1,2,3)

%1 = 6

? sep(s,v[..]) = for(i=1,#v-1,print1(v[i],s)); if (#v, print(v[#v]));

? sep(":", 1, 2, 3)

1:2:3

Finishing touch. You can add a speci�c help message for your function using addhelp, but the
online help system already handles it. By default ?name will print the de�nition of the function
name: the list of arguments, as well as their default values, the text of seq as you input it. Just as
\c prints the list of all built-in commands, \u outputs the list of all user-de�ned functions.

38



Backward compatibility (lexical scope). Lexically scoped variables were introduced in ver-
sion 2.4.2. Before that, the formal parameters were dynamically scoped. If your script depends on
this behavior, you may use the following trick: replace the initial f(x) = by

f(x_orig) = local(x = x_orig)

Backward compatibility (disjoint namespaces). Before version 2.4.2, variables and functions
lived in disjoint namespaces and it was not possible to have a variable and a function share the
same name. Hence the need for a kill function allowing to reuse symbols. This is no longer the
case.

There is now no distinction between variable and function names: we have PARI objects
(functions of type t_CLOSURE, or more mundane mathematical entities, like t_INT, etc.) and
variables bound to them. There is nothing wrong with the following sequence of assignments:

? f = 1 \\ assigns the integer 1 to f

%1 = 1;

? f() = 1 \\ a function with a constant value

%2 = ()->1

? f = x^2 \\ f now holds a polynomial

%3 = x^2

? f(x) = x^2 \\ : : : and now a polynomial function

%4 = (x)->x^2

? g(fun) = fun(Pi);\\ a function taking a function as argument

? g(cos)

%6 = -1.000000000000000000000000000

Previously used names can be recycled as above: you are just rede�ning the variable. The previous
de�nition is lost of course.

Important technical note. Built-in functions are a special case since they are read-only (you
cannot overwrite their default meaning), and they use features not available to user functions, in
particular pointer arguments. In the present version 2.9.1, it is possible to assign a built-in function
to a variable, or to use a built-in function name to create an anonymous function, but some special
argument combinations may not be available:

? issquare(9, &e)

%1 = 1

? e

%2 = 3

? g = issquare;

? g(9)

%4 = 1

? g(9, &e) \\ pointers are not implemented for user functions

*** unexpected &: g(9,&e)

*** ^---
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2.7.2 Function call, Default arguments.

You may now call your function, as in f(1,2), supplying values for the formal variables.
The number of parameters actually supplied may be less than the number of formal variables in
the function de�nition. An uninitialized formal variable is given an implicit default value of (the
integer) 0, i.e. after the de�nition

f(x, y) = ...

you may call f(1, 2), supplying values for the two formal parameters, or for example
f(2) equivalent to f(2,0),
f() f(0,0),
f(,3) f(0,3). (\Empty argument" trick)

This implicit default value of 0, is actually deprecated and setting

default(strictargs, 1)

allows to disable it (see Section 3.17.41).

The recommended practice is to explicitly set a default value: in the function de�nition, you
can append =expr to a formal parameter, to give that variable a default value. The expression gets
evaluated the moment the function is called, and may involve the preceding function parameters:
a default value for xi may involve xj for j < i. For instance, after

f(x = 1, y = 2, z = y+1) = ....

typing in f(3,4) would give you f(3,4,5). In the rare case when you want to set some far
away argument, and leave the defaults in between as they stand, use the \empty argument" trick:
f(6,,1) would yield f(6,2,1). Of course, f() by itself yields f(1,2,3) as was to be expected.

In short, the argument list is �lled with user supplied values, in order. A comma or closing
parenthesis, where a value should have been, signals we must use a default value. When no input
arguments are left, the defaults are used instead to �ll in remaining formal parameters. A �nal
example:

f(x, y=2, z=3) = print(x, ":", y, ":", z);

de�nes a function which prints its arguments (at most three of them), separated by colons.

? f(6,7)

6:7:3

? f(,5)

0:5:3

? f()

0:2:3

If strictargs is set (recommended), x is now a mandatory argument, and the above becomes:

? default(strictargs,1)

? f(6,7)

6:7:3

? f(,5)

*** at top-level: f(,5)

*** ^-----

*** in function f: x,y=2,z=3

*** ^---------

*** missing mandatory argument 'x' in user function.
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Example. We conclude with an amusing example, intended to illustrate both user-de�ned func-
tions and the power of the sumalt function. Although the Riemann zeta-function is included (as
zeta) among the standard functions, let us assume that we want to check other implementations.
Since we are highly interested in the critical strip, we use the classical formula

(21�s � 1)�(s) =
X
n�1

(�1)nn�s; <s > 0:

The implementation is obvious:

ZETA(s) = sumalt(n=1, (-1)^n*n^(-s)) / (2^(1-s) - 1)

Note that n is automatically lexically scoped to the sumalt \loop", so that it is unnecessary to add
a my(n) declaration to the function body. Surprisingly, this gives very good accuracy in a larger
region than expected:

? check = z -> ZETA(z) / zeta(z);

? check(2)

%1 = 1.000000000000000000000000000

? check(200)

%2 = 1.000000000000000000000000000

? check(0)

%3 = 0.9999999999999999999999999994

? check(-5)

%4 = 1.00000000000000007549266557

? check(-11)

%5 = 0.9999752641047824902660847745

? check(1/2+14.134*I) \\ very close to a non-trivial zero
%6 = 1.000000000000000000003747432 + 7.62329066 E-21*I

? check(-1+10*I)

%7 = 1.000000000000000000000002511 + 2.989950968 E-24*I

Now wait a minute; not only are we summing a series which is certainly no longer alternating (it
has complex coe�cients), but we are also way outside of the region of convergence, and still get
decent results! No programming mistake this time: sumalt is a \magic" function*, providing very
good convergence acceleration; in e�ect, we are computing the analytic continuation of our original
function. To convince ourselves that sumalt is a non-trivial implementation, let us try a simpler
example:

? sum(n=1, 10^7, (-1)^n/n, 0.) / (-log(2)) \\ approximates the well-known formula
time = 7,417 ms.

%1 = 0.9999999278652515622893405457

? sumalt(n=1, (-1)^n/n) / (-log(2)) \\ accurate and fast
time = 0 ms.

%2 = 1.000000000000000000000000000

No, we are not using a powerful simpli�cation tool here, only numerical computations. Remember,
PARI is not a computer algebra system!

* sumalt is heuristic, but its use can be rigorously justi�ed for a given function, in particular our
�(s) formula. Indeed, Peter Borwein (An e�cient algorithm for the Riemann zeta function, CMS
Conf. Proc. 27 (2000), pp. 29{34) proved that the formula used in sumalt with n terms computes
(1� 21�s)�(s) with a relative error of the order of (3 +

p
8)�nj�(s)j�1.
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2.7.3 Beware scopes. Be extra careful with the scopes of variables. What is wrong with the
following de�nition?

FirstPrimeDiv(x) =

{ my(p);

forprime(p=2, x, if (x%p == 0, break));

p

}

? FirstPrimeDiv(10)

%1 = 0

Hint. The function body is equivalent to

{ my(newp = 0);

forprime(p=2, x, if (x%p == 0, break));

newp

}

Detailed explanation. The index p in the forprime loop is lexically scoped to the loop and is
not visible to the outside world. Hence, it will not survive the break statement. More precisely,
at this point the loop index is restored to its preceding value. The initial my(p), although well-
meant, adds to the confusion: it indeed scopes p to the function body, with initial value 0, but the
forprime loop introduces another variable, unfortunately also called p, scoped to the loop body,
which shadows the one we wanted. So we always return 0, since the value of the p scoped to the
function body never changes and is initially 0.

To sum up, the routine returns the p declared local to it, not the one which was local to
forprime and ran through consecutive prime numbers. Here is a corrected version:

? FirstPrimeDiv(x) = forprime(p=2, x, if (x%p == 0, return(p)))

2.7.4 Recursive functions. Recursive functions can easily be written as long as one pays proper
attention to variable scope. Here is an example, used to retrieve the coe�cient array of a multivari-
ate polynomial (a non-trivial task due to PARI's unsophisticated representation for those objects):

coeffs(P, nbvar) =

{

if (type(P) != "t_POL",

for (i=1, nbvar, P = [P]);

return (P)

);

vector(poldegree(P)+1, i, coeffs(polcoeff(P, i-1), nbvar-1))

}

If P is a polynomial in k variables, show that after the assignment v = coeffs(P,k), the coe�cient
of xn11 : : : xnkk in P is given by v[n1+1][: : : ][nk+1].

The operating system automatically limits the recursion depth:

? dive(n) = dive(n+1)

? dive(0);
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*** [...] at: dive(n+1)

*** ^---------

*** in function dive: dive(n+1)

*** ^---------

\\ (last 2 lines repeated 19 times)
*** deep recursion.

There is no way to increase the recursion limit (which may be di�erent on your machine) from
within gp. To increase it before launching gp, you can use ulimit or limit, depending on your
shell, and raise the process available stack space (increase stacksize).

2.7.5 Function which take functions as parameters. This is done as follows:

? calc(f, x) = f(x)

? calc(sin, Pi)

%2 = -5.04870979 E-29

? g(x) = x^2;

? calc(g, 3)

%4 = 9

If we do not need g elsewhere, we should use an anonymous function here, calc(x->x^2, 3). Here
is a variation:

? funs = [cos, sin, tan, x->x^3+1]; \\ an array of functions
? call(i, x) = funs[i](x)

evaluates the appropriate function on argument x, provided 1 � i � 4. Finally, a more useful
example:

APPLY(f, v) = vector(#v, i, f(v[i]))

applies the function f to every element in the vector v. (The built-in function apply is more
powerful since it also applies to lists and matrices.)

2.7.6 De�ning functions within a function. De�ning a single function is easy:

init(x) = (add = y -> x+y);

Basically, we are de�ning a global variable add whose value is the function y->x+y. The parentheses
were added for clarity and are not mandatory.

? init(5);

? add(2)

%2 = 7

A more re�ned approach is to avoid global variables and return the function:

init(x) = y -> x+y

add = init(5)

Then add(2) still returns 7, as expected! Of course, if add is in global scope, there is no gain, but
we can lexically scope it to the place where it is useful:

my ( add = init(5) );

How about multiple functions then? We can use the last idea and return a vector of functions,
but if we insist on global variables? The �rst idea
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init(x) = add(y) = x+y; mul(y) = x*y;

does not work since in the construction f() = seq , the function body contains everything until
the end of the expression. Hence executing init de�nes the wrong function add (itself de�ning a
function mul). The way out is to use parentheses for grouping, so that enclosed subexpressions will
be evaluated independently:

? init(x) = ( add(y) = x+y ); ( mul(y) = x*y );

? init(5);

? add(2)

%3 = 7

? mul(3)

%4 = 15

This de�nes two global functions which have access to the lexical variables private to init! The
following would work in exactly the same way:

? init5() = my(x = 5); ( add(y) = x+y ); ( mul(y) = x*y );

2.7.7 Closures as Objects. Contrary to what you might think after the preceding examples, GP's
closures may not be used to simulate true \objects", with private and public parts and methods
to access and manipulate them. In fact, closures indeed incorporate an existing context (they may
access lexical variables that existed at the time of their de�nition), but then may not change it.
More precisely, they access a copy, which they are welcome to change, but a further function call
still accesses the original context, as it existed at the time the function was de�ned:

init() =

{ my(count = 0);

inc()=count++;

dec()=count--;

}

? inc()

%1 = 1

? inc()

%2 = 1

? inc()

%3 = 1

2.8 Member functions.

Member functions use the `dot' notation to retrieve information from complicated structures.
The built-in structures are bid, ell, galois, ff, nf, bnf, bnr and prid, which will be described at length
in Chapter 3. The syntax structure.member is taken to mean: retrieve member from structure,
e.g. E.j returns the j-invariant of the elliptic curve E, or outputs an error message if E is not a
proper ell structure. To de�ne your own member functions, use the syntax

var.member = seq ,

where the formal variable var is scoped to the function body seq . This is of course reminiscent of
a user function with a single formal variable var . For instance, the current implementation of the
ell type is a vector, the j-invariant being the thirteenth component. It could be implemented as
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x.j =

{

if (type(x) != "t_VEC" || #x < 14, error("not an elliptic curve: " x));

x[13]

}

As for user functions, you can rede�ne your member functions simply by typing new de�nitions.
On the other hand, as a safety measure, you cannot rede�ne the built-in member functions, so
attempting to rede�ne x.j as above would in fact produce an error; you would have to call it
e.g. x.myj in order for gp to accept it.

Rationale. In most cases, member functions are simple accessors of the form

x.a = x[1];

x.b = x[2];

x.c = x[3];

where x is a vector containing relevant data. There are at least three alternative approaches to the
above member functions: 1) hardcode x[1], etc. in the program text, 2) de�ne constant global
variables AINDEX = 1, BINDEX = 2 and hardcode x[AINDEX], 3) user functions a(x) = x[1] and
so on.

Even if 2) improves on 1), these solutions are neither elegant nor 
exible, and they scale badly.
3) is a genuine possibility, but the main advantage of member functions is that their namespace is
independent from the variables (and functions) namespace, hence we can use very short identi�ers
without risk. The j-invariant is a good example: it would clearly not be a good idea to de�ne j(E)
= E[13], because clashes with loop indices are likely.

Note. Typing \um will output all user-de�ned member functions.

Member function names. A valid name starts with a letter followed by any number of keyword
characters: or alphanumeric characters ([A-Za-z0-9]). The built-in member function names are
reserved and cannot be used (see the list with ?.). Finally, names starting with e or E followed
by a digit are forbidden, due to a clash with the 
oating point exponent notation: we understand
1.e2 as 100:000 : : :, not as extracting member e2 of object 1.

2.9 Strings and Keywords.

2.9.1 Strings. GP variables can hold values of type character string (internal type t_STR). This
section describes how they are actually used, as well as some convenient tricks (automatic concate-
nation and expansion, keywords) valid in string context.

As explained above, the general way to input a string is to enclose characters between quotes ".
This is the only input construct where whitespace characters are signi�cant: the string will contain
the exact number of spaces you typed in. Besides, you can \escape" characters by putting a \ just
before them; the translation is as follows

\e: <Escape>

\n: <Newline>

\t: <Tab>
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For any other character x, \x is expanded to x. In particular, the only way to put a " into a
string is to escape it. Thus, for instance, "\"a\"" would produce the string whose content is \a".
This is de�nitely not the same thing as typing "a", whose content is merely the one-letter string a.

You can concatenate two strings using the concat function. If either argument is a string, the
other is automatically converted to a string if necessary (it will be evaluated �rst).

? concat("ex", 1+1)

%1 = "ex2"

? a = 2; b = "ex"; concat(b, a)

%2 = "ex2"

? concat(a, b)

%3 = "2ex"

Some functions expect strings for some of their arguments: print would be an obvious example,
Str is a less obvious but useful one (see the end of this section for a complete list). While typing
in such an argument, you will be said to be in string context. The rest of this section is devoted to
special syntactical tricks which can be used with such arguments (and only here; you will get an
error message if you try these outside of string context):

� Writing two strings alongside one another will just concatenate them, producing a longer
string. Thus it is equivalent to type in "a " "b" or "a b". A little tricky point in the �rst
expression: the �rst whitespace is enclosed between quotes, and so is part of a string; while the
second (before the "b") is completely optional and gp actually suppresses it, as it would with any
number of whitespace characters at this point (i.e. outside of any string).

� If you insert any expression when a string is expected, it gets \expanded": it is evaluated
as a standard GP expression, and the �nal result (as would have been printed if you had typed
it by itself) is then converted to a string, as if you had typed it directly. For instance "a" 1+1

"b" is equivalent to "a2b": three strings get created, the middle one being the expansion of 1+1,
and these are then concatenated according to the rule described above. Another tricky point here:
assume you did not assign a value to aaa in a GP expression before. Then typing aaa by itself in
a string context will actually produce the correct output (i.e. the string whose content is aaa), but
in a fortuitous way. This aaa gets expanded to the monomial of degree one in the variable aaa,
which is of course printed as aaa, and thus will expand to the three letters you were expecting.

Warning. Expression involving strings are not handled in a special way; even in string context,
the largest possible expression is evaluated, hence print("a"[1]) is incorrect since "a" is not an
object whose �rst component can be extracted. On the other hand print("a", [1]) is correct
(two distinct argument, each converted to a string), and so is print("a" 1) (since "a"1 is not
a valid expression, only "a" gets expanded, then 1, and the result is concatenated as explained
above).

2.9.2 Keywords. Since there are cases where expansion is not desirable, we now distinguish
between \Keywords" and \Strings". String is what has been described so far. Keywords are
special relatives of Strings which are automatically assumed to be quoted, whether you actually
type in the quotes or not. Thus expansion is never performed on them. They get concatenated,
though. The analyzer supplies automatically the quotes you have \forgotten" and treats Keywords
just as normal strings otherwise. For instance, if you type "a"b+b in Keyword context, you will get
the string whose contents are ab+b. In String context, on the other hand, you would get a2*b.

All GP functions have prototypes (described in Chapter 3 below) which specify the types of
arguments they expect: either generic PARI objects (GEN), or strings, or keywords, or unevaluated
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expression sequences. In the keyword case, only a very small set of words will actually be meaningful
(the default function is a prominent example).

Reference. The arguments of the following functions are processed in string context:
Str

addhelp (second argument)
default (second argument)
error

extern

plotstring (second argument)
plotterm (�rst argument)
read and readvec

system

all the printxxx functions
all the writexxx functions

The arguments of the following functions are processed as keywords:
alias

default (�rst argument)
install (all arguments but the last)
trap (�rst argument)
whatnow

2.9.3 Useful example. The function Str converts its arguments into strings and concatenate
them. Coupled with eval, it is very powerful. The following example creates generic matrices:

? genmat(u,v,s="x") = matrix(u,v,i,j, eval( Str(s,i,j) ))

? genmat(2,3) + genmat(2,3,"m")

%1 =

[x11 + m11 x12 + m12 x13 + m13]

[x21 + m21 x22 + m22 x23 + m23]

2.10 Errors and error recovery.

2.10.1 Errors. Your input program is �rst compiled to a more e�cient bytecode; then the latter
is evaluated, calling appropriate functions from the PARI library. Accordingly, there are two kind
of errors: syntax errors produced by the compiler, and runtime errors produced by the PARI
library either by the evaluator itself, or in a mathematical function. Both kinds are fatal to your
computation: gp will report the error and perform some cleanup (restore variables modi�ed while
evaluating the erroneous command, close open �les, reclaim unused memory, etc.).

At this point, the default is to return to the usual prompt, but if the recover option (Sec-
tion 3.17.36) is o� then gp exits immediately. This can be useful for batch-mode operation to make
untrapped errors fatal.

When reporting a syntax error , gp gives meaningful context by copying (part of) the expression
it was trying to compile, indicating where the error occurred with a caret ^-, as in

? factor()

*** too few arguments: factor()

*** ^-
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? 1+

*** syntax error, unexpected $end: 1+

*** ^-

possibly enlarged to a full arrow given enough trailing context

? if (isprime(1+, do_something())

*** syntax error, unexpected ',': if(isprime(1+,do_something()))

*** ^----------------

These error messages may be mysterious, because gp cannot guess what you were trying to do, and
the error may occur once gp has been sidetracked. The �rst error is straightforward: factor has
one mandatory argument, which is missing.

The other two are simple typos involving an ill-formed addition 1 + missing its second
operand. The error messages di�er because the parsing context is slightly di�erent: in the �rst case
we reach the end of input ($end) while still expecting a token, and in the second one, we received
an unexpected token (the comma).

Here is a more complicated one:

? factor(x

*** syntax error, unexpected $end, expecting )-> or ',' or ')': factor(x

*** ^-

The error is a missing parenthesis, but from gp's point of view, you might as well have intended to
give further arguments to factor (this is possible and useful, see the description of the function).
In fact gp expected either a closing parenthesis, or a second argument separated from the �rst by
a comma. And this is essentially what the error message says: we reached the end of the input
($end) while expecting a ')' or a ','.

Actually, a third possibility is mentioned in the error message )->, which could never be valid
in the above context, but a subexpression like (x)->sin(x), de�ning an inline closure would be
valid, and the parser is not clever enough to rule that out, so we get the same message as in

? (x

*** syntax error, unexpected $end, expecting )-> or ',' or ')': (x

*** ^-

where all three proposed continuations would be valid.

Runtime errors from the evaluator are nicer because they answer a correctly worded query,
otherwise the bytecode compiler would have protested �rst; here is a slightly pathological case:

? if (siN(x) < eps, do_something())

*** at top-level: if(siN(x)<eps,do_someth

*** ^--------------------

*** not a function in function call

(no arrow!) The code is syntactically correct and compiled correctly, even though the siN function,
a typo for sin, was not de�ned at this point. When trying to evaluate the bytecode, however, it
turned out that siN is still unde�ned so we cannot evaluate the function call siN(x).

Library runtime errors are even nicer because they have more mathematical content, which is
easier to grasp than a parser's logic:

? 1/Mod(2,4)
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*** at top-level: 1/Mod(2,4)

*** ^---------

*** _/_: impossible inverse in Fp_inv: Mod(2, 4).

telling us that a runtime error occurred while evaluating the binary / operator (the surrounding
the operator are placeholders), more precisely the Fp inv library function was fed the argument
Mod(2,4) and could not invert it. More context is provided if the error occurs deep in the call
chain:

? f(x) = 1/x;

? g(N) = for(i = -N, N, f(i + O(5)));

? g(10)

*** at top-level: g(10)

*** ^-----

*** in function g: for(i=-N,N,f(i))

*** ^-----

*** in function f: 1/x

*** ^--

*** _/_: impossible inverse in ginv: O(5).

In this example, the debugger reports (at least) 3 enclosed frames: last (innermost) is the body of
user function f , the body of g, and the top-level (global scope). In fact, the for loop in g's body
de�nes an extra frame, since there exist variables scoped to the loop body.

2.10.2 Error recovery.

It is annoying to wait for a program to �nish and �nd out the hard way that there was a
mistake in it (like the division by 0 above), sending you back to the prompt. First you may lose
some valuable intermediate data. Also, correcting the error may not be obvious; you might have to
change your program, adding a number of extra statements and tests to narrow down the problem.

A di�erent situation, still related to error recovery, is when you actually foresee that some
error may occur, are unable to prevent it, but quite capable of recovering from it, given the chance.
Examples include lazy factorization, where you knowingly use a pseudo prime N as if it were prime;
you may then encounter an \impossible" situation, but this would usually exhibit a factor of N ,
enabling you to re�ne the factorization and go on. Or you might run an expensive computation
at low precision to guess the size of the output, hence the right precision to use. You can then
encounter errors like \precision loss in truncation", e.g when trying to convert 1E1000, known to
28 digits of accuracy, to an integer; or \division by 0", e.g inverting 0E1000 when all accuracy has
been lost, and no signi�cant digit remains. It would be enough to restart part of the computation
at a slightly higher precision.

We now describe error trapping, a useful mechanism which alleviates much of the pain in the
�rst situation (the break loop debugger), and provides satisfactory ways out of the second one (the
iferr exception handler).
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2.10.3 Break loop.

A break loop is a special debugging mode that you enter whenever a user interrupt (Control-C)
or runtime error occurs, freezing the gp state, and preventing cleanup until you get out of the loop.
By runtime error, we mean an error from the evaluator, the library or a user error (from error),
not syntax errors. When a break loop starts, a prompt is issued (break>). You can type in a gp

command, which is evaluated when you hit the <Return> key, and the result is printed as during
the main gp loop, except that no history of results is kept. Then the break loop prompt reappears
and you can type further commands as long as you do not exit the loop. If you are using readline,
the history of commands is kept, and line editing is available as usual. If you type in a command
that results in an error, you are sent back to the break loop prompt: errors do not terminate the
loop.

To get out of a break loop, you can use next, break, return, or type C-d (EOF), any of which
will let gp perform its usual cleanup, and send you back to the gp prompt. Note that C-d is slightly
dangerous, since typing it twice will not only send you back to the gp prompt, but to your shell
prompt! (Since C-d at the gp prompt exits the gp session.)

If the break loop was started by a user interrupt Control-C, and not by an error, inputting an
empty line, i.e hitting the <Return> key at the break> prompt, resumes the temporarily interrupted
computation. A single empty line has no e�ect in case of a fatal error, to avoid getting get out of
the loop prematurely, thereby losing valuable debugging data. Any of next, break, return, or C-d
will abort the computation and send you back to the gp prompt as above.

Break loops are useful as a debugging tool. You may inspect the values of gp variables to
understand why an error occurred, or change gp's state in the middle of a computation (increase
debugging level, start storing results in a log �le, set variables to di�erent values: : : ): hit C-c, type
in your modi�cations, then let the computation go on as explained above. A break loop looks like
this:

? v = 0; 1/v

*** at top-level: v=0;1/v

*** ^--

*** _/_: impossible inverse in gdiv: 0.

*** Break loop (type 'break' to go back to the GP prompt)

break>

So the standard error message is printed �rst. The break> at the bottom is a prompt, and hitting
v then <Return>, we see:

break> v

0

explaining the problem. We could have typed any gp command, not only the name of a variable,
of course. Lexically-scoped variables are accessible to the evaluator during the break loop:

? for(v = -2, 2, print(1/v))

-1/2

-1

*** at top-level: for(v=-2,2,print(1/v))

*** ^----

*** _/_: impossible inverse in gdiv: 0.

*** Break loop (type 'break' to go back to the GP prompt)
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break> v

0

Even though loop indices are automatically lexically scoped and no longer exist when the break
loop is run, enough debugging information is retained in the bytecode to reconstruct the evaluation
context. Of course, when the error occurs in a nested chain of user function calls, lexically scoped
variables are available only in the corresponding frame:

? f(x) = 1/x;

? g(x) = for(i = 1, 10, f(x+i));

? for(j = -5,5, g(j))

*** at top-level: for(j=-5,5,g(j))

*** ^-----

*** in function g: for(i=1,10,f(x+i))

*** ^-------

*** in function f: 1/x

*** ^--

*** _/_: impossible inverse in gdiv: 0.

*** Break loop: type 'break' to go back to GP prompt

break> [i,j,x] \\ the x in f 's body.
[i, j, 0]

break> dbg_up \\ go up one frame
*** at top-level: for(j=-5,5,g(j))

*** ^-----

*** in function g: for(i=1,10,f(x+i))

*** ^-------

break> [i,j,x] \\ the x in g's body, i in the for loop.
[5, j, -5]

The following GP commands are available during a break loop to help debugging:

dbg_up(n): go up n frames, as seen above.

dbg_down(n): go down n frames, cancelling previous dbg up's.

dbg_x(t): examine t, as \x but more 
exible.

dbg_err(): returns the current error context t_ERROR. The error components often provide
useful additional information:

? O(2) + O(3)

*** at top-level: O(2)+O(3)

*** ^-----

*** _+_: inconsistent addition t_PADIC + t_PADIC.

*** Break loop: type 'break' to go back to GP prompt

break> E = dbg_err()

error("inconsistent addition t_PADIC + t_PADIC.")

break> Vec(E)

["e_OP", "+", O(2), O(3)]
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Note. The debugger is enabled by default, and �res up as soon as a runtime error occurs. If you
do not like this behavior, you may disable it by setting the default breakloop to 0 in for gprc. A
runtime error will send you back to the prompt. Note that the break loop is automatically disabled
when running gp in non interactive mode, i.e. when the program's standard input is not attached
to a terminal.

Technical Note. When you enter a break loop due to a PARI stack over
ow, the PARI stack is
reset so that you can run commands. Otherwise the stack would immediately over
ow again! Still,
as explained above, you do not lose the value of any gp variable in the process.

2.10.4 Protecting code. The expression

iferr(statements, ERR, recovery)

evaluates and returns the value of statements, unless an error occurs during the evaluation in which
case the value of recovery is returned. As in an if/else clause, with the di�erence that statements
has been partially evaluated, with possible side e�ects. We shall give a lot more details about
the ERR argument shortly; it is the name of a variable, lexically scoped to the recovery expression
sequence, whose value is set by the exception handler to help the recovery code decide what to do
about the error.

For instance one can de�ne a fault tolerant inversion function as follows:

? inv(x) = iferr(1/x, ERR, "oo") \\ ERR is unused...

? for (i=-1,1, print(inv(i)))

-1

oo

1

Protected codes can be nested without adverse e�ect. Let's now see how ERR can be used; as
written, inv is too tolerant:

? inv("blah")

%2 = "oo"

Let's improve it by checking that we caught a \division by 0" exception, and not an unrelated
one like the type error 1 / "blah".

? inv2(x) = {

iferr(1/x,

ERR, if (errname(ERR) != "e_INV", error(ERR)); "oo")

}

? inv2(0)

%3 = "oo" \\ as before

? inv2("blah")

*** at top-level: inv2("blah")

*** ^------------

*** in function inv2: ...f(errname(ERR)!="e_INV",error(ERR));"oo")

*** ^-----------------

*** error: forbidden division t_INT / t_STR.

In the inv2("blah") example, the error type was not expected, so we rethrow the exception:
error(ERR) triggers the original error that we mistakenly trapped. Since the recovery code should
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always check whether the error is the one expected, this construction is very common and can be
simpli�ed to

? inv3(x) = iferr(1/x,

ERR, "oo",

errname(ERR) == "e_INV")

More generally

iferr(statements, ERR, recovery, predicate)

only catches the exception if predicate (allowed to check various things about ERR, not only its
name) is non-zero.

Rather than trapping everything, then rethrowing whatever we do not like, we advise to only
trap errors of a speci�c kind, as above. Of course, sometimes, one just want to trap everything
because we do not know what to expect. The following function check whether install works
correctly in your gp:

broken_install() =

{ \\ can we install?

iferr(install(addii,GG),

ERR, return ("OS"));

\\ can we use the installed function?

iferr(if (addii(1,1) != 2, return("BROKEN")),

ERR, return("USE"));

return (0);

}

The function returns OS if the operating system does not support install, USE if using an installed
function triggers an error, BROKEN if the installed function did not behave as expected, and 0 if
everything works.

The ERR formal parameter contains more useful data than just the error name, which we
recovered using errname(ERR). In fact, a t_ERROR object usually has extra components, which can
be accessed as component(ERR,1), component(ERR,2), and so on. Or globally by casting the error
to a t_VEC: Vec(ERR) returns the vector of all components at once. See Section 3.14.17 for the list
of all exception types, and the corresponding contents of ERR.

2.11 Interfacing GP with other languages.

The PARI library was meant to be interfaced with C programs. This speci�c use is dealt with
extensively in the User's guide to the PARI library . Of course, gp itself provides a convenient
interpreter to execute rather intricate scripts (see Section 3.14).

Scripts, when properly written, tend to be shorter and clearer than C programs, and are
certainly easier to write, maintain or debug. You don't need to deal with memory management,
garbage collection, pointers, declarations, and so on. Because of their intrinsic simplicity, they
are more robust as well. They are unfortunately somewhat slower. Thus their use will remain
complementary: it is suggested that you test and debug your algorithms using scripts, before
actually coding them in C if speed is paramount. The GP2C compiler often eases this part.
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The install command (see Section 3.15.24) e�ciently imports foreign functions for use under
gp, which can of course be written using other libraries than PARI. Thus you may code only critical
parts of your program in C, and still maintain most of the program as a GP script.

We are aware of three PARI-related Free Software packages to embed PARI in other lan-
guages. We neither endorse nor support any of them, but you may want to give them a try if you
are familiar with the languages they are based on. The �rst is the Python-based SAGE system
(http://sagemath.org/). The second is the Math::Pari Perl module (see any CPAN mirror),
written by Ilya Zakharevich. Finally, Michael Stoll and Sam Steingold have integrated PARI into
CLISP (http://clisp.cons.org/), a Common Lisp implementation.

These provide interfaces to gp functions for use in python, perl, or Lisp programs, respectively.

2.12 Defaults.

There are many internal variables in gp, de�ning how the system will behave in certain situations,
unless a speci�c override has been given. Most of them are a matter of basic customization (colors,
prompt) and will be set once and for all in your preferences file (see Section 2.14), but some of
them are useful interactively (set timer on, increase precision, etc.).

The function used to manipulate these values is called default, which is described in Sec-
tion 3.15.8. The basic syntax is

default(def , value),

which sets the default def to value. In interactive use, most of these can be abbreviated using gp

metacommands (mostly, starting with \), which we shall describe in the next section.

Available defaults are described in the reference guide, Section 3.17, the most important one
being parisizemax. Just be aware that typing default by itself will list all of them, as well as
their current values (see \d).

Note. The su�xes k, M or G can be appended to a value which is a numeric argument, with the
e�ect of multiplying it by 103, 106 and 109 respectively. Case is not taken into account there, so
for instance 30k and 30K both stand for 30000. This is mostly useful to modify or set the defaults
parisize and parisizemax which typically involve a lot of trailing zeroes.

(somewhat technical) Note. As we saw in Section 2.9, the second argument to default is
subject to string context expansion, which means you can use run-time values. In other words,
something like

a = 3;

default(logfile, "file" a ".log")

logs the output in file3.log.

Some special defaults, corresponding to �le names and prompts, expand further the resulting
value at the time they are set. Two kinds of expansions may be performed:

� time expansion: the string is sent through the library function strftime. This means that
%char combinations have a special meaning, usually related to the time and date. For instance, %H
= hour (24-hour clock) and %M = minute [00,59] (on a Unix system, you can try man strftime at
your shell prompt to get a complete list). This is applied to prompt, psfile, and logfile. For
instance,
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default(prompt,"(%H:%M) ? ")

will prepend the time of day, in the form (hh:mm) to gp's usual prompt.

� environment expansion: When the string contains a sequence of the form $SOMEVAR,
e.g. $HOME, the environment is searched and if SOMEVAR is de�ned, the sequence is replaced by
the corresponding value. Also the ~ symbol has the same meaning as in many shells | ~ by itself
stands for your home directory, and ~user is expanded to user's home directory. This is applied
to all �le names.

2.13 Simple metacommands.

Simple metacommands are meant as shortcuts and should not be used in GP scripts (see Sec-
tion 3.14). Beware that these, as all of gp input, are case sensitive. For example, \Q is not identical
to \q. In the following list, braces are used to denote optional arguments, with their default values
when applicable, e.g. fn = 0g means that if n is not there, it is assumed to be 0. Whitespace (or
spaces) between the metacommand and its arguments and within arguments is optional. (This can
cause problems only with \w, when you insist on having a �le name whose �rst character is a digit,
and with \r or \w, if the �le name itself contains a space. In such cases, just use the underlying
read or write function; see Section 3.15.58).

2.13.1 ?fcommandg. The gp on-line help interface. If you type ?n where n is a number from 1 to
11, you will get the list of functions in Section 3:n of the manual (the list of sections being obtained
by simply typing ?).

These names are in general not informative enough. More details can be obtained by typing
?function, which gives a short explanation of the function's calling convention and e�ects. Of
course, to have complete information, read Chapter 3 of this manual (the source code is at your
disposal as well, though a tri
e less readable).

If the line before the copyright message indicates that extended help is available (this means
perl is present on your system and the PARI distribution was correctly installed), you can add
more ? signs for extended functionality:

?? keyword yields the function description as it stands in this manual, usually in Chapter 2
or 3. If you're not satis�ed with the default chapter chosen, you can impose a given chapter by
ending the keyword with @ followed by the chapter number, e.g. ?? Hello@2 will look in Chapter 2
for section heading Hello (which doesn't exist, by the way).

All operators (e.g. +, &&, etc.) are accepted by this extended help, as well as a few other
keywords describing key gp concepts, e.g. readline (the line editor), integer, nf (\number �eld"
as used in most algebraic number theory computations), ell (elliptic curves), etc.

In case of con
icts between function and default names (e.g log, simplify), the function has
higher priority. To get the default help, use

?? default(log)

?? default(simplify)

??? pattern produces a list of sections in Chapter 3 of the manual related to your query. As
before, if pattern ends by @ followed by a chapter number, that chapter is searched instead; you
also have the option to append a simple @ (without a chapter number) to browse through the whole
manual.
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If your query contains dangerous characters (e.g ? or blanks) it is advisable to enclose it within
double quotes, as for GP strings (e.g ??? "elliptic curve").

Note that extended help is much more powerful than the short help, since it knows about
operators as well: you can type ?? * or ?? &&, whereas a single ? would just yield a not too
helpful

&&: unknown identifier.}

message. Also, you can ask for extended help on section number n in Chapter 3, just by typing
?? n (where ?n would yield merely a list of functions). Finally, a few key concepts in gp are
documented in this way: metacommands (e.g ?? "??"), defaults (e.g ?? psfile) and type names
(e.g t_INT or integer), as well as various miscellaneous keywords such as edit (short summary of
line editor commands), operator, member, "user defined", nf, ell, : : :

Last but not least: ?? without argument will open a dvi previewer (xdvi by default, $GPXDVI
if it is de�ned in your environment) containing the full user's manual. ??tutorial and ??refcard

do the same with the tutorial and reference card respectively.

Technical note. This functionality is provided by an external perl script that you are free to
use outside any gp session (and modify to your liking, if you are perl-knowledgeable). It is called
gphelp, lies in the doc subdirectory of your distribution (just make sure you run Configure �rst,
see Appendix A) and is really two programs in one. The one which is used from within gp is
gphelp which runs TEX on a selected part of this manual, then opens a previewer. gphelp -detex

is a text mode equivalent, which looks often nicer especially on a colour-capable terminal (see
misc/gprc.dft for examples). The default help selects which help program will be used from
within gp. You are welcome to improve this help script, or write new ones (and we would like to
know about it so that we may include them in future distributions). By the way, outside of gp you
can give more than one keyword as argument to gphelp.

2.13.2 /*...*/. A comment. Everything between the stars is ignored by gp. These comments
can span any number of lines.

2.13.3 \\. A one-line comment. The rest of the line is ignored by gp.

2.13.4 \a fng. Prints the object number n (%n) in raw format. If the number n is omitted, print
the latest computed object (%).

2.13.5 \c. Prints the list of all available hardcoded functions under gp, not including opera-
tors written as special symbols (see Section 2.4). More information can be obtained using the ?

metacommand (see above). For user-de�ned functions / member functions, see \u and \um.

2.13.6 \d. Prints the defaults as described in the previous section (shortcut for default(), see
Section 3.15.8).

2.13.7 \e fng. Switches the echo mode on (1) or o� (0). If n is explicitly given, set echo to n.

2.13.8 \g fng. Sets the debugging level debug to the non-negative integer n.

2.13.9 \gf fng. Sets the �le usage debugging level debugfiles to the non-negative integer n.

56



2.13.10 \gm fng. Sets the memory debugging level debugmem to the non-negative integer n.

2.13.11 \h fm-ng. Outputs some debugging info about the hashtable. If the argument is a number
n, outputs the contents of cell n. Ranges can be given in the form m-n (from cell m to cell n, $
= last cell). If a function name is given instead of a number or range, outputs info on the internal
structure of the hash cell this function occupies (a struct entree in C). If the range is reduced to
a dash ('-'), outputs statistics about hash cell usage.

2.13.12 \l flog�leg. Switches log mode on and o�. If a log�le argument is given, change the
default log�le name to log�le and switch log mode on.

2.13.13 \m. As \a, but using prettymatrix format.

2.13.14 \o fng. Sets output mode to n (0: raw, 1: prettymatrix, 3: external prettyprint).

2.13.15 \p fng. Sets realprecision to n decimal digits. Prints its current value if n is omitted.

2.13.16 \pb fng. Sets realbitprecision to n bits. Prints its current value if n is omitted.

2.13.17 \ps fng. Sets seriesprecision to n signi�cant terms. Prints its current value if n is
omitted.

2.13.18 \q. Quits the gp session and returns to the system. Shortcut for quit() (see Sec-
tion 3.15.44).

2.13.19 \r f�lenameg. Reads into gp all the commands contained in the named �le as if they had
been typed from the keyboard, one line after the other. Can be used in combination with the \w

command (see below). Related but not equivalent to the function read (see Section 3.15.45); in
particular, if the �le contains more than one line of input, there will be one history entry for each of
them, whereas read would only record the last one. If �lename is omitted, re-read the previously
used input �le (fails if no �le has ever been successfully read in the current session). If a gp binary

file (see Section 3.15.60) is read using this command, it is silently loaded, without cluttering the
history.

Assuming gp �gures how to decompress �les on your machine, this command accepts com-
pressed �les in compressed (.Z) or gzipped (.gz or .z) format. They will be uncompressed on
the 
y as gp reads them, without changing the �les themselves.

2.13.20 \s. Prints the state of the PARI stack and heap. This is used primarily as a debugging
device for PARI.

2.13.21 \t. Prints the internal longword format of all the PARI types. The detailed bit or byte
format of the initial codeword(s) is explained in Chapter 4, but its knowledge is not necessary for
a gp user.

2.13.22 \u. Prints the de�nitions of all user-de�ned functions.

2.13.23 \um. Prints the de�nitions of all user-de�ned member functions.
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2.13.24 \v. Prints the version number and implementation architecture (680x0, Sparc, Alpha,
other) of the gp executable you are using.

2.13.25 \w fng f�lenameg. Writes the object number n ( %n ) into the named �le, in raw format.
If the number n is omitted, writes the latest computed object ( % ). If �lename is omitted, appends
to logfile (the GP function write is a tri
e more powerful, as you can have arbitrary �le names).

2.13.26 \x fng. Prints the complete tree with addresses and contents (in hexadecimal) of the
internal representation of the object number n ( %n ). If the number n is omitted, uses the latest
computed object in gp. As for \s, this is used primarily as a debugging device for PARI, and the
format should be self-explanatory. The underlying GP function dbg_x is more versatile, since it
can be applied to other objects than history entries.

2.13.27 \y fng. Switches simplify on (1) or o� (0). If n is explicitly given, set simplify to n.

2.13.28 #. Switches the timer on or o�.

2.13.29 ##. Prints the time taken by the latest computation. Useful when you forgot to turn on
the timer.

2.14 The preferences �le.

This �le, called gprc in the sequel, is used to modify or extend gp default behavior, in all gp
sessions: e.g customize default values or load common user functions and aliases. gp opens the
gprc �le and processes the commands in there, before doing anything else, e.g. creating the PARI
stack. If the �le does not exist or cannot be read, gp will proceed to the initialization phase at
once, eventually emitting a prompt. If any explicit command line switches are given, they override
the values read from the preferences �le.

2.14.1 Syntax. The syntax in the gprc �le (and valid in this �le only) is simple-minded, but
should be su�cient for most purposes. The �le is read line by line; as usual, white space is ignored
unless surrounded by quotes and the standard multiline constructions using braces, \, or = are
available (multiline comments between /* : : : */ are also recognized).

2.14.1.1 Preprocessor:. Two types of lines are �rst dealt with by a preprocessor:

� comments are removed. This applies to all text surrounded by /* : : : */ as well as to
everything following \\ on a given line.

� lines starting with #if boolean are treated as comments if boolean evaluates to false, and
read normally otherwise. The condition can be negated using either #if not (or #if !). If the
rest of the current line is empty, the test applies to the next line (same behavior as = under gp).
The following tests can be performed:

EMACS: true if gp is running in an Emacs or TeXmacs shell (see Section 2.16).

READL: true if gp is compiled with readline support (see Section 2.15).

VERSION op number : where op is in the set f>;<;<=; >=g, and number is a PARI version
number of the form Major .Minor .patch, where the last two components can be omitted (i.e. 1 is
understood as version 1:0:0). This is true if gp's version number satis�es the required inequality.

BITS IN LONG == number : number is 32 (resp. 64). This is true if gp was built for a 32-bit
(resp. 64-bit) architecture.
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2.14.1.2 Commands:. After preprocessing, the remaining lines are executed as sequence of ex-
pressions (as usual, separated by ; if necessary). Only two kinds of expressions are recognized:

� default = value, where default is one of the available defaults (see Section 2.12), which will
be set to value on actual startup. Don't forget the quotes around strings (e.g. for prompt or help).

� read "some GP �le" where some GP �le is a regular GP script this time, which will be
read just before gp prompts you for commands, but after initializing the defaults. In particular,
�le input is delayed until the gprc has been fully loaded. This is the right place to input �les
containing alias commands, or your favorite macros.

For instance you could set your prompt in the following portable way:

\\ self modifying prompt looking like (18:03) gp >

prompt = "(%H:%M) \e[1mgp\e[m > "

\\ readline wants non-printing characters to be braced between ^A/^B pairs

#if READL prompt = "(%H:%M) ^A\e[1m^Bgp^A\e[m^B > "

\\ escape sequences not supported under emacs

#if EMACS prompt = "(%H:%M) gp > "

Note that any of the last two lines could be broken in the following way

#if EMACS

prompt = "(%H:%M) gp > "

since the preprocessor directive applies to the next line if the current one is empty.

A sample gprc �le called misc/gprc.dft is provided in the standard distribution. It is a good
idea to have a look at it and customize it to your needs. Since this �le does not use multiline
constructs, here is one (note the terminating ; to separate the expressions):

#if VERSION > 2.2.3

{

read "my_scripts"; \\ syntax errors in older versions

new_galois_format = 1; \\ default introduced in 2.2.4

}

#if ! EMACS

{

colors = "9, 5, no, no, 4, 1, 2";

help = "gphelp -detex -ch 4 -cb 0 -cu 2";

}

2.14.2 The gprc location. When gp is started, it looks for a customization �le, or gprc in the
following places (in this order, only the �rst one found will be loaded):

� gp checks whether the environment variable GPRC is set. On Unix, this can be done with something
like:

GPRC=/my/dir/anyname; export GPRC in sh syntax (for instance in your .profile),
setenv GPRC /my/dir/anyname in csh syntax (in your .login or .cshrc �le).
env GPRC=/my/dir/anyname gp on the command line launching gp.

If so, the �le named by $GPRC is the gprc.

� If GPRC is not set, and if the environment variable HOME is de�ned, gp then tries
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$HOME/.gprc on a Unix system

$HOME\gprc.txt on a DOS, OS/2, or Windows system.

� If no gprc was found among the user �les mentioned above we look for /etc/gprc for a system-
wide gprc �le (you will need root privileges to set up such a �le yourself).

� Finally, we look in pari's datadir for a �le named

.gprc on a Unix system

gprc.txt on a DOS, OS/2, or Windows system. If you are using our Windows installer, this
is where the default preferences �le is written.

Note that on Unix systems, the gprc's default name starts with a '.' and thus is hidden to regular
ls commands; you need to type ls -a to list it.

2.15 Using readline.

This very useful library provides line editing and contextual completion to gp. You are en-
couraged to read the readline user manual, but we describe basic usage here.

A (too) short introduction to readline. In the following, C- stands for \the Control key
combined with another" and the same for M- with the Meta key; generally C- combinations act
on characters, while the M- ones operate on words. The Meta key might be called Alt on some
keyboards, will display a black diamond on most others, and can safely be replaced by Esc in any
case.

Typing any ordinary key inserts text where the cursor stands, the arrow keys enabling you
to move in the line. There are many more movement commands, which will be familiar to the
Emacs user, for instance C-a/C-e will take you to the start/end of the line, M-b/M-f move the
cursor backward/forward by a word, etc. Just press the <Return> key at any point to send your
command to gp.

All the commands you type at the gp prompt are stored in a history, a multiline command
being saved as a single concatenated line. The Up and Down arrows (or C-p/C-n) will move you
through the history, M-</M-> sending you to the start/end of the history. C-r/C-s will start an
incremental backward/forward search. You can kill text (C-k kills till the end of line, M-d to the
end of current word) which you can then yank back using the C-y key (M-y will rotate the kill-ring).
C- will undo your last changes incrementally (M-r undoes all changes made to the current line).
C-t and M-t will transpose the character (word) preceding the cursor and the one under the cursor.

Keeping the M- key down while you enter an integer (a minus sign meaning reverse behavior)
gives an argument to your next readline command (for instance M-- C-k will kill text back to the
start of line). If you prefer Vi{style editing, M-C-j will toggle you to Vi mode.

Of course you can change all these default bindings. For that you need to create a �le named
.inputrc in your home directory. For instance (notice the embedding conditional in case you would
want speci�c bindings for gp):

$if Pari-GP

set show-all-if-ambiguous

"\C-h": backward-delete-char

"\e\C-h": backward-kill-word
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"\C-xd": dump-functions

(: "\C-v()\C-b" # can be annoying when copy-pasting!

[: "\C-v[]\C-b"

$endif

C-x C-r will re-read this init �le, incorporating any changes made to it during the current session.

Note. By default, ( and [ are bound to the function pari-matched-insert which, if \electric
parentheses" are enabled (default: o�) will automatically insert the matching closure (respectively
) and ]). This behavior can be toggled on and o� by giving the numeric argument �2 to ( (M--2(),
which is useful if you want, e.g to copy-paste some text into the calculator. If you do not want a
toggle, you can use M--0 / M--1 to speci�cally switch it on or o�).

Note. In some versions of readline (2.1 for instance), the Alt or Meta key can give funny re-
sults (output 8-bit accented characters for instance). If you do not want to fall back to the Esc

combination, put the following two lines in your .inputrc:

set convert-meta on

set output-meta off

Command completion and online help. Hitting <TAB> will complete words for you. This
mechanism is context-dependent: gp will strive to only give you meaningful completions in a given
context (it will fail sometimes, but only under rare and restricted conditions).

For instance, shortly after a ~, we expect a user name, then a path to some �le. Directly after
default( has been typed, we would expect one of the default keywords. After a '.', we expect a
member keyword. And generally of course, we expect any GP symbol which may be found in the
hashing lists: functions (both yours and GP's), and variables.

If, at any time, only one completion is meaningful, gp will provide it together with

� an ending comma if we are completing a default,

� a pair of parentheses if we are completing a function name. In that case hitting <TAB> again
will provide the argument list as given by the online help. (Recall that you can always undo the
e�ect of the preceding keys by hitting C- ; this applies here.)

Otherwise, hitting <TAB> once more will give you the list of possible completions. Just ex-
periment with this mechanism as often as possible, you will probably �nd it very convenient. For
instance, you can obtain default(seriesprecision,10), just by hitting def<TAB>se<TAB>10,
which saves 18 keystrokes (out of 27).

Hitting M-h will give you the usual short online help concerning the word directly beneath the
cursor, M-H will yield the extended help corresponding to the help default program (usually opens
a dvi previewer, or runs a primitive tex-to-ASCII program). None of these disturb the line you
were editing.
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2.16 GNU Emacs and PariEmacs.

If you install the PariEmacs package (see Appendix A), you may use gp as a subprocess in
Emacs. You then need to include in your .emacs �le the following lines:

(autoload 'gp-mode "pari" nil t)

(autoload 'gp-script-mode "pari" nil t)

(autoload 'gp "pari" nil t)

(autoload 'gpman "pari" nil t)

(setq auto-mode-alist

(cons '("\\.gp$" . gp-script-mode) auto-mode-alist))

which autoloads functions from the PariEmacs package and ensures that �le with the .gp su�x
are edited in gp-script mode.

Once this is done, under GNU Emacs if you type M-x gp (where as usual M is the Meta key), a
special shell will be started launching gp with the default stack size and prime limit. You can then
work as usual under gp, but with all the facilities of an advanced text editor. See the PariEmacs
documentation for customizations, menus, etc.
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Chapter 3:

Functions and Operations Available in PARI and GP

The functions and operators available in PARI and in the GP/PARI calculator are numerous and
ever-expanding. Here is a description of the ones available in version 2.9.1. It should be noted that
many of these functions accept quite di�erent types as arguments, but others are more restricted.
The list of acceptable types will be given for each function or class of functions. Except when stated
otherwise, it is understood that a function or operation which should make natural sense is legal.

On the other hand, many routines list explicit preconditions for some of their argument, e.g.
p is a prime number, or q is a positive de�nite quadratic form. For reasons of e�ciency, all trust
the user input and only perform minimal sanity checks. When a precondition is not satis�ed, any
of the following may occur: a regular exception is raised, the PARI stack over
ows, a SIGSEGV or
SIGBUS signal is generated, or we enter an in�nite loop. The function can also quietly return a
mathematically meaningless result: junk in, junk out.

In this chapter, we will describe the functions according to a rough classi�cation. The general
entry looks something like:

foo(x; fflag = 0g): short description.
The library syntax is GEN foo(GEN x, long fl = 0).

This means that the GP function foo has one mandatory argument x, and an optional one, flag ,
whose default value is 0. (The fg should not be typed, it is just a convenient notation we will use
throughout to denote optional arguments.) That is, you can type foo(x,2), or foo(x), which is
then understood to mean foo(x,0). As well, a comma or closing parenthesis, where an optional
argument should have been, signals to GP it should use the default. Thus, the syntax foo(x,) is
also accepted as a synonym for our last expression. When a function has more than one optional
argument, the argument list is �lled with user supplied values, in order. When none are left, the
defaults are used instead. Thus, assuming that foo's prototype had been

foo(fx = 1g; fy = 2g; fz = 3g),

typing in foo(6,4) would give you foo(6,4,3). In the rare case when you want to set some far
away argument, and leave the defaults in between as they stand, you can use the \empty arg"
trick alluded to above: foo(6,,1) would yield foo(6,2,1). By the way, foo() by itself yields
foo(1,2,3) as was to be expected.

In this rather special case of a function having no mandatory argument, you can even omit
the (): a standalone foo would be enough (though we do not recommend it for your scripts, for
the sake of clarity). In de�ning GP syntax, we strove to put optional arguments at the end of the
argument list (of course, since they would not make sense otherwise), and in order of decreasing
usefulness so that, most of the time, you will be able to ignore them.

Finally, an optional argument (between braces) followed by a star, like fxg�, means that any
number of such arguments (possibly none) can be given. This is in particular used by the various
print routines.
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Flags. A flag is an argument which, rather than conveying actual information to the routine,
instructs it to change its default behavior, e.g. return more or less information. All such 
ags are
optional, and will be called flag in the function descriptions to follow. There are two di�erent kind
of 
ags

� generic: all valid values for the 
ag are individually described (\If flag is equal to 1, then: : : ").
� binary: use customary binary notation as a compact way to represent many toggles with

just one integer. Let (p0; : : : ; pn) be a list of switches (i.e. of properties which take either the value
0 or 1), the number 23 + 25 = 40 means that p3 and p5 are set (that is, set to 1), and none of the
others are (that is, they are set to 0). This is announced as \The binary digits of flag mean 1: p0,
2: p1, 4: p2", and so on, using the available consecutive powers of 2.

Mnemonics for 
ags. Numeric 
ags as mentioned above are obscure, error-prone, and quite
rigid: should the authors want to adopt a new 
ag numbering scheme (for instance when noticing

ags with the same meaning but di�erent numeric values across a set of routines), it would break
backward compatibility. The only advantage of explicit numeric values is that they are fast to type,
so their use is only advised when using the calculator gp.

As an alternative, one can replace a numeric 
ag by a character string containing symbolic
identi�ers. For a generic 
ag, the mnemonic corresponding to the numeric identi�er is given after
it as in

fun(x, {flag = 0} ):

If flag is equal to 1 = AGM, use an agm formula ...

which means that one can use indi�erently fun(x, 1) or fun(x, "AGM").

For a binary 
ag, mnemonics corresponding to the various toggles are given after each of them.
They can be negated by prepending no to the mnemonic, or by removing such a pre�x. These
toggles are grouped together using any punctuation character (such as ',' or ';'). For instance (taken
from description of ploth(X = a; b; expr ; fflag = 0g; fn = 0g))

Binary digits of 
ags mean: 1 = Parametric, 2 = Recursive, : : :

so that, instead of 1, one could use the mnemonic "Parametric; no Recursive", or simply "Para-
metric" since Recursive is unset by default (default value of flag is 0, i.e. everything unset).
People used to the bit-or notation in languages like C may also use the form "Parametric |

no Recursive".

Pointers. If a parameter in the function prototype is pre�xed with a & sign, as in

foo(x;&e)

it means that, besides the normal return value, the function may assign a value to e as a side e�ect.
When passing the argument, the & sign has to be typed in explicitly. As of version 2.9.1, this
pointer argument is optional for all documented functions, hence the & will always appear between
brackets as in Z issquare(x; f&eg).
About library programming. The library function foo, as de�ned at the beginning of this
section, is seen to have two mandatory arguments, x and flag : no function seen in the present
chapter has been implemented so as to accept a variable number of arguments, so all arguments
are mandatory when programming with the library (usually, variants are provided corresponding
to the various 
ag values). We include an = default value token in the prototype to signal how
a missing argument should be encoded. Most of the time, it will be a NULL pointer, or -1 for a
variable number. Refer to the User's Guide to the PARI library for general background and details.
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3.1 Standard monadic or dyadic operators.

3.1.1 +=-. The expressions +x and -x refer to monadic operators (the �rst does nothing, the second
negates x).

The library syntax is GEN gneg(GEN x) for -x.

3.1.2 +. The expression x + y is the sum of x and y. Addition between a scalar type x and a t_COL
or t_MAT y returns respectively [y[1] + x; y[2]; : : :] and y + xId. Other additions between a scalar
type and a vector or a matrix, or between vector/matrices of incompatible sizes are forbidden.

The library syntax is GEN gadd(GEN x, GEN y).

3.1.3 -. The expression x - y is the difference of x and y. Subtraction between a scalar type x
and a t_COL or t_MAT y returns respectively [y[1] � x; y[2]; : : :] and y � xId. Other subtractions
between a scalar type and a vector or a matrix, or between vector/matrices of incompatible sizes
are forbidden.

The library syntax is GEN gsub(GEN x, GEN y) for x - y.

3.1.4 *. The expression x * y is the product of x and y. Among the prominent impossibilities are
multiplication between vector/matrices of incompatible sizes, between a t_INTMOD or t_PADIC Re-
stricted to scalars, * is commutative; because of vector and matrix operations, it is not commutative
in general.

Multiplication between two t_VECs or two t_COLs is not allowed; to take the scalar product of
two vectors of the same length, transpose one of the vectors (using the operator ~ or the function
mattranspose, see Section 3.11) and multiply a line vector by a column vector:

? a = [1,2,3];

? a * a

*** at top-level: a*a

*** ^--

*** _*_: forbidden multiplication t_VEC * t_VEC.

? a * a~
%2 = 14

If x; y are binary quadratic forms, compose them; see also qfbnucomp and qfbnupow. If x; y
are t_VECSMALL of the same length, understand them as permutations and compose them.

The library syntax is GEN gmul(GEN x, GEN y) for x * y. Also available is GEN gsqr(GEN x)

for x * x.

3.1.5 /. The expression x / y is the quotient of x and y. In addition to the impossibilities for
multiplication, note that if the divisor is a matrix, it must be an invertible square matrix, and in
that case the result is x�y�1. Furthermore note that the result is as exact as possible: in particular,
division of two integers always gives a rational number (which may be an integer if the quotient
is exact) and not the Euclidean quotient (see x \ y for that), and similarly the quotient of two
polynomials is a rational function in general. To obtain the approximate real value of the quotient
of two integers, add 0. to the result; to obtain the approximate p-adic value of the quotient of two
integers, add O(p^k) to the result; �nally, to obtain the Taylor series expansion of the quotient of
two polynomials, add O(X^k) to the result or use the taylor function (see Section 3.10.48).

The library syntax is GEN gdiv(GEN x, GEN y) for x / y.
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3.1.6 \. The expression x \ y is the Euclidean quotient of x and y. If y is a real scalar, this is
de�ned as floor(x/y) if y > 0, and ceil(x/y) if y < 0 and the division is not exact. Hence the
remainder x - (x\y)*y is in [0; jyj[.

Note that when y is an integer and x a polynomial, y is �rst promoted to a polynomial of
degree 0. When x is a vector or matrix, the operator is applied componentwise.

The library syntax is GEN gdivent(GEN x, GEN y) for x \ y.

3.1.7 \/. The expression x \/ y evaluates to the rounded Euclidean quotient of x and y. This is
the same as x \ y except for scalar division: the quotient is such that the corresponding remainder
is smallest in absolute value and in case of a tie the quotient closest to +1 is chosen (hence the
remainder would belong to ]�jyj=2; jyj=2]).

When x is a vector or matrix, the operator is applied componentwise.

The library syntax is GEN gdivround(GEN x, GEN y) for x \/ y.

3.1.8 %. The expression x % y evaluates to the modular Euclidean remainder of x and y, which we
now de�ne. When x or y is a non-integral real number, x%y is de�ned as x - (x\y)*y. Otherwise,
if y is an integer, this is the smallest non-negative integer congruent to x modulo y. (This actually
coincides with the previous de�nition if and only if x is an integer.) If y is a polynomial, this is the
polynomial of smallest degree congruent to x modulo y. For instance:

? (1/2) % 3

%1 = 2

? 0.5 % 3

%2 = 0.5000000000000000000000000000

? (1/2) % 3.0

%3 = 1/2

Note that when y is an integer and x a polynomial, y is �rst promoted to a polynomial of
degree 0. When x is a vector or matrix, the operator is applied componentwise.

The library syntax is GEN gmod(GEN x, GEN y) for x % y.

3.1.9 ^. The expression x^n is powering.

� If the exponent n is an integer, then exact operations are performed using binary (left-shift)
powering techniques. If x is a p-adic number, its precision will increase if vp(n) > 0. Powering
a binary quadratic form (types t_QFI and t_QFR) returns a representative of the class, which is
always reduced if the input was. (In particular, x ^1 returns x itself, whether it is reduced or not.)

PARI is able to rewrite the multiplication x�x of two identical objects as x2, or sqr(x). Here,
identical means the operands are two di�erent labels referencing the same chunk of memory; no
equality test is performed. This is no longer true when more than two arguments are involved.

� If the exponent n is not an integer, powering is treated as the transcendental function
exp(n log x), and in particular acts componentwise on vector or matrices, even square matrices !
(See Section 3.3.)

� As an exception, if the exponent is a rational number p=q and x an integer modulo a prime
or a p-adic number, return a solution y of yq = xp if it exists. Currently, q must not have large
prime factors. Beware that
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? Mod(7,19)^(1/2)

%1 = Mod(11, 19) /* is any square root */

? sqrt(Mod(7,19))

%2 = Mod(8, 19) /* is the smallest square root */

? Mod(7,19)^(3/5)

%3 = Mod(1, 19)

? %3^(5/3)

%4 = Mod(1, 19) /* Mod(7,19) is just another cubic root */

� If the exponent is a negative integer, an inverse must be computed. For non-invertible
t_INTMOD x, this will fail and implicitly exhibit a non trivial factor of the modulus:

? Mod(4,6)^(-1)

*** at top-level: Mod(4,6)^(-1)

*** ^-----

*** _^_: impossible inverse modulo: Mod(2, 6).

(Here, a factor 2 is obtained directly. In general, take the gcd of the representative and the
modulus.) This is most useful when performing complicated operations modulo an integer N
whose factorization is unknown. Either the computation succeeds and all is well, or a factor d is
discovered and the computation may be restarted modulo d or N=d.

For non-invertible t_POLMOD x, the behaviour is the same:

? Mod(x^2, x^3-x)^(-1)

*** at top-level: Mod(x^2,x^3-x)^(-1)

*** ^-----

*** _^_: impossible inverse in RgXQ_inv: Mod(x^2, x^3 - x).

Note that the underlying algorihm (subresultant) assumes the base ring is a domain:

? a = Mod(3*y^3+1, 4); b = y^6+y^5+y^4+y^3+y^2+y+1; c = Mod(a,b);

? c^(-1)

*** at top-level: Mod(a,b)^(-1)

*** ^-----

*** _^_: impossible inverse modulo: Mod(2, 4).

In fact c is invertible, but Z=4Z is not a domain and the algorithm fails. It is possible for the
algorithm to succeed in such situations and any returned result will be correct, but chances are an
error will occur �rst. In this speci�c case, one should work with 2-adics. In general, one can also
try the following approach

? inversemod(a, b) =

{ my(m, v = variable(b));

m = polsylvestermatrix(polrecip(a), polrecip(b));

m = matinverseimage(m, matid(#m)[,1]);

Polrev(m[1..poldegree(b)], v);

}

? inversemod(a,b)

%2 = Mod(2,4)*y^5 + Mod(3,4)*y^3 + Mod(1,4)*y^2 + Mod(3,4)*y + Mod(2,4)

This is not guaranteed to work either since matinverseimage must also invert pivots. See Sec-
tion 3.11.
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For a t_MAT x, the matrix is expected to be square and invertible, except in the special case
x^(-1) which returns a left inverse if one exists (rectangular x with full column rank).

? x = Mat([1;2])

%1 =

[1]

[2]

? x^(-1)

%2 =

[1 0]

The library syntax is GEN gpow(GEN x, GEN n, long prec) for x^n.

3.1.10 cmp(x; y). Gives the result of a comparison between arbitrary objects x and y (as �1, 0
or 1). The underlying order relation is transitive, the function returns 0 if and only if x === y,
and its restriction to integers coincides with the customary one. Besides that, it has no useful
mathematical meaning.

In case all components are equal up to the smallest length of the operands, the more complex
is considered to be larger. More precisely, the longest is the largest; when lengths are equal, we
have matrix > vector > scalar. For example:

? cmp(1, 2)

%1 = -1

? cmp(2, 1)

%2 = 1

? cmp(1, 1.0) \\ note that 1 == 1.0, but (1===1.0) is false.

%3 = -1

? cmp(x + Pi, [])

%4 = -1

This function is mostly useful to handle sorted lists or vectors of arbitrary objects. For instance, if
v is a vector, the construction vecsort(v, cmp) is equivalent to Set(v).

The library syntax is GEN cmp_universal(GEN x, GEN y).

3.1.11 divrem(x; y; fvg). Creates a column vector with two components, the �rst being the
Euclidean quotient (x \ y), the second the Euclidean remainder (x - (x\y)*y), of the division of
x by y. This avoids the need to do two divisions if one needs both the quotient and the remainder.
If v is present, and x, y are multivariate polynomials, divide with respect to the variable v.

Beware that divrem(x,y)[2] is in general not the same as x % y; no GP operator corresponds
to it:

? divrem(1/2, 3)[2]

%1 = 1/2

? (1/2) % 3

%2 = 2

? divrem(Mod(2,9), 3)[2]

*** at top-level: divrem(Mod(2,9),3)[2

*** ^--------------------

*** forbidden division t_INTMOD \ t_INT.
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? Mod(2,9) % 6

%3 = Mod(2,3)

The library syntax is GEN divrem(GEN x, GEN y, long v = -1) where v is a variable number.
Also available is GEN gdiventres(GEN x, GEN y) when v is not needed.

3.1.12 lex(x; y). Gives the result of a lexicographic comparison between x and y (as �1, 0 or 1).
This is to be interpreted in quite a wide sense: It is admissible to compare objects of di�erent types
(scalars, vectors, matrices), provided the scalars can be compared, as well as vectors/matrices of
di�erent lengths. The comparison is recursive.

In case all components are equal up to the smallest length of the operands, the more complex
is considered to be larger. More precisely, the longest is the largest; when lengths are equal, we
have matrix > vector > scalar. For example:

? lex([1,3], [1,2,5])

%1 = 1

? lex([1,3], [1,3,-1])

%2 = -1

? lex([1], [[1]])

%3 = -1

? lex([1], [1]~)

%4 = 0

The library syntax is GEN lexcmp(GEN x, GEN y).

3.1.13 max(x; y). Creates the maximum of x and y when they can be compared.

The library syntax is GEN gmax(GEN x, GEN y).

3.1.14 min(x; y). Creates the minimum of x and y when they can be compared.

The library syntax is GEN gmin(GEN x, GEN y).

3.1.15 powers(x; n; fx0g). For non-negative n, return the vector with n + 1 components
[1; x; : : : ; xn] if x0 is omitted, and [x0; x0 � x; :::; x0 � xn] otherwise.

? powers(Mod(3,17), 4)

%1 = [Mod(1, 17), Mod(3, 17), Mod(9, 17), Mod(10, 17), Mod(13, 17)]

? powers(Mat([1,2;3,4]), 3)

%2 = [[1, 0; 0, 1], [1, 2; 3, 4], [7, 10; 15, 22], [37, 54; 81, 118]]

? powers(3, 5, 2)

%3 = [2, 6, 18, 54, 162, 486]

When n < 0, the function returns the empty vector [].

The library syntax is GEN gpowers0(GEN x, long n, GEN x0 = NULL). Also available is GEN
gpowers(GEN x, long n) when x0 is NULL.

3.1.16 shift(x; n). Shifts x componentwise left by n bits if n � 0 and right by jnj bits if n < 0.
May be abbreviated as x << n or x >> (�n). A left shift by n corresponds to multiplication by 2n.
A right shift of an integer x by jnj corresponds to a Euclidean division of x by 2jnj with a remainder
of the same sign as x, hence is not the same (in general) as xn2n.

The library syntax is GEN gshift(GEN x, long n).

69



3.1.17 shiftmul(x; n). Multiplies x by 2n. The di�erence with shift is that when n < 0, ordinary
division takes place, hence for example if x is an integer the result may be a fraction, while for
shifts Euclidean division takes place when n < 0 hence if x is an integer the result is still an integer.

The library syntax is GEN gmul2n(GEN x, long n).

3.1.18 sign(x). sign (0, 1 or �1) of x, which must be of type integer, real or fraction; t_QUAD with
positive discriminants and t_INFINITY are also supported.

The library syntax is GEN gsigne(GEN x).

3.1.19 vecmax(x; f&vg). If x is a vector or a matrix, returns the largest entry of x, otherwise
returns a copy of x. Error if x is empty.

If v is given, set it to the index of a largest entry (indirect maximum), when x is a vector. If
x is a matrix, set v to coordinates [i; j] such that x[i; j] is a largest entry. This 
ag is ignored if x
is not a vector or matrix.

? vecmax([10, 20, -30, 40])

%1 = 40

? vecmax([10, 20, -30, 40], &v); v

%2 = 4

? vecmax([10, 20; -30, 40], &v); v

%3 = [2, 2]

The library syntax is GEN vecmax0(GEN x, GEN *v = NULL). When v is not needed, the
function GEN vecmax(GEN x) is also available.

3.1.20 vecmin(x; f&vg). If x is a vector or a matrix, returns the smallest entry of x, otherwise
returns a copy of x. Error if x is empty.

If v is given, set it to the index of a smallest entry (indirect minimum), when x is a vector. If
x is a matrix, set v to coordinates [i; j] such that x[i; j] is a smallest entry. This is ignored if x is
not a vector or matrix.

? vecmin([10, 20, -30, 40])

%1 = -30

? vecmin([10, 20, -30, 40], &v); v

%2 = 3

? vecmin([10, 20; -30, 40], &v); v

%3 = [2, 1]

The library syntax is GEN vecmin0(GEN x, GEN *v = NULL). When v is not needed, the
function GEN vecmin(GEN x) is also available.
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3.1.21 Comparison and Boolean operators. The six standard comparison operators <=, <, >=,
>, ==, != are available in GP. The result is 1 if the comparison is true, 0 if it is false. The operator
== is quite liberal : for instance, the integer 0, a 0 polynomial, and a vector with 0 entries are all
tested equal.

The extra operator === tests whether two objects are identical and is much stricter than == :
objects of di�erent type or length are never identical.

For the purpose of comparison, t_STR objects are compared using the standard lexicographic
order, and comparing them to objects of a di�erent type raises an exception.

GP accepts <> as a synonym for !=. On the other hand, = is de�nitely not a synonym for ==:
it is the assignment statement.

The standard boolean operators || (inclusive or), && (and) and ! (not) are also available.

3.2 Conversions and similar elementary functions or commands.

Many of the conversion functions are rounding or truncating operations. In this case, if the argu-
ment is a rational function, the result is the Euclidean quotient of the numerator by the denomi-
nator, and if the argument is a vector or a matrix, the operation is done componentwise. This will
not be restated for every function.

3.2.1 Col(x; fng). Transforms the object x into a column vector. The dimension of the resulting
vector can be optionally speci�ed via the extra parameter n.

If n is omitted or 0, the dimension depends on the type of x; the vector has a single component,
except when x is

� a vector or a quadratic form (in which case the resulting vector is simply the initial object
considered as a row vector),

� a polynomial or a power series. In the case of a polynomial, the coe�cients of the vector start
with the leading coe�cient of the polynomial, while for power series only the signi�cant coe�cients
are taken into account, but this time by increasing order of degree. In this last case, Vec is the
reciprocal function of Pol and Ser respectively,

� a matrix (the column of row vector comprising the matrix is returned),

� a character string (a vector of individual characters is returned).
In the last two cases (matrix and character string), n is meaningless and must be omitted or

an error is raised. Otherwise, if n is given, 0 entries are appended at the end of the vector if n > 0,
and prepended at the beginning if n < 0. The dimension of the resulting vector is jnj.

Note that the function Colrev does not exist, use Vecrev.

The library syntax is GEN gtocol0(GEN x, long n). GEN gtocol(GEN x) is also available.

3.2.2 Colrev(x; fng). As Col(x;�n), then reverse the result. In particular, Colrev is the reciprocal
function of Polrev: the coe�cients of the vector start with the constant coe�cient of the polynomial
and the others follow by increasing degree.

The library syntax is GEN gtocolrev0(GEN x, long n). GEN gtocolrev(GEN x) is also
available.
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3.2.3 List(fx = [ ]g). Transforms a (row or column) vector x into a list, whose components are the
entries of x. Similarly for a list, but rather useless in this case. For other types, creates a list with
the single element x. Note that, except when x is omitted, this function creates a small memory
leak; so, either initialize all lists to the empty list, or use them sparingly.

The library syntax is GEN gtolist(GEN x = NULL). The variant GEN mklist(void) creates
an empty list.

3.2.4 Map(fxg). A \Map" is an associative array, or dictionary: a data type composed of a
collection of (key , value) pairs, such that each key appears just once in the collection. This function
converts the matrix [a1; b1; a2; b2; : : : ; an; bn] to the map ai 7! bi.

? M = Map(factor(13!));

? mapget(M,3)

%2 = 5

If the argument x is omitted, creates an empty map, which may be �lled later via mapput.

The library syntax is GEN gtomap(GEN x = NULL).

3.2.5 Mat(fx = [ ]g). Transforms the object x into a matrix. If x is already a matrix, a copy of
x is created. If x is a row (resp. column) vector, this creates a 1-row (resp. 1-column) matrix,
unless all elements are column (resp. row) vectors of the same length, in which case the vectors are
concatenated sideways and the attached big matrix is returned. If x is a binary quadratic form,
creates the attached 2� 2 matrix. Otherwise, this creates a 1� 1 matrix containing x.

? Mat(x + 1)

%1 =

[x + 1]

? Vec( matid(3) )

%2 = [[1, 0, 0]~, [0, 1, 0]~, [0, 0, 1]~]

? Mat(%)

%3 =

[1 0 0]

[0 1 0]

[0 0 1]

? Col( [1,2; 3,4] )

%4 = [[1, 2], [3, 4]]~
? Mat(%)

%5 =

[1 2]

[3 4]

? Mat(Qfb(1,2,3))

%6 =

[1 1]

[1 3]

The library syntax is GEN gtomat(GEN x = NULL).
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3.2.6 Mod(a; b). In its basic form, creates an intmod or a polmod (amod b); b must be an integer
or a polynomial. We then obtain a t_INTMOD and a t_POLMOD respectively:

? t = Mod(2,17); t^8

%1 = Mod(1, 17)

? t = Mod(x,x^2+1); t^2

%2 = Mod(-1, x^2+1)

If a%bmakes sense and yields a result of the appropriate type (t_INT or scalar/t_POL), the operation
succeeds as well:

? Mod(1/2, 5)

%3 = Mod(3, 5)

? Mod(7 + O(3^6), 3)

%4 = Mod(1, 3)

? Mod(Mod(1,12), 9)

%5 = Mod(1, 3)

? Mod(1/x, x^2+1)

%6 = Mod(-1, x^2+1)

? Mod(exp(x), x^4)

%7 = Mod(1/6*x^3 + 1/2*x^2 + x + 1, x^4)

If a is a complex object, \base change" it to Z=bZ or K[x]=(b), which is equivalent to, but
faster than, multiplying it by Mod(1,b):

? Mod([1,2;3,4], 2)

%8 =

[Mod(1, 2) Mod(0, 2)]

[Mod(1, 2) Mod(0, 2)]

? Mod(3*x+5, 2)

%9 = Mod(1, 2)*x + Mod(1, 2)

? Mod(x^2 + y*x + y^3, y^2+1)

%10 = Mod(1, y^2 + 1)*x^2 + Mod(y, y^2 + 1)*x + Mod(-y, y^2 + 1)

This function is not the same as x % y, the result of which has no knowledge of the intended
modulus y. Compare

? x = 4 % 5; x + 1

%1 = 5

? x = Mod(4,5); x + 1

%2 = Mod(0,5)

Note that such \modular" objects can be lifted via lift or centerlift. The modulus of a
t_INTMOD or t_POLMOD z can be recovered via z.mod.

The library syntax is GEN gmodulo(GEN a, GEN b).
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3.2.7 Pol(t; fv =0 xg). Transforms the object t into a polynomial with main variable v. If t is
a scalar, this gives a constant polynomial. If t is a power series with non-negative valuation or
a rational function, the e�ect is similar to truncate, i.e. we chop o� the O(Xk) or compute the
Euclidean quotient of the numerator by the denominator, then change the main variable of the
result to v.

The main use of this function is when t is a vector: it creates the polynomial whose coe�cients
are given by t, with t[1] being the leading coe�cient (which can be zero). It is much faster to
evaluate Pol on a vector of coe�cients in this way, than the corresponding formal expression
anX

n + : : :+ a0, which is evaluated naively exactly as written (linear versus quadratic time in n).
Polrev can be used if one wants x[1] to be the constant coe�cient:

? Pol([1,2,3])

%1 = x^2 + 2*x + 3

? Polrev([1,2,3])

%2 = 3*x^2 + 2*x + 1

The reciprocal function of Pol (resp. Polrev) is Vec (resp. Vecrev).

? Vec(Pol([1,2,3]))

%1 = [1, 2, 3]

? Vecrev( Polrev([1,2,3]) )

%2 = [1, 2, 3]

Warning. This is not a substitution function. It will not transform an object containing variables
of higher priority than v.

? Pol(x + y, y)

*** at top-level: Pol(x+y,y)

*** ^----------

*** Pol: variable must have higher priority in gtopoly.

The library syntax is GEN gtopoly(GEN t, long v = -1) where v is a variable number.

3.2.8 Polrev(t; fv =0 xg). Transform the object t into a polynomial with main variable v. If t is a
scalar, this gives a constant polynomial. If t is a power series, the e�ect is identical to truncate,
i.e. it chops o� the O(Xk).

The main use of this function is when t is a vector: it creates the polynomial whose coe�cients
are given by t, with t[1] being the constant term. Pol can be used if one wants t[1] to be the leading
coe�cient:

? Polrev([1,2,3])

%1 = 3*x^2 + 2*x + 1

? Pol([1,2,3])

%2 = x^2 + 2*x + 3

The reciprocal function of Pol (resp. Polrev) is Vec (resp. Vecrev).

The library syntax is GEN gtopolyrev(GEN t, long v = -1) where v is a variable number.
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3.2.9 Qfb(a; b; c; fD = 0:g). Creates the binary quadratic form ax2 + bxy + cy2. If b2 � 4ac > 0,
initialize Shanks' distance function to D. Negative de�nite forms are not implemented, use their
positive de�nite counterpart instead.

The library syntax is GEN Qfb0(GEN a, GEN b, GEN c, GEN D = NULL, long prec)

. Also available are GEN qfi(GEN a, GEN b, GEN c) (assumes b2� 4ac < 0) and GEN qfr(GEN a,

GEN b, GEN c, GEN D) (assumes b2 � 4ac > 0).

3.2.10 Ser(s; fv =0 xg; fd = seriesprecisiong). Transforms the object s into a power series with
main variable v (x by default) and precision (number of signi�cant terms) equal to d � 0 (d =
seriesprecision by default). If s is a scalar, this gives a constant power series in v with precision
d. If s is a polynomial, the polynomial is truncated to d terms if needed

? Ser(1, 'y, 5)

%1 = 1 + O(y^5)

? Ser(x^2,, 5)

%2 = x^2 + O(x^7)

? T = polcyclo(100)

%3 = x^40 - x^30 + x^20 - x^10 + 1

? Ser(T, 'x, 11)

%4 = 1 - x^10 + O(x^11)

The function is more or less equivalent with multiplication by 1+O(vd) in theses cases, only faster.

If s is a vector, on the other hand, the coe�cients of the vector are understood to be the
coe�cients of the power series starting from the constant term (as in Polrev(x)), and the precision
d is ignored: in other words, in this case, we convert t_VEC / t_COL to the power series whose
signi�cant terms are exactly given by the vector entries. Finally, if s is already a power series in
v, we return it verbatim, ignoring d again. If d signi�cant terms are desired in the last two cases,
convert/truncate to t_POL �rst.

? v = [1,2,3]; Ser(v, t, 7)

%5 = 1 + 2*t + 3*t^2 + O(t^3) \\ 3 terms: 7 is ignored!

? Ser(Polrev(v,t), t, 7)

%6 = 1 + 2*t + 3*t^2 + O(t^7)

? s = 1+x+O(x^2); Ser(s, x, 7)

%7 = 1 + x + O(x^2) \\ 2 terms: 7 ignored

? Ser(truncate(s), x, 7)

%8 = 1 + x + O(x^7)

The warning given for Pol also applies here: this is not a substitution function.

The library syntax is GEN gtoser(GEN s, long v = -1, long precdl) where v is a variable
number.
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3.2.11 Set(fx = [ ]g). Converts x into a set, i.e. into a row vector, with strictly increasing entries
with respect to the (somewhat arbitrary) universal comparison function cmp. Standard container
types t_VEC, t_COL, t_LIST and t_VECSMALL are converted to the set with corresponding elements.
All others are converted to a set with one element.

? Set([1,2,4,2,1,3])

%1 = [1, 2, 3, 4]

? Set(x)

%2 = [x]

? Set(Vecsmall([1,3,2,1,3]))

%3 = [1, 2, 3]

The library syntax is GEN gtoset(GEN x = NULL).

3.2.12 Str(fxg�). Converts its argument list into a single character string (type t_STR, the empty
string if x is omitted). To recover an ordinary GEN from a string, apply eval to it. The arguments
of Str are evaluated in string context, see Section 2.9.

? x2 = 0; i = 2; Str(x, i)

%1 = "x2"

? eval(%)

%2 = 0

This function is mostly useless in library mode. Use the pair strtoGEN/GENtostr to convert
between GEN and char*. The latter returns a malloced string, which should be freed after usage.

3.2.13 Strchr(x). Converts x to a string, translating each integer into a character.

? Strchr(97)

%1 = "a"

? Vecsmall("hello world")

%2 = Vecsmall([104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100])

? Strchr(%)

%3 = "hello world"

The library syntax is GEN Strchr(GEN x).

3.2.14 Strexpand(fxg�). Converts its argument list into a single character string (type t_STR,
the empty string if x is omitted). Then perform environment expansion, see Section 2.12. This
feature can be used to read environment variable values.

? Strexpand("$HOME/doc")

%1 = "/home/pari/doc"

The individual arguments are read in string context, see Section 2.9.

3.2.15 Strtex(fxg�). Translates its arguments to TeX format, and concatenates the results into
a single character string (type t_STR, the empty string if x is omitted).

The individual arguments are read in string context, see Section 2.9.
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3.2.16 Vec(x; fng). Transforms the object x into a row vector. The dimension of the resulting
vector can be optionally speci�ed via the extra parameter n.

If n is omitted or 0, the dimension depends on the type of x; the vector has a single component,
except when x is

� a vector or a quadratic form: returns the initial object considered as a row vector,

� a polynomial or a power series: returns a vector consisting of the coe�cients. In the case of a
polynomial, the coe�cients of the vector start with the leading coe�cient of the polynomial, while
for power series only the signi�cant coe�cients are taken into account, but this time by increasing
order of degree. Vec is the reciprocal function of Pol for a polynomial and of Ser for a power series,

� a matrix: returns the vector of columns comprising the matrix,

� a character string: returns the vector of individual characters,

� a map: returns the vector of the domain of the map,

� an error context (t_ERROR): returns the error components, see iferr.

In the last four cases (matrix, character string, map, error), n is meaningless and must be
omitted or an error is raised. Otherwise, if n is given, 0 entries are appended at the end of the
vector if n > 0, and prepended at the beginning if n < 0. The dimension of the resulting vector is
jnj. Variant: GEN gtovec(GEN x) is also available.

The library syntax is GEN gtovec0(GEN x, long n).

3.2.17 Vecrev(x; fng). As Vec(x;�n), then reverse the result. In particular, Vecrev is the
reciprocal function of Polrev: the coe�cients of the vector start with the constant coe�cient of
the polynomial and the others follow by increasing degree.

The library syntax is GEN gtovecrev0(GEN x, long n). GEN gtovecrev(GEN x) is also
available.

3.2.18 Vecsmall(x; fng). Transforms the object x into a row vector of type t_VECSMALL. The
dimension of the resulting vector can be optionally speci�ed via the extra parameter n.

This acts as Vec(x; n), but only on a limited set of objects: the result must be representable
as a vector of small integers. If x is a character string, a vector of individual characters in ASCII
encoding is returned (Strchr yields back the character string).

The library syntax is GEN gtovecsmall0(GEN x, long n). GEN gtovecsmall(GEN x) is also
available.
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3.2.19 binary(x). Outputs the vector of the binary digits of jxj. Here x can be an integer, a
real number (in which case the result has two components, one for the integer part, one for the
fractional part) or a vector/matrix.

? binary(10)

%1 = [1, 0, 1, 0]

? binary(3.14)

%2 = [[1, 1], [0, 0, 1, 0, 0, 0, [...]]

? binary([1,2])

%3 = [[1], [1, 0]]

By convention, 0 has no digits:

? binary(0)

%4 = []

The library syntax is GEN binaire(GEN x).

3.2.20 bitand(x; y). Bitwise and of two integers x and y, that is the integerX
i

(xi and yi)2
i

Negative numbers behave 2-adically, i.e. the result is the 2-adic limit of bitand(xn; yn), where
xn and yn are non-negative integers tending to x and y respectively. (The result is an ordinary
integer, possibly negative.)

? bitand(5, 3)

%1 = 1

? bitand(-5, 3)

%2 = 3

? bitand(-5, -3)

%3 = -7

The library syntax is GEN gbitand(GEN x, GEN y). Also available is GEN ibitand(GEN x,

GEN y), which returns the bitwise and of jxj and jyj, two integers.

3.2.21 bitneg(x; fn = �1g). bitwise negation of an integer x, truncated to n bits, n � 0, that is
the integer

n�1X
i=0

not(xi)2
i:

The special case n = �1 means no truncation: an in�nite sequence of leading 1 is then represented
as a negative number.

See Section 3.2.20 for the behavior for negative arguments.

The library syntax is GEN gbitneg(GEN x, long n).
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3.2.22 bitnegimply(x; y). Bitwise negated imply of two integers x and y (or not (x ) y)), that
is the integer X

(xi andnot(yi))2
i

See Section 3.2.20 for the behavior for negative arguments.

The library syntax is GEN gbitnegimply(GEN x, GEN y). Also available is GEN ibitnegim-

ply(GEN x, GEN y), which returns the bitwise negated imply of jxj and jyj, two integers.

3.2.23 bitor(x; y). bitwise (inclusive) or of two integers x and y, that is the integerX
(xi or yi)2

i

See Section 3.2.20 for the behavior for negative arguments.

The library syntax is GEN gbitor(GEN x, GEN y). Also available is GEN ibitor(GEN x, GEN

y), which returns the bitwise ir of jxj and jyj, two integers.

3.2.24 bitprecision(x; fng). The function behaves di�erently according to whether n is present
and positive or not. If n is missing, the function returns the (
oating point) precision in bits of the
PARI object x. If x is an exact object, the function returns +oo.

? bitprecision(exp(1e-100))

%1 = 512 \\ 512 bits

? bitprecision( [ exp(1e-100), 0.5 ] )

%2 = 128 \\ minimal accuracy among components

? bitprecision(2 + x)

%3 = +oo \\ exact object

If n is present and positive, the function creates a new object equal to x with the new bit-
precision roughly n. In fact, the smallest multiple of 64 (resp. 32 on a 32-bit machine) larger than
or equal to n.

For x a vector or a matrix, the operation is done componentwise; for series and polynomials,
the operation is done coe�cientwise. For real x, n is the number of desired signi�cant bits. If n
is smaller than the precision of x, x is truncated, otherwise x is extended with zeros. For exact or
non-
oating point types, no change.

? bitprecision(Pi, 10) \\ actually 64 bits ~ 19 decimal digits

%1 = 3.141592653589793239

? bitprecision(1, 10)

%2 = 1

? bitprecision(1 + O(x), 10)

%3 = 1 + O(x)

? bitprecision(2 + O(3^5), 10)

%4 = 2 + O(3^5)

The library syntax is GEN bitprecision0(GEN x, long n).
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3.2.25 bittest(x; n). Outputs the nth bit of x starting from the right (i.e. the coe�cient of 2n in
the binary expansion of x). The result is 0 or 1.

? bittest(7, 0)

%1 = 1 \\ the bit 0 is 1

? bittest(7, 2)

%2 = 1 \\ the bit 2 is 1

? bittest(7, 3)

%3 = 0 \\ the bit 3 is 0

See Section 3.2.20 for the behavior at negative arguments.

The library syntax is GEN gbittest(GEN x, long n). For a t_INT x, the variant long

bittest(GEN x, long n) is generally easier to use, and if furthermore n � 0 the low-level function
ulong int_bit(GEN x, long n) returns bittest(abs(x),n).

3.2.26 bitxor(x; y). Bitwise (exclusive) or of two integers x and y, that is the integerX
(xi xor yi)2

i

See Section 3.2.20 for the behavior for negative arguments.

The library syntax is GEN gbitxor(GEN x, GEN y). Also available is GEN ibitxor(GEN x,

GEN y), which returns the bitwise xor of jxj and jyj, two integers.

3.2.27 ceil(x). Ceiling of x. When x is in R, the result is the smallest integer greater than or equal
to x. Applied to a rational function, ceil(x) returns the Euclidean quotient of the numerator by
the denominator.

The library syntax is GEN gceil(GEN x).

3.2.28 centerlift(x; fvg). Same as lift, except that t_INTMOD and t_PADIC components are lifted
using centered residues:

� for a t_INTMOD x 2 Z=nZ, the lift y is such that �n=2 < y � n=2.
� a t_PADIC x is lifted in the same way as above (modulo ppadicprec(x)) if its valuation v is non-

negative; if not, returns the fraction pv centerlift(xp�v); in particular, rational reconstruction is
not attempted. Use bestappr for this.

For backward compatibility, centerlift(x,'v) is allowed as an alias for lift(x,'v).

The library syntax is centerlift(GEN x).

3.2.29 characteristic(x). Returns the characteristic of the base ring over which x is de�ned (as
de�ned by t_INTMOD and t_FFELT components). The function raises an exception if incompatible
primes arise from t_FFELT and t_PADIC components.

? characteristic(Mod(1,24)*x + Mod(1,18)*y)

%1 = 6

The library syntax is GEN characteristic(GEN x).
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3.2.30 component(x; n). Extracts the nth-component of x. This is to be understood as follows:
every PARI type has one or two initial code words. The components are counted, starting at 1,
after these code words. In particular if x is a vector, this is indeed the nth-component of x, if x
is a matrix, the nth column, if x is a polynomial, the nth coe�cient (i.e. of degree n� 1), and for
power series, the nth signi�cant coe�cient.

For polynomials and power series, one should rather use polcoeff, and for vectors and matri-
ces, the [ ] operator. Namely, if x is a vector, then x[n] represents the nth component of x. If x is
a matrix, x[m,n] represents the coe�cient of row m and column n of the matrix, x[m,] represents
the mth row of x, and x[,n] represents the nth column of x.

Using of this function requires detailed knowledge of the structure of the di�erent PARI types,
and thus it should almost never be used directly. Some useful exceptions:

? x = 3 + O(3^5);

? component(x, 2)

%2 = 81 \\ p^(p-adic accuracy)

? component(x, 1)

%3 = 3 \\ p

? q = Qfb(1,2,3);

? component(q, 1)

%5 = 1

The library syntax is GEN compo(GEN x, long n).

3.2.31 conj(x). Conjugate of x. The meaning of this is clear, except that for real quadratic
numbers, it means conjugation in the real quadratic �eld. This function has no e�ect on integers,
reals, intmods, fractions or p-adics. The only forbidden type is polmod (see conjvec for this).

The library syntax is GEN gconj(GEN x).

3.2.32 conjvec(z). Conjugate vector representation of z. If z is a polmod, equal to Mod(a; T ), this
gives a vector of length degree(T ) containing:

� the complex embeddings of z if T has rational coe�cients, i.e. the a(r[i]) where r =
polroots(T );

� the conjugates of z if T has some intmod coe�cients;

if z is a �nite �eld element, the result is the vector of conjugates [z; zp; zp
2

; : : : ; zp
n�1

] where n =
degree(T ).

If z is an integer or a rational number, the result is z. If z is a (row or column) vector, the result
is a matrix whose columns are the conjugate vectors of the individual elements of z.

The library syntax is GEN conjvec(GEN z, long prec).

3.2.33 denominator(x). Denominator of x. The meaning of this is clear when x is a rational
number or function. If x is an integer or a polynomial, it is treated as a rational number or function,
respectively, and the result is equal to 1. For polynomials, you probably want to use

denominator( content(x) )

instead. As for modular objects, t_INTMOD and t_PADIC have denominator 1, and the denominator
of a t_POLMOD is the denominator of its (minimal degree) polynomial representative.

If x is a recursive structure, for instance a vector or matrix, the lcm of the denominators of its
components (a common denominator) is computed. This also applies for t_COMPLEXs and t_QUADs.
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Warning. Multivariate objects are created according to variable priorities, with possibly surprising
side e�ects (x=y is a polynomial, but y=x is a rational function). See Section 2.5.3.

The library syntax is GEN denom(GEN x).

3.2.34 digits(x; fb = 10g). Outputs the vector of the digits of jxj in base b, where x and b are
integers (b = 10 by default). See fromdigits for the reverse operation.

? digits(123)

%1 = [1, 2, 3, 0]

? digits(10, 2) \\ base 2

%2 = [1, 0, 1, 0]

By convention, 0 has no digits:

? digits(0)

%3 = []

The library syntax is GEN digits(GEN x, GEN b = NULL).

3.2.35 
oor(x). Floor of x. When x is in R, the result is the largest integer smaller than or equal
to x. Applied to a rational function, floor(x) returns the Euclidean quotient of the numerator by
the denominator.

The library syntax is GEN gfloor(GEN x).

3.2.36 frac(x). Fractional part of x. Identical to x� 
oor(x). If x is real, the result is in [0; 1[.

The library syntax is GEN gfrac(GEN x).

3.2.37 fromdigits(x; fb = 10g). Gives the integer formed by the elements of x seen as the digits
of a number in base b (b = 10 by default). This is the reverse of digits:

? digits(1234,5)

%1 = [1,4,4,1,4]

? fromdigits([1,4,4,1,4],5)

%2 = 1234

By convention, 0 has no digits:

? fromdigits([])

%3 = 0

The library syntax is GEN fromdigits(GEN x, GEN b = NULL).
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3.2.38 hammingweight(x). If x is a t_INT, return the binary Hamming weight of jxj. Otherwise
x must be of type t_POL, t_VEC, t_COL, t_VECSMALL, or t_MAT and the function returns the number
of non-zero coe�cients of x.

? hammingweight(15)

%1 = 4

? hammingweight(x^100 + 2*x + 1)

%2 = 3

? hammingweight([Mod(1,2), 2, Mod(0,3)])

%3 = 2

? hammingweight(matid(100))

%4 = 100

The library syntax is long hammingweight(GEN x).

3.2.39 imag(x). Imaginary part of x. When x is a quadratic number, this is the coe�cient of !
in the \canonical" integral basis (1; !).

The library syntax is GEN gimag(GEN x).

3.2.40 length(x). Length of x; #x is a shortcut for length(x). This is mostly useful for

� vectors: dimension (0 for empty vectors),

� lists: number of entries (0 for empty lists),

� matrices: number of columns,
� character strings: number of actual characters (without trailing \0, should you expect it

from C char*).

? #"a string"

%1 = 8

? #[3,2,1]

%2 = 3

? #[]

%3 = 0

? #matrix(2,5)

%4 = 5

? L = List([1,2,3,4]); #L

%5 = 4

The routine is in fact de�ned for arbitrary GP types, but is awkward and useless in other
cases: it returns the number of non-code words in x, e.g. the e�ective length minus 2 for integers
since the t_INT type has two code words.

The library syntax is long glength(GEN x).
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3.2.41 lift(x; fvg). If v is omitted, lifts intmods from Z=nZ in Z, p-adics from Qp to Q (as
truncate), and polmods to polynomials. Otherwise, lifts only polmods whose modulus has main
variable v. t_FFELT are not lifted, nor are List elements: you may convert the latter to vectors
�rst, or use apply(lift,L). More generally, components for which such lifts are meaningless (e.g.
character strings) are copied verbatim.

? lift(Mod(5,3))

%1 = 2

? lift(3 + O(3^9))

%2 = 3

? lift(Mod(x,x^2+1))

%3 = x

? lift(Mod(x,x^2+1))

%4 = x

Lifts are performed recursively on an object components, but only by one level : once a
t_POLMOD is lifted, the components of the result are not lifted further.

? lift(x * Mod(1,3) + Mod(2,3))

%4 = x + 2

? lift(x * Mod(y,y^2+1) + Mod(2,3))

%5 = y*x + Mod(2, 3) \\ do you understand this one?

? lift(x * Mod(y,y^2+1) + Mod(2,3), 'x)

%6 = Mod(y, y^2 + 1)*x + Mod(Mod(2, 3), y^2 + 1)

? lift(%, y)

%7 = y*x + Mod(2, 3)

To recursively lift all components not only by one level, but as long as possible, use liftall. To
lift only t_INTMODs and t_PADICs components, use liftint. To lift only t_POLMODs components,
use liftpol. Finally, centerlift allows to lift t_INTMODs and t_PADICs using centered residues
(lift of smallest absolute value).

The library syntax is GEN lift0(GEN x, long v = -1) where v is a variable number. Also
available is GEN lift(GEN x) corresponding to lift0(x,-1).

3.2.42 liftall(x). Recursively lift all components of x from Z=nZ to Z, fromQp toQ (as truncate),
and polmods to polynomials. t_FFELT are not lifted, nor are List elements: you may convert the
latter to vectors �rst, or use apply(liftall,L). More generally, components for which such lifts
are meaningless (e.g. character strings) are copied verbatim.

? liftall(x * (1 + O(3)) + Mod(2,3))

%1 = x + 2

? liftall(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))

%2 = y*x + 2*z

The library syntax is GEN liftall(GEN x).
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3.2.43 liftint(x). Recursively lift all components of x from Z=nZ to Z and from Qp to Q (as
truncate). t_FFELT are not lifted, nor are List elements: you may convert the latter to vectors
�rst, or use apply(liftint,L). More generally, components for which such lifts are meaningless
(e.g. character strings) are copied verbatim.

? liftint(x * (1 + O(3)) + Mod(2,3))

%1 = x + 2

? liftint(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))

%2 = Mod(y, y^2 + 1)*x + Mod(Mod(2*z, z^2), y^2 + 1)

The library syntax is GEN liftint(GEN x).

3.2.44 liftpol(x). Recursively lift all components of x which are polmods to polynomials. t_FFELT
are not lifted, nor are List elements: you may convert the latter to vectors �rst, or use ap-

ply(liftpol,L). More generally, components for which such lifts are meaningless (e.g. character
strings) are copied verbatim.

? liftpol(x * (1 + O(3)) + Mod(2,3))

%1 = (1 + O(3))*x + Mod(2, 3)

? liftpol(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))

%2 = y*x + Mod(2, 3)*z

The library syntax is GEN liftpol(GEN x).

3.2.45 norm(x). Algebraic norm of x, i.e. the product of x with its conjugate (no square roots
are taken), or conjugates for polmods. For vectors and matrices, the norm is taken componentwise
and hence is not the L2-norm (see norml2). Note that the norm of an element of R is its square,
so as to be compatible with the complex norm.

The library syntax is GEN gnorm(GEN x).

3.2.46 numerator(x). Numerator of x. The meaning of this is clear when x is a rational number
or function. If x is an integer or a polynomial, it is treated as a rational number or function,
respectively, and the result is x itself. For polynomials, you probably want to use

numerator( content(x) )

instead.

In other cases, numerator(x) is de�ned to be denominator(x)*x. This is the case when x is
a vector or a matrix, but also for t_COMPLEX or t_QUAD. In particular since a t_PADIC or t_INTMOD
has denominator 1, its numerator is itself.

Warning. Multivariate objects are created according to variable priorities, with possibly surprising
side e�ects (x=y is a polynomial, but y=x is a rational function). See Section 2.5.3.

The library syntax is GEN numer(GEN x).

3.2.47 numtoperm(n; k). Generates the k-th permutation (as a row vector of length n) of the
numbers 1 to n. The number k is taken modulo n! , i.e. inverse function of permtonum. The
numbering used is the standard lexicographic ordering, starting at 0.

The library syntax is GEN numtoperm(long n, GEN k).

85



3.2.48 oo. Returns an object meaning +1, for use in functions such as intnum. It can be negated
(-oo represents �1), and compared to real numbers (t_INT, t_FRAC, t_REAL), with the expected
meaning: +1 is greater than any real number and �1 is smaller.

The library syntax is GEN mkoo().

3.2.49 padicprec(x; p). Returns the absolute p-adic precision of the object x; this is the minimum
precision of the components of x. The result is +oo if x is an exact object (as a p-adic):

? padicprec((1 + O(2^5)) * x + (2 + O(2^4)), 2)

%1 = 4

? padicprec(x + 2, 2)

%2 = +oo

? padicprec(2 + x + O(x^2), 2)

%3 = +oo

The function raises an exception if it encounters an object incompatible with p-adic computations:

? padicprec(O(3), 2)

*** at top-level: padicprec(O(3),2)

*** ^-----------------

*** padicprec: inconsistent moduli in padicprec: 3 != 2

? padicprec(1.0, 2)

*** at top-level: padicprec(1.0,2)

*** ^----------------

*** padicprec: incorrect type in padicprec (t_REAL).

The library syntax is GEN gppadicprec(GEN x, GEN p). Also available is the function long

padicprec(GEN x, GEN p), which returns LONG_MAX if x = 0 and the p-adic precision as a long

integer.

3.2.50 permtonum(x). Given a permutation x on n elements, gives the number k such that
x = numtoperm(n; k), i.e. inverse function of numtoperm. The numbering used is the standard
lexicographic ordering, starting at 0.

The library syntax is GEN permtonum(GEN x).

3.2.51 precision(x; fng). The function behaves di�erently according to whether n is present and
positive or not. If n is missing, the function returns the precision in decimal digits of the PARI
object x. If x is an exact object, the function returns +oo.

? precision(exp(1e-100))

%1 = 154 \\ 154 significant decimal digits

? precision(2 + x)

%2 = +oo \\ exact object

? precision(0.5 + O(x))

%3 = 38 \\ floating point accuracy, NOT series precision

? precision( [ exp(1e-100), 0.5 ] )

%4 = 38 \\ minimal accuracy among components

If n is present, the function creates a new object equal to x with a new 
oating point precision
n: n is the number of desired signi�cant decimal digits. If n is smaller than the precision of a t_REAL
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component of x, it is truncated, otherwise it is extended with zeros. For exact or non-
oating point
types, no change.

The library syntax is GEN precision0(GEN x, long n). Also available are GEN gprec(GEN

x, long n) and long precision(GEN x). In both, the accuracy is expressed in words (32-bit or
64-bit depending on the architecture).

3.2.52 random(fN = 231g). Returns a random element in various natural sets depending on the
argument N .

� t_INT: returns an integer uniformly distributed between 0 and N�1. Omitting the argument
is equivalent to random(2^31).

� t_REAL: returns a real number in [0; 1[ with the same accuracy as N (whose mantissa has
the same number of signi�cant words).

� t_INTMOD: returns a random intmod for the same modulus.

� t_FFELT: returns a random element in the same �nite �eld.

� t_VEC of length 2, N = [a; b]: returns an integer uniformly distributed between a and b.

� t_VEC generated by ellinit over a �nite �eld k (coe�cients are t_INTMODs modulo a prime
or t_FFELTs): returns a \random" k-rational a�ne point on the curve. More precisely if the curve
has a single point (at in�nity!) we return it; otherwise we return an a�ne point by drawing an
abscissa uniformly at random until ellordinate succeeds. Note that this is de�nitely not a uniform
distribution over E(k), but it should be good enough for applications.

� t_POL return a random polynomial of degree at most the degree of N . The coe�cients are
drawn by applying random to the leading coe�cient of N .

? random(10)

%1 = 9

? random(Mod(0,7))

%2 = Mod(1, 7)

? a = ffgen(ffinit(3,7), 'a); random(a)

%3 = a^6 + 2*a^5 + a^4 + a^3 + a^2 + 2*a

? E = ellinit([3,7]*Mod(1,109)); random(E)

%4 = [Mod(103, 109), Mod(10, 109)]

? E = ellinit([1,7]*a^0); random(E)

%5 = [a^6 + a^5 + 2*a^4 + 2*a^2, 2*a^6 + 2*a^4 + 2*a^3 + a^2 + 2*a]

? random(Mod(1,7)*x^4)

%6 = Mod(5, 7)*x^4 + Mod(6, 7)*x^3 + Mod(2, 7)*x^2 + Mod(2, 7)*x + Mod(5, 7)

These variants all depend on a single internal generator, and are independent from your oper-
ating system's random number generators. A random seed may be obtained via getrand, and reset
using setrand: from a given seed, and given sequence of randoms, the exact same values will be
generated. The same seed is used at each startup, reseed the generator yourself if this is a problem.
Note that internal functions also call the random number generator; adding such a function call in
the middle of your code will change the numbers produced.
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Technical note. Up to version 2.4 included, the internal generator produced pseudo-random
numbers by means of linear congruences, which were not well distributed in arithmetic pro-
gressions. We now use Brent's XORGEN algorithm, based on Feedback Shift Registers, see
http://wwwmaths.anu.edu.au/~brent/random.html. The generator has period 24096 � 1, passes
the Crush battery of statistical tests of L'Ecuyer and Simard, but is not suitable for cryptographic
purposes: one can reconstruct the state vector from a small sample of consecutive values, thus
predicting the entire sequence.

The library syntax is GEN genrand(GEN N = NULL).

Also available: GEN ellrandom(GEN E) and GEN ffrandom(GEN a).

3.2.53 real(x). Real part of x. In the case where x is a quadratic number, this is the coe�cient
of 1 in the \canonical" integral basis (1; !).

The library syntax is GEN greal(GEN x).

3.2.54 round(x; f&eg). If x is in R, rounds x to the nearest integer (rounding to +1 in case
of ties), then and sets e to the number of error bits, that is the binary exponent of the di�erence
between the original and the rounded value (the \fractional part"). If the exponent of x is too large
compared to its precision (i.e. e > 0), the result is unde�ned and an error occurs if e was not given.

Important remark. Contrary to the other truncation functions, this function operates on every
coe�cient at every level of a PARI object. For example

truncate

�
2:4 �X2 � 1:7

X

�
= 2:4 �X;

whereas

round

�
2:4 �X2 � 1:7

X

�
=

2 �X2 � 2

X
:

An important use of round is to get exact results after an approximate computation, when theory
tells you that the coe�cients must be integers.

The library syntax is GEN round0(GEN x, GEN *e = NULL). Also available are GEN grnd-

toi(GEN x, long *e) and GEN ground(GEN x).

3.2.55 serprec(x; v). Returns the absolute precision of x with respec to power series in the variable
v; this is the minimum precision of the components of x. The result is +oo if x is an exact object
(as a series in v):

? serprec(x + O(y^2), y)

%1 = 2

? serprec(x + 2, x)

%2 = +oo

? serprec(2 + x + O(x^2), y)

%3 = +oo

The library syntax is GEN gpserprec(GEN x, long v) where v is a variable number. Also
available is long serprec(GEN x, GEN p), which returns LONG_MAX if x = 0 and the series precision
as a long integer.
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3.2.56 simplify(x). This function simpli�es x as much as it can. Speci�cally, a complex or
quadratic number whose imaginary part is the integer 0 (i.e. not Mod(0,2) or 0.E-28) is converted
to its real part, and a polynomial of degree 0 is converted to its constant term. Simpli�cations
occur recursively.

This function is especially useful before using arithmetic functions, which expect integer argu-
ments:

? x = 2 + y - y

%1 = 2

? isprime(x)

*** at top-level: isprime(x)

*** ^----------

*** isprime: not an integer argument in an arithmetic function

? type(x)

%2 = "t_POL"

? type(simplify(x))

%3 = "t_INT"

Note that GP results are simpli�ed as above before they are stored in the history. (Unless you
disable automatic simpli�cation with \y, that is.) In particular

? type(%1)

%4 = "t_INT"

The library syntax is GEN simplify(GEN x).

3.2.57 sizebyte(x). Outputs the total number of bytes occupied by the tree representing the PARI
object x.

The library syntax is long gsizebyte(GEN x). Also available is long gsizeword(GEN x)

returning a number of words.

3.2.58 sizedigit(x). This function is DEPRECATED, essentially meaningless, and provided for
backwards compatibility only. Don't use it!

outputs a quick upper bound for the number of decimal digits of (the components of) x, o�
by at most 1. More precisely, for a positive integer x, it computes (approximately) the ceiling of

floor(1 + log2 x) log10 2;

To count the number of decimal digits of a positive integer x, use #digits(x). To estimate
(recursively) the size of x, use normlp(x).

The library syntax is long sizedigit(GEN x).
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3.2.59 truncate(x; f&eg). Truncates x and sets e to the number of error bits. When x is in R,
this means that the part after the decimal point is chopped away, e is the binary exponent of the
di�erence between the original and the truncated value (the \fractional part"). If the exponent of
x is too large compared to its precision (i.e. e > 0), the result is unde�ned and an error occurs if
e was not given. The function applies componentwise on vector / matrices; e is then the maximal
number of error bits. If x is a rational function, the result is the \integer part" (Euclidean quotient
of numerator by denominator) and e is not set.

Note a very special use of truncate: when applied to a power series, it transforms it into a
polynomial or a rational function with denominator a power of X, by chopping away the O(Xk).
Similarly, when applied to a p-adic number, it transforms it into an integer or a rational number
by chopping away the O(pk).

The library syntax is GEN trunc0(GEN x, GEN *e = NULL). The following functions are also
available: GEN gtrunc(GEN x) and GEN gcvtoi(GEN x, long *e).

3.2.60 valuation(x; p). Computes the highest exponent of p dividing x. If p is of type integer, x
must be an integer, an intmod whose modulus is divisible by p, a fraction, a q-adic number with
q = p, or a polynomial or power series in which case the valuation is the minimum of the valuation
of the coe�cients.

If p is of type polynomial, x must be of type polynomial or rational function, and also a power
series if x is a monomial. Finally, the valuation of a vector, complex or quadratic number is the
minimum of the component valuations.

If x = 0, the result is +oo if x is an exact object. If x is a p-adic numbers or power series, the
result is the exponent of the zero. Any other type combinations gives an error.

The library syntax is GEN gpvaluation(GEN x, GEN p). Also available is long gvalua-

tion(GEN x, GEN p), which returns LONG_MAX if x = 0 and the valuation as a long integer.

3.2.61 varhigher(name; fvg). Return a variable name whose priority is higher than the priority
of v (of all existing variables if v is omitted). This is a counterpart to varlower.

? Pol([x,x], t)

*** at top-level: Pol([x,x],t)

*** ^------------

*** Pol: incorrect priority in gtopoly: variable x <= t

? t = varhigher("t", x);

? Pol([x,x], t)

%3 = x*t + x

This routine is useful since new GP variables directly created by the interpreter always have lower
priority than existing GP variables. When some basic objects already exist in a variable that is
incompatible with some function requirement, you can now create a new variable with a suitable
priority instead of changing variables in existing objects:

? K = nfinit(x^2+1);

? rnfequation(K,y^2-2)

*** at top-level: rnfequation(K,y^2-2)

*** ^--------------------

*** rnfequation: incorrect priority in rnfequation: variable y >= x

? y = varhigher("y", x);
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? rnfequation(K, y^2-2)

%3 = y^4 - 2*y^2 + 9

Caution 1. The name is an arbitrary character string, only used for display purposes and need
not be related to the GP variable holding the result, nor to be a valid variable name. In particular
the name can not be used to retrieve the variable, it is not even present in the parser's hash tables.

? x = varhigher("#");

? x^2

%2 = #^2

Caution 2. There are a limited number of variables and if no existing variable with the given
display name has the requested priority, the call to varhigher uses up one such slot. Do not create
new variables in this way unless it's absolutely necessary, reuse existing names instead and choose
sensible priority requirements: if you only need a variable with higher priority than x, state so
rather than creating a new variable with highest priority.

\\ quickly use up all variables

? n = 0; while(1,varhigher("tmp"); n++)

*** at top-level: n=0;while(1,varhigher("tmp");n++)

*** ^-------------------

*** varhigher: no more variables available.

*** Break loop: type 'break' to go back to GP prompt

break> n

65510

\\ infinite loop: here we reuse the same 'tmp'

? n = 0; while(1,varhigher("tmp", x); n++)

The library syntax is GEN varhigher(const char *name, long v = -1) where v is a variable
number.

3.2.62 variable(fxg). Gives the main variable of the object x (the variable with the highest
priority used in x), and p if x is a p-adic number. Return 0 if x has no variable attached to it.

? variable(x^2 + y)

%1 = x

? variable(1 + O(5^2))

%2 = 5

? variable([x,y,z,t])

%3 = x

? variable(1)

%4 = 0

The construction

if (!variable(x),...)

can be used to test whether a variable is attached to x.

If x is omitted, returns the list of user variables known to the interpreter, by order of decreasing
priority. (Highest priority is initially x, which come �rst until varhigher is used.) If varhigher or
varlower are used, it is quite possible to end up with di�erent variables (with di�erent priorities)
printed in the same way: they will then appear multiple times in the output:
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? varhigher("y");

? varlower("y");

? variable()

%4 = [y, x, y]

Using v = variable() then v[1], v[2], etc. allows to recover and use existing variables.

The library syntax is GEN gpolvar(GEN x = NULL). However, in library mode, this function
should not be used for x non-NULL, since gvar is more appropriate. Instead, for x a p-adic (type
t_PADIC), p is gel(x; 2); otherwise, use long gvar(GEN x) which returns the variable number of x
if it exists, NO VARIABLE otherwise, which satis�es the property varncmp(NO VARIABLE; v) > 0 for
all valid variable number v, i.e. it has lower priority than any variable.

3.2.63 variables(fxg). Returns the list of all variables occuring in object x (all user variables
known to the interpreter if x is omitted), sorted by decreasing priority.

? variables([x^2 + y*z + O(t), a+x])

%1 = [x, y, z, t, a]

The construction

if (!variables(x),...)

can be used to test whether a variable is attached to x.

If varhigher or varlower are used, it is quite possible to end up with di�erent variables (with
di�erent priorities) printed in the same way: they will then appear multiple times in the output:

? y1 = varhigher("y");

? y2 = varlower("y");

? variables(y*y1*y2)

%4 = [y, y, y]

The library syntax is GEN variables_vec(GEN x = NULL).

Also available is GEN variables_vecsmall(GEN x) which returns the (sorted) variable num-
bers instead of the attached monomials of degree 1.

3.2.64 varlower(name; fvg). Return a variable name whose priority is lower than the priority of
v (of all existing variables if v is omitted). This is a counterpart to varhigher.

New GP variables directly created by the interpreter always have lower priority than existing
GP variables, but it is not easy to check whether an identi�er is currently unused, so that the
corresponding variable has the expected priority when it's created! Thus, depending on the session
history, the same command may fail or succeed:

? t; z; \\ now t > z

? rnfequation(t^2+1,z^2-t)

*** at top-level: rnfequation(t^2+1,z^

*** ^--------------------

*** rnfequation: incorrect priority in rnfequation: variable t >= t

Restart and retry:

? z; t; \\ now z > t

? rnfequation(t^2+1,z^2-t)
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%2 = z^4 + 1

It is quite annoying for package authors, when trying to de�ne a base ring, to notice that the
package may fail for some users depending on their session history. The safe way to do this is as
follows:

? z; t; \\ In new session: now z > t

...

? t = varlower("t", 'z);

? rnfequation(t^2+1,z^2-2)

%2 = z^4 - 2*z^2 + 9

? variable()

%3 = [x, y, z, t]

? t; z; \\ In new session: now t > z

...

? t = varlower("t", 'z); \\ create a new variable, still printed "t"

? rnfequation(t^2+1,z^2-2)

%2 = z^4 - 2*z^2 + 9

? variable()

%3 = [x, y, t, z, t]

Now both constructions succeed. Note that in the �rst case, varlower is essentially a no-op,
the existing variable t has correct priority. While in the second case, two di�erent variables are
displayed as t, one with higher priority than z (created in the �rst line) and another one with lower
priority (created by varlower).

Caution 1. The name is an arbitrary character string, only used for display purposes and need
not be related to the GP variable holding the result, nor to be a valid variable name. In particular
the name can not be used to retrieve the variable, it is not even present in the parser's hash tables.

? x = varlower("#");

? x^2

%2 = #^2

Caution 2. There are a limited number of variables and if no existing variable with the given
display name has the requested priority, the call to varlower uses up one such slot. Do not create
new variables in this way unless it's absolutely necessary, reuse existing names instead and choose
sensible priority requirements: if you only need a variable with higher priority than x, state so
rather than creating a new variable with highest priority.

\\ quickly use up all variables

? n = 0; while(1,varlower("x"); n++)

*** at top-level: n=0;while(1,varlower("x");n++)

*** ^-------------------

*** varlower: no more variables available.

*** Break loop: type 'break' to go back to GP prompt

break> n

65510

\\ infinite loop: here we reuse the same 'tmp'

? n = 0; while(1,varlower("tmp", x); n++)

The library syntax is GEN varlower(const char *name, long v = -1) where v is a variable
number.
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3.3 Transcendental functions.

Since the values of transcendental functions cannot be exactly represented, these functions will
always return an inexact object: a real number, a complex number, a p-adic number or a power
series. All these objects have a certain �nite precision.

As a general rule, which of course in some cases may have exceptions, transcendental functions
operate in the following way:

� If the argument is either a real number or an inexact complex number (like 1.0 + I or
Pi*I but not 2 - 3*I), then the computation is done with the precision of the argument. In the
example below, we see that changing the precision to 50 digits does not matter, because x only had
a precision of 19 digits.

? \p 15

realprecision = 19 significant digits (15 digits displayed)

? x = Pi/4

%1 = 0.785398163397448

? \p 50

realprecision = 57 significant digits (50 digits displayed)

? sin(x)

%2 = 0.7071067811865475244

Note that even if the argument is real, the result may be complex (e.g. acos(2:0) or acosh(0:0)).
See each individual function help for the de�nition of the branch cuts and choice of principal value.

� If the argument is either an integer, a rational, an exact complex number or a quadratic
number, it is �rst converted to a real or complex number using the current precision, which can be
view and manipulated using the defaults realprecision (in decimal digits) or realbitprecision
(in bits). This precision can be changed indi�erently

� in decimal digits: use \p or default(realprecision,...).

� in bits: use \pb or default(realbitprecision,...).

After this conversion, the computation proceeds as above for real or complex arguments.

In library mode, the realprecision does not matter; instead the precision is taken from the
prec parameter which every transcendental function has. As in gp, this prec is not used when the
argument to a function is already inexact. Note that the argument prec stands for the length in
words of a real number, including codewords. Hence we must have prec � 3. (Some functions allow
a bitprec argument instead which allow �ner granularity.)

Some accuracies attainable on 32-bit machines cannot be attained on 64-bit machines for parity
reasons. For example the default gp accuracy is 28 decimal digits on 32-bit machines, corresponding
to prec having the value 5, but this cannot be attained on 64-bit machines.

� If the argument is a polmod (representing an algebraic number), then the function is evaluated
for every possible complex embedding of that algebraic number. A column vector of results is
returned, with one component for each complex embedding. Therefore, the number of components
equals the degree of the t_POLMOD modulus.

� If the argument is an intmod or a p-adic, at present only a few functions like sqrt (square
root), sqr (square), log, exp, powering, teichmuller (Teichm�uller character) and agm (arithmetic-
geometric mean) are implemented.
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Note that in the case of a 2-adic number, sqr(x) may not be identical to x � x: for example if
x = 1+O(25) and y = 1+O(25) then x�y = 1+O(25) while sqr(x) = 1+O(26). Here, x�x yields
the same result as sqr(x) since the two operands are known to be identical . The same statement
holds true for p-adics raised to the power n, where vp(n) > 0.

Remark. If we wanted to be strictly consistent with the PARI philosophy, we should have x � y =
(4mod 8) and sqr(x) = (4mod 32) when both x and y are congruent to 2 modulo 4. However,
since intmod is an exact object, PARI assumes that the modulus must not change, and the result is
hence (0 mod 4) in both cases. On the other hand, p-adics are not exact objects, hence are treated
di�erently.

� If the argument is a polynomial, a power series or a rational function, it is, if necessary,
�rst converted to a power series using the current series precision, held in the default series-

precision. This precision (the number of signi�cant terms) can be changed using \ps or de-

fault(seriesprecision,...). Then the Taylor series expansion of the function around X = 0
(where X is the main variable) is computed to a number of terms depending on the number of
terms of the argument and the function being computed.

Under gp this again is transparent to the user. When programming in library mode, however,
it is strongly advised to perform an explicit conversion to a power series �rst, as in x = gtoser(x,

seriesprec), where the number of signi�cant terms seriesprec can be speci�ed explicitly. If
you do not do this, a global variable precdl is used instead, to convert polynomials and rational
functions to a power series with a reasonable number of terms; tampering with the value of this
global variable is deprecated and strongly discouraged.

� If the argument is a vector or a matrix, the result is the componentwise evaluation of the
function. In particular, transcendental functions on square matrices, which are not implemented
in the present version 2.9.1, will have a di�erent name if they are implemented some day.

3.3.1 ^. If y is not of type integer, x^y has the same e�ect as exp(y*log(x)). It can be applied
to p-adic numbers as well as to the more usual types.

The library syntax is GEN gpow(GEN x, GEN n, long prec) for x^n.

3.3.2 Catalan. Catalan's constant G =
P

n>=0
(�1)n

(2n+1)2 = 0:91596 � � �. Note that Catalan is one

of the few reserved names which cannot be used for user variables.

The library syntax is GEN mpcatalan(long prec).

3.3.3 Euler. Euler's constant 
 = 0:57721 � � �. Note that Euler is one of the few reserved names
which cannot be used for user variables.

The library syntax is GEN mpeuler(long prec).

3.3.4 I. The complex number
p�1.

The library syntax is GEN gen_I().

3.3.5 Pi. The constant � (3:14159 � � �). Note that Pi is one of the few reserved names which cannot
be used for user variables.

The library syntax is GEN mppi(long prec).
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3.3.6 abs(x). Absolute value of x (modulus if x is complex). Rational functions are not allowed.
Contrary to most transcendental functions, an exact argument is not converted to a real number
before applying abs and an exact result is returned if possible.

? abs(-1)

%1 = 1

? abs(3/7 + 4/7*I)

%2 = 5/7

? abs(1 + I)

%3 = 1.414213562373095048801688724

If x is a polynomial, returns �x if the leading coe�cient is real and negative else returns x. For a
power series, the constant coe�cient is considered instead.

The library syntax is GEN gabs(GEN x, long prec).

3.3.7 acos(x). Principal branch of cos�1(x) = �i log(x + i
p
1� x2). In particular, <(acos(x)) 2

[0; �] and if x 2 R and jxj > 1, then acos(x) is complex. The branch cut is in two pieces:
] � 1;�1] , continuous with quadrant II, and [1;+1[, continuous with quadrant IV. We have
acos(x) = �=2� asin(x) for all x.

The library syntax is GEN gacos(GEN x, long prec).

3.3.8 acosh(x). Principal branch of cosh�1(x) = 2 log(
p
(x+ 1)=2 +

p
(x� 1)=2). In particular,

<(acosh(x)) � 0 and =(acosh(x)) 2]� �; �]; if x 2 R and x < 1, then acosh(x) is complex.

The library syntax is GEN gacosh(GEN x, long prec).

3.3.9 agm(x; y). Arithmetic-geometric mean of x and y. In the case of complex or negative
numbers, the optimal AGM is returned (the largest in absolute value over all choices of the signs of
the square roots). p-adic or power series arguments are also allowed. Note that a p-adic agm exists
only if x=y is congruent to 1 modulo p (modulo 16 for p = 2). x and y cannot both be vectors or
matrices.

The library syntax is GEN agm(GEN x, GEN y, long prec).

3.3.10 arg(x). Argument of the complex number x, such that �� < arg(x) � �.
The library syntax is GEN garg(GEN x, long prec).

3.3.11 asin(x). Principal branch of sin�1(x) = �i log(ix +p1� x2). In particular, <(asin(x)) 2
[��=2; �=2] and if x 2 R and jxj > 1 then asin(x) is complex. The branch cut is in two pieces:
] �1;�1], continuous with quadrant II, and [1;+1[ continuous with quadrant IV. The function
satis�es iasin(x) = asinh(ix).

The library syntax is GEN gasin(GEN x, long prec).

3.3.12 asinh(x). Principal branch of sinh�1(x) = log(x +
p
1 + x2). In particular =(asinh(x)) 2

[��=2; �=2]. The branch cut is in two pieces: ] � i1;�i], continuous with quadrant III and
[+i;+i1[, continuous with quadrant I.

The library syntax is GEN gasinh(GEN x, long prec).
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3.3.13 atan(x). Principal branch of tan�1(x) = log((1 + ix)=(1 � ix))=2i. In particular the real
part of atan(x) belongs to ] � �=2; �=2[. The branch cut is in two pieces: ] � i1;�i[, continuous
with quadrant IV, and ]i;+i1[ continuous with quadrant II. The function satis�es atan(x) =
�iatanh(ix) for all x 6= �i.

The library syntax is GEN gatan(GEN x, long prec).

3.3.14 atanh(x). Principal branch of tanh�1(x) = log((1 + x)=(1 � x))=2. In particular the
imaginary part of atanh(x) belongs to [��=2; �=2]; if x 2 R and jxj > 1 then atanh(x) is complex.

The library syntax is GEN gatanh(GEN x, long prec).

3.3.15 bernfrac(x). Bernoulli number Bx, where B0 = 1, B1 = �1=2, B2 = 1=6,: : : , expressed as
a rational number. The argument x should be of type integer.

The library syntax is GEN bernfrac(long x).

3.3.16 bernpol(n; fv =0 xg). Bernoulli polynomial Bn in variable v.

? bernpol(1)

%1 = x - 1/2

? bernpol(3)

%2 = x^3 - 3/2*x^2 + 1/2*x

The library syntax is GEN bernpol(long n, long v = -1) where v is a variable number.

3.3.17 bernreal(x). Bernoulli number Bx, as bernfrac, but Bx is returned as a real number
(with the current precision).

The library syntax is GEN bernreal(long x, long prec).

3.3.18 bernvec(x). This routine is obsolete, kept for backward compatibility only.

The library syntax is GEN bernvec(long x).

3.3.19 besselh1(nu; x). H1-Bessel function of index nu and argument x.

The library syntax is GEN hbessel1(GEN nu, GEN x, long prec).

3.3.20 besselh2(nu; x). H2-Bessel function of index nu and argument x.

The library syntax is GEN hbessel2(GEN nu, GEN x, long prec).

3.3.21 besseli(nu; x). I-Bessel function of index nu and argument x. If x converts to a power
series, the initial factor (x=2)�=�(� + 1) is omitted (since it cannot be represented in PARI when
� is not integral).

The library syntax is GEN ibessel(GEN nu, GEN x, long prec).

3.3.22 besselj(nu; x). J-Bessel function of index nu and argument x. If x converts to a power
series, the initial factor (x=2)�=�(� + 1) is omitted (since it cannot be represented in PARI when
� is not integral).

The library syntax is GEN jbessel(GEN nu, GEN x, long prec).
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3.3.23 besseljh(n; x). J-Bessel function of half integral index. More precisely, besseljh(n; x)
computes Jn+1=2(x) where n must be of type integer, and x is any element of C. In the present
version 2.9.1, this function is not very accurate when x is small.

The library syntax is GEN jbesselh(GEN n, GEN x, long prec).

3.3.24 besselk(nu; x). K-Bessel function of index nu and argument x.

The library syntax is GEN kbessel(GEN nu, GEN x, long prec).

3.3.25 besseln(nu; x). N -Bessel function of index nu and argument x.

The library syntax is GEN nbessel(GEN nu, GEN x, long prec).

3.3.26 cos(x). Cosine of x.

The library syntax is GEN gcos(GEN x, long prec).

3.3.27 cosh(x). Hyperbolic cosine of x.

The library syntax is GEN gcosh(GEN x, long prec).

3.3.28 cotan(x). Cotangent of x.

The library syntax is GEN gcotan(GEN x, long prec).

3.3.29 cotanh(x). Hyperbolic cotangent of x.

The library syntax is GEN gcotanh(GEN x, long prec).

3.3.30 dilog(x). Principal branch of the dilogarithm of x, i.e. analytic continuation of the power
series log2(x) =

P
n�1 x

n=n2.

The library syntax is GEN dilog(GEN x, long prec).

3.3.31 eint1(x; fng). Exponential integral R1
x

e�t

t dt = incgam(0; x), where the latter expression
extends the function de�nition from real x > 0 to all complex x 6= 0.

If n is present, we must have x > 0; the function returns the n-dimensional vector
[eint1(x); : : : ; eint1(nx)]. Contrary to other transcendental functions, and to the default case
(n omitted), the values are correct up to a bounded absolute, rather than relative, error 10�n,
where n is precision(x) if x is a t_REAL and defaults to realprecision otherwise. (In the most
important application, to the computation of L-functions via approximate functional equations,
those values appear as weights in long sums and small individual relative errors are less useful
than controlling the absolute error.) This is faster than repeatedly calling eint1(i * x), but less
precise.

The library syntax is GEN veceint1(GEN x, GEN n = NULL, long prec). Also available is
GEN eint1(GEN x, long prec).

3.3.32 erfc(x). Complementary error function, analytic continuation of (2=
p
�)
R1
x
e�t

2

dt =
incgam(1=2; x2)=

p
�, where the latter expression extends the function de�nition from real x to all

complex x 6= 0.

The library syntax is GEN gerfc(GEN x, long prec).
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3.3.33 eta(z; fflag = 0g). Variants of Dedekind's � function. If flag = 0, return
Q1

n=1(1 � qn),
where q depends on x in the following way:

� q = e2i�x if x is a complex number (which must then have positive imaginary part); notice
that the factor q1=24 is missing!

� q = x if x is a t_PADIC, or can be converted to a power series (which must then have positive
valuation).

If flag is non-zero, x is converted to a complex number and we return the true � function,
q1=24

Q1
n=1(1� qn), where q = e2i�x.

The library syntax is GEN eta0(GEN z, long flag, long prec).

Also available is GEN trueeta(GEN x, long prec) (flag = 1).

3.3.34 exp(x). Exponential of x. p-adic arguments with positive valuation are accepted.

The library syntax is GEN gexp(GEN x, long prec). For a t_PADIC x, the function GEN

Qp_exp(GEN x) is also available.

3.3.35 expm1(x). Return exp(x)�1, computed in a way that is also accurate when the real part of
x is near 0. A naive direct computation would su�er from catastrophic cancellation; PARI's direct
computation of exp(x) alleviates this well known problem at the expense of computing exp(x) to a
higher accuracy when x is small. Using expm1 is recommended instead:

? default(realprecision, 10000); x = 1e-100;

? a = expm1(x);

time = 4 ms.

? b = exp(x)-1;

time = 28 ms.

? default(realprecision, 10040); x = 1e-100;

? c = expm1(x); \\ reference point

? abs(a-c)/c \\ relative error in expm1(x)

%7 = 0.E-10017

? abs(b-c)/c \\ relative error in exp(x)-1

%8 = 1.7907031188259675794 E-9919

As the example above shows, when x is near 0, expm1 is both faster and more accurate than
exp(x)-1.

The library syntax is GEN gexpm1(GEN x, long prec).
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3.3.36 gamma(s). For s a complex number, evaluates Euler's gamma function

�(s) =

Z 1

0

ts�1 exp(�t) dt:

Error if s is a non-positive integer, where � has a pole.

For s a t_PADIC, evaluates the Morita gamma function at s, that is the unique continuous
p-adic function on the p-adic integers extending �p(k) = (�1)kQ0

j<k j, where the prime means
that p does not divide j.

? gamma(1/4 + O(5^10))

%1= 1 + 4*5 + 3*5^4 + 5^6 + 5^7 + 4*5^9 + O(5^10)

? algdep(%,4)

%2 = x^4 + 4*x^2 + 5

The library syntax is GEN ggamma(GEN s, long prec). For a t_PADIC x, the function GEN

Qp_gamma(GEN x) is also available.

3.3.37 gammah(x). Gamma function evaluated at the argument x+ 1=2.

The library syntax is GEN ggammah(GEN x, long prec).

3.3.38 gammamellininv(G; t; fm = 0g). Returns the value at t of the inverse Mellin transform
G initialized by gammamellininvinit.

? G = gammamellininvinit([0]);

? gammamellininv(G, 2) - 2*exp(-Pi*2^2)

%2 = -4.484155085839414627 E-44

The alternative shortcut

gammamellininv(A,t,m)

for

gammamellininv(gammamellininvinit(A,m), t)

is available.

The library syntax is GEN gammamellininv(GEN G, GEN t, long m, long bitprec).

3.3.39 gammamellininvasymp(A;n; fm = 0g). Return the �rst n terms of the asymptotic
expansion at in�nity of the m-th derivative K(m)(t) of the inverse Mellin transform of the function

f(s) = �R(s+ a1) : : :�R(s+ ad) ;

where A is the vector [a1; : : : ; ad] and �R(s) = ��s=2�(s=2) (Euler's gamma). The result is a vector
[M [1]:::M [n]] with M[1]=1, such that

K(m)(t) =
q
2d+1=dta+m(2=d�1)e�d�t

2=d X
n�0

M [n+ 1](�t2=d)�n

with a = (1� d+P1�j�d aj)=d.

The library syntax is GEN gammamellininvasymp(GEN A, long precdl, long n).
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3.3.40 gammamellininvinit(A; fm = 0g). Initialize data for the computation by gam-

mamellininv of the m-th derivative of the inverse Mellin transform of the function

f(s) = �R(s+ a1) : : :�R(s+ ad)

where A is the vector [a1; : : : ; ad] and �R(s) = ��s=2�(s=2) (Euler's gamma). This is the special
case of Meijer's G functions used to compute L-values via the approximate functional equation.

Caveat. Contrary to the PARI convention, this function guarantees an absolute (rather than
relative) error bound.

For instance, the inverse Mellin transform of �R(s) is 2 exp(��z2):
? G = gammamellininvinit([0]);

? gammamellininv(G, 2) - 2*exp(-Pi*2^2)

%2 = -4.484155085839414627 E-44

The inverse Mellin transform of �R(s + 1) is 2z exp(��z2), and its second derivative is
4�z exp(��z2)(2�z2 � 3):

? G = gammamellininvinit([1], 2);

? a(z) = 4*Pi*z*exp(-Pi*z^2)*(2*Pi*z^2-3);

? b(z) = gammamellininv(G,z);

? t(z) = b(z) - a(z);

? t(3/2)

%3 = -1.4693679385278593850 E-39

The library syntax is GEN gammamellininvinit(GEN A, long m, long bitprec).

3.3.41 hyperu(a; b; x). U -con
uent hypergeometric function with parameters a and b. The pa-
rameters a and b can be complex but the present implementation requires x to be positive.

The library syntax is GEN hyperu(GEN a, GEN b, GEN x, long prec).

3.3.42 incgam(s; x; fgg). Incomplete gamma function
R1
x
e�tts�1 dt, extended by analytic con-

tinuation to all complex x; s not both 0. The relative error is bounded in terms of the precision of
s (the accuracy of x is ignored when determining the output precision). When g is given, assume
that g = �(s). For small jxj, this will speed up the computation.

The library syntax is GEN incgam0(GEN s, GEN x, GEN g = NULL, long prec). Also
available is GEN incgam(GEN s, GEN x, long prec).

3.3.43 incgamc(s; x). Complementary incomplete gamma function. The arguments x and s are
complex numbers such that s is not a pole of � and jxj=(jsj+1) is not much larger than 1 (otherwise
the convergence is very slow). The result returned is

R x
0
e�tts�1 dt.

The library syntax is GEN incgamc(GEN s, GEN x, long prec).

3.3.44 lambertw(y). Lambert W function, solution of the implicit equation xex = y, for y > 0.

The library syntax is GEN glambertW(GEN y, long prec).
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3.3.45 lngamma(x). Principal branch of the logarithm of the gamma function of x. This function
is analytic on the complex plane with non-positive integers removed, and can have much larger
arguments than gamma itself.

For x a power series such that x(0) is not a pole of gamma, compute the Taylor expansion.
(PARI only knows about regular power series and can't include logarithmic terms.)

? lngamma(1+x+O(x^2))

%1 = -0.57721566490153286060651209008240243104*x + O(x^2)

? lngamma(x+O(x^2))

*** at top-level: lngamma(x+O(x^2))

*** ^-----------------

*** lngamma: domain error in lngamma: valuation != 0

? lngamma(-1+x+O(x^2))

*** lngamma: Warning: normalizing a series with 0 leading term.

*** at top-level: lngamma(-1+x+O(x^2))

*** ^--------------------

*** lngamma: domain error in intformal: residue(series, pole) != 0

The library syntax is GEN glngamma(GEN x, long prec).

3.3.46 log(x). Principal branch of the natural logarithm of x 2 C�, i.e. such that =(log(x)) 2
] � �; �]. The branch cut lies along the negative real axis, continuous with quadrant 2, i.e. such
that limb!0+ log(a + bi) = log a for a 2 R�. The result is complex (with imaginary part equal to
�) if x 2 R and x < 0. In general, the algorithm uses the formula

log(x) � �

2agm(1; 4=s)
�m log 2;

if s = x2m is large enough. (The result is exact to B bits provided s > 2B=2.) At low accuracies,
the series expansion near 1 is used.

p-adic arguments are also accepted for x, with the convention that log(p) = 0. Hence in
particular exp(log(x))=x is not in general equal to 1 but to a (p � 1)-th root of unity (or �1 if
p = 2) times a power of p.

The library syntax is GEN glog(GEN x, long prec). For a t_PADIC x, the function GEN

Qp_log(GEN x) is also available.

3.3.47 polylog(m;x; fflag = 0g). One of the di�erent polylogarithms, depending on flag :

If flag = 0 or is omitted: mth polylogarithm of x, i.e. analytic continuation of the power series
Lim(x) =

P
n�1 x

n=nm (x < 1). Uses the functional equation linking the values at x and 1=x to

restrict to the case jxj � 1, then the power series when jxj2 � 1=2, and the power series expansion
in log(x) otherwise.

Using flag , computes a modi�ed mth polylogarithm of x. We use Zagier's notations; let <m
denote < or = depending on whether m is odd or even:

If flag = 1: compute ~Dm(x), de�ned for jxj � 1 by

<m
 
m�1X
k=0

(� log jxj)k
k!

Lim�k(x) +
(� log jxj)m�1

m!
log j1� xj

!
:
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If flag = 2: compute Dm(x), de�ned for jxj � 1 by

<m
 
m�1X
k=0

(� log jxj)k
k!

Lim�k(x)� 1

2

(� log jxj)m
m!

!
:

If flag = 3: compute Pm(x), de�ned for jxj � 1 by

<m
 
m�1X
k=0

2kBk

k!
(log jxj)kLim�k(x)� 2m�1Bm

m!
(log jxj)m

!
:

These three functions satisfy the functional equation fm(1=x) = (�1)m�1fm(x).
The library syntax is GEN polylog0(long m, GEN x, long flag, long prec). Also available

is GEN gpolylog(long m, GEN x, long prec) (flag= 0).

3.3.48 psi(x). The  -function of x, i.e. the logarithmic derivative �0(x)=�(x).

The library syntax is GEN gpsi(GEN x, long prec).

3.3.49 sin(x). Sine of x.

The library syntax is GEN gsin(GEN x, long prec).

3.3.50 sinc(x). Cardinal sine of x, i.e. sin(x)=x if x 6= 0, 1 otherwise. Note that this function also
allows to compute

(1� cos(x))=x2 = sinc(x=2)2=2

accurately near x = 0.

The library syntax is GEN gsinc(GEN x, long prec).

3.3.51 sinh(x). Hyperbolic sine of x.

The library syntax is GEN gsinh(GEN x, long prec).

3.3.52 sqr(x). Square of x. This operation is not completely straightforward, i.e. identical to x�x,
since it can usually be computed more e�ciently (roughly one-half of the elementary multiplications
can be saved). Also, squaring a 2-adic number increases its precision. For example,

? (1 + O(2^4))^2

%1 = 1 + O(2^5)

? (1 + O(2^4)) * (1 + O(2^4))

%2 = 1 + O(2^4)

Note that this function is also called whenever one multiplies two objects which are known to be
identical , e.g. they are the value of the same variable, or we are computing a power.

? x = (1 + O(2^4)); x * x

%3 = 1 + O(2^5)

? (1 + O(2^4))^4

%4 = 1 + O(2^6)

(note the di�erence between %2 and %3 above).

The library syntax is GEN gsqr(GEN x).
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3.3.53 sqrt(x). Principal branch of the square root of x, de�ned as
p
x = exp(log x=2). In

particular, we have Arg(sqrt(x)) 2 ]��=2; �=2], and if x 2 R and x < 0, then the result is complex
with positive imaginary part.

Intmod a prime p, t_PADIC and t_FFELT are allowed as arguments. In the �rst 2 cases
(t_INTMOD, t_PADIC), the square root (if it exists) which is returned is the one whose �rst p-adic
digit is in the interval [0; p=2]. For other arguments, the result is unde�ned.

The library syntax is GEN gsqrt(GEN x, long prec). For a t_PADIC x, the function GEN

Qp_sqrt(GEN x) is also available.

3.3.54 sqrtn(x; n; f&zg). Principal branch of the nth root of x, i.e. such that Arg(sqrtn(x)) 2
]� �=n; �=n]. Intmod a prime and p-adics are allowed as arguments.

If z is present, it is set to a suitable root of unity allowing to recover all the other roots. If it
was not possible, z is set to zero. In the case this argument is present and no nth root exist, 0 is
returned instead of raising an error.

? sqrtn(Mod(2,7), 2)

%1 = Mod(3, 7)

? sqrtn(Mod(2,7), 2, &z); z

%2 = Mod(6, 7)

? sqrtn(Mod(2,7), 3)

*** at top-level: sqrtn(Mod(2,7),3)

*** ^-----------------

*** sqrtn: nth-root does not exist in gsqrtn.

? sqrtn(Mod(2,7), 3, &z)

%2 = 0

? z

%3 = 0

The following script computes all roots in all possible cases:

sqrtnall(x,n)=

{ my(V,r,z,r2);

r = sqrtn(x,n, &z);

if (!z, error("Impossible case in sqrtn"));

if (type(x) == "t_INTMOD" || type(x)=="t_PADIC",

r2 = r*z; n = 1;

while (r2!=r, r2*=z;n++));

V = vector(n); V[1] = r;

for(i=2, n, V[i] = V[i-1]*z);

V

}

addhelp(sqrtnall,"sqrtnall(x,n):compute the vector of nth-roots of x");

The library syntax is GEN gsqrtn(GEN x, GEN n, GEN *z = NULL, long prec). If x is a
t_PADIC, the function GEN Qp_sqrtn(GEN x, GEN n, GEN *z) is also available.

3.3.55 tan(x). Tangent of x.

The library syntax is GEN gtan(GEN x, long prec).
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3.3.56 tanh(x). Hyperbolic tangent of x.

The library syntax is GEN gtanh(GEN x, long prec).

3.3.57 teichmuller(x; ftabg). Teichm�uller character of the p-adic number x, i.e. the unique
(p � 1)-th root of unity congruent to x=pvp(x) modulo p. If x is of the form [p; n], for a prime p
and integer n, return the lifts to Z of the images of i+O(pn) for i = 1; : : : ; p� 1, i.e. all roots of 1
ordered by residue class modulo p. Such a vector can be fed back to teichmuller, as the optional
argument tab, to speed up later computations.

? z = teichmuller(2 + O(101^5))

%1 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)

? z^100

%2 = 1 + O(101^5)

? T = teichmuller([101, 5]);

? teichmuller(2 + O(101^5), T)

%4 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)

As a rule of thumb, if more than

p = 2(log2(p) + hammingweight(p))

values of teichmuller are to be computed, then it is worthwile to initialize:

? p = 101; n = 100; T = teichmuller([p,n]); \\ instantaneous

? for(i=1,10^3, vector(p-1, i, teichmuller(i+O(p^n), T)))

time = 60 ms.

? for(i=1,10^3, vector(p-1, i, teichmuller(i+O(p^n))))

time = 1,293 ms.

? 1 + 2*(log(p)/log(2) + hammingweight(p))

%8 = 22.316[...]

Here the precompuation induces a speedup by a factor 1293=60 � 21:5.

Caveat. If the accuracy of tab (the argument n above) is lower than the precision of x, the former
is used, i.e. the cached value is not re�ned to higher accuracy. It the accuracy of tab is larger,
then the precision of x is used:

? Tlow = teichmuller([101, 2]); \\ lower accuracy !

? teichmuller(2 + O(101^5), Tlow)

%10 = 2 + 83*101 + O(101^5) \\ no longer a root of 1

? Thigh = teichmuller([101, 10]); \\ higher accuracy

? teichmuller(2 + O(101^5), Thigh)

%12 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)

The library syntax is GEN teichmuller(GEN x, GEN tab = NULL).

Also available are the functions GEN teich(GEN x) (tab is NULL) as well as GEN teichmul-

lerinit(long p, long n).
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3.3.58 theta(q; z). Jacobi sine theta-function

�1(z; q) = 2q1=4
X
n�0

(�1)nqn(n+1) sin((2n+ 1)z):

The library syntax is GEN theta(GEN q, GEN z, long prec).

3.3.59 thetanullk(q; k). k-th derivative at z = 0 of theta(q; z).

The library syntax is GEN thetanullk(GEN q, long k, long prec).

GEN vecthetanullk(GEN q, long k, long prec) returns the vector of all di�
dzi (q; 0) for all odd

i = 1; 3; : : : ; 2k�1. GEN vecthetanullk_tau(GEN tau, long k, long prec) returns vecthetan-
ullk tau at q = exp(2i�tau).

3.3.60 weber(x; fflag = 0g). One of Weber's three f functions. If flag = 0, returns

f(x) = exp(�i�=24) � �((x+ 1)=2) = �(x) such that j = (f24 � 16)3=f24 ;

where j is the elliptic j-invariant (see the function ellj). If flag = 1, returns

f1(x) = �(x=2) = �(x) such that j = (f241 + 16)3=f241 :

Finally, if flag = 2, returns

f2(x) =
p
2�(2x) = �(x) such that j = (f242 + 16)3=f242 :

Note the identities f8 = f81 + f82 and ff1f2 =
p
2.

The library syntax is GEN weber0(GEN x, long flag, long prec). Also available are GEN

weberf(GEN x, long prec), GEN weberf1(GEN x, long prec) and GEN weberf2(GEN x, long

prec).

3.3.61 zeta(s). For s a complex number, Riemann's zeta function �(s) =
P

n�1 n
�s, computed

using the Euler-Maclaurin summation formula, except when s is of type integer, in which case it is
computed using Bernoulli numbers for s � 0 or s > 0 and even, and using modular forms for s > 0
and odd.

For s a p-adic number, Kubota-Leopoldt zeta function at s, that is the unique continuous p-
adic function on the p-adic integers that interpolates the values of (1�p�k)�(k) at negative integers
k such that k � 1 (mod p� 1) (resp. k is odd) if p is odd (resp. p = 2).

The library syntax is GEN gzeta(GEN s, long prec).

3.3.62 zetamult(s). For s a vector of positive integers such that s[1] � 2, returns the multiple
zeta value (MZV)

�(s1; : : : ; sk) =
X

n1>:::>nk>0

n�s11 : : : n�skk :

? zetamult([2,1]) - zeta(3) \\ Euler's identity

%1 = 0.E-38

The library syntax is GEN zetamult(GEN s, long prec).
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3.4 Arithmetic functions.

These functions are by de�nition functions whose natural domain of de�nition is either Z (or
Z>0). The way these functions are used is completely di�erent from transcendental functions in
that there are no automatic type conversions: in general only integers are accepted as arguments.
An integer argument N can be given in the following alternate formats:

� t_MAT: its factorization fa = factor(N),

� t_VEC: a pair [N, fa] giving both the integer and its factorization.

This allows to compute di�erent arithmetic functions at a given N while factoring the latter
only once.

? N = 10!; faN = factor(N);

? eulerphi(N)

%2 = 829440

? eulerphi(faN)

%3 = 829440

? eulerphi(S = [N, faN])

%4 = 829440

? sigma(S)

%5 = 15334088

3.4.1 Arithmetic functions and the factoring engine. All arithmetic functions in the narrow
sense of the word | Euler's totient function, the Moebius function, the sums over divisors or
powers of divisors etc.| call, after trial division by small primes, the same versatile factoring
machinery described under factorint. It includes Shanks SQUFOF, Pollard Rho, ECM and
MPQS stages, and has an early exit option for the functions moebius and (the integer function
underlying) issquarefree. This machinery relies on a fairly strong probabilistic primality test, see
ispseudoprime, but you may also set

default(factor_proven, 1)

to ensure that all tentative factorizations are fully proven. This should not slow down PARI too
much, unless prime numbers with hundreds of decimal digits occur frequently in your application.

3.4.2 Orders in �nite groups and Discrete Logarithm functions.

The following functions compute the order of an element in a �nite group: ellorder (the
rational points on an elliptic curve de�ned over a �nite �eld), fforder (the multiplicative group of
a �nite �eld), znorder (the invertible elements in Z=nZ). The following functions compute discrete
logarithms in the same groups (whenever this is meaningful) elllog, fflog, znlog.

All such functions allow an optional argument specifying an integer N , representing the order
of the group. (The order functions also allows any non-zero multiple of the order, with a minor
loss of e�ciency.) That optional argument follows the same format as given above:

� t_INT: the integer N ,

� t_MAT: the factorization fa = factor(N),

� t_VEC: this is the preferred format and provides both the integer N and its factorization in
a two-component vector [N, fa].
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When the group is �xed and many orders or discrete logarithms will be computed, it is much
more e�cient to initialize this data once and for all and pass it to the relevant functions, as in

? p = nextprime(10^40);

? v = [p-1, factor(p-1)]; \\ data for discrete log & order computations

? znorder(Mod(2,p), v)

%3 = 500000000000000000000000000028

? g = znprimroot(p);

? znlog(2, g, v)

%5 = 543038070904014908801878611374

3.4.3 Dirichlet characters.

The �nite abelian group G = (Z=NZ)� can be written G = �i�n(Z=diZ)gi, with dn j : : : j d2 j
d1 (SNF condition), all di > 0, and

Q
i di = �(N).

The SNF condition makes the di unique, but the generators gi, of respective order di, are
de�nitely not unique. The � notation means that all elements of G can be written uniquely asQ

i g
ni
i where ni 2 Z=diZ. The gi are the so-called SNF generators of G.

� a character on the abelian group �(Z=djZ)gj is given by a row vector � = [a1; : : : ; an] of
integers 0 � ai < di such that �(gj) = e(aj=dj) for all j, with the standard notation e(x) :=
exp(2i�x). In other words, �(

Q
g
nj
j ) = e(

P
ajnj=dj).

This will be generalized to more general abelian groups in later sections (Hecke characters),
but in the present case of (Z=NZ)�, there is a useful alternate convention : namely, it is not
necessary to impose the SNF condition and we can use Chinese reminders instead. If N =

Q
pep is

the factorization of N into primes, the so-called Conrey generators of G are the generators of the
(Z=pepZ)� lifted to (Z=NZ)� by requesting that they be congruent to 1 modulo N=pep (for p odd
we take the smallest positive primitive root, and for p = 2 we take �1 if e2 > 1 and additionally 5
if e2 > 2). We can again write G = �i�n(Z=DiZ)Gi, where again

Q
iDi = �(N). These generators

don't satisfy the SNF condition in general since their orders are now (p � 1)pep�1 for p odd; for
p = 2, the generator �1 has order 2 and 5 has order 2e2�2 (e2 > 2). Nevertheless, anym 2 (Z=NZ)�
can be uniquely decomposed as

Q
Gmi

i for some mi modulo Di and we can de�ne a character by
�(Gj) = e(mj=Dj) for all j.

� The column vector of the mj , 0 � mj < Dj is called the Conrey logarithm of m (discrete
logarithm in terms of the Conrey generators). Note that discrete logarithms in PARI/GP are
always expressed as t_COLs.

� The attached character is called the Conrey character attached to m.

To sum up a Dirichlet character can be de�ned by a t_INT (the Conrey label m), a t_COL

(the Conrey logarithm of m, in terms of the Conrey generators) or a t_VEC (in terms of the SNF
generators). The t_COL format, i.e. Conrey logarithms, is the preferred (fastest) representation.

Concretely, this works as follows:

G = idealstar(,N) initializes (Z=NZ)�, which must be given as �rst arguments to all func-
tions handling Dirichlet characters.

znconreychar transforms t_INT and t_COL to a SNF character.

znconreylog transforms t_INT and t_VEC to a Conrey logarithm.

znconreyexp transforms t_VEC and t_COL to a Conrey label.
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Also available are charconj, chardiv, charmul, charker, chareval, charorder, zncharin-
duce, znconreyconductor (also computes the primitive character attached to the input character).
The pre�x char indicates that the function applies to all characters, the pre�x znchar that it is
speci�c to Dirichlet characters (on (Z=NZ)�) and the pre�x znconrey that it is speci�c to Conrey
representation.

3.4.4 addprimes(fx = [ ]g). Adds the integers contained in the vector x (or the single integer x) to
a special table of \user-de�ned primes", and returns that table. Whenever factor is subsequently
called, it will trial divide by the elements in this table. If x is empty or omitted, just returns the
current list of extra primes.

The entries in x must be primes: there is no internal check, even if the factor_proven default
is set. To remove primes from the list use removeprimes.

The library syntax is GEN addprimes(GEN x = NULL).

3.4.5 bestappr(x; fBg). Using variants of the extended Euclidean algorithm, returns a rational
approximation a=b to x, whose denominator is limited by B, if present. If B is omitted, return the
best approximation a�ordable given the input accuracy; if you are looking for true rational numbers,
presumably approximated to su�cient accuracy, you should �rst try that option. Otherwise, B
must be a positive real scalar (impose 0 < b � B).
� If x is a t_REAL or a t_FRAC, this function uses continued fractions.

? bestappr(Pi, 100)

%1 = 22/7

? bestappr(0.1428571428571428571428571429)

%2 = 1/7

? bestappr([Pi, sqrt(2) + 'x], 10^3)

%3 = [355/113, x + 1393/985]

By de�nition, a=b is the best rational approximation to x if jbx� aj < jvx� uj for all integers
(u; v) with 0 < v � B. (Which implies that n=d is a convergent of the continued fraction of x.)

� If x is a t_INTMOD modulo N or a t_PADIC of precision N = pk, this function performs
rational modular reconstruction modulo N . The routine then returns the unique rational number
a=b in coprime integers jaj < N=2B and b � B which is congruent to x modulo N . Omitting B
amounts to choosing it of the order of

p
N=2. If rational reconstruction is not possible (no suitable

a=b exists), returns [].

? bestappr(Mod(18526731858, 11^10))

%1 = 1/7

? bestappr(Mod(18526731858, 11^20))

%2 = []

? bestappr(3 + 5 + 3*5^2 + 5^3 + 3*5^4 + 5^5 + 3*5^6 + O(5^7))

%2 = -1/3

In most concrete uses, B is a prime power and we performed Hensel lifting to obtain x.

The function applies recursively to components of complex objects (polynomials, vectors, : : : ).
If rational reconstruction fails for even a single entry, return [].

The library syntax is GEN bestappr(GEN x, GEN B = NULL).
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3.4.6 bestapprPade(x; fBg). Using variants of the extended Euclidean algorithm, returns a
rational function approximation a=b to x, whose denominator is limited by B, if present. If B is
omitted, return the best approximation a�ordable given the input accuracy; if you are looking for
true rational functions, presumably approximated to su�cient accuracy, you should �rst try that
option. Otherwise, B must be a non-negative real (impose 0 � degree(b) � B).
� If x is a t_RFRAC or t_SER, this function uses continued fractions.

? bestapprPade((1-x^11)/(1-x)+O(x^11))

%1 = 1/(-x + 1)

? bestapprPade([1/(1+x+O(x^10)), (x^3-2)/(x^3+1)], 1)

%2 = [1/(x + 1), -2]

� If x is a t_POLMOD modulo N or a t_SER of precision N = tk, this function performs rational
modular reconstruction modulo N . The routine then returns the unique rational function a=b in
coprime polynomials, with degree(b) � B which is congruent to x modulo N . Omitting B amounts
to choosing it of the order of N=2. If rational reconstruction is not possible (no suitable a=b exists),
returns [].

? bestapprPade(Mod(1+x+x^2+x^3+x^4, x^4-2))

%1 = (2*x - 1)/(x - 1)

? % * Mod(1,x^4-2)

%2 = Mod(x^3 + x^2 + x + 3, x^4 - 2)

? bestapprPade(Mod(1+x+x^2+x^3+x^5, x^9))

%2 = []

? bestapprPade(Mod(1+x+x^2+x^3+x^5, x^10))

%3 = (2*x^4 + x^3 - x - 1)/(-x^5 + x^3 + x^2 - 1)

The function applies recursively to components of complex objects (polynomials, vectors, : : : ). If
rational reconstruction fails for even a single entry, return [].

The library syntax is GEN bestapprPade(GEN x, long B).

3.4.7 bezout(x; y). Deprecated alias for gcdext

The library syntax is GEN gcdext0(GEN x, GEN y).

3.4.8 bigomega(x). Number of prime divisors of the integer jxj counted with multiplicity:

? factor(392)

%1 =

[2 3]

[7 2]

? bigomega(392)

%2 = 5; \\ = 3+2

? omega(392)

%3 = 2; \\ without multiplicity

The library syntax is long bigomega(GEN x).
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3.4.9 binomial(x; y). binomial coefficient

�
x
y

�
. Here y must be an integer, but x can be any

PARI object.

The library syntax is GEN binomial(GEN x, long y). The function GEN binomialuu(ulong

n, ulong k) is also available, and so is GEN vecbinome(long n), which returns a vector v with
n+ 1 components such that v[k + 1] = binomial(n; k) for k from 0 up to n.

3.4.10 charconj(cyc; chi). Let cyc represent a �nite abelian group by its elementary divisors,
i.e. (dj) represents

P
j�k Z=djZ with dk j : : : j d1; any object which has a .cyc method is also

allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector
� = [a1; : : : ; an] such that �(

Q
g
nj
j ) = exp(2�i

P
ajnj=dj), where gj denotes the generator (of

order dj) of the j-th cyclic component.

This function returns the conjugate character.

? cyc = [15,5]; chi = [1,1];

? charconj(cyc, chi)

%2 = [14, 4]

? bnf = bnfinit(x^2+23);

? bnf.cyc

%4 = [3]

? charconj(bnf, [1])

%5 = [2]

For Dirichlet characters (when cyc is idealstar(,q)), characters in Conrey representation are
available, see Section 3.4.3 or ??character:

? G = idealstar(,8); \\ (Z/8Z)^*

? charorder(G, 3) \\ Conrey label

%2 = 2

? chi = znconreylog(G, 3);

? charorder(G, chi) \\ Conrey logarithm

%4 = 2

The library syntax is GEN charconj0(GEN cyc, GEN chi). Also available is GEN char-

conj(GEN cyc, GEN chi), when cyc is known to be a vector of elementary divisors and chi a
compatible character (no checks).

3.4.11 chardiv(cyc; a; b). Let cyc represent a �nite abelian group by its elementary divisors,
i.e. (dj) represents

P
j�k Z=djZ with dk j : : : j d1; any object which has a .cyc method is also

allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector
a = [a1; : : : ; an] such that �(

Q
g
nj
j ) = exp(2�i

P
ajnj=dj), where gj denotes the generator (of order

dj) of the j-th cyclic component.

Given two characters a and b, return the character a=b = ab.

? cyc = [15,5]; a = [1,1]; b = [2,4];

? chardiv(cyc, a,b)

%2 = [14, 2]

? bnf = bnfinit(x^2+23);

? bnf.cyc

%4 = [3]
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? chardiv(bnf, [1], [2])

%5 = [2]

For Dirichlet characters on (Z=NZ)�, additional representations are available (Conrey labels, Con-
rey logarithm), see Section 3.4.3 or ??character. If the two characters are in the same format, the
result is given in the same format, otherwise a Conrey logarithm is used.

? G = idealstar(,100);

? G.cyc

%2 = [20, 2]

? a = [10, 1]; \\ usual representation for characters

? b = 7; \\ Conrey label;

? c = znconreylog(G, 11); \\ Conrey log

? chardiv(G, b,b)

%6 = 1 \\ Conrey label

? chardiv(G, a,b)

%7 = [0, 5]~ \\ Conrey log

? chardiv(G, a,c)

%7 = [0, 14]~ \\ Conrey log

The library syntax is GEN chardiv0(GEN cyc, GEN a, GEN b). Also available is GEN

chardiv(GEN cyc, GEN a, GEN b), when cyc is known to be a vector of elementary divisors
and a; b are compatible characters (no checks).

3.4.12 chareval(G; chi ; x; fzg)). LetG be an abelian group structure a�ording a discrete logarithm
method, e.g G = idealstar(; N) for (Z=NZ)� or a bnr structure, let x be an element of G and let
chi be a character of G (see the note below for details). This function returns the value of chi at
x.

Note on characters. Let K be some �eld. If G is an abelian group, let � : G! K� be a character
of �nite order and let o be a multiple of the character order such that �(n) = �c(n) for some �xed
� 2 K� of multiplicative order o and a unique morphism c : G! (Z=oZ;+). Our usual convention
is to write

G = (Z=o1Z)g1 � � � � � (Z=odZ)gd

for some generators (gi) of respective order di, where the group has exponent o := lcmioi. Since
�o = 1, the vector (ci) in

Q
(Z=oiZ) de�nes a character � on G via �(gi) = �ci(o=oi) for all i.

Classical Dirichlet characters have values in K = C and we can take � = exp(2i�=o).
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Note on Dirichlet characters. In the special case where bid is attached to G = (Z=qZ)� (as per
bid = idealstar(,q)), the Dirichlet character chi can be written in one of the usual 3 formats:
a t_VEC in terms of bid.gen as above, a t_COL in terms of the Conrey generators, or a t_INT

(Conrey label); see Section 3.4.3 or ??character.

The character value is encoded as follows, depending on the optional argument z:

� If z is omitted: return the rational number c(x)=o for x coprime to q, where we normalize
0 � c(x) < o. If x can not be mapped to the group (e.g. x is not coprime to the conductor of a
Dirichlet or Hecke character) we return the sentinel value �1.
� If z is an integer o, then we assume that o is a multiple of the character order and we return

the integer c(x) when x belongs to the group, and the sentinel value �1 otherwise.
� z can be of the form [zeta; o], where zeta is an o-th root of 1 and o is a multiple of the character

order. We return �c(x) if x belongs to the group, and the sentinel value 0 otherwise. (Note that this
coincides with the usual extension of Dirichlet characters to Z, or of Hecke characters to general
ideals.)

� Finally, z can be of the form [vzeta; o], where vzeta is a vector of powers �0; : : : ; �o�1 of some
o-th root of 1 and o is a multiple of the character order. As above, we return �c(x) after a table
lookup. Or the sentinel value 0.

The library syntax is GEN chareval(GEN G, GEN chi, GEN x, GEN z) = NULL).

3.4.13 charker(cyc; chi). Let cyc represent a �nite abelian group by its elementary divisors,
i.e. (dj) represents

P
j�k Z=djZ with dk j : : : j d1; any object which has a .cyc method is also

allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector
� = [a1; : : : ; an] such that �(

Q
g
nj
j ) = exp(2�i

P
ajnj=dj), where gj denotes the generator (of

order dj) of the j-th cyclic component.

This function returns the kernel of �, as a matrix K in HNF which is a left-divisor of matdiag-
onal(d). Its columns express in terms of the gj the generators of the subgroup. The determinant
of K is the kernel index.

? cyc = [15,5]; chi = [1,1];

? charker(cyc, chi)

%2 =

[15 12]

[ 0 1]

? bnf = bnfinit(x^2+23);

? bnf.cyc

%4 = [3]

? charker(bnf, [1])

%5 =

[3]

Note that for Dirichlet characters (when cyc is idealstar(,q)), characters in Conrey representa-
tion are available, see Section 3.4.3 or ??character.

? G = idealstar(,8); \\ (Z/8Z)^*

? charker(G, 1) \\ Conrey label for trivial character

%2 =
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[1 0]

[0 1]

The library syntax is GEN charker0(GEN cyc, GEN chi). Also available is GEN charker(GEN

cyc, GEN chi), when cyc is known to be a vector of elementary divisors and chi a compatible
character (no checks).

3.4.14 charmul(cyc; a; b). Let cyc represent a �nite abelian group by its elementary divisors,
i.e. (dj) represents

P
j�k Z=djZ with dk j : : : j d1; any object which has a .cyc method is also

allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector
a = [a1; : : : ; an] such that �(

Q
g
nj
j ) = exp(2�i

P
ajnj=dj), where gj denotes the generator (of order

dj) of the j-th cyclic component.

Given two characters a and b, return the product character ab.

? cyc = [15,5]; a = [1,1]; b = [2,4];

? charmul(cyc, a,b)

%2 = [3, 0]

? bnf = bnfinit(x^2+23);

? bnf.cyc

%4 = [3]

? charmul(bnf, [1], [2])

%5 = [0]

For Dirichlet characters on (Z=NZ)�, additional representations are available (Conrey labels, Con-
rey logarithm), see Section 3.4.3 or ??character. If the two characters are in the same format,
their product is given in the same format, otherwise a Conrey logarithm is used.

? G = idealstar(,100);

? G.cyc

%2 = [20, 2]

? a = [10, 1]; \\ usual representation for characters

? b = 7; \\ Conrey label;

? c = znconreylog(G, 11); \\ Conrey log

? charmul(G, b,b)

%6 = 49 \\ Conrey label

? charmul(G, a,b)

%7 = [0, 15]~ \\ Conrey log

? charmul(G, a,c)

%7 = [0, 6]~ \\ Conrey log

The library syntax is GEN charmul0(GEN cyc, GEN a, GEN b). Also available is GEN char-

mul(GEN cyc, GEN a, GEN b), when cyc is known to be a vector of elementary divisors and a; b
are compatible characters (no checks).
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3.4.15 charorder(cyc; chi). Let cyc represent a �nite abelian group by its elementary divisors,
i.e. (dj) represents

P
j�k Z=djZ with dk j : : : j d1; any object which has a .cyc method is also

allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector
� = [a1; : : : ; an] such that �(

Q
g
nj
j ) = exp(2�i

P
ajnj=dj), where gj denotes the generator (of

order dj) of the j-th cyclic component.

This function returns the order of the character chi.

? cyc = [15,5]; chi = [1,1];

? charorder(cyc, chi)

%2 = 15

? bnf = bnfinit(x^2+23);

? bnf.cyc

%4 = [3]

? charorder(bnf, [1])

%5 = 3

For Dirichlet characters (when cyc is idealstar(,q)), characters in Conrey representation are
available, see Section 3.4.3 or ??character:

? G = idealstar(,100); \\ (Z/100Z)^*

? charorder(G, 7) \\ Conrey label

%2 = 4

The library syntax is GEN charorder0(GEN cyc, GEN chi). Also available is GEN

charorder(GEN cyc, GEN chi), when cyc is known to be a vector of elementary divisors and
chi a compatible character (no checks).

3.4.16 chinese(x; fyg). If x and y are both intmods or both polmods, creates (with the same
type) a z in the same residue class as x and in the same residue class as y, if it is possible.

? chinese(Mod(1,2), Mod(2,3))

%1 = Mod(5, 6)

? chinese(Mod(x,x^2-1), Mod(x+1,x^2+1))

%2 = Mod(-1/2*x^2 + x + 1/2, x^4 - 1)

This function also allows vector and matrix arguments, in which case the operation is recursively
applied to each component of the vector or matrix.

? chinese([Mod(1,2),Mod(1,3)], [Mod(1,5),Mod(2,7)])

%3 = [Mod(1, 10), Mod(16, 21)]

For polynomial arguments in the same variable, the function is applied to each coe�cient; if the
polynomials have di�erent degrees, the high degree terms are copied verbatim in the result, as if
the missing high degree terms in the polynomial of lowest degree had been Mod(0,1). Since the
latter behavior is usually not the desired one, we propose to convert the polynomials to vectors of
the same length �rst:

? P = x+1; Q = x^2+2*x+1;

? chinese(P*Mod(1,2), Q*Mod(1,3))

%4 = Mod(1, 3)*x^2 + Mod(5, 6)*x + Mod(3, 6)

? chinese(Vec(P,3)*Mod(1,2), Vec(Q,3)*Mod(1,3))

%5 = [Mod(1, 6), Mod(5, 6), Mod(4, 6)]

? Pol(%)
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%6 = Mod(1, 6)*x^2 + Mod(5, 6)*x + Mod(4, 6)

If y is omitted, and x is a vector, chinese is applied recursively to the components of x,
yielding a residue belonging to the same class as all components of x.

Finally chinese(x; x) = x regardless of the type of x; this allows vector arguments to contain
other data, so long as they are identical in both vectors.

The library syntax is GEN chinese(GEN x, GEN y = NULL). GEN chinese1(GEN x) is also
available.

3.4.17 content(x). Computes the gcd of all the coe�cients of x, when this gcd makes sense. This
is the natural de�nition if x is a polynomial (and by extension a power series) or a vector/matrix.
This is in general a weaker notion than the ideal generated by the coe�cients:

? content(2*x+y)

%1 = 1 \\ = gcd(2,y) over Q[y]

If x is a scalar, this simply returns the absolute value of x if x is rational (t_INT or t_FRAC),
and either 1 (inexact input) or x (exact input) otherwise; the result should be identical to gcd(x,

0).

The content of a rational function is the ratio of the contents of the numerator and the de-
nominator. In recursive structures, if a matrix or vector coe�cient x appears, the gcd is taken not
with x, but with its content:

? content([ [2], 4*matid(3) ])

%1 = 2

The content of a t_VECSMALL is computed assuming the entries are signed integers.

The library syntax is GEN content(GEN x).

3.4.18 contfrac(x; fbg; fnmaxg). Returns the row vector whose components are the partial quo-
tients of the continued fraction expansion of x. In other words, a result [a0; : : : ; an] means that
x � a0+1=(a1+ : : :+1=an). The output is normalized so that an 6= 1 (unless we also have n = 0).

The number of partial quotients n + 1 is limited by nmax. If nmax is omitted, the expansion
stops at the last signi�cant partial quotient.

? \p19

realprecision = 19 significant digits

? contfrac(Pi)

%1 = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2]

? contfrac(Pi,, 3) \\ n = 2

%2 = [3, 7, 15]

x can also be a rational function or a power series.

If a vector b is supplied, the numerators are equal to the coe�cients of b, instead of all equal to
1 as above; more precisely, x � (1=b0)(a0+b1=(a1+ : : :+bn=an)); for a numerical continued fraction
(x real), the ai are integers, as large as possible; if x is a rational function, they are polynomials
with deg ai = deg bi + 1. The length of the result is then equal to the length of b, unless the next
partial quotient cannot be reliably computed, in which case the expansion stops. This happens
when a partial remainder is equal to zero (or too small compared to the available signi�cant digits
for x a t_REAL).
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A direct implementation of the numerical continued fraction contfrac(x,b) described above
would be

\\ "greedy" generalized continued fraction

cf(x, b) =

{ my( a= vector(#b), t );

x *= b[1];

for (i = 1, #b,

a[i] = floor(x);

t = x - a[i]; if (!t || i == #b, break);

x = b[i+1] / t;

); a;

}

There is some degree of freedom when choosing the ai; the program above can easily be modi�ed to
derive variants of the standard algorithm. In the same vein, although no builtin function implements
the related Engel expansion (a special kind of Egyptian fraction decomposition: x = 1=a1 +
1=(a1a2) + : : : ), it can be obtained as follows:

\\ n terms of the Engel expansion of x

engel(x, n = 10) =

{ my( u = x, a = vector(n) );

for (k = 1, n,

a[k] = ceil(1/u);

u = u*a[k] - 1;

if (!u, break);

); a

}

Obsolete hack. (don't use this): if b is an integer, nmax is ignored and the command is understood
as contfrac(x; ; b).

The library syntax is GEN contfrac0(GEN x, GEN b = NULL, long nmax). Also available
are GEN gboundcf(GEN x, long nmax), GEN gcf(GEN x) and GEN gcf2(GEN b, GEN x).

3.4.19 contfracpnqn(x; fn = �1g). When x is a vector or a one-row matrix, x is considered as
the list of partial quotients [a0; a1; : : : ; an] of a rational number, and the result is the 2 by 2 matrix
[pn; pn�1; qn; qn�1] in the standard notation of continued fractions, so pn=qn = a0 + 1=(a1 + : : : +
1=an). If x is a matrix with two rows [b0; b1; : : : ; bn] and [a0; a1; : : : ; an], this is then considered as
a generalized continued fraction and we have similarly pn=qn = (1=b0)(a0 + b1=(a1 + : : :+ bn=an)).
Note that in this case one usually has b0 = 1.

If n � 0 is present, returns all convergents from p0=q0 up to pn=qn. (All convergents if x is too
small to compute the n+ 1 requested convergents.)

? a=contfrac(Pi,20)

%1 = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2]

? contfracpnqn(a,3)

%2 =

[3 22 333 355]

[1 7 106 113]
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? contfracpnqn(a,7)

%3 =

[3 22 333 355 103993 104348 208341 312689]

[1 7 106 113 33102 33215 66317 99532]

The library syntax is GEN contfracpnqn(GEN x, long n). also available is GEN pnqn(GEN x)

for n = �1.

3.4.20 core(n; fflag = 0g). If n is an integer written as n = df2 with d squarefree, returns d. If
flag is non-zero, returns the two-element row vector [d; f ]. By convention, we write 0 = 0� 12, so
core(0, 1) returns [0; 1].

The library syntax is GEN core0(GEN n, long flag). Also available are GEN core(GEN n)

(flag = 0) and GEN core2(GEN n) (flag = 1)

3.4.21 coredisc(n; fflag = 0g). A fundamental discriminant is an integer of the form t � 1mod 4
or 4t � 8; 12mod 16, with t squarefree (i.e. 1 or the discriminant of a quadratic number �eld).
Given a non-zero integer n, this routine returns the (unique) fundamental discriminant d such that
n = df2, f a positive rational number. If flag is non-zero, returns the two-element row vector [d; f ].
If n is congruent to 0 or 1 modulo 4, f is an integer, and a half-integer otherwise.

By convention, coredisc(0, 1)) returns [0; 1].

Note that quaddisc(n) returns the same value as coredisc(n), and also works with rational
inputs n 2 Q�.

The library syntax is GEN coredisc0(GEN n, long flag). Also available are GEN core-

disc(GEN n) (flag = 0) and GEN coredisc2(GEN n) (flag = 1)

3.4.22 dirdiv(x; y). x and y being vectors of perhaps di�erent lengths but with y[1] 6= 0 considered
as Dirichlet series, computes the quotient of x by y, again as a vector.

The library syntax is GEN dirdiv(GEN x, GEN y).

3.4.23 direuler(p = a; b; expr ; fcg). Computes the Dirichlet series attached to the Euler product
of expression expr as p ranges through the primes from a to b. expr must be a polynomial or
rational function in another variable than p (say X) and expr(X) is understood as the local factor
expr(p�s).

The series is output as a vector of coe�cients. If c is omitted, output the �rst b coe�cients of
the series; otherwise, output the �rst c coe�cients. The following command computes the sigma
function, attached to �(s)�(s� 1):

? direuler(p=2, 10, 1/((1-X)*(1-p*X)))

%1 = [1, 3, 4, 7, 6, 12, 8, 15, 13, 18]

? direuler(p=2, 10, 1/((1-X)*(1-p*X)), 5) \\ fewer terms

%2 = [1, 3, 4, 7, 6]

Setting c < b is useless (the same e�ect would be achieved by setting b = c). If c > b, the computed
coe�cients are \missing" Euler factors:

? direuler(p=2, 10, 1/((1-X)*(1-p*X)), 15) \\ more terms, no longer = sigma !

%3 = [1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 0, 28, 0, 24, 24]

The library syntax is direuler(void *E, GEN (*eval)(void*,GEN), GEN a, GEN b)
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3.4.24 dirmul(x; y). x and y being vectors of perhaps di�erent lengths representing the Dirichlet
series

P
n xnn

�s and
P

n ynn
�s, computes the product of x by y, again as a vector.

? dirmul(vector(10,n,1), vector(10,n,moebius(n)))

%1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

The product length is the minimum of #x�v(y) and #y�v(x), where v(x) is the index of the �rst
non-zero coe�cient.

? dirmul([0,1], [0,1]);

%2 = [0, 0, 0, 1]

The library syntax is GEN dirmul(GEN x, GEN y).

3.4.25 divisors(x). Creates a row vector whose components are the divisors of x. The factorization
of x (as output by factor) can be used instead.

By de�nition, these divisors are the products of the irreducible factors of n, as produced by
factor(n), raised to appropriate powers (no negative exponent may occur in the factorization). If
n is an integer, they are the positive divisors, in increasing order.

The library syntax is GEN divisors(GEN x).

3.4.26 eulerphi(x). Euler's � (totient) function of the integer jxj, in other words j(Z=xZ)�j.
? eulerphi(40)

%1 = 16

According to this de�nition we let �(0) := 2, since Z� = f�1; 1g; this is consistent with znstar(0):
we have znstar(n).no = eulerphi(n) for all n 2 Z.

The library syntax is GEN eulerphi(GEN x).

3.4.27 factor(x; flimg). General factorization function, where x is a rational (including integers),
a complex number with rational real and imaginary parts, or a rational function (including polyno-
mials). The result is a two-column matrix: the �rst contains the irreducibles dividing x (rational
or Gaussian primes, irreducible polynomials), and the second the exponents. By convention, 0 is
factored as 01.

Q and Q(i). See factorint for more information about the algorithms used. The rational or
Gaussian primes are in fact pseudoprimes (see ispseudoprime), a priori not rigorously proven
primes. In fact, any factor which is � 264 (whose norm is � 264 for an irrational Gaussian prime)
is a genuine prime. Use isprime to prove primality of other factors, as in

? fa = factor(2^2^7 + 1)

%1 =

[59649589127497217 1]

[5704689200685129054721 1]

? isprime( fa[,1] )

%2 = [1, 1]~ \\ both entries are proven primes

Another possibility is to set the global default factor_proven, which will perform a rigorous
primality proof for each pseudoprime factor.
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A t_INT argument lim can be added, meaning that we look only for prime factors p < lim.
The limit lim must be non-negative. In this case, all but the last factor are proven primes, but
the remaining factor may actually be a proven composite! If the remaining factor is less than lim2,
then it is prime.

? factor(2^2^7 +1, 10^5)

%3 =

[340282366920938463463374607431768211457 1]

Deprecated feature. Setting lim = 0 is the same as setting it to primelimit+1. Don't use this:
it is unwise to rely on global variables when you can specify an explicit argument.

This routine uses trial division and perfect power tests, and should not be used for huge values
of lim (at most 109, say): factorint(, 1 + 8) will in general be faster. The latter does not
guarantee that all small prime factors are found, but it also �nds larger factors, and in a much
more e�cient way.

? F = (2^2^7 + 1) * 1009 * 100003; factor(F, 10^5) \\ fast, incomplete

time = 0 ms.

%4 =

[1009 1]

[34029257539194609161727850866999116450334371 1]

? factor(F, 10^9) \\ very slow

time = 6,892 ms.

%6 =

[1009 1]

[100003 1]

[340282366920938463463374607431768211457 1]

? factorint(F, 1+8) \\ much faster, all small primes were found

time = 12 ms.

%7 =

[1009 1]

[100003 1]

[340282366920938463463374607431768211457 1]

? factor(F) \\ complete factorisation

time = 112 ms.

%8 =

[1009 1]

[100003 1]

[59649589127497217 1]

[5704689200685129054721 1]

Over Q, the prime factors are sorted in increasing order.
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Rational functions. The polynomials or rational functions to be factored must have scalar
coe�cients. In particular PARI does not know how to factor multivariate polynomials. The
following domains are currently supported: Q, R, C, Qp, �nite �elds and number �elds. See
factormod and factorff for the algorithms used over �nite �elds, factornf for the algorithms
over number �elds. Over Q, van Hoeij's method is used, which is able to cope with hundreds of
modular factors.

The routine guesses a sensible ring over which to factor: the smallest ring containing all
coe�cients, taking into account quotient structures induced by t_INTMODs and t_POLMODs (e.g. if a
coe�cient in Z=nZ is known, all rational numbers encountered are �rst mapped to Z=nZ; di�erent
moduli will produce an error). Factoring modulo a non-prime number is not supported; to factor
in Qp, use t_PADIC coe�cients not t_INTMOD modulo pn.

? T = x^2+1;

? factor(T); \\ over Q

? factor(T*Mod(1,3)) \\ over F_3

? factor(T*ffgen(ffinit(3,2,'t))^0) \\ over F_{3^2}

? factor(T*Mod(Mod(1,3), t^2+t+2)) \\ over F_{3^2}, again

? factor(T*(1 + O(3^6)) \\ over Q_3, precision 6

? factor(T*1.) \\ over R, current precision

? factor(T*(1.+0.*I)) \\ over C

? factor(T*Mod(1, y^3-2)) \\ over Q(2^{1/3})

In most cases, it is clearer and simpler to call an explicit variant than to rely on the generic factor
function and the above detection mechanism:

? factormod(T, 3) \\ over F_3

? factorff(T, 3, t^2+t+2)) \\ over F_{3^2}

? factorpadic(T, 3,6) \\ over Q_3, precision 6

? nffactor(y^3-2, T) \\ over Q(2^{1/3})

? polroots(T) \\ over C

Note that factorization of polynomials is done up to multiplication by a constant. In particular,
the factors of rational polynomials will have integer coe�cients, and the content of a polynomial
or rational function is discarded and not included in the factorization. If needed, you can always
ask for the content explicitly:

? factor(t^2 + 5/2*t + 1)

%1 =

[2*t + 1 1]

[t + 2 1]

? content(t^2 + 5/2*t + 1)

%2 = 1/2

The irreducible factors are sorted by increasing degree. See also nffactor.

The library syntax is GEN gp_factor0(GEN x, GEN lim = NULL). This function should only be
used by the gp interface. Use directly GEN factor(GEN x) or GEN boundfact(GEN x, ulong lim)

. The obsolete function GEN factor0(GEN x, long lim) is kept for backward compatibility.
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3.4.28 factorback(f; feg). Gives back the factored object corresponding to a factorization. The
integer 1 corresponds to the empty factorization.

If e is present, e and f must be vectors of the same length (e being integral), and the corre-
sponding factorization is the product of the f [i]e[i].

If not, and f is vector, it is understood as in the preceding case with e a vector of 1s: we return
the product of the f [i]. Finally, f can be a regular factorization, as produced with any factor

command. A few examples:

? factor(12)

%1 =

[2 2]

[3 1]

? factorback(%)

%2 = 12

? factorback([2,3], [2,1]) \\ 2^3 * 3^1

%3 = 12

? factorback([5,2,3])

%4 = 30

The library syntax is GEN factorback2(GEN f, GEN e = NULL). Also available is GEN fac-

torback(GEN f) (case e = NULL).

3.4.29 factorcantor(x; p). Factors the polynomial x modulo the prime p, using distinct degree
plus Cantor-Zassenhaus. The coe�cients of x must be operation-compatible with Z=pZ. The
result is a two-column matrix, the �rst column being the irreducible polynomials dividing x, and
the second the exponents. If you want only the degrees of the irreducible polynomials (for example
for computing an L-function), use factormod(x; p; 1). Note that the factormod algorithm is usually
faster than factorcantor.

The library syntax is GEN factcantor(GEN x, GEN p).

3.4.30 factor�(x; fpg; fag). Factors the polynomial x in the �eld Fq de�ned by the irreducible
polynomial a over Fp. The coe�cients of x must be operation-compatible with Z=pZ. The result
is a two-column matrix: the �rst column contains the irreducible factors of x, and the second their
exponents. If all the coe�cients of x are in Fp, a much faster algorithm is applied, using the
computation of isomorphisms between �nite �elds.

Either a or p can omitted (in which case both are ignored) if x has t_FFELT coe�cients; the
function then becomes identical to factor:

? factorff(x^2 + 1, 5, y^2+3) \\ over F_5[y]/(y^2+3) ~ F_25

%1 =

[Mod(Mod(1, 5), Mod(1, 5)*y^2 + Mod(3, 5))*x

+ Mod(Mod(2, 5), Mod(1, 5)*y^2 + Mod(3, 5)) 1]

[Mod(Mod(1, 5), Mod(1, 5)*y^2 + Mod(3, 5))*x

+ Mod(Mod(3, 5), Mod(1, 5)*y^2 + Mod(3, 5)) 1]

? t = ffgen(y^2 + Mod(3,5), 't); \\ a generator for F_25 as a t_FFELT

? factorff(x^2 + 1) \\ not enough information to determine the base field

*** at top-level: factorff(x^2+1)
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*** ^---------------

*** factorff: incorrect type in factorff.

? factorff(x^2 + t^0) \\ make sure a coeff. is a t_FFELT

%3 =

[x + 2 1]

[x + 3 1]

? factorff(x^2 + t + 1)

%11 =

[x + (2*t + 1) 1]

[x + (3*t + 4) 1]

Notice that the second syntax is easier to use and much more readable.

The library syntax is GEN factorff(GEN x, GEN p = NULL, GEN a = NULL).

3.4.31 factorial(x). Factorial of x. The expression x! gives a result which is an integer, while
factorial(x) gives a real number.

The library syntax is GEN mpfactr(long x, long prec). GEN mpfact(long x) returns x! as
a t_INT.

3.4.32 factorint(x; fflag = 0g). Factors the integer n into a product of pseudoprimes (see ispseu-
doprime), using a combination of the Shanks SQUFOF and Pollard Rho method (with modi�cations
due to Brent), Lenstra's ECM (with modi�cations by Montgomery), and MPQS (the latter adapted
from the LiDIA code with the kind permission of the LiDIA maintainers), as well as a search for
pure powers. The output is a two-column matrix as for factor: the �rst column contains the
\prime" divisors of n, the second one contains the (positive) exponents.

By convention 0 is factored as 01, and 1 as the empty factorization; also the divisors are by
default not proven primes is they are larger than 264, they only failed the BPSW compositeness
test (see ispseudoprime). Use isprime on the result if you want to guarantee primality or set the
factor_proven default to 1. Entries of the private prime tables (see addprimes) are also included
as is.

This gives direct access to the integer factoring engine called by most arithmetical functions.
flag is optional; its binary digits mean 1: avoid MPQS, 2: skip �rst stage ECM (we may still
fall back to it later), 4: avoid Rho and SQUFOF, 8: don't run �nal ECM (as a result, a huge
composite may be declared to be prime). Note that a (strong) probabilistic primality test is used;
thus composites might not be detected, although no example is known.

You are invited to play with the 
ag settings and watch the internals at work by using gp's
debug default parameter (level 3 shows just the outline, 4 turns on time keeping, 5 and above show
an increasing amount of internal details).

The library syntax is GEN factorint(GEN x, long flag).

3.4.33 factormod(x; p; fflag = 0g). Factors the polynomial x modulo the prime integer p, using
Berlekamp. The coe�cients of x must be operation-compatible with Z=pZ. The result is a two-
column matrix, the �rst column being the irreducible polynomials dividing x, and the second the
exponents. If flag is non-zero, outputs only the degrees of the irreducible polynomials (for example,
for computing an L-function). A di�erent algorithm for computing the mod p factorization is
factorcantor which is sometimes faster.

The library syntax is GEN factormod0(GEN x, GEN p, long flag).

123



3.4.34 �gen(q; fvg). Return a t_FFELT generator for the �nite �eld with q elements; q = pf must
be a prime power. This functions computes an irreducible monic polynomial P 2 Fp[X] of degree f
(via ffinit) and returns g = X (mod P (X)). If v is given, the variable name is used to display
g, else the variable x is used.

? g = ffgen(8, 't);

? g.mod

%2 = t^3 + t^2 + 1

? g.p

%3 = 2

? g.f

%4 = 3

? ffgen(6)

*** at top-level: ffgen(6)

*** ^--------

*** ffgen: not a prime number in ffgen: 6.

Alternative syntax: instead of a prime power q = pf , one may input the pair [p; f ]:

? g = ffgen([2,4], 't);

? g.p

%2 = 2

? g.mod

%3 = t^4 + t^3 + t^2 + t + 1

Finally, one may input directly the polynomial P (monic, irreducible, with t_INTMOD coe�cients),
and the function returns the generator g = X (mod P (X)), inferring p from the coe�cients of
P . If v is given, the variable name is used to display g, else the variable of the polynomial P is
used. If P is not irreducible, we create an invalid object and behaviour of functions dealing with
the resulting t_FFELT is unde�ned; in fact, it is much more costly to test P for irreducibility than
it would be to produce it via ffinit.

The library syntax is GEN ffgen(GEN q, long v = -1) where v is a variable number.

To create a generator for a prime �nite �eld, the function GEN p_to_GEN(GEN p, long v)

returns 1+ffgen(x*Mod(1,p),v).

3.4.35 �nit(p; n; fv =0 xg). Computes a monic polynomial of degree n which is irreducible over
Fp, where p is assumed to be prime. This function uses a fast variant of Adleman and Lenstra's
algorithm.

It is useful in conjunction with ffgen; for instance if P = ffinit(3,2), you can represent
elements in F32 in term of g = ffgen(P,'t). This can be abbreviated as g = ffgen(3^2, 't),
where the de�ning polynomial P can be later recovered as g.mod.

The library syntax is GEN ffinit(GEN p, long n, long v = -1) where v is a variable
number.
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3.4.36 �og(x; g; fog). Discrete logarithm of the �nite �eld element x in base g, i.e. an e in Z such
that ge = o. If present, o represents the multiplicative order of g, see Section 3.4.2; the preferred
format for this parameter is [ord, factor(ord)], where ord is the order of g. It may be set as a
side e�ect of calling ffprimroot.

If no o is given, assume that g is a primitive root. The result is unde�ned if e does not exist.
This function uses

� a combination of generic discrete log algorithms (see znlog)

� a cubic sieve index calculus algorithm for large �elds of degree at least 5.

� Coppersmith's algorithm for �elds of characteristic at most 5.

? t = ffgen(ffinit(7,5));

? o = fforder(t)

%2 = 5602 \\ not a primitive root.
? fflog(t^10,t)

%3 = 10

? fflog(t^10,t, o)

%4 = 10

? g = ffprimroot(t, &o);

? o \\ order is 16806, bundled with its factorization matrix

%6 = [16806, [2, 1; 3, 1; 2801, 1]]

? fforder(g, o)

%7 = 16806

? fflog(g^10000, g, o)

%8 = 10000

The library syntax is GEN fflog(GEN x, GEN g, GEN o = NULL).

3.4.37 �nbirred(q; nf;
 = 0g). Computes the number of monic irreducible polynomials over Fq
of degree exactly n, (flag = 0 or omitted) or at most n (flag = 1).

The library syntax is GEN ffnbirred0(GEN q, long n, long fl). Also available are GEN

ffnbirred(GEN q, long n) (for flag = 0) and GEN ffsumnbirred(GEN q, long n) (for flag = 1).

3.4.38 �order(x; fog). Multiplicative order of the �nite �eld element x. If o is present, it represents
a multiple of the order of the element, see Section 3.4.2; the preferred format for this parameter
is [N, factor(N)], where N is the cardinality of the multiplicative group of the underlying �nite
�eld.

? t = ffgen(ffinit(nextprime(10^8), 5));

? g = ffprimroot(t, &o); \\ o will be useful!
? fforder(g^1000000, o)

time = 0 ms.

%5 = 5000001750000245000017150000600250008403

? fforder(g^1000000)

time = 16 ms. \\ noticeably slower, same result of course
%6 = 5000001750000245000017150000600250008403

The library syntax is GEN fforder(GEN x, GEN o = NULL).
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3.4.39 �primroot(x; f&og). Return a primitive root of the multiplicative group of the de�nition
�eld of the �nite �eld element x (not necessarily the same as the �eld generated by x). If present, o is
set to a vector [ord, fa], where ord is the order of the group and fa its factorisation factor(ord).
This last parameter is useful in fflog and fforder, see Section 3.4.2.

? t = ffgen(ffinit(nextprime(10^7), 5));

? g = ffprimroot(t, &o);

? o[1]

%3 = 100000950003610006859006516052476098

? o[2]

%4 =

[2 1]

[7 2]

[31 1]

[41 1]

[67 1]

[1523 1]

[10498781 1]

[15992881 1]

[46858913131 1]

? fflog(g^1000000, g, o)

time = 1,312 ms.

%5 = 1000000

The library syntax is GEN ffprimroot(GEN x, GEN *o = NULL).

3.4.40 �bonacci(x). xth Fibonacci number.

The library syntax is GEN fibo(long x).

3.4.41 gcd(x; fyg). Creates the greatest common divisor of x and y. If you also need the u and v
such that x � u+ y � v = gcd(x; y), use the bezout function. x and y can have rather quite general
types, for instance both rational numbers. If y is omitted and x is a vector, returns the gcd of all
components of x, i.e. this is equivalent to content(x).

When x and y are both given and one of them is a vector/matrix type, the GCD is again taken
recursively on each component, but in a di�erent way. If y is a vector, resp. matrix, then the result
has the same type as y, and components equal to gcd(x, y[i]), resp. gcd(x, y[,i]). Else if x is
a vector/matrix the result has the same type as x and an analogous de�nition. Note that for these
types, gcd is not commutative.

The algorithm used is a naive Euclid except for the following inputs:

� integers: use modi�ed right-shift binary (\plus-minus" variant).

� univariate polynomials with coe�cients in the same number �eld (in particular rational):
use modular gcd algorithm.

� general polynomials: use the subresultant algorithm if coe�cient explosion is likely (non
modular coe�cients).
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If u and v are polynomials in the same variable with inexact coe�cients, their gcd is de�ned
to be scalar, so that

? a = x + 0.0; gcd(a,a)

%1 = 1

? b = y*x + O(y); gcd(b,b)

%2 = y

? c = 4*x + O(2^3); gcd(c,c)

%3 = 4

A good quantitative check to decide whether such a gcd \should be" non-trivial, is to use polre-
sultant: a value close to 0 means that a small deformation of the inputs has non-trivial gcd. You
may also use gcdext, which does try to compute an approximate gcd d and provides u, v to check
whether ux+ vy is close to d.

The library syntax is GEN ggcd0(GEN x, GEN y = NULL). Also available are GEN ggcd(GEN

x, GEN y), if y is not NULL, and GEN content(GEN x), if y = NULL.

3.4.42 gcdext(x; y). Returns [u; v; d] such that d is the gcd of x; y, x � u+ y � v = gcd(x; y), and
u and v minimal in a natural sense. The arguments must be integers or polynomials.

? [u, v, d] = gcdext(32,102)

%1 = [16, -5, 2]

? d

%2 = 2

? gcdext(x^2-x, x^2+x-2)

%3 = [-1/2, 1/2, x - 1]

If x; y are polynomials in the same variable and inexact coe�cients, then compute u; v; d such
that x � u + y � v = d, where d approximately divides both and x and y; in particular, we do not
obtain gcd(x,y) which is de�ned to be a scalar in this case:

? a = x + 0.0; gcd(a,a)

%1 = 1

? gcdext(a,a)

%2 = [0, 1, x + 0.E-28]

? gcdext(x-Pi, 6*x^2-zeta(2))

%3 = [-6*x - 18.8495559, 1, 57.5726923]

For inexact inputs, the output is thus not well de�ned mathematically, but you obtain explicit
polynomials to check whether the approximation is close enough for your needs.

The library syntax is GEN gcdext0(GEN x, GEN y).

3.4.43 hilbert(x; y; fpg). Hilbert symbol of x and y modulo the prime p, p = 0 meaning the place
at in�nity (the result is unde�ned if p 6= 0 is not prime).

It is possible to omit p, in which case we take p = 0 if both x and y are rational, or one of them
is a real number. And take p = q if one of x, y is a t_INTMOD modulo q or a q-adic. (Incompatible
types will raise an error.)

The library syntax is long hilbert(GEN x, GEN y, GEN p = NULL).
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3.4.44 isfundamental(x). True (1) if x is equal to 1 or to the discriminant of a quadratic �eld,
false (0) otherwise.

The library syntax is long isfundamental(GEN x).

3.4.45 ispolygonal(x; s; f&Ng). True (1) if the integer x is an s-gonal number, false (0) if not.
The parameter s > 2 must be a t_INT. If N is given, set it to n if x is the n-th s-gonal number.

? ispolygonal(36, 3, &N)

%1 = 1

? N

The library syntax is long ispolygonal(GEN x, GEN s, GEN *N = NULL).

3.4.46 ispower(x; fkg; f&ng). If k is given, returns true (1) if x is a k-th power, false (0) if not.
What it means to be a k-th power depends on the type of x; see issquare for details.

If k is omitted, only integers and fractions are allowed for x and the function returns the
maximal k � 2 such that x = nk is a perfect power, or 0 if no such k exist; in particular ispower(-
1), ispower(0), and ispower(1) all return 0.

If a third argument &n is given and x is indeed a k-th power, sets n to a k-th root of x.

For a t_FFELT x, instead of omitting k (which is not allowed for this type), it may be natural to
set

k = (x.p ^ x.f - 1) / fforder(x)

The library syntax is long ispower(GEN x, GEN k = NULL, GEN *n = NULL). Also available
is long gisanypower(GEN x, GEN *pty) (k omitted).

3.4.47 ispowerful(x). True (1) if x is a powerful integer, false (0) if not; an integer is powerful if
and only if its valuation at all primes dividing x is greater than 1.

? ispowerful(50)

%1 = 0

? ispowerful(100)

%2 = 1

? ispowerful(5^3*(10^1000+1)^2)

%3 = 1

The library syntax is long ispowerful(GEN x).
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3.4.48 isprime(x; fflag = 0g). True (1) if x is a prime number, false (0) otherwise. A prime number
is a positive integer having exactly two distinct divisors among the natural numbers, namely 1 and
itself.

This routine proves or disproves rigorously that a number is prime, which can be very slow
when x is indeed prime and has more than 1000 digits, say. Use ispseudoprime to quickly check
for compositeness. See also factor. It accepts vector/matrices arguments, and is then applied
componentwise.

If flag = 0, use a combination of Baillie-PSW pseudo primality test (see ispseudoprime),
Selfridge \p� 1" test if x� 1 is smooth enough, and Adleman-Pomerance-Rumely-Cohen-Lenstra
(APRCL) for general x.

If flag = 1, use Selfridge-Pocklington-Lehmer \p � 1" test and output a primality certi�cate
as follows: return

� 0 if x is composite,

� 1 if x is small enough that passing Baillie-PSW test guarantees its primality (currently
x < 264, as checked by Jan Feitsma),

� 2 if x is a large prime whose primality could only sensibly be proven (given the algorithms
implemented in PARI) using the APRCL test.

� Otherwise (x is large and x � 1 is smooth) output a three column matrix as a primality
certi�cate. The �rst column contains prime divisors p of x � 1 (such that

Q
pvp(x�1) > x1=3),

the second the corresponding elements ap as in Proposition 8.3.1 in GTM 138 , and the third the
output of isprime(p,1).

The algorithm fails if one of the pseudo-prime factors is not prime, which is exceedingly unlikely
and well worth a bug report. Note that if you monitor isprime at a high enough debug level, you
may see warnings about untested integers being declared primes. This is normal: we ask for partial
factorisations (su�cient to prove primality if the unfactored part is not too large), and factor

warns us that the cofactor hasn't been tested. It may or may not be tested later, and may or may
not be prime. This does not a�ect the validity of the whole isprime procedure.

If flag = 2, use APRCL.

The library syntax is GEN gisprime(GEN x, long flag).

3.4.49 isprimepower(x; f&ng). If x = pk is a prime power (p prime, k > 0), return k, else return
0. If a second argument &n is given and x is indeed the k-th power of a prime p, sets n to p.

The library syntax is long isprimepower(GEN x, GEN *n = NULL).

3.4.50 ispseudoprime(x; fflagg). True (1) if x is a strong pseudo prime (see below), false (0)
otherwise. If this function returns false, x is not prime; if, on the other hand it returns true, it
is only highly likely that x is a prime number. Use isprime (which is of course much slower) to
prove that x is indeed prime. The function accepts vector/matrices arguments, and is then applied
componentwise.

If flag = 0, checks whether x has no small prime divisors (up to 101 included) and is a Baillie-
Pomerance-Selfridge-Wagsta� pseudo prime. Such a pseudo prime passes a Rabin-Miller test for
base 2, followed by a Lucas test for the sequence (P;�1), P smallest positive integer such that
P 2 � 4 is not a square mod x).
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There are no known composite numbers passing the above test, although it is expected that
in�nitely many such numbers exist. In particular, all composites � 264 are correctly detected
(checked using http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html).

If flag > 0, checks whether x is a strong Miller-Rabin pseudo prime for flag randomly chosen
bases (with end-matching to catch square roots of �1).

The library syntax is GEN gispseudoprime(GEN x, long flag).

3.4.51 ispseudoprimepower(x; f&ng). If x = pk is a pseudo-prime power (p pseudo-prime as
per ispseudoprime, k > 0), return k, else return 0. If a second argument &n is given and x is
indeed the k-th power of a prime p, sets n to p.

More precisely, k is always the largest integer such that x = nk for some integer n and, when
n � 264 the function returns k > 0 if and only if n is indeed prime. When n > 264 is larger
than the threshold, the function may return 1 even though n is composite: it only passed an
ispseudoprime(n) test.

The library syntax is long ispseudoprimepower(GEN x, GEN *n = NULL).

3.4.52 issquare(x; f&ng). True (1) if x is a square, false (0) if not. What \being a square" means
depends on the type of x: all t_COMPLEX are squares, as well as all non-negative t_REAL; for exact
types such as t_INT, t_FRAC and t_INTMOD, squares are numbers of the form s2 with s in Z, Q and
Z=NZ respectively.

? issquare(3) \\ as an integer

%1 = 0

? issquare(3.) \\ as a real number

%2 = 1

? issquare(Mod(7, 8)) \\ in Z/8Z

%3 = 0

? issquare( 5 + O(13^4) ) \\ in Q_13

%4 = 0

If n is given, a square root of x is put into n.

? issquare(4, &n)

%1 = 1

? n

%2 = 2

For polynomials, either we detect that the characteristic is 2 (and check directly odd and
even-power monomials) or we assume that 2 is invertible and check whether squaring the truncated
power series for the square root yields the original input.

For t_POLMOD x, we only support t_POLMODs of t_INTMODs encoding �nite �elds, assuming
without checking that the intmod modulus p is prime and that the polmod modulus is irreducible
modulo p.

? issquare(Mod(Mod(2,3), x^2+1), &n)

%1 = 1

? n

%2 = Mod(Mod(2, 3)*x, Mod(1, 3)*x^2 + Mod(1, 3))
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The library syntax is long issquareall(GEN x, GEN *n = NULL). Also available is long is-

square(GEN x). Deprecated GP-speci�c functions GEN gissquare(GEN x) and GEN gissquare-

all(GEN x, GEN *pt) return gen 0 and gen 1 instead of a boolean value.

3.4.53 issquarefree(x). True (1) if x is squarefree, false (0) if not. Here x can be an integer or a
polynomial.

The library syntax is long issquarefree(GEN x).

3.4.54 istotient(x; f&Ng). True (1) if x = �(n) for some integer n, false (0) if not.

? istotient(14)

%1 = 0

? istotient(100)

%2 = 0

If N is given, set N = n as well.

? istotient(4, &n)

%1 = 1

? n

%2 = 10

The library syntax is long istotient(GEN x, GEN *N = NULL).

3.4.55 kronecker(x; y). Kronecker symbol (xjy), where x and y must be of type integer. By
de�nition, this is the extension of Legendre symbol to Z � Z by total multiplicativity in both
arguments with the following special rules for y = 0;�1 or 2:
� (xj0) = 1 if jxj = 1 and 0 otherwise.

� (xj � 1) = 1 if x � 0 and �1 otherwise.
� (xj2) = 0 if x is even and 1 if x = 1;�1mod 8 and �1 if x = 3;�3mod 8.
The library syntax is long kronecker(GEN x, GEN y).

3.4.56 lcm(x; fyg). Least common multiple of x and y, i.e. such that lcm(x; y) � gcd(x; y) = x � y,
up to units. If y is omitted and x is a vector, returns the lcm of all components of x. For integer
arguments, return the non-negative lcm.

When x and y are both given and one of them is a vector/matrix type, the LCM is again taken
recursively on each component, but in a di�erent way. If y is a vector, resp. matrix, then the result
has the same type as y, and components equal to lcm(x, y[i]), resp. lcm(x, y[,i]). Else if x is
a vector/matrix the result has the same type as x and an analogous de�nition. Note that for these
types, lcm is not commutative.

Note that lcm(v) is quite di�erent from

l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))

Indeed, lcm(v) is a scalar, but l may not be (if one of the v[i] is a vector/matrix). The computa-
tion uses a divide-conquer tree and should be much more e�cient, especially when using the GMP
multiprecision kernel (and more subquadratic algorithms become available):

? v = vector(10^5, i, random);
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? lcm(v);

time = 546 ms.

? l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))

time = 4,561 ms.

The library syntax is GEN glcm0(GEN x, GEN y = NULL).

3.4.57 logint(x; b; f&zg). Return the largest integer e so that be � x, where the parameters b > 1
and x > 0 are both integers. If the parameter z is present, set it to be.

? logint(1000, 2)

%1 = 9

? 2^9

%2 = 512

? logint(1000, 2, &z)

%3 = 9

? z

%4 = 512

The number of digits used to write b in base x is 1 + logint(x,b):

? #digits(1000!, 10)

%5 = 2568

? logint(1000!, 10)

%6 = 2567

This function may conveniently replace

floor( log(x) / log(b) )

which may not give the correct answer since PARI does not guarantee exact rounding.

The library syntax is long logint0(GEN x, GEN b, GEN *z = NULL).

3.4.58 moebius(x). Moebius �-function of jxj. x must be of type integer.

The library syntax is long moebius(GEN x).

3.4.59 nextprime(x). Finds the smallest pseudoprime (see ispseudoprime) greater than or equal
to x. x can be of any real type. Note that if x is a pseudoprime, this function returns x and not
the smallest pseudoprime strictly larger than x. To rigorously prove that the result is prime, use
isprime.

The library syntax is GEN nextprime(GEN x).

3.4.60 numbpart(n). Gives the number of unrestricted partitions of n, usually called p(n) in the
literature; in other words the number of nonnegative integer solutions to a + 2b + 3c + � � � = n.
n must be of type integer and n < 1015 (with trivial values p(n) = 0 for n < 0 and p(0) = 1).
The algorithm uses the Hardy-Ramanujan-Rademacher formula. To explicitly enumerate them, see
partitions.

The library syntax is GEN numbpart(GEN n).
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3.4.61 numdiv(x). Number of divisors of jxj. x must be of type integer.

The library syntax is GEN numdiv(GEN x).

3.4.62 omega(x). Number of distinct prime divisors of jxj. x must be of type integer.

? factor(392)

%1 =

[2 3]

[7 2]

? omega(392)

%2 = 2; \\ without multiplicity

? bigomega(392)

%3 = 5; \\ = 3+2, with multiplicity

The library syntax is long omega(GEN x).

3.4.63 partitions(k; fa = kg; fn = kg)). Returns the vector of partitions of the integer k as a
sum of positive integers (parts); for k < 0, it returns the empty set [], and for k = 0 the trivial
partition (no parts). A partition is given by a t_VECSMALL, where parts are sorted in nondecreasing
order:

? partitions(3)

%1 = [Vecsmall([3]), Vecsmall([1, 2]), Vecsmall([1, 1, 1])]

correspond to 3, 1 + 2 and 1 + 1 + 1. The number of (unrestricted) partitions of k is given by
numbpart:

? #partitions(50)

%1 = 204226

? numbpart(50)

%2 = 204226

Optional parameters n and a are as follows:

� n = nmax (resp. n = [nmin;nmax ]) restricts partitions to length less than nmax (resp.
length between nmin and nmax), where the length is the number of nonzero entries.

� a = amax (resp. a = [amin; amax ]) restricts the parts to integers less than amax (resp.
between amin and amax ).

? partitions(4, 2) \\ parts bounded by 2

%1 = [Vecsmall([2, 2]), Vecsmall([1, 1, 2]), Vecsmall([1, 1, 1, 1])]

? partitions(4,, 2) \\ at most 2 parts

%2 = [Vecsmall([4]), Vecsmall([1, 3]), Vecsmall([2, 2])]

? partitions(4,[0,3], 2) \\ at most 2 parts

%3 = [Vecsmall([4]), Vecsmall([1, 3]), Vecsmall([2, 2])]

By default, parts are positive and we remove zero entries unless amin � 0, in which case nmin is
ignored and X is of constant length nmax :

? partitions(4, [0,3]) \\ parts between 0 and 3

%1 = [Vecsmall([0, 0, 1, 3]), Vecsmall([0, 0, 2, 2]),\

Vecsmall([0, 1, 1, 2]), Vecsmall([1, 1, 1, 1])]

The library syntax is GEN partitions(long k, GEN a = NULL, GEN n) = NULL).
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3.4.64 polroots�(x; fpg; fag). Returns the vector of distinct roots of the polynomial x in the
�eld Fq de�ned by the irreducible polynomial a over Fp. The coe�cients of x must be operation-
compatible with Z=pZ. Either a or p can omitted (in which case both are ignored) if x has t_FFELT
coe�cients:

? polrootsff(x^2 + 1, 5, y^2+3) \\ over F_5[y]/(y^2+3) ~ F_25

%1 = [Mod(Mod(3, 5), Mod(1, 5)*y^2 + Mod(3, 5)),

Mod(Mod(2, 5), Mod(1, 5)*y^2 + Mod(3, 5))]

? t = ffgen(y^2 + Mod(3,5), 't); \\ a generator for F_25 as a t_FFELT

? polrootsff(x^2 + 1) \\ not enough information to determine the base field

*** at top-level: polrootsff(x^2+1)

*** ^-----------------

*** polrootsff: incorrect type in factorff.

? polrootsff(x^2 + t^0) \\ make sure one coeff. is a t_FFELT

%3 = [3, 2]

? polrootsff(x^2 + t + 1)

%4 = [2*t + 1, 3*t + 4]

Notice that the second syntax is easier to use and much more readable.

The library syntax is GEN polrootsff(GEN x, GEN p = NULL, GEN a = NULL).

3.4.65 precprime(x). Finds the largest pseudoprime (see ispseudoprime) less than or equal to
x. x can be of any real type. Returns 0 if x � 1. Note that if x is a prime, this function returns x
and not the largest prime strictly smaller than x. To rigorously prove that the result is prime, use
isprime.

The library syntax is GEN precprime(GEN x).

3.4.66 prime(n). The nth prime number

? prime(10^9)

%1 = 22801763489

Uses checkpointing and a naive O(n) algorithm.

The library syntax is GEN prime(long n).

3.4.67 primepi(x). The prime counting function. Returns the number of primes p, p � x.
? primepi(10)

%1 = 4;

? primes(5)

%2 = [2, 3, 5, 7, 11]

? primepi(10^11)

%3 = 4118054813

Uses checkpointing and a naive O(x) algorithm.

The library syntax is GEN primepi(GEN x).
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3.4.68 primes(n). Creates a row vector whose components are the �rst n prime numbers. (Returns
the empty vector for n � 0.) A t_VEC n = [a; b] is also allowed, in which case the primes in [a; b]
are returned

? primes(10) \\ the first 10 primes

%1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

? primes([0,29]) \\ the primes up to 29

%2 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

? primes([15,30])

%3 = [17, 19, 23, 29]

The library syntax is GEN primes0(GEN n).

3.4.69 qfbclassno(D; fflag = 0g). Ordinary class number of the quadratic order of discriminant
D, for \small" values of D.

� if D > 0 or flag = 1, use a O(jDj1=2) algorithm (compute L(1; �D) with the approximate
functional equation). This is slower than quadclassunit as soon as jDj � 102 or so and is not
meant to be used for large D.

� if D < 0 and flag = 0 (or omitted), use a O(jDj1=4) algorithm (Shanks's baby-step/giant-step
method). It should be faster than quadclassunit for small values of D, say jDj < 1018.

Important warning. In the latter case, this function only implements part of Shanks's method
(which allows to speed it up considerably). It gives unconditionnally correct results for jDj < 2�1010,
but may give incorrect results for larger values if the class group has many cyclic factors. We thus
recommend to double-check results using the function quadclassunit, which is about 2 to 3 times
slower in the above range, assuming GRH. We currently have no counter-examples but they should
exist: we'd appreciate a bug report if you �nd one.

Warning. Contrary to what its name implies, this routine does not compute the number of classes
of binary primitive forms of discriminant D, which is equal to the narrow class number. The two
notions are the same when D < 0 or the fundamental unit " has negative norm; when D > 0 and
N" > 0, the number of classes of forms is twice the ordinary class number. This is a problem
which we cannot �x for backward compatibility reasons. Use the following routine if you are only
interested in the number of classes of forms:

QFBclassno(D) =

qfbclassno(D) * if (D < 0 || norm(quadunit(D)) < 0, 1, 2)

Here are a few examples:

? qfbclassno(400000028)

time = 3,140 ms.

%1 = 1

? quadclassunit(400000028).no

time = 20 ms. \\ much faster
%2 = 1

? qfbclassno(-400000028)

time = 0 ms.

%3 = 7253 \\ correct, and fast enough
? quadclassunit(-400000028).no

time = 0 ms.
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%4 = 7253

See also qfbhclassno.

The library syntax is GEN qfbclassno0(GEN D, long flag). The following functions are also
available:

GEN classno(GEN D) (flag = 0)

GEN classno2(GEN D) (flag = 1).

Finally

GEN hclassno(GEN D) computes the class number of an imaginary quadratic �eld by counting
reduced forms, an O(jDj) algorithm.

3.4.70 qfbcompraw(x; y). composition of the binary quadratic forms x and y, without reduction
of the result. This is useful e.g. to compute a generating element of an ideal. The result is unde�ned
if x and y do not have the same discriminant.

The library syntax is GEN qfbcompraw(GEN x, GEN y).

3.4.71 qfbhclassno(x). Hurwitz class number of x, where x is non-negative and congruent to 0 or
3 modulo 4. For x > 5 �105, we assume the GRH, and use quadclassunit with default parameters.

The library syntax is GEN hclassno(GEN x).

3.4.72 qfbnucomp(x; y; L). composition of the primitive positive de�nite binary quadratic forms
x and y (type t_QFI) using the NUCOMP and NUDUPL algorithms of Shanks, �a la Atkin.
L is any positive constant, but for optimal speed, one should take L = jD=4j1=4, i.e. sqrt-

nint(abs(D)>>2,4), where D is the common discriminant of x and y. When x and y do not have
the same discriminant, the result is unde�ned.

The current implementation is slower than the generic routine for small D, and becomes faster
when D has about 45 bits.

The library syntax is GEN nucomp(GEN x, GEN y, GEN L). Also available is GEN nudupl(GEN

x, GEN L) when x = y.

3.4.73 qfbnupow(x; n; fLg). n-th power of the primitive positive de�nite binary quadratic
form x using Shanks's NUCOMP and NUDUPL algorithms; if set, L should be equal to sqrt-

nint(abs(D)>>2,4), where D < 0 is the discriminant of x.

The current implementation is slower than the generic routine for small discriminant D, and
becomes faster for D � 245.

The library syntax is GEN nupow(GEN x, GEN n, GEN L = NULL).

3.4.74 qfbpowraw(x; n). n-th power of the binary quadratic form x, computed without doing
any reduction (i.e. using qfbcompraw). Here n must be non-negative and n < 231.

The library syntax is GEN qfbpowraw(GEN x, long n).
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3.4.75 qfbprimeform(x; p). Prime binary quadratic form of discriminant x whose �rst coe�cient
is p, where jpj is a prime number. By abuse of notation, p = �1 is also valid and returns the unit
form. Returns an error if x is not a quadratic residue mod p, or if x < 0 and p < 0. (Negative
de�nite t_QFI are not implemented.) In the case where x > 0, the \distance" component of the
form is set equal to zero according to the current precision.

The library syntax is GEN primeform(GEN x, GEN p, long prec).

3.4.76 qfbred(x; fflag = 0g; fdg; fisdg; fsdg). Reduces the binary quadratic form x (updating
Shanks's distance function if x is inde�nite). The binary digits of flag are toggles meaning

1: perform a single reduction step

2: don't update Shanks's distance

The arguments d, isd , sd , if present, supply the values of the discriminant,
jp

d
k
, and

p
d

respectively (no checking is done of these facts). If d < 0 these values are useless, and all references
to Shanks's distance are irrelevant.

The library syntax is GEN qfbred0(GEN x, long flag, GEN d = NULL, GEN isd = NULL,

GEN sd = NULL). Also available are

GEN redimag(GEN x) (for de�nite x),

and for inde�nite forms:

GEN redreal(GEN x)

GEN rhoreal(GEN x) (= qfbred(x,1)),

GEN redrealnod(GEN x, GEN isd) (= qfbred(x,2,,isd)),

GEN rhorealnod(GEN x, GEN isd) (= qfbred(x,3,,isd)).

3.4.77 qfbredsl2(x; fdatag). Reduction of the (real or imaginary) binary quadratic form x, return
[y; g] where y is reduced and g in SL(2;Z) is such that g � x = y; data, if present, must be equal to
[D; sqrtint(D)], where D > 0 is the discriminant of x. In case x is t_QFR, the distance component
is una�ected.

The library syntax is GEN qfbredsl2(GEN x, GEN data = NULL).

3.4.78 qfbsolve(Q; p). Solve the equation Q(x; y) = p over the integers, where Q is a binary
quadratic form and p a prime number.

Return [x; y] as a two-components vector, or zero if there is no solution. Note that this function
returns only one solution and not all the solutions.

Let D = discQ. The algorithm used runs in probabilistic polynomial time in p (through the
computation of a square root of D modulo p); it is polynomial time in D if Q is imaginary, but
exponential time if Q is real (through the computation of a full cycle of reduced forms). In the
latter case, note that bnfisprincipal provides a solution in heuristic subexponential time in D
assuming the GRH.

The library syntax is GEN qfbsolve(GEN Q, GEN p).
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3.4.79 quadclassunit(D; fflag = 0g; ftech = [ ]g). Buchmann-McCurley's sub-exponential algo-
rithm for computing the class group of a quadratic order of discriminant D.

This function should be used instead of qfbclassno or quadregula when D < �1025, D >
1010, or when the structure is wanted. It is a special case of bnfinit, which is slower, but more
robust.

The result is a vector v whose components should be accessed using member functions:

� v.no: the class number
� v.cyc: a vector giving the structure of the class group as a product of cyclic groups;

� v.gen: a vector giving generators of those cyclic groups (as binary quadratic forms).

� v.reg: the regulator, computed to an accuracy which is the maximum of an internal accuracy
determined by the program and the current default (note that once the regulator is known to a
small accuracy it is trivial to compute it to very high accuracy, see the tutorial).

The flag is obsolete and should be left alone. In older versions, it supposedly computed the
narrow class group when D > 0, but this did not work at all; use the general function bnfnarrow.

Optional parameter tech is a row vector of the form [c1; c2], where c1 � c2 are non-negative real
numbers which control the execution time and the stack size, see 3.8.7. The parameter is used as a
threshold to balance the relation �nding phase against the �nal linear algebra. Increasing the default
c1 means that relations are easier to �nd, but more relations are needed and the linear algebra will
be harder. The default value for c1 is 0 and means that it is taken equal to c2. The parameter c2 is
mostly obsolete and should not be changed, but we still document it for completeness: we compute
a tentative class group by generators and relations using a factorbase of prime ideals � c1(log jDj)2,
then prove that ideals of norm � c2(log jDj)2 do not generate a larger group. By default an optimal
c2 is chosen, so that the result is provably correct under the GRH | a famous result of Bach states
that c2 = 6 is �ne, but it is possible to improve on this algorithmically. You may provide a smaller
c2, it will be ignored (we use the provably correct one); you may provide a larger c2 than the default
value, which results in longer computing times for equally correct outputs (under GRH).

The library syntax is GEN quadclassunit0(GEN D, long flag, GEN tech = NULL, long

prec). If you really need to experiment with the tech parameter, it is usually more convenient to
use GEN Buchquad(GEN D, double c1, double c2, long prec)

3.4.80 quaddisc(x). Discriminant of the �etale algebra Q(
p
x), where x 2 Q�. This is the same as

coredisc(d) where d is the integer square-free part of x, so x=df2 with f 2 Q� and d 2 Z. This
returns 0 for x = 0, 1 for x square and the discriminant of the quadratic �eld Q(

p
x) otherwise.

? quaddisc(7)

%1 = 28

? quaddisc(-7)

%2 = -7

The library syntax is GEN quaddisc(GEN x).

3.4.81 quadgen(D). Creates the quadratic number ! = (a+
p
D)=2 where a = 0 if D � 0mod 4,

a = 1 if D � 1mod 4, so that (1; !) is an integral basis for the quadratic order of discriminant D.
D must be an integer congruent to 0 or 1 modulo 4, which is not a square.

The library syntax is GEN quadgen(GEN D).
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3.4.82 quadhilbert(D). Relative equation de�ning the Hilbert class field of the quadratic �eld of
discriminant D.

If D < 0, uses complex multiplication (Schertz's variant).

If D > 0 Stark units are used and (in rare cases) a vector of extensions may be returned whose
compositum is the requested class �eld. See bnrstark for details.

The library syntax is GEN quadhilbert(GEN D, long prec).

3.4.83 quadpoly(D; fv =0 xg). Creates the \canonical" quadratic polynomial (in the variable v)
corresponding to the discriminant D, i.e. the minimal polynomial of quadgen(D). D must be an
integer congruent to 0 or 1 modulo 4, which is not a square.

The library syntax is GEN quadpoly0(GEN D, long v = -1) where v is a variable number.

3.4.84 quadray(D; f). Relative equation for the ray class �eld of conductor f for the quadratic
�eld of discriminant D using analytic methods. A bnf for x2 �D is also accepted in place of D.

For D < 0, uses the � function and Schertz's method.

For D > 0, uses Stark's conjecture, and a vector of relative equations may be returned. See
bnrstark for more details.

The library syntax is GEN quadray(GEN D, GEN f, long prec).

3.4.85 quadregulator(x). Regulator of the quadratic �eld of positive discriminant x. Returns an
error if x is not a discriminant (fundamental or not) or if x is a square. See also quadclassunit if
x is large.

The library syntax is GEN quadregulator(GEN x, long prec).

3.4.86 quadunit(D). Fundamental unit of the real quadratic �eld Q(
p
D) where D is the positive

discriminant of the �eld. If D is not a fundamental discriminant, this probably gives the funda-
mental unit of the corresponding order. D must be an integer congruent to 0 or 1 modulo 4, which
is not a square; the result is a quadratic number (see Section 3.4.81).

The library syntax is GEN quadunit(GEN D).

3.4.87 ramanujantau(n). Compute the value of Ramanujan's tau function at an individual n,
assuming the truth of the GRH (to compute quickly class numbers of imaginary quadratic �elds
using quadclassunit). Algorithm in ~O(n1=2) using O(log n) space. If all values up to N are
required, then X

�(n)qn = q
Y
n�1

(1� qn)24

will produce them in time ~O(N), against ~O(N3=2) for individual calls to ramanujantau; of course
the space complexity then becomes ~O(N).

? tauvec(N) = Vec(q*eta(q + O(q^N))^24);

? N = 10^4; v = tauvec(N);

time = 26 ms.

? ramanujantau(N)

%3 = -482606811957501440000
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? w = vector(N, n, ramanujantau(n)); \\ much slower !

time = 13,190 ms.

? v == w

%4 = 1

The library syntax is GEN ramanujantau(GEN n).

3.4.88 randomprime(fN = 231g). Returns a strong pseudo prime (see ispseudoprime) in [2; N�
1]. A t_VECN = [a; b] is also allowed, with a � b in which case a pseudo prime a � p � b is returned;
if no prime exists in the interval, the function will run into an in�nite loop. If the upper bound is
less than 264 the pseudo prime returned is a proven prime.

The library syntax is GEN randomprime(GEN N = NULL).

3.4.89 removeprimes(fx = [ ]g). Removes the primes listed in x from the prime number table.
In particular removeprimes(addprimes()) empties the extra prime table. x can also be a single
integer. List the current extra primes if x is omitted.

The library syntax is GEN removeprimes(GEN x = NULL).

3.4.90 sigma(x; fk = 1g). Sum of the kth powers of the positive divisors of jxj. x and k must be
of type integer.

The library syntax is GEN sumdivk(GEN x, long k). Also available is GEN sumdiv(GEN n)

, for k = 1.

3.4.91 sqrtint(x). Returns the integer square root of x, i.e. the largest integer y such that y2 � x,
where x a non-negative integer.

? N = 120938191237; sqrtint(N)

%1 = 347761

? sqrt(N)

%2 = 347761.68741970412747602130964414095216

The library syntax is GEN sqrtint(GEN x).

3.4.92 sqrtnint(x; n). Returns the integer n-th root of x, i.e. the largest integer y such that
yn � x, where x is a non-negative integer.

? N = 120938191237; sqrtnint(N, 5)

%1 = 164

? N^(1/5)

%2 = 164.63140849829660842958614676939677391

The special case n = 2 is sqrtint

The library syntax is GEN sqrtnint(GEN x, long n).
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3.4.93 stirling(n; k; fflag = 1g). Stirling number of the �rst kind s(n; k) (flag = 1, default) or
of the second kind S(n; k) (flag=2), where n, k are non-negative integers. The former is (�1)n�k
times the number of permutations of n symbols with exactly k cycles; the latter is the number
of ways of partitioning a set of n elements into k non-empty subsets. Note that if all s(n; k) are
needed, it is much faster to computeX

k

s(n; k)xk = x(x� 1) : : : (x� n+ 1):

Similarly, if a large number of S(n; k) are needed for the same k, one should use

X
n

S(n; k)xn =
xk

(1� x) : : : (1� kx) :

(Should be implemented using a divide and conquer product.) Here are simple variants for n �xed:

/* list of s(n,k), k = 1..n */

vecstirling(n) = Vec( factorback(vector(n-1,i,1-i*'x)) )

/* list of S(n,k), k = 1..n */

vecstirling2(n) =

{ my(Q = x^(n-1), t);

vector(n, i, t = divrem(Q, x-i); Q=t[1]; simplify(t[2]));

}

The library syntax is GEN stirling(long n, long k, long flag). Also available are GEN

stirling1(ulong n, ulong k) (flag = 1) and GEN stirling2(ulong n, ulong k) (flag = 2).

3.4.94 sumdedekind(h; k). Returns the Dedekind sum attached to the integers h and k, corre-
sponding to a fast implementation of

s(h,k) = sum(n = 1, k-1, (n/k)*(frac(h*n/k) - 1/2))

The library syntax is GEN sumdedekind(GEN h, GEN k).

3.4.95 sumdigits(n; fB = 10g). Sum of digits in the integer n, when written in base B > 1.

? sumdigits(123456789)

%1 = 45

? sumdigits(123456789, 2)

%1 = 16

Note that the sum of bits in n is also returned by hammingweight. This function is much faster
than vecsum(digits(n,B)) when B is 10 or a power of 2, and only slightly faster in other cases.

The library syntax is GEN sumdigits0(GEN n, GEN B = NULL). Also available is GEN sumdig-

its(GEN n), for B = 10.
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3.4.96 zncharinduce(G; chi ; N). Let G be attached to (Z=qZ)� (as per G = idealstar(,q)) and
let chi be a Dirichlet character on (Z=qZ)�, given by

� a t_VEC: a standard character on bid.gen,

� a t_INT or a t_COL: a Conrey index in (Z=qZ)� or its Conrey logarithm; see Section 3.4.3 or
??character.

Let N be a multiple of q, return the character modulo N induced by chi. As usual for
arithmetic functions, the new modulus N can be given as a t_INT, via a factorization matrix or a
pair [N, factor(N)], or by idealstar(,N).

? G = idealstar(,4);

? chi = znconreylog(G,1); \\ trivial character mod 4

? zncharinduce(G, chi, 80) \\ now mod 80

%3 = [0, 0, 0]~
? zncharinduce(G, 1, 80) \\ same using directly Conrey label

%4 = [0, 0, 0]~
? G2 = idealstar(,80);

? zncharinduce(G, 1, G2) \\ same

%4 = [0, 0, 0]~

? chi = zncharinduce(G, 3, G2) \\ induce the non-trivial character mod 4

%5 = [1, 0, 0]~
? znconreyconductor(G2, chi, &chi0)

%6 = [4, Mat([2, 2])]

? chi0

%7 = [1]~

Here is a larger example:

? G = idealstar(,126000);

? label = 1009;

? chi = znconreylog(G, label)

%3 = [0, 0, 0, 14, 0]~
? N0 = znconreyconductor(G, label, &chi0)

%4 = [125, Mat([5, 3])]

? chi0 \\ primitive character mod 5^3 attached to chi

%5 = [14]~
? G0 = idealstar(,N0);

? zncharinduce(G0, chi0, G) \\ induce back

%7 = [0, 0, 0, 14, 0]~
? znconreyexp(G, %)

%8 = 1009

The library syntax is GEN zncharinduce(GEN G, GEN chi, GEN N).
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3.4.97 zncharisodd(G; chi). Let G be attached to (Z=NZ)� (as per G = idealstar(,N)) and let
chi be a Dirichlet character on (Z=NZ)�, given by

� a t_VEC: a standard character on bid.gen,

� a t_INT or a t_COL: a Conrey index in (Z=qZ)� or its Conrey logarithm; see Section 3.4.3 or
??character.

Return 1 if and only if chi(�1) = �1 and 0 otherwise.

? G = idealstar(,8);

? zncharisodd(G, 1) \\ trivial character

%2 = 0

? zncharisodd(G, 3)

%3 = 1

? chareval(G, 3, -1)

%4 = 1/2

The library syntax is long zncharisodd(GEN G, GEN chi).

3.4.98 znchartokronecker(G; chi ; fflag = 0g). Let G be attached to (Z=NZ)� (as per G =

idealstar(,N)) and let chi be a Dirichlet character on (Z=NZ)�, given by

� a t_VEC: a standard character on bid.gen,

� a t_INT or a t_COL: a Conrey index in (Z=qZ)� or its Conrey logarithm; see Section 3.4.3 or
??character.

If flag = 0, return the discriminant D if chi is real equal to the Kronecker symbol (D=:) and
0 otherwise. The discriminant D is fundamental if and only if chi is primitive.

If flag = 1, return the fundamental discriminant attached to the corresponding primitive
character.

? G = idealstar(,8); CHARS = [1,3,5,7]; \\ Conrey labels

? apply(t->znchartokronecker(G,t), CHARS)

%2 = [4, -8, 8, -4]

? apply(t->znchartokronecker(G,t,1), CHARS)

%3 = [1, -8, 8, -4]

The library syntax is GEN znchartokronecker(GEN G, GEN chi, long flag).

3.4.99 znconreychar(bid ;m). Given a bid attached to (Z=qZ)� (as per bid = idealstar(,q)),
this function returns the Dirichlet character attached to m 2 (Z=qZ)� via Conrey's logarithm,
which establishes a \canonical" bijection between (Z=qZ)� and its dual.

Let q =
Q

p p
ep be the factorization of q into distinct primes. For all odd p with ep > 0, let gp

be the element in (Z=qZ)� which is

� congruent to 1 mod q=pep ,
� congruent mod pep to the smallest integer whose order is �(pep).

For p = 2, we let g4 (if 2
e2 � 4) and g8 (if furthermore (2

e2 � 8) be the elements in (Z=qZ)�

which are

� congruent to 1 mod q=2e2 ,
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� g4 = �1mod 2e2 ,
� g8 = 5mod 2e2 .

Then the gp (and the extra g4 and g8 if 2
e2 � 2) are independent generators of (Z=qZ)�, i.e.

every m in (Z=qZ)� can be written uniquely as
Q

p g
mp
p , where mp is de�ned modulo the order op

of gp and p 2 Sq, the set of prime divisors of q together with 4 if 4 j q and 8 if 8 j q. Note that
the gp are in general not SNF generators as produced by znstar or idealstar whenever !(q) � 2,
although their number is the same. They however allow to handle the �nite abelian group (Z=qZ)�

in a fast and elegant way. (Which unfortunately does not generalize to ray class groups or Hecke
characters.)

The Conrey logarithm of m is the vector (mp)p2Sq , obtained via znconreylog. The Conrey
character �q(m; �) attached to m mod q maps each gp, p 2 Sq to e(mp=op), where e(x) = exp(2i�x).
This function returns the Conrey character expressed in the standard PARI way in terms of the
SNF generators bid.gen.

Note. It is useless to include the generators in the bid , except for debugging purposes: they are
well de�ned from elementary matrix operations and Chinese remaindering, their explicit value as
elements in (Z=qZ)� is never used.

? G = idealstar(,8,2); /*add generators for debugging:*/

? G.cyc

%2 = [2, 2] \\ Z/2 x Z/2

? G.gen

%3 = [7, 3]

? znconreychar(G,1) \\ 1 is always the trivial character

%4 = [0, 0]

? znconreychar(G,2) \\ 2 is not coprime to 8 !!!

*** at top-level: znconreychar(G,2)

*** ^-----------------

*** znconreychar: elements not coprime in Zideallog:

2

8

*** Break loop: type 'break' to go back to GP prompt

break>

? znconreychar(G,3)

%5 = [0, 1]

? znconreychar(G,5)

%6 = [1, 1]

? znconreychar(G,7)

%7 = [1, 0]

We indeed get all 4 characters of (Z=8Z)�.

For convenience, we allow to input the Conrey logarithm of m instead of m:

? G = idealstar(,55);

? znconreychar(G,7)

%2 = [7, 0]

? znconreychar(G, znconreylog(G,7))

%3 = [7, 0]

The library syntax is GEN znconreychar(GEN bid, GEN m).
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3.4.100 znconreyconductor(bid ; chi ; f&chi0g). Let bid be attached to (Z=qZ)� (as per bid =

idealstar(,q)) and chi be a Dirichlet character on (Z=qZ)�, given by

� a t_VEC: a standard character on bid.gen,

� a t_INT or a t_COL: a Conrey index in (Z=qZ)� or its Conrey logarithm; see Section 3.4.3 or
??character.

Return the conductor of chi, as the t_INT bid.mod if chi is primitive, and as a pair [N, faN]

(with faN the factorization of N) otherwise.

If chi0 is present, set it to the Conrey logarithm of the attached primitive character.

? G = idealstar(,126000);

? znconreyconductor(G,11) \\ primitive

%2 = 126000

? znconreyconductor(G,1) \\ trivial character, not primitive!

%3 = [1, matrix(0,2)]

? N0 = znconreyconductor(G,1009, &chi0) \\ character mod 5^3

%4 = [125, Mat([5, 3])]

? chi0

%5 = [14]~
? G0 = idealstar(,N0); \\ format [N,factor(N)] accepted

? znconreyexp(G0, chi0)

%7 = 9

? znconreyconductor(G0, chi0) \\ now primitive, as expected

%8 = 125

The group G0 is not computed as part of znconreyconductor because it needs to be computed
only once per conductor, not once per character.

The library syntax is GEN znconreyconductor(GEN bid, GEN chi, GEN *chi0 = NULL)

.

3.4.101 znconreyexp(bid ; chi). Given a bid attached to (Z=qZ)� (as per bid = idealstar(,q)),
this function returns the Conrey exponential of the character chi : it returns the integer m 2
(Z=qZ)� such that znconreylog(bid, m) is chi .

The character chi is given either as a

� t_VEC: in terms of the generators bid.gen;

� t_COL: a Conrey logarithm.

? G = idealstar(,126000)

? znconreylog(G,1)

%2 = [0, 0, 0, 0, 0]~
? znconreyexp(G,%)

%3 = 1

? G.cyc \\ SNF generators

%4 = [300, 12, 2, 2, 2]

? chi = [100, 1, 0, 1, 0]; \\ some random character on SNF generators

? znconreylog(G, chi) \\ in terms of Conrey generators

%6 = [0, 3, 3, 0, 2]~
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? znconreyexp(G, %) \\ apply to a Conrey log

%7 = 18251

? znconreyexp(G, chi) \\ ... or a char on SNF generators

%8 = 18251

? znconreychar(G,%)

%9 = [100, 1, 0, 1, 0]

The library syntax is GEN znconreyexp(GEN bid, GEN chi).

3.4.102 znconreylog(bid ;m). Given a bid attached to (Z=qZ)� (as per bid = idealstar(,q)),
this function returns the Conrey logarithm of m 2 (Z=qZ)�.

Let q =
Q

p p
ep be the factorization of q into distinct primes, where we assume e2 = 0 or

e2 � 2. (If e2 = 1, we can ignore 2 from the factorization, as if we replaced q by q=2, since
(Z=qZ)� � (Z=(q=2)Z)�.)

For all odd p with ep > 0, let gp be the element in (Z=qZ)� which is

� congruent to 1 mod q=pep ,
� congruent mod pep to the smallest integer whose order is �(pep) for p odd,

For p = 2, we let g4 (if 2
e2 � 4) and g8 (if furthermore (2

e2 � 8) be the elements in (Z=qZ)�

which are

� congruent to 1 mod q=2e2 ,
� g4 = �1mod 2e2 ,
� g8 = 5mod 2e2 .

Then the gp (and the extra g4 and g8 if 2e2 � 2) are independent generators of Z=qZ�, i.e.
every m in (Z=qZ)� can be written uniquely as

Q
p g

mp
p , where mp is de�ned modulo the order op

of gp and p 2 Sq, the set of prime divisors of q together with 4 if 4 j q and 8 if 8 j q. Note that
the gp are in general not SNF generators as produced by znstar or idealstar whenever !(q) � 2,
although their number is the same. They however allow to handle the �nite abelian group (Z=qZ)�

in a fast and elegant way. (Which unfortunately does not generalize to ray class groups or Hecke
characters.)

The Conrey logarithm ofm is the vector (mp)p2Sq . The inverse function znconreyexp recovers
the Conrey label m from a character.

? G = idealstar(,126000);

? znconreylog(G,1)

%2 = [0, 0, 0, 0, 0]~
? znconreyexp(G, %)

%3 = 1

? znconreylog(G,2) \\ 2 is not coprime to modulus !!!

*** at top-level: znconreylog(G,2)

*** ^-----------------

*** znconreylog: elements not coprime in Zideallog:

2

126000

*** Break loop: type 'break' to go back to GP prompt

break>
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? znconreylog(G,11) \\ wrt. Conrey generators

%4 = [0, 3, 1, 76, 4]~
? log11 = ideallog(,11,G) \\ wrt. SNF generators

%5 = [178, 3, -75, 1, 0]~

For convenience, we allow to input the ordinary discrete log of m, ideallog(; m; bid), which
allows to convert discrete logs from bid.gen generators to Conrey generators.

? znconreylog(G, log11)

%7 = [0, 3, 1, 76, 4]~

We also allow a character (t_VEC) on bid.gen and return its representation on the Conrey gener-
ators.

? G.cyc

%8 = [300, 12, 2, 2, 2]

? chi = [10,1,0,1,1];

? znconreylog(G, chi)

%10 = [1, 3, 3, 10, 2]~
? n = znconreyexp(G, chi)

%11 = 84149

? znconreychar(G, n)

%12 = [10, 1, 0, 1, 1]

The library syntax is GEN znconreylog(GEN bid, GEN m).

3.4.103 zncoppersmith(P;N;X; fB = Ng). N being an integer and P 2 Z[X], �nds all integers
x with jxj � X such that

gcd(N;P (x)) � B;
using Coppersmith's algorithm (a famous application of the LLL algorithm). X must be smaller
than exp(log2B=(deg(P ) logN)): for B = N , this means X < N1= deg(P ). Some x larger than X
may be returned if you are very lucky. The smaller B (or the larger X), the slower the routine will
be. The strength of Coppersmith method is the ability to �nd roots modulo a general composite
N : if N is a prime or a prime power, polrootsmod or polrootspadic will be much faster.

We shall now present two simple applications. The �rst one is �nding non-trivial factors of N ,
given some partial information on the factors; in that case B must obviously be smaller than the
largest non-trivial divisor of N .

setrand(1); \\ to make the example reproducible

interval = [10^30, 10^31];

p = randomprime(interval);

q = randomprime(interval); N = p*q;

p0 = p % 10^20; \\ assume we know 1) p > 10^29, 2) the last 19 digits of p

L = zncoppersmith(10^19*x + p0, N, 10^12, 10^29)

\\ result in 10ms.

%6 = [738281386540]

? gcd(L[1] * 10^19 + p0, N) == p

%7 = 1

and we recovered p, faster than by trying all possibilities < 1012.
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The second application is an attack on RSA with low exponent, when the message x is short
and the padding P is known to the attacker. We use the same RSA modulus N as in the �rst
example:

setrand(1);

P = random(N); \\ known padding

e = 3; \\ small public encryption exponent

X = floor(N^0.3); \\ N^(1/e - epsilon)

x0 = random(X); \\ unknown short message

C = lift( (Mod(x0,N) + P)^e ); \\ known ciphertext, with padding P

zncoppersmith((P + x)^3 - C, N, X)

\\ result in 244ms.

%14 = [2679982004001230401]

? %[1] == x0

%15 = 1

We guessed an integer of the order of 1018, almost instantly.

The library syntax is GEN zncoppersmith(GEN P, GEN N, GEN X, GEN B = NULL).

3.4.104 znlog(x; g; fog). This functions allows two distinct modes of operation depending on g:

� if g is the output of znstar (with initialization), we compute the discrete logarithm of x
with respect to the generators contained in the structure. See ideallog for details.

� else g is an explicit element in (Z=NZ)�, we compute the discrete logarithm of x in (Z=NZ)�

in base g. The rest of this entry describes the latter possibility.

The result is [] when x is not a power of g, though the function may also enter an in�nite loop
in this case.

If present, o represents the multiplicative order of g, see Section 3.4.2; the preferred format
for this parameter is [ord, factor(ord)], where ord is the order of g. This provides a de�nite
speedup when the discrete log problem is simple:

? p = nextprime(10^4); g = znprimroot(p); o = [p-1, factor(p-1)];

? for(i=1,10^4, znlog(i, g, o))

time = 205 ms.

? for(i=1,10^4, znlog(i, g))

time = 244 ms. \\ a little slower

The result is unde�ned if g is not invertible mod N or if the supplied order is incorrect.

This function uses

� a combination of generic discrete log algorithms (see below).

� in (Z=NZ)� when N is prime: a linear sieve index calculus method, suitable for N < 1050,
say, is used for large prime divisors of the order.

The generic discrete log algorithms are:

� Pohlig-Hellman algorithm, to reduce to groups of prime order q, where qjp � 1 and p is an
odd prime divisor of N ,

� Shanks baby-step/giant-step (q < 232 is small),
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� Pollard rho method (q > 232).

The latter two algorithms require O(
p
q) operations in the group on average, hence will not

be able to treat cases where q > 1030, say. In addition, Pollard rho is not able to handle the case
where there are no solutions: it will enter an in�nite loop.

? g = znprimroot(101)

%1 = Mod(2,101)

? znlog(5, g)

%2 = 24

? g^24

%3 = Mod(5, 101)

? G = znprimroot(2 * 101^10)

%4 = Mod(110462212541120451003, 220924425082240902002)

? znlog(5, G)

%5 = 76210072736547066624

? G^% == 5

%6 = 1

? N = 2^4*3^2*5^3*7^4*11; g = Mod(13, N); znlog(g^110, g)

%7 = 110

? znlog(6, Mod(2,3)) \\ no solution

%8 = []

For convenience, g is also allowed to be a p-adic number:

? g = 3+O(5^10); znlog(2, g)

%1 = 1015243

? g^%

%2 = 2 + O(5^10)

The library syntax is GEN znlog0(GEN x, GEN g, GEN o = NULL). The function GEN zn-

log(GEN x, GEN g, GEN o) is also available

3.4.105 znorder(x; fog). x must be an integer mod n, and the result is the order of x in the
multiplicative group (Z=nZ)�. Returns an error if x is not invertible. The parameter o, if present,
represents a non-zero multiple of the order of x, see Section 3.4.2; the preferred format for this
parameter is [ord, factor(ord)], where ord = eulerphi(n) is the cardinality of the group.

The library syntax is GEN znorder(GEN x, GEN o = NULL). Also available is GEN order(GEN

x).

3.4.106 znprimroot(n). Returns a primitive root (generator) of (Z=nZ)�, whenever this latter
group is cyclic (n = 4 or n = 2pk or n = pk, where p is an odd prime and k � 0). If the group is
not cyclic, the result is unde�ned. If n is a prime power, then the smallest positive primitive root
is returned. This may not be true for n = 2pk, p odd.

Note that this function requires factoring p� 1 for p as above, in order to determine the exact
order of elements in (Z=nZ)�: this is likely to be costly if p is large.

The library syntax is GEN znprimroot(GEN n).
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3.4.107 znstar(n; fflag = 0g). Gives the structure of the multiplicative group (Z=nZ)�. The
output G depends on the value of flag :

� flag = 0 (default), an abelian group structure [h; d; g], where h = �(n) is the order (G.no), d
(G.cyc) is a k-component row-vector d of integers di such that di > 1, di j di�1 for i � 2 and

(Z=nZ)� '
kY
i=1

(Z=diZ);

and g (G.gen) is a k-component row vector giving generators of the image of the cyclic groups
Z=diZ.

� flag = 1 the result is a bid structure without generators (which are well de�ned but not
explicitly computed, which saves time); this allows computing discrite logarithms using znlog (also
in the non-cyclic case!).

� flag = 2 same as flag = 1 with generators.

? G = znstar(40)

%1 = [16, [4, 2, 2], [Mod(17, 40), Mod(21, 40), Mod(11, 40)]]

? G.no \\ eulerphi(40)

%2 = 16

? G.cyc \\ cycle structure

%3 = [4, 2, 2]

? G.gen \\ generators for the cyclic components

%4 = [Mod(17, 40), Mod(21, 40), Mod(11, 40)]

? apply(znorder, G.gen)

%5 = [4, 2, 2]

According to the above de�nitions, znstar(0) is [2, [2], [-1]], corresponding to Z�.

The library syntax is GEN znstar0(GEN n, long flag). Instead the above hardcoded nu-
merical 
ags, one should rather use GEN ZNstar(GEN N, long flag), where flag is an or-ed
combination of nf_GEN (include generators) and nf_INIT (return a full bid, not a group), possibly
0. This o�ers one more combination: no gen and no init.

3.5 Elliptic curves.

3.5.1 Elliptic curve structures. An elliptic curve is given by a Weierstrass model

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6;

whose discriminant is non-zero. A�ne points on E are represented as two-component vectors [x,y];
the point at in�nity, i.e. the identity element of the group law, is represented by the one-component
vector [0].

Given a vector of coe�cients [a1; a2; a3; a4; a6], the function ellinit initializes and returns an
ell structure. (An additional optional argument allows to specify the base �eld in case it cannot be
inferred from the curve coe�cients.) This structure contains data needed by elliptic curve related
functions, and is generally passed as a �rst argument. Expensive data are skipped on initialization:
they will be dynamically computed when (and if) needed, and then inserted in the structure. The
precise layout of the ell structure is left unde�ned and should never be used directly. The following
member functions are available, depending on the underlying domain.
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3.5.1.1 All domains.

� a1, a2, a3, a4, a6: coe�cients of the elliptic curve.
� b2, b4, b6, b8: b-invariants of the curve; in characteristic 6= 2, for Y = 2y + a1x + a3, the

curve equation becomes

Y 2 = 4x3 + b2x
2 + 2b4x+ b6 =: g(x):

� c4, c6: c-invariants of the curve; in characteristic 6= 2; 3, for X = x + b2=12 and Y =
2y + a1x+ a3, the curve equation becomes

Y 2 = 4X3 � (c4=12)X � (c6=216):

� disc: discriminant of the curve. This is only required to be non-zero, not necessarily a unit.

� j: j-invariant of the curve.
These are used as follows:

? E = ellinit([0,0,0, a4,a6]);

? E.b4

%2 = 2*a4

? E.disc

%3 = -64*a4^3 - 432*a6^2

3.5.1.2 Curves over R.

This in particular includes curves de�ned over Q. All member functions in this section return
data, as it is currently stored in the structure, if present; and otherwise compute it to the default
accuracy, that was �xed at the time of ellinit (via a t_REAL D domain argument, or realprecision
by default). The function ellperiods allows to recompute (and cache) the following data to current
realprecision.

� area: volume of the complex lattice de�ning E.

� roots is a vector whose three components contain the complex roots of the right hand side
g(x) of the attached b-model Y 2 = g(x). If the roots are all real, they are ordered by decreasing
value. If only one is real, it is the �rst component.

� omega: [!1; !2], periods forming a basis of the complex lattice de�ning E. The �rst
component !1 is the (positive) real period, in other words the integral of the N�eron di�erential
dx=(2y+ a1x+ a3) over the connected component of the identity component of E(R). The second
component !2 is a complex period, such that � = !1

!2
belongs to Poincar�e's half-plane (positive

imaginary part); not necessarily to the standard fundamental domain. It is normalized so that
=(!2) < 0 and either <(!2) = 0, when E.disc > 0 (E(R) has two connected components), or
<(!2) = !1=2

� eta is a row vector containing the quasi-periods �1 and �2 such that �i = 2�(!i=2), where
� is the Weierstrass zeta function attached to the period lattice; see ellzeta. In particular, the
Legendre relation holds: �2!1 � �1!2 = 2�i.
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Warning. As for the orientation of the basis of the period lattice, beware that many sources use
the inverse convention where !2=!1 has positive imaginary part and our !2 is the negative of theirs.
Our convention � = !1=!2 ensures that the action of PSL2 is the natural one:

[a; b; c; d] � � = (a� + b)=(c� + d) = (a!1 + b!2)=(c!1 + d!2);

instead of a twisted one. (Our tau is �1=� in the above inverse convention.)

3.5.1.3 Curves over Qp.

We advise to input a model de�ned over Q for such curves. In any case, if you input an
approximate model with t_PADIC coe�cients, it will be replaced by a lift to Q (an exact model
\close" to the one that was input) and all quantities will then be computed in terms of this lifted
model.

For the time being only curves with multiplicative reduction (split or non-split), i.e. vp(j) < 0,
are supported by non-trivial functions. In this case the curve is analytically isomorphic to �Q�

p=q
Z :=

Eq( �Qp), for some p-adic integer q (the Tate period). In particular, we have j(q) = j(E).

� p is the residual characteristic

� roots is a vector with a single component, equal to the p-adic root e1 of the right hand side
g(x) of the attached b-model Y 2 = g(x). The point (e1; 0) corresponds to �1 2 �Q�

p=q
Z under the

Tate parametrization.

� tate returns [u2; u; q; [a; b]; L;Ei] in the notation of Henniart-Mestre (CRAS t. 308, p. 391{
395, 1989): q is as above, u 2 Qp(

p�c6) is such that ��dx=(2y + a1x + a3) = udt=t, where
� : Eq ! E is an isomorphism (well de�ned up to sign) and dt=t is the canonical invariant
di�erential on the Tate curve; u2 2 Qp does not depend on �. (Technicality: if u 62 Qp, it is

stored as a quadratic t_POLMOD.) The parameters [a; b] satisfy 4u2b � agm(pa=b; 1)2 = 1 as in
Theorem 2 (loc. cit.). Ei describes the sequence of 2-isogenous curves (with kernel generated by
[0; 0]) Ei : y

2 = x(x + Ai)(x + Ai � Bi) converging quadratically towards the singular curve E1.
Finally, L is Mazur-Tate-Teitelbaum's L-invariant, equal to logp q=vp(q).
3.5.1.4 Curves over Fq.

� p is the characteristic of Fq.

� no is #E(Fq).

� cyc gives the cycle structure of E(Fq).

� gen returns the generators of E(Fq).

� group returns [no; cyc; gen], i.e. E(Fq) as an abelian group structure.

3.5.1.5 Curves over Q.

All functions should return a correct result, whether the model is minimal or not, but it is a
good idea to stick to minimal models whenever gcd(c4; c6) is easy to factor (minor speed-up). The
construction

E = ellminimalmodel(E0, &v)

replaces the original model E0 by a minimal model E, and the variable change v allows to go
between the two models:

ellchangepoint(P0, v)
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ellchangepointinv(P, v)

respectively map the point P0 on E0 to its image on E, and the point P on E to its pre-image on
E0.

A few routines | namely ellgenerators, ellidentify, ellsearch, forell | require the
optional package elldata (John Cremona's database) to be installed. In that case, the function
ellinit will allow alternative inputs, e.g. ellinit("11a1"). Functions using this package need to
load chunks of a large database in memory and require at least 2MB stack to avoid stack over
ows.

� gen returns the generators of E(Q), if known (from John Cremona's database)

3.5.1.6 Curves over number �elds.

� nf return the nf structure attached to the number �eld over which E is de�ned.

� bnf return the bnf structure attached to the number �eld over which E is de�ned or raise
an error (if only an nf is available).

3.5.2 ellL1(e; fr = 0g). Returns the value at s = 1 of the derivative of order r of the L-function
of the elliptic curve e.

? e = ellinit("11a1"); \\ order of vanishing is 0

? ellL1(e)

%2 = 0.2538418608559106843377589233

? e = ellinit("389a1"); \\ order of vanishing is 2

? ellL1(e)

%4 = -5.384067311837218089235032414 E-29

? ellL1(e, 1)

%5 = 0

? ellL1(e, 2)

%6 = 1.518633000576853540460385214

The main use of this function, after computing at low accuracy the order of vanishing using el-

lanalyticrank, is to compute the leading term at high accuracy to check (or use) the Birch and
Swinnerton-Dyer conjecture:

? \p18

realprecision = 18 significant digits

? e = ellinit("5077a1"); ellanalyticrank(e)

time = 8 ms.

%1 = [3, 10.3910994007158041]

? \p200

realprecision = 202 significant digits (200 digits displayed)

? ellL1(e, 3)

time = 104 ms.

%3 = 10.3910994007158041387518505103609170697263563756570092797[: : :]

The library syntax is GEN ellL1_bitprec(GEN e, long r, long bitprec).

3.5.3 elladd(E; z1 ; z2 ). Sum of the points z1 and z2 on the elliptic curve corresponding to E.

The library syntax is GEN elladd(GEN E, GEN z1, GEN z2).
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3.5.4 ellak(E;n). Computes the coe�cient an of the L-function of the elliptic curve E=Q, i.e. coef-
�cients of a newform of weight 2 by the modularity theorem (Taniyama-Shimura-Weil conjecture).
E must be an ell structure over Q as output by ellinit. E must be given by an integral model,
not necessarily minimal, although a minimal model will make the function faster.

? E = ellinit([0,1]);

? ellak(E, 10)

%2 = 0

? e = ellinit([5^4,5^6]); \\ not minimal at 5

? ellak(e, 5) \\ wasteful but works

%3 = -3

? E = ellminimalmodel(e); \\ now minimal

? ellak(E, 5)

%5 = -3

If the model is not minimal at a number of bad primes, then the function will be slower on those
n divisible by the bad primes. The speed should be comparable for other n:

? for(i=1,10^6, ellak(E,5))

time = 820 ms.

? for(i=1,10^6, ellak(e,5)) \\ 5 is bad, markedly slower

time = 1,249 ms.

? for(i=1,10^5,ellak(E,5*i))

time = 977 ms.

? for(i=1,10^5,ellak(e,5*i)) \\ still slower but not so much on average

time = 1,008 ms.

The library syntax is GEN akell(GEN E, GEN n).

3.5.5 ellan(E;n). Computes the vector of the �rst n Fourier coe�cients ak corresponding to the
elliptic curve E de�ned over a number �eld. If E is de�ned over Q, the curve may be given by an
arbitrary model, not necessarily minimal, although a minimal model will make the function faster.
Over a more general number �eld, the model must be locally minimal at all primes above 2 and 3.

The library syntax is GEN ellan(GEN E, long n). Also available is GEN ellanQ_zv(GEN e,

long n), which returns a t_VECSMALL instead of a t_VEC, saving on memory.

3.5.6 ellanalyticrank(e; fepsg). Returns the order of vanishing at s = 1 of the L-function of the
elliptic curve e and the value of the �rst non-zero derivative. To determine this order, it is assumed
that any value less than eps is zero. If no value of eps is given, a value of half the current precision
is used.

? e = ellinit("11a1"); \\ rank 0

? ellanalyticrank(e)

%2 = [0, 0.2538418608559106843377589233]

? e = ellinit("37a1"); \\ rank 1

? ellanalyticrank(e)

%4 = [1, 0.3059997738340523018204836835]

? e = ellinit("389a1"); \\ rank 2

? ellanalyticrank(e)

%6 = [2, 1.518633000576853540460385214]

? e = ellinit("5077a1"); \\ rank 3
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? ellanalyticrank(e)

%8 = [3, 10.39109940071580413875185035]

The library syntax is GEN ellanalyticrank_bitprec(GEN e, GEN eps = NULL, long bit-

prec).

3.5.7 ellap(E; fpg). Let E be an ell structure as output by ellinit, de�ned over a number �eld
or a �nite �eld Fq. The argument p is best left omitted if the curve is de�ned over a �nite �eld,
and must be a prime number or a maximal ideal otherwise. This function computes the trace of
Frobenius t for the elliptic curve E, de�ned by the equation #E(Fq) = q+1� t (for primes of good
reduction).

When the characteristic of the �nite �eld is large, the availability of the seadata package will
speed the computation.

If the curve is de�ned over Q, p must be explicitly given and the function computes the trace
of the reduction over Fp. The trace of Frobenius is also the ap coe�cient in the curve L-series
L(E; s) =

P
n ann

�s, whence the function name. The equation must be integral at p but need not
be minimal at p; of course, a minimal model will be more e�cient.

? E = ellinit([0,1]); \\ y^2 = x^3 + 0.x + 1, defined over Q

? ellap(E, 7) \\ 7 necessary here

%2 = -4 \\ #E(F_7) = 7+1-(-4) = 12

? ellcard(E, 7)

%3 = 12 \\ OK

? E = ellinit([0,1], 11); \\ defined over F_11

? ellap(E) \\ no need to repeat 11

%4 = 0

? ellap(E, 11) \\ ... but it also works

%5 = 0

? ellgroup(E, 13) \\ ouch, inconsistent input!

*** at top-level: ellap(E,13)

*** ^-----------

*** ellap: inconsistent moduli in Rg_to_Fp:

11

13

? Fq = ffgen(ffinit(11,3), 'a); \\ defines F_q := F_{11^3}

? E = ellinit([a+1,a], Fq); \\ y^2 = x^3 + (a+1)x + a, defined over F_q

? ellap(E)

%8 = -3

If the curve is de�ned over a more general number �eld than Q, the maximal ideal p must
be explicitly given in idealprimedec format. If p is above 2 or 3, the function currently assumes
(without checking) that the given model is locally minimal at p. There is no restriction at other
primes.

? K = nfinit(a^2+1); E = ellinit([1+a,0,1,0,0], K);

? fa = idealfactor(K, E.disc)

%2 =

[ [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]] 1]

[[13, [5, 1]~, 1, 1, [-5, -1; 1, -5]] 2]
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? ellap(E, fa[1,1])

%3 = -1 \\ non-split multiplicative reduction

? ellap(E, fa[2,1])

%4 = 1 \\ split multiplicative reduction

? P17 = idealprimedec(K,17)[1];

? ellap(E, P17)

%6 = 6 \\ good reduction

? E2 = ellchangecurve(E, [17,0,0,0]);

? ellap(E2, P17)

%8 = 6 \\ same, starting from a non-miminal model

? P3 = idealprimedec(K,3)[1];

? E3 = ellchangecurve(E, [3,0,0,0]);

? ellap(E, P3) \\ OK: E is minimal at P3

%11 = -2

? ellap(E3, P3) \\ junk: E3 is not minimal at P3 | 3

%12 = 0

Algorithms used. If E=Fq has CM by a principal imaginary quadratic order we use a fast
explicit formula (involving essentially Kronecker symbols and Cornacchia's algorithm), in O(log q)2.
Otherwise, we use Shanks-Mestre's baby-step/giant-step method, which runs in time ~O(q1=4) using
~O(q1=4) storage, hence becomes unreasonable when q has about 30 digits. Above this range, the
SEA algorithm becomes available, heuristically in ~O(log q)4, and primes of the order of 200 digits
become feasible. In small characteristic we use Mestre's (p=2), Kohel's (p=3,5,7,13), Satoh-Harley
(all in ~O(p2n2)) or Kedlaya's (in ~O(pn3)) algorithms.

The library syntax is GEN ellap(GEN E, GEN p = NULL).

3.5.8 ellbil(E; z1 ; z2 ). Deprecated alias for ellheight(E,P,Q).

The library syntax is GEN bilhell(GEN E, GEN z1, GEN z2, long prec).

3.5.9 ellcard(E; fpg). Let E be an ell structure as output by ellinit, de�ned over Q or a �nite
�eld Fq. The argument p is best left omitted if the curve is de�ned over a �nite �eld, and must
be a prime number otherwise. This function computes the order of the group E(Fq) (as would be
computed by ellgroup).

When the characteristic of the �nite �eld is large, the availability of the seadata package will
speed the computation.

If the curve is de�ned over Q, p must be explicitly given and the function computes the
cardinality of the reduction over Fp; the equation need not be minimal at p, but a minimal model
will be more e�cient. The reduction is allowed to be singular, and we return the order of the group
of non-singular points in this case.

The library syntax is GEN ellcard(GEN E, GEN p = NULL). Also available is GEN ell-

card(GEN E, GEN p) where p is not NULL.

3.5.10 ellchangecurve(E; v). Changes the data for the elliptic curve E by changing the coordi-
nates using the vector v=[u,r,s,t], i.e. if x0 and y0 are the new coordinates, then x = u2x0 + r,
y = u3y0 + su2x0 + t. E must be an ell structure as output by ellinit. The special case v = 1 is
also used instead of [1; 0; 0; 0] to denote the trivial coordinate change.

The library syntax is GEN ellchangecurve(GEN E, GEN v).
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3.5.11 ellchangepoint(x; v). Changes the coordinates of the point or vector of points x using the
vector v=[u,r,s,t], i.e. if x0 and y0 are the new coordinates, then x = u2x0+r, y = u3y0+su2x0+t
(see also ellchangecurve).

? E0 = ellinit([1,1]); P0 = [0,1]; v = [1,2,3,4];

? E = ellchangecurve(E0, v);

? P = ellchangepoint(P0,v)

%3 = [-2, 3]

? ellisoncurve(E, P)

%4 = 1

? ellchangepointinv(P,v)

%5 = [0, 1]

The library syntax is GEN ellchangepoint(GEN x, GEN v). The reciprocal function GEN

ellchangepointinv(GEN x, GEN ch) inverts the coordinate change.

3.5.12 ellchangepointinv(x; v). Changes the coordinates of the point or vector of points x using
the inverse of the isomorphism attached to v=[u,r,s,t], i.e. if x0 and y0 are the old coordinates,
then x = u2x0 + r, y = u3y0 + su2x0 + t (inverse of ellchangepoint).

? E0 = ellinit([1,1]); P0 = [0,1]; v = [1,2,3,4];

? E = ellchangecurve(E0, v);

? P = ellchangepoint(P0,v)

%3 = [-2, 3]

? ellisoncurve(E, P)

%4 = 1

? ellchangepointinv(P,v)

%5 = [0, 1] \\ we get back P0

The library syntax is GEN ellchangepointinv(GEN x, GEN v).

3.5.13 ellconvertname(name). Converts an elliptic curve name, as found in the elldata

database, from a string to a triplet [conductor ; isogeny class; index ]. It will also convert a triplet
back to a curve name. Examples:

? ellconvertname("123b1")

%1 = [123, 1, 1]

? ellconvertname(%)

%2 = "123b1"

The library syntax is GEN ellconvertname(GEN name).

3.5.14 elldivpol(E;n; fv =0 xg). n-division polynomial fn for the curve E in the variable v. In
standard notation, for any a�ne point P = (X;Y ) on the curve, we have

[n]P = (�n(P ) n(P ) : !n(P ) :  n(P )
3)

for some polynomials �n; !n;  n in Z[a1; a2; a3; a4; a6][X;Y ]. We have fn(X) =  n(X) for n odd,
and fn(X) =  n(X;Y )(2Y + a1X + a3) for n even. We have

f1 = 1; f2 = 4X3 + b2X
2 + 2b4X + b6; f3 = 3X4 + b2X

3 + 3b4X
2 + 3b6X + b8;

f4 = f2(2X
6 + b2X

5 + 5b4X
4 + 10b6X

3 + 10b8X
2 + (b2b8 � b4b6)X + (b8b4 � b26)); : : :

For n � 2, the roots of fn are the X-coordinates of points in E[n].

The library syntax is GEN elldivpol(GEN E, long n, long v = -1) where v is a variable
number.
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3.5.15 elleisnum(w; k; fflag = 0g). k being an even positive integer, computes the numerical value
of the Eisenstein series of weight k at the lattice w, as given by ellperiods, namely

(2i�=!2)
k
�
1 + 2=�(1� k)

X
n�1

nk�1qn=(1� qn)
�
;

where q = exp(2i��) and � := !1=!2 belongs to the complex upper half-plane. It is also possible
to directly input w = [!1; !2], or an elliptic curve E as given by ellinit.

? w = ellperiods([1,I]);

? elleisnum(w, 4)

%2 = 2268.8726415508062275167367584190557607

? elleisnum(w, 6)

%3 = -3.977978632282564763 E-33

? E = ellinit([1, 0]);

? elleisnum(E, 4, 1)

%5 = -47.999999999999999999999999999999999998

When flag is non-zero and k = 4 or 6, returns the elliptic invariants g2 or g3, such that

y2 = 4x3 � g2x� g3

is a Weierstrass equation for E.

The library syntax is GEN elleisnum(GEN w, long k, long flag, long prec).

3.5.16 elleta(w). Returns the quasi-periods [�1; �2] attached to the lattice basis w = [!1; !2].
Alternatively, w can be an elliptic curve E as output by ellinit, in which case, the quasi periods
attached to the period lattice basis E.omega (namely, E.eta) are returned.

? elleta([1, I])

%1 = [3.141592653589793238462643383, 9.424777960769379715387930149*I]

The library syntax is GEN elleta(GEN w, long prec).

3.5.17 ellformaldi�erential(E; fn = seriesprecisiong; ft =0 xg). Let ! := dx=(2y + a1x+ a3) be
the invariant di�erential form attached to the model E of some elliptic curve (ellinit form), and
� := x(t)!. Return n terms (seriesprecision by default) of f(t); g(t) two power series in the
formal parameter t = �x=y such that ! = f(t)dt, � = g(t)dt:

f(t) = 1 + a1t+ (a21 + a2)t
2 + : : : ; g(t) = t�2 + : : :

? E = ellinit([-1,1/4]); [f,g] = ellformaldifferential(E,7,'t);

? f

%2 = 1 - 2*t^4 + 3/4*t^6 + O(t^7)

? g

%3 = t^-2 - t^2 + 1/2*t^4 + O(t^5)

The library syntax is GEN ellformaldifferential(GEN E, long precdl, long n = -1)

where n is a variable number.
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3.5.18 ellformalexp(E; fn = seriesprecisiong; fz =0 xg). The elliptic formal exponential Exp
attached to E is the isomorphism from the formal additive law to the formal group of E. It is
normalized so as to be the inverse of the elliptic logarithm (see ellformallog): Exp � L = Id.
Return n terms of this power series:

? E=ellinit([-1,1/4]); Exp = ellformalexp(E,10,'z)

%1 = z + 2/5*z^5 - 3/28*z^7 + 2/15*z^9 + O(z^11)

? L = ellformallog(E,10,'t);

? subst(Exp,z,L)

%3 = t + O(t^11)

The library syntax is GEN ellformalexp(GEN E, long precdl, long n = -1) where n is a
variable number.

3.5.19 ellformallog(E; fn = seriesprecisiong; fv =0 xg). The formal elliptic logarithm is a series
L in tK[[t]] such that dL = ! = dx=(2y + a1x + a3), the canonical invariant di�erential attached
to the model E. It gives an isomorphism from the formal group of E to the additive formal group.

? E = ellinit([-1,1/4]); L = ellformallog(E, 9, 't)

%1 = t - 2/5*t^5 + 3/28*t^7 + 2/3*t^9 + O(t^10)

? [f,g] = ellformaldifferential(E,8,'t);

? L' - f

%3 = O(t^8)

The library syntax is GEN ellformallog(GEN E, long precdl, long n = -1) where n is a
variable number.

3.5.20 ellformalpoint(E; fn = seriesprecisiong; fv =0 xg). If E is an elliptic curve, return the
coordinates x(t); y(t) in the formal group of the elliptic curve E in the formal parameter t = �x=y
at 1:

x = t�2 � a1t�1 � a2 � a3t+ : : :

y = �t�3 � a1t�2 � a2t�1 � a3 + : : :

Return n terms (seriesprecision by default) of these two power series, whose coe�cients are in
Z[a1; a2; a3; a4; a6].

? E = ellinit([0,0,1,-1,0]); [x,y] = ellformalpoint(E,8,'t);

? x

%2 = t^-2 - t + t^2 - t^4 + 2*t^5 + O(t^6)

? y

%3 = -t^-3 + 1 - t + t^3 - 2*t^4 + O(t^5)

? E = ellinit([0,1/2]); ellformalpoint(E,7)

%4 = [x^-2 - 1/2*x^4 + O(x^5), -x^-3 + 1/2*x^3 + O(x^4)]

The library syntax is GEN ellformalpoint(GEN E, long precdl, long n = -1) where n is
a variable number.
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3.5.21 ellformalw(E; fn = seriesprecisiong; ft =0 xg). Return the formal power series w attached
to the elliptic curve E, in the variable t:

w(t) = t3 + a1t
4 + (a2 + a21)t

5 + � � �+O(tn+3);

which is the formal expansion of �1=y in the formal parameter t := �x=y at 1 (take n =
seriesprecision if n is omitted). The coe�cients of w belong to Z[a1; a2; a3; a4; a6].

? E=ellinit([3,2,-4,-2,5]); ellformalw(E, 5, 't)

%1 = t^3 + 3*t^4 + 11*t^5 + 35*t^6 + 101*t^7 + O(t^8)

The library syntax is GEN ellformalw(GEN E, long precdl, long n = -1) where n is a
variable number.

3.5.22 ellfromeqn(P ). Given a genus 1 plane curve, de�ned by the a�ne equation f(x; y) = 0,
return the coe�cients [a1; a2; a3; a4; a6] of a Weierstrass equation for its Jacobian. This allows to
recover a Weierstrass model for an elliptic curve given by a general plane cubic or by a binary
quartic or biquadratic model. The function implements the f 7! f� formulae of Artin, Tate and
Villegas (Advances in Math. 198 (2005), pp. 366{382).

In the example below, the function is used to convert between twisted Edwards coordinates
and Weierstrass coordinates.

? e = ellfromeqn(a*x^2+y^2 - (1+d*x^2*y^2))

%1 = [0, -a - d, 0, -4*d*a, 4*d*a^2 + 4*d^2*a]

? E = ellinit(ellfromeqn(y^2-x^2 - 1 +(121665/121666*x^2*y^2)),2^255-19);

? isprime(ellcard(E) / 8)

%3 = 1

The elliptic curve attached to the sum of two cubes is given by

? ellfromeqn(x^3+y^3 - a)

%1 = [0, 0, -9*a, 0, -27*a^2]

Congruent number problem:. Let n be an integer, if a2 + b2 = c2 and ab = 2n, then by
substituting b by 2n=a in the �rst equation, we get ((a2 + (2n=a)2) � c2)a2 = 0. We set x = a,
y = ac.

? En = ellfromeqn((x^2 + (2*n/x)^2 - (y/x)^2)*x^2)

%1 = [0, 0, 0, -16*n^2, 0]

For example 23 is congruent since the curve has a point of in�nite order, namely:

? ellheegner( ellinit(subst(En, n, 23)) )

%2 = [168100/289, 68053440/4913]

The library syntax is GEN ellfromeqn(GEN P).

3.5.23 ellfromj(j). Returns the coe�cients [a1; a2; a3; a4; a6] of a �xed elliptic curve with j-
invariant j.

The library syntax is GEN ellfromj(GEN j).
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3.5.24 ellgenerators(E). If E is an elliptic curve over the rationals, return a Z-basis of the free
part of the Mordell-Weil group attached to E. This relies on the elldata database being installed
and referencing the curve, and so is only available for curves over Z of small conductors. If E is
an elliptic curve over a �nite �eld Fq as output by ellinit, return a minimal set of generators for
the group E(Fq).

The library syntax is GEN ellgenerators(GEN E).

3.5.25 ellglobalred(E). Let E be an ell structure as output by ellinit attached to an elliptic
curve de�ned over a number �eld. This function calculates the arithmetic conductor and the global
Tamagawa number c. The result [N; v; c; F; L] is slightly di�erent if E is de�ned over Q (domain
D = 1 in ellinit) or over a number �eld (domain D is a number �eld structure, including
nfinit(x) representing Q !):

� N is the arithmetic conductor of the curve,

� v is an obsolete �eld, left in place for backward compatibility. If E is de�ned over Q, v gives
the coordinate change for E to the standard minimal integral model (ellminimalmodel provides
it in a cheaper way); if E is de�ned over another number �eld, v gives a coordinate change to an
integral model (ellintegral model provides it in a cheaper way).

� c is the product of the local Tamagawa numbers cp, a quantity which enters in the Birch and
Swinnerton-Dyer conjecture,

� F is the factorization of N ,

� L is a vector, whose i-th entry contains the local data at the i-th prime ideal divisor of N ,
i.e. L[i] = elllocalred(E,F[i,1]). If E is de�ned over Q, the local coordinate change has been
deleted and replaced by a 0; if E is de�ned over another number �eld the local coordinate change
to a local minimal model is given relative to the integral model a�orded by v (so either start from
an integral model so that v be trivial, or apply v �rst).

The library syntax is GEN ellglobalred(GEN E).

3.5.26 ellgroup(E; fpg; fflagg). Let E be an ell structure as output by ellinit, de�ned over
Q or a �nite �eld Fq. The argument p is best left omitted if the curve is de�ned over a �nite
�eld, and must be a prime number otherwise. This function computes the structure of the group
E(Fq) � Z=d1Z� Z=d2Z, with d2 j d1.

If the curve is de�ned over Q, p must be explicitly given and the function computes the
structure of the reduction over Fp; the equation need not be minimal at p, but a minimal model
will be more e�cient. The reduction is allowed to be singular, and we return the structure of the
(cyclic) group of non-singular points in this case.

If the 
ag is 0 (default), return [d1] or [d1; d2], if d2 > 1. If the 
ag is 1, return a triple
[h; cyc; gen], where h is the curve cardinality, cyc gives the group structure as a product of cyclic
groups (as per flag = 0). More precisely, if d2 > 1, the output is [d1d2; [d1; d2]; [P;Q]] where P is
of order d1 and [P;Q] generates the curve.
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Caution. It is not guaranteed that Q has order d2, which in the worst case requires an expensive
discrete log computation. Only that ellweilpairing(E, P, Q, d1) has order d2.

? E = ellinit([0,1]); \\ y^2 = x^3 + 0.x + 1, defined over Q

? ellgroup(E, 7)

%2 = [6, 2] \\ Z/6 x Z/2, non-cyclic

? E = ellinit([0,1] * Mod(1,11)); \\ defined over F_11

? ellgroup(E) \\ no need to repeat 11

%4 = [12]

? ellgroup(E, 11) \\ ... but it also works

%5 = [12]

? ellgroup(E, 13) \\ ouch, inconsistent input!

*** at top-level: ellgroup(E,13)

*** ^--------------

*** ellgroup: inconsistent moduli in Rg_to_Fp:

11

13

? ellgroup(E, 7, 1)

%6 = [12, [6, 2], [[Mod(2, 7), Mod(4, 7)], [Mod(4, 7), Mod(4, 7)]]]

If E is de�ned over Q, we allow singular reduction and in this case we return the structure of the
group of non-singular points, satisfying #Ens(Fp) = p� ap.

? E = ellinit([0,5]);

? ellgroup(E, 5, 1)

%2 = [5, [5], [[Mod(4, 5), Mod(2, 5)]]]

? ellap(E, 5)

%3 = 0 \\ additive reduction at 5

? E = ellinit([0,-1,0,35,0]);

? ellgroup(E, 5, 1)

%5 = [4, [4], [[Mod(2, 5), Mod(2, 5)]]]

? ellap(E, 5)

%6 = 1 \\ split multiplicative reduction at 5

? ellgroup(E, 7, 1)

%7 = [8, [8], [[Mod(3, 7), Mod(5, 7)]]]

? ellap(E, 7)

%8 = -1 \\ non-split multiplicative reduction at 7

The library syntax is GEN ellgroup0(GEN E, GEN p = NULL, long flag). Also available is
GEN ellgroup(GEN E, GEN p), corresponding to flag= 0.

3.5.27 ellheegner(E). Let E be an elliptic curve over the rationals, assumed to be of (analytic)
rank 1. This returns a non-torsion rational point on the curve, whose canonical height is equal to
the product of the elliptic regulator by the analytic Sha.

This uses the Heegner point method, described in Cohen GTM 239; the complexity is propor-
tional to the product of the square root of the conductor and the height of the point (thus, it is
preferable to apply it to strong Weil curves).

? E = ellinit([-157^2,0]);

? u = ellheegner(E); print(u[1], "\n", u[2])

69648970982596494254458225/166136231668185267540804
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538962435089604615078004307258785218335/67716816556077455999228495435742408

? ellheegner(ellinit([0,1])) \\ E has rank 0 !

*** at top-level: ellheegner(E=ellinit

*** ^--------------------

*** ellheegner: The curve has even analytic rank.

The library syntax is GEN ellheegner(GEN E).

3.5.28 ellheight(E;P; fQg). Global N�eron-Tate height h(P ) of the point P on the elliptic curve
E=Q, using the normalization in Cremona's Algorithms for modular elliptic curves. E must be an
ell as output by ellinit; it needs not be given by a minimal model although the computation
will be faster if it is.

If the argument Q is present, computes the value of the bilinear form (h(P +Q)�h(P �Q))=4.
The library syntax is GEN ellheight0(GEN E, GEN P, GEN Q = NULL, long prec). Also

available is GEN ellheight(GEN E, GEN P, long prec) (Q omitted).

3.5.29 ellheightmatrix(E; x). x being a vector of points, this function outputs the Gram matrix of
x with respect to the N�eron-Tate height, in other words, the (i; j) component of the matrix is equal
to ellbil(E,x[i],x[j]). The rank of this matrix, at least in some approximate sense, gives the
rank of the set of points, and if x is a basis of the Mordell-Weil group of E, its determinant is equal
to the regulator of E. Note our height normalization follows Cremona's Algorithms for modular
elliptic curves: this matrix should be divided by 2 to be in accordance with, e.g., Silverman's
normalizations.

The library syntax is GEN ellheightmatrix(GEN E, GEN x, long prec).

3.5.30 ellidentify(E). Look up the elliptic curve E, de�ned by an arbitrary model over Q, in
the elldata database. Return [[N, M, G], C] where N is the curve name in Cremona's elliptic
curve database, M is the minimal model, G is a Z-basis of the free part of the Mordell-Weil group
E(Q) and C is the change of coordinates change, suitable for ellchangecurve.

The library syntax is GEN ellidentify(GEN E).

3.5.31 ellinit(x; fD = 1g). Initialize an ell structure, attached to the elliptic curve E. E is either

� a 5-component vector [a1; a2; a3; a4; a6] de�ning the elliptic curve with Weierstrass equation

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6;

� a 2-component vector [a4; a6] de�ning the elliptic curve with short Weierstrass equation

Y 2 = X3 + a4X + a6;

� a character string in Cremona's notation, e.g. "11a1", in which case the curve is retrieved
from the elldata database if available.

The optional argument D describes the domain over which the curve is de�ned:

� the t_INT 1 (default): the �eld of rational numbers Q.

� a t_INT p, where p is a prime number: the prime �nite �eld Fp.
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� an t_INTMOD Mod(a, p), where p is a prime number: the prime �nite �eld Fp.

� a t_FFELT, as returned by ffgen: the corresponding �nite �eld Fq.

� a t_PADIC, O(pn): the �eld Qp, where p-adic quantities will be computed to a relative
accuracy of n digits. We advise to input a model de�ned over Q for such curves. In any case, if
you input an approximate model with t_PADIC coe�cients, it will be replaced by a lift to Q (an
exact model \close" to the one that was input) and all quantities will then be computed in terms
of this lifted model, at the given accuracy.

� a t_REAL x: the �eld C of complex numbers, where 
oating point quantities are by default
computed to a relative accuracy of precision(x). If no such argument is given, the value of
realprecision at the time ellinit is called will be used.

� a number �eld K, given by a nf or bnf structure; a bnf is required for ellminimalmodel.

� a prime ideal p, given by a prid structure; valid if x is a curve de�ned over a number �eld
K and the equation is integral and minimal at p.

This argument D is indicative: the curve coe�cients are checked for compatibility, possibly
changing D; for instance if D = 1 and an t_INTMOD is found. If inconsistencies are detected, an
error is raised:

? ellinit([1 + O(5), 1], O(7));

*** at top-level: ellinit([1+O(5),1],O

*** ^--------------------

*** ellinit: inconsistent moduli in ellinit: 7 != 5

If the curve coe�cients are too general to �t any of the above domain categories, only basic
operations, such as point addition, will be supported later.

If the curve (seen over the domain D) is singular, fail and return an empty vector [].

? E = ellinit([0,0,0,0,1]); \\ y^2 = x^3 + 1, over Q

? E = ellinit([0,1]); \\ the same curve, short form

? E = ellinit("36a1"); \\ sill the same curve, Cremona's notations

? E = ellinit([0,1], 2) \\ over F2: singular curve

%4 = []

? E = ellinit(['a4,'a6] * Mod(1,5)); \\ over F_5[a4,a6], basic support !

The result of ellinit is an ell structure. It contains at least the following information in its
components:

a1; a2; a3; a4; a6; b2; b4; b6; b8; c4; c6;�; j:

All are accessible via member functions. In particular, the discriminant is E.disc, and the j-
invariant is E.j.

? E = ellinit([a4, a6]);

? E.disc

%2 = -64*a4^3 - 432*a6^2

? E.j

%3 = -6912*a4^3/(-4*a4^3 - 27*a6^2)

Further components contain domain-speci�c data, which are in general dynamic: only com-
puted when needed, and then cached in the structure.
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? E = ellinit([2,3], 10^60+7); \\ E over F_p, p large

? ellap(E)

time = 4,440 ms.

%2 = -1376268269510579884904540406082

? ellcard(E); \\ now instantaneous !

time = 0 ms.

? ellgenerators(E);

time = 5,965 ms.

? ellgenerators(E); \\ second time instantaneous

time = 0 ms.

See the description of member functions related to elliptic curves at the beginning of this
section.

The library syntax is GEN ellinit(GEN x, GEN D = NULL, long prec).

3.5.32 ellintegralmodel(E; f&vg). Let E be an ell structure over a number �eld K. This
function returns an integral model. If v is present, sets v = [u; 0; 0; 0] to the corresponding change
of variable: the return value is identical to that of ellchangecurve(E, v).

The library syntax is GEN ellintegralmodel(GEN E, GEN *v = NULL).

3.5.33 ellisdivisible(E;P; n; f&Qg)). Given E=K a number �eld and P in E(K) return 1 if
P = [n]R for some R in E(K) and set Q to one such R; and return 0 otherwise. The integer n � 0
may be given as ellxn(E,n), if many points need to be tested.

? K = nfinit(polcyclo(11,t));

? E = ellinit([0,-1,1,0,0], K);

? P = [0,0];

? ellorder(E,P)

%4 = 5

? ellisdivisible(E,P,5, &Q)

%5 = 1

? lift(Q)

%6 = [-t^7-t^6-t^5-t^4+1, -t^9-2*t^8-2*t^7-3*t^6-3*t^5-2*t^4-2*t^3-t^2-1]

? ellorder(E, Q)

%7 = 25

The algebraic complexity of the underlying algorithm is in O(n4), so it is advisable to �rst factor
n, then use a chain of checks attached to the prime divisors of n: the function will do it itself unless
n is given in ellxn form.

The library syntax is long ellisdivisible(GEN E, GEN P, GEN n, GEN *Q) = NULL)

.
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3.5.34 ellisogeny(E;G; fonly image = 0g; fx =0 xg; fy =0 yg). Given an elliptic curve E, a �nite
subgroup G of E is given either as a generating point P (for a cyclic G) or as a polynomial whose
roots vanish on the x-coordinates of the non-zero elements of G (general case and more e�cient if
available). This function returns the [a1; a2; a3; a4; a6] invariants of the quotient elliptic curve E=G
and (if only image is zero (the default)) a vector of rational functions [f; g; h] such that the isogeny
E ! E=G is given by (x; y) 7! (f(x)=h(x)2; g(x; y)=h(x)3).

? E = ellinit([0,1]);

? elltors(E)

%2 = [6, [6], [[2, 3]]]

? ellisogeny(E, [2,3], 1) \\ Weierstrass model for E/<P>

%3 = [0, 0, 0, -135, -594]

? ellisogeny(E,[-1,0])

%4 = [[0,0,0,-15,22], [x^3+2*x^2+4*x+3, y*x^3+3*y*x^2-2*y, x+1]]

The library syntax is GEN ellisogeny(GEN E, GEN G, long only_image, long x = -1,

long y = -1) where x, y are variable numbers.

3.5.35 ellisogenyapply(f; g). Given an isogeny of elliptic curves f : E0 ! E (being the result of
a call to ellisogeny), apply f to g:

� if g is a point P in the domain of f , return the image f(P );

� if g : E00 ! E0 is a compatible isogeny, return the composite isogeny f � g : E00 ! E.

? one = ffgen(101, 't)^0;

? E = ellinit([6, 53, 85, 32, 34] * one);

? P = [84, 71] * one;

? ellorder(E, P)

%4 = 5

? [F, f] = ellisogeny(E, P); \\ f: E->F = E/<P>

? ellisogenyapply(f, P)

%6 = [0]

? F = ellinit(F);

? Q = [89, 44] * one;

? ellorder(F, Q)

%9 = 2

? [G, g] = ellisogeny(F, Q); \\ g: F->G = F/<Q>

? gof = ellisogenyapply(g, f); \\ gof: E -> G

The library syntax is GEN ellisogenyapply(GEN f, GEN g).

3.5.36 ellisomat(E; f
 = 0g). Given an elliptic curve E de�ned over Q, compute representatives
of the isomorphism classes of elliptic curves Q-isogenous to E. The function returns a vector [L;M ]
where L is a list of triples [Ei; fi; gi], where Ei is an elliptic curve in [a4; a6] form, fi : E ! Ei is a
rational isogeny, gi : Ei ! E is the dual isogeny of fi, and M is the matrix such that Mi;j is the
degree of the isogeny between Ei and Ej . Furthermore the �rst curve E1 is isomorphic to E by f1.
If the 
ag 
 = 1, the fi and gi are not computed, which saves time, and L is the list of the curves
Ei.

? E = ellinit("14a1");

? [L,M] = ellisomat(E);
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? LE = apply(x->x[1], L) \\ list of curves

%3 = [[215/48,-5291/864],[-675/16,6831/32],[-8185/48,-742643/864],

[-1705/48,-57707/864],[-13635/16,306207/32],[-131065/48,-47449331/864]]

? L[2][2] \\ isogeny f_2

%4 = [x^3+3/4*x^2+19/2*x-311/12,

1/2*x^4+(y+1)*x^3+(y-4)*x^2+(-9*y+23)*x+(55*y+55/2),x+1/3]

? L[2][3] \\ dual isogeny g_2

%5 = [1/9*x^3-1/4*x^2-141/16*x+5613/64,

-1/18*x^4+(1/27*y-1/3)*x^3+(-1/12*y+87/16)*x^2+(49/16*y-48)*x

+(-3601/64*y+16947/512),x-3/4]

? apply(E->ellidentify(ellinit(E))[1][1], LE)

%6 = ["14a1","14a4","14a3","14a2","14a6","14a5"]

? M

%7 =

[1 3 3 2 6 6]

[3 1 9 6 2 18]

[3 9 1 6 18 2]

[2 6 6 1 3 3]

[6 2 18 3 1 9]

[6 18 2 3 9 1]

The library syntax is GEN ellisomat(GEN E, long fl).

3.5.37 ellisoncurve(E; z). Gives 1 (i.e. true) if the point z is on the elliptic curve E, 0 otherwise.
If E or z have imprecise coe�cients, an attempt is made to take this into account, i.e. an imprecise
equality is checked, not a precise one. It is allowed for z to be a vector of points in which case a
vector (of the same type) is returned.

The library syntax is GEN ellisoncurve(GEN E, GEN z). Also available is int oncurve(GEN

E, GEN z) which does not accept vectors of points.

3.5.38 ellissupersingular(E; fpg). Return 1 if the elliptic curve E de�ned over a number �eld or
a �nite �eld is supersingular at p, and 0 otherwise. If the curve is de�ned over a number �eld, p
must be explicitly given, and must be a prime number, resp. a maximal ideal, if the curve is de�ned
over Q, resp. a general number �eld: we return 1 if and only if E has supersingular good reduction
at p.

Alternatively, E can be given by its j-invariant in a �nite �eld. In this case p must be omitted.

? g = ffprimroot(ffgen(7^5))

%1 = x^3 + 2*x^2 + 3*x + 1

? [g^n | n <- [1 .. 7^5 - 1], ellissupersingular(g^n)]

%2 = [6]

? K = nfinit(y^3-2); P = idealprimedec(K, 2)[1];

? E = ellinit([y,1], K);

? ellissupersingular(E, P)

%5 = 1

The library syntax is GEN ellissupersingular(GEN E, GEN p = NULL). Also available is int
elljissupersingular(GEN j) where j is a j-invariant of a curve over a �nite �eld.

167



3.5.39 ellj(x). Elliptic j-invariant. x must be a complex number with positive imaginary part, or
convertible into a power series or a p-adic number with positive valuation.

The library syntax is GEN jell(GEN x, long prec).

3.5.40 elllocalred(E; p). Calculates the Kodaira type of the local �ber of the elliptic curve E at
p. E must be an ell structure as output by ellinit, over Q (p a rational prime) or a number
�eld K (p a maximal ideal given by a prid structure), and is assumed to have all its coe�cients
ai integral. The result is a 4-component vector [f; kod; v; c]. Here f is the exponent of p in the
arithmetic conductor of E, and kod is the Kodaira type which is coded as follows:

1 means good reduction (type I0), 2, 3 and 4 mean types II, III and IV respectively, 4+ � with
� > 0 means type I� ; �nally the opposite values �1, �2, etc. refer to the starred types I�0, II

�, etc.
The third component v is itself a vector [u; r; s; t] giving the coordinate changes done during the
local reduction; u = 1 if and only if the given equation was already minimal at p. Finally, the last
component c is the local Tamagawa number cp.

The library syntax is GEN elllocalred(GEN E, GEN p).

3.5.41 elllog(E;P;G; fog). Given two points P and G on the elliptic curve E=Fq, returns the
discrete logarithm of P in base G, i.e. the smallest non-negative integer n such that P = [n]G.
See znlog for the limitations of the underlying discrete log algorithms. If present, o represents the
order of G, see Section 3.4.2; the preferred format for this parameter is [N, factor(N)], where N
is the order of G.

If no o is given, assume that G generates the curve. The function also assumes that P is a
multiple of G.

? a = ffgen(ffinit(2,8),'a);

? E = ellinit([a,1,0,0,1]); \\ over F_{2^8}

? x = a^3; y = ellordinate(E,x)[1];

? P = [x,y]; G = ellmul(E, P, 113);

? ord = [242, factor(242)]; \\ P generates a group of order 242. Initialize.

? ellorder(E, G, ord)

%4 = 242

? e = elllog(E, P, G, ord)

%5 = 15

? ellmul(E,G,e) == P

%6 = 1

The library syntax is GEN elllog(GEN E, GEN P, GEN G, GEN o = NULL).

3.5.42 elllseries(E; s; fA = 1g). This function is deprecated, use lfun(E,s) instead.

E being an elliptic curve, given by an arbitrary model over Q as output by ellinit, this
function computes the value of the L-series of E at the (complex) point s. This function uses an
O(N1=2) algorithm, where N is the conductor.

The optional parameter A �xes a cuto� point for the integral and is best left omitted; the result
must be independent of A, up to realprecision, so this allows to check the function's accuracy.

The library syntax is GEN elllseries(GEN E, GEN s, GEN A = NULL, long prec).
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3.5.43 ellminimalmodel(E; f&vg). Let E be an ell structure over a number �eld K. This
function determines whether E admits a global minimal integral model. If so, it returns it and
sets v = [u; r; s; t] to the corresponding change of variable: the return value is identical to that of
ellchangecurve(E, v).

Else return the (non-principal) Weierstrass class of E, i.e. the class of
Q

p(vp���p)=12 where
� = E:disc is the model's discriminant and p�p is the local minimal discriminant. This function
requires either that E be de�ned over the rational �eld Q (with domain D = 1 in ellinit), in
which case a global minimal model always exists, or over a number �eld given by a bnf structure.
The Weierstrass class is given in bnfisprincipal format, i.e. in terms of the K.gen generators.

The resulting model has integral coe�cients and is everywhere minimal, the coe�cients a1 and
a3 are reduced modulo 2 (in terms of the �xed integral basis K.zk) and a2 is reduced modulo 3.
Over Q, we further require that a1 and a3 be 0 or 1, that a2 be 0 or �1 and that u > 0 in the
change of variable: both the model and the change of variable v are then unique.

? e = ellinit([6,6,12,55,233]); \\ over Q

? E = ellminimalmodel(e, &v);

? E[1..5]

%3 = [0, 0, 0, 1, 1]

? v

%4 = [2, -5, -3, 9]

? K = bnfinit(a^2-65); \\ over a non-principal number field

? K.cyc

%2 = [2]

? u = Mod(8+a, K.pol);

? E = ellinit([1,40*u+1,0,25*u^2,0], K);

? ellminimalmodel(E) \\ no global minimal model exists over Z_K

%6 = [1]~

The library syntax is GEN ellminimalmodel(GEN E, GEN *v = NULL).

3.5.44 ellminimaltwist(E; fflag = 0g). Let E be an elliptic curve de�ned over Q, return a
discriminant D such that the twist of E by D is minimal among all possible quadratic twists, i.e.
if flag = 0, its minimal model has minimal discriminant, or if flag = 1, it has minimal conductor.

In the example below, we �nd a curve with j-invariant 3 and minimal conductor.

? E=ellminimalmodel(ellinit(ellfromj(3)));

? ellglobalred(E)[1]

%2 = 357075

? D = ellminimaltwist(E,1)

%3 = -15

? E2=ellminimalmodel(ellinit(elltwist(E,D)));

? ellglobalred(E2)[1]

%5 = 14283

The library syntax is GEN ellminimaltwist0(GEN E, long flag). Also available are GEN

ellminimaltwist(E) for flag = 0, and GEN ellminimaltwistcond(E) for flag = 1.
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3.5.45 ellmoddegree(e). e being an elliptic curve de�ned over Q output by ellinit, compute
the modular degree of e divided by the square of the Manin constant. Return [D; err], where D is
a rational number and err is exponent of the truncation error.

The library syntax is GEN ellmoddegree(GEN e, long bitprec).

3.5.46 ellmodulareqn(N; fxg; fyg). Given a prime N < 500, return a vector [P; t] where P (x; y)
is a modular equation of level N , i.e. a bivariate polynomial with integer coe�cients; t indicates
the type of this equation: either canonical (t = 0) or Atkin (t = 1). This function requires the
seadata package and its only use is to give access to the package contents. See polmodular for a
more general and more 
exible function.

Let j be the j-invariant function. The polynomial P satis�es the functional equation,

P (f; j) = P (f jWN ; j jWN ) = 0

for some modular function f = fN (hand-picked for each �xed N to minimize its size, see below),
where WN (�) = �1=(N�) is the Atkin-Lehner involution. These two equations allow to compute
the values of the classical modular polynomial �N , such that �N (j(�); j(N�)) = 0, while being
much smaller than the latter. More precisely, we have j(WN (�)) = j(N�); the function f is
invariant under �0(N) and also satis�es

� for Atkin type: f jWN = f ;

� for canonical type: let s = 12=gcd(12; N � 1), then f j WN = Ns=f . In this case, f has a

simple de�nition: f(�) = Ns
�
�(N�)=�(�)

�2s
, where � is Dedekind's eta function.

The following GP function returns values of the classical modular polynomial by eliminating
fN (�) in the above functional equation, for N � 31 or N 2 f41; 47; 59; 71g.

classicaleqn(N, X='X, Y='Y)=

{

my([P,t] = ellmodulareqn(N), Q, d);

if (poldegree(P,'y) > 2, error("level unavailable in classicaleqn"));

if (t == 0, \\ Canonical

my(s = 12/gcd(12,N-1));

Q = 'x^(N+1) * substvec(P,['x,'y],[N^s/'x,Y]);

d = N^(s*(2*N+1)) * (-1)^(N+1);

, \\ Atkin

Q = subst(P,'y,Y);

d = (X-Y)^(N+1));

polresultant(subst(P,'y,X), Q) / d;

}

The library syntax is GEN ellmodulareqn(long N, long x = -1, long y = -1) where x, y
are variable numbers.
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3.5.47 ellmul(E; z; n). Computes [n]z, where z is a point on the elliptic curve E. The exponent
n is in Z, or may be a complex quadratic integer if the curve E has complex multiplication by n
(if not, an error message is issued).

? Ei = ellinit([1,0]); z = [0,0];

? ellmul(Ei, z, 10)

%2 = [0] \\ unsurprising: z has order 2

? ellmul(Ei, z, I)

%3 = [0, 0] \\ Ei has complex multiplication by Z[i]

? ellmul(Ei, z, quadgen(-4))

%4 = [0, 0] \\ an alternative syntax for the same query

? Ej = ellinit([0,1]); z = [-1,0];

? ellmul(Ej, z, I)

*** at top-level: ellmul(Ej,z,I)

*** ^--------------

*** ellmul: not a complex multiplication in ellmul.

? ellmul(Ej, z, 1+quadgen(-3))

%6 = [1 - w, 0]

The simple-minded algorithm for the CM case assumes that we are in characteristic 0, and
that the quadratic order to which n belongs has small discriminant.

The library syntax is GEN ellmul(GEN E, GEN z, GEN n).

3.5.48 ellneg(E; z). Opposite of the point z on elliptic curve E.

The library syntax is GEN ellneg(GEN E, GEN z).

3.5.49 ellnonsingularmultiple(E;P ). Given an elliptic curve E=Q (more precisely, a model
de�ned over Q of a curve) and a rational point P 2 E(Q), returns the pair [R;n], where n is the
least positive integer such that R := [n]P has good reduction at every prime. More precisely, its
image in a minimal model is everywhere non-singular.

? e = ellinit("57a1"); P = [2,-2];

? ellnonsingularmultiple(e, P)

%2 = [[1, -1], 2]

? e = ellinit("396b2"); P = [35, -198];

? [R,n] = ellnonsingularmultiple(e, P);

? n

%5 = 12

The library syntax is GEN ellnonsingularmultiple(GEN E, GEN P).
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3.5.50 ellorder(E; z; fog). Gives the order of the point z on the elliptic curve E, de�ned over a
�nite �eld or a number �eld. Return (the impossible value) zero if the point has in�nite order.

? E = ellinit([-157^2,0]); \\ the "157-is-congruent" curve

? P = [2,2]; ellorder(E, P)

%2 = 2

? P = ellheegner(E); ellorder(E, P) \\ infinite order

%3 = 0

? K = nfinit(polcyclo(11,t)); E=ellinit("11a3", K); T = elltors(E);

? ellorder(E, T.gen[1])

%5 = 25

? E = ellinit(ellfromj(ffgen(5^10)));

? ellcard(E)

%7 = 9762580

? P = random(E); ellorder(E, P)

%8 = 4881290

? p = 2^160+7; E = ellinit([1,2], p);

? N = ellcard(E)

%9 = 1461501637330902918203686560289225285992592471152

? o = [N, factor(N)];

? for(i=1,100, ellorder(E,random(E)))

time = 260 ms.

The parameter o, is now mostly useless, and kept for backward compatibility. If present,
it represents a non-zero multiple of the order of z, see Section 3.4.2; the preferred format for this
parameter is [ord, factor(ord)], where ord is the cardinality of the curve. It is no longer needed
since PARI is now able to compute it over large �nite �elds (was restricted to small prime �elds
at the time this feature was introduced), and caches the result in E so that it is computed and
factored only once. Modifying the last example, we see that including this extra parameter provides
no improvement:

? o = [N, factor(N)];

? for(i=1,100, ellorder(E,random(E),o))

time = 260 ms.

The library syntax is GEN ellorder(GEN E, GEN z, GEN o = NULL). The obsolete form GEN

orderell(GEN e, GEN z) should no longer be used.

3.5.51 ellordinate(E; x). Gives a 0, 1 or 2-component vector containing the y-coordinates of the
points of the curve E having x as x-coordinate.

The library syntax is GEN ellordinate(GEN E, GEN x, long prec).

3.5.52 ellpadicL(E; p; n; fs = 0g; fr = 0g; fD = 1g). Returns the value (or r-th derivative) on a
character �s of Z�p of the p-adic L-function of the elliptic curve E=Q, twisted by D, given modulo
pn.

172



Characters. The set of continuous characters of Gal(Q(�p1)=Q) is identi�ed to Z�p via the

cyclotomic character � with values in Qp
�
. Denote by � : Z�p ! Z�p the Teichm�uller character,

with values in the (p � 1)-th roots of 1 for p 6= 2, and f�1; 1g for p = 2; �nally, let h�i = ���1,
with values in 1 + 2pZp. In GP, the continuous character of Gal(Q(�p1)=Q) given by h�is1�s2 is
represented by the pair of integers s = (s1; s2), with s1 2 Zp and s2 mod p � 1 for p > 2, (resp.
mod 2 for p = 2); s may be also an integer, representing (s; s) or �s.

The p-adic L function. The p-adic L function Lp is de�ned on the set of continuous characters
of Gal(Q(�p1)=Q), as

R
Z�p
�sd� for a certain p-adic distribution � on Z�p. The derivative is given

by

L(r)
p (E;�s) =

Z
Z�p

logrp(a)�
s(a)d�(a):

More precisely:

� When E has good supersingular reduction, Lp takes its values in Qp 
 H1
dR(E=Q) and

satis�es
(1� p�1F )�2Lp(E;�0) = (L(E; 1)=
) � !

where F is the Frobenius, L(E; 1) is the value of the complex L function at 1, ! is the N�eron
di�erential and 
 the attached period on E(R). Here, �0 represents the trivial character.

The function returns the components of L
(r)
p (E;�s) in the basis (!; F (!)).

� When E has ordinary good reduction, this method only de�nes the projection of Lp(E;�
s)

on the �-eigenspace, where � is the unit eigenvalue for F . This is what the function returns. We
have

(1� ��1)�2Lp;�(E;�0) = L(E; 1)=
:

Two supersingular examples:

? cxL(e) = bestappr( ellL1(e) / e.omega[1] );

? e = ellinit("17a1"); p=3; \\ supersingular, a3 = 0

? L = ellpadicL(e,p,4);

? F = [0,-p;1,ellap(e,p)]; \\ Frobenius matrix in the basis (omega,F(omega))

? (1-p^(-1)*F)^-2 * L / cxL(e)

%5 = [1 + O(3^5), O(3^5)]~ \\ [1,0]~

? e = ellinit("116a1"); p=3; \\ supersingular, a3 != 0~
? L = ellpadicL(e,p,4);

? F = [0,-p; 1,ellap(e,p)];

? (1-p^(-1)*F)^-2*L~ / cxL(e)

%9 = [1 + O(3^4), O(3^5)]~

Good ordinary reduction:

? e = ellinit("17a1"); p=5; ap = ellap(e,p)

%1 = -2 \\ ordinary

? L = ellpadicL(e,p,4)

%2 = 4 + 3*5 + 4*5^2 + 2*5^3 + O(5^4)

? al = padicappr(x^2 - ap*x + p, ap + O(p^7))[1];

? (1-al^(-1))^(-2) * L / cxL(e)

%4 = 1 + O(5^4)
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Twist and Teichm�uller:

? e = ellinit("17a1"); p=5; \\ ordinary

\\ 2nd derivative at tau^1, twist by -7

? ellpadicL(e, p, 4, [0,1], 2, -7)

%2 = 2*5^2 + 5^3 + O(5^4)

This function is a special case of mspadicL, and it also appears as the �rst term of mspadic-
series:

? e = ellinit("17a1"); p=5;

? L = ellpadicL(e,p,4)

%2 = 4 + 3*5 + 4*5^2 + 2*5^3 + O(5^4)

? [M,phi] = msfromell(e, 1);

? Mp = mspadicinit(M, p, 4);

? mu = mspadicmoments(Mp, phi);

? mspadicL(mu)

%6 = 4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + O(5^6)

? mspadicseries(mu)

%7 = (4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + O(5^6))

+ (3 + 3*5 + 5^2 + 5^3 + O(5^4))*x

+ (2 + 3*5 + 5^2 + O(5^3))*x^2

+ (3 + 4*5 + 4*5^2 + O(5^3))*x^3

+ (3 + 2*5 + O(5^2))*x^4 + O(x^5)

These are more cumbersome than ellpadicL but allow to compute at di�erent characters, or
successive derivatives, or to twist by a quadratic character essentially for the cost of a single call
to ellpadicL due to precomputations.

The library syntax is GEN ellpadicL(GEN E, GEN p, long n, GEN s = NULL, long r, GEN

D = NULL).

3.5.53 ellpadicfrobenius(E; p; n). If p > 2 is a prime and E is a elliptic curve on Q with good
reduction at p, return the matrix of the Frobenius endomorphism ' on the crystalline module
Dp(E) = Qp 
 H1

dR(E=Q) with respect to the basis of the given model (!; � = x!), where ! =
dx=(2y+ a1x+ a3) is the invariant di�erential. The characteristic polynomial of ' is x2 � apx+ p.
The matrix is computed to absolute p-adic precision pn.

? E = ellinit([1,-1,1,0,0]);

? F = ellpadicfrobenius(E,5,3);

? lift(F)

%3 =

[120 29]

[ 55 5]

? charpoly(F)

%4 = x^2 + O(5^3)*x + (5 + O(5^3))

? ellap(E, 5)

%5 = 0

The library syntax is GEN ellpadicfrobenius(GEN E, long p, long n).
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3.5.54 ellpadicheight(E; p; n; P; fQg). Cyclotomic p-adic height of the rational point P on the
elliptic curve E (de�ned over Q), given to n p-adic digits. If the argument Q is present, computes
the value of the bilinear form (h(P +Q)� h(P �Q))=4.

Let DdR(E) := H1
dR(E) 
Q Qp be the Qp vector space spanned by ! (invariant di�erential

dx=(2y + a1x + a3) related to the given model) and � = x!. Then the cyclotomic p-adic height
associates to P 2 E(Q) an element f! + g� in DdR. This routine returns the vector [f; g] to n
p-adic digits.

If P 2 E(Q) is in the kernel of reduction mod p and if its reduction at all �nite places is non
singular, then g = �(logE P )2, where logE is the logarithm for the formal group of E at p.

If furthermore the model is of the form Y 2 = X3 + aX + b and P = (x; y), then

f = logp(denominator(x))� 2 logp(�(P ))

where �(P ) is given by ellsigma(E;P ).

Recall (Advanced topics in the arithmetic of elliptic curves, Theorem 3.2) that the local height
function over the complex numbers is of the form

�(z) = � log(jE:discj)=6 + <(z�(z))� 2 log(�(z):

(N.B. our normalization for local and global heights is twice that of Silverman's).

? E = ellinit([1,-1,1,0,0]); P = [0,0];

? ellpadicheight(E,5,4, P)

%2 = [3*5 + 5^2 + 2*5^3 + O(5^4), 5^2 + 4*5^4 + O(5^6)]

? E = ellinit("11a1"); P = [5,5]; \\ torsion point

? ellpadicheight(E,19,6, P)

%4 = O(19^6)

? E = ellinit([0,0,1,-4,2]); P = [-2,1];

? ellpadicheight(E,3,5, P)

%6 = [2*3^2 + 2*3^3 + 3^4 + O(3^5), 2*3^2 + 3^4 + 2*3^5 + 3^6 + O(3^7)]

? ellpadicheight(E,3,5, P, elladd(E,P,P))

One can replace the parameter p prime by a vector [p; [a; b]], in which case the routine returns
the p-adic number af + bg.

When E has good ordinary reduction at p, the \canonical" p-adic height is given by

s2 = ellpadics2(E,p,n);

ellpadicheight(E, [p,[1,-s2]], n, P)

Since s2 does not depend on P , it is preferable to compute it only once:

? E = ellinit("5077a1"); p = 5; n = 7;

? s2 = ellpadics2(E,p,n);

? M = ellpadicheightmatrix(E,[p,[1,-s2]], n, E.gen);

? matdet(M) \\ p-adic regulator

%4 = 5 + 5^2 + 4*5^3 + 2*5^4 + 2*5^5 + 5^6 + O(5^7)

The library syntax is GEN ellpadicheight0(GEN E, GEN p, long n, GEN P, GEN Q = NULL)

.
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3.5.55 ellpadicheightmatrix(E; p; n; v). v being a vector of points, this function outputs the
Gram matrix of v with respect to the cyclotomic p-adic height, given to n p-adic digits; in other
words, the (i; j) component of the matrix is equal to ellpadicheight(E; p; n; v[i]; v[j]) = [f; g].

See ellpadicheight; in particular one can replace the parameter p prime by a vector [p; [a; b]],
in which case the routine returns the matrix containing the p-adic numbers af + bg.

The library syntax is GEN ellpadicheightmatrix(GEN E, GEN p, long n, GEN v).

3.5.56 ellpadiclog(E; p; n; P ). Given E de�ned over K = Q or Qp and P = [x; y] on E(K) in the
kernel of reduction mod p, let t(P ) = �x=y be the formal group parameter; this function returns
L(t), where L denotes the formal logarithm (mapping the formal group of E to the additive formal
group) attached to the canonical invariant di�erential: dL = dx=(2y + a1x+ a3).

The library syntax is GEN ellpadiclog(GEN E, GEN p, long n, GEN P).

3.5.57 ellpadics2(E; p; n). If p > 2 is a prime and E=Q is a elliptic curve with ordinary good
reduction at p, returns the slope of the unit eigenvector of ellpadicfrobenius(E,p,n), i.e. the
action of Frobenius ' on the crystalline module Dp(E) = Qp
H1

dR(E=Q) in the basis of the given
model (!; � = x!), where ! is the invariant di�erential dx=(2y+a1x+a3). In other words, �+ s2!
is an eigenvector for the unit eigenvalue of '.

This slope is the unique c 2 3�1Zp such that the odd solution �(t) = t+O(t2) of

�d( 1
�

d�

!
) = (x(t) + c)!

is in tZp[[t]].

It is equal to b2=12�E2=12 where E2 is the value of the Katz p-adic Eisenstein series of weight
2 on (E;!). This is used to construct a canonical p-adic height when E has good ordinary reduction
at p as follows

s2 = ellpadics2(E,p,n);

h(E,p,n, P, s2) = ellpadicheight(E, [p,[1,-s2]],n, P);

Since s2 does not depend on the point P , we compute it only once.

The library syntax is GEN ellpadics2(GEN E, GEN p, long n).

3.5.58 ellperiods(w; fflag = 0g). Let w describe a complex period lattice (w = [w1; w2] or an
ellinit structure). Returns normalized periods [W1;W2] generating the same lattice such that
� :=W1=W2 has positive imaginary part and lies in the standard fundamental domain for SL2(Z).

If flag = 1, the function returns [[W1;W2]; [�1; �2]], where �1 and �2 are the quasi-periods
attached to [W1;W2], satisfying �1W2 � �2W1 = 2i�.

The output of this function is meant to be used as the �rst argument given to ellwp, ellzeta,
ellsigma or elleisnum. Quasi-periods are needed by ellzeta and ellsigma only.

The library syntax is GEN ellperiods(GEN w, long flag, long prec).
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3.5.59 ellpointtoz(E;P ). If E=C ' C=� is a complex elliptic curve (� = E:omega), computes a
complex number z, well-de�ned modulo the lattice �, corresponding to the point P ; i.e. such that
P = [}�(z); }

0
�(z)] satis�es the equation

y2 = 4x3 � g2x� g3;

where g2, g3 are the elliptic invariants.

If E is de�ned over R and P 2 E(R), we have more precisely, 0 � <(t) < w1 and 0 � =(t) <
=(w2), where (w1; w2) are the real and complex periods of E.

? E = ellinit([0,1]); P = [2,3];

? z = ellpointtoz(E, P)

%2 = 3.5054552633136356529375476976257353387

? ellwp(E, z)

%3 = 2.0000000000000000000000000000000000000

? ellztopoint(E, z) - P

%4 = [6.372367644529809109 E-58, 7.646841173435770930 E-57]

? ellpointtoz(E, [0]) \\ the point at infinity

%5 = 0

If E=Qp has multiplicative reduction, then E= �Qp is analytically isomorphic to �Q�
p=q

Z (Tate
curve) for some p-adic integer q. The behaviour is then as follows:

� If the reduction is split (E:tate[2] is a t_PADIC), we have an isomorphism � : E(Qp) ' Q�
p=q

Z

and the function returns �(P ) 2 Qp.

� If the reduction is not split (E:tate[2] is a t_POLMOD), we only have an isomorphism � :
E(K) ' K�=qZ over the unrami�ed quadratic extension K=Qp. In this case, the output �(P ) 2 K
is a t_POLMOD.

? E = ellinit([0,-1,1,0,0], O(11^5)); P = [0,0];

? [u2,u,q] = E.tate; type(u) \\ split multiplicative reduction

%2 = "t_PADIC"

? ellmul(E, P, 5) \\ P has order 5

%3 = [0]

? z = ellpointtoz(E, [0,0])

%4 = 3 + 11^2 + 2*11^3 + 3*11^4 + O(11^5)

? z^5

%5 = 1 + O(11^5)

? E = ellinit(ellfromj(1/4), O(2^6)); x=1/2; y=ellordinate(E,x)[1];

? z = ellpointtoz(E,[x,y]); \\ t_POLMOD of t_POL with t_PADIC coeffs

? liftint(z) \\ lift all p-adics

%8 = Mod(8*u + 7, u^2 + 437)

The library syntax is GEN zell(GEN E, GEN P, long prec).

3.5.60 ellpow(E; z; n). Deprecated alias for ellmul.

The library syntax is GEN ellmul(GEN E, GEN z, GEN n).
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3.5.61 ellrootno(E; fpg). E being an ell structure over Q as output by ellinit, this function
computes the local root number of its L-series at the place p (at the in�nite place if p = 0). If
p is omitted, return the global root number. Note that the global root number is the sign of the
functional equation and conjecturally is the parity of the rank of the Mordell-Weil group. The
equation for E needs not be minimal at p, but if the model is already minimal the function will
run faster.

The library syntax is long ellrootno(GEN E, GEN p = NULL).

3.5.62 ellsea(E; ftors = 0g). Let E be an ell structure as output by ellinit, de�ned over a �nite
�eld Fq. This function computes the order of the group E(Fq) using the SEA algorithm and the
tors argument allows to speed up a search for curves having almost prime order.

� If the characteristic is too small (p � 7) the generic algorithm ellcard is used instead and
the tors argument is ignored.

� When tors is set to a non-zero value, the function returns 0 as soon as it detects that the
order has a small prime factor not dividing tors; SEA considers modular polynomials of increasing
prime degree ` and we return 0 as soon as we hit an ` (coprime to tors) dividing #E(Fq).

In particular, you should set tors to 1 if you want a curve with prime order, to 2 if you want
to allow a cofacteur which is a power of two (e.g. for Edwards's curves), etc.

The availability of the seadata package will speed up the computation, and is strongly rec-
ommended.

The following function returns a curve of prime order over Fp.

cryptocurve(p) =

{

while(1,

my(E, N, j = Mod(random(p), p));

E = ellinit(ellfromj(j));

N = ellsea(E, 1); if(!N, continue);

if (isprime(N), return(E));

\\ try the quadratic twist for free

if (isprime(2*p+2 - N), return(ellinit(elltwist(E))));

);

}

? p = randomprime([2^255, 2^256]);

? E = cryptocurve(p); \\ insist on prime order

%2 = 47,447ms

The same example without early abort (using ellsea(E,1) instead of ellsea(E)) runs for about
5 minutes before �nding a suitable curve.

The library syntax is GEN ellsea(GEN E, ulong tors).
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3.5.63 ellsearch(N). This function �nds all curves in the elldata database satisfying the con-
straint de�ned by the argument N :

� if N is a character string, it selects a given curve, e.g. "11a1", or curves in the given isogeny
class, e.g. "11a", or curves with given conductor, e.g. "11";

� if N is a vector of integers, it encodes the same constraints as the character string above,
according to the ellconvertname correspondance, e.g. [11,0,1] for "11a1", [11,0] for "11a"

and [11] for "11";

� if N is an integer, curves with conductor N are selected.

If N codes a full curve name, for instance "11a1" or [11,0,1], the output format is
[N; [a1; a2; a3; a4; a6]; G] where [a1; a2; a3; a4; a6] are the coe�cients of the Weierstrass equation
of the curve and G is a Z-basis of the free part of the Mordell-Weil group attached to the curve.

? ellsearch("11a3")

%1 = ["11a3", [0, -1, 1, 0, 0], []]

? ellsearch([11,0,3])

%2 = ["11a3", [0, -1, 1, 0, 0], []]

If N is not a full curve name, then the output is a vector of all matching curves in the above
format:

? ellsearch("11a")

%1 = [["11a1", [0, -1, 1, -10, -20], []],

["11a2", [0, -1, 1, -7820, -263580], []],

["11a3", [0, -1, 1, 0, 0], []]]

? ellsearch("11b")

%2 = []

The library syntax is GEN ellsearch(GEN N). Also available is GEN ellsearchcurve(GEN N)

that only accepts complete curve names (as t_STR).

3.5.64 ellsigma(L; fz =0 xg; fflag = 0g). Computes the value at z of the Weierstrass � function
attached to the lattice L as given by ellperiods(; 1): including quasi-periods is useful, otherwise
there are recomputed from scratch for each new z.

�(z; L) = z
Y
!2L�

�
1� z

!

�
e
z
!+

z2

2!2 :

It is also possible to directly input L = [!1; !2], or an elliptic curve E as given by ellinit

(L = E:omega).

? w = ellperiods([1,I], 1);

? ellsigma(w, 1/2)

%2 = 0.47494937998792065033250463632798296855

? E = ellinit([1,0]);

? ellsigma(E) \\ at 'x, implicitly at default seriesprecision

%4 = x + 1/60*x^5 - 1/10080*x^9 - 23/259459200*x^13 + O(x^17)

If flag = 1, computes an arbitrary determination of log(�(z)).

The library syntax is GEN ellsigma(GEN L, GEN z = NULL, long flag, long prec).
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3.5.65 ellsub(E; z1 ; z2 ). Di�erence of the points z1 and z2 on the elliptic curve corresponding to
E.

The library syntax is GEN ellsub(GEN E, GEN z1, GEN z2).

3.5.66 elltaniyama(E; fd = seriesprecisiong). Computes the modular parametrization of the el-
liptic curve E=Q, where E is an ell structure as output by ellinit. This returns a two-component
vector [u; v] of power series, given to d signi�cant terms (seriesprecision by default), charac-
terized by the following two properties. First the point (u; v) satis�es the equation of the elliptic
curve. Second, let N be the conductor of E and � : X0(N) ! E be a modular parametrization;
the pullback by � of the N�eron di�erential du=(2v + a1u + a3) is equal to 2i�f(z)dz, a holomor-
phic di�erential form. The variable used in the power series for u and v is x, which is implicitly
understood to be equal to exp(2i�z).

The algorithm assumes that E is a strong Weil curve and that the Manin constant is equal to
1: in fact, f(x) =

P
n>0 ellan(E;n)x

n.

The library syntax is GEN elltaniyama(GEN E, long precdl).

3.5.67 elltatepairing(E;P;Q;m). Computes the Tate pairing of the two points P and Q on the
elliptic curve E. The point P must be of m-torsion.

The library syntax is GEN elltatepairing(GEN E, GEN P, GEN Q, GEN m).

3.5.68 elltors(E). If E is an elliptic curve de�ned over a number �eld or a �nite �eld, outputs
the torsion subgroup of E as a 3-component vector [t,v1,v2], where t is the order of the torsion
group, v1 gives the structure of the torsion group as a product of cyclic groups (sorted by decreasing
order), and v2 gives generators for these cyclic groups. E must be an ell structure as output by
ellinit.

? E = ellinit([-1,0]);

? elltors(E)

%1 = [4, [2, 2], [[0, 0], [1, 0]]]

Here, the torsion subgroup is isomorphic to Z=2Z� Z=2Z, with generators [0; 0] and [1; 0].

The library syntax is GEN elltors(GEN E).

3.5.69 elltwist(E; fPg). Returns the coe�cients [a1; a2; a3; a4; a6] of the twist of the elliptic curve
E by the quadratic extension of the coe�cient ring de�ned by P (when P is a polynomial) or
quadpoly(P) when P is an integer. If E is de�ned over a �nite �eld, then P can be omitted,
in which case a random model of the unique non-trivial twist is returned. If E is de�ned over a
number �eld, the model should be replaced by a minimal model (if one exists).

Example: Twist by discriminant �3:
? elltwist(ellinit([0,a2,0,a4,a6]),-3)

%1 = [0,-3*a2,0,9*a4,-27*a6]

Twist by the Artin-Shreier extension given by x2 + x+ T in characteristic 2:

? lift(elltwist(ellinit([a1,a2,a3,a4,a6]*Mod(1,2)),x^2+x+T))

%1 = [a1,a2+a1^2*T,a3,a4,a6+a3^2*T]

Twist of an elliptic curve de�ned over a �nite �eld:
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? E=ellinit([1,7]*Mod(1,19));lift(elltwist(E))

%1 = [0,0,0,11,12]

The library syntax is GEN elltwist(GEN E, GEN P = NULL).

3.5.70 ellweilpairing(E;P;Q;m). Computes the Weil pairing of the two points of m-torsion P
and Q on the elliptic curve E.

The library syntax is GEN ellweilpairing(GEN E, GEN P, GEN Q, GEN m).

3.5.71 ellwp(w; fz =0 xg; fflag = 0g). Computes the value at z of the Weierstrass } function
attached to the lattice w as given by ellperiods. It is also possible to directly input w = [!1; !2],
or an elliptic curve E as given by ellinit (w = E:omega).

? w = ellperiods([1,I]);

? ellwp(w, 1/2)

%2 = 6.8751858180203728274900957798105571978

? E = ellinit([1,1]);

? ellwp(E, 1/2)

%4 = 3.9413112427016474646048282462709151389

One can also compute the series expansion around z = 0:

? E = ellinit([1,0]);

? ellwp(E) \\ 'x implicitly at default seriesprecision

%5 = x^-2 - 1/5*x^2 + 1/75*x^6 - 2/4875*x^10 + O(x^14)

? ellwp(E, x + O(x^12)) \\ explicit precision

%6 = x^-2 - 1/5*x^2 + 1/75*x^6 + O(x^9)

Optional flag means 0 (default): compute only }(z), 1: compute [}(z); }0(z)].

The library syntax is GEN ellwp0(GEN w, GEN z = NULL, long flag, long prec). For
flag = 0, we also have GEN ellwp(GEN w, GEN z, long prec), and GEN ellwpseries(GEN E,

long v, long precdl) for the power series in variable v.

3.5.72 ellxn(E;n; fv =0 xg). In standard notation, for any a�ne point P = (v; w) on the curve
E, we have

[n]P = (�n(P ) n(P ) : !n(P ) :  n(P )
3)

for some polynomials �n; !n;  n in Z[a1; a2; a3; a4; a6][v; w]. This function returns [�n(P );  n(P )
2],

which give the numerator and denominator of the abcissa of [n]P and depend only on v.

The library syntax is GEN ellxn(GEN E, long n, long v = -1) where v is a variable number.
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3.5.73 ellzeta(w; fz =0 xg). Computes the value at z of the Weierstrass � function attached to
the lattice w as given by ellperiods(; 1): including quasi-periods is useful, otherwise there are
recomputed from scratch for each new z.

�(z; L) =
1

z
+ z2

X
!2L�

1

!2(z � !) :

It is also possible to directly input w = [!1; !2], or an elliptic curve E as given by ellinit

(w = E:omega). The quasi-periods of �, such that

�(z + a!1 + b!2) = �(z) + a�1 + b�2

for integers a and b are obtained as �i = 2�(!i=2). Or using directly elleta.

? w = ellperiods([1,I],1);

? ellzeta(w, 1/2)

%2 = 1.5707963267948966192313216916397514421

? E = ellinit([1,0]);

? ellzeta(E, E.omega[1]/2)

%4 = 0.84721308479397908660649912348219163647

One can also compute the series expansion around z = 0 (the quasi-periods are useless in this case):

? E = ellinit([0,1]);

? ellzeta(E) \\ at 'x, implicitly at default seriesprecision

%4 = x^-1 + 1/35*x^5 - 1/7007*x^11 + O(x^15)

? ellzeta(E, x + O(x^20)) \\ explicit precision

%5 = x^-1 + 1/35*x^5 - 1/7007*x^11 + 1/1440257*x^17 + O(x^18)

The library syntax is GEN ellzeta(GEN w, GEN z = NULL, long prec).

3.5.74 ellztopoint(E; z). E being an ell as output by ellinit, computes the coordinates [x; y]
on the curve E corresponding to the complex number z. Hence this is the inverse function of
ellpointtoz. In other words, if the curve is put in Weierstrass form y2 = 4x3 � g2x � g3, [x; y]
represents the Weierstrass }-function and its derivative. More precisely, we have

x = }(z)� b2=12; y = }0(z)� (a1x+ a3)=2:

If z is in the lattice de�ning E over C, the result is the point at in�nity [0].

The library syntax is GEN pointell(GEN E, GEN z, long prec).

3.5.75 genus2red(PQ ; fpg). Let PQ be a polynomial P , resp. a vector [P;Q] of polynomials,
with rational coe�cients. Determines the reduction at p > 2 of the (proper, smooth) genus 2 curve
C=Q, de�ned by the hyperelliptic equation y2 = P (x), resp. y2 + Q(x) � y = P (x). (The special
�ber Xp of the minimal regular model X of C over Z.)

If p is omitted, determines the reduction type for all (odd) prime divisors of the discriminant.

This function was rewritten from an implementation of Liu's algorithm by Cohen and Liu (1994),
genus2reduction-0.3, see http://www.math.u-bordeaux.fr/~liu/G2R/.
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CAVEAT. The function interface may change: for the time being, it returns [N;FaN ; T; V ] where
N is either the local conductor at p or the global conductor, FaN is its factorization, y2 = T de�nes
a minimal model over Z[1=2] and V describes the reduction type at the various considered p.
Unfortunately, the program is not complete for p = 2, and we may return the odd part of the
conductor only: this is the case if the factorization includes the (impossible) term 2�1; if the
factorization contains another power of 2, then this is the exact local conductor at 2 and N is the
global conductor.

? default(debuglevel, 1);

? genus2red(x^6 + 3*x^3 + 63, 3)

(potential) stable reduction: [1, []]

reduction at p: [III{9}] page 184, [3, 3], f = 10

%1 = [59049, Mat([3, 10]), x^6 + 3*x^3 + 63, [3, [1, []],

["[III{9}] page 184", [3, 3]]]]

? [N, FaN, T, V] = genus2red(x^3-x^2-1, x^2-x); \\ X_1(13), global reduction

p = 13

(potential) stable reduction: [5, [Mod(0, 13), Mod(0, 13)]]

reduction at p: [I{0}-II-0] page 159, [], f = 2

? N

%3 = 169

? FaN

%4 = Mat([13, 2]) \\ in particular, good reduction at 2 !

? T

%5 = x^6 + 58*x^5 + 1401*x^4 + 18038*x^3 + 130546*x^2 + 503516*x + 808561

? V

%6 = [[13, [5, [Mod(0, 13), Mod(0, 13)]], ["[I{0}-II-0] page 159", []]]]

We now �rst describe the format of the vector V = Vp in the case where p was speci�ed (local re-
duction at p): it is a triple [p; stable; red ]. The component stable = [type; vecj ] contains information
about the stable reduction after a �eld extension; depending on types, the stable reduction is

� 1: smooth (i.e. the curve has potentially good reduction). The Jacobian J(C) has potentially
good reduction.

� 2: an elliptic curve E with an ordinary double point; vecj contains j mod p, the modular
invariant of E. The (potential) semi-abelian reduction of J(C) is the extension of an elliptic curve
(with modular invariant j mod p) by a torus.

� 3: a projective line with two ordinary double points. The Jacobian J(C) has potentially
multiplicative reduction.

� 4: the union of two projective lines crossing transversally at three points. The Jacobian
J(C) has potentially multiplicative reduction.

� 5: the union of two elliptic curves E1 and E2 intersecting transversally at one point; vecj
contains their modular invariants j1 and j2, which may live in a quadratic extension of Fp and need
not be distinct. The Jacobian J(C) has potentially good reduction, isomorphic to the product of
the reductions of E1 and E2.

� 6: the union of an elliptic curve E and a projective line which has an ordinary double point,
and these two components intersect transversally at one point; vecj contains j mod p, the modular
invariant of E. The (potential) semi-abelian reduction of J(C) is the extension of an elliptic curve
(with modular invariant j mod p) by a torus.
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� 7: as in type 6, but the two components are both singular. The Jacobian J(C) has potentially
multiplicative reduction.

The component red = [NUtype;neron] contains two data concerning the reduction at p without
any rami�ed �eld extension.

The NUtype is a t_STR describing the reduction at p of C, following Namikawa-Ueno, The
complete classi�cation of �bers in pencils of curves of genus two, Manuscripta Math., vol. 9,
(1973), pages 143-186. The reduction symbol is followed by the corresponding page number or
page range in this article.

The second datum neron is the group of connected components (over an algebraic closure of
Fp) of the N�eron model of J(C), given as a �nite abelian group (vector of elementary divisors).

If p = 2, the red component may be omitted altogether (and replaced by [], in the case where
the program could not compute it. When p was not speci�ed, V is the vector of all Vp, for all
considered p.

Notes about Namikawa-Ueno types.

� A lower index is denoted between braces: for instance, [I{2}-II-5] means [I 2-II-5].

� If K and K 0 are Kodaira symbols for singular �bers of elliptic curves, then [K-K 0-m] and
[K 0-K-m] are the same.

We de�ne a total ordering on Kodaira symbol by �xing I < I� < II < II�; : : :. If the reduction
type is the same, we order by the number of components, e.g. I2 < I4, etc. Then we normalize our
output so that K � K 0.

� [K-K 0-�1] is [K-K 0-�] in the notation of Namikawa-Ueno.

� The �gure [2I 0-m] in Namikawa-Ueno, page 159, must be denoted by [2I 0-(m+1)].

The library syntax is GEN genus2red(GEN PQ, GEN p = NULL).

3.5.76 hyperellcharpoly(X). X being a non-singular hyperelliptic curve de�ned over a �nite
�eld, return the characteristic polynomial of the Frobenius automorphism. X can be given either
by a squarefree polynomial P such thatX : y2 = P (x) or by a vector [P;Q] such thatX : y2+Q(x)�
y = P (x) and Q2 + 4P is squarefree.

The library syntax is GEN hyperellcharpoly(GEN X).

3.5.77 hyperellpadicfrobenius(Q; p; n). Let X be the curve de�ned by y2 = Q(x), where Q is
a polynomial of degree d over Q and p � d a prime such that X has good reduction at p return
the matrix of the Frobenius endomorphism ' on the crystalline module Dp(X) = Qp
H1

dR(X=Q)
with respect to the basis of the given model (!; x!; : : : ; xg�1!), where ! = dx=(2y) is the invariant
di�erential, where g is the genus of X (either d = 2g + 1 or d = 2g + 2). The characteristic
polynomial of ' is the numerator of the zeta-function of the reduction of the curve X modulo p.
The matrix is computed to absolute p-adic precision pn.

The library syntax is GEN hyperellpadicfrobenius(GEN Q, ulong p, long n).

184



3.6 L-functions.

This section describes routines related to L-functions. We �rst introduce the basic concept
and notations, then explain how to represent them in GP. Let �R(s) = ��s=2�(s=2), where � is
Euler's gamma function. Given d � 1 and a d-tuple A = [�1; : : : ; �d] of complex numbers, we let

A(s) =

Q
�2A �R(s+ �).

Given a sequence a = (an)n�1 of complex numbers (such that a1 = 1), a positive conductor
N 2 Z, and a gamma factor 
A as above, we consider the Dirichlet series

L(a; s) =
X
n�1

ann
�s

and the attached completed function

�(a; s) = Ns=2
A(s) � L(a; s):

Such a datum de�nes an L-function if it satis�es the three following assumptions:

� [Convergence] The an = O�(n
k1+�) have polynomial growth, equivalently L(s) converges

absolutely in some right half-plane <(s) > k1 + 1.

� [Analytic continuation] L(s) has a meromorphic continuation to the whole complex plane
with �nitely many poles.

� [Functional equation] There exist an integer k, a complex number � (usually of modulus 1),
and an attached sequence a� de�ning both an L-function L(a�; s) satisfying the above two assump-
tions and a completed function �(a�; s) = Ns=2
A(s) � L(a�; s), such that

�(a; k � s) = ��(a�; s)

for all regular points.

More often than not in number theory we have a� = a (which forces j�j = 1), but this needs
not be the case. If a is a real sequence and a = a�, we say that L is self-dual . We do not assume
that the an are multiplicative, nor equivalently that L(s) has an Euler product.

Remark. Of course, a determines the L-function, but the (redundant) datum a; a�; A;N; k; �
describes the situation in a form more suitable for fast computations; knowing the polar part r of
�(s) (a rational function such that ��r is holomorphic) is also useful. A subset of these, including
only �nitely many an-values will still completely determine L (in suitable families), and we provide
routines to try and compute missing invariants from whatever information is available.

Important Caveat. We currently assume that we can take the growth exponent k1 = (k�1)=2 if
L is entire and k1 = k� 1 otherwise, and that the implied constants in the O� are small. This may
be changed and made user-con�gurable in future versions but the essential point remains that it is
impossible to return proven results in such a generic framework, without more detailed information
about the L function. The intended use of the L-function package is not to prove theorems, but to
experiment and formulate conjectures, so all numerical results should be taken with a grain of salt.
One can always increase realbitprecision and recompute: the di�erence estimates the actual
absolute error in the original output.
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Note. The requested precision has a major impact on runtimes. Because of this, most L-function
routines, in particular lfun itself, specify the requested precision in bits, not in decimal digits.
This is transparent for the user once realprecision or realbitprecision are set. We advise to
manipulate precision via realbitprecision as it allows �ner granularity: realprecision increases
by increments of 64 bits, i.e. 19 decimal digits at a time.

3.6.1 Theta functions.

Given an L-function as above, we de�ne an attached theta function via Mellin inversion: for
any positive real t > 0, we let

�(a; t) :=
1

2�i

Z
<(s)=c

t�s�(s) ds

where c is any positive real number c > k1 + 1 such that c + <(a) > 0 for all a 2 A. In fact, we
have

�(a; t) =
X
n�1

anK(nt=N1=2) where K(t) :=
1

2�i

Z
<(s)=c

t�s
A(s) ds:

Note that this function is analytic and actually makes sense for complex t, such that <(t2=d) > 0,
i.e. in a cone containing the positive real half-line. The functional equation for � translates into

�(a; 1=t)� �tk�(a�; t) = P�(t);

where P� is an explicit polynomial in t and log t given by the Taylor development of the polar part
of �: there are no log's if all poles are simple, and P = 0 if � is entire. The values �(t) are generally
easier to compute than the L(s), and this functional equation provides a fast way to guess possible
values for missing invariants in the L-function de�nition.

3.6.2 Data structures describing L and theta functions.

We have 3 levels of description:

� an Lmath is an arbitrary description of the underlying mathematical situation (to which e.g.,
we associate the ap as traces of Frobenius elements); this is done via constructors to be described
in the subsections below.

� an Ldata is a computational description of situation, containing the complete datum
(a; a�; A; k;N; �; r). Where a and a� describe the coe�cients (given n; b we must be able to compute
[a1; : : : ; an] with bit accuracy b), A describes the Euler factor, the (classical) weight is k, N is the
conductor, and r describes the polar part of L(s). This is obtained via the function lfuncreate.
N.B. For motivic L-functions, the motivic weight w is w = k � 1; but we also support non-motivic
L-functions.
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Design problem. All components of an Ldata should be given exactly since the accuracy to which
they must be computed is not bounded a priori; but this is not always possible, in particular for �
and r.

� an Linit contains an Ldata and everything needed for fast numerical computations. It
speci�es the functions to be considered (either L(j)(s) or �(j)(t) for derivatives of order j � m, where
m is now �xed) and speci�es a domain which limits the range of arguments (t or s, respectively to
certain cones and rectangular regions) and the output accuracy. This is obtained via the functions
lfuninit or lfunthetainit.

All the functions which are speci�c to L or theta functions share the pre�x lfun. They take
as �rst argument either an Lmath, an Ldata, or an Linit. If a single value is to be computed, this
makes no di�erence, but when many values are needed (e.g. for plots or when searching for zeros),
one should �rst construct an Linit attached to the search range and use it in all subsequent calls.
If you attempt to use an Linit outside the range for which it was initialized, a warning is issued,
because the initialization is performed again, a major ine�ciency:

? Z = lfuncreate(1); \\ Riemann zeta

? L = lfuninit(Z, [1/2, 0, 100]); \\ zeta(1/2+it), |t| < 100

? lfun(L, 1/2) \\ OK, within domain

%3 = -1.4603545088095868128894991525152980125

? lfun(L, 0) \\ not on critical strip !

*** lfun: Warning: lfuninit: insufficient initialization.

%4 = -0.50000000000000000000000000000000000000

? lfun(L, 1/2, 1) \\ attempt first derivative !

*** lfun: Warning: lfuninit: insufficient initialization.

%5 = -3.9226461392091517274715314467145995137

For many L-functions, passing from Lmath to an Ldata is inexpensive: in that case one may
use lfuninit directly from the Lmath even when evaluations in di�erent domains are needed. The
above example could equally have skipped the lfuncreate:

? L = lfuninit(1, [1/2, 0, 100]); \\ zeta(1/2+it), |t| < 100

In fact, when computing a single value, you can even skip lfuninit:

? L = lfun(1, 1/2, 1); \\ zeta'(1/2)

? L = lfun(1, 1+x+O(x^5)); \\ first 5 terms of Taylor development at 1

Both give the desired results with no warning.

Complexity. The implementation requires O(N(jtj + 1))1=2 coe�cients an to evaluate L of con-
ductor N at s = � + it.

We now describe the available high-level constructors, for built-in L functions.
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3.6.3 Dirichlet L-functions.

Given a Dirichlet character � : (Z=NZ)� ! C, we let

L(�; s) =
X
n�1

�(n)n�s:

Only primitive characters are supported. Given a fundamental discriminant D, the function
L((D=:); s), for the quadratic Kronecker symbol, is encoded by the t_INTD. This includes Riemann
� function via the special case D = 1.

More general characters can be represented in a variety of ways:

� via Conrey notation (see znconreychar): �N (m; �) is given as the t_INTMOD Mod(m,N).

� via a bid structure describing the abelian group (Z=NZ)�, where the character is given in
terms of the bid generators:

? bid = idealstar(,100,2); \\ (Z/100Z)^*

? bid.cyc \\ ~ Z/20 . g1 + Z/2 . g2 for some generators g1 and g2

%2 = [20, 2]

? bid.gen

%3 = [77, 51]

? chi = [a, b] \\ maps g1 to e(a/20) and g2 to e(b/2); e(x) = exp(2ipi x)

More generally, let (Z=NZ)� = �(Z=diZ)gi be given via a bid structure G (G.cyc gives the di
and G.gen the gi). A character � on G is given by a row vector v = [a1; : : : ; an] such that
�(
Q
gnii ) = exp(2�i

P
aini=di). The pair [bid ; v] encodes the primitive character attached to �.

� in fact, this construction [bid ;m] describing a character is more general: m is also allowed to
be a Conrey index as seen above, or a Conrey logarithm (see znconreylog), and the latter format
is actually the fastest one.

� it is also possible to view Dirichlet characters as Hecke characters over K = Q (see below),
for a modulus [N; [1]] but this is both more complicated and less e�cient.

3.6.4 Hecke L-functions.

The Dedekind zeta function of a number �eld K = Q[X]=(T ) is encoded either by the de�ning
polynomial T , or any absolute number �elds structure (preferably at least a bnf ).

Given a �nite order Hecke character � : Clf (K)! C, we let

L(�; s) =
X

A�OK

�(A)
�
NK=QA

��s
:

Let Clf (K) = �(Z=diZ)gi given by a bnr structure with generators: the di are given by
K.cyc and the gi by K.gen. A character � on the ray class group is given by a row vector v =
[a1; : : : ; an] such that �(

Q
gnii ) = exp(2�i

P
aini=di). The pair [bnr ; v] encodes the primitive

character attached to �.

? K = bnfinit(x^2-60);

? Cf = bnrinit(K, [7, [1,1]], 1); \\ f = 7 oo_1 oo_2

? Cf.cyc
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%3 = [6, 2, 2]

? Cf.gen

%4 = [[2, 1; 0, 1], [22, 9; 0, 1], [-6, 7]~]

? lfuncreate([Cf, [1,0,0]]); \\ �(g1) = �6, �(g2) = �(g3) = 1

Dirichlet characters on (Z=NZ)� are a special case, where K = Q:

? Q = bnfinit(x);

? Cf = bnrinit(Q, [100, [1]]); \\ for odd characters on (Z/100Z)*

For even characters, replace by bnrinit(K, N). Note that the simpler direct construction in the
previous section will be more e�cient.

3.6.5 Artin L functions.

Given a Galois number �eld N=Q with group G = galoisinit(N), a representation � of G
over the cyclotomic �eld Q(�n) is speci�ed by the matrices giving the images of G:gen by �. The
corresponding Artin L function is created using lfunartin.

P = quadhilbert(-47); \\ degree 5, Galois group D_5

N = nfinit(nfsplitting(P)); \\ Galois closure

G = galoisinit(N);

[s,t] = G.gen; \\ order 5 and 2

L = lfunartin(N,G, [[a,0;0,a^-1],[0,1;1,0]], 5); \\ irr. degree 2

In the above, the polynomial variable (here a) represents �5 := exp(2i�=5) and the two matrices
give the images of s and t. Here, priority of a must be lower than the priority of x.

3.6.6 L-functions of algebraic varieties.

L-function of elliptic curves over number �elds are supported.

? E = ellinit([1,1]);

? L = lfuncreate(E); \\ L-function of E/Q

? E2 = ellinit([1,a], nfinit(a^2-2));

? L2 = lfuncreate(E2); \\ L-function of E/Q(sqrt(2))

L-function of hyperelliptic genus-2 curve can be created with lfungenus2. To create the L
function of the curve y2 + (x3 + x2 + 1)y = x2 + x:

? L = lfungenus2([x^2+x, x^3+x^2+1]);

Currently, the model needs to be minimal at 2, and if the conductor is even, its valuation at
2 might be incorrect (a warning is issued).

3.6.7 Eta quotients / Modular forms.

An eta quotient is created by applying lfunetaquo to a matrix with 2 columns [m; rm] repre-
senting

f(�) :=
Y
m

�(m�)rm :

It is currently assumed that f is a self-dual cuspidal form on �0(N) for some N . For instance, the
L-function

P
�(n)n�s attached to Ramanujan's � function is encoded as follows

? L = lfunetaquo(Mat([1,24]));

? lfunan(L, 100) \\ first 100 values of tau(n)

More general modular forms de�ned by modular symbols will be added later.
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3.6.8 Low-level Ldata format.

When no direct constructor is available, you can still input an L function directly by supplying
[a; a�; A; k;N; �; r] to lfuncreate (see ??lfuncreate for details).

It is strongly suggested to �rst check consistency of the created L-function:

? L = lfuncreate([a, as, A, k, N, eps, r]);

? lfuncheckfeq(L) \\ check functional equation

3.6.9 lfun(L; s; fD = 0g). Compute the L-function value L(s), or if D is set, the derivative of order
D at s. The parameter L is either an Lmath, an Ldata (created by lfuncreate, or an Linit (created
by lfuninit), preferrably the latter if many values are to be computed.

The argument s is also allowed to be a power series; for instance, if s = � + x + O(xn), the
function returns the Taylor expansion of order n around �. The result is given with absolute error
less than 2�B , where B = realbitprecision.

Caveat. The requested precision has a major impact on runtimes. It is advised to manipulate
precision via realbitprecision as explained above instead of realprecision as the latter allows
less granularity: realprecision increases by increments of 64 bits, i.e. 19 decimal digits at a time.

? lfun(x^2+1, 2) \\ Lmath: Dedekind zeta for Q(i) at 2

%1 = 1.5067030099229850308865650481820713960

? L = lfuncreate(ellinit("5077a1")); \\ Ldata: Hasse-Weil zeta function

? lfun(L, 1+x+O(x^4)) \\ zero of order 3 at the central point

%3 = 0.E-58 - 5.[...] E-40*x + 9.[...] E-40*x^2 + 1.7318[...]*x^3 + O(x^4)

\\ Linit: zeta(1/2+it), |t| < 100, and derivative

? L = lfuninit(1, [100], 1);

? T = lfunzeros(L, [1,25]);

%5 = [14.134725[...], 21.022039[...]]

? z = 1/2 + I*T[1];

? abs( lfun(L, z) )

%7 = 8.7066865533412207420780392991125136196 E-39

? abs( lfun(L, z, 1) )

%8 = 0.79316043335650611601389756527435211412 \\ simple zero

The library syntax is GEN lfun0(GEN L, GEN s, long D, long bitprec).

3.6.10 lfunabelianrelinit(bnfL; bnfK ; polrel ; sdom; fder = 0g). Returns the Linit structure at-
tached to the Dedekind zeta function of the number �eld L (see lfuninit), given a sub�eld K such
that L=K is abelian. Here polrel de�nes L over K, as usual with the priority of the variable of
bnfK lower than that of polrel. sdom and der are as in lfuninit.

? D = -47; K = bnfinit(y^2-D);

? rel = quadhilbert(D); T = rnfequation(K.pol, rel); \\ degree 10

? L = lfunabelianrelinit(T,K,rel, [2,0,0]); \\ at 2

time = 84 ms.

? lfun(L, 2)

%4 = 1.0154213394402443929880666894468182650

? lfun(T, 2) \\ using parisize > 300MB

time = 652 ms.
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%5 = 1.0154213394402443929880666894468182656

As the example shows, using the (abelian) relative structure is more e�cient than a direct compu-
tation. The di�erence becomes drastic as the absolute degree increases while the sub�eld degree
remains constant.

The library syntax is GEN lfunabelianrelinit(GEN bnfL, GEN bnfK, GEN polrel, GEN

sdom, long der, long bitprec).

3.6.11 lfunan(L; n). Compute the �rst n terms of the Dirichlet series attached to the L-function
given by L (Lmath, Ldata or Linit).

? lfunan(1, 10) \\ Riemann zeta

%1 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

? lfunan(5, 10) \\ Dirichlet L-function for kronecker(5,.)

%2 = [1, -1, -1, 1, 0, 1, -1, -1, 1, 0]

The library syntax is GEN lfunan(GEN L, long n, long prec).

3.6.12 lfunartin(nf ; gal ;M; n). Returns the Ldata structure attached to the Artin L-function
attached to the representation � of the Galois group of the extension K=Q, de�ned over the cy-
clotomic �eld Q(�n), where nf is the n�nit structure attached to K, gal is the galoisinit structure
attached to K=Q, and M is the vector of the image of the generators gal.gen by �. The elements
of M are matrices with polynomial entries, whose variable is understood as the complex number
exp(2i�=n).

In the following example we build the Artin L-functions attached to the two irreducible degree
2 representations of the dihedral group D10 de�ned over Q(�5), for the extension H=Q where H
is the Hilbert class �eld of Q(

p�47). We show numerically some identities involving Dedekind �
functions and Hecke L series.

? P = quadhilbert(-47);

? N = nfinit(nfsplitting(P));

? G = galoisinit(N);

? L1 = lfunartin(N,G, [[a,0;0,a^-1],[0,1;1,0]], 5);

? L2 = lfunartin(N,G, [[a^2,0;0,a^-2],[0,1;1,0]], 5);

? s = 1 + x + O(x^4);

? lfun(1,s)*lfun(-47,s)*lfun(L1,s)^2*lfun(L2,s)^2 - lfun(N,s)

%6 ~ 0

? lfun(1,s)*lfun(L1,s)*lfun(L2,s) - lfun(P,s)

%7 ~ 0

? bnr = bnrinit(bnfinit(x^2+47),1,1);

? lfun([bnr,[1]], s) - lfun(L1, s)

%9 ~ 0

? lfun([bnr,[1]], s) - lfun(L1, s)

%10 ~ 0

The �rst identity is the factorisation of the regular representation of D10, the second the
factorisation of the natural representation of D10 � S5, the next two are the expressions of the
degree 2 representations as induced from degree 1 representations.

The library syntax is GEN lfunartin(GEN nf, GEN gal, GEN M, long n).
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3.6.13 lfuncheckfeq(L; ftg). Given the data attached to an L-function (Lmath, Ldata or Linit),
check whether the functional equation is satis�ed. This is most useful for an Ldata constructed
\by hand", via lfuncreate, to detect mistakes.

If the function has poles, the polar part must be speci�ed. The routine returns a bit accuracy
b such that jw � ŵj < 2b, where w is the root number contained in data, and ŵ is a computed
value derived from �(t) and �(1=t) at some t 6= 0 and the assumed functional equation. Of course,
a large negative value of the order of realbitprecision is expected.

If t is given, it should be close to the unit disc for e�ciency and such that �(t) 6= 0. We then
check the functional equation at that t.

? \pb 128 \\ 128 bits of accuracy

? default(realbitprecision)

%1 = 128

? L = lfuncreate(1); \\ Riemann zeta

? lfuncheckfeq(L)

%3 = -124

i.e. the given data is consistent to within 4 bits for the particular check consisting of estimating
the root number from all other given quantities. Checking away from the unit disc will either fail
with a precision error, or give disappointing results (if �(1=t) is large it will be computed with a
large absolute error)

? lfuncheckfeq(L, 2+I)

%4 = -115

? lfuncheckfeq(L,10)

*** at top-level: lfuncheckfeq(L,10)

*** ^------------------

*** lfuncheckfeq: precision too low in lfuncheckfeq.

The library syntax is long lfuncheckfeq(GEN L, GEN t = NULL, long bitprec).

3.6.14 lfunconductor(L; fab = [1; 10000]g; fflag = 0g). Compute the conductor of the given
L-function (if the structure contains a conductor, it is ignored); ab = [a; b] is the interval where we
expect to �nd the conductor; it may be given as a single scalar b, in which case we look in [1; b].
Increasing ab slows down the program but gives better accuracy for the result.

If flag is 0 (default), give either the conductor found as an integer, or a vector (possibly empty)
of conductors found. If flag is 1, same but give the computed 
oating point approximations to the
conductors found, without rounding to integers. It flag is 2, give all the conductors found, even
those far from integers.
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Caveat. This is a heuristic program and the result is not proven in any way:

? L = lfuncreate(857); \\ Dirichlet L function for kronecker(857,.)

? \p19

realprecision = 19 significant digits

? lfunconductor(L)

%2 = [17, 857]

? lfunconductor(L,,1) \\ don't round

%3 = [16.99999999999999999, 857.0000000000000000]

? \p38

realprecision = 38 significant digits

? lfunconductor(L)

%4 = 857

Note. This program should only be used if the primes dividing the conductor are unknown, which
is rare. If they are known, a direct search through possible prime exponents using lfuncheckfeq

will be more e�cient and rigorous:

? E = ellinit([0,0,0,4,0]); /* Elliptic curve y^2 = x^3+4x */

? E.disc \\ |disc E| = 2^12

%2 = -4096

\\ create Ldata by hand. Guess that root number is 1 and conductor N

? L(N) = lfuncreate([n->ellan(E,n), 0, [0,1], 1, N, 1]);

? fordiv(E.disc, d, print(d,": ",lfuncheckfeq(L(d))))

1: 0

2: 0

4: -1

8: -2

16: -3

32: -127

64: -3

128: -2

256: -2

512: -1

1024: -1

2048: 0

4096: 0

? lfunconductor(L(1)) \\ lfunconductor ignores conductor = 1 in Ldata !

%5 = 32

The above code assumed that root number was 1; had we set it to �1, none of the lfuncheckfeq
values would have been acceptable:

? L2(N) = lfuncreate([n->ellan(E,n), 0, [0,1], 1, N, -1]);

? [ lfuncheckfeq(L2(d)) | d<-divisors(E.disc) ]

%7 = [0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, -1, -1]

The library syntax is GEN lfunconductor(GEN L, GEN ab = NULL, long 10000], long

bitprec).

193



3.6.15 lfuncost(L; fsdomg; fder = 0g). Estimate the cost of running lfuninit(L,sdom,der) at
current bit precision. Returns [t; b], to indicate that t coe�cients an will be computed, as well
as t values of gammamellininv, all at bit accuracy b. A subsequent call to lfun at s evaluates a
polynomial of degree t at exp(hs) for some real parameter h, at the same bit accuracy b. If L is
already an Linit, then sdom and der are ignored and are best left omitted; the bit accuracy is also
inferred from L: in short we get an estimate of the cost of using that particular Linit.

? \pb 128

? lfuncost(1, [100]) \\ for zeta(1/2+I*t), |t| < 100

%1 = [7, 242] \\ 7 coefficients, 242 bits

? lfuncost(1, [1/2, 100]) \\ for zeta(s) in the critical strip, |Im s| < 100

%2 = [7, 246] \\ now 246 bits

? lfuncost(1, [100], 10) \\ for zeta(1/2+I*t), |t| < 100

%3 = [8, 263] \\ 10th derivative increases the cost by a small amount

? lfuncost(1, [10^5])

%3 = [158, 113438] \\ larger imaginary part: huge accuracy increase

? L = lfuncreate(polcyclo(5)); \\ Dedekind zeta for Q(zeta_5)

? lfuncost(L, [100]) \\ at s = 1/2+I*t), |t| < 100

%5 = [11457, 582]

? lfuncost(L, [200]) \\ twice higher

%6 = [36294, 1035]

? lfuncost(L, [10^4]) \\ much higher: very costly !

%7 = [70256473, 45452]

? \pb 256

? lfuncost(L, [100]); \\ doubling bit accuracy

%8 = [17080, 710]

In fact, some L functions can be factorized algebraically by the lfuninit call, e.g. the Dedekind
zeta function of abelian �elds, leading to much faster evaluations than the above upper bounds. In
that case, the function returns a vector of costs as above for each individual function in the product
actually evaluated:

? L = lfuncreate(polcyclo(5)); \\ Dedekind zeta for Q(zeta_5)

? lfuncost(L, [100]) \\ a priori cost

%2 = [11457, 582]

? L = lfuninit(L, [100]); \\ actually perform all initializations

? lfuncost(L)

%4 = [[16, 242], [16, 242], [7, 242]]

The Dedekind function of this abelian quartic �eld is the product of four Dirichlet L-functions
attached to the trivial character, a non-trivial real character and two complex conjugate characters.
The non-trivial characters happen to have the same conductor (hence same evaluation costs), and
correspond to two evaluations only since the two conjugate characters are evaluated simultaneously.
For a total of three L-functions evaluations, which explains the three components above. Note that
the actual cost is much lower than the a priori cost in this case.

The library syntax is GEN lfuncost0(GEN L, GEN sdom = NULL, long der, long bitprec)

. Also available is GEN lfuncost(GEN L, GEN dom, long der, long bitprec) when L is not an
Linit; the return value is a t_VECSMALL in this case.
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3.6.16 lfuncreate(obj ). This low-level routine creates Ldata structures, needed by lfun functions,
describing an L-function and its functional equation. You are urged to use a high-level constructor
when one is available, and this function accepts them, see ??lfun:

? L = lfuncreate(1); \\ Riemann zeta

? L = lfuncreate(5); \\ Dirichlet L-function for quadratic character (5/.)

? L = lfuncreate(x^2+1); \\ Dedekind zeta for Q(i)

? L = lfuncreate(ellinit([0,1])); \\ L-function of E/Q: y^2=x^3+1

One can then use, e.g., Lfun(L,s) to directly evaluate the respective L-functions at s, or
lfuninit(L, [c,w,h] to initialize computations in the rectangular box <(s� c) � w, =(s) � h.

We now describe the low-level interface, used to input non-builtin L-functions. The input
is now a 6 or 7 component vector V = [a; astar; V ga; k;N; eps; poles], whose components are as
follows:

� V[1]=a encodes the Dirichlet series coe�cients. The preferred format is a closure of arity 1:
n->vector(n,i,a(i)) giving the vector of the �rst n coe�cients. The closure is allowed to return
a vector of more than n coe�cients (only the �rst n will be considered) or even less than n, in
which case loss of accuracy will occur and a warning that #an is less than expected is issued. This
allows to precompute and store a �xed large number of Dirichlet coe�cients in a vector v and use
the closure n->v, which does not depend on n. As a shorthand for this latter case, you can input
the vector v itself instead of the closure.

A second format is limited to multiplicative L functions a�ording an Euler product. It is a
closure of arity 2 (p,d)->L(p) giving the local factor Lp at p as a rational function, to be evaluated
at p�s as in direuler; d is set to the 
oor of logp(n), where n is the total number of Dirichlet
coe�cients (a1; : : : ; an) that will be computed in this way. This parameter d allows to compute
only part of Lp when p is large and Lp expensive to compute, but it can of course be ignored by
the closure.

Finally one can describe separately the generic Dirichlet coe�cients and the bad local factors
by setting dir = [an; [p1; L

�1
p1 ]; : : : ; [pk; L

�1
pk ]], where an describes the generic coe�cients in one of

the two formats above, except that coe�cients an with pi j n for some i � k will be ignored. The
subsequent pairs [p; L�1p ] give the bad primes and corresponding inverse local factors.

� V[2]=astar is the Dirichlet series coe�cients of the dual function, encoded as a above. The
sentinel values 0 and 1 may be used for the special cases where a = a� and a = a�, respectively.

� V[3]=Vga is the vector of �j such that the gamma factor of the L-function is equal to


A(s) =
Y

1�j�d

�R(s+ �j);

where �R(s) = ��s=2�(s=2). This same syntax is used in the gammamellininv functions. In
particular the length d of Vga is the degree of the L-function. In the present implementation, the
�j are assumed to be exact rational numbers. However when calling theta functions with complex
(as opposed to real) arguments, determination problems occur which may give wrong results when
the �j are not integral.

� V[4]=k is a positive integer k. The functional equation relates values at s and k � s. For
instance, for an Artin L-series such as a Dedekind zeta function we have k = 1, for an elliptic curve
k = 2, and for a modular form, k is its weight. For motivic L-functions, the motivic weight w is
w = k � 1.
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� V[5]=N is the conductor, an integer N � 1, such that �(s) = Ns=2
A(s)L(s) with 
A(s) as
above.

� V[6]=eps is the root number ", i.e., the complex number (usually of modulus 1) such that
�(a; k � s) = "�(a�; s).

� The last optional component V[7]=poles encodes the poles of the L or �-functions, and is
omitted if they have no poles. A polar part is given by a list of 2-component vectors [�; P�(x)], where
� is a pole and the power series P�(x) describes the attached polar part, such that L(s)�P�(s��)
is holomorphic in a neighbourhood of �. For instance P� = r=x + O(1) for a simple pole at � or
r1=x

2 + r2=x + O(1) for a double pole. The type of the list describing the polar part allows to
distinguish between L and �: a t_VEC is attached to L, and a t_COL is attached to �.

The latter is mandatory unless a = a� (coded by astar equal to 0 or 1): otherwise, the poles
of L� cannot be infered from the poles of L ! (Whereas the functional equation allows to deduce
the polar part of �� from the polar part of �.) The special coding poles = r a complex scalar
is available in this case, to describe a L function with at most a single simple pole at s = k and
residue r. (This is the usual situation, for instance for Dedekind zeta functions.) This value r can
be set to 0 if unknown, and it will be computed.

The library syntax is GEN lfuncreate(GEN obj).

3.6.17 lfundiv(L1 ;L2 ). Creates the Ldata structure (without initialization) corresponding to the
quotient of the Dirichlet series L1 and L2 given by L1 and L2. Assume that vz(L1) � vz(L2) at all
complex numbers z: the construction may not create new poles, nor increase the order of existing
ones.

The library syntax is GEN lfundiv(GEN L1, GEN L2, long bitprec).

3.6.18 lfunetaquo(M). Returns the Ldata structure attached to the L function attached to the
modular form z 7!Qn

i=1 �(Mi;1z)
Mi;2 It is currently assumed that f is a self-dual cuspidal form on

�0(N) for some N . For instance, the L-function
P
�(n)n�s attached to Ramanujan's � function

is encoded as follows

? L = lfunetaquo(Mat([1,24]));

? lfunan(L, 100) \\ first 100 values of tau(n)

The library syntax is GEN lfunetaquo(GEN M).

3.6.19 lfungenus2(F ). Returns the Ldata structure attached to the L function attached to the
genus-2 curve de�ned by y2 = F (x) or y2 + Q(x)y = P (x) if F = [P;Q]. Currently, the model
needs to be minimal at 2, and if the conductor is even, its valuation at 2 might be incorrect (a
warning is issued).

The library syntax is GEN lfungenus2(GEN F).
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3.6.20 lfunhardy(L; t). Variant of the Hardy Z-function given by L, used for plotting or locating
zeros of L(k=2 + it) on the critical line. The precise de�nition is as follows: if as usual k=2 is the
center of the critical strip, d is the degree, �j the entries of Vga giving the gamma factors, and "
the root number, then if we set s = k=2 + it = �ei� and E = (d(k=2 � 1) +

P
1�j�d �j)=2, the

computed function at t is equal to

Z(t) = "�1=2�(s) � jsj�Eedt�=2 ;

which is a real function of t for self-dual �, vanishing exactly when L(k=2+ it) does on the critical
line. The normalizing factor jsj�Eedt�=2 compensates the exponential decrease of 
A(s) as t ! 1
so that Z(t) � 1.

? T = 100; \\ maximal height

? L = lfuninit(1, [T]); \\ initialize for zeta(1/2+it), |t|<T

? \p19 \\ no need for large accuracy

? ploth(t = 0, T, lfunhardy(L,t))

Using lfuninit is critical for this particular applications since thousands of values are computed.
Make sure to initialize up to the maximal t needed: otherwise expect to see many warnings for
unsu�cient initialization and su�er major slowdowns.

The library syntax is GEN lfunhardy(GEN L, GEN t, long bitprec).

3.6.21 lfuninit(L; sdom; fder = 0g). Initalization function for all functions linked to the com-
putation of the L-function L(s) encoded by L, where s belongs to the rectangular domain
sdom = [center ; w; h] centered on the real axis, j<(s) � center j � w, j=(s)j � h, where all three
components of sdom are real and w, h are non-negative. der is the maximum order of derivation
that will be used. The subdomain [k=2; 0; h] on the critical line (up to height h) can be encoded as
[h] for brevity. The subdomain [k=2; w; h] centered on the critical line can be encoded as [w; h] for
brevity.

The argument L is an Lmath, an Ldata or an Linit. See ??Ldata and ??lfuncreate for how
to create it.

The height h of the domain is a crucial parameter: if you only need L(s) for real s, set h to 0.
The running time is roughly proportional to

(B=d+ �h=4)d=2+3N1=2;

where B is the default bit accuracy, d is the degree of the L-function, and N is the conductor (the
exponent d=2 + 3 is reduced to d=2 + 2 when d = 1 and d = 2). There is also a dependency on w,
which is less crucial, but make sure to use the smallest rectangular domain that you need.

? L0 = lfuncreate(1); \\ Riemann zeta

? L = lfuninit(L0, [1/2, 0, 100]); \\ for zeta(1/2+it), |t| < 100

? lfun(L, 1/2 + I)

? L = lfuninit(L0, [100]); \\ same as above !

The library syntax is GEN lfuninit0(GEN L, GEN sdom, long der, long bitprec).
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3.6.22 lfunlambda(L; s; fD = 0g). Compute the completed L-function �(s) = Ns=2
(s)L(s), or
if D is set, the derivative of order D at s. The parameter L is either an Lmath, an Ldata (created
by lfuncreate, or an Linit (created by lfuninit), preferrably the latter if many values are to be
computed.

The result is given with absolute error less than 2�B j
(s)Ns=2j, where B = realbitprecision.

The library syntax is GEN lfunlambda0(GEN L, GEN s, long D, long bitprec).

3.6.23 lfunmfspec(L). Returns [valeven,valodd,omminus,omplus], where valeven (resp.,
valodd) is the vector of even (resp., odd) periods of the modular form given by L, and ommi-

nus and omplus the corresponding real numbers !� and !+ normalized in a noncanonical way. For
the moment, only for modular forms of even weight.

The library syntax is GEN lfunmfspec(GEN L, long bitprec).

3.6.24 lfunmul(L1 ;L2 ). Creates the Ldata structure (without initialization) corresponding to
the product of the Dirichlet series given by L1 and L2.

The library syntax is GEN lfunmul(GEN L1, GEN L2, long bitprec).

3.6.25 lfunorderzero(L; fm = �1g). Computes the order of the possible zero of the L-function
at the center k=2 of the critical strip; return 0 if L(k=2) does not vanish.

If m is given and has a non-negative value, assumes the order is at most m. Otherwise, the
algorithm chooses a sensible default:

� if the L argument is an Linit, assume that a multiple zero at s = k=2 has order less than
or equal to the maximal allowed derivation order.

� else assume the order is less than 4.

You may explicitly increase this value using optional argument m; this overrides the default
value above. (Possibly forcing a recomputation of the Linit.)

The library syntax is long lfunorderzero(GEN L, long m, long bitprec).

3.6.26 lfunqf(Q). Returns the Ldata structure attached to the � function of the lattice attached
to the de�nite positive quadratic form Q.

? L = lfunqf(matid(2));

? lfunqf(L,2)

%2 = 6.0268120396919401235462601927282855839

? lfun(x^2+1,2)*4

%3 = 6.0268120396919401235462601927282855839

The library syntax is GEN lfunqf(GEN Q, long prec).
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3.6.27 lfunrootres(data). Given the Ldata attached to an L-function (or the output of lfun-
thetainit), compute the root number and the residues. The output is a 3-component vector
[r;R;w], where r is the residue of L(s) at the unique pole, R is the residue of �(s), and w is the
root number. In the present implementation,

� either the polar part must be completely known (and is then arbitrary): the function deter-
mines the root number,

? L = lfunmul(1,1); \\ zeta^2

? [r,R,w] = lfunrootres(L);

? r \\ single pole at 1, double

%3 = [[1, 1.[...]*x^-2 + 1.1544[...]*x^-1 + O(x^0)]]

? w

%4 = 1

? R \\ double pole at 0 and 1

%5 = [[1,[...]], [0,[...]]

� or at most a single pole is allowed: the function computes both the root number and the
residue (0 if no pole).

The library syntax is GEN lfunrootres(GEN data, long bitprec).

3.6.28 lfuntheta(data; t; fm = 0g). Compute the value of the m-th derivative at t of the theta
function attached to the L-function given by data. data can be either the standard L-function
data, or the output of lfunthetainit. The theta function is de�ned by the formula �(t) =P

n�1 a(n)K(nt=
p
(N)), where a(n) are the coe�cients of the Dirichlet series, N is the conductor,

and K is the inverse Mellin transform of the gamma product de�ned by the Vga component. Its
Mellin transform is equal to �(s)� P (s), where �(s) is the completed L-function and the rational
function P (s) its polar part. In particular, if the L-function is the L-function of a modular form
f(�) =

P
n�0 a(n)q

n with q = exp(2�i�), we have �(t) = 2(f(it=
p
N)� a(0)). Note that an easy

theorem on modular forms implies that a(0) can be recovered by the formula a(0) = �L(f; 0).
The library syntax is GEN lfuntheta(GEN data, GEN t, long m, long bitprec).

3.6.29 lfunthetacost(L; ftdomg; fm = 0g). This function estimates the cost of running lfun-

thetainit(L,tdom,m) at current bit precision. Returns the number of coe�cients an that would
be computed. This also estimates the cost of a subsequent evaluation lfuntheta, which must com-
pute that many values of gammamellininv at the current bit precision. If L is already an Linit,
then tdom and m are ignored and are best left omitted: we get an estimate of the cost of using
that particular Linit.

? \pb 1000

? L = lfuncreate(1); \\ Riemann zeta

? lfunthetacost(L); \\ cost for theta(t), t real >= 1

%1 = 15

? lfunthetacost(L, 1 + I); \\ cost for theta(1+I). Domain error !

*** at top-level: lfunthetacost(1,1+I)

*** ^--------------------

*** lfunthetacost: domain error in lfunthetaneed: arg t > 0.785

? lfunthetacost(L, 1 + I/2) \\ for theta(1+I/2).

%2 = 23

? lfunthetacost(L, 1 + I/2, 10) \\ for theta^((10))(1+I/2).
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%3 = 24

? lfunthetacost(L, [2, 1/10]) \\ cost for theta(t), |t| >= 2, |arg(t)| < 1/10

%4 = 8

? L = lfuncreate( ellinit([1,1]) );

? lfunthetacost(L) \\ for t >= 1

%6 = 2471

The library syntax is long lfunthetacost0(GEN L, GEN tdom = NULL, long m, long

bitprec).

3.6.30 lfunthetainit(L; ftdomg; fm = 0g). Initalization function for evaluating the m-th deriva-
tive of theta functions with argument t in domain tdom. By default (tdom omitted), t is real, t � 1.
Otherwise, tdom may be

� a positive real scalar �: t is real, t � �.
� a non-real complex number: compute at this particular t; this allows to compute �(z) for

any complex z satisfying jzj � jtj and j arg zj � j arg tj; we must have j2 arg z=dj < �=2, where d is
the degree of the � factor.

� a pair [�; �]: assume that jtj � � and j arg tj � �; we must have j2�=dj < �=2, where d is the
degree of the � factor.

? \p500

? L = lfuncreate(1); \\ Riemann zeta

? t = 1+I/2;

? lfuntheta(L, t); \\ direct computation

time = 30 ms.

? T = lfunthetainit(L, 1+I/2);

time = 30 ms.

? lfuntheta(T, t); \\ instantaneous

The T structure would allow to quickly compute �(z) for any z in the cone delimited by t as
explained above. On the other hand

? lfuntheta(T,I)

*** at top-level: lfuntheta(T,I)

*** ^--------------

*** lfuntheta: domain error in lfunthetaneed: arg t > 0.785398163397448

The initialization is equivalent to

? lfunthetainit(L, [abs(t), arg(t)])

The library syntax is GEN lfunthetainit(GEN L, GEN tdom = NULL, long m, long bit-

prec).
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3.6.31 lfunzeros(L; lim; fdivz = 8g). lim being either a positive upper limit or a non-empty real
interval inside [0;+1[, computes an ordered list of zeros of L(s) on the critical line up to the given
upper limit or in the given interval. Use a naive algorithm which may miss some zeros: it assumes
that two consecutive zeros at height T � 1 di�er at least by 2�=!, where

! := divz � �d log(T=2�) + d+ 2 log(N=(�=2)d)
�
:

To use a �ner search mesh, set divz to some integral value larger than the default (= 8).

? lfunzeros(1, 30) \\ zeros of Rieman zeta up to height 30

%1 = [14.134[...], 21.022[...], 25.010[...]]

? #lfunzeros(1, [100,110]) \\ count zeros with 100 <= Im(s) <= 110

%2 = 4

The algorithm also assumes that all zeros are simple except possibly on the real axis at s = k=2 and
that there are no poles in the search interval. (The possible zero at s = k=2 is repeated according
to its multiplicity.)

Should you pass an Linit argument to the function, beware that the algorithm needs at least

L = lfuninit(Ldata, T+1)

where T is the upper bound of the interval de�ned by lim: this allows to detect zeros near T .
Make sure that your Linit domain contains this one. The algorithm assumes that a multiple zero
at s = k=2 has order less than or equal to the maximal derivation order allowed by the Linit. You
may increase that value in the Linit but this is costly: only do it for zeros of low height or in
lfunorderzero instead.

The library syntax is GEN lfunzeros(GEN L, GEN lim, long divz, long bitprec).

3.7 Modular symbols.

Let � := Div0(P1(Q)) be the abelian group of divisors of degree 0 on the rational projective
line. The standard GL(2;Q) action on P1(Q) via homographies naturally extends to �. Given

� G a �nite index subgroup of SL(2;Z),

� a �eld F and a �nite dimensional representation V=F of GL(2;Q),

we consider the space of modular symbols M := HomG(�; V ). This �nite dimensional F -vector
space is a G-module, canonically isomorphic toH1

c (X(G); V ), and allows to compute modular forms
for G.

Currently, we only support the groups �0(N) (N > 1 an integer) and the representations
Vk = Q[X;Y ]k�2 (k � 2 an integer) over Q. We represent a space of modular symbols by an ms
structure, created by the function msinit. It encodes basic data attached to the space: chosen
Z[G]-generators (gi) for � (and relations among those) and an F -basis of M . A modular symbol s
is thus given either in terms of this �xed basis, or as a collection of values s(gi) satisfying certain
relations.

A subspace of M (e.g. the cuspidal or Eisenstein subspaces, the new or old modular symbols,
etc.) is given by a structure allowing quick projection and restriction of linear operators; its �rst
component is a matrix whose columns form an F -basis of the subspace.
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3.7.1 msatkinlehner(M;Q; fHg). Let M be a full modular symbol space of level N , as given
by msinit, let Q j N , (Q;N=Q) = 1, and let H be a subspace stable under the Atkin-Lehner
involution wQ. Return the matrix of wQ acting on H (M if omitted).

? M = msinit(36,2); \\ M_2(Gamma_0(36))

? w = msatkinlehner(M,4); w^2 == 1

%2 = 1

? #w \\ involution acts on a 13-dimensional space

%3 = 13

? M = msinit(36,2, -1); \\ M_2(Gamma_0(36))^-

? w = msatkinlehner(M,4); w^2 == 1

%5 = 1

? #w

%6 = 4

The library syntax is GEN msatkinlehner(GEN M, long Q, GEN H = NULL).

3.7.2 mscuspidal(M; fflag = 0g). M being a full modular symbol space, as given by msinit,
return its cuspidal part S. If flag = 1, return [S;E] its decomposition into cuspidal and Eisenstein
parts.

A subspace is given by a structure allowing quick projection and restriction of linear operators;
its �rst component is a matrix with integer coe�cients whose columns form a Q-basis of the
subspace.

? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+

? [S,E] = mscuspidal(M, 1);

? E[1] \\ 2-dimensional

%3 =

[0 -10]

[0 -15]

[0 -3]

[1 0]

? S[1] \\ 1-dimensional

%4 =

[ 3]

[30]

[ 6]

[-8]

The library syntax is GEN mscuspidal(GEN M, long flag).
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3.7.3 mseisenstein(M). M being a full modular symbol space, as given by msinit, return its
Eisenstein subspace. A subspace is given by a structure allowing quick projection and restriction of
linear operators; its �rst component is a matrix with integer coe�cients whose columns form a Q-
basis of the subspace. This is the same basis as given by the second component of mscuspidal(M; 1).

? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+

? E = mseisenstein(M);

? E[1] \\ 2-dimensional

%3 =

[0 -10]

[0 -15]

[0 -3]

[1 0]

? E == mscuspidal(M,1)[2]

%4 = 1

The library syntax is GEN mseisenstein(GEN M).

3.7.4 mseval(M; s; fpg). Let � := Div0(P1(Q)). Let M be a full modular symbol space, as
given by msinit, let s be a modular symbol from M , i.e. an element of HomG(�; V ), and let
p = [a; b] 2 � be a path between two elements in P1(Q), return s(p) 2 V . The path extremities a
and b may be given as t_INT, t_FRAC or oo = (1 : 0). The symbol s is either

� a t_COL coding an element of a modular symbol subspace in terms of the �xed basis of
HomG(�; V ) chosen inM ; ifM was initialized with a non-zero sign (+ or �), then either the basis
for the full symbol space or the �-part can be used (the dimension being used to distinguish the
two).

� a t_VEC (vi) of elements of V , where the vi = s(gi) give the image of the generators gi of
�, see mspathgens. We assume that s is a proper symbol, i.e. that the vi satisfy the mspathgens
relations.

If p is omitted, convert the symbol s to the second form: a vector of the s(gi).

? M = msinit(2,8,1); \\ M_8(Gamma_0(2))^+

? g = mspathgens(M)[1]

%2 = [[+oo, 0], [0, 1]]

? N = msnew(M)[1]; #N \\ Q-basis of new subspace, dimension 1

%3 = 1

? s = N[,1] \\ t_COL representation

%4 = [-3, 6, -8]~
? S = mseval(M, s) \\ t_VEC representation

%5 = [64*x^6-272*x^4+136*x^2-8, 384*x^5+960*x^4+192*x^3-672*x^2-432*x-72]

? mseval(M,s, g[1])

%6 = 64*x^6 - 272*x^4 + 136*x^2 - 8

? mseval(M,S, g[1])

%7 = 64*x^6 - 272*x^4 + 136*x^2 - 8

Note that the symbol should have values in V = Q[x; y]k�2, we return the de-homogenized values
corresponding to y = 1 instead.

The library syntax is GEN mseval(GEN M, GEN s, GEN p = NULL).
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3.7.5 msfromcusp(M; c). Returns the modular symbol attached to the cusp c, where M is a
modular symbol space of level N , attached to G = �0(N). The cusp c in P1(Q)=G can be given
either as oo (= (1 : 0)), as a rational number a=b (= (a : b)). The attached symbol maps the path
[b] � [a] 2 Div0(P1(Q)) to Ec(b) � Ec(a), where Ec(r) is 0 when r 6= c and Xk�2 j 
r otherwise,
where 
r � r = (1 : 0). These symbol span the Eisenstein subspace of M .

? M = msinit(2,8); \\ M_8(Gamma_0(2))

? E = mseisenstein(M);

? E[1] \\ two-dimensional

%3 =

[0 -10]

[0 -15]

[0 -3]

[1 0]

? s = msfromcusp(M,oo)

%4 = [0, 0, 0, 1]~
? mseval(M, s)

%5 = [1, 0]

? s = msfromcusp(M,1)

%6 = [-5/16, -15/32, -3/32, 0]~
? mseval(M,s)

%7 = [-x^6, -6*x^5 - 15*x^4 - 20*x^3 - 15*x^2 - 6*x - 1]

In case M was initialized with a non-zero sign, the symbol is given in terms of the �xed basis
of the whole symbol space, not the + or � part (to which it need not belong).

? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+

? E = mseisenstein(M);

? E[1] \\ still two-dimensional, in a smaller space

%3 =

[ 0 -10]

[ 0 3]

[-1 0]

? s = msfromcusp(M,oo) \\ in terms of the basis for M_8(Gamma_0(2)) !

%4 = [0, 0, 0, 1]~
? mseval(M, s) \\ same symbol as before

%5 = [1, 0]

The library syntax is GEN msfromcusp(GEN M, GEN c).
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3.7.6 msfromell(E; fsign = 0g). Let E=Q be an elliptic curve of conductor N . For " = �1, we
de�ne the (cuspidal, new) modular symbol x" in H1

c (X0(N);Q)" attached to E. For all primes p
not dividing N we have Tp(x

") = apx
", where ap = p+ 1�#E(Fp).

Let 
+ = E:omega[1] be the real period of E (integration of the N�eron di�erential dx=(2y +
a1x + a3) on the connected component of E(R), i.e. the generator of H1(E;Z)

+) normalized by

+ > 0. Let i
� the integral on a generator of H1(E;Z)

� with 
� 2 R>0. If c1 is the number of
connected components of E(R), 
� is equal to (�2=c1)�imag(E:omega[2]). The complex modular
symbol is de�ned by

F : � ! 2i�

Z
�

f(z)dz

The modular symbols x" are normalized so that F = x+
+ + x�i
�. In particular, we have

x+([0]� [1]) = L(E; 1)=
+;

which de�nes x� unless L(E; 1) = 0. Furthermore, for all fundamental discriminants D such that
" �D > 0, we also have X

0�a<jDj

(Dja)x"([a=jDj]� [1]) = L(E; (Dj:); 1)=
";

where (Dj:) is the Kronecker symbol. The period 
� is also 2=c1� the real period of the twist
E(�4) = elltwist(E;�4).

This function returns the pair [M;x], where M is msinit(N; 2) and x is xsign as above when
sign = �1, and x = [x+; x�] when sign is 0. The modular symbols x� are given as a t_COL (in
terms of the �xed basis of HomG(�;Q) chosen in M).

? E=ellinit([0,-1,1,-10,-20]); \\ X_0(11)

? [M,xp]= msfromell(E,1);

? xp

%3 = [1/5, -1/2, -1/2]~
? [M,x]= msfromell(E);

? x \\ both x^+ and x^-

%5 = [[1/5, -1/2, -1/2]~, [0, 1/2, -1/2]~]

? p = 23; (mshecke(M,p) - ellap(E,p))*x[1]

%6 = [0, 0, 0]~ \\ true at all primes, including p = 11; same for x[2]

The library syntax is GEN msfromell(GEN E, long sign).

3.7.7 msfromhecke(M; v; fHg). Given a msinitM and a vector v of pairs [p; P ] (where p is prime
and P is a polynomial with integer coe�cients), return a basis of all modular symbols such that
P (Tp)(s) = 0. If H is present, it must be a Hecke-stable subspace and we restrict to s 2 H. When
Tp has a rational eigenvalue and P (x) = x� ap has degree 1, we also accept the integer ap instead
of P .

? E = ellinit([0,-1,1,-10,-20]) \\11a1

? ellap(E,2)

%2 = -2

? ellap(E,3)

%3 = -1
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? M = msinit(11,2);

? S = msfromhecke(M, [[2,-2],[3,-1]])

%5 =

[ 1 1]

[-5 0]

[ 0 -5]

? mshecke(M, 2, S)

%6 =

[-2 0]

[ 0 -2]

? M = msinit(23,4);

? S = msfromhecke(M, [[5, x^4-14*x^3-244*x^2+4832*x-19904]]);

? factor( charpoly(mshecke(M,5,S)) )

%9 =

[x^4 - 14*x^3 - 244*x^2 + 4832*x - 19904 2]

The library syntax is GEN msfromhecke(GEN M, GEN v, GEN H = NULL).

3.7.8 msgetlevel(M). M being a full modular symbol space, as given by msinit, return its level
N .

The library syntax is long msgetlevel(GEN M).

3.7.9 msgetsign(M). M being a full modular symbol space, as given by msinit, return its sign:
�1 or 0 (unset).

? M = msinit(11,4, 1);

? msgetsign(M)

%2 = 1

? M = msinit(11,4);

? msgetsign(M)

%4 = 0

The library syntax is long msgetsign(GEN M).

3.7.10 msgetweight(M). M being a full modular symbol space, as given by msinit, return its
weight k.

? M = msinit(11,4);

? msgetweight(M)

%2 = 4

The library syntax is long msgetweight(GEN M).
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3.7.11 mshecke(M;p; fHg). M being a full modular symbol space, as given by msinit, p being a
prime number, and H being a Hecke-stable subspace (M if omitted) return the matrix of Tp acting
on H (Up if p divides N). Result is unde�ned if H is not stable by Tp (resp. Up).

? M = msinit(11,2); \\ M_2(Gamma_0(11))

? T2 = mshecke(M,2)

%2 =

[3 0 0]

[1 -2 0]

[1 0 -2]

? M = msinit(11,2, 1); \\ M_2(Gamma_0(11))^+

? T2 = mshecke(M,2)

%4 =

[ 3 0]

[-1 -2]

? N = msnew(M)[1] \\ Q-basis of new cuspidal subspace

%5 =

[-2]

[-5]

? p = 1009; mshecke(M, p, N) \\ action of T_1009 on N

%6 =

[-10]

? ellap(ellinit("11a1"), p)

%7 = -10

The library syntax is GEN mshecke(GEN M, long p, GEN H = NULL).

3.7.12 msinit(G;V; fsign = 0g). Given G a �nite index subgroup of SL(2;Z) and a �nite
dimensional representation V of GL(2;Q), creates a space of modular symbols, the G-module
HomG(Div

0(P1(Q)); V ). This is canonically isomorphic to H1
c (X(G); V ), and allows to compute

modular forms for G. If sign is present and non-zero, it must be �1 and we consider the subspace
de�ned by Ker(�� sign), where � is induced by [-1,0;0,1]. Currently the only supported groups
are the �0(N), coded by the integer N > 1. The only supported representation is Vk = Q[X;Y ]k�2,
coded by the integer k � 2.

The library syntax is GEN msinit(GEN G, GEN V, long sign).

3.7.13 msissymbol(M; s). M being a full modular symbol space, as given by msinit, check
whether s is a modular symbol attached to M .

? M = msinit(7,8, 1); \\ M_8(Gamma_0(7))^+

? N = msnew(M)[1];

? s = N[,1];

? msissymbol(M, s)

%4 = 1

? S = mseval(M,s);

? msissymbol(M, S)

%6 = 1

? [g,R] = mspathgens(M); g
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%7 = [[+oo, 0], [0, 1/2], [1/2, 1]]

? #R \\ 3 relations among the generators g_i

%8 = 3

? T = S; T[3]++; \\ randomly perturb S(g_3)

? msissymbol(M, T)

%10 = 0 \\ no longer satisfies the relations

The library syntax is long msissymbol(GEN M, GEN s).

3.7.14 msnew(M). M being a full modular symbol space, as given by msinit, return the new part
of its cuspidal subspace. A subspace is given by a structure allowing quick projection and restriction
of linear operators; its �rst component is a matrix with integer coe�cients whose columns form a
Q-basis of the subspace.

? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+

? N = msnew(M);

? #N[1] \\ 6-dimensional

%3 = 6

The library syntax is GEN msnew(GEN M).

3.7.15 msomseval(Mp;PHI ; path). Return the vectors of moments of the p-adic distribution
attached to the path path by the overconvergent modular symbol PHI.

? M = msinit(3,6,1);

? Mp= mspadicinit(M,5,10);

? phi = [5,-3,-1]~;

? msissymbol(M,phi)

%4 = 1

? PHI = mstooms(Mp,phi);

? ME = msomseval(Mp,PHI,[oo, 0]);

The library syntax is GEN msomseval(GEN Mp, GEN PHI, GEN path).

3.7.16 mspadicL(mu; fs = 0g; fr = 0g). Returns the value (or r-th derivative) on a character �s

of Z�p of the p-adic L-function attached to mu.

Let � be the p-adic distribution-valued overconvergent symbol attached to a modular symbol
� for �0(N) (eigenvector for TN (p) for the eigenvalue ap). Then Lp(�; �

s) = Lp(�; s) is the p-adic
L function de�ned by

Lp(�; �
s) =

Z
Z�p

�s(z)d�(z)

where � is the distribution on Z�p de�ned by the restriction of �([1]�[0]) to Z�p. The r-th derivative
is taken in direction h�i:

L(r)
p (�; �s) =

Z
Z�p

�s(z)(log z)rd�(z):

In the argument list,

� mu is as returned by mspadicmoments (distributions attached to � by restriction to discs
a+ p�Zp, (a; p) = 1).
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� s = [s1; s2] with s1 2 Z � Zp and s2 mod p � 1 or s2 mod 2 for p = 2, encoding the p-adic
character �s := h�is1�s2 ; here � is the cyclotomic character from Gal(Qp(�p1)=Qp) to Z

�
p, and

� is the Teichm�uller character (for p > 2 and the character of order 2 on (Z=4Z)� if p = 2); for
convenience, the character [s; s] can also be represented by the integer s.

When ap is a p-adic unit, Lp takes its values in Qp. When ap is not a unit, it takes its values
in the two-dimensional Qp-vector space Dcris(M(�)) where M(�) is the \motive" attached to �,
and we return the two p-adic components with respect to some �xed Qp-basis.

? M = msinit(3,6,1); phi=[5, -3, -1]~;

? msissymbol(M,phi)

%2 = 1

? Mp = mspadicinit(M, 5, 4);

? mu = mspadicmoments(Mp, phi); \\ no twist

\\ End of initializations

? mspadicL(mu,0) \\ L_p(chi^0)

%5 = 5 + 2*5^2 + 2*5^3 + 2*5^4 + ...

? mspadicL(mu,1) \\ L_p(chi), zero for parity reasons

%6 = [O(5^13)]~
? mspadicL(mu,2) \\ L_p(chi^2)

%7 = 3 + 4*5 + 4*5^2 + 3*5^5 + ...

? mspadicL(mu,[0,2]) \\ L_p(tau^2)

%8 = 3 + 5 + 2*5^2 + 2*5^3 + ...

? mspadicL(mu, [1,0]) \\ L_p(<chi>)

%9 = 3*5 + 2*5^2 + 5^3 + 2*5^7 + 5^8 + 5^10 + 2*5^11 + O(5^13)

? mspadicL(mu,0,1) \\ L_p'(chi^0)

%10 = 2*5 + 4*5^2 + 3*5^3 + ...

? mspadicL(mu, 2, 1) \\ L_p'(chi^2)

%11 = 4*5 + 3*5^2 + 5^3 + 5^4 + ...

Now several quadratic twists: mstooms is indicated.

? PHI = mstooms(Mp,phi);

? mu = mspadicmoments(Mp, PHI, 12); \\ twist by 12

? mspadicL(mu)

%14 = 5 + 5^2 + 5^3 + 2*5^4 + ...

? mu = mspadicmoments(Mp, PHI, 8); \\ twist by 8

? mspadicL(mu)

%16 = 2 + 3*5 + 3*5^2 + 2*5^4 + ...

? mu = mspadicmoments(Mp, PHI, -3); \\ twist by -3 < 0

? mspadicL(mu)

%18 = O(5^13) \\ always 0, phi is in the + part and D < 0

One can locate interesting symbols of level N and weight k with msnew and mssplit. Note
that instead of a symbol, one can input a 1-dimensional Hecke-subspace from mssplit: the function
will automatically use the underlying basis vector.

? M=msinit(5,4,1); \\ M_4(Gamma_0(5))^+

? L = mssplit(M, msnew(M)); \\ list of irreducible Hecke-subspaces

? phi = L[1]; \\ one Galois orbit of newforms

? #phi[1] \\... this one is rational
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%4 = 1

? Mp = mspadicinit(M, 3, 4);

? mu = mspadicmoments(Mp, phi);

? mspadicL(mu)

%7 = 1 + 3 + 3^3 + 3^4 + 2*3^5 + 3^6 + O(3^9)

? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+

? Mp = mspadicinit(M, 3, 4);

? L = mssplit(M, msnew(M));

? phi = L[1]; #phi[1] \\ ... this one is two-dimensional

%11 = 2

? mu = mspadicmoments(Mp, phi);

*** at top-level: mu=mspadicmoments(Mp,ph

*** ^--------------------

*** mspadicmoments: incorrect type in mstooms [dim_Q (eigenspace) > 1]

The library syntax is GEN mspadicL(GEN mu, GEN s = NULL, long r).

3.7.17 mspadicinit(M;p; n; fflagg). M being a full modular symbol space, as given by msinit,
and p a prime, initialize technical data needed to compute with overconvergent modular symbols,
modulo pn. If flag is unset, allow all symbols; else initialize only for a restricted range of symbols
depending on flag : if flag = 0 restrict to ordinary symbols, else restrict to symbols � such that
Tp(�) = ap�, with vp(ap) � flag , which is faster as flag increases. (The fastest initialization is
obtained for flag = 0 where we only allow ordinary symbols.) For supersingular eigensymbols, such
that p j ap, we must further assume that p does not divide the level.

? E = ellinit("11a1");

? [M,phi] = msfromell(E,1);

? ellap(E,3)

%3 = -1

? Mp = mspadicinit(M, 3, 10, 0); \\ commit to ordinary symbols

? PHI = mstooms(Mp,phi);

If we restrict the range of allowed symbols with flag(for faster initialization), exceptions will
occur if vp(ap) violates this bound:

? E = ellinit("15a1");

? [M,phi] = msfromell(E,1);

? ellap(E,7)

%3 = 0

? Mp = mspadicinit(M,7,5,0); \\ restrict to ordinary symbols

? PHI = mstooms(Mp,phi)

*** at top-level: PHI=mstooms(Mp,phi)

*** ^---------------

*** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).

? Mp = mspadicinit(M,7,5); \\ no restriction

? PHI = mstooms(Mp,phi);

This function uses O(N2(n+ k)2p) memory, where N is the level of M .

The library syntax is GEN mspadicinit(GEN M, long p, long n, long flag).
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3.7.18 mspadicmoments(Mp;PHI ; fD = 1g). Given Mp from mspadicinit, an overconvergent
eigensymbol PHI from mstooms and a fundamental discriminant D coprime to p, let PHID denote
the twisted symbol. This function computes the distribution � = PHID([0]�1]) j Z�p restricted to

Z�p. More precisely, it returns the moments of the p� 1 distributions PHID([0]� [1]) j (a+ pZp),
0 < a < p. We also allow PHI to be given as a classical symbol, which is then lifted to an
overconvergent symbol by mstooms; but this is wasteful if more than one twist is later needed.

The returned data � (p-adic distributions attached to PHI) can then be used in mspadicL or
mspadicseries. This precomputation allows to quickly compute derivatives of di�erent orders or
values at di�erent characters.

? M = msinit(3,6, 1);

? phi = [5,-3,-1]~;

? msissymbol(M, phi)

%3 = 1

? p = 5; mshecke(M,p) * phi \\ eigenvector of T_5, a_5 = 6

%4 = [30, -18, -6]~
? Mp = mspadicinit(M, p, 10, 0); \\ restrict to ordinary symbols, mod p^10

? PHI = mstooms(Mp, phi);

? mu = mspadicmoments(Mp, PHI);

? mspadicL(mu)

%8 = 5 + 2*5^2 + 2*5^3 + ...

? mu = mspadicmoments(Mp, PHI, 12); \\ twist by 12

? mspadicL(mu)

%10 = 5 + 5^2 + 5^3 + 2*5^4 + ...

The library syntax is GEN mspadicmoments(GEN Mp, GEN PHI, long D).

3.7.19 mspadicseries(mu; fi = 0g). Let � be the p-adic distribution-valued overconvergent
symbol attached to a modular symbol � for �0(N) (eigenvector for TN (p) for the eigenvalue ap).
If � is the distribution on Z�p de�ned by the restriction of �([1]� [0]) to Z�p, let

L̂p(�; �
i)(x) =

Z
Z�p

� i(t)(1 + x)logp(t)= logp(u)d�(t)

Here, � is the Teichm�uller character and u is a speci�c multiplicative generator of 1+2pZp. (Namely
1 + p if p > 2 or 5 if p = 2.) To explain the formula, let G1 := Gal(Q(�p1)=Q), let � : G1 ! Z�p
be the cyclotomic character (isomorphism) and 
 the element of G1 such that �(
) = u; then
�(
)logp(t)= logp(u) = hti.

The p-padic precision of individual terms is maximal given the precision of the overconvergent
symbol �.

? [M,phi] = msfromell(ellinit("17a1"),1);

? Mp = mspadicinit(M, 5,7);

? mu = mspadicmoments(Mp, phi,1); \\ overconvergent symbol

? mspadicseries(mu)

%4 = (4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + 4*5^6 + 3*5^7 + O(5^9)) \

+ (3 + 3*5 + 5^2 + 5^3 + 2*5^4 + 5^6 + O(5^7))*x \

+ (2 + 3*5 + 5^2 + 4*5^3 + 2*5^4 + O(5^5))*x^2 \

+ (3 + 4*5 + 4*5^2 + O(5^3))*x^3 \
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+ (3 + O(5))*x^4 + O(x^5)

An example with non-zero Teichm�uller:

? [M,phi] = msfromell(ellinit("11a1"),1);

? Mp = mspadicinit(M, 3,10);

? mu = mspadicmoments(Mp, phi,1);

? mspadicseries(mu, 2)

%4 = (2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + 3^7 + 3^10 + 3^11 + O(3^12)) \

+ (1 + 3 + 2*3^2 + 3^3 + 3^5 + 2*3^6 + 2*3^8 + O(3^9))*x \

+ (1 + 2*3 + 3^4 + 2*3^5 + O(3^6))*x^2 \

+ (3 + O(3^2))*x^3 + O(x^4)

Supersingular example (not checked)

? E = ellinit("17a1"); ellap(E,3)

%1 = 0

? [M,phi] = msfromell(E,1);

? Mp = mspadicinit(M, 3,7);

? mu = mspadicmoments(Mp, phi,1);

? mspadicseries(mu)

%5 = [(2*3^-1 + 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + O(3^7)) \

+ (2 + 3^3 + O(3^5))*x \

+ (1 + 2*3 + O(3^2))*x^2 + O(x^3),\

(3^-1 + 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + O(3^7)) \

+ (1 + 2*3 + 2*3^2 + 3^3 + 2*3^4 + O(3^5))*x \

+ (3^-2 + 3^-1 + O(3^2))*x^2 + O(3^-2)*x^3 + O(x^4)]

Example with a twist:

? E = ellinit("11a1");

? [M,phi] = msfromell(E,1);

? Mp = mspadicinit(M, 3,10);

? mu = mspadicmoments(Mp, phi,5); \\ twist by 5

? L = mspadicseries(mu)

%5 = (2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)) \

+ (2*3^2 + 2*3^6 + 3^7 + 3^8 + O(3^9))*x \

+ (3^3 + O(3^6))*x^2 + O(3^2)*x^3 + O(x^4)

? mspadicL(mu)

%6 = [2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)]~
? ellpadicL(E,3,10,,5)

%7 = 2 + 2*3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^6 + 2*3^7 + O(3^10)

? mspadicseries(mu,1) \\ must be 0

%8 = O(3^12) + O(3^9)*x + O(3^6)*x^2 + O(3^2)*x^3 + O(x^4)

The library syntax is GEN mspadicseries(GEN mu, long i).
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3.7.20 mspathgens(M). Let � := Div0(P1(Q)). Let M being a full modular symbol space, as
given by msinit, return a set of Z[G]-generators for �. The output is [g;R], where g is a minimal
system of generators and R the vector of Z[G]-relations between the given generators. A relation is
coded by a vector of pairs [ai; i] with ai 2 Z[G] and i the index of a generator, so that

P
i aig[i] = 0.

An element [v]� [u] in � is coded by the \path" [u; v], where oo denotes the point at in�nity
(1 : 0) on the projective line. An element of Z[G] is coded by a \factorization matrix": the �rst
column contains distinct elements of G, and the second integers:

? M = msinit(11,8); \\ M_8(Gamma_0(11))

? [g,R] = mspathgens(M);

? g

%3 = [[+oo, 0], [0, 1/3], [1/3, 1/2]] \\ 3 paths

? #R \\ a single relation

%4 = 1

? r = R[1]; #r \\ ...involving all 3 generators

%5 = 3

? r[1]

%6 = [[1, 1; [1, 1; 0, 1], -1], 1]

? r[2]

%7 = [[1, 1; [7, -2; 11, -3], -1], 2]

? r[3]

%8 = [[1, 1; [8, -3; 11, -4], -1], 3]

The given relation is of the form
P

i(1� 
i)gi = 0, with 
i 2 �0(11). There will always be a single
relation involving all generators (corresponding to a round trip along all cusps), then relations
involving a single generator (corresponding to 2 and 3-torsion elements in the group:

? M = msinit(2,8); \\ M_8(Gamma_0(2))

? [g,R] = mspathgens(M);

? g

%3 = [[+oo, 0], [0, 1]]

Note that the output depends only on the group G, not on the representation V .

The library syntax is GEN mspathgens(GEN M).

3.7.21 mspathlog(M;p). Let � := Div0(P1(Q)). Let M being a full modular symbol space, as
given by msinit, encoding �xed Z[G]-generators (gi) of � (see mspathgens). A path p = [a; b]
between two elements in P1(Q) corresponds to [b]� [a] 2 �. The path extremities a and b may be
given as t_INT, t_FRAC or oo = (1 : 0).

Returns (pi) in Z[G] such that p =
P

i pigi.

? M = msinit(2,8); \\ M_8(Gamma_0(2))

? [g,R] = mspathgens(M);

? g

%3 = [[+oo, 0], [0, 1]]

? p = mspathlog(M, [1/2,2/3]);

? p[1]

%5 =

[[1, 0; 2, 1] 1]

? p[2]
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%6 =

[[1, 0; 0, 1] 1]

[[3, -1; 4, -1] 1]

Note that the output depends only on the group G, not on the representation V .

The library syntax is GEN mspathlog(GEN M, GEN p).

3.7.22 msqexpansion(M; projH ; fB = seriesprecisiong). M being a full modular symbol space,
as given by msinit, and projH being a projector on a Hecke-simple subspace (as given by mssplit),
return the Fourier coe�cients an, n � B of the corresponding normalized newform. If B is omitted,
use seriesprecision.

This function uses a naive O(B2d3) algorithm, where d = O(kN) is the dimension of
Mk(�0(N)).

? M = msinit(11,2, 1); \\ M_2(Gamma_0(11))^+

? L = mssplit(M, msnew(M));

? msqexpansion(M,L[1], 20)

%3 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]

? ellan(ellinit("11a1"), 20)

%4 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]

The shortcut msqexpansion(M, s, B) is available for a symbol s, provided it is a Hecke eigenvector:

? E = ellinit("11a1");

? [M,s]=msfromell(E);

? msqexpansion(M,s,10)

%3 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]

? ellan(E, 10)

%4 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]

The library syntax is GEN msqexpansion(GEN M, GEN projH, long precdl).

3.7.23 mssplit(M;H; fdimlimg). Let M denote a full modular symbol space, as given by
msinit(N; k; 1) or msinit(N; k;�1) and let H be a Hecke-stable subspace of msnew(M). This
function split H into Hecke-simple subspaces. If dimlim is present and positive, restrict to sub-
spaces of dimension � dimlim. A subspace is given by a structure allowing quick projection and
restriction of linear operators; its �rst component is a matrix with integer coe�cients whose columns
form a Q-basis of the subspace.

? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+

? L = mssplit(M, msnew(M));

? #L

%3 = 2

? f = msqexpansion(M,L[1],5); f[1].mod

%4 = x^2 + 8*x - 44

? lift(f)

%5 = [1, x, -6*x - 27, -8*x - 84, 20*x - 155]

? g = msqexpansion(M,L[2],5); g[1].mod

%6 = x^4 - 558*x^2 + 140*x + 51744
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To a Hecke-simple subspace corresponds an orbit of (normalized) newforms, de�ned over a number
�eld. In the above example, we printed the polynomials de�ning the said �elds, as well as the �rst
5 Fourier coe�cients (at the in�nite cusp) of one such form.

The library syntax is GEN mssplit(GEN M, GEN H, long dimlim).

3.7.24 msstar(M; fHg). M being a full modular symbol space, as given by msinit, return the
matrix of the * involution, induced by complex conjugation, acting on the (stable) subspace H (M
if omitted).

? M = msinit(11,2); \\ M_2(Gamma_0(11))

? w = msstar(M);

? w^2 == 1

%3 = 1

The library syntax is GEN msstar(GEN M, GEN H = NULL).

3.7.25 mstooms(Mp; phi). Given Mp from mspadicinit, lift the (classical) eigen symbol phi
to a p-adic distribution-valued overconvergent symbol in the sense of Pollack and Stevens. More
precisely, let � belong to the spaceW of modular symbols of level N , vp(N) � 1, and weight k which
is an eigenvector for the Hecke operator TN (p) for a non-zero eigenvalue ap and let N0 = lcm(N; p).

Under the action of TN0
(p), � generates a subspace W� of dimension 1 (if p j N) or 2 (if p does

not divide N) in the space of modular symbols of level N0.

Let Vp = [p; 0; 0; 1] and Cp = [ap; p
k�1;�1; 0]. When p does not divide N and ap is divisible

by p, mstooms returns the lift � of (�; �jkVp) such that

TN0
(p)� = Cp�

When p does not divideN and ap is not divisible by p, mstooms returns the lift � of ����1�jkVp
which is an eigenvector of TN0

(p) for the unit eigenvalue where �2 � ap�+ pk�1 = 0.

The resulting overconvergent eigensymbol can then be used in mspadicmoments, then mspadicL
or mspadicseries.

? M = msinit(3,6, 1); p = 5;

? Tp = mshecke(M, p); factor(charpoly(Tp))

%2 =

[x - 3126 2]

[ x - 6 1]

? phi = matker(Tp - 6)[,1] \\ generator of p-Eigenspace, a_p = 6

%3 = [5, -3, -1]~
? Mp = mspadicinit(M, p, 10, 0); \\ restrict to ordinary symbols, mod p^10

? PHI = mstooms(Mp, phi);

? mu = mspadicmoments(Mp, PHI);

? mspadicL(mu)

%7 = 5 + 2*5^2 + 2*5^3 + ...

A non ordinary symbol.

? M = msinit(4,6,1); p = 3;

? Tp = mshecke(M, p); factor(charpoly(Tp))
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%2 =

[x - 244 3]

[ x + 12 1]

? phi = matker(Tp + 12)[,1] \\ a_p = -12 is divisible by p = 3

%3 = [-1/32, -1/4, -1/32, 1]~
? msissymbol(M,phi)

%4 = 1

? Mp = mspadicinit(M,3,5,0);

? PHI = mstooms(Mp,phi);

*** at top-level: PHI=mstooms(Mp,phi)

*** ^---------------

*** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).

? Mp = mspadicinit(M,3,5,1);

? PHI = mstooms(Mp,phi);

The library syntax is GEN mstooms(GEN Mp, GEN phi).

3.8 General number �elds.

In this section, we describe functions related to general number �elds. Functions related to
quadratic number �elds are found in Section 3.4 (Arithmetic functions).

3.8.1 Number �eld structures.

Let K = Q[X]=(T ) a number �eld, ZK its ring of integers, T 2 Z[X] is monic. Three basic
number �eld structures can be attached to K in GP:

� nf denotes a number �eld, i.e. a data structure output by nfinit. This contains the basic
arithmetic data attached to the number �eld: signature, maximal order (given by a basis nf.zk),
discriminant, de�ning polynomial T , etc.

� bnf denotes a \Buchmann's number �eld", i.e. a data structure output by bnfinit. This
contains nf and the deeper invariants of the �eld: units U(K), class group Cl(K), as well as
technical data required to solve the two attached discrete logarithm problems.

� bnr denotes a \ray number �eld", i.e. a data structure output by bnrinit, corresponding to
the ray class group structure of the �eld, for some modulus f . It contains a bnf , the modulus f ,
the ray class group Clf (K) and data attached to the discrete logarithm problem therein.

3.8.2 Algebraic numbers and ideals.

An algebraic number belonging to K = Q[X]=(T ) is given as

� a t_INT, t_FRAC or t_POL (implicitly modulo T ), or

� a t_POLMOD (modulo T ), or

� a t_COL v of dimension N = [K : Q], representing the element in terms of the computed
integral basis, as sum(i = 1, N, v[i] * nf.zk[i]). Note that a t_VEC will not be recognized.

An ideal is given in any of the following ways:

� an algebraic number in one of the above forms, de�ning a principal ideal.
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� a prime ideal, i.e. a 5-component vector in the format output by idealprimedec or ideal-
factor.

� a t_MAT, square and in Hermite Normal Form (or at least upper triangular with non-negative
coe�cients), whose columns represent a Z-basis of the ideal.

One may use idealhnf to convert any ideal to the last (preferred) format.

� an extended ideal is a 2-component vector [I; t], where I is an ideal as above and t is
an algebraic number, representing the ideal (t)I. This is useful whenever idealred is involved,
implicitly working in the ideal class group, while keeping track of principal ideals. Ideal operations
suitably update the principal part when it makes sense (in a multiplicative context), e.g. using
idealmul on [I; t], [J; u], we obtain [IJ; tu]. When it does not make sense, the extended part is
silently discarded, e.g. using idealadd with the above input produces I + J .

The \principal part" t in an extended ideal may be represented in any of the above forms,
and also as a factorization matrix (in terms of number �eld elements, not ideals!), possibly the
empty matrix [;] representing 1. In the latter case, elements stay in factored form, or famat
for factorization matrix, which is a convenient way to avoid coe�cient explosion. To recover the
conventional expanded form, try nffactorback; but many functions already accept famats as
input, for instance ideallog, so expanding huge elements should never be necessary.

3.8.3 Finite abelian groups.

A �nite abelian group G in user-readable format is given by its Smith Normal Form as a pair
[h; d] or triple [h; d; g]. Here h is the cardinality of G, (di) is the vector of elementary divisors, and
(gi) is a vector of generators. In short, G = �i�n(Z=diZ)gi, with dn j : : : j d2 j d1 and

Q
di = h.

This information can also be retrieved as G:no, G:cyc and G:gen.

� a character on the abelian group �(Z=djZ)gj is given by a row vector � = [a1; : : : ; an] such
that �(

Q
g
nj
j ) = exp(2�i

P
ajnj=dj).

� given such a structure, a subgroup H is input as a square matrix in HNF, whose columns
express generators of H on the given generators gi. Note that the determinant of that matrix is
equal to the index (G : H).

3.8.4 Relative extensions.

We now have a look at data structures attached to relative extensions of number �elds L=K,
and to projective ZK-modules. When de�ning a relative extension L=K, the nf attached to the
base �eld K must be de�ned by a variable having a lower priority (see Section 2.5.3) than the
variable de�ning the extension. For example, you may use the variable name y to de�ne the base
�eld K, and x to de�ne the relative extension L=K.

3.8.4.1 Basic de�nitions.

� rnf denotes a relative number �eld, i.e. a data structure output by rnfinit, attached to the
extension L=K. The nf attached to be base �eld K is rnf.nf.

� A relative matrix is an m � n matrix whose entries are elements of K, in any form. Its m
columns Aj represent elements in K

n.

� An ideal list is a row vector of fractional ideals of the number �eld nf .
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� A pseudo-matrix is a 2-component row vector (A; I) where A is a relative m� n matrix and
I an ideal list of length n. If I = fa1; : : : ; ang and the columns of A are (A1; : : : ; An), this data
de�nes the torsion-free (projective) ZK-module a1A1 � anAn.

� An integral pseudo-matrix is a 3-component row vector w(A; I; J) where A = (ai;j) is an
m� n relative matrix and I = (b1; : : : ; bm), J = (a1; : : : ; an) are ideal lists, such that ai;j 2 bia

�1
j

for all i; j. This data de�nes two abstract projective ZK-modules N = a1!1 � � � � � an!n in Kn,
P = b1�1 � � � � � bm�m in Km, and a ZK-linear map f : N ! P given by

f(
X

�j!j) =
X
i

�
ai;j�j

�
�i:

This data de�nes the ZK-module M = P=f(N).

� Any projective ZK-module M of �nite type in Km can be given by a pseudo matrix (A; I).

� An arbitrary ZK modules of �nite type in Km, with non-trivial torsion, is given by an
integral pseudo-matrix (A; I; J)

3.8.4.2 Pseudo-bases, determinant.

� The pair (A; I) is a pseudo-basis of the module it generates if the aj are non-zero, and the Aj

are K-linearly independent. We call n the size of the pseudo-basis. If A is a relative matrix, the
latter condition means it is square with non-zero determinant; we say that it is in Hermite Normal
Form (HNF) if it is upper triangular and all the elements of the diagonal are equal to 1.

� For instance, the relative integer basis rnf.zk is a pseudo-basis (A; I) of ZL, where A =
rnf:zk[1] is a vector of elements of L, which are K-linearly independent. Most rnf routines return
and handle ZK-modules contained in L (e.g. ZL-ideals) via a pseudo-basis (A0; I 0), where A0 is a
relative matrix representing a vector of elements of L in terms of the �xed basis rnf.zk[1]

� The determinant of a pseudo-basis (A; I) is the ideal equal to the product of the determinant
of A by all the ideals of I. The determinant of a pseudo-matrix is the determinant of any pseudo-
basis of the module it generates.

3.8.5 Class �eld theory.

A modulus, in the sense of class �eld theory, is a divisor supported on the non-complex places
of K. In PARI terms, this means either an ordinary ideal I as above (no Archimedean component),
or a pair [I; a], where a is a vector with r1 f0; 1g-components, corresponding to the in�nite part of
the divisor. More precisely, the i-th component of a corresponds to the real embedding attached
to the i-th real root of K.roots. (That ordering is not canonical, but well de�ned once a de�ning
polynomial for K is chosen.) For instance, [1, [1,1]] is a modulus for a real quadratic �eld,
allowing rami�cation at any of the two places at in�nity, and nowhere else.

A bid or \big ideal" is a structure output by idealstar needed to compute in (ZK=I)
�, where

I is a modulus in the above sense. It is a �nite abelian group as described above, supplemented by
technical data needed to solve discrete log problems.

Finally we explain how to input ray number �elds (or bnr), using class �eld theory. These
are de�ned by a triple A, B, C, where the de�ning set [A;B;C] can have any of the following
forms: [bnr ], [bnr ; subgroup], [bnr ; character ], [bnf ;mod ], [bnf ;mod ; subgroup]. The last two forms
are kept for backward compatibility, but no longer serve any real purpose (see example below); no
newly written function will accept them.
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� bnf is as output by bnfinit, where units are mandatory unless the modulus is trivial; bnr
is as output by bnrinit. This is the ground �eld K.

� mod is a modulus f, as described above.

� subgroup a subgroup of the ray class group modulo f of K. As described above, this is input
as a square matrix expressing generators of a subgroup of the ray class group bnr.clgp on the
given generators.

The corresponding bnr is the sub�eld of the ray class �eld of K modulo f, �xed by the given
subgroup.

? K = bnfinit(y^2+1);

? bnr = bnrinit(K, 13)

? %.clgp

%3 = [36, [12, 3]]

? bnrdisc(bnr); \\ discriminant of the full ray class field

? bnrdisc(bnr, [3,1;0,1]); \\ discriminant of cyclic cubic extension of K

? bnrconductor(bnr, [3,1]); \\ conductor of chi: g1->zeta_12^3, g2->zeta_3

We could have written directly

? bnrdisc(K, 13);

? bnrdisc(K, 13, [3,1;0,1]);

avoiding one bnrinit, but this would actually be slower since the bnrinit is called internally
anyway. And now twice!

3.8.6 General use.

All the functions which are speci�c to relative extensions, number �elds, Buchmann's number
�elds, Buchmann's number rays, share the pre�x rnf, nf, bnf, bnr respectively. They take as �rst
argument a number �eld of that precise type, respectively output by rnfinit, nfinit, bnfinit,
and bnrinit.

However, and even though it may not be speci�ed in the descriptions of the functions below,
it is permissible, if the function expects a nf , to use a bnf instead, which contains much more
information. On the other hand, if the function requires a bnf, it will not launch bnfinit for you,
which is a costly operation. Instead, it will give you a speci�c error message. In short, the types

nf � bnf � bnr

are ordered, each function requires a minimal type to work properly, but you may always substitute
a larger type.

The data types corresponding to the structures described above are rather complicated. Thus,
as we already have seen it with elliptic curves, GP provides \member functions" to retrieve data
from these structures (once they have been initialized of course). The relevant types of number
�elds are indicated between parentheses:

bid (bnr ) : bid ideal structure.
bnf (bnr , bnf ) : Buchmann's number �eld.
clgp (bnr , bnf ) : classgroup. This one admits the following three subclasses:
cyc : cyclic decomposition (SNF).
gen : generators.
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no : number of elements.
diff (bnr , bnf , nf ) : the di�erent ideal.
codiff (bnr , bnf , nf ) : the codi�erent (inverse of the di�erent in the ideal group).
disc (bnr , bnf , nf ) : discriminant.
fu (bnr , bnf ) : fundamental units.
index (bnr , bnf , nf ) : index of the power order in the ring of integers.
mod (bnr ) : modulus.
nf (bnr , bnf , nf ) : number �eld.
pol (bnr , bnf , nf ) : de�ning polynomial.
r1 (bnr , bnf , nf ) : the number of real embeddings.
r2 (bnr , bnf , nf ) : the number of pairs of complex embeddings.
reg (bnr , bnf ) : regulator.
roots (bnr , bnf , nf ) : roots of the polynomial generating the �eld.
sign (bnr , bnf , nf ) : signature [r1; r2].
t2 (bnr , bnf , nf ) : the T2 matrix (see nfinit).
tu (bnr , bnf ) : a generator for the torsion units.
zk (bnr , bnf , nf ) : integral basis, i.e. a Z-basis of the maximal order.
zkst (bnr ) : structure of (ZK=m)�.

Deprecated. The following member functions are still available, but deprecated and should not
be used in new scripts :
futu (bnr , bnf , ) : [u1; :::; ur; w], (ui) is a vector of fundamental units,

w generates the torsion units.
tufu (bnr , bnf , ) : [w; u1; :::; ur], (ui) is a vector of fundamental units,

w generates the torsion units.

For instance, assume that bnf = bnfinit(pol), for some polynomial. Then bnf .clgp retrieves
the class group, and bnf .clgp.no the class number. If we had set bnf = nfinit(pol), both would
have output an error message. All these functions are completely recursive, thus for instance
bnr.bnf.nf.zk will yield the maximal order of bnr , which you could get directly with a simple
bnr.zk.

3.8.7 Class group, units, and the GRH.

Some of the functions starting with bnf are implementations of the sub-exponential algorithms
for �nding class and unit groups under GRH, due to Hafner-McCurley, Buchmann and Cohen-
Diaz-Olivier. The general call to the functions concerning class groups of general number �elds
(i.e. excluding quadclassunit) involves a polynomial P and a technical vector

tech = [c1; c2;nrpid ];

where the parameters are to be understood as follows:

P is the de�ning polynomial for the number �eld, which must be in Z[X], irreducible and
monic. In fact, if you supply a non-monic polynomial at this point, gp issues a warning, then
transforms your polynomial so that it becomes monic. The nfinit routine will return a di�erent
result in this case: instead of res, you get a vector [res,Mod(a,Q)], where Mod(a,Q) = Mod(X,P)

gives the change of variables. In all other routines, the variable change is simply lost.

The tech interface is obsolete and you should not tamper with these parameters. Indeed, from
version 2.4.0 on,
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� the results are always rigorous under GRH (before that version, they relied on a heuristic
strengthening, hence the need for overrides).

� the in
uence of these parameters on execution time and stack size is marginal. They can
be useful to �ne-tune and experiment with the bnfinit code, but you will be better o� modifying
all tuning parameters in the C code (there are many more than just those three). We nevertheless
describe it for completeness.

The numbers c1 � c2 are non-negative real numbers. By default they are chosen so that the
result is correct under GRH. For i = 1; 2, let Bi = ci(log jdK j)2, and denote by S(B) the set of
maximal ideals of K whose norm is less than B. We want S(B1) to generate Cl(K) and hope that
S(B2) can be proven to generate Cl(K).

More precisely, S(B1) is a factorbase used to compute a tentative Cl(K) by generators and
relations. We then check explicitly, using essentially bnfisprincipal, that the elements of S(B2)
belong to the span of S(B1). Under the assumption that S(B2) generates Cl(K), we are done.
User-supplied ci are only used to compute initial guesses for the bounds Bi, and the algorithm
increases them until one can prove under GRH that S(B2) generates Cl(K). A uniform result of
Bach says that c2 = 12 is always suitable, but this bound is very pessimistic and a direct algorithm
due to Belabas-Diaz-Friedman is used to check the condition, assuming GRH. The default values
are c1 = c2 = 0. When c1 is equal to 0 the algorithm takes it equal to c2.

nrpid is the maximal number of small norm relations attached to each ideal in the factor base.
Set it to 0 to disable the search for small norm relations. Otherwise, reasonable values are between
4 and 20. The default is 4.

Warning. Make sure you understand the above! By default, most of the bnf routines depend
on the correctness of the GRH. In particular, any of the class number, class group structure, class
group generators, regulator and fundamental units may be wrong, independently of each other.
Any result computed from such a bnf may be wrong. The only guarantee is that the units given
generate a subgroup of �nite index in the full unit group. You must use bnfcertify to certify the
computations unconditionally.

Remarks.

You do not need to supply the technical parameters (under the library you still need to send
at least an empty vector, coded as NULL). However, should you choose to set some of them, they
must be given in the requested order. For example, if you want to specify a given value of nrpid ,
you must give some values as well for c1 and c2, and provide a vector [c1; c2;nrpid ].

Note also that you can use an nf instead of P , which avoids recomputing the integral basis
and analogous quantities.

3.8.8 bnfcertify(bnf ; fflag = 0g). bnf being as output by bnfinit, checks whether the result is
correct, i.e. whether it is possible to remove the assumption of the Generalized Riemann Hypothesis.
It is correct if and only if the answer is 1. If it is incorrect, the program may output some error
message, or loop inde�nitely. You can check its progress by increasing the debug level. The bnf
structure must contain the fundamental units:

? K = bnfinit(x^3+2^2^3+1); bnfcertify(K)

*** at top-level: K=bnfinit(x^3+2^2^3+1);bnfcertify(K)

*** ^-------------

*** bnfcertify: missing units in bnf.
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? K = bnfinit(x^3+2^2^3+1, 1); \\ include units

? bnfcertify(K)

%3 = 1

If 
ag is present, only certify that the class group is a quotient of the one computed in bnf
(much simpler in general); likewise, the computed units may form a subgroup of the full unit group.
In this variant, the units are no longer needed:

? K = bnfinit(x^3+2^2^3+1); bnfcertify(K, 1)

%4 = 1

The library syntax is long bnfcertify0(GEN bnf, long flag). Also available is GEN bn-

fcertify(GEN bnf) (flag = 0).

3.8.9 bnfcompress(bnf ). Computes a compressed version of bnf (from bnfinit), a \small Buch-
mann's number �eld" (or sbnf for short) which contains enough information to recover a full bnf
vector very rapidly, but which is much smaller and hence easy to store and print. Calling bnfinit

on the result recovers a true bnf, in general di�erent from the original. Note that an snbf is useless
for almost all purposes besides storage, and must be converted back to bnf form before use; for
instance, no nf*, bnf* or member function accepts them.

An sbnf is a 12 component vector v, as follows. Let bnf be the result of a full bnfinit,
complete with units. Then v[1] is bnf.pol, v[2] is the number of real embeddings bnf.sign[1],
v[3] is bnf.disc, v[4] is bnf.zk, v[5] is the list of roots bnf.roots, v[7] is the matrix W = bnf[1],
v[8] is the matrix matalpha = bnf[2], v[9] is the prime ideal factor base bnf[5] coded in a compact
way, and ordered according to the permutation bnf[6], v[10] is the 2-component vector giving
the number of roots of unity and a generator, expressed on the integral basis, v[11] is the list
of fundamental units, expressed on the integral basis, v[12] is a vector containing the algebraic
numbers alpha corresponding to the columns of the matrix matalpha, expressed on the integral
basis.

All the components are exact (integral or rational), except for the roots in v[5].

The library syntax is GEN bnfcompress(GEN bnf).

3.8.10 bnfdecodemodule(nf ;m). If m is a module as output in the �rst component of an
extension given by bnrdisclist, outputs the true module.

? K = bnfinit(x^2+23); L = bnrdisclist(K, 10); s = L[1][2]

%1 = [[Mat([8, 1]), [[0, 0, 0]]], [Mat([9, 1]), [[0, 0, 0]]]]

? bnfdecodemodule(K, s[1][1])

%2 =

[2 0]

[0 1]

The library syntax is GEN decodemodule(GEN nf, GEN m).
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3.8.11 bn�nit(P; fflag = 0g; ftech = [ ]g). Initializes a bnf structure. Used in programs such as
bnfisprincipal, bnfisunit or bnfnarrow. By default, the results are conditional on the GRH,
see 3.8.7. The result is a 10-component vector bnf .

This implements Buchmann's sub-exponential algorithm for computing the class group, the
regulator and a system of fundamental units of the general algebraic number �eld K de�ned by the
irreducible polynomial P with integer coe�cients.

If the precision becomes insu�cient, gp does not strive to compute the units by default (flag =
0).

When flag = 1, we insist on �nding the fundamental units exactly. Be warned that this can
take a very long time when the coe�cients of the fundamental units on the integral basis are very
large. If the fundamental units are simply too large to be represented in this form, an error message
is issued. They could be obtained using the so-called compact representation of algebraic numbers
as a formal product of algebraic integers. The latter is implemented internally but not publicly
accessible yet.

tech is a technical vector (empty by default, see 3.8.7). Careful use of this parameter may
speed up your computations, but it is mostly obsolete and you should leave it alone.

The components of a bnf or sbnf are technical and never used by the casual user. In fact:
never access a component directly, always use a proper member function. However, for the sake of
completeness and internal documentation, their description is as follows. We use the notations ex-
plained in the book by H. Cohen, A Course in Computational Algebraic Number Theory , Graduate
Texts in Maths 138, Springer-Verlag, 1993, Section 6.5, and subsection 6.5.5 in particular.

bnf [1] contains the matrix W , i.e. the matrix in Hermite normal form giving relations for the
class group on prime ideal generators (pi)1�i�r.

bnf [2] contains the matrix B, i.e. the matrix containing the expressions of the prime ideal
factorbase in terms of the pi. It is an r � c matrix.

bnf [3] contains the complex logarithmic embeddings of the system of fundamental units which
has been found. It is an (r1 + r2)� (r1 + r2 � 1) matrix.

bnf [4] contains the matrix M 00
C of Archimedean components of the relations of the matrix

(W jB).
bnf [5] contains the prime factor base, i.e. the list of prime ideals used in �nding the relations.

bnf [6] used to contain a permutation of the prime factor base, but has been obsoleted. It
contains a dummy 0.

bnf [7] or bnf .nf is equal to the number �eld data nf as would be given by nfinit.

bnf [8] is a vector containing the classgroup bnf .clgp as a �nite abelian group, the regulator
bnf .reg, a 1 (used to contain an obsolete \check number"), the number of roots of unity and a
generator bnf .tu, the fundamental units bnf .fu.

bnf [9] is a 3-element row vector used in bnfisprincipal only and obtained as follows. Let
D = UWV obtained by applying the Smith normal form algorithm to the matrix W (= bnf [1])
and let Ur be the reduction of U modulo D. The �rst elements of the factorbase are given (in
terms of bnf.gen) by the columns of Ur, with Archimedean component ga; let also GDa be the
Archimedean components of the generators of the (principal) ideals de�ned by the bnf.gen[i]^

bnf.cyc[i]. Then bnf [9] = [Ur; ga; GDa].
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bnf [10] is by default unused and set equal to 0. This �eld is used to store further information
about the �eld as it becomes available, which is rarely needed, hence would be too expensive
to compute during the initial bnfinit call. For instance, the generators of the principal ideals
bnf.gen[i]^bnf.cyc[i] (during a call to bnrisprincipal), or those corresponding to the relations
in W and B (when the bnf internal precision needs to be increased).

The library syntax is GEN bnfinit0(GEN P, long flag, GEN tech = NULL, long prec)

.

Also available is GEN Buchall(GEN P, long flag, long prec), corresponding to tech =

NULL, where flag is either 0 (default) or nf_FORCE (insist on �nding fundamental units). The
function GEN Buchall_param(GEN P, double c1, double c2, long nrpid, long flag, long

prec) gives direct access to the technical parameters.

3.8.12 bn�sintnorm(bnf ; x). Computes a complete system of solutions (modulo units of positive
norm) of the absolute norm equation Norm(a) = x, where a is an integer in bnf . If bnf has not
been certi�ed, the correctness of the result depends on the validity of GRH.

See also bnfisnorm.

The library syntax is GEN bnfisintnorm(GEN bnf, GEN x). The function GEN bnfisint-

normabs(GEN bnf, GEN a) returns a complete system of solutions modulo units of the abso-
lute norm equation jNorm(x)j = jaj. As fast as bnfisintnorm, but solves the two equations
Norm(x) = �a simultaneously.

3.8.13 bn�snorm(bnf ; x; fflag = 1g). Tries to tell whether the rational number x is the norm of
some element y in bnf . Returns a vector [a; b] where x = Norm(a) � b. Looks for a solution which
is an S-unit, with S a certain set of prime ideals containing (among others) all primes dividing x.
If bnf is known to be Galois, set flag = 0 (in this case, x is a norm i� b = 1). If flag is non zero
the program adds to S the following prime ideals, depending on the sign of flag . If flag > 0, the
ideals of norm less than flag . And if flag < 0 the ideals dividing flag .

Assuming GRH, the answer is guaranteed (i.e. x is a norm i� b = 1), if S contains all primes
less than 12 log(disc(Bnf ))2, where Bnf is the Galois closure of bnf .

See also bnfisintnorm.

The library syntax is GEN bnfisnorm(GEN bnf, GEN x, long flag).

3.8.14 bn�sprincipal(bnf ; x; fflag = 1g). bnf being the number �eld data output by bnfinit,
and x being an ideal, this function tests whether the ideal is principal or not. The result is more
complete than a simple true/false answer and solves general discrete logarithm problem. Assume
the class group is �(Z=diZ)gi (where the generators gi and their orders di are respectively given
by bnf.gen and bnf.cyc). The routine returns a row vector [e; t], where e is a vector of exponents
0 � ei < di, and t is a number �eld element such that

x = (t)
Y
i

geii :

For given gi (i.e. for a given bnf), the ei are unique, and t is unique modulo units.

In particular, x is principal if and only if e is the zero vector. Note that the empty vector,
which is returned when the class number is 1, is considered to be a zero vector (of dimension 0).
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? K = bnfinit(y^2+23);

? K.cyc

%2 = [3]

? K.gen

%3 = [[2, 0; 0, 1]] \\ a prime ideal above 2

? P = idealprimedec(K,3)[1]; \\ a prime ideal above 3

? v = bnfisprincipal(K, P)

%5 = [[2]~, [3/4, 1/4]~]

? idealmul(K, v[2], idealfactorback(K, K.gen, v[1]))

%6 =

[3 0]

[0 1]

? % == idealhnf(K, P)

%7 = 1

The binary digits of flagmean:

� 1: If set, outputs [e; t] as explained above, otherwise returns only e, which is much easier to
compute. The following idiom only tests whether an ideal is principal:

is_principal(bnf, x) = !bnfisprincipal(bnf,x,0);

� 2: It may not be possible to recover t, given the initial accuracy to which the bnf structure
was computed. In that case, a warning is printed and t is set equal to the empty vector []~. If
this bit is set, increase the precision and recompute needed quantities until t can be computed.
Warning: setting this may induce lengthy computations.

The library syntax is GEN bnfisprincipal0(GEN bnf, GEN x, long flag). Instead of the
above hardcoded numerical 
ags, one should rather use an or-ed combination of the symbolic 
ags
nf_GEN (include generators, possibly a place holder if too di�cult) and nf_FORCE (insist on �nding
the generators).

3.8.15 bn�ssunit(bnf ; sfu; x). bnf being output by bnfinit, sfu by bnfsunit, gives the column
vector of exponents of x on the fundamental S-units and the roots of unity. If x is not a unit,
outputs an empty vector.

The library syntax is GEN bnfissunit(GEN bnf, GEN sfu, GEN x).

3.8.16 bn�sunit(bnf ; x). bnf being the number �eld data output by bnfinit and x being an
algebraic number (type integer, rational or polmod), this outputs the decomposition of x on the
fundamental units and the roots of unity if x is a unit, the empty vector otherwise. More precisely,
if u1,: : : ,ur are the fundamental units, and � is the generator of the group of roots of unity (bnf.tu),
the output is a vector [x1; : : : ; xr; xr+1] such that x = ux11 � � �uxrr � �xr+1 . The xi are integers for
i � r and is an integer modulo the order of � for i = r + 1.

Note that bnf need not contain the fundamental unit explicitly:

? setrand(1); bnf = bnfinit(x^2-x-100000);

? bnf.fu

*** at top-level: bnf.fu

*** ^--

*** _.fu: missing units in .fu.

? u = [119836165644250789990462835950022871665178127611316131167, \
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379554884019013781006303254896369154068336082609238336]~;

? bnfisunit(bnf, u)

%3 = [-1, Mod(0, 2)]~

The given u is the inverse of the fundamental unit implicitly stored in bnf . In this case, the
fundamental unit was not computed and stored in algebraic form since the default accuracy was
too low. (Re-run the command at \g1 or higher to see such diagnostics.)

The library syntax is GEN bnfisunit(GEN bnf, GEN x).

3.8.17 bn
og(bnf ; l). Let bnf be attached to a number �eld F and let l be a prime number

(hereafter denoted ` for typographical reasons). Return the logarithmic `-class group fClF of F .
This is an abelian group, conjecturally �nite (known to be �nite if F=Q is abelian). The function
returns if and only if the group is indeed �nite (otherwise it would run into an in�nite loop). Let
S = fp1; : : : ; pkg be the set of `-adic places (maximal ideals containing `). The function returns
[D;G(`); G0], where

� D is the vector of elementary divisors for fClF ;
� G(`) is the vector of elementary divisors for the (conjecturally �nite) abelian group

fCl(`) = fa =X
i�k

aipi : degF a = 0g;

where the pi are the `-adic places of F ; this is a subgroup of fCl.
� G0 is the vector of elementary divisors for the `-Sylow Cl0 of the S-class group of F ; the

group fCl maps to Cl0 with a simple co-kernel.

The library syntax is GEN bnflog(GEN bnf, GEN l).

3.8.18 bn
ogdegree(nf ; A; l). Let nf be the number �eld data output by nfinit, attached to
the �eld F , and let l be a prime number (hereafter denoted `). The `-adi�ed group of id�eles of
F quotiented by the group of logarithmic units is identi�ed to the `-group of logarithmic divisors
�Z`[p], generated by the maximal ideals of F .

The degree map degF is additive with values in Z`, de�ned by degF p = ~fp deg` p, where the

integer ~f is as in bnflogef and deg` p is log` p for p 6= `, log`(1 + `) for p = ` 6= 2 and log`(1 + 22)
for p = ` = 2.

Let A =
Q

pnp be an ideal and let ~A =
P
np[p] be the attached logarithmic divisor. Return

the exponential of the `-adic logarithmic degree degF A, which is a natural number.

The library syntax is GEN bnflogdegree(GEN nf, GEN A, GEN l).
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3.8.19 bn
ogef(nf ; pr). Let F be a number �eld represented by the nf structure, and let pr be
a prid structure attached to the maximal ideal p=p. Return [~e(Fp=Qp); ~f(Fp=Qp)] the logarithmic
rami�cation and residue degrees. LetQc

p=Qp be the cyclotomic Zp-extension, then ~e = [Fp:Fp\Qc
p]

~f = [Fp \ Qc
p:Qp]. Note that ~e ~f = e(p=p)f(p=p), where e; f denote the usual rami�cation and

residue degrees.

? F = nfinit(y^6 - 3*y^5 + 5*y^3 - 3*y + 1);

? bnflogef(F, idealprimedec(F,2)[1])

%2 = [6, 1]

? bnflogef(F, idealprimedec(F,5)[1])

%3 = [1, 2]

The library syntax is GEN bnflogef(GEN nf, GEN pr).

3.8.20 bnfnarrow(bnf ). bnf being as output by bnfinit, computes the narrow class group of bnf .
The output is a 3-component row vector v analogous to the corresponding class group component
bnf .clgp: the �rst component is the narrow class number v.no, the second component is a vector
containing the SNF cyclic components v.cyc of the narrow class group, and the third is a vector
giving the generators of the corresponding v.gen cyclic groups. Note that this function is a special
case of bnrinit; the bnf need not contain fundamental units.

The library syntax is GEN buchnarrow(GEN bnf).

3.8.21 bnfsignunit(bnf ). bnf being as output by bnfinit, this computes an r1 � (r1 + r2 � 1)
matrix having �1 components, giving the signs of the real embeddings of the fundamental units.
The following functions compute generators for the totally positive units:

/* exponents of totally positive units generators on bnf.tufu */

tpuexpo(bnf)=

{ my(K, S = bnfsignunit(bnf), [m,n] = matsize(S));

\\ m = bnf.r1, n = r1+r2-1

S = matrix(m,n, i,j, if (S[i,j] < 0, 1,0));

S = concat(vectorv(m,i,1), S); \\ add sign(-1)

K = matker(S * Mod(1,2));

if (K, mathnfmodid(lift(K), 2), 2*matid(n+1))

}

/* totally positive fundamental units */

tpu(bnf)=

{ my(ex = tpuexpo(bnf)[,2..-1]); \\ remove ex[,1], corresponds to 1 or -1

vector(#ex, i, nffactorback(bnf, bnf.tufu, ex[,i]));

}

The library syntax is GEN signunits(GEN bnf).
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3.8.22 bnfsunit(bnf ; S). Computes the fundamental S-units of the number �eld bnf (output by
bnfinit), where S is a list of prime ideals (output by idealprimedec). The output is a vector v
with 6 components.

v[1] gives a minimal system of (integral) generators of the S-unit group modulo the unit group.

v[2] contains technical data needed by bnfissunit.

v[3] is an empty vector (used to give the logarithmic embeddings of the generators in v[1] in
version 2.0.16).

v[4] is the S-regulator (this is the product of the regulator, the determinant of v[2] and the
natural logarithms of the norms of the ideals in S).

v[5] gives the S-class group structure, in the usual format (a row vector whose three components
give in order the S-class number, the cyclic components and the generators).

v[6] is a copy of S.

The library syntax is GEN bnfsunit(GEN bnf, GEN S, long prec).

3.8.23 bnrL1(bnr ; fHg; fflag = 0g). Let bnr be the number �eld data output by bnrinit(,,1)

and H be a square matrix de�ning a congruence subgroup of the ray class group corresponding to
bnr (the trivial congruence subgroup if omitted). This function returns, for each character � of
the ray class group which is trivial on H, the value at s = 1 (or s = 0) of the abelian L-function
attached to �. For the value at s = 0, the function returns in fact for each � a vector [r�; c�] where

L(s; �) = c � sr +O(sr+1)

near 0.

The argument flag is optional, its binary digits mean 1: compute at s = 0 if unset or s = 1 if
set, 2: compute the primitive L-function attached to � if unset or the L-function with Euler factors
at prime ideals dividing the modulus of bnr removed if set (that is LS(s; �), where S is the set
of in�nite places of the number �eld together with the �nite prime ideals dividing the modulus of
bnr), 3: return also the character if set.

K = bnfinit(x^2-229);

bnr = bnrinit(K,1,1);

bnrL1(bnr)

returns the order and the �rst non-zero term of L(s; �) at s = 0 where � runs through the characters
of the class group of K = Q(

p
229). Then

bnr2 = bnrinit(K,2,1);

bnrL1(bnr2,,2)

returns the order and the �rst non-zero terms of LS(s; �) at s = 0 where � runs through the
characters of the class group of K and S is the set of in�nite places of K together with the �nite
prime 2. Note that the ray class group modulo 2 is in fact the class group, so bnrL1(bnr2,0)

returns the same answer as bnrL1(bnr,0).

This function will fail with the message

*** bnrL1: overflow in zeta_get_N0 [need too many primes].

if the approximate functional equation requires us to sum too many terms (if the discriminant of
K is too large).

The library syntax is GEN bnrL1(GEN bnr, GEN H = NULL, long flag, long prec).
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3.8.24 bnrchar(bnr ; g; fvg). Returns all characters � on bnr.clgp such that �(gi) = e(vi), where
e(x) = exp(2i�x). If v is omitted, returns all characters that are trivial on the gi. Else the vectors
g and v must have the same length, the gi must be ideals in any form, and each vi is a rational
number whose denominator must divide the order of gi in the ray class group. For convenience,
the vector of the gi can be replaced by a matrix whose columns give their discrete logarithm, as
given by bnrisprincipal; this allows to specify abstractly a subgroup of the ray class group.

? bnr = bnrinit(bnfinit(x), [160,[1]], 1); /* (Z/160Z)^* */

? bnr.cyc

%2 = [8, 4, 2]

? g = bnr.gen;

? bnrchar(bnr, g, [1/2,0,0])

%4 = [[4, 0, 0]] \\ a unique character

? bnrchar(bnr, [g[1],g[3]]) \\ all characters trivial on g[1] and g[3]

%5 = [[0, 1, 0], [0, 2, 0], [0, 3, 0], [0, 0, 0]]

? bnrchar(bnr, [1,0,0;0,1,0;0,0,2])

%6 = [[0, 0, 1], [0, 0, 0]] \\ characters trivial on given subgroup

The library syntax is GEN bnrchar(GEN bnr, GEN g, GEN v = NULL).

3.8.25 bnrclassno(A; fBg; fCg). Let A, B, C de�ne a class �eld L over a ground �eld K (of
type [bnr], [bnr, subgroup], or [bnf , modulus], or [bnf , modulus,subgroup], Section 3.8.5);
this function returns the relative degree [L : K].

In particular if A is a bnf (with units), and B a modulus, this function returns the correspond-
ing ray class number modulo B. One can input the attached bid (with generators if the subgroup
C is non trivial) for B instead of the module itself, saving some time.

This function is faster than bnrinit and should be used if only the ray class number is desired.
See bnrclassnolist if you need ray class numbers for all moduli less than some bound.

The library syntax is GEN bnrclassno0(GEN A, GEN B = NULL, GEN C = NULL). Also avail-
able is GEN bnrclassno(GEN bnf, GEN f) to compute the ray class number modulo f .

3.8.26 bnrclassnolist(bnf ; list). bnf being as output by bnfinit, and list being a list of moduli
(with units) as output by ideallist or ideallistarch, outputs the list of the class numbers of the
corresponding ray class groups. To compute a single class number, bnrclassno is more e�cient.

? bnf = bnfinit(x^2 - 2);

? L = ideallist(bnf, 100, 2);

? H = bnrclassnolist(bnf, L);

? H[98]

%4 = [1, 3, 1]

? l = L[1][98]; ids = vector(#l, i, l[i].mod[1])

%5 = [[98, 88; 0, 1], [14, 0; 0, 7], [98, 10; 0, 1]]

The weird l[i].mod[1], is the �rst component of l[i].mod, i.e. the �nite part of the con-
ductor. (This is cosmetic: since by construction the Archimedean part is trivial, I do not want to
see it). This tells us that the ray class groups modulo the ideals of norm 98 (printed as %5) have
respectively order 1, 3 and 1. Indeed, we may check directly:

? bnrclassno(bnf, ids[2])

%6 = 3

The library syntax is GEN bnrclassnolist(GEN bnf, GEN list).
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3.8.27 bnrconductor(A; fBg; fCg; fflag = 0g). Conductor f of the sub�eld of a ray class �eld
as de�ned by [A;B;C] (of type [bnr], [bnr, subgroup], [bnf , modulus] or [bnf , modulus,
subgroup], Section 3.8.5)

If flag = 0, returns f .

If flag = 1, returns [f; Clf ; H], where Clf is the ray class group modulo f , as a �nite abelian
group; �nally H is the subgroup of Clf de�ning the extension.

If flag = 2, returns [f; bnr(f); H], as above except Clf is replaced by a bnr structure, as output
by bnrinit(; f; 1).

In place of a subgroup H, this function also accepts a character chi = (aj), expressed as usual
in terms of the generators bnr.gen: �(gj) = exp(2i�aj=dj), where gj has order dj = bnr:cyc[j].
In which case, the function returns respectively

If flag = 0, the conductor f of Ker�.

If flag = 1, [f; Clf ; �f ], where �f is � expressed on the minimal ray class group, whose modulus
is the conductor.

If flag = 2, [f; bnr(f); �f ].

The library syntax is GEN bnrconductor0(GEN A, GEN B = NULL, GEN C = NULL, long

flag).

Also available is GEN bnrconductor(GEN bnr, GEN H, long flag)

3.8.28 bnrconductorofchar(bnr ; chi). This function is obsolete, use bnrconductor.

The library syntax is GEN bnrconductorofchar(GEN bnr, GEN chi).

3.8.29 bnrdisc(A; fBg; fCg; fflag = 0g). A, B, C de�ning a class �eld L over a ground �eld K (of
type [bnr], [bnr, subgroup], [bnr, character], [bnf , modulus] or [bnf , modulus, subgroup],
Section 3.8.5), outputs data [N; r1; D] giving the discriminant and signature of L, depending on
the binary digits of flag :

� 1: if this bit is unset, output absolute data related to L=Q: N is the absolute degree [L : Q],
r1 the number of real places of L, and D the discriminant of L=Q. Otherwise, output relative data
for L=K: N is the relative degree [L : K], r1 is the number of real places of K unrami�ed in L (so
that the number of real places of L is equal to r1 times N), and D is the relative discriminant ideal
of L=K.

� 2: if this bit is set and if the modulus is not the conductor of L, only return 0.

The library syntax is GEN bnrdisc0(GEN A, GEN B = NULL, GEN C = NULL, long flag)

.
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3.8.30 bnrdisclist(bnf ; bound ; farchg). bnf being as output by bnfinit (with units), computes
a list of discriminants of Abelian extensions of the number �eld by increasing modulus norm up to
bound bound . The rami�ed Archimedean places are given by arch; all possible values are taken if
arch is omitted.

The alternative syntax bnrdisclist(bnf ; list) is supported, where list is as output by ideal-

list or ideallistarch (with units), in which case arch is disregarded.

The output v is a vector of vectors, where v[i][j] is understood to be in fact V [215(i� 1) + j]
of a unique big vector V . (This awkward scheme allows for larger vectors than could be otherwise
represented.)

V [k] is itself a vector W , whose length is the number of ideals of norm k. We consider �rst
the case where arch was speci�ed. Each component of W corresponds to an ideal m of norm k,
and gives invariants attached to the ray class �eld L of bnf of conductor [m; arch]. Namely, each
contains a vector [m; d; r;D] with the following meaning: m is the prime ideal factorization of the
modulus, d = [L : Q] is the absolute degree of L, r is the number of real places of L, and D is the
factorization of its absolute discriminant. We set d = r = D = 0 if m is not the �nite part of a
conductor.

If arch was omitted, all t = 2r1 possible values are taken and a component of W has the form
[m; [[d1; r1; D1]; : : : ; [dt; rt; Dt]]], where m is the �nite part of the conductor as above, and [di; ri; Di]
are the invariants of the ray class �eld of conductor [m; vi], where vi is the i-th Archimedean
component, ordered by inverse lexicographic order; so v1 = [0; : : : ; 0], v2 = [1; 0 : : : ; 0], etc. Again,
we set di = ri = Di = 0 if [m; vi] is not a conductor.

Finally, each prime ideal pr = [p; �; e; f; �] in the prime factorization m is coded as the integer
p � n2 + (f � 1) � n+ (j � 1), where n is the degree of the base �eld and j is such that

pr = idealprimedec(nf ,p)[j].

m can be decoded using bnfdecodemodule.

Note that to compute such data for a single �eld, either bnrclassno or bnrdisc is more
e�cient.

The library syntax is GEN bnrdisclist0(GEN bnf, GEN bound, GEN arch = NULL).

3.8.31 bnrgaloisapply(bnr ;mat ; H). Apply the automorphism given by its matrix mat to the
congruence subgroup H given as a HNF matrix. The matrix mat can be computed with bnrgalo-

ismatrix.

The library syntax is GEN bnrgaloisapply(GEN bnr, GEN mat, GEN H).

3.8.32 bnrgaloismatrix(bnr ; aut). Return the matrix of the action of the automorphism aut
of the base �eld bnf.nf on the generators of the ray class �eld bnr.gen. aut can be given as a
polynomial, an algebraic number, or a vector of automorphisms or a Galois group as output by
galoisinit, in which case a vector of matrices is returned (in the later case, only for the generators
aut.gen).

See bnrisgalois for an example.

The library syntax is GEN bnrgaloismatrix(GEN bnr, GEN aut). When aut is a polynomial
or an algebraic number, GEN bnrautmatrix(GEN bnr, GEN aut) is available.
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3.8.33 bnrinit(bnf ; f; fflag = 0g). bnf is as output by bnfinit (including fundamental units), f
is a modulus, initializes data linked to the ray class group structure corresponding to this module,
a so-called bnr structure. One can input the attached bid with generators for f instead of the
module itself, saving some time. (As in idealstar, the �nite part of the conductor may be given
by a factorization into prime ideals, as produced by idealfactor.)

The following member functions are available on the result: .bnf is the underlying bnf , .mod
the modulus, .bid the bid structure attached to the modulus; �nally, .clgp, .no, .cyc, .gen
refer to the ray class group (as a �nite abelian group), its cardinality, its elementary divisors, its
generators (only computed if flag = 1).

The last group of functions are di�erent from the members of the underlying bnf , which refer to
the class group; use bnr.bnf.xxx to access these, e.g. bnr.bnf.cyc to get the cyclic decomposition
of the class group.

They are also di�erent from the members of the underlying bid , which refer to (ZK=f)
�; use

bnr.bid.xxx to access these, e.g. bnr.bid.no to get �(f).

If flag = 0 (default), the generators of the ray class group are not computed, which saves time.
Hence bnr.gen would produce an error.

If flag = 1, as the default, except that generators are computed.

The library syntax is GEN bnrinit0(GEN bnf, GEN f, long flag). Instead the above
hardcoded numerical 
ags, one should rather use GEN Buchray(GEN bnf, GEN module, long

flag) where 
ag is an or-ed combination of nf GEN (include generators) and nf INIT (if omitted,
return just the cardinality of the ray class group and its structure), possibly 0.

3.8.34 bnrisconductor(A; fBg; fCg). Fast variant of bnrconductor(A;B;C); A, B, C represent
an extension of the base �eld, given by class �eld theory (see Section 3.8.5). Outputs 1 if this
modulus is the conductor, and 0 otherwise. This is slightly faster than bnrconductor when the
character or subgroup is not primitive.

The library syntax is long bnrisconductor0(GEN A, GEN B = NULL, GEN C = NULL).

3.8.35 bnrisgalois(bnr ; gal ; H). Check whether the class �eld attached to the subgroupH is Galois
over the sub�eld of bnr.nf �xed by the group gal , which can be given as output by galoisinit,
or as a matrix or a vector of matrices as output by bnrgaloismatrix, the second option being
preferable, since it saves the recomputation of the matrices. Note: The function assumes that the
ray class �eld attached to bnr is Galois, which is not checked.

In the following example, we lists the congruence subgroups of subextension of degree at most
3 of the ray class �eld of conductor 9 which are Galois over the rationals.

K=bnfinit(a^4-3*a^2+253009);

G=galoisinit(K);

B=bnrinit(K,9,1);

L1=[H|H<-subgrouplist(B,3), bnrisgalois(B,G,H)]

##

M=bnrgaloismatrix(B,G)

L2=[H|H<-subgrouplist(B,3), bnrisgalois(B,M,H)]

##

The second computation is much faster since bnrgaloismatrix(B,G) is computed only once.

The library syntax is long bnrisgalois(GEN bnr, GEN gal, GEN H).
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3.8.36 bnrisprincipal(bnr ; x; fflag = 1g). bnr being the number �eld data which is output by
bnrinit(; ; 1) and x being an ideal in any form, outputs the components of x on the ray class group
generators in a way similar to bnfisprincipal. That is a 2-component vector v where v[1] is the
vector of components of x on the ray class group generators, v[2] gives on the integral basis an
element � such that x = �

Q
i g

xi
i .

If flag = 0, outputs only v1. In that case, bnr need not contain the ray class group generators,
i.e. it may be created with bnrinit(; ; 0) If x is not coprime to the modulus of bnr the result is
unde�ned.

The library syntax is GEN bnrisprincipal(GEN bnr, GEN x, long flag). Instead of hard-
coded numerical 
ags, one should rather use GEN isprincipalray(GEN bnr, GEN x) for flag = 0,
and if you want generators:

bnrisprincipal(bnr, x, nf_GEN)

3.8.37 bnrrootnumber(bnr ; chi ; fflag = 0g). If � = chi is a character over bnr , not necessarily
primitive, let L(s; �) =

P
id �(id)N(id)�s be the attached Artin L-function. Returns the so-called

Artin root number, i.e. the complex number W (�) of modulus 1 such that

�(1� s; �) =W (�)�(s; �)

where �(s; �) = A(�)s=2
�(s)L(s; �) is the enlarged L-function attached to L.

The generators of the ray class group are needed, and you can set flag = 1 if the character is
known to be primitive. Example:

bnf = bnfinit(x^2 - x - 57);

bnr = bnrinit(bnf, [7,[1,1]], 1);

bnrrootnumber(bnr, [2,1])

returns the root number of the character � of Cl71112
(Q(
p
229)) de�ned by �(ga1g

b
2) = �2a1 �b2. Here

g1; g2 are the generators of the ray-class group given by bnr.gen and �1 = e2i�=N1 ; �2 = e2i�=N2

where N1; N2 are the orders of g1 and g2 respectively (N1 = 6 and N2 = 3 as bnr.cyc readily tells
us).

The library syntax is GEN bnrrootnumber(GEN bnr, GEN chi, long flag, long prec)

.

3.8.38 bnrstark(bnr ; fsubgroupg). bnr being as output by bnrinit(,,1), �nds a relative equation
for the class �eld corresponding to the modulus in bnr and the given congruence subgroup (as usual,
omit subgroup if you want the whole ray class group).

The main variable of bnr must not be x, and the ground �eld and the class �eld must be
totally real. When the base �eld is Q, the vastly simpler galoissubcyclo is used instead. Here is
an example:

bnf = bnfinit(y^2 - 3);

bnr = bnrinit(bnf, 5, 1);

bnrstark(bnr)

returns the ray class �eld of Q(
p
3) modulo 5. Usually, one wants to apply to the result one of

rnfpolredabs(bnf, pol, 16) \\ compute a reduced relative polynomial
rnfpolredabs(bnf, pol, 16 + 2) \\ compute a reduced absolute polynomial
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The routine uses Stark units and needs to �nd a suitable auxiliary conductor, which may not
exist when the class �eld is not cyclic over the base. In this case bnrstark is allowed to return a
vector of polynomials de�ning independent relative extensions, whose compositum is the requested
class �eld. It was decided that it was more useful to keep the extra information thus made available,
hence the user has to take the compositum herself.

Even if it exists, the auxiliary conductor may be so large that later computations become
unfeasible. (And of course, Stark's conjecture may simply be wrong.) In case of di�culties, try
rnfkummer:

? bnr = bnrinit(bnfinit(y^8-12*y^6+36*y^4-36*y^2+9,1), 2, 1);

? bnrstark(bnr)

*** at top-level: bnrstark(bnr)

*** ^-------------

*** bnrstark: need 3919350809720744 coefficients in initzeta.

*** Computation impossible.

? lift( rnfkummer(bnr) )

time = 24 ms.

%2 = x^2 + (1/3*y^6 - 11/3*y^4 + 8*y^2 - 5)

The library syntax is GEN bnrstark(GEN bnr, GEN subgroup = NULL, long prec).

3.8.39 dirzetak(nf ; b). Gives as a vector the �rst b coe�cients of the Dedekind zeta function of
the number �eld nf considered as a Dirichlet series.

The library syntax is GEN dirzetak(GEN nf, GEN b).

3.8.40 factornf(x; t). This function is obsolete, use nffactor.

factorization of the univariate polynomial x over the number �eld de�ned by the (univariate)
polynomial t. x may have coe�cients in Q or in the number �eld. The algorithm reduces to
factorization over Q (Trager's trick). The direct approach of nffactor, which uses van Hoeij's
method in a relative setting, is in general faster.

The main variable of t must be of lower priority than that of x (see Section 2.5.3). However
if non-rational number �eld elements occur (as polmods or polynomials) as coe�cients of x, the
variable of these polmods must be the same as the main variable of t. For example

? factornf(x^2 + Mod(y, y^2+1), y^2+1);

? factornf(x^2 + y, y^2+1); \\ these two are OK
? factornf(x^2 + Mod(z,z^2+1), y^2+1)

*** at top-level: factornf(x^2+Mod(z,z

*** ^--------------------

*** factornf: inconsistent data in rnf function.

? factornf(x^2 + z, y^2+1)

*** at top-level: factornf(x^2+z,y^2+1

*** ^--------------------

*** factornf: incorrect variable in rnf function.

The library syntax is GEN polfnf(GEN x, GEN t).
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3.8.41 galoisexport(gal ; fflagg). gal being be a Galois group as output by galoisinit, export
the underlying permutation group as a string suitable for (no 
ags or flag = 0) GAP or (flag = 1)
Magma. The following example compute the index of the underlying abstract group in the GAP
library:

? G = galoisinit(x^6+108);

? s = galoisexport(G)

%2 = "Group((1, 2, 3)(4, 5, 6), (1, 4)(2, 6)(3, 5))"

? extern("echo \"IdGroup("s");\" | gap -q")

%3 = [6, 1]

? galoisidentify(G)

%4 = [6, 1]

This command also accepts subgroups returned by galoissubgroups.

To import a GAP permutation into gp (for galoissubfields for instance), the following GAP
function may be useful:

PermToGP := function(p, n)

return Permuted([1..n],p);

end;

gap> p:= (1,26)(2,5)(3,17)(4,32)(6,9)(7,11)(8,24)(10,13)(12,15)(14,27)

(16,22)(18,28)(19,20)(21,29)(23,31)(25,30)

gap> PermToGP(p,32);

[ 26, 5, 17, 32, 2, 9, 11, 24, 6, 13, 7, 15, 10, 27, 12, 22, 3, 28, 20, 19,

29, 16, 31, 8, 30, 1, 14, 18, 21, 25, 23, 4 ]

The library syntax is GEN galoisexport(GEN gal, long flag).

3.8.42 galois�xed�eld(gal ; perm; fflagg; fv = yg). gal being be a Galois group as output by
galoisinit and perm an element of gal :group, a vector of such elements or a subgroup of gal as
returned by galoissubgroups, computes the �xed �eld of gal by the automorphism de�ned by the
permutations perm of the roots gal :roots. P is guaranteed to be squarefree modulo gal :p.

If no 
ags or flag = 0, output format is the same as for nfsubfield, returning [P; x] such that
P is a polynomial de�ning the �xed �eld, and x is a root of P expressed as a polmod in gal :pol.

If flag = 1 return only the polynomial P .

If flag = 2 return [P; x; F ] where P and x are as above and F is the factorization of gal :pol
over the �eld de�ned by P , where variable v (y by default) stands for a root of P . The priority of
v must be less than the priority of the variable of gal :pol (see Section 2.5.3). Example:

? G = galoisinit(x^4+1);

? galoisfixedfield(G,G.group[2],2)

%2 = [x^2 + 2, Mod(x^3 + x, x^4 + 1), [x^2 - y*x - 1, x^2 + y*x - 1]]

computes the factorization x4 + 1 = (x2 �p�2x� 1)(x2 +
p�2x� 1)

The library syntax is GEN galoisfixedfield(GEN gal, GEN perm, long flag, long v =

-1) where v is a variable number.
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3.8.43 galoisgetpol(a; fbg; fsg). Query the galpol package for a polynomial with Galois group
isomorphic to GAP4(a,b), totally real if s = 1 (default) and totally complex if s = 2. The output
is a vector [pol, den] where

� pol is the polynomial of degree a

� den is the denominator of nfgaloisconj(pol). Pass it as an optional argument to ga-

loisinit or nfgaloisconj to speed them up:

? [pol,den] = galoisgetpol(64,4,1);

? G = galoisinit(pol);

time = 352ms

? galoisinit(pol, den); \\ passing 'den' speeds up the computation

time = 264ms

? % == %`

%4 = 1 \\ same answer

If b and s are omitted, return the number of isomorphism classes of groups of order a.

The library syntax is GEN galoisgetpol(long a, long b, long s). Also available is GEN
galoisnbpol(long a) when b and s are omitted.

3.8.44 galoisidentify(gal). gal being be a Galois group as output by galoisinit, output the
isomorphism class of the underlying abstract group as a two-components vector [o; i], where o is
the group order, and i is the group index in the GAP4 Small Group library, by Hans Ulrich Besche,
Bettina Eick and Eamonn O'Brien.

This command also accepts subgroups returned by galoissubgroups.

The current implementation is limited to degree less or equal to 127. Some larger \easy" orders
are also supported.

The output is similar to the output of the function IdGroup in GAP4. Note that GAP4
IdGroup handles all groups of order less than 2000 except 1024, so you can use galoisexport and
GAP4 to identify large Galois groups.

The library syntax is GEN galoisidentify(GEN gal).

3.8.45 galoisinit(pol ; fdeng). Computes the Galois group and all necessary information for com-
puting the �xed �elds of the Galois extension K=Q where K is the number �eld de�ned by pol
(monic irreducible polynomial in Z[X] or a number �eld as output by nfinit). The extension K=Q
must be Galois with Galois group \weakly" super-solvable, see below; returns 0 otherwise. Hence
this permits to quickly check whether a polynomial of order strictly less than 36 is Galois or not.

The algorithm used is an improved version of the paper \An e�cient algorithm for the com-
putation of Galois automorphisms", Bill Allombert, Math. Comp, vol. 73, 245, 2001, pp. 359{375.

A group G is said to be \weakly" super-solvable if there exists a normal series

f1g = H0 / H1 / � � � / Hn�1 / Hn

such that each Hi is normal in G and for i < n, each quotient group Hi+1=Hi is cyclic, and
either Hn = G (then G is super-solvable) or G=Hn is isomorphic to either A4 or S4.

In practice, almost all small groups are WKSS, the exceptions having order 36(1 exception),
48(2), 56(1), 60(1), 72(5), 75(1), 80(1), 96(10) and � 108.
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This function is a prerequisite for most of the galoisxxx routines. For instance:

P = x^6 + 108;

G = galoisinit(P);

L = galoissubgroups(G);

vector(#L, i, galoisisabelian(L[i],1))

vector(#L, i, galoisidentify(L[i]))

The output is an 8-component vector gal .

gal [1] contains the polynomial pol (gal.pol).

gal [2] is a three-components vector [p; e; q] where p is a prime number (gal.p) such that pol
totally split modulo p , e is an integer and q = pe (gal.mod) is the modulus of the roots in gal.roots.

gal [3] is a vector L containing the p-adic roots of pol as integers implicitly modulo gal.mod.
(gal.roots).

gal [4] is the inverse of the Vandermonde matrix of the p-adic roots of pol , multiplied by gal [5].

gal [5] is a multiple of the least common denominator of the automorphisms expressed as
polynomial in a root of pol .

gal [6] is the Galois group G expressed as a vector of permutations of L (gal.group).

gal [7] is a generating subset S = [s1; : : : ; sg] of G expressed as a vector of permutations of L
(gal.gen).

gal [8] contains the relative orders [o1; : : : ; og] of the generators of S (gal.orders).

Let Hn be as above, we have the following properties:

� if G=Hn ' A4 then [o1; : : : ; og] ends by [2; 2; 3].

� if G=Hn ' S4 then [o1; : : : ; og] ends by [2; 2; 3; 2].

� for 1 � i � g the subgroup of G generated by [s1; : : : ; sg] is normal, with the exception of
i = g � 2 in the A4 case and of i = g � 3 in the SA case.

� the relative order oi of si is its order in the quotient group G=hs1; : : : ; si�1i, with the same
exceptions.

� for any x 2 G there exists a unique family [e1; : : : ; eg] such that (no exceptions):

{ for 1 � i � g we have 0 � ei < oi

{ x = ge11 g
e2
2 : : : genn

If present den must be a suitable value for gal [5].

The library syntax is GEN galoisinit(GEN pol, GEN den = NULL).

3.8.46 galoisisabelian(gal ; fflag = 0g). gal being as output by galoisinit, return 0 if gal is not
an abelian group, and the HNF matrix of gal over gal.gen if fl = 0, 1 if fl = 1.

This command also accepts subgroups returned by galoissubgroups.

The library syntax is GEN galoisisabelian(GEN gal, long flag).
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3.8.47 galoisisnormal(gal ; subgrp). gal being as output by galoisinit, and subgrp a subgroup
of gal as output by galoissubgroups,return 1 if subgrp is a normal subgroup of gal , else return 0.

This command also accepts subgroups returned by galoissubgroups.

The library syntax is long galoisisnormal(GEN gal, GEN subgrp).

3.8.48 galoispermtopol(gal ; perm). gal being a Galois group as output by galoisinit and
perm a element of gal :group, return the polynomial de�ning the Galois automorphism, as output
by nfgaloisconj, attached to the permutation perm of the roots gal :roots. perm can also be a
vector or matrix, in this case, galoispermtopol is applied to all components recursively.

Note that

G = galoisinit(pol);

galoispermtopol(G, G[6])~

is equivalent to nfgaloisconj(pol), if degree of pol is greater or equal to 2.

The library syntax is GEN galoispermtopol(GEN gal, GEN perm).

3.8.49 galoissubcyclo(N;H; f
 = 0g; fvg). Computes the subextension of Q(�n) �xed by the
subgroup H � (Z=nZ)�. By the Kronecker-Weber theorem, all abelian number �elds can be
generated in this way (uniquely if n is taken to be minimal).

The pair (n;H) is deduced from the parameters (N;H) as follows

� N an integer: then n = N ; H is a generator, i.e. an integer or an integer modulo n; or a
vector of generators.

� N the output of znstar(n). H as in the �rst case above, or a matrix, taken to be a HNF
left divisor of the SNF for (Z=nZ)� (of type N.cyc), giving the generators of H in terms of N.gen.

� N the output of bnrinit(bnfinit(y), m, 1) where m is a module. H as in the �rst case,
or a matrix taken to be a HNF left divisor of the SNF for the ray class group modulo m (of type
N.cyc), giving the generators of H in terms of N.gen.

In this last case, beware that H is understood relatively to N ; in particular, if the in�nite
place does not divide the module, e.g if m is an integer, then it is not a subgroup of (Z=nZ)�, but
of its quotient by f�1g.

If fl = 0, compute a polynomial (in the variable v) de�ning the sub�eld of Q(�n) �xed by the
subgroup H of (Z=nZ)�.

If fl = 1, compute only the conductor of the abelian extension, as a module.

If fl = 2, output [pol;N ], where pol is the polynomial as output when fl = 0 and N the
conductor as output when fl = 1.

The following function can be used to compute all sub�elds of Q(�n) (of exact degree d, if d is
set):

polsubcyclo(n, d = -1)=

{ my(bnr,L,IndexBound);

IndexBound = if (d < 0, n, [d]);

bnr = bnrinit(bnfinit(y), [n,[1]], 1);

L = subgrouplist(bnr, IndexBound, 1);
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vector(#L,i, galoissubcyclo(bnr,L[i]));

}

Setting L = subgrouplist(bnr, IndexBound) would produce sub�elds of exact conductor n1.

The library syntax is GEN galoissubcyclo(GEN N, GEN H = NULL, long fl, long v = -1)

where v is a variable number.

3.8.50 galoissub�elds(G; fflag = 0g; fvg). Outputs all the sub�elds of the Galois group G , as a
vector. This works by applying galoisfixedfield to all subgroups. The meaning of 
ag is the
same as for galoisfixedfield.

The library syntax is GEN galoissubfields(GEN G, long flag, long v = -1) where v is
a variable number.

3.8.51 galoissubgroups(G). Outputs all the subgroups of the Galois group gal. A subgroup is
a vector [gen, orders], with the same meaning as for gal :gen and gal :orders. Hence gen is a vector
of permutations generating the subgroup, and orders is the relatives orders of the generators. The
cardinality of a subgroup is the product of the relative orders. Such subgroup can be used instead
of a Galois group in the following command: galoisisabelian, galoissubgroups, galoisexport
and galoisidentify.

To get the sub�eld �xed by a subgroup sub of gal , use

galoisfixedfield(gal,sub[1])

The library syntax is GEN galoissubgroups(GEN G).

3.8.52 idealadd(nf ; x; y). Sum of the two ideals x and y in the number �eld nf . The result is
given in HNF.

? K = nfinit(x^2 + 1);

? a = idealadd(K, 2, x + 1) \\ ideal generated by 2 and 1+I

%2 =

[2 1]

[0 1]

? pr = idealprimedec(K, 5)[1]; \\ a prime ideal above 5

? idealadd(K, a, pr) \\ coprime, as expected

%4 =

[1 0]

[0 1]

This function cannot be used to add arbitrary Z-modules, since it assumes that its arguments are
ideals:

? b = Mat([1,0]~);

? idealadd(K, b, b) \\ only square t_MATs represent ideals

*** idealadd: non-square t_MAT in idealtyp.

? c = [2, 0; 2, 0]; idealadd(K, c, c) \\ non-sense

%6 =

[2 0]

[0 2]

? d = [1, 0; 0, 2]; idealadd(K, d, d) \\ non-sense
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%7 =

[1 0]

[0 1]

In the last two examples, we get wrong results since the matrices c and d do not correspond to
an ideal: the Z-span of their columns (as usual interpreted as coordinates with respect to the
integer basis K.zk) is not an OK-module. To add arbitrary Z-modules generated by the columns
of matrices A and B, use mathnf(concat(A,B)).

The library syntax is GEN idealadd(GEN nf, GEN x, GEN y).

3.8.53 idealaddtoone(nf ; x; fyg). x and y being two co-prime integral ideals (given in any form),
this gives a two-component row vector [a; b] such that a 2 x, b 2 y and a+ b = 1.

The alternative syntax idealaddtoone(nf ; v), is supported, where v is a k-component vector
of ideals (given in any form) which sum to ZK . This outputs a k-component vector e such that
e[i] 2 x[i] for 1 � i � k and

P
1�i�k e[i] = 1.

The library syntax is GEN idealaddtoone0(GEN nf, GEN x, GEN y = NULL).

3.8.54 idealappr(nf ; x; fflagg). If x is a fractional ideal (given in any form), gives an element
� in nf such that for all prime ideals p such that the valuation of x at p is non-zero, we have
vp(�) = vp(x), and vp(�) � 0 for all other p.

The argument x may also be given as a prime ideal factorization, as output by idealfactor,
but allowing zero exponents. This yields an element � such that for all prime ideals p occurring in
x, vp(�) = vp(x); for all other prime ideals, vp(�) � 0.


ag is deprecated (ignored), kept for backward compatibility

The library syntax is GEN idealappr0(GEN nf, GEN x, long flag). Use directly GEN

idealappr(GEN nf, GEN x) since flag is ignored.

3.8.55 idealchinese(nf ; x; fyg). x being a prime ideal factorization (i.e. a 2 by 2 matrix whose �rst
column contains prime ideals, and the second column integral exponents), y a vector of elements
in nf indexed by the ideals in x, computes an element b such that

vp(b� yp) � vp(x) for all prime ideals in x and vp(b) � 0 for all other p.

? K = nfinit(t^2-2);

? x = idealfactor(K, 2^2*3)

%2 =

[[2, [0, 1]~, 2, 1, [0, 2; 1, 0]] 4]

[ [3, [3, 0]~, 1, 2, 1] 1]

? y = [t,1];

? idealchinese(K, x, y)

%4 = [4, -3]~

The argument x may also be of the form [x; s] where the �rst component is as above and s is
a vector of signs, with r1 components si in f�1; 0; 1g: if �i denotes the i-th real embedding of the
number �eld, the element b returned satis�es further sisign(�i(b)) � 0 for all i. In other words,
the sign is �xed to si at the i-th embedding whenever si is non-zero.

? idealchinese(K, [x, [1,1]], y)
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%5 = [16, -3]~
? idealchinese(K, [x, [-1,-1]], y)

%6 = [-20, -3]~
? idealchinese(K, [x, [1,-1]], y)

%7 = [4, -3]~

If y is omitted, return a data structure which can be used in place of x in later calls and allows
to solve many chinese remainder problems for a given x more e�ciently.

? C = idealchinese(K, [x, [1,1]]);

? idealchinese(K, C, y) \\ as above

%9 = [16, -3]~
? for(i=1,10^4, idealchinese(K,C,y)) \\ ... but faster !

time = 80 ms.

? for(i=1,10^4, idealchinese(K,[x,[1,1]],y))

time = 224 ms.

Finally, this structure is itself allowed in place of x, the new s overriding the one already
present in the structure. This allows to initialize for di�erent sign conditions more e�ciently when
the underlying ideal factorization remains the same.

? D = idealchinese(K, [C, [1,-1]]); \\ replaces [1,1]

? idealchinese(K, D, y)

%13 = [4, -3]~
? for(i=1,10^4,idealchinese(K,[C,[1,-1]]))

time = 40 ms. \\ faster than starting from scratch

? for(i=1,10^4,idealchinese(K,[x,[1,-1]]))

time = 128 ms.

The library syntax is GEN idealchinese(GEN nf, GEN x, GEN y = NULL). Also available is
GEN idealchineseinit(GEN nf, GEN x) when y = NULL.

3.8.56 idealcoprime(nf ; x; y). Given two integral ideals x and y in the number �eld nf , returns
a � in the �eld, such that � � x is an integral ideal coprime to y.

The library syntax is GEN idealcoprime(GEN nf, GEN x, GEN y).

3.8.57 idealdiv(nf ; x; y; fflag = 0g). Quotient x � y�1 of the two ideals x and y in the number
�eld nf . The result is given in HNF.

If flag is non-zero, the quotient x � y�1 is assumed to be an integral ideal. This can be much
faster when the norm of the quotient is small even though the norms of x and y are large.

The library syntax is GEN idealdiv0(GEN nf, GEN x, GEN y, long flag). Also available
are GEN idealdiv(GEN nf, GEN x, GEN y) (flag = 0) and GEN idealdivexact(GEN nf, GEN x,

GEN y) (flag = 1).

3.8.58 idealfactor(nf ; x). Factors into prime ideal powers the ideal x in the number �eld nf . The
output format is similar to the factor function, and the prime ideals are represented in the form
output by the idealprimedec function.

The library syntax is GEN idealfactor(GEN nf, GEN x).
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3.8.59 idealfactorback(nf ; f; feg; fflag = 0g). Gives back the ideal corresponding to a factor-
ization. The integer 1 corresponds to the empty factorization. If e is present, e and f must be
vectors of the same length (e being integral), and the corresponding factorization is the product of
the f [i]e[i].

If not, and f is vector, it is understood as in the preceding case with e a vector of 1s: we return
the product of the f [i]. Finally, f can be a regular factorization, as produced by idealfactor.

? nf = nfinit(y^2+1); idealfactor(nf, 4 + 2*y)

%1 =

[[2, [1, 1]~, 2, 1, [1, 1]~] 2]

[[5, [2, 1]~, 1, 1, [-2, 1]~] 1]

? idealfactorback(nf, %)

%2 =

[10 4]

[0 2]

? f = %1[,1]; e = %1[,2]; idealfactorback(nf, f, e)

%3 =

[10 4]

[0 2]

? % == idealhnf(nf, 4 + 2*y)

%4 = 1

If flag is non-zero, perform ideal reductions (idealred) along the way. This is most useful
if the ideals involved are all extended ideals (for instance with trivial principal part), so that the
principal parts extracted by idealred are not lost. Here is an example:

? f = vector(#f, i, [f[i], [;]]); \\ transform to extended ideals

? idealfactorback(nf, f, e, 1)

%6 = [[1, 0; 0, 1], [2, 1; [2, 1]~, 1]]

? nffactorback(nf, %[2])

%7 = [4, 2]~

The extended ideal returned in %6 is the trivial ideal 1, extended with a principal generator
given in factored form. We use nffactorback to recover it in standard form.

The library syntax is GEN idealfactorback(GEN nf, GEN f, GEN e = NULL, long flag)

.

3.8.60 idealfrobenius(nf ; gal ; pr). Let K be the number �eld de�ned by nf and assume K=Q
be a Galois extension with Galois group given gal=galoisinit(nf), and that pr is an unrami�ed
prime ideal p in prid format. This function returns a permutation of gal.group which de�nes
the Frobenius element Frobp attached to p. If p is the unique prime number in p, then Frob(x) �
xpmod p for all x 2 ZK .

? nf = nfinit(polcyclo(31));

? gal = galoisinit(nf);

? pr = idealprimedec(nf,101)[1];

? g = idealfrobenius(nf,gal,pr);

? galoispermtopol(gal,g)
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%5 = x^8

This is correct since 101 � 8mod 31.

The library syntax is GEN idealfrobenius(GEN nf, GEN gal, GEN pr).

3.8.61 idealhnf(nf ; u; fvg). Gives the Hermite normal form of the ideal uZK + vZK , where u and
v are elements of the number �eld K de�ned by nf .

? nf = nfinit(y^3 - 2);

? idealhnf(nf, 2, y+1)

%2 =

[1 0 0]

[0 1 0]

[0 0 1]

? idealhnf(nf, y/2, [0,0,1/3]~)

%3 =

[1/3 0 0]

[0 1/6 0]

[0 0 1/6]

If b is omitted, returns the HNF of the ideal de�ned by u: u may be an algebraic number
(de�ning a principal ideal), a maximal ideal (as given by idealprimedec or idealfactor), or a
matrix whose columns give generators for the ideal. This last format is a little complicated, but
useful to reduce general modules to the canonical form once in a while:

� if strictly less than N = [K : Q] generators are given, u is the ZK-module they generate,

� if N or more are given, it is assumed that they form a Z-basis of the ideal, in particular that
the matrix has maximal rank N . This acts as mathnf since the ZK-module structure is (taken for
granted hence) not taken into account in this case.

? idealhnf(nf, idealprimedec(nf,2)[1])

%4 =

[2 0 0]

[0 1 0]

[0 0 1]

? idealhnf(nf, [1,2;2,3;3,4])

%5 =

[1 0 0]

[0 1 0]

[0 0 1]

Finally, when K is quadratic with discriminant DK , we allow u = Qfb(a,b,c), provided b2�4ac =
DK . As usual, this represents the ideal aZ+ (1=2)(�b+pDK)Z.

? K = nfinit(x^2 - 60); K.disc

%1 = 60

? idealhnf(K, qfbprimeform(60,2))

%2 =

[2 1]
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[0 1]

? idealhnf(K, Qfb(1,2,3))

*** at top-level: idealhnf(K,Qfb(1,2,3

*** ^--------------------

*** idealhnf: Qfb(1, 2, 3) has discriminant != 60 in idealhnf.

The library syntax is GEN idealhnf0(GEN nf, GEN u, GEN v = NULL). Also available is GEN
idealhnf(GEN nf, GEN a).

3.8.62 idealintersect(nf ; A;B). Intersection of the two ideals A and B in the number �eld nf .
The result is given in HNF.

? nf = nfinit(x^2+1);

? idealintersect(nf, 2, x+1)

%2 =

[2 0]

[0 2]

This function does not apply to general Z-modules, e.g. orders, since its arguments are replaced
by the ideals they generate. The following script intersects Z-modules A and B given by matrices
of compatible dimensions with integer coe�cients:

ZM_intersect(A,B) =

{ my(Ker = matkerint(concat(A,B)));

mathnf( A * Ker[1..#A,] )

}

The library syntax is GEN idealintersect(GEN nf, GEN A, GEN B).

3.8.63 idealinv(nf ; x). Inverse of the ideal x in the number �eld nf , given in HNF. If x is an
extended ideal, its principal part is suitably updated: i.e. inverting [I; t], yields [I�1; 1=t].

The library syntax is GEN idealinv(GEN nf, GEN x).

3.8.64 ideallist(nf ; bound ; fflag = 4g). Computes the list of all ideals of norm less or equal to
bound in the number �eld nf . The result is a row vector with exactly bound components. Each
component is itself a row vector containing the information about ideals of a given norm, in no
speci�c order, depending on the value of flag :

The possible values of flag are:

0: give the bid attached to the ideals, without generators.

1: as 0, but include the generators in the bid .

2: in this case, nf must be a bnf with units. Each component is of the form [bid ; U ], where
bid is as case 0 and U is a vector of discrete logarithms of the units. More precisely, it gives the
ideallogs with respect to bid of bnf.tufu. This structure is technical, and only meant to be used
in conjunction with bnrclassnolist or bnrdisclist.

3: as 2, but include the generators in the bid .

4: give only the HNF of the ideal.

? nf = nfinit(x^2+1);
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? L = ideallist(nf, 100);

? L[1]

%3 = [[1, 0; 0, 1]] \\ A single ideal of norm 1
? #L[65]

%4 = 4 \\ There are 4 ideals of norm 4 in Z[i]

If one wants more information, one could do instead:

? nf = nfinit(x^2+1);

? L = ideallist(nf, 100, 0);

? l = L[25]; vector(#l, i, l[i].clgp)

%3 = [[20, [20]], [16, [4, 4]], [20, [20]]]

? l[1].mod

%4 = [[25, 18; 0, 1], []]

? l[2].mod

%5 = [[5, 0; 0, 5], []]

? l[3].mod

%6 = [[25, 7; 0, 1], []]

where we ask for the structures of the (Z[i]=I)� for all three ideals of norm 25. In fact, for all
moduli with �nite part of norm 25 and trivial Archimedean part, as the last 3 commands show.
See ideallistarch to treat general moduli.

The library syntax is GEN ideallist0(GEN nf, long bound, long flag).

3.8.65 ideallistarch(nf ; list ; arch). list is a vector of vectors of bid's, as output by ideallist

with 
ag 0 to 3. Return a vector of vectors with the same number of components as the original
list . The leaves give information about moduli whose �nite part is as in original list, in the same
order, and Archimedean part is now arch (it was originally trivial). The information contained is
of the same kind as was present in the input; see ideallist, in particular the meaning of flag .

? bnf = bnfinit(x^2-2);

? bnf.sign

%2 = [2, 0] \\ two places at in�nity
? L = ideallist(bnf, 100, 0);

? l = L[98]; vector(#l, i, l[i].clgp)

%4 = [[42, [42]], [36, [6, 6]], [42, [42]]]

? La = ideallistarch(bnf, L, [1,1]); \\ add them to the modulus
? l = La[98]; vector(#l, i, l[i].clgp)

%6 = [[168, [42, 2, 2]], [144, [6, 6, 2, 2]], [168, [42, 2, 2]]]

Of course, the results above are obvious: adding t places at in�nity will add t copies of Z=2Z
to (ZK=f)

�. The following application is more typical:

? L = ideallist(bnf, 100, 2); \\ units are required now
? La = ideallistarch(bnf, L, [1,1]);

? H = bnrclassnolist(bnf, La);

? H[98];

%4 = [2, 12, 2]

The library syntax is GEN ideallistarch(GEN nf, GEN list, GEN arch).
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3.8.66 ideallog(fnf g; x; bid). nf is a number �eld, bid is as output by idealstar(nf, D, : : : )
and x a non-necessarily integral element of nf which must have valuation equal to 0 at all prime
ideals in the support of D. This function computes the discrete logarithm of x on the generators
given in bid.gen. In other words, if gi are these generators, of orders di respectively, the result is
a column vector of integers (xi) such that 0 � xi < di and

x �
Y
i

gxii (mod �D) :

Note that when the support of D contains places at in�nity, this congruence implies also sign
conditions on the attached real embeddings. See znlog for the limitations of the underlying discrete
log algorithms.

When nf is omitted, take it to be the rational number �eld. In that case, x must be a t_INT

and bid must have been initialized by idealstar(,N).

The library syntax is GEN ideallog(GEN nf = NULL, GEN x, GEN bid). Also available is
GEN Zideallog(GEN bid, GEN x) when nf is NULL.

3.8.67 idealmin(nf ; ix ; fvdirg). This function is useless and kept for backward compatibility only,
use idealred. Computes a pseudo-minimum of the ideal x in the direction vdir in the number
�eld nf .

The library syntax is GEN idealmin(GEN nf, GEN ix, GEN vdir = NULL).

3.8.68 idealmul(nf ; x; y; fflag = 0g). Ideal multiplication of the ideals x and y in the number
�eld nf ; the result is the ideal product in HNF. If either x or y are extended ideals, their principal
part is suitably updated: i.e. multiplying [I; t], [J; u] yields [IJ; tu]; multiplying I and [J; u] yields
[IJ; u].

? nf = nfinit(x^2 + 1);

? idealmul(nf, 2, x+1)

%2 =

[4 2]

[0 2]

? idealmul(nf, [2, x], x+1) \\ extended ideal * ideal

%3 = [[4, 2; 0, 2], x]

? idealmul(nf, [2, x], [x+1, x]) \\ two extended ideals

%4 = [[4, 2; 0, 2], [-1, 0]~]

If flag is non-zero, reduce the result using idealred.

The library syntax is GEN idealmul0(GEN nf, GEN x, GEN y, long flag).

See also GEN idealmul(GEN nf, GEN x, GEN y) (flag = 0) and GEN idealmulred(GEN nf, GEN

x, GEN y) (flag 6= 0).

3.8.69 idealnorm(nf ; x). Computes the norm of the ideal x in the number �eld nf .

The library syntax is GEN idealnorm(GEN nf, GEN x).
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3.8.70 idealnumden(nf ; x). Returns [A;B], where A;B are coprime integer ideals such that
x = A=B, in the number �eld nf .

? nf = nfinit(x^2+1);

? idealnumden(nf, (x+1)/2)

%2 = [[1, 0; 0, 1], [2, 1; 0, 1]]

The library syntax is GEN idealnumden(GEN nf, GEN x).

3.8.71 idealpow(nf ; x; k; fflag = 0g). Computes the k-th power of the ideal x in the number �eld
nf ; k 2 Z. If x is an extended ideal, its principal part is suitably updated: i.e. raising [I; t] to the
k-th power, yields [Ik; tk].

If flag is non-zero, reduce the result using idealred, throughout the (binary) powering process;
in particular, this is not the same as idealpow(nf ; x; k) followed by reduction.

The library syntax is GEN idealpow0(GEN nf, GEN x, GEN k, long flag).

See also GEN idealpow(GEN nf, GEN x, GEN k) and GEN idealpows(GEN nf, GEN x, long k)

(flag = 0). Corresponding to flag = 1 is GEN idealpowred(GEN nf, GEN vp, GEN k).

3.8.72 idealprimedec(nf ; p; ff = 0g). Computes the prime ideal decomposition of the (positive)
prime number p in the number �eld K represented by nf . If a non-prime p is given the result is
unde�ned. If f is present and non-zero, restrict the result to primes of residue degree � f .

The result is a vector of prid structures, each representing one of the prime ideals above p in
the number �eld nf . The representation pr = [p; a; e; f;mb] of a prime ideal means the following: a
and is an algebraic integer in the maximal order ZK and the prime ideal is equal to p = pZK+aZK ;
e is the rami�cation index; f is the residual index; �nally, mb is the multiplication table attached
to the algebraic integer b is such that p�1 = ZK + b=pZK , which is used internally to compute
valuations. In other words if p is inert, then mb is the integer 1, and otherwise it's a square t_MAT
whose j-th column is b � nf:zk[j].

The algebraic number a is guaranteed to have a valuation equal to 1 at the prime ideal (this
is automatic if e > 1).

The components of pr should be accessed by member functions: pr.p, pr.e, pr.f, and pr.gen

(returns the vector [p; a]):

? K = nfinit(x^3-2);

? P = idealprimedec(K, 5);

? #P \\ 2 primes above 5 in Q(2^(1/3))

%3 = 2

? [p1,p2] = P;

? [p1.e, p1.f] \\ the first is unramified of degree 1

%5 = [1, 1]

? [p2.e, p2.f] \\ the second is unramified of degree 2

%6 = [1, 2]

? p1.gen

%7 = [5, [2, 1, 0]~]

? nfbasistoalg(K, %[2]) \\ a uniformizer for p1

%8 = Mod(x + 2, x^3 - 2)

? #idealprimedec(K, 5, 1) \\ restrict to f = 1
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%9 = 1 \\ now only p1

The library syntax is GEN idealprimedec_limit_f(GEN nf, GEN p, long f).

3.8.73 idealprincipalunits(nf ; pr ; k). Given a prime ideal in idealprimedec format, returns the
multiplicative group (1 + pr)=(1 + prk) as an abelian group. This function is much faster than
idealstar when the norm of pr is large, since it avoids (useless) work in the multiplicative group
of the residue �eld.

? K = nfinit(y^2+1);

? P = idealprimedec(K,2)[1];

? G = idealprincipalunits(K, P, 20);

? G.cyc

%4 = [512, 256, 4] \\ Z/512 x Z/256 x Z/4

? G.gen

%5 = [[-1, -2]~, 1021, [0, -1]~] \\ minimal generators of given order

The library syntax is GEN idealprincipalunits(GEN nf, GEN pr, long k).

3.8.74 idealramgroups(nf ; gal ; pr). Let K be the number �eld de�ned by nf and assume that
K=Q is Galois with Galois group G given by gal=galoisinit(nf). Let pr be the prime ideal P
in prid format. This function returns a vector g of subgroups of gal as follow:

� g[1] is the decomposition group of P,

� g[2] is G0(P), the inertia group of P,

and for i � 2,

� g[i] is Gi�2(P), the i� 2-th ramification group of P.

The length of g is the number of non-trivial groups in the sequence, thus is 0 if e = 1 and f = 1,
and 1 if f > 1 and e = 1. The following function computes the cardinality of a subgroup of G, as
given by the components of g:

card(H) =my(o=H[2]); prod(i=1,#o,o[i]);

? nf=nfinit(x^6+3); gal=galoisinit(nf); pr=idealprimedec(nf,3)[1];

? g = idealramgroups(nf, gal, pr);

? apply(card,g)

%3 = [6, 6, 3, 3, 3] \\ cardinalities of the G_i

? nf=nfinit(x^6+108); gal=galoisinit(nf); pr=idealprimedec(nf,2)[1];

? iso=idealramgroups(nf,gal,pr)[2]

%5 = [[Vecsmall([2, 3, 1, 5, 6, 4])], Vecsmall([3])]

? nfdisc(galoisfixedfield(gal,iso,1))

%6 = -3

The �eld �xed by the inertia group of 2 is not rami�ed at 2.

The library syntax is GEN idealramgroups(GEN nf, GEN gal, GEN pr).
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3.8.75 idealred(nf ; I; fv = 0g). LLL reduction of the ideal I in the number �eld K attached to
nf , along the direction v. The v parameter is best left omitted, but if it is present, it must be an
nf:r1+ nf:r2-component vector of non-negative integers. (What counts is the relative magnitude
of the entries: if all entries are equal, the e�ect is the same as if the vector had been omitted.)

This function �nds an a 2 K� such that J = (a)I is \small" and integral (see the end for
technical details). The result is the Hermite normal form of the \reduced" ideal J .

? K = nfinit(y^2+1);

? P = idealprimedec(K,5)[1];

? idealred(K, P)

%3 =

[1 0]

[0 1]

More often than not, a principal ideal yields the unit ideal as above. This is a quick and dirty way
to check if ideals are principal, but it is not a necessary condition: a non-trivial result does not
prove that the ideal is non-principal. For guaranteed results, see bnfisprincipal, which requires
the computation of a full bnf structure.

If the input is an extended ideal [I; s], the output is [J; sa]; in this way, one keeps track of the
principal ideal part:

? idealred(K, [P, 1])

%5 = [[1, 0; 0, 1], [2, -1]~]

meaning that P is generated by [2;�1] . The number �eld element in the extended part is an
algebraic number in any form or a factorization matrix (in terms of number �eld elements, not
ideals!). In the latter case, elements stay in factored form, which is a convenient way to avoid
coe�cient explosion; see also idealpow.

Technical note. The routine computes an LLL-reduced basis for the lattice I(�1) equipped with
the quadratic form

jjxjj2v =
r1+r2X
i=1

2vi"ij�i(x)j2;

where as usual the �i are the (real and) complex embeddings and "i = 1, resp. 2, for a real,
resp. complex place. The element a is simply the �rst vector in the LLL basis. The only reason
you may want to try to change some directions and set some vi 6= 0 is to randomize the elements
found for a �xed ideal, which is heuristically useful in index calculus algorithms like bnfinit and
bnfisprincipal.

Even more technical note. In fact, the above is a white lie. We do not use jj � jjv exactly but
a rescaled rounded variant which gets us faster and simpler LLLs. There's no harm since we are
not using any theoretical property of a after all, except that it belongs to I( � 1) and that aI is
\expected to be small".

The library syntax is GEN idealred0(GEN nf, GEN I, GEN v = NULL).
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3.8.76 idealstar(fnf g; N; fflag = 1g). Outputs a bid structure, necessary for computing in the
�nite abelian group G = (ZK=N)�. Here, nf is a number �eld and N is a modulus: either an ideal
in any form, or a row vector whose �rst component is an ideal and whose second component is a
row vector of r1 0 or 1. Ideals can also be given by a factorization into prime ideals, as produced
by idealfactor.

This bid is used in ideallog to compute discrete logarithms. It also contains useful information
which can be conveniently retrieved as bid.mod (the modulus), bid.clgp (G as a �nite abelian
group), bid.no (the cardinality of G), bid.cyc (elementary divisors) and bid.gen (generators).

If flag = 1 (default), the result is a bid structure without generators: they are well de�ned
but not explicitly computed, which saves time.

If flag = 2, as flag = 1, but including generators.

If flag = 0, only outputs (ZK=N)� as an abelian group, i.e as a 3-component vector [h; d; g]: h
is the order, d is the vector of SNF cyclic components and g the corresponding generators.

If nf is omitted, we take it to be the rational number �elds, N must be an integer and we
return the structure of (Z=NZ)�. In other words idealstar(, N, flag) is short for

idealstar(nfinit(x), N, flag)

but much faster. The alternative syntax znstar(N, flag) is also available for the same e�ect, but
due to an unfortunate historical oversight, the default value of flag is di�erent in the two functions
(znstar does not initialize by default).

The library syntax is GEN idealstar0(GEN nf = NULL, GEN N, long flag). Instead the
above hardcoded numerical 
ags, one should rather use GEN Idealstar(GEN nf, GEN ideal, long

flag), where flag is an or-ed combination of nf_GEN (include generators) and nf_INIT (return a
full bid, not a group), possibly 0. This o�ers one more combination: gen, but no init.

3.8.77 idealtwoelt(nf ; x; fag). Computes a two-element representation of the ideal x in the
number �eld nf , combining a random search and an approximation theorem; x is an ideal in any
form (possibly an extended ideal, whose principal part is ignored)

� When called as idealtwoelt(nf,x), the result is a row vector [a; �] with two components
such that x = aZK + �ZK and a is chosen to be the positive generator of x \ Z, unless x was
given as a principal ideal (in which case we may choose a = 0). The algorithm uses a fast lazy
factorization of x \ Z and runs in randomized polynomial time.

�When called as idealtwoelt(nf,x,a) with an explicit non-zero a supplied as third argument,
the function assumes that a 2 x and returns � 2 x such that x = aZK + �ZK . Note that we must
factor a in this case, and the algorithm is generally much slower than the default variant.

The library syntax is GEN idealtwoelt0(GEN nf, GEN x, GEN a = NULL). Also available are
GEN idealtwoelt(GEN nf, GEN x) and GEN idealtwoelt2(GEN nf, GEN x, GEN a).

3.8.78 idealval(nf ; x; pr). Gives the valuation of the ideal x at the prime ideal pr in the number
�eld nf , where pr is in idealprimedec format. The valuation of the 0 ideal is +oo.

The library syntax is GEN gpidealval(GEN nf, GEN x, GEN pr). Also available is long

idealval(GEN nf, GEN x, GEN pr), which returns LONG_MAX if x = 0 and the valuation as a long
integer.
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3.8.79 matalgtobasis(nf ; x). This function is deprecated, use apply.

nf being a number �eld in nfinit format, and x a (row or column) vector or matrix, apply
nfalgtobasis to each entry of x.

The library syntax is GEN matalgtobasis(GEN nf, GEN x).

3.8.80 matbasistoalg(nf ; x). This function is deprecated, use apply.

nf being a number �eld in nfinit format, and x a (row or column) vector or matrix, apply
nfbasistoalg to each entry of x.

The library syntax is GEN matbasistoalg(GEN nf, GEN x).

3.8.81 modreverse(z). Let z = Mod(A; T) be a polmod, and Q be its minimal polynomial, which
must satisfy deg(Q) = deg(T ). Returns a \reverse polmod" Mod(B, Q), which is a root of T .

This is quite useful when one changes the generating element in algebraic extensions:

? u = Mod(x, x^3 - x -1); v = u^5;

? w = modreverse(v)

%2 = Mod(x^2 - 4*x + 1, x^3 - 5*x^2 + 4*x - 1)

which means that x3 � 5x2 + 4x� 1 is another de�ning polynomial for the cubic �eld

Q(u) = Q[x]=(x3 � x� 1) = Q[x]=(x3 � 5x2 + 4x� 1) = Q(v);

and that u! v2 � 4v + 1 gives an explicit isomorphism. From this, it is easy to convert elements
between the A(u) 2 Q(u) and B(v) 2 Q(v) representations:

? A = u^2 + 2*u + 3; subst(lift(A), 'x, w)

%3 = Mod(x^2 - 3*x + 3, x^3 - 5*x^2 + 4*x - 1)

? B = v^2 + v + 1; subst(lift(B), 'x, v)

%4 = Mod(26*x^2 + 31*x + 26, x^3 - x - 1)

If the minimal polynomial of z has lower degree than expected, the routine fails

? u = Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)

? modreverse(u)

*** modreverse: domain error in modreverse: deg(minpoly(z)) < 4

*** Break loop: type 'break' to go back to GP prompt

break> Vec( dbg_err() ) \\ ask for more info

["e_DOMAIN", "modreverse", "deg(minpoly(z))", "<", 4,

Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)]

break> minpoly(u)

x^2 - 8

The library syntax is GEN modreverse(GEN z).

3.8.82 newtonpoly(x; p). Gives the vector of the slopes of the Newton polygon of the polynomial
x with respect to the prime number p. The n components of the vector are in decreasing order,
where n is equal to the degree of x. Vertical slopes occur i� the constant coe�cient of x is zero
and are denoted by +oo.

The library syntax is GEN newtonpoly(GEN x, GEN p).
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3.8.83 nfalgtobasis(nf ; x). Given an algebraic number x in the number �eld nf , transforms it to
a column vector on the integral basis nf .zk.

? nf = nfinit(y^2 + 4);

? nf.zk

%2 = [1, 1/2*y]

? nfalgtobasis(nf, [1,1]~)

%3 = [1, 1]~
? nfalgtobasis(nf, y)

%4 = [0, 2]~
? nfalgtobasis(nf, Mod(y, y^2+4))

%5 = [0, 2]~

This is the inverse function of nfbasistoalg.

The library syntax is GEN algtobasis(GEN nf, GEN x).

3.8.84 nfbasis(T ). Let T (X) be an irreducible polynomial with integral coe�cients. This function
returns an integral basis of the number �eld de�ned by T , that is a Z-basis of its maximal order.
The basis elements are given as elements in Q[X]=(T ):

? nfbasis(x^2 + 1)

%1 = [1, x]

This function uses a modi�ed version of the round 4 algorithm, due to David Ford, Sebastian
Pauli and Xavier Roblot.

Local basis, orders maximal at certain primes.

Obtaining the maximal order is hard: it requires factoring the discriminant D of T . Obtaining
an order which is maximal at a �nite explicit set of primes is easy, but it may then be a strict
suborder of the maximal order. To specify that we are interested in a given set of places only,
we can replace the argument T by an argument [T; listP ], where listP encodes the primes we are
interested in: it must be a factorization matrix, a vector of integers or a single integer.

� Vector: we assume that it contains distinct prime numbers.

� Matrix: we assume that it is a two-column matrix of a (partial) factorization of D; namely
the �rst column contains distinct primes and the second one the valuation of D at each of these
primes.

� Integer B: this is replaced by the vector of primes up to B. Note that the function will
use at least O(B) time: a small value, about 105, should be enough for most applications. Values
larger than 232 are not supported.

In all these cases, the primes may or may not divide the discriminant D of T . The function
then returns a Z-basis of an order whose index is not divisible by any of these prime numbers. The
result is actually a global integral basis if all prime divisors of the �eld discriminant are included!
Note that nfinit has built-in support for such a check:

? K = nfinit([T, listP]);

? nfcertify(K) \\ we computed an actual maximal order

%2 = [];

The �rst line initializes a number �eld structure incorporating nfbasis([T, listP] in place of a
proven integral basis. The second line certi�es that the resulting structure is correct. This allows
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to create an nf structure attached to the number �eld K = Q[X]=(T ), when the discriminant of T
cannot be factored completely, whereas the prime divisors of discK are known.

Of course, if listP contains a single prime number p, the function returns a local integral basis
for Zp[X]=(T ):

? nfbasis(x^2+x-1001)

%1 = [1, 1/3*x - 1/3]

? nfbasis( [x^2+x-1001, [2]] )

%2 = [1, x]

The Buchmann-Lenstra algorithm.

We now complicate the picture: it is in fact allowed to include composite numbers instead of
primes in listP (Vector or Matrix case), provided they are pairwise coprime. The result will still
be a correct integral basis if the �eld discriminant factors completely over the actual primes in
the list. Adding a composite C such that C2 divides D may help because when we consider C as
a prime and run the algorithm, two good things can happen: either we succeed in proving that
no prime dividing C can divide the index (without actually needing to �nd those primes), or the
computation exhibits a non-trivial zero divisor, thereby factoring C and we go on with the re�ned
factorization. (Note that including a C such that C2 does not divide D is useless.) If neither
happen, then the computed basis need not generate the maximal order. Here is an example:

? B = 10^5;

? P = factor(poldisc(T), B)[,1]; \\ primes <= B dividing D + cofactor

? basis = nfbasis([T, listP])

? disc = nfdisc([T, listP])

We obtain the maximal order and its discriminant if the �eld discriminant factors completely over
the primes less than B (together with the primes contained in the addprimes table). This can be
tested as follows:

check = factor(disc, B);

lastp = check[-1..-1,1];

if (lastp > B && !setsearch(addprimes(), lastp),

warning("nf may be incorrect!"))

This is a su�cient but not a necessary condition, hence the warning, instead of an error. N.B.
lastp is the last entry in the �rst column of the check matrix, i.e. the largest prime dividing
nf.disc if � B or if it belongs to the prime table.

The function nfcertify speeds up and automates the above process:

? B = 10^5;

? nf = nfinit([T, B]);

? nfcertify(nf)

%3 = [] \\ nf is unconditionally correct

? basis = nf.zk;

? disc = nf.disc;

The library syntax is nfbasis(GEN T, GEN *d, GEN listP = NULL), which returns the order
basis, and where *d receives the order discriminant.
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3.8.85 nfbasistoalg(nf ; x). Given an algebraic number x in the number �eld nf , transforms it
into t_POLMOD form.

? nf = nfinit(y^2 + 4);

? nf.zk

%2 = [1, 1/2*y]

? nfbasistoalg(nf, [1,1]~)

%3 = Mod(1/2*y + 1, y^2 + 4)

? nfbasistoalg(nf, y)

%4 = Mod(y, y^2 + 4)

? nfbasistoalg(nf, Mod(y, y^2+4))

%5 = Mod(y, y^2 + 4)

This is the inverse function of nfalgtobasis.

The library syntax is GEN basistoalg(GEN nf, GEN x).

3.8.86 nfcertify(nf ). nf being as output by nfinit, checks whether the integer basis is known un-
conditionally. This is in particular useful when the argument to nfinit was of the form [T; listP],
specifying a �nite list of primes when p-maximality had to be proven, or a list of coprime integers
to which Buchmann-Lenstra algorithm was to be applied.

The function returns a vector of coprime composite integers. If this vector is empty, then
nf.zk and nf.disc are correct. Otherwise, the result is dubious. In order to obtain a certi�ed
result, one must completely factor each of the given integers, then addprime each of their prime
factors, then check whether nfdisc(nf.pol) is equal to nf.disc.

The library syntax is GEN nfcertify(GEN nf).

3.8.87 nfcompositum(nf ; P;Q; fflag = 0g). Let nf be a number �eld structure attached to the
�eld K and let P and Q be squarefree polynomials in K[X] in the same variable. Outputs the
simple factors of the �etale K-algebra A = K[X;Y ]=(P (X); Q(Y )). The factors are given by a list
of polynomials R in K[X], attached to the number �eld K[X]=(R), and sorted by increasing degree
(with respect to lexicographic ordering for factors of equal degrees). Returns an error if one of the
polynomials is not squarefree.

Note that it is more e�cient to reduce to the case where P and Q are irreducible �rst. The
routine will not perform this for you, since it may be expensive, and the inputs are irreducible in
most applications anyway. In this case, there will be a single factor R if and only if the number
�elds de�ned by P and Q are linearly disjoint (their intersection is K).

The binary digits of flag mean

1: outputs a vector of 4-component vectors [R; a; b; k], where R ranges through the list of all
possible compositums as above, and a (resp. b) expresses the root of P (resp. Q) as an element of
K[X]=(R). Finally, k is a small integer such that b+ ka = X modulo R.

2: assume that P and Q de�ne number �elds that are linearly disjoint: both polynomials are
irreducible and the corresponding number �elds have no common sub�eld besides K. This allows
to save a costly factorization over K. In this case return the single simple factor instead of a vector
with one element.

A compositum is often de�ned by a complicated polynomial, which it is advisable to reduce
before further work. Here is an example involving the �eld K(�5; 5

1=10), K = Q(
p
5):

254



? K = nfinit(y^2-5);

? L = nfcompositum(K, x^5 - y, polcyclo(5), 1); \\ list of [R; a; b; k]
? [R, a] = L[1]; \\ pick the single factor, extract R; a (ignore b; k)
? lift(R) \\ de�nes the compositum
%4 = x^10 + (-5/2*y + 5/2)*x^9 + (-5*y + 20)*x^8 + (-20*y + 30)*x^7 + \

(-45/2*y + 145/2)*x^6 + (-71/2*y + 121/2)*x^5 + (-20*y + 60)*x^4 + \

(-25*y + 5)*x^3 + 45*x^2 + (-5*y + 15)*x + (-2*y + 6)

? a^5 - y \\ a �fth root of y
%5 = 0

? [T, X] = rnfpolredbest(K, R, 1);

? lift(T) \\ simpler de�ning polynomial for K[x]=(R)
%7 = x^10 + (-11/2*y + 25/2)

? liftall(X) \\ root of R in K[x]=(T (x))
%8 = (3/4*y + 7/4)*x^7 + (-1/2*y - 1)*x^5 + 1/2*x^2 + (1/4*y - 1/4)

? a = subst(a.pol, 'x, X); \\ a in the new coordinates
? liftall(a)

%10 = (-3/4*y - 7/4)*x^7 - 1/2*x^2

? a^5 - y

%11 = 0

The main variables of P and Q must be the same and have higher priority than that of nf
(see varhigher and varlower).

The library syntax is GEN nfcompositum(GEN nf, GEN P, GEN Q, long flag).

3.8.88 nfdetint(nf ; x). Given a pseudo-matrix x, computes a non-zero ideal contained in (i.e. mul-
tiple of) the determinant of x. This is particularly useful in conjunction with nfhnfmod.

The library syntax is GEN nfdetint(GEN nf, GEN x).

3.8.89 nfdisc(T ). field discriminant of the number �eld de�ned by the integral, preferably monic,
irreducible polynomial T (X). Returns the discriminant of the number �eld Q[X]=(T ), using the
Round 4 algorithm.

Local discriminants, valuations at certain primes.

As in nfbasis, the argument T can be replaced by [T; listP ], where listP is as in nfbasis:
a vector of pairwise coprime integers (usually distinct primes), a factorization matrix, or a single
integer. In that case, the function returns the discriminant of an order whose basis is given by
nfbasis(T,listP), which need not be the maximal order, and whose valuation at a prime entry
in listP is the same as the valuation of the �eld discriminant.

In particular, if listP is [p] for a prime p, we can return the p-adic discriminant of the maximal
order of Zp[X]=(T ), as a power of p, as follows:

? padicdisc(T,p) = p^valuation(nfdisc(T,[p]), p);

? nfdisc(x^2 + 6)

%2 = -24

? padicdisc(x^2 + 6, 2)

%3 = 8

? padicdisc(x^2 + 6, 3)

%4 = 3
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The library syntax is nfdisc(GEN T) (listP = NULL). Also available is GEN nfbasis(GEN T,

GEN *d, GEN listP = NULL), which returns the order basis, and where *d receives the order
discriminant.

3.8.90 nfeltadd(nf ; x; y). Given two elements x and y in nf , computes their sum x + y in the
number �eld nf .

The library syntax is GEN nfadd(GEN nf, GEN x, GEN y).

3.8.91 nfeltdiv(nf ; x; y). Given two elements x and y in nf , computes their quotient x=y in the
number �eld nf .

The library syntax is GEN nfdiv(GEN nf, GEN x, GEN y).

3.8.92 nfeltdiveuc(nf ; x; y). Given two elements x and y in nf , computes an algebraic integer q
in the number �eld nf such that the components of x � qy are reasonably small. In fact, this is
functionally identical to round(nfdiv(nf ,x,y)).

The library syntax is GEN nfdiveuc(GEN nf, GEN x, GEN y).

3.8.93 nfeltdivmodpr(nf ; x; y; pr). This function is obsolete, use nfmodpr.

Given two elements x and y in nf and pr a prime ideal in modpr format (see nfmodprinit),
computes their quotient x=y modulo the prime ideal pr .

The library syntax is GEN nfdivmodpr(GEN nf, GEN x, GEN y, GEN pr). This function
is normally useless in library mode. Project your inputs to the residue �eld using nf to Fq, then
work there.

3.8.94 nfeltdivrem(nf ; x; y). Given two elements x and y in nf , gives a two-element row vector
[q; r] such that x = qy + r, q is an algebraic integer in nf , and the components of r are reasonably
small.

The library syntax is GEN nfdivrem(GEN nf, GEN x, GEN y).

3.8.95 nfeltmod(nf ; x; y). Given two elements x and y in nf , computes an element r of nf of the
form r = x�qy with q and algebraic integer, and such that r is small. This is functionally identical
to

x� nfmul(nf ; round(nfdiv(nf ; x; y)); y):

The library syntax is GEN nfmod(GEN nf, GEN x, GEN y).

3.8.96 nfeltmul(nf ; x; y). Given two elements x and y in nf , computes their product x � y in the
number �eld nf .

The library syntax is GEN nfmul(GEN nf, GEN x, GEN y).

3.8.97 nfeltmulmodpr(nf ; x; y; pr). This function is obsolete, use nfmodpr.

Given two elements x and y in nf and pr a prime ideal in modpr format (see nfmodprinit),
computes their product x � y modulo the prime ideal pr .

The library syntax is GEN nfmulmodpr(GEN nf, GEN x, GEN y, GEN pr). This function
is normally useless in library mode. Project your inputs to the residue �eld using nf to Fq, then
work there.
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3.8.98 nfeltnorm(nf ; x). Returns the absolute norm of x.

The library syntax is GEN nfnorm(GEN nf, GEN x).

3.8.99 nfeltpow(nf ; x; k). Given an element x in nf , and a positive or negative integer k, computes
xk in the number �eld nf .

The library syntax is GEN nfpow(GEN nf, GEN x, GEN k). GEN nfinv(GEN nf, GEN x)

correspond to k = �1, and GEN nfsqr(GEN nf, GEN x) to k = 2.

3.8.100 nfeltpowmodpr(nf ; x; k; pr). This function is obsolete, use nfmodpr.

Given an element x in nf , an integer k and a prime ideal pr in modpr format (see nfmodprinit),
computes xk modulo the prime ideal pr .

The library syntax is GEN nfpowmodpr(GEN nf, GEN x, GEN k, GEN pr). This function
is normally useless in library mode. Project your inputs to the residue �eld using nf to Fq, then
work there.

3.8.101 nfeltreduce(nf ; a; id). Given an ideal id in Hermite normal form and an element a of the
number �eld nf , �nds an element r in nf such that a� r belongs to the ideal and r is small.

The library syntax is GEN nfreduce(GEN nf, GEN a, GEN id).

3.8.102 nfeltreducemodpr(nf ; x; pr). This function is obsolete, use nfmodpr.

Given an element x of the number �eld nf and a prime ideal pr in modpr format compute a
canonical representative for the class of x modulo pr .

The library syntax is GEN nfreducemodpr(GEN nf, GEN x, GEN pr). This function is normally
useless in library mode. Project your inputs to the residue �eld using nf to Fq, then work there.

3.8.103 nfelttrace(nf ; x). Returns the absolute trace of x.

The library syntax is GEN nftrace(GEN nf, GEN x).

3.8.104 nfeltval(nf ; x; pr ; f&yg). Given an element x in nf and a prime ideal pr in the format
output by idealprimedec, computes the valuation v at pr of the element x. The valuation of 0 is
+oo.

? nf = nfinit(x^2 + 1);

? P = idealprimedec(nf, 2)[1];

? nfeltval(nf, x+1, P)

%3 = 1

This particular valuation can also be obtained using idealval(nf ,x,pr), since x is then converted
to a principal ideal.

If the y argument is present, sets y = x�v, where � is a �xed \anti-uniformizer" for pr : its
valuation at pr is �1; its valuation is 0 at other prime ideals dividing pr.p and nonnegative at all
other primes. In other words y is the part of x coprime to pr . If x is an algebraic integer, so is y.

? nfeltval(nf, x+1, P, &y); y

%4 = [0, 1]~
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For instance if x =
Q

i x
ei
i is known to be coprime to pr , where the xi are algebraic integers

and ei 2 Z then, if vi = nfeltval(nf ; xi; pr ;&yi), we still have x =
Q

i y
ei
i , where the yi are still

algebraic integers but now all of them are coprime to pr . They can then be mapped to the residue
�eld of pr more e�ciently than if the product had been expanded beforehand: we can reduce mod
pr after each ring operation.

The library syntax is GEN gpnfvalrem(GEN nf, GEN x, GEN pr, GEN *y = NULL). Also
available is long nfvalrem(GEN nf, GEN x, GEN pr, GEN *y = NULL), which returns LONG_MAX
if x = 0 and the valuation as a long integer.

3.8.105 n�actor(nf ; T ). Factorization of the univariate polynomial T over the number �eld nf
given by nfinit; T has coe�cients in nf (i.e. either scalar, polmod, polynomial or column vector).
The factors are sorted by increasing degree.

The main variable of nf must be of lower priority than that of T , see Section 2.5.3. However
if the polynomial de�ning the number �eld occurs explicitly in the coe�cients of T as modulus of
a t_POLMOD or as a t_POL coe�cient, its main variable must be the same as the main variable of
T . For example,

? nf = nfinit(y^2 + 1);

? nffactor(nf, x^2 + y); \\ OK
? nffactor(nf, x^2 + Mod(y, y^2+1)); \\ OK
? nffactor(nf, x^2 + Mod(z, z^2+1)); \\ WRONG

It is possible to input a de�ning polynomial for nf instead, but this is in general less e�cient
since parts of an nf structure will then be computed internally. This is useful in two situations: when
you do not need the nf elsewhere, or when you cannot initialize an nf due to integer factorization
di�culties when attempting to compute the �eld discriminant and maximal order.

Caveat. nfinit([T, listP]) allows to compute in polynomial time a conditional nf structure,
which sets nf.zk to an order which is not guaranteed to be maximal at all primes. Always either
use nfcertify �rst (which may not run in polynomial time) or make sure to input nf.pol instead
of the conditional nf : nffactor is able to recover in polynomial time in this case, instead of
potentially missing a factor.

The library syntax is GEN nffactor(GEN nf, GEN T).

3.8.106 n�actorback(nf ; f; feg). Gives back the nf element corresponding to a factorization.
The integer 1 corresponds to the empty factorization.

If e is present, e and f must be vectors of the same length (e being integral), and the corre-
sponding factorization is the product of the f [i]e[i].

If not, and f is vector, it is understood as in the preceding case with e a vector of 1s: we return
the product of the f [i]. Finally, f can be a regular factorization matrix.

? nf = nfinit(y^2+1);

? nffactorback(nf, [3, y+1, [1,2]~], [1, 2, 3])

%2 = [12, -66]~
? 3 * (I+1)^2 * (1+2*I)^3

%3 = 12 - 66*I

The library syntax is GEN nffactorback(GEN nf, GEN f, GEN e = NULL).
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3.8.107 n�actormod(nf ; Q; pr). This routine is obsolete, use nfmodpr and factorff.

Factors the univariate polynomial Q modulo the prime ideal pr in the number �eld nf . The
coe�cients of Q belong to the number �eld (scalar, polmod, polynomial, even column vector) and
the main variable of nf must be of lower priority than that of Q (see Section 2.5.3). The prime ideal
pr is either in idealprimedec or (preferred) modprinit format. The coe�cients of the polynomial
factors are lifted to elements of nf :

? K = nfinit(y^2+1);

? P = idealprimedec(K, 3)[1];

? nffactormod(K, x^2 + y*x + 18*y+1, P)

%3 =

[x + (2*y + 1) 1]

[x + (2*y + 2) 1]

? P = nfmodprinit(K, P); \\ convert to nfmodprinit format

? nffactormod(K, x^2 + y*x + 18*y+1)

%5 =

[x + (2*y + 1) 1]

[x + (2*y + 2) 1]

Same result, of course, here about 10% faster due to the precomputation.

The library syntax is GEN nffactormod(GEN nf, GEN Q, GEN pr).

3.8.108 nfgaloisapply(nf ; aut ; x). Let nf be a number �eld as output by nfinit, and let aut be
a Galois automorphism of nf expressed by its image on the �eld generator (such automorphisms
can be found using nfgaloisconj). The function computes the action of the automorphism aut on
the object x in the number �eld; x can be a number �eld element, or an ideal (possibly extended).
Because of possible confusion with elements and ideals, other vector or matrix arguments are
forbidden.

? nf = nfinit(x^2+1);

? L = nfgaloisconj(nf)

%2 = [-x, x]~
? aut = L[1]; /* the non-trivial automorphism */

? nfgaloisapply(nf, aut, x)

%4 = Mod(-x, x^2 + 1)

? P = idealprimedec(nf,5); /* prime ideals above 5 */

? nfgaloisapply(nf, aut, P[2]) == P[1]

%6 = 0 \\ !!!!

? idealval(nf, nfgaloisapply(nf, aut, P[2]), P[1])

%7 = 1

The surprising failure of the equality test (%7) is due to the fact that although the corresponding
prime ideals are equal, their representations are not. (A prime ideal is speci�ed by a uniformizer,
and there is no guarantee that applying automorphisms yields the same elements as a direct ide-
alprimedec call.)

The automorphism can also be given as a column vector, representing the image of Mod(x,
nf.pol) as an algebraic number. This last representation is more e�cient and should be preferred
if a given automorphism must be used in many such calls.
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? nf = nfinit(x^3 - 37*x^2 + 74*x - 37);

? aut = nfgaloisconj(nf)[2]; \\ an automorphism in basistoalg form
%2 = -31/11*x^2 + 1109/11*x - 925/11

? AUT = nfalgtobasis(nf, aut); \\ same in algtobasis form
%3 = [16, -6, 5]~
? v = [1, 2, 3]~; nfgaloisapply(nf, aut, v) == nfgaloisapply(nf, AUT, v)

%4 = 1 \\ same result...
? for (i=1,10^5, nfgaloisapply(nf, aut, v))

time = 463 ms.

? for (i=1,10^5, nfgaloisapply(nf, AUT, v))

time = 343 ms. \\ but the latter is faster

The library syntax is GEN galoisapply(GEN nf, GEN aut, GEN x).

3.8.109 nfgaloisconj(nf ; fflag = 0g; fdg). nf being a number �eld as output by nfinit, computes
the conjugates of a root r of the non-constant polynomial x = nf [1] expressed as polynomials in
r. This also makes sense when the number �eld is not Galois since some conjugates may lie in the
�eld. nf can simply be a polynomial.

If no 
ags or flag = 0, use a combination of 
ag 4 and 1 and the result is always complete.
There is no point whatsoever in using the other 
ags.

If flag = 1, use nfroots: a little slow, but guaranteed to work in polynomial time.

If flag = 4, use galoisinit: very fast, but only applies to (most) Galois �elds. If the �eld
is Galois with weakly super-solvable Galois group (see galoisinit), return the complete list of
automorphisms, else only the identity element. If present, d is assumed to be a multiple of the least
common denominator of the conjugates expressed as polynomial in a root of pol .

This routine can only compute Q-automorphisms, but it may be used to get K-automorphism
for any base �eld K as follows:

rnfgaloisconj(nfK, R) = \\ K-automorphisms of L = K[X] / (R)

{

my(polabs, N,al,S, ala,k, vR);

R *= Mod(1, nfK.pol); \\ convert coeffs to polmod elts of K

vR = variable(R);

al = Mod(variable(nfK.pol),nfK.pol);

[polabs,ala,k] = rnfequation(nfK, R, 1);

Rt = if(k==0,R,subst(R,vR,vR-al*k));

N = nfgaloisconj(polabs) % Rt; \\ Q-automorphisms of L

S = select(s->subst(Rt, vR, Mod(s,Rt)) == 0, N);

if (k==0, S, apply(s->subst(s,vR,vR+k*al)-k*al,S));

}

K = nfinit(y^2 + 7);

rnfgaloisconj(K, x^4 - y*x^3 - 3*x^2 + y*x + 1) \\ K-automorphisms of L

The library syntax is GEN galoisconj0(GEN nf, long flag, GEN d = NULL, long prec)

. Use directly GEN galoisconj(GEN nf, GEN d), corresponding to flag = 0, the others only have
historical interest.
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3.8.110 nfgrunwaldwang(nf ;Lpr ;Ld ; pl ; fv =0 xg). Given nf a number �eld in nf or bnf format,
a t_VEC Lpr of primes of nf and a t_VEC Ld of positive integers of the same length, a t_VECSMALL

pl of length r1 the number of real places of nf , computes a polynomial with coe�cients in nf
de�ning a cyclic extension of nf of minimal degree satisfying certain local conditions:

� at the prime Lpr[i], the extension has local degree a multiple of Ld[i];

� at the i-th real place of nf , it is complex if pl[i] = �1 (no condition if pl[i] = 0).

The extension has degree the LCM of the local degrees. Currently, the degree is restricted to
be a prime power for the search, and to be prime for the construction because of the rnfkummer

restrictions.

When nf isQ, prime integers are accepted instead of prid structures. However, their primality
is not checked and the behaviour is unde�ned if you provide a composite number.

Warning. If the number �eld nf does not contain the n-th roots of unity where n is the degree of
the extension to be computed, triggers the computation of the bnf of nf(�n), which may be costly.

? nf = nfinit(y^2-5);

? pr = idealprimedec(nf,13)[1];

? pol = nfgrunwaldwang(nf, [pr], [2], [0,-1], 'x)

%3 = x^2 + Mod(3/2*y + 13/2, y^2 - 5)

The library syntax is GEN nfgrunwaldwang(GEN nf, GEN Lpr, GEN Ld, GEN pl, long v =

-1) where v is a variable number.

3.8.111 nfhilbert(nf ; a; b; fprg). If pr is omitted, compute the global quadratic Hilbert symbol
(a; b) in nf , that is 1 if x2 � ay2 � bz2 has a non trivial solution (x; y; z) in nf , and �1 otherwise.
Otherwise compute the local symbol modulo the prime ideal pr , as output by idealprimedec.

The library syntax is long nfhilbert0(GEN nf, GEN a, GEN b, GEN pr = NULL).

Also available is long nfhilbert(GEN bnf, GEN a, GEN b) (global quadratic Hilbert symbol).

3.8.112 nfhnf(nf ; x; fflag = 0g). Given a pseudo-matrix (A; I), �nds a pseudo-basis (B; J) in
Hermite normal form of the module it generates. If flag is non-zero, also return the transformation
matrix U such that AU = [0jB].

The library syntax is GEN nfhnf0(GEN nf, GEN x, long flag). Also available:

GEN nfhnf(GEN nf, GEN x) (flag = 0).

GEN rnfsimplifybasis(GEN bnf, GEN x) simpli�es the pseudo-basis given by x = (A; I). The
ideals in the list I are integral, primitive and either trivial (equal to the full ring of integer) or
non-principal.

3.8.113 nfhnfmod(nf ; x; detx ). Given a pseudo-matrix (A; I) and an ideal detx which is contained
in (read integral multiple of) the determinant of (A; I), �nds a pseudo-basis in Hermite normal form
of the module generated by (A; I). This avoids coe�cient explosion. detx can be computed using
the function nfdetint.

The library syntax is GEN nfhnfmod(GEN nf, GEN x, GEN detx).
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3.8.114 n�nit(pol ; fflag = 0g). pol being a non-constant, preferably monic, irreducible polynomial
in Z[X], initializes a number �eld structure (nf) attached to the �eld K de�ned by pol . As such,
it's a technical object passed as the �rst argument to most nfxxx functions, but it contains some
information which may be directly useful. Access to this information via member functions is
preferred since the speci�c data organization given below may change in the future. Currently, nf
is a row vector with 9 components:

nf [1] contains the polynomial pol (nf .pol).

nf [2] contains [r1; r2] (nf .sign, nf .r1, nf .r2), the number of real and complex places of K.

nf [3] contains the discriminant d(K) (nf .disc) of K.

nf [4] contains the index of nf [1] (nf .index), i.e. [ZK : Z[�]], where � is any root of nf [1].

nf [5] is a vector containing 7 matrices M , G, roundG , T , MD, TI, MDI useful for certain
computations in the number �eld K.

�M is the (r1+r2)�nmatrix whose columns represent the numerical values of the conjugates
of the elements of the integral basis.

� G is an n � n matrix such that T2 = tGG, where T2 is the quadratic form T2(x) =P j�(x)j2, � running over the embeddings of K into C.

� roundG is a rescaled copy of G, rounded to nearest integers.

� T is the n � n matrix whose coe�cients are Tr(!i!j) where the !i are the elements of
the integral basis. Note also that det(T ) is equal to the discriminant of the �eld K. Also, when
understood as an ideal, the matrix T�1 generates the codi�erent ideal.

� The columns of MD (nf .diff) express a Z-basis of the di�erent of K on the integral
basis.

� TI is equal to the primitive part of T�1, which has integral coe�cients.

� Finally, MDI is a two-element representation (for faster ideal product) of d(K) times the
codi�erent ideal (nf .disc�nf .codiff, which is an integral ideal). MDI is only used in idealinv.

nf [6] is the vector containing the r1+r2 roots (nf .roots) of nf [1] corresponding to the r1+r2
embeddings of the number �eld into C (the �rst r1 components are real, the next r2 have positive
imaginary part).

nf [7] is an integral basis for ZK (nf .zk) expressed on the powers of �. Its �rst element
is guaranteed to be 1. This basis is LLL-reduced with respect to T2 (strictly speaking, it is a
permutation of such a basis, due to the condition that the �rst element be 1).

nf [8] is the n�n integral matrix expressing the power basis in terms of the integral basis, and
�nally

nf [9] is the n� n2 matrix giving the multiplication table of the integral basis.

If a non monic polynomial is input, nfinit will transform it into a monic one, then reduce it
(see flag = 3). It is allowed, though not very useful given the existence of nfnewprec, to input a
nf or a bnf instead of a polynomial. It is also allowed to input a rnf , in which case an nf structure
attached to the absolute de�ning polynomial polabs is returned (flag is then ignored).

? nf = nfinit(x^3 - 12); \\ initialize number field Q[X] / (X^3 - 12)

? nf.pol \\ defining polynomial
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%2 = x^3 - 12

? nf.disc \\ field discriminant

%3 = -972

? nf.index \\ index of power basis order in maximal order

%4 = 2

? nf.zk \\ integer basis, lifted to Q[X]

%5 = [1, x, 1/2*x^2]

? nf.sign \\ signature

%6 = [1, 1]

? factor(abs(nf.disc )) \\ determines ramified primes

%7 =

[2 2]

[3 5]

? idealfactor(nf, 2)

%8 =

[[2, [0, 0, -1]~, 3, 1, [0, 1, 0]~] 3] \\ p32

Huge discriminants, helping nfdisc.

In case pol has a huge discriminant which is di�cult to factor, it is hard to compute from scratch
the maximal order. The special input format [pol ; B] is also accepted where pol is a polynomial as
above and B has one of the following forms

� an integer basis, as would be computed by nfbasis: a vector of polynomials with �rst
element 1. This is useful if the maximal order is known in advance.

� an argument listP which speci�es a list of primes (see nfbasis). Instead of the maximal
order, nfinit then computes an order which is maximal at these particular primes as well as the
primes contained in the private prime table (see addprimes). The result is unconditionaly correct
when the discriminant nf.disc factors completely over this set of primes. The function nfcertify

automates this:

? pol = polcompositum(x^5 - 101, polcyclo(7))[1];

? nf = nfinit( [pol, 10^3] );

? nfcertify(nf)

%3 = []

A priori, nf.zk de�nes an order which is only known to be maximal at all primes � 103 (no prime
� 103 divides nf.index). The certi�cation step proves the correctness of the computation.

If flag = 2: pol is changed into another polynomial P de�ning the same number �eld, which is as
simple as can easily be found using the polredbest algorithm, and all the subsequent computations
are done using this new polynomial. In particular, the �rst component of the result is the modi�ed
polynomial.

If flag = 3, apply polredbest as in case 2, but outputs [nf ; Mod(a; P )], where nf is as before
and Mod(a; P ) = Mod(x; pol) gives the change of variables. This is implicit when pol is not monic:
�rst a linear change of variables is performed, to get a monic polynomial, then polredbest.

The library syntax is GEN nfinit0(GEN pol, long flag, long prec). Also available are
GEN nfinit(GEN x, long prec) (flag = 0), GEN nfinitred(GEN x, long prec) (flag = 2), GEN
nfinitred2(GEN x, long prec) (flag = 3). Instead of the above hardcoded numerical 
ags in
nfinit0, one should rather use
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GEN nfinitall(GEN x, long flag, long prec), where flag is an or-ed combination of

� nf_RED: �nd a simpler de�ning polynomial,

� nf_ORIG: if nf_RED set, also return the change of variable,

� nf_ROUND2: Deprecated . Slow down the routine by using an obsolete normalization algorithm
(do not use this one!),

� nf_PARTIALFACT: Deprecated . Lazy factorization of the polynomial discriminant. Result is
conditional unless nfcertify can certify it.

3.8.115 n�sideal(nf ; x). Returns 1 if x is an ideal in the number �eld nf , 0 otherwise.

The library syntax is long isideal(GEN nf, GEN x).

3.8.116 n�sincl(x; y). Tests whether the number �eld K de�ned by the polynomial x is conjugate
to a sub�eld of the �eld L de�ned by y (where x and y must be in Q[X]). If they are not, the
output is the number 0. If they are, the output is a vector of polynomials, each polynomial a
representing an embedding of K into L, i.e. being such that y j x � a.

If y is a number �eld (nf ), a much faster algorithm is used (factoring x over y using nffactor).
Before version 2.0.14, this wasn't guaranteed to return all the embeddings, hence was triggered by
a special 
ag. This is no more the case.

The library syntax is GEN nfisincl(GEN x, GEN y).

3.8.117 n�sisom(x; y). As nfisincl, but tests for isomorphism. If either x or y is a number �eld,
a much faster algorithm will be used.

The library syntax is GEN nfisisom(GEN x, GEN y).

3.8.118 n�slocalpower(nf ; pr ; a; n). Let nf be a number �eld structure attached to K, let a 2 K
and let pr be a prid attched to the maximal ideal v. Return 1 if a is an n-th power in the completed
local �eld Kv, and 0 otherwise.

? K = nfinit(y^2+1);

? P = idealprimedec(K,2)[1]; \\ the ramified prime above 2

? nfislocalpower(K,P,-1, 2) \\ -1 is a square

%3 = 1

? nfislocalpower(K,P,-1, 4) \\ ... but not a 4-th power

%4 = 0

? nfislocalpower(K,P,2, 2) \\ 2 is not a square

%5 = 0

? Q = idealprimedec(K,5)[1]; \\ a prime above 5

? nfislocalpower(K,Q, [0, 32]~, 30) \\ 32*I is locally a 30-th power

%7 = 1

The library syntax is long nfislocalpower(GEN nf, GEN pr, GEN a, GEN n).

3.8.119 nfkermodpr(nf ; x; pr). This function is obsolete, use nfmodpr.

Kernel of the matrix a in ZK=pr , where pr is in modpr format (see nfmodprinit).

The library syntax is GEN nfkermodpr(GEN nf, GEN x, GEN pr). This function is normally
useless in library mode. Project your inputs to the residue �eld using nfM to FqM, then work there.
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3.8.120 nfmodpr(nf ; x; pr). Map x to the residue �eld modulo pr , to a t_FFELT. The argument
pr is either a maximal ideal in idealprimedec format or, preferably, a modpr structure from
nfmodprinit. The function nfmodprlift allows to lift back to ZK .

Note that the function applies to number �eld elements and not to vector / matrices / poly-
nomials of such. Use apply to convert recursive structures.

? K = nfinit(y^3-250);

? P = idealprimedec(K, 5)[2]

? modP = nfmodprinit(K,P);

? K.zk

%4 = [1, 1/5*y, 1/25*y^2]

? apply(t->nfmodpr(K,t,modP), K.zk)

%5 = [1, y, 2*y + 1]

The library syntax is GEN nfmodpr(GEN nf, GEN x, GEN pr).

3.8.121 nfmodprinit(nf ; pr). Transforms the prime ideal pr into modpr format necessary for all
operations modulo pr in the number �eld nf . The functions nfmodpr and nfmodprlift allow to
project to and lift from the residue �eld.

The library syntax is GEN nfmodprinit(GEN nf, GEN pr).

3.8.122 nfmodprlift(nf ; x; pr). Lift the t_FFELT x (from nfmodpr) to the residue �eld modulo
pr . Vectors and matrices are also supported. For polynomials, use apply and the present function.

The argument pr is either a maximal ideal in idealprimedec format or, preferably, a modpr

structure from nfmodprinit. There are no compatibility checks to try and decide whether x is
attached the same residue �eld as de�ned by pr: the result is unde�ned if not.

The function nfmodpr allows to reduce to the residue �eld.

? K = nfinit(y^3-250);

? P = idealprimedec(K, 5)[2]

? modP = nfmodprinit(K,P);

? K.zk

%4 = [1, 1/5*y, 1/25*y^2]

? apply(t->nfmodpr(K,t,modP), K.zk)

%5 = [1, y, 2*y + 1]

? nfmodprlift(K, %, modP)

%6 = [1, 1/5*y, 2/5*y + 1]

? nfeltval(K, %[3] - K.zk[3], P)

%7 = 1

The library syntax is GEN nfmodprlift(GEN nf, GEN x, GEN pr).

3.8.123 nfnewprec(nf ). Transforms the number �eld nf into the corresponding data using current
(usually larger) precision. This function works as expected if nf is in fact a bnf or a bnr (update
structure to current precision) but may be quite slow: many generators of principal ideals have to
be computed; note that in this latter case, the bnf must contain fundamental units.

The library syntax is GEN nfnewprec(GEN nf, long prec). See also GEN bnfnewprec(GEN

bnf, long prec) and GEN bnrnewprec(GEN bnr, long prec).
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3.8.124 nfroots(fnf g; x). Roots of the polynomial x in the number �eld nf given by nfinit

without multiplicity (in Q if nf is omitted). x has coe�cients in the number �eld (scalar, polmod,
polynomial, column vector). The main variable of nf must be of lower priority than that of x
(see Section 2.5.3). However if the coe�cients of the number �eld occur explicitly (as polmods)
as coe�cients of x, the variable of these polmods must be the same as the main variable of t (see
nffactor).

It is possible to input a de�ning polynomial for nf instead, but this is in general less e�cient
since parts of an nf structure will then be computed internally. This is useful in two situations: when
you do not need the nf elsewhere, or when you cannot initialize an nf due to integer factorization
di�culties when attempting to compute the �eld discriminant and maximal order.

Caveat. nfinit([T, listP]) allows to compute in polynomial time a conditional nf structure,
which sets nf.zk to an order which is not guaranteed to be maximal at all primes. Always either use
nfcertify �rst (which may not run in polynomial time) or make sure to input nf.pol instead of
the conditional nf : nfroots is able to recover in polynomial time in this case, instead of potentially
missing a factor.

The library syntax is GEN nfroots(GEN nf = NULL, GEN x). See also GEN nfrootsQ(GEN x)

, corresponding to nf = NULL.

3.8.125 nfrootsof1(nf ). Returns a two-component vector [w; z] where w is the number of roots
of unity in the number �eld nf , and z is a primitive w-th root of unity.

? K = nfinit(polcyclo(11));

? nfrootsof1(K)

%2 = [22, [0, 0, 0, 0, 0, -1, 0, 0, 0, 0]~]

? z = nfbasistoalg(K, %[2]) \\ in algebraic form

%3 = Mod(-x^5, x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)

? [lift(z^11), lift(z^2)] \\ proves that the order of z is 22

%4 = [-1, -x^9 - x^8 - x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1]

This function guesses the number w as the gcd of the #k(v)� for unrami�ed v above odd primes,
then computes the roots in nf of the w-th cyclotomic polynomial: the algorithm is polynomial time
with respect to the �eld degree and the bitsize of the multiplication table in nf (both of them
polynomially bounded in terms of the size of the discriminant). Fields of degree up to 100 or so
should require less than one minute.

The library syntax is GEN rootsof1(GEN nf). Also available is GEN rootsof1_kannan(GEN

nf), that computes all algebraic integers of T2 norm equal to the �eld degree (all roots of 1, by
Kronecker's theorem). This is in general a little faster than the default when there are roots of 1
in the �eld (say twice faster), but can be much slower (say, days slower), since the algorithm is a
priori exponential in the �eld degree.
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3.8.126 nfsnf(nf ; x; fflag = 0g). Given a torsion ZK-module x attached to the square integral
invertible pseudo-matrix (A; I; J), returns an ideal list D = [d1; : : : ; dn] which is the Smith normal
form of x. In other words, x is isomorphic to ZK=d1 � � � � � ZK=dn and di divides di�1 for i � 2.
If flag is non-zero return [D;U; V ], where UAV is the identity.

See Section 3.8.4.1 for the de�nition of integral pseudo-matrix; brie
y, it is input as a 3-
component row vector [A; I; J ] where I = [b1; : : : ; bn] and J = [a1; : : : ; an] are two ideal lists, and A
is a square n� n matrix with columns (A1; : : : ; An), seen as elements in Kn (with canonical basis
(e1; : : : ; en)). This data de�nes the ZK module x given by

(b1e1 � � � � � bnen)=(a1A1 � � � � � anAn) ;

The integrality condition is ai;j 2 bia�1j for all i; j. If it is not satis�ed, then the di will not be
integral. Note that every �nitely generated torsion module is isomorphic to a module of this form
and even with bi = ZK for all i.

The library syntax is GEN nfsnf0(GEN nf, GEN x, long flag). Also available:

GEN nfsnf(GEN nf, GEN x) (flag = 0).

3.8.127 nfsolvemodpr(nf ; a; b; P ). This function is obsolete, use nfmodpr.

Let P be a prime ideal in modpr format (see nfmodprinit), let a be a matrix, invertible
over the residue �eld, and let b be a column vector or matrix. This function returns a solution of
a � x = b; the coe�cients of x are lifted to nf elements.

? K = nfinit(y^2+1);

? P = idealprimedec(K, 3)[1];

? P = nfmodprinit(K, P);

? a = [y+1, y; y, 0]; b = [1, y]~
? nfsolvemodpr(K, a,b, P)

%5 = [1, 2]~

The library syntax is GEN nfsolvemodpr(GEN nf, GEN a, GEN b, GEN P). This function is
normally useless in library mode. Project your inputs to the residue �eld using nfM to FqM, then
work there.

3.8.128 nfsplitting(nf ; fdg). De�ning polynomial over Q for the splitting �eld of nf ; if d is given,
it must be a multiple of the splitting �eld degree. Instead of nf, it is possible to input a de�ning
(irreducible) polynomial T for nf, but in general this is less e�cient.

? K = nfinit(x^3-2);

? nfsplitting(K)

%2 = x^6 + 108

? nfsplitting(x^8-2)

%3 = x^16 + 272*x^8 + 64

Specifying the degree of the splitting �eld can make the computation faster.

? nfsplitting(x^17-123);

time = 3,607 ms.

? poldegree(%)

%2 = 272

? nfsplitting(x^17-123,272);

267



time = 150 ms.

? nfsplitting(x^17-123,273);

*** nfsplitting: Warning: ignoring incorrect degree bound 273

time = 3,611 ms.

The complexity of the algorithm is polynomial in the degree d of the splitting �eld and the bitsize
of T ; if d is large the result will likely be unusable, e.g. nfinit will not be an option:

? nfsplitting(x^6-x-1)

[... degree 720 polynomial deleted ...]

time = 11,020 ms.

The library syntax is GEN nfsplitting(GEN nf, GEN d = NULL).

3.8.129 nfsub�elds(pol ; fd = 0g). Finds all sub�elds of degree d of the number �eld de�ned by
the (monic, integral) polynomial pol (all sub�elds if d is null or omitted). The result is a vector
of sub�elds, each being given by [g; h], where g is an absolute equation and h expresses one of
the roots of g in terms of the root x of the polynomial de�ning nf . This routine uses J. Kl�uners's
algorithm in the general case, and B. Allombert's galoissubfields when nf is Galois (with weakly
supersolvable Galois group).

The library syntax is GEN nfsubfields(GEN pol, long d).

3.8.130 polcompositum(P;Q; fflag = 0g). P and Q being squarefree polynomials in Z[X] in
the same variable, outputs the simple factors of the �etale Q-algebra A = Q(X;Y )=(P (X); Q(Y )).
The factors are given by a list of polynomials R in Z[X], attached to the number �eld Q(X)=(R),
and sorted by increasing degree (with respect to lexicographic ordering for factors of equal degrees).
Returns an error if one of the polynomials is not squarefree.

Note that it is more e�cient to reduce to the case where P and Q are irreducible �rst. The
routine will not perform this for you, since it may be expensive, and the inputs are irreducible in
most applications anyway. In this case, there will be a single factor R if and only if the number
�elds de�ned by P and Q are linearly disjoint (their intersection is Q).

Assuming P is irreducible (of smaller degree than Q for e�ciency), it is in general much faster
to proceed as follows

nf = nfinit(P); L = nffactor(nf, Q)[,1];

vector(#L, i, rnfequation(nf, L[i]))

to obtain the same result. If you are only interested in the degrees of the simple factors, the
rnfequation instruction can be replaced by a trivial poldegree(P) * poldegree(L[i]).

The binary digits of flag mean

1: outputs a vector of 4-component vectors [R; a; b; k], where R ranges through the list of all
possible compositums as above, and a (resp. b) expresses the root of P (resp. Q) as an element of
Q(X)=(R). Finally, k is a small integer such that b+ ka = X modulo R.

2: assume that P and Q de�ne number �elds which are linearly disjoint: both polynomials are
irreducible and the corresponding number �elds have no common sub�eld besides Q. This allows
to save a costly factorization over Q. In this case return the single simple factor instead of a vector
with one element.
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A compositum is often de�ned by a complicated polynomial, which it is advisable to reduce
before further work. Here is an example involving the �eld Q(�5; 5

1=5):

? L = polcompositum(x^5 - 5, polcyclo(5), 1); \\ list of [R; a; b; k]
? [R, a] = L[1]; \\ pick the single factor, extract R; a (ignore b; k)
? R \\ de�nes the compositum
%3 = x^20 + 5*x^19 + 15*x^18 + 35*x^17 + 70*x^16 + 141*x^15 + 260*x^14\

+ 355*x^13 + 95*x^12 - 1460*x^11 - 3279*x^10 - 3660*x^9 - 2005*x^8 \

+ 705*x^7 + 9210*x^6 + 13506*x^5 + 7145*x^4 - 2740*x^3 + 1040*x^2 \

- 320*x + 256

? a^5 - 5 \\ a �fth root of 5
%4 = 0

? [T, X] = polredbest(R, 1);

? T \\ simpler de�ning polynomial for Q[x]=(R)
%6 = x^20 + 25*x^10 + 5

? X \\ root of R in Q[y]=(T (y))
%7 = Mod(-1/11*x^15 - 1/11*x^14 + 1/22*x^10 - 47/22*x^5 - 29/11*x^4 + 7/22,\

x^20 + 25*x^10 + 5)

? a = subst(a.pol, 'x, X) \\ a in the new coordinates
%8 = Mod(1/11*x^14 + 29/11*x^4, x^20 + 25*x^10 + 5)

? a^5 - 5

%9 = 0

In the above example, x5� 5 and the 5-th cyclotomic polynomial are irreducible over Q; they have
coprime degrees so de�ne linearly disjoint extensions and we could have started by

? [R,a] = polcompositum(x^5 - 5, polcyclo(5), 3); \\ [R; a; b; k]

The library syntax is GEN polcompositum0(GEN P, GEN Q, long flag). Also available are
GEN compositum(GEN P, GEN Q) (flag = 0) and GEN compositum2(GEN P, GEN Q) (flag = 1).

3.8.131 polgalois(T ). Galois group of the non-constant polynomial T 2 Q[X]. In the present
version 2.9.1, T must be irreducible and the degree d of T must be less than or equal to 7. If the
galdata package has been installed, degrees 8, 9, 10 and 11 are also implemented. By de�nition,
if K = Q[x]=(T ), this computes the action of the Galois group of the Galois closure of K on the d
distinct roots of T , up to conjugacy (corresponding to di�erent root orderings).

The output is a 4-component vector [n; s; k; name] with the following meaning: n is the cardi-
nality of the group, s is its signature (s = 1 if the group is a subgroup of the alternating group Ad,
s = �1 otherwise) and name is a character string containing name of the transitive group according
to the GAP 4 transitive groups library by Alexander Hulpke.

k is more arbitrary and the choice made up to version 2.2.3 of PARI is rather unfortunate:
for d > 7, k is the numbering of the group among all transitive subgroups of Sd, as given in \The
transitive groups of degree up to eleven", G. Butler and J. McKay, Communications in Algebra,
vol. 11, 1983, pp. 863{911 (group k is denoted Tk there). And for d � 7, it was ad hoc, so as
to ensure that a given triple would denote a unique group. Speci�cally, for polynomials of degree
d � 7, the groups are coded as follows, using standard notations

In degree 1: S1 = [1; 1; 1].

In degree 2: S2 = [2;�1; 1].

269



In degree 3: A3 = C3 = [3; 1; 1], S3 = [6;�1; 1].

In degree 4: C4 = [4;�1; 1], V4 = [4; 1; 1], D4 = [8;�1; 1], A4 = [12; 1; 1], S4 = [24;�1; 1].

In degree 5: C5 = [5; 1; 1], D5 = [10; 1; 1], M20 = [20;�1; 1], A5 = [60; 1; 1], S5 = [120;�1; 1].

In degree 6: C6 = [6;�1; 1], S3 = [6;�1; 2], D6 = [12;�1; 1], A4 = [12; 1; 1], G18 = [18;�1; 1],
S�4 = [24;�1; 1], A4 � C2 = [24;�1; 2], S+4 = [24; 1; 1], G�36 = [36;�1; 1], G+

36 = [36; 1; 1], S4 �
C2 = [48;�1; 1], A5 = PSL2(5) = [60; 1; 1], G72 = [72;�1; 1], S5 = PGL2(5) = [120;�1; 1],
A6 = [360; 1; 1], S6 = [720;�1; 1].

In degree 7: C7 = [7; 1; 1], D7 = [14;�1; 1], M21 = [21; 1; 1], M42 = [42;�1; 1], PSL2(7) =
PSL3(2) = [168; 1; 1], A7 = [2520; 1; 1], S7 = [5040;�1; 1].

This is deprecated and obsolete, but for reasons of backward compatibility, we cannot change
this behavior yet. So you can use the default new_galois_format to switch to a consistent naming
scheme, namely k is always the standard numbering of the group among all transitive subgroups
of Sn. If this default is in e�ect, the above groups will be coded as:

In degree 1: S1 = [1; 1; 1].

In degree 2: S2 = [2;�1; 1].

In degree 3: A3 = C3 = [3; 1; 1], S3 = [6;�1; 2].

In degree 4: C4 = [4;�1; 1], V4 = [4; 1; 2], D4 = [8;�1; 3], A4 = [12; 1; 4], S4 = [24;�1; 5].

In degree 5: C5 = [5; 1; 1], D5 = [10; 1; 2], M20 = [20;�1; 3], A5 = [60; 1; 4], S5 = [120;�1; 5].

In degree 6: C6 = [6;�1; 1], S3 = [6;�1; 2], D6 = [12;�1; 3], A4 = [12; 1; 4], G18 = [18;�1; 5],
A4 � C2 = [24;�1; 6], S+4 = [24; 1; 7], S�4 = [24;�1; 8], G�36 = [36;�1; 9], G+

36 = [36; 1; 10], S4 �
C2 = [48;�1; 11], A5 = PSL2(5) = [60; 1; 12], G72 = [72;�1; 13], S5 = PGL2(5) = [120;�1; 14],
A6 = [360; 1; 15], S6 = [720;�1; 16].

In degree 7: C7 = [7; 1; 1], D7 = [14;�1; 2], M21 = [21; 1; 3], M42 = [42;�1; 4], PSL2(7) =
PSL3(2) = [168; 1; 5], A7 = [2520; 1; 6], S7 = [5040;�1; 7].

Warning. The method used is that of resolvent polynomials and is sensitive to the current preci-
sion. The precision is updated internally but, in very rare cases, a wrong result may be returned if
the initial precision was not su�cient.

The library syntax is GEN polgalois(GEN T, long prec). To enable the new format in
library mode, set the global variable new_galois_format to 1.
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3.8.132 polred(T; fflag = 0g). This function is deprecated , use polredbest instead. Finds
polynomials with reasonably small coe�cients de�ning sub�elds of the number �eld de�ned by
T . One of the polynomials always de�nes Q (hence is equal to x� 1), and another always de�nes
the same number �eld as T if T is irreducible.

All T accepted by nfinit are also allowed here; in particular, the format [T, listP] is
recommended, e.g. with listP = 105 or a vector containing all rami�ed primes. Otherwise, the
maximal order of Q[x]=(T ) must be computed.

The following binary digits of flag are signi�cant:

1: Possibly use a suborder of the maximal order. The primes dividing the index of the order
chosen are larger than primelimit or divide integers stored in the addprimes table. This 
ag is
deprecated , the [T, listP] format is more 
exible.

2: gives also elements. The result is a two-column matrix, the �rst column giving primitive
elements de�ning these sub�elds, the second giving the corresponding minimal polynomials.

? M = polred(x^4 + 8, 2)

%1 =

[1 x - 1]

[1/2*x^2 x^2 + 2]

[1/4*x^3 x^4 + 2]

[x x^4 + 8]

? minpoly(Mod(M[2,1], x^4+8))

%2 = x^2 + 2

The library syntax is polred(GEN T) (flag = 0). Also available is GEN polred2(GEN T) (flag =
2). The function polred0 is deprecated, provided for backward compatibility.

3.8.133 polredabs(T; fflag = 0g). Returns a canonical de�ning polynomial P for the number
�eld Q[X]=(T ) de�ned by T , such that the sum of the squares of the modulus of the roots (i.e. the
T2-norm) is minimal. Di�erent T de�ning isomorphic number �elds will yield the same P . All
T accepted by nfinit are also allowed here, e.g. non-monic polynomials, or pairs [T, listP]

specifying that a non-maximal order may be used. For convenience, any number �eld structure
(nf , bnf ,: : : ) can also be used instead of T .

? polredabs(x^2 + 16)

%1 = x^2 + 1

? K = bnfinit(x^2 + 16); polredabs(K)

%2 = x^2 + 1

Warning 1. Using a t_POL T requires computing and fully factoring the discriminant dK of
the maximal order which may be very hard. You can use the format [T, listP], where listP

encodes a list of known coprime divisors of disc(T ) (see ??nfbasis), to help the routine, thereby
replacing this part of the algorithm by a polynomial time computation But this may only compute
a suborder of the maximal order, when the divisors are not squarefree or do not include all primes
dividing dK . The routine attempts to certify the result independently of this order computation
as per nfcertify: we try to prove that the computed order is maximal. If the certi�cation fails,
the routine then fully factors the integers returned by nfcertify. You can use polredbest or
polredabs(,16) to avoid this factorization step; in both cases, the result is no longer canonical.
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Warning 2. Apart from the factorization of the discriminant of T , this routine runs in polynomial
time for a �xed degree. But the complexity is exponential in the degree: this routine may be
exceedingly slow when the number �eld has many sub�elds, hence a lot of elements of small T2-
norm. If you do not need a canonical polynomial, the function polredbest is in general much
faster (it runs in polynomial time), and tends to return polynomials with smaller discriminants.

The binary digits of flag mean

1: outputs a two-component row vector [P; a], where P is the default output and Mod(a, P)

is a root of the original T .

4: gives all polynomials of minimal T2 norm; of the two polynomials P (x) and �P (�x), only
one is given.

16: Possibly use a suborder of the maximal order, without attempting to certify the result as
in Warning 1: we always return a polynomial and never 0. The result is a priori not canonical.

? T = x^16 - 136*x^14 + 6476*x^12 - 141912*x^10 + 1513334*x^8 \

- 7453176*x^6 + 13950764*x^4 - 5596840*x^2 + 46225

? T1 = polredabs(T); T2 = polredbest(T);

? [ norml2(polroots(T1)), norml2(polroots(T2)) ]

%3 = [88.0000000, 120.000000]

? [ sizedigit(poldisc(T1)), sizedigit(poldisc(T2)) ]

%4 = [75, 67]

The library syntax is GEN polredabs0(GEN T, long flag). Instead of the above hardcoded
numerical 
ags, one should use an or-ed combination of

� nf_PARTIALFACT: possibly use a suborder of the maximal order, without attempting to certify
the result.

� nf_ORIG: return [P; a], where Mod(a, P) is a root of T .

� nf_RAW: return [P; b], where Mod(b, T) is a root of P . The algebraic integer b is the raw
result produced by the small vectors enumeration in the maximal order; P was computed as the
characteristic polynomial of Mod(b, T). Mod(a, P) as in nf_ORIG is obtained with modreverse.

� nf_ADDZK: if r is the result produced with some of the above 
ags (of the form P or [P; c]),
return [r,zk], where zk is a Z-basis for the maximal order of Q[X]=(P ).

� nf_ALL: return a vector of results of the above form, for all polynomials of minimal T2-norm.

3.8.134 polredbest(T; fflag = 0g). Finds a polynomial with reasonably small coe�cients de�ning
the same number �eld as T . All T accepted by nfinit are also allowed here (e.g. non-monic
polynomials, nf, bnf, [T,Z K basis]). Contrary to polredabs, this routine runs in polynomial
time, but it o�ers no guarantee as to the minimality of its result.

This routine computes an LLL-reduced basis for the ring of integers of Q[X]=(T ), then exam-
ines small linear combinations of the basis vectors, computing their characteristic polynomials. It
returns the separable P polynomial of smallest discriminant (the one with lexicographically smallest
abs(Vec(P)) in case of ties). This is a good candidate for subsequent number �eld computations,
since it guarantees that the denominators of algebraic integers, when expressed in the power basis,
are reasonably small. With no claim of minimality, though.

It can happen that iterating this functions yields better and better polynomials, until it sta-
bilizes:

272



? \p5

? P = X^12+8*X^8-50*X^6+16*X^4-3069*X^2+625;

? poldisc(P)*1.

%2 = 1.2622 E55

? P = polredbest(P);

? poldisc(P)*1.

%4 = 2.9012 E51

? P = polredbest(P);

? poldisc(P)*1.

%6 = 8.8704 E44

In this example, the initial polynomial P is the one returned by polredabs, and the last one is
stable.

If flag = 1: outputs a two-component row vector [P; a], where P is the default output and
Mod(a, P) is a root of the original T .

? [P,a] = polredbest(x^4 + 8, 1)

%1 = [x^4 + 2, Mod(x^3, x^4 + 2)]

? charpoly(a)

%2 = x^4 + 8

In particular, the map Q[x]=(T ) ! Q[x]=(P ), x 7! Mod(a; P) de�nes an isomorphism of number
�elds, which can be computed as

subst(lift(Q), 'x, a)

if Q is a t_POLMOD modulo T ; b = modreverse(a) returns a t_POLMOD giving the inverse of the
above map (which should be useless sinceQ[x]=(P ) is a priori a better representation for the number
�eld and its elements).

The library syntax is GEN polredbest(GEN T, long flag).

3.8.135 polredord(x). This function is obsolete, use polredbest.

The library syntax is GEN polredord(GEN x).

3.8.136 poltschirnhaus(x). Applies a random Tschirnhausen transformation to the polynomial
x, which is assumed to be non-constant and separable, so as to obtain a new equation for the �etale
algebra de�ned by x. This is for instance useful when computing resolvents, hence is used by the
polgalois function.

The library syntax is GEN tschirnhaus(GEN x).

3.8.137 rnfalgtobasis(rnf ; x). Expresses x on the relative integral basis. Here, rnf is a relative
number �eld extension L=K as output by rnfinit, and x an element of L in absolute form, i.e.
expressed as a polynomial or polmod with polmod coe�cients, not on the relative integral basis.

The library syntax is GEN rnfalgtobasis(GEN rnf, GEN x).
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3.8.138 rnfbasis(bnf ;M). Let K the �eld represented by bnf , as output by bnfinit. M is a
projective ZK-module of rank n (M 
K is an n-dimensional K-vector space), given by a pseudo-
basis of size n. The routine returns either a true ZK-basis of M (of size n) if it exists, or an
n+ 1-element generating set of M if not.

It is allowed to use an irreducible polynomial P in K[X] instead of M , in which case, M is
de�ned as the ring of integers of K[X]=(P ), viewed as a ZK-module.

The library syntax is GEN rnfbasis(GEN bnf, GEN M).

3.8.139 rnfbasistoalg(rnf ; x). Computes the representation of x as a polmod with polmods
coe�cients. Here, rnf is a relative number �eld extension L=K as output by rnfinit, and x an
element of L expressed on the relative integral basis.

The library syntax is GEN rnfbasistoalg(GEN rnf, GEN x).

3.8.140 rnfcharpoly(nf ; T; a; fvar =0 xg). Characteristic polynomial of a over nf , where a be-
longs to the algebra de�ned by T over nf , i.e. nf [X]=(T ). Returns a polynomial in variable v (x
by default).

? nf = nfinit(y^2+1);

? rnfcharpoly(nf, x^2+y*x+1, x+y)

%2 = x^2 + Mod(-y, y^2 + 1)*x + 1

The library syntax is GEN rnfcharpoly(GEN nf, GEN T, GEN a, long var = -1) where
var is a variable number.

3.8.141 rnfconductor(bnf ; pol). Given bnf as output by bnfinit, and pol a relative polynomial
de�ning an Abelian extension, computes the class �eld theory conductor of this Abelian extension.
The result is a 3-component vector [conductor ; bnr ; subgroup], where conductor is the conductor of
the extension given as a 2-component row vector [f0; f1], bnr is the attached bnr structure and
subgroup is a matrix in HNF de�ning the subgroup of the ray class group on bnr.gen.

The library syntax is GEN rnfconductor(GEN bnf, GEN pol).

3.8.142 rnfdedekind(nf ; pol ; fprg; fflag = 0g). Given a number �eld K coded by nf and a monic
polynomial P 2 ZK [X], irreducible over K and thus de�ning a relative extension L of K, applies
Dedekind's criterion to the order ZK [X]=(P ), at the prime ideal pr . It is possible to set pr to a
vector of prime ideals (test maximality at all primes in the vector), or to omit altogether, in which
case maximality at all primes is tested; in this situation flag is automatically set to 1.

The default historic behavior (flag is 0 or omitted and pr is a single prime ideal) is not so useful
since rnfpseudobasis gives more information and is generally not that much slower. It returns a
3-component vector [max ; basis; v]:

� basis is a pseudo-basis of an enlarged order O produced by Dedekind's criterion, containing
the original order ZK [X]=(P ) with index a power of pr . Possibly equal to the original order.

� max is a 
ag equal to 1 if the enlarged order O could be proven to be pr -maximal and to 0
otherwise; it may still be maximal in the latter case if pr is rami�ed in L,

� v is the valuation at pr of the order discriminant.
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If flag is non-zero, on the other hand, we just return 1 if the order ZK [X]=(P ) is pr -maximal
(resp. maximal at all relevant primes, as described above), and 0 if not. This is much faster than
the default, since the enlarged order is not computed.

? nf = nfinit(y^2-3); P = x^3 - 2*y;

? pr3 = idealprimedec(nf,3)[1];

? rnfdedekind(nf, P, pr3)

%3 = [1, [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, 1]], 8]

? rnfdedekind(nf, P, pr3, 1)

%4 = 1

In this example, pr3 is the rami�ed ideal above 3, and the order generated by the cube roots of y
is already pr3-maximal. The order-discriminant has valuation 8. On the other hand, the order is
not maximal at the prime above 2:

? pr2 = idealprimedec(nf,2)[1];

? rnfdedekind(nf, P, pr2, 1)

%6 = 0

? rnfdedekind(nf, P, pr2)

%7 = [0, [[2, 0, 0; 0, 1, 0; 0, 0, 1], [[1, 0; 0, 1], [1, 0; 0, 1],

[1, 1/2; 0, 1/2]]], 2]

The enlarged order is not proven to be pr2-maximal yet. In fact, it is; it is in fact the maximal
order:

? B = rnfpseudobasis(nf, P)

%8 = [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, [1, 1/2; 0, 1/2]],

[162, 0; 0, 162], -1]

? idealval(nf,B[3], pr2)

%9 = 2

It is possible to use this routine with non-monic P =
P

i�n aiX
i 2 ZK [X] if flag = 1; in this case,

we test maximality of Dedekind's order generated by

1; an�; an�
2 + an�1�; : : : ; an�

n�1 + an�1�
n�2 + � � �+ a1�:

The routine will fail if P is 0 on the projective line over the residue �eld ZK=pr (FIXME).

The library syntax is GEN rnfdedekind(GEN nf, GEN pol, GEN pr = NULL, long flag)

.

3.8.143 rnfdet(nf ;M). Given a pseudo-matrix M over the maximal order of nf , computes its
determinant.

The library syntax is GEN rnfdet(GEN nf, GEN M).

3.8.144 rnfdisc(nf ; pol). Given a number �eld nf as output by nfinit and a polynomial pol
with coe�cients in nf de�ning a relative extension L of nf , computes the relative discriminant of
L. This is a two-element row vector [D; d], where D is the relative ideal discriminant and d is the

relative discriminant considered as an element of nf �=nf �
2
. The main variable of nf must be of

lower priority than that of pol , see Section 2.5.3.

The library syntax is GEN rnfdiscf(GEN nf, GEN pol).
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3.8.145 rnfeltabstorel(rnf ; x). Let rnf be a relative number �eld extension L=K as output by
rnfinit and let x be an element of L expressed as a polynomial modulo the absolute equation
rnf .pol, or in terms of the absolute Z-basis for ZL if rnf contains one (as in rnfinit(nf,pol,1),
or after a call to nfinit(rnf)). Computes x as an element of the relative extension L=K as a
polmod with polmod coe�cients.

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);

? L.polabs

%2 = x^4 + 1

? rnfeltabstorel(L, Mod(x, L.polabs))

%3 = Mod(x, x^2 + Mod(-y, y^2 + 1))

? rnfeltabstorel(L, 1/3)

%4 = 1/3

? rnfeltabstorel(L, Mod(x, x^2-y))

%5 = Mod(x, x^2 + Mod(-y, y^2 + 1))

? rnfeltabstorel(L, [0,0,0,1]~) \\ Z_L not initialized yet

*** at top-level: rnfeltabstorel(L,[0,

*** ^--------------------

*** rnfeltabstorel: incorrect type in rnfeltabstorel, apply nfinit(rnf).

? nfinit(L); \\ initialize now

? rnfeltabstorel(L, [0,0,0,1]~)

%6 = Mod(Mod(y, y^2 + 1)*x, x^2 + Mod(-y, y^2 + 1))

The library syntax is GEN rnfeltabstorel(GEN rnf, GEN x).

3.8.146 rnfeltdown(rnf ; x; fflag = 0g). rnf being a relative number �eld extension L=K as
output by rnfinit and x being an element of L expressed as a polynomial or polmod with polmod
coe�cients (or as a t_COL on nfinit(rnf).zk), computes x as an element of K as a t_POLMOD if
flag = 0 and as a t_COL otherwise. If x is not in K, a domain error occurs.

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);

? L.pol

%2 = x^4 + 1

? rnfeltdown(L, Mod(x^2, L.pol))

%3 = Mod(y, y^2 + 1)

? rnfeltdown(L, Mod(x^2, L.pol), 1)

%4 = [0, 1]~
? rnfeltdown(L, Mod(y, x^2-y))

%5 = Mod(y, y^2 + 1)

? rnfeltdown(L, Mod(y,K.pol))

%6 = Mod(y, y^2 + 1)

? rnfeltdown(L, Mod(x, L.pol))

*** at top-level: rnfeltdown(L,Mod(x,x

*** ^--------------------

*** rnfeltdown: domain error in rnfeltdown: element not in the base field

? rnfeltdown(L, Mod(y, x^2-y), 1) \\ as a t_COL

%7 = [0, 1]~
? rnfeltdown(L, [0,1,0,0]~) \\ not allowed without absolute nf struct

*** rnfeltdown: incorrect type in rnfeltdown (t_COL).

? nfinit(L); \\ add absolute nf structure to L
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? rnfeltdown(L, [0,1,0,0]~) \\ now OK

%8 = Mod(y, y^2 + 1)

If we had started with L = rnfinit(K, x^2-y, 1), then the �nal would have worked directly.

The library syntax is GEN rnfeltdown0(GEN rnf, GEN x, long flag). Also available is GEN
rnfeltdown(GEN rnf, GEN x) (flag = 0).

3.8.147 rnfeltnorm(rnf ; x). rnf being a relative number �eld extension L=K as output by rn-

finit and x being an element of L, returns the relative norm NL=K(x) as an element of K.

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);

? rnfeltnorm(L, Mod(x, L.pol))

%2 = Mod(x, x^2 + Mod(-y, y^2 + 1))

? rnfeltnorm(L, 2)

%3 = 4

? rnfeltnorm(L, Mod(x, x^2-y))

The library syntax is GEN rnfeltnorm(GEN rnf, GEN x).

3.8.148 rnfeltreltoabs(rnf ; x). rnf being a relative number �eld extension L=K as output by
rnfinit and x being an element of L expressed as a polynomial or polmod with polmod coe�cients,
computes x as an element of the absolute extension L=Q as a polynomial modulo the absolute
equation rnf .pol.

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);

? L.pol

%2 = x^4 + 1

? rnfeltreltoabs(L, Mod(x, L.pol))

%3 = Mod(x, x^4 + 1)

? rnfeltreltoabs(L, Mod(y, x^2-y))

%4 = Mod(x^2, x^4 + 1)

? rnfeltreltoabs(L, Mod(y,K.pol))

%5 = Mod(x^2, x^4 + 1)

The library syntax is GEN rnfeltreltoabs(GEN rnf, GEN x).

3.8.149 rnfelttrace(rnf ; x). rnf being a relative number �eld extension L=K as output by rn-

finit and x being an element of L, returns the relative trace TrL=K(x) as an element of K.

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);

? rnfelttrace(L, Mod(x, L.pol))

%2 = 0

? rnfelttrace(L, 2)

%3 = 4

? rnfelttrace(L, Mod(x, x^2-y))

The library syntax is GEN rnfelttrace(GEN rnf, GEN x).
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3.8.150 rnfeltup(rnf ; x; fflag = 0g). rnf being a relative number �eld extension L=K as output
by rnfinit and x being an element of K, computes x as an element of the absolute extension L=Q.
As a t_POLMOD modulo rnf .pol if flag = 0 and as a t_COL on the absolute �eld integer basis if
flag = 1.

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);

? L.pol

%2 = x^4 + 1

? rnfeltup(L, Mod(y, K.pol))

%3 = Mod(x^2, x^4 + 1)

? rnfeltup(L, y)

%4 = Mod(x^2, x^4 + 1)

? rnfeltup(L, [1,2]~) \\ in terms of K.zk

%5 = Mod(2*x^2 + 1, x^4 + 1)

? rnfeltup(L, y, 1) \\ in terms of nfinit(L).zk

%6 = [0, 1, 0, 0]~
? rnfeltup(L, [1,2]~, 1)

%7 = [1, 2, 0, 0]~

The library syntax is GEN rnfeltup0(GEN rnf, GEN x, long flag).

3.8.151 rnfequation(nf ; pol ; fflag = 0g). Given a number �eld nf as output by nfinit (or simply
a polynomial) and a polynomial pol with coe�cients in nf de�ning a relative extension L of nf ,
computes an absolute equation of L over Q.

The main variable of nf must be of lower priority than that of pol (see Section 2.5.3). Note
that for e�ciency, this does not check whether the relative equation is irreducible over nf , but only
if it is squarefree. If it is reducible but squarefree, the result will be the absolute equation of the
�etale algebra de�ned by pol . If pol is not squarefree, raise an e DOMAIN exception.

? rnfequation(y^2+1, x^2 - y)

%1 = x^4 + 1

? T = y^3-2; rnfequation(nfinit(T), (x^3-2)/(x-Mod(y,T)))

%2 = x^6 + 108 \\ Galois closure of Q(2^(1/3))

If flag is non-zero, outputs a 3-component row vector [z; a; k], where

� z is the absolute equation of L over Q, as in the default behavior,

� a expresses as a t_POLMOD modulo z a root � of the polynomial de�ning the base �eld nf ,

� k is a small integer such that � = � + k� is a root of z, where � is a root of pol .

? T = y^3-2; pol = x^2 +x*y + y^2;

? [z,a,k] = rnfequation(T, pol, 1);

? z

%3 = x^6 + 108

? subst(T, y, a)

%4 = 0

? alpha= Mod(y, T);

? beta = Mod(x*Mod(1,T), pol);

? subst(z, x, beta + k*alpha)

%7 = 0
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The library syntax is GEN rnfequation0(GEN nf, GEN pol, long flag). Also available
are GEN rnfequation(GEN nf, GEN pol) (flag = 0) and GEN rnfequation2(GEN nf, GEN pol)

(flag = 1).

3.8.152 rnfhnfbasis(bnf ; x). Given bnf as output by bnfinit, and either a polynomial x with
coe�cients in bnf de�ning a relative extension L of bnf , or a pseudo-basis x of such an extension,
gives either a true bnf -basis of L in upper triangular Hermite normal form, if it exists, and returns
0 otherwise.

The library syntax is GEN rnfhnfbasis(GEN bnf, GEN x).

3.8.153 rn�dealabstorel(rnf ; x). Let rnf be a relative number �eld extension L=K as output
by rnfinit and x be an ideal of the absolute extension L=Q given by a Z-basis of elements of L.
Returns the relative pseudo-matrix in HNF giving the ideal x considered as an ideal of the relative
extension L=K, i.e. as a ZK-module.

The reason why the input does not use the customary HNF in terms of a �xed Z-basis for
ZL is precisely that no such basis has been explicitly speci�ed. On the other hand, if you already
computed an (absolute) nf structure Labs attached to L, and m is in HNF, de�ning an (absolute)
ideal with respect to the Z-basis Labs.zk, then Labs.zk * m is a suitable Z-basis for the ideal,
and

rnfidealabstorel(rnf, Labs.zk * m)

converts m to a relative ideal.

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y); Labs = nfinit(L);

? m = idealhnf(Labs, 17, x^3+2);

? B = rnfidealabstorel(L, Labs.zk * m)

%3 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]] \\ pseudo-basis for m as Z_K-module

? A = rnfidealreltoabs(L, B)

%4 = [17, x^2 + 4, x + 8, x^3 + 8*x^2] \\ Z-basis for m in Q[x]/(L.pol)

? mathnf(matalgtobasis(Labs, A))

%5 =

[17 8 4 2]

[ 0 1 0 0]

[ 0 0 1 0]

[ 0 0 0 1]

? % == m

%6 = 1

The library syntax is GEN rnfidealabstorel(GEN rnf, GEN x).

3.8.154 rn�dealdown(rnf ; x). Let rnf be a relative number �eld extension L=K as output by
rnfinit, and x an ideal of L, given either in relative form or by a Z-basis of elements of L (see
Section 3.8.153). This function returns the ideal of K below x, i.e. the intersection of x with K.

The library syntax is GEN rnfidealdown(GEN rnf, GEN x).
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3.8.155 rn�dealfactor(rnf ; x). Factors into prime ideal powers the ideal x in the attached abso-
lute number �eld L = nfinit(rnf ). The output format is similar to the factor function, and the
prime ideals are represented in the form output by the idealprimedec function for L.

? rnf = rnfinit(nfinit(y^2+1), x^2-y+1);

? rnfidealfactor(rnf, y+1) \\ P_2^2

%2 =

[[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0,0;1,-1,0,0]] 2]

? rnfidealfactor(rnf, x) \\ P_2

%3 =

[[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0,0;1,-1,0,0]] 1]

? L = nfinit(rnf);

? id = idealhnf(L, idealhnf(L, 25, (x+1)^2));

? idealfactor(L, id) == rnfidealfactor(rnf, id)

%6 = 1

Note that ideals of the base �eld K must be explicitly lifted to L via rnfidealup before they can
be factored.

The library syntax is GEN rnfidealfactor(GEN rnf, GEN x).

3.8.156 rn�dealhnf(rnf ; x). rnf being a relative number �eld extension L=K as output by rn-

finit and x being a relative ideal (which can be, as in the absolute case, of many di�erent types,
including of course elements), computes the HNF pseudo-matrix attached to x, viewed as a ZK-
module.

The library syntax is GEN rnfidealhnf(GEN rnf, GEN x).

3.8.157 rn�dealmul(rnf ; x; y). rnf being a relative number �eld extension L=K as output by
rnfinit and x and y being ideals of the relative extension L=K given by pseudo-matrices, outputs
the ideal product, again as a relative ideal.

The library syntax is GEN rnfidealmul(GEN rnf, GEN x, GEN y).

3.8.158 rn�dealnormabs(rnf ; x). Let rnf be a relative number �eld extension L=K as output
by rnfinit and let x be a relative ideal (which can be, as in the absolute case, of many di�erent
types, including of course elements). This function computes the norm of the x considered as an
ideal of the absolute extension L=Q. This is identical to

idealnorm(rnf, rnfidealnormrel(rnf,x))

but faster.

The library syntax is GEN rnfidealnormabs(GEN rnf, GEN x).

3.8.159 rn�dealnormrel(rnf ; x). Let rnf be a relative number �eld extension L=K as output
by rnfinit and let x be a relative ideal (which can be, as in the absolute case, of many di�erent
types, including of course elements). This function computes the relative norm of x as an ideal of
K in HNF.

The library syntax is GEN rnfidealnormrel(GEN rnf, GEN x).
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3.8.160 rn�dealprimedec(rnf ; pr). Let rnf be a relative number �eld extension L=K as output
by rnfinit, and pr a maximal ideal of K (prid), this function completes the rnf with a nf
structure attached to L (see Section 3.8.164) and returns the prime ideal decomposition of pr in
L=K.

? K = nfinit(y^2+1); rnf = rnfinit(K, x^3+y+1);

? P = idealprimedec(K, 2)[1];

? S = rnfidealprimedec(rnf, P);

? #S

%4 = 1

The argument pr is also allowed to be a prime number p, in which case we return a pair of
vectors [SK,SL], where SK contains the primes of K above p and SL[i] is the vector of primes of L
above SK[i].

? [SK,SL] = rnfidealprimedec(rnf, 5);

? [#SK, vector(#SL,i,#SL[i])]

%6 = [2, [2, 2]]

The library syntax is GEN rnfidealprimedec(GEN rnf, GEN pr).

3.8.161 rn�dealreltoabs(rnf ; x; fflag = 0g). Let rnf be a relative number �eld extension L=K
as output by rnfinit and let x be a relative ideal, given as a ZK-module by a pseudo matrix [A; I].
This function returns the ideal x as an absolute ideal of L=Q. If flag = 0, the result is given by a
vector of t_POLMODs modulo rnf.pol forming a Z-basis; if flag = 1, it is given in HNF in terms of
the �xed Z-basis for ZL, see Section 3.8.164.

? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);

? P = idealprimedec(K,2)[1];

? P = rnfidealup(rnf, P)

%3 = [2, x^2 + 1, 2*x, x^3 + x]

? Prel = rnfidealhnf(rnf, P)

%4 = [[1, 0; 0, 1], [[2, 1; 0, 1], [2, 1; 0, 1]]]

? rnfidealreltoabs(rnf,Prel)

%5 = [2, x^2 + 1, 2*x, x^3 + x]

? rnfidealreltoabs(rnf,Prel,1)

%6 =

[2 1 0 0]

[0 1 0 0]

[0 0 2 1]

[0 0 0 1]

The reason why we do not return by default (flag = 0) the customary HNF in terms of a �xed
Z-basis for ZL is precisely because a rnf does not contain such a basis by default. Completing the
structure so that it contains a nf structure for L is polynomial time but costly when the absolute
degree is large, thus it is not done by default. Note that setting flag = 1 will complete the rnf .

The library syntax is GEN rnfidealreltoabs0(GEN rnf, GEN x, long flag). Also available
is GEN rnfidealreltoabs(GEN rnf, GEN x) (flag = 0).
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3.8.162 rn�dealtwoelt(rnf ; x). rnf being a relative number �eld extension L=K as output by
rnfinit and x being an ideal of the relative extension L=K given by a pseudo-matrix, gives a
vector of two generators of x over ZL expressed as polmods with polmod coe�cients.

The library syntax is GEN rnfidealtwoelement(GEN rnf, GEN x).

3.8.163 rn�dealup(rnf ; x; fflag = 0g). Let rnf be a relative number �eld extension L=K as output
by rnfinit and let x be an ideal of K. This function returns the ideal xZL as an absolute ideal of
L=Q, in the form of a Z-basis. If flag = 0, the result is given by a vector of polynomials (modulo
rnf.pol); if flag = 1, it is given in HNF in terms of the �xed Z-basis for ZL, see Section 3.8.164.

? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);

? P = idealprimedec(K,2)[1];

? rnfidealup(rnf, P)

%3 = [2, x^2 + 1, 2*x, x^3 + x]

? rnfidealup(rnf, P,1)

%4 =

[2 1 0 0]

[0 1 0 0]

[0 0 2 1]

[0 0 0 1]

The reason why we do not return by default (flag = 0) the customary HNF in terms of a �xed
Z-basis for ZL is precisely because a rnf does not contain such a basis by default. Completing the
structure so that it contains a nf structure for L is polynomial time but costly when the absolute
degree is large, thus it is not done by default. Note that setting flag = 1 will complete the rnf .

The library syntax is GEN rnfidealup0(GEN rnf, GEN x, long flag). Also available is GEN
rnfidealup(GEN rnf, GEN x) (flag = 0).

3.8.164 rn�nit(nf ; pol ; fflag = 0g). nf being a number �eld in nfinit format considered as base
�eld, and pol a polynomial de�ning a relative extension over nf , this computes data to work in the
relative extension. The main variable of pol must be of higher priority (see Section 2.5.3) than that
of nf , and the coe�cients of pol must be in nf .

The result is a row vector, whose components are technical. In the following description, we
let K be the base �eld de�ned by nf and L=K the extension attached to the rnf . Furthermore, we
let m = [K : Q] the degree of the base �eld, n = [L : K] the relative degree, r1 and r2 the number
of real and complex places of K. Access to this information via member functions is preferred since
the speci�c data organization speci�ed below will change in the future.

If flag = 1, add an nf structure attached to L to rnf . This is likely to be very expensive
if the absolute degree mn is large, but �xes an integer basis for ZL as a Z-module and allows to
input and output elements of L in absolute form: as t_COL for elements, as t_MAT in HNF for
ideals, as prid for prime ideals. Without such a call, elements of L are represented as t_POLMOD,
etc. Note that a subsequent nfinit(rnf ) will also explicitly add such a component, and so will the
following functions rnfidealmul, rnfidealtwoelt, rnfidealprimedec, rnfidealup (with 
ag 1)
and rnfidealreltoabs (with 
ag 1). The absolute nf structure attached to L can be recovered
using nfinit(rnf).

rnf [1](rnf.pol) contains the relative polynomial pol .
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rnf [2] contains the integer basis [A; d] of K, as (integral) elements of L=Q. More precisely, A
is a vector of polynomial with integer coe�cients, d is a denominator, and the integer basis is given
by A=d.

rnf [3] (rnf.disc) is a two-component row vector [d(L=K); s] where d(L=K) is the relative
ideal discriminant of L=K and s is the discriminant of L=K viewed as an element of K�=(K�)2, in
other words it is the output of rnfdisc.

rnf [4](rnf.index) is the ideal index f, i.e. such that d(pol)ZK = f2d(L=K).

rnf [5] is currently unused.

rnf [6] is currently unused.

rnf [7] (rnf.zk) is the pseudo-basis (A; I) for the maximal order ZL as a ZK-module: A is
the relative integral pseudo basis expressed as polynomials (in the variable of pol) with polmod
coe�cients in nf , and the second component I is the ideal list of the pseudobasis in HNF.

rnf [8] is the inverse matrix of the integral basis matrix, with coe�cients polmods in nf .

rnf [9] is currently unused.

rnf [10] (rnf.nf) is nf .

rnf [11] is an extension of rnfequation(K, pol, 1). Namely, a vector [P; a; k; K:pol; pol]
describing the absolute extension L=Q: P is an absolute equation, more conveniently obtained as
rnf.polabs; a expresses the generator � = ymod K:pol of the number �eld K as an element of L,
i.e. a polynomial modulo the absolute equation P ;

k is a small integer such that, if � is an abstract root of pol and � the generator of K given
above, then P (� + k�) = 0.

Caveat. Be careful if k 6= 0 when dealing simultaneously with absolute and relative quantities
since L = Q(� + k�) = K(�), and the generator chosen for the absolute extension is not the same
as for the relative one. If this happens, one can of course go on working, but we advise to change
the relative polynomial so that its root becomes � + k�. Typical GP instructions would be

[P,a,k] = rnfequation(K, pol, 1);

if (k, pol = subst(pol, x, x - k*Mod(y, K.pol)));

L = rnfinit(K, pol);

rnf [12] is by default unused and set equal to 0. This �eld is used to store further information
about the �eld as it becomes available (which is rarely needed, hence would be too expensive to
compute during the initial rnfinit call).

The library syntax is GEN rnfinit0(GEN nf, GEN pol, long flag). Also available is GEN
rnfinit(GEN nf, GEN pol) (flag = 0).

3.8.165 rn�sabelian(nf ; T ). T being a relative polynomial with coe�cients in nf , return 1 if it
de�nes an abelian extension, and 0 otherwise.

? K = nfinit(y^2 + 23);

? rnfisabelian(K, x^3 - 3*x - y)

%2 = 1

The library syntax is long rnfisabelian(GEN nf, GEN T).
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3.8.166 rn�sfree(bnf ; x). Given bnf as output by bnfinit, and either a polynomial x with
coe�cients in bnf de�ning a relative extension L of bnf , or a pseudo-basis x of such an extension,
returns true (1) if L=bnf is free, false (0) if not.

The library syntax is long rnfisfree(GEN bnf, GEN x).

3.8.167 rn�slocalcyclo(rnf ). Let rnf a a relative number �eld extension L=K as output by
rnfinit whole degree [L : K] is a power of a prime `. Return 1 if the `-extension is locally
cyclotomic (locally contained in the cyclotomic Z`-extension of Kv at all places vj`), and 0 if not.

? K = nfinit(y^2 + y + 1);

? L = rnfinit(K, x^3 - y); /* = K(zeta_9), globally cyclotomic */

? rnfislocalcyclo(L)

%3 = 1

\\ we expect 3-adic continuity by Krasner's lemma

? vector(5, i, rnfislocalcyclo(rnfinit(K, x^3 - y + 3^i)))

%5 = [0, 1, 1, 1, 1]

The library syntax is long rnfislocalcyclo(GEN rnf).

3.8.168 rn�snorm(T; a; fflag = 0g). Similar to bnfisnorm but in the relative case. T is as output
by rnfisnorminit applied to the extension L=K. This tries to decide whether the element a in K
is the norm of some x in the extension L=K.

The output is a vector [x; q], where a = Norm(x) � q. The algorithm looks for a solution x
which is an S-integer, with S a list of places of K containing at least the rami�ed primes, the
generators of the class group of L, as well as those primes dividing a. If L=K is Galois, then this is
enough; otherwise, flag is used to add more primes to S: all the places above the primes p � flag
(resp. pjflag) if flag > 0 (resp. flag < 0).

The answer is guaranteed (i.e. a is a norm i� q = 1) if the �eld is Galois, or, under GRH, if S
contains all primes less than 12 log2 jdisc(M)j, where M is the normal closure of L=K.

If rnfisnorminit has determined (or was told) that L=K is Galois, and flag 6= 0, a Warning
is issued (so that you can set flag = 1 to check whether L=K is known to be Galois, according to
T ). Example:

bnf = bnfinit(y^3 + y^2 - 2*y - 1);

p = x^2 + Mod(y^2 + 2*y + 1, bnf.pol);

T = rnfisnorminit(bnf, p);

rnfisnorm(T, 17)

checks whether 17 is a norm in the Galois extension Q(�)=Q(�), where �3 + �2 � 2�� 1 = 0 and
�2 + �2 + 2�+ 1 = 0 (it is).

The library syntax is GEN rnfisnorm(GEN T, GEN a, long flag).
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3.8.169 rn�snorminit(pol ; polrel ; fflag = 2g). Let K be de�ned by a root of pol , and L=K the
extension de�ned by the polynomial polrel . As usual, pol can in fact be an nf , or bnf , etc; if pol
has degree 1 (the base �eld is Q), polrel is also allowed to be an nf , etc. Computes technical data
needed by rnfisnorm to solve norm equations Nx = a, for x in L, and a in K.

If flag = 0, do not care whether L=K is Galois or not.

If flag = 1, L=K is assumed to be Galois (unchecked), which speeds up rnfisnorm.

If flag = 2, let the routine determine whether L=K is Galois.

The library syntax is GEN rnfisnorminit(GEN pol, GEN polrel, long flag).

3.8.170 rnfkummer(bnr ; fsubgpg; fd = 0g). bnr being as output by bnrinit, �nds a relative
equation for the class �eld corresponding to the module in bnr and the given congruence subgroup
(the full ray class �eld if subgp is omitted). If d is positive, outputs the list of all relative equations
of degree d contained in the ray class �eld de�ned by bnr , with the same conductor as (bnr ; subgp).

Warning. This routine only works for subgroups of prime index. It uses Kummer theory, adjoining
necessary roots of unity (it needs to compute a tough bnfinit here), and �nds a generator via
Hecke's characterization of rami�cation in Kummer extensions of prime degree. If your extension
does not have prime degree, for the time being, you have to split it by hand as a tower / compositum
of such extensions.

The library syntax is GEN rnfkummer(GEN bnr, GEN subgp = NULL, long d, long prec)

.

3.8.171 rn
llgram(nf ; pol ; order). Given a polynomial pol with coe�cients in nf de�n-
ing a relative extension L and a suborder order of L (of maximal rank), as output by
rnfpseudobasis(nf ; pol) or similar, gives [[neworder ]; U ], where neworder is a reduced order and
U is the unimodular transformation matrix.

The library syntax is GEN rnflllgram(GEN nf, GEN pol, GEN order, long prec).

3.8.172 rnfnormgroup(bnr ; pol). bnr being a big ray class �eld as output by bnrinit and pol a
relative polynomial de�ning an Abelian extension, computes the norm group (alias Artin or Takagi
group) corresponding to the Abelian extension of bnf =bnr.bnf de�ned by pol , where the module
corresponding to bnr is assumed to be a multiple of the conductor (i.e. pol de�nes a subextension of
bnr). The result is the HNF de�ning the norm group on the given generators of bnr.gen. Note that
neither the fact that pol de�nes an Abelian extension nor the fact that the module is a multiple of
the conductor is checked. The result is unde�ned if the assumption is not correct, but the function
will return the empty matrix [;] if it detects a problem; it may also not detect the problem and
return a wrong result.

The library syntax is GEN rnfnormgroup(GEN bnr, GEN pol).

3.8.173 rnfpolred(nf ; pol). This function is obsolete: use rnfpolredbest instead. Relative
version of polred. Given a monic polynomial pol with coe�cients in nf , �nds a list of relative
polynomials de�ning some sub�elds, hopefully simpler and containing the original �eld. In the
present version 2.9.1, this is slower and less e�cient than rnfpolredbest.
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Remark. this function is based on an incomplete reduction theory of lattices over number �elds,
implemented by rnflllgram, which deserves to be improved.

The library syntax is GEN rnfpolred(GEN nf, GEN pol, long prec).

3.8.174 rnfpolredabs(nf ; pol ; fflag = 0g). This function is obsolete: use rnfpolredbest instead.
Relative version of polredabs. Given a monic polynomial pol with coe�cients in nf , �nds a simpler
relative polynomial de�ning the same �eld. The binary digits of flag mean

The binary digits of flag correspond to 1: add information to convert elements to the new
representation, 2: absolute polynomial, instead of relative, 16: possibly use a suborder of the
maximal order. More precisely:

0: default, return P

1: returns [P; a] where P is the default output and a, a t_POLMOD modulo P , is a root of pol .

2: returns Pabs, an absolute, instead of a relative, polynomial. Same as but faster than

rnfequation(nf, rnfpolredabs(nf,pol))

3: returns [Pabs; a; b], where Pabs is an absolute polynomial as above, a, b are t_POLMOD

modulo Pabs, roots of nf.pol and pol respectively.

16: possibly use a suborder of the maximal order. This is slower than the default when the
relative discriminant is smooth, and much faster otherwise. See Section 3.8.133.

Warning. In the present implementation, rnfpolredabs produces smaller polynomials than rnf-

polred and is usually faster, but its complexity is still exponential in the absolute degree. The
function rnfpolredbest runs in polynomial time, and tends to return polynomials with smaller
discriminants.

The library syntax is GEN rnfpolredabs(GEN nf, GEN pol, long flag).

3.8.175 rnfpolredbest(nf ; pol ; fflag = 0g). Relative version of polredbest. Given a monic
polynomial pol with coe�cients in nf , �nds a simpler relative polynomial P de�ning the same �eld.
As opposed to rnfpolredabs this function does not return a smallest (canonical) polynomial with
respect to some measure, but it does run in polynomial time.

The binary digits of flag correspond to 1: add information to convert elements to the new
representation, 2: absolute polynomial, instead of relative. More precisely:

0: default, return P

1: returns [P; a] where P is the default output and a, a t_POLMOD modulo P , is a root of pol .

2: returns Pabs, an absolute, instead of a relative, polynomial. Same as but faster than

rnfequation(nf, rnfpolredbest(nf,pol))

3: returns [Pabs; a; b], where Pabs is an absolute polynomial as above, a, b are t_POLMOD

modulo Pabs, roots of nf.pol and pol respectively.

? K = nfinit(y^3-2); pol = x^2 +x*y + y^2;

? [P, a] = rnfpolredbest(K,pol,1);

? P

%3 = x^2 - x + Mod(y - 1, y^3 - 2)
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? a

%4 = Mod(Mod(2*y^2+3*y+4,y^3-2)*x + Mod(-y^2-2*y-2,y^3-2),

x^2 - x + Mod(y-1,y^3-2))

? subst(K.pol,y,a)

%5 = 0

? [Pabs, a, b] = rnfpolredbest(K,pol,3);

? Pabs

%7 = x^6 - 3*x^5 + 5*x^3 - 3*x + 1

? a

%8 = Mod(-x^2+x+1, x^6-3*x^5+5*x^3-3*x+1)

? b

%9 = Mod(2*x^5-5*x^4-3*x^3+10*x^2+5*x-5, x^6-3*x^5+5*x^3-3*x+1)

? subst(K.pol,y,a)

%10 = 0

? substvec(pol,[x,y],[a,b])

%11 = 0

The library syntax is GEN rnfpolredbest(GEN nf, GEN pol, long flag).

3.8.176 rnfpseudobasis(nf ; pol). Given a number �eld nf as output by nfinit and a polynomial
pol with coe�cients in nf de�ning a relative extension L of nf , computes a pseudo-basis (A; I) for
the maximal order ZL viewed as a ZK-module, and the relative discriminant of L. This is output
as a four-element row vector [A; I;D; d], where D is the relative ideal discriminant and d is the

relative discriminant considered as an element of nf �=nf �
2
.

The library syntax is GEN rnfpseudobasis(GEN nf, GEN pol).

3.8.177 rnfsteinitz(nf ; x). Given a number �eld nf as output by nfinit and either a polynomial
x with coe�cients in nf de�ning a relative extension L of nf , or a pseudo-basis x of such an
extension as output for example by rnfpseudobasis, computes another pseudo-basis (A; I) (not
in HNF in general) such that all the ideals of I except perhaps the last one are equal to the ring of
integers of nf , and outputs the four-component row vector [A; I;D; d] as in rnfpseudobasis. The
name of this function comes from the fact that the ideal class of the last ideal of I, which is well
de�ned, is the Steinitz class of the ZK-module ZL (its image in SK0(ZK)).

The library syntax is GEN rnfsteinitz(GEN nf, GEN x).

3.8.178 subgrouplist(bnr ; fboundg; fflag = 0g). bnr being as output by bnrinit or a list of
cyclic components of a �nite Abelian group G, outputs the list of subgroups of G. Subgroups are
given as HNF left divisors of the SNF matrix corresponding to G.

If flag = 0 (default) and bnr is as output by bnrinit, gives only the subgroups whose modulus
is the conductor. Otherwise, the modulus is not taken into account.

If bound is present, and is a positive integer, restrict the output to subgroups of index less than
bound . If bound is a vector containing a single positive integer B, then only subgroups of index
exactly equal to B are computed. For instance

? subgrouplist([6,2])

%1 = [[6, 0; 0, 2], [2, 0; 0, 2], [6, 3; 0, 1], [2, 1; 0, 1], [3, 0; 0, 2],

[1, 0; 0, 2], [6, 0; 0, 1], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]

? subgrouplist([6,2],3) \\ index less than 3
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%2 = [[2, 1; 0, 1], [1, 0; 0, 2], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]

? subgrouplist([6,2],[3]) \\ index 3
%3 = [[3, 0; 0, 1]]

? bnr = bnrinit(bnfinit(x), [120,[1]], 1);

? L = subgrouplist(bnr, [8]);

In the last example, L corresponds to the 24 sub�elds of Q(�120), of degree 8 and conductor 1201
(by setting flag , we see there are a total of 43 subgroups of degree 8).

? vector(#L, i, galoissubcyclo(bnr, L[i]))

will produce their equations. (For a general base �eld, you would have to rely on bnrstark, or
rnfkummer.)

The library syntax is GEN subgrouplist0(GEN bnr, GEN bound = NULL, long flag).

3.9 Associative and central simple algebras.

This section collects functions related to associative algebras and central simple algebras over
number �elds. Let A be a �nite-dimensional unitary associative algebra over a �eld K. We say that
A is central if the center of A is K, and that A is simple if it has no nontrivial two-sided ideals.

We provide functions to manipulate associative algebras of �nite dimension over Q or Fp. We
represent them by the left multiplication table on a basis over the prime sub�eld. The function
algtableinit creates the object representing an associative algebra. We also provide functions to
manipulate central simple algebras over number �elds. We represent them either by the left multi-
plication table on a basis over the center, or by a cyclic algebra (see below). The function alginit

creates the object representing a central simple algebra.

The set of elements of an algebra A that annihilate every simple left A-module is a two-sided
ideal, called the Jacobson radical of A. An algebra is semisimple if its Jacobson radical is trivial.
A semisimple algebra is isomorphic to a direct sum of simple algebras. The dimension of a central
simple algebra A over K is always a square d2, and the integer d is called the degree of the algebra A
over K. A central simple algebra A over a �eld K is always isomorphic toMd(D) for some integer d
and some central division algebra D of degree e : the integer e is called the index of A.

Let L=K be a cyclic extension of degree d, let � be a generator of Gal(L=K) and let b 2 K�.

Then the cyclic algebra (L=K; �; b) is the algebra
Ld�1

i=0 x
iL with xd = b and `x = x�(`) for all ` 2 L.

The algebra (L=K; �; b) is a central simple K-algebra of degree d, and it is an L-vector space. Left
multiplication is L-linear and induces a K-algebra homomorphism (L=K; �; b)!Md(L).

Let K be a nonarchimedean local �eld with uniformizer �, and let L=K be the unique unram-
i�ed extension of degree d. Then every central simple algebra A of degree d over K is isomorphic
to (L=K;Frob; �h) for some integer h. The element h=d 2 (1=d)Z=Z � Q=Z is called the Hasse
invariant of A.

Let A be an algebra of �nite dimension over Q. An order in A is a �nitely generated Z-
submodule O such that QO = A, that is also a subring with unit. We de�ne natural orders in
central simple algebras de�ned by a cyclic algebra or by a multiplication table over the center.
Let A = (L=K; �; b) =

Ld�1
i=0 x

iL be a cyclic algebra over a number �eld K of degree n with
ring of integers ZK . Let ZL be the ring of integers of L, and assume that b is integral. Then
the submodule O =

Ld�1
i=0 x

iZL is an order in A, called the natural order . Let !0; : : : ; !nd�1
be a Z-basis of ZL. The natural basis of O is b0; : : : ; bnd2�1 where bi = xi=(nd)!(imodnd). Now
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let A be a central simple algebra of degree d over a number �eld K of degree n with ring of
integers ZK . Let e0; : : : ; ed2�1 be a basis of A over K and assume that the left multiplication

table of A on (ei) is integral. Then the submodule O =
Ld2�1

i=0 ZKei is an order in A, called
the natural order . Let !0; : : : ; !n�1 be a Z-basis of ZK . The natural basis of O is b0; : : : ; bnd2�1
where bi = !(imodn)ei=n.

As with number �elds, we represent elements of central simple algebras in two ways, called
the algebraic representation and the basis representation, and you can convert betweeen the two
with the functions algalgtobasis and algbasistoalg. In every central simple algebra object, we
store a Z-basis of an order O0, and the basis representation is simply a t_COL with coe�cients in Q
expressing the element in that basis. If no maximal order was computed, then O0 is the natural
order. If a maximal order was computed, then O0 is a maximal order containing the natural order.
For a cyclic algebra A = (L=K; �; b), the algebraic representation is a t_COL with coe�cients in L

representing the element in the decomposition A =
Ld�1

i=0 x
iL. For a central simple algebra de�ned

by a multiplication table over its center K on a basis (ei), the algebraic representation is a t_COL

with coe�cients in K representing the element on the basis (ei).

Warning. The coe�cients in the decomposition A =
Ld�1

i=0 x
iL are not the same as those in the

decomposition A =
Ld�1

i=0 Lx
i! The i-th coe�cients are related by conjugating by xi, which on L

amounts to acting by �i.

Warning. For a central simple algebra over Q de�ned by a multiplication table, we cannot
distinguish between the basis and the algebraic representations from the size of the vectors. The
behaviour is then to always interpret the column vector as a basis representation if the coe�cients
are t_INT or t_FRAC, and as an algebraic representation if the coe�cients are t_POL or t_POLMOD.

3.9.1 algabsdim(al). Given an algebra al output by alginit or by algtableinit, returns the
dimension of al over its prime sub�eld (Q or Fp).

? nf = nfinit(y^3-y+1);

? A = alginit(nf, [-1,-1]);

? algabsdim(A)

%3 = 12

The library syntax is long algabsdim(GEN al).

3.9.2 algadd(al ; x; y). Given two elements x and y in al , computes their sum x+y in the algebra al .

? A = alginit(nfinit(y),[-1,1]);

? algadd(A,[1,0]~,[1,2]~)

%2 = [2, 2]~

Also accepts matrices with coe�cients in al .

The library syntax is GEN algadd(GEN al, GEN x, GEN y).
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3.9.3 algalgtobasis(al ; x). Given an element x in the central simple algebra al output by al-

ginit, transforms it to a column vector on the integral basis of al . This is the inverse function of
algbasistoalg.

? A = alginit(nfinit(y^2-5),[2,y]);

? algalgtobasis(A,[y,1]~)

%2 = [0, 2, 0, -1, 2, 0, 0, 0]~
? algbasistoalg(A,algalgtobasis(A,[y,1]~))

%3 = [Mod(Mod(y, y^2 - 5), x^2 - 2), 1]~

The library syntax is GEN algalgtobasis(GEN al, GEN x).

3.9.4 algaut(al). Given a cyclic algebra al = (L=K; �; b) output by alginit, returns the auto-
morphism �.

? nf = nfinit(y);

? p = idealprimedec(nf,7)[1];

? p2 = idealprimedec(nf,11)[1];

? A = alginit(nf,[3,[[p,p2],[1/3,2/3]],[0]]);

? algaut(A)

%5 = -1/3*x^2 + 1/3*x + 26/3

The library syntax is GEN algaut(GEN al).

3.9.5 algb(al). Given a cyclic algebra al = (L=K; �; b) output by alginit, returns the element
b 2 K.

nf = nfinit(y);

? p = idealprimedec(nf,7)[1];

? p2 = idealprimedec(nf,11)[1];

? A = alginit(nf,[3,[[p,p2],[1/3,2/3]],[0]]);

? algb(A)

%5 = Mod(-77, y)

The library syntax is GEN algb(GEN al).

3.9.6 algbasis(al). Given an central simple algebra al output by alginit, returns a Z-basis of
the order O0 stored in al with respect to the natural order in al . It is a maximal order if one has
been computed.

A = alginit(nfinit(y), [-1,-1]);

? algbasis(A)

%2 =

[1 0 0 1/2]

[0 1 0 1/2]

[0 0 1 1/2]

[0 0 0 1/2]

The library syntax is GEN algbasis(GEN al).
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3.9.7 algbasistoalg(al ; x). Given an element x in the central simple algebra al output by alginit,
transforms it to its algebraic representation in al . This is the inverse function of algalgtobasis.

? A = alginit(nfinit(y^2-5),[2,y]);

? z = algbasistoalg(A,[0,1,0,0,2,-3,0,0]~);

? liftall(z)

%3 = [(-1/2*y - 2)*x + (-1/4*y + 5/4), -3/4*y + 7/4]~
? algalgtobasis(A,z)

%4 = [0, 1, 0, 0, 2, -3, 0, 0]~

The library syntax is GEN algbasistoalg(GEN al, GEN x).

3.9.8 algcenter(al). If al is a table algebra output by algtableinit, returns a basis of the center
of the algebra al over its prime �eld (Q or Fp). If al is a central simple algebra output by alginit,
returns the center of al , which is stored in al .

A simple example: the 2� 2 upper triangular matrices over Q, generated by I2, a = [0; 1; 0; 0]
and b = [0; 0; 0; 1], such that a2 = 0, ab = a, ba = 0, b2 = b: the diagonal matrices form the center.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];

? A = algtableinit(mt);

? algcenter(A) \\ = (I_2)

%3 =

[1]

[0]

[0]

An example in the central simple case:

? nf = nfinit(y^3-y+1);

? A = alginit(nf, [-1,-1]);

? algcenter(A).pol

%3 = y^3 - y + 1

The library syntax is GEN algcenter(GEN al).

3.9.9 algcentralproj(al ; z; fmaps = 0g). Given a table algebra al output by algtableinit

and a t_VEC z = [z1; : : : ; zn] of orthogonal central idempotents, returns a t_VEC [al1; : : : ; aln] of
algebras such that ali = zi al. If maps = 1, each ali is a t_VEC [quo; proj; lift] where quo is the
quotient algebra, proj is a t_MAT representing the projection onto this quotient and lift is a t_MAT

representing a lift.

A simple example: F2�F4, generated by 1 = (1; 1), e = (1; 0) and x such that x2+x+1 = 0.
We have e2 = e, x2 = x+ 1 and ex = 0.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];

? A = algtableinit(mt,2);

? e = [0,1,0]~;

? e2 = algsub(A,[1,0,0]~,e);

? [a,a2] = algcentralproj(A,[e,e2]);

? algdim(a)

%6 = 1

? algdim(a2)
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%7 = 2

The library syntax is GEN alg_centralproj(GEN al, GEN z, long maps).

3.9.10 algchar(al). Given an algebra al output by alginit or algtableinit, returns the char-
acteristic of al .

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];

? A = algtableinit(mt,13);

? algchar(A)

%3 = 13

The library syntax is GEN algchar(GEN al).

3.9.11 algcharpoly(al ; b; fv =0 xg). Given an element b in al , returns its characteristic polynomial
as a polynomial in the variable v. If al is a table algebra output by algtableinit, returns the
absolute characteristic polynomial of b, which is an element of Fp[v] or Q[v]; if al is a central simple
algebra output by alginit, returns the reduced characteristic polynomial of b, which is an element
of K[v] where K is the center of al .

? al = alginit(nfinit(y), [-1,-1]); \\ (-1,-1)_Q

? algcharpoly(al, [0,1]~)

%2 = x^2 + 1

Also accepts a square matrix with coe�cients in al .

The library syntax is GEN algcharpoly(GEN al, GEN b, long v = -1) where v is a variable
number.

3.9.12 algdecomposition(al). al being a table algebra output by algtableinit, returns
[J; [al1; : : : ; aln]] where J is a basis of the Jacobson radical of al and al1; : : : ; aln are the simple
factors of the semisimple algebra al=J .

The library syntax is GEN alg_decomposition(GEN al).

3.9.13 algdegree(al). Given a central simple algebra al output by alginit, returns the degree of
al .

? nf = nfinit(y^3-y+1);

? A = alginit(nf, [-1,-1]);

? algdegree(A)

%3 = 2

The library syntax is long algdegree(GEN al).

3.9.14 algdim(al). Given a central simple algebra al output by alginit, returns the dimension
of al over its center. Given a table algebra al output by algtableinit, returns the dimension of
al over its prime sub�eld (Q or Fp).

? nf = nfinit(y^3-y+1);

? A = alginit(nf, [-1,-1]);

? algdim(A)

%3 = 4

The library syntax is long algdim(GEN al).
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3.9.15 algdisc(al). Given a central simple algebra al output by alginit, computes the discrimi-
nant of the order O0 stored in al , that is the determinant of the trace form Tr : O0 �O0 ! Z.

? nf = nfinit(y^2-5);

? A = alginit(nf, [-3,1-y]);

? [PR,h] = alghassef(A);

%3 = [[[2, [2, 0]~, 1, 2, 1], [3, [3, 0]~, 1, 2, 1]], Vecsmall([0, 1])]

? n = algdegree(A);

? D = algabsdim(A);

? h = vector(#h, i, n - gcd(n,h[i]));

? n^D * nf.disc^(n^2) * idealnorm(nf, idealfactorback(nf,PR,h))^n

%4 = 12960000

? algdisc(A)

%5 = 12960000

The library syntax is GEN algdisc(GEN al).

3.9.16 algdivl(al ; x; y). Given two elements x and y in al , computes their left quotient xny in the
algebra al : an element z such that xz = y (such an element is not unique when x is a zerodivisor).
If x is invertible, this is the same as x�1y. Assumes that y is left divisible by x (i.e. that z exists).
Also accepts matrices with coe�cients in al .

The library syntax is GEN algdivl(GEN al, GEN x, GEN y).

3.9.17 algdivr(al ; x; y). Given two elements x and y in al , return xy�1. Also accepts matrices
with coe�cients in al .

The library syntax is GEN algdivr(GEN al, GEN x, GEN y).

3.9.18 alggroup(gal ; fp = 0g). Initialize the group algebra K[G] over K = Q (p omitted) or Fp
where G is the underlying group of the galoisinit structure gal . The input gal is also allowed to
be a t_VEC of permutations that is closed under products.

Example:

? K = nfsplitting(x^3-x+1);

? gal = galoisinit(K);

? al = alggroup(gal);

? algissemisimple(al)

%4 = 1

? G = [Vecsmall([1,2,3]), Vecsmall([1,3,2])];

? al2 = alggroup(G, 2);

? algissemisimple(al2)

%8 = 0

The library syntax is GEN alggroup(GEN gal, GEN p = NULL).
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3.9.19 alghasse(al ; pl). Given a central simple algebra al output by alginit and a prime ideal
or an integer between 1 and r1 + r2, returns a t_FRAC h : the local Hasse invariant of al at the
place speci�ed by pl .

? nf = nfinit(y^2-5);

? A = alginit(nf, [-1,y]);

? alghasse(A, 1)

%3 = 1/2

? alghasse(A, 2)

%4 = 0

? alghasse(A, idealprimedec(nf,2)[1])

%5 = 1/2

? alghasse(A, idealprimedec(nf,5)[1])

%6 = 0

The library syntax is GEN alghasse(GEN al, GEN pl).

3.9.20 alghassef(al). Given a central simple algebra al output by alginit, returns a t_VEC

[PR; hf ] describing the local Hasse invariants at the �nite places of the center: PR is a t_VEC of
primes and hf is a t_VECSMALL of integers modulo the degree d of al .

? nf = nfinit(y^2-5);

? A = alginit(nf, [-1,2*y-1]);

? [PR,hf] = alghassef(A);

? PR

%4 = [[19, [10, 2]~, 1, 1, [-8, 2; 2, -10]], [2, [2, 0]~, 1, 2, 1]]

? hf

%5 = Vecsmall([1, 0])

The library syntax is GEN alghassef(GEN al).

3.9.21 alghassei(al). Given a central simple algebra al output by alginit, returns a t_VECSMALL
hi of r1 integers modulo the degree d of al , where r1 is the number of real places of the center: the
local Hasse invariants of al at in�nite places.

? nf = nfinit(y^2-5);

? A = alginit(nf, [-1,y]);

? alghassei(A)

%3 = Vecsmall([1, 0])

The library syntax is GEN alghassei(GEN al).
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3.9.22 algindex(al ; fplg). Return the index of the central simple algebra A over K (as output
by alginit), that is the degree e of the unique central division algebra D over K such that A is
isomorphic to some matrix algebraMd(D). If pl is set, it should be a prime ideal of K or an integer
between 1 and r1 + r2, and in that case return the local index at the place pl instead.

? nf = nfinit(y^2-5);

? A = alginit(nf, [-1,y]);

? algindex(A, 1)

%3 = 2

? algindex(A, 2)

%4 = 1

? algindex(A, idealprimedec(nf,2)[1])

%5 = 2

? algindex(A, idealprimedec(nf,5)[1])

%6 = 1

? algindex(A)

%7 = 2

The library syntax is long algindex(GEN al, GEN pl = NULL).

3.9.23 alginit(B;C; fvg; fflag = 1g). Initialize the central simple algebra de�ned by data B, C
and variable v, as follows.

� (multiplication table) B is the base number �eld K in nfinit form, C is a \multiplication
table" over K. As a K-vector space, the algebra is generated by a basis (e1 = 1; : : : ; en); the table
is given as a t_VEC of n matrices in Mn(K), giving the left multiplication by the basis elements
ei, in the given basis. Assumes that e1 = 1, that the multiplication table is integral, and that
K[e1; : : : ; en] describes a central simple algebra over K.

{ m_i = [0,-1,0, 0;

1, 0,0, 0;

0, 0,0,-1;

0, 0,1, 0];

m_j = [0, 0,-1,0;

0, 0, 0,1;

1, 0, 0,0;

0,-1, 0,0];

m_k = [0, 0, 0, 0;

0, 0,-1, 0;

0, 1, 0, 0;

1, 0, 0,-1];

A = alginit(nfinit(y), [matid(4), m_i,m_j,m_k], 0); }

represents (in a complicated way) the quaternion algebra (�1;�1)Q. See below for a simpler
solution.

� (cyclic algebra) B is an rnf structure attached to a cyclic number �eld extension L=K of
degree d, C is a t_VEC [sigma,b] with 2 components: sigma is a t_POLMOD representing an automor-
phism generating Gal(L=K), b is an element in K�. This represents the cyclic algebra (L=K; �; b).
Currently the element b has to be integral.

? Q = nfinit(y); T = polcyclo(5, 'x); F = rnfinit(Q, T);
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? A = alginit(F, [Mod(x^2,T), 3]);

de�nes the cyclic algebra (L=Q; �; 3), where L = Q(�5) and � : � 7! �2 generates Gal(L=Q).

� (quaternion algebra, special case of the above) B is an nf structure attached to a number
�eld K, C = [a; b] is a vector containing two elements of K� with a not a square in K, returns
the quaternion algebra (a; b)K . The variable v ('x by default) must have higher priority than the
variable of K.pol and is used to represent elements in the splitting �eld L = K[x]=(x2 � a).

? Q = nfinit(y); A = alginit(Q, [-1,-1]); \\ (�1;�1)Q
� (algebra/K de�ned by local Hasse invariants) B is an nf structure attached to a number

�eld K, C = [d; [PR; hf ]; hi] is a triple containing an integer d > 1, a pair [PR; hf ] describing the
Hasse invariants at �nite places, and hi the Hasse invariants at archimedean (real) places. A local
Hasse invariant belongs to (1=d)Z=Z � Q=Z, and is given either as a t_FRAC (lift to (1=d)Z), a
t_INT or t_INTMOD modulo d (lift to Z=dZ); a whole vector of local invariants can also be given as
a t_VECSMALL, whose entries are handled as t_INTs. PR is a list of prime ideals (prid structures),
and hf is a vector of the same length giving the local invariants at those maximal ideals. The
invariants at in�nite real places are indexed by the real roots K.roots: if the Archimedean place
v is attached to the j-th root, the value of hv is given by hi[j], must be 0 or 1=2 (or d=2 modulo d),
and can be nonzero only if d is even.

By class �eld theory, provided the local invariants hv sum to 0, up to Brauer equivalence, there
is a unique central simple algebra over K with given local invariants and trivial invariant elsewhere.
In particular, up to isomorphism, there is a unique such algebra A of degree d.

We realize A as a cyclic algebra through class �eld theory. The variable v ('x by default) must
have higher priority than the variable of K.pol and is used to represent elements in the (cyclic)
splitting �eld extension L=K for A.

? nf = nfinit(y^2+1);

? PR = idealprimedec(nf,5); #PR

%2 = 2

? hi = [];

? hf = [PR, [1/3,-1/3]];

? A = alginit(nf, [3,hf,hi]);

? algsplittingfield(A).pol

%6 = x^3 - 21*x + 7

� (matrix algebra, toy example) B is an nf structure attached to a number �eld K, C = d is
a positive integer. Returns a cyclic algebra isomorphic to the matrix algebra Md(K).

In all cases, this function computes a maximal order for the algebra by default, which may
require a lot of time. Setting flag = 0 prevents this computation.

The pari object representing such an algebra A is a t_VEC with the following data:

� A splitting �eld L of A of the same degree over K as A, in rnfinit format, accessed with
algsplittingfield.

� The same splitting �eld L in nfinit format.

� The Hasse invariants at the real places of K, accessed with alghassei.

� The Hasse invariants of A at the �nite primes of K that ramify in the natural order of A,
accessed with alghassef.
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� A basis of an order O0 expressed on the basis of the natural order, accessed with algord.

� A basis of the natural order expressed on the basis of O0, accessed with alginvord.

� The left multiplication table of O0 on the previous basis, accessed with algmultable.

� The characteristic of A (always 0), accessed with algchar.

� The absolute traces of the elements of the basis of O0.

� If A was constructed as a cyclic algebra (L=K; �; b) of degree d, a t_VEC [�; �2; : : : ; �d�1].
The function algaut returns �.

� If A was constructed as a cyclic algebra (L=K; �; b), the element b, accessed with algb.

� If A was constructed with its multiplication tablemt overK, the t_VEC of t_MATmt, accessed
with algrelmultable.

� If A was constructed with its multiplication tablemt overK, a t_VEC with three components:
a t_COL representing an element of A generating the splitting �eld L as a maximal sub�eld of A,
a t_MAT representing an L-basis B of A expressed on the Z-basis of O0, and a t_MAT representing
the Z-basis of O0 expressed on B. This data is accessed with algsplittingdata.

The library syntax is GEN alginit(GEN B, GEN C, long v = -1, long flag) where v is a
variable number.

3.9.24 alginv(al ; x). Given an element x in al , computes its inverse x�1 in the algebra al . Assumes
that x is invertible.

? A = alginit(nfinit(y), [-1,-1]);

? alginv(A,[1,1,0,0]~)

%2 = [1/2, 1/2, 0, 0]~

Also accepts matrices with coe�cients in al .

The library syntax is GEN alginv(GEN al, GEN x).

3.9.25 alginvbasis(al). Given an central simple algebra al output by alginit, returns a Z-basis
of the natural order in al with respect to the order O0 stored in al .

A = alginit(nfinit(y), [-1,-1]);

? alginvbasis(A)

%2 =

[1 0 0 -1]

[0 1 0 -1]

[0 0 1 -1]

[0 0 0 2]

The library syntax is GEN alginvbasis(GEN al).
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3.9.26 algisassociative(mt ; p = 0). Returns 1 if the multiplication table mt is suitable for al-
gtableinit(mt,p), 0 otherwise. More precisely, mt should be a t_VEC of n matrices in Mn(K),
giving the left multiplications by the basis elements e1; : : : ; en (structure constants). We check
whether the �rst basis element e1 is 1 and ei(ejek) = (eiej)ek for all i; j; k.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];

? algisassociative(mt)

%2 = 1

May be used to check a posteriori an algebra: we also allow mt as output by algtableinit (p
is ignored in this case).

The library syntax is GEN algisassociative(GEN mt, GEN p).

3.9.27 algiscommutative(al). al being a table algebra output by algtableinit or a central
simple algebra output by alginit, tests whether the algebra al is commutative.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];

? A = algtableinit(mt);

? algiscommutative(A)

%3 = 0

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];

? A = algtableinit(mt,2);

? algiscommutative(A)

%6 = 1

The library syntax is GEN algiscommutative(GEN al).

3.9.28 algisdivision(al ; fplg). Given a central simple algebra al output by alginit, test whether
al is a division algebra. If pl is set, it should be a prime ideal of K or an integer between 1
and r1 + r2, and in that case test whether al is locally a division algebra at the place pl instead.

? nf = nfinit(y^2-5);

? A = alginit(nf, [-1,y]);

? algisdivision(A, 1)

%3 = 1

? algisdivision(A, 2)

%4 = 0

? algisdivision(A, idealprimedec(nf,2)[1])

%5 = 1

? algisdivision(A, idealprimedec(nf,5)[1])

%6 = 0

? algisdivision(A)

%7 = 1

The library syntax is GEN algisdivision(GEN al, GEN pl = NULL).
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3.9.29 algisdivl(al ; x; y; f&zg). Given two elements x and y in al , tests whether y is left divisible
by x, that is whether there exists z in al such that xz = y, and sets z to this element if it exists.

? A = alginit(nfinit(y), [-1,1]);

? algisdivl(A,[x+2,-x-2]~,[x,1]~)

%2 = 0

? algisdivl(A,[x+2,-x-2]~,[-x,x]~,&z)

%3 = 1

? z

%4 = [Mod(-2/5*x - 1/5, x^2 + 1), 0]~

Also accepts matrices with coe�cients in al .

The library syntax is GEN algisdivl(GEN al, GEN x, GEN y, GEN *z = NULL).

3.9.30 algisinv(al ; x; f&ixg). Given an element x in al , tests whether x is invertible, and sets ix
to the inverse of x.

? A = alginit(nfinit(y), [-1,1]);

? algisinv(A,[-1,1]~)

%2 = 0

? algisinv(A,[1,2]~,&ix)

%3 = 1

? ix

%4 = [Mod(Mod(-1/3, y), x^2 + 1), Mod(Mod(2/3, y), x^2 + 1)]~

Also accepts matrices with coe�cients in al .

The library syntax is GEN algisinv(GEN al, GEN x, GEN *ix = NULL).

3.9.31 algisrami�ed(al ; fplg). Given a central simple algebra al output by alginit, test whether
al is rami�ed, i.e. not isomorphic to a matrix algebra over its center. If pl is set, it should be a
prime ideal of K or an integer between 1 and r1 + r2, and in that case test whether al is locally
rami�ed at the place pl instead.

? nf = nfinit(y^2-5);

? A = alginit(nf, [-1,y]);

? algisramified(A, 1)

%3 = 1

? algisramified(A, 2)

%4 = 0

? algisramified(A, idealprimedec(nf,2)[1])

%5 = 1

? algisramified(A, idealprimedec(nf,5)[1])

%6 = 0

? algisramified(A)

%7 = 1

The library syntax is GEN algisramified(GEN al, GEN pl = NULL).
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3.9.32 algissemisimple(al). al being a table algebra output by algtableinit or a central simple
algebra output by alginit, tests whether the algebra al is semisimple.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];

? A = algtableinit(mt);

? algissemisimple(A)

%3 = 0

? m_i=[0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0]; \\ quaternion algebra (-1,-1)

? m_j=[0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];

? m_k=[0,0,0,-1;0,0,-1,0;0,1,0,0;1,0,0,0];

? mt = [matid(4), m_i, m_j, m_k];

? A = algtableinit(mt);

? algissemisimple(A)

%9 = 1

The library syntax is GEN algissemisimple(GEN al).

3.9.33 algissimple(al ; fss = 0g). al being a table algebra output by algtableinit or a central
simple algebra output by alginit, tests whether the algebra al is simple. If ss = 1, assumes that
the algebra al is semisimple without testing it.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];

? A = algtableinit(mt); \\ matrices [*,*; 0,*]

? algissimple(A)

%3 = 0

? algissimple(A,1) \\ incorrectly assume that A is semisimple

%4 = 1

? m_i=[0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0];

? m_j=[0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];

? m_k=[0,0,0,-1;0,0,b,0;0,1,0,0;1,0,0,0];

? mt = [matid(4), m_i, m_j, m_k];

? A = algtableinit(mt); \\ quaternion algebra (-1,-1)

? algissimple(A)

%10 = 1

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];

? A = algtableinit(mt,2); \\ direct sum F_4+F_2

? algissimple(A)

%13 = 0

The library syntax is GEN algissimple(GEN al, long ss).
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3.9.34 algissplit(al ; fplg). Given a central simple algebra al output by alginit, test whether al
is split, i.e. isomorphic to a matrix algebra over its center. If pl is set, it should be a prime ideal
of K or an integer between 1 and r1 + r2, and in that case test whether al is locally split at the
place pl instead.

? nf = nfinit(y^2-5);

? A = alginit(nf, [-1,y]);

? algissplit(A, 1)

%3 = 0

? algissplit(A, 2)

%4 = 1

? algissplit(A, idealprimedec(nf,2)[1])

%5 = 0

? algissplit(A, idealprimedec(nf,5)[1])

%6 = 1

? algissplit(A)

%7 = 0

The library syntax is GEN algissplit(GEN al, GEN pl = NULL).

3.9.35 alglathnf(al ;m). Given an algebra al and a square invertible matrix m with size the
dimension of al , returns the lattice generated by the columns of m.

? al = alginit(nfinit(y^2+7), [-1,-1]);

? a = [1,1,-1/2,1,1/3,-1,1,1]~;

? mt = algleftmultable(al,a);

? lat = alglathnf(al,mt);

? lat[2]

%5 = 1/6

The library syntax is GEN alglathnf(GEN al, GEN m).

3.9.36 algleftmultable(al ; x). Given an element x in al , computes its left multiplication table.
If x is given in basis form, returns its multiplication table on the integral basis; if x is given in
algebraic form, returns its multiplication table on the basis corresponding to the algebraic form of
elements of al . In every case, if x is a t_COL of length n, then the output is a n � n t_MAT. Also
accepts a square matrix with coe�cients in al .

? A = alginit(nfinit(y), [-1,-1]);

? algleftmultable(A,[0,1,0,0]~)

%2 =

[0 -1 1 0]

[1 0 1 1]

[0 0 1 1]

[0 0 -2 -1]

The library syntax is GEN algleftmultable(GEN al, GEN x).
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3.9.37 algmul(al ; x; y). Given two elements x and y in al , computes their product x � y in the
algebra al .

? A = alginit(nfinit(y), [-1,-1]);

? algmul(A,[1,1,0,0]~,[0,0,2,1]~)

%2 = [2, 3, 5, -4]~

Also accepts matrices with coe�cients in al .

The library syntax is GEN algmul(GEN al, GEN x, GEN y).

3.9.38 algmultable(al). Returns a multiplication table of al over its prime sub�eld (Q or Fp),
as a t_VEC of t_MAT: the left multiplication tables of basis elements. If al was output by al-

gtableinit, returns the multiplication table used to de�ne al . If al was output by alginit,
returns the multiplication table of the order O0 stored in al .

? A = alginit(nfinit(y), [-1,-1]);

? M = algmultable(A);

? #M

%3 = 4

? M[1] \\ multiplication by e_1 = 1

%4 =

[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

? M[2]

%5 =

[0 -1 1 0]

[1 0 1 1]

[0 0 1 1]

[0 0 -2 -1]

The library syntax is GEN algmultable(GEN al).

3.9.39 algneg(al ; x). Given an element x in al , computes its opposite �x in the algebra al .

? A = alginit(nfinit(y), [-1,-1]);

? algneg(A,[1,1,0,0]~)

%2 = [-1, -1, 0, 0]~

Also accepts matrices with coe�cients in al .

The library syntax is GEN algneg(GEN al, GEN x).
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3.9.40 algnorm(al ; x). Given an element x in al , computes its norm. If al is a table algebra
output by algtableinit, returns the absolute norm of x , which is an element of Fp of Q; if al is
a central simple algebra output by alginit, returns the reduced norm of x , which is an element of
the center of al .

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];

? A = algtableinit(mt,19);

? algnorm(A,[0,-2,3]~)

%3 = 18

Also accepts a square matrix with coe�cients in al .

The library syntax is GEN algnorm(GEN al, GEN x).

3.9.41 algpoleval(al ; T; b). Given an element b in al and a polynomial T in K[X], computes T (b)
in al .

The library syntax is GEN algpoleval(GEN al, GEN T, GEN b).

3.9.42 algpow(al ; x; n). Given an element x in al and an integer n, computes the power xn in the
algebra al .

? A = alginit(nfinit(y), [-1,-1]);

? algpow(A,[1,1,0,0]~,7)

%2 = [8, -8, 0, 0]~

Also accepts a square matrix with coe�cients in al .

The library syntax is GEN algpow(GEN al, GEN x, GEN n).

3.9.43 algprimesubalg(al). al being the output of algtableinit representing a semisimple al-
gebra of positive characteristic, returns a basis of the prime subalgebra of al . The prime subalgebra
of al is the subalgebra �xed by the Frobenius automorphism of the center of al . It is abstractly
isomorphic to a product of copies of Fp.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];

? A = algtableinit(mt,2);

? algprimesubalg(A)

%3 =

[1 0]

[0 1]

[0 0]

The library syntax is GEN algprimesubalg(GEN al).

303



3.9.44 algquotient(al ; I; fflag = 0g). al being a table algebra output by algtableinit and I
being a basis of a two-sided ideal of al represented by a matrix, returns the quotient al=I . When

ag = 1, returns a t_VEC [al=I ; proj ; lift ] where proj and lift are matrices respectively representing
the projection map and a section of it.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];

? A = algtableinit(mt,2);

? AQ = algquotient(A,[0;1;0]);

? algdim(AQ)

%4 = 2

The library syntax is GEN alg_quotient(GEN al, GEN I, long flag).

3.9.45 algradical(al). al being a table algebra output by algtableinit, returns a basis of the
Jacobson radical of the algebra al over its prime �eld (Q or Fp).

Here is an example with A = Q[x]=(x2), generated by (1; x):

? mt = [matid(2),[0,0;1,0]];

? A = algtableinit(mt);

? algradical(A) \\ = (x)

%3 =

[0]

[1]

Another one with 2� 2 upper triangular matrices over Q, generated by I2, a = [0; 1; 0; 0] and
b = [0; 0; 0; 1], such that a2 = 0, ab = a, ba = 0, b2 = b:

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];

? A = algtableinit(mt);

? algradical(A) \\ = (a)

%6 =

[0]

[1]

[0]

The library syntax is GEN algradical(GEN al).

3.9.46 algrami�edplaces(al). Given a central simple algebra al output by alginit, return
a t_VEC containing the list of places of the center of al that are rami�ed in al . Each place is
described as an integer between 1 and r1 or as a prime ideal.

? nf = nfinit(y^2-5);

? A = alginit(nf, [-1,y]);

? algramifiedplaces(A)

%3 = [1, [2, [2, 0]~, 1, 2, 1]]

The library syntax is GEN algramifiedplaces(GEN al).

3.9.47 algrandom(al ; b). Given an algebra al and an integer b, returns a random element in al
with coe�cients in [�b; b].

The library syntax is GEN algrandom(GEN al, GEN b).
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3.9.48 algrelmultable(al). Given a central simple algebra al output by alginit de�ned by a
multiplication table over its center (a number �eld), returns this multiplication table.

? nf = nfinit(y^3-5); a = y; b = y^2;

? {m_i = [0,a,0,0;

1,0,0,0;

0,0,0,a;

0,0,1,0];}

? {m_j = [0, 0,b, 0;

0, 0,0,-b;

1, 0,0, 0;

0,-1,0, 0];}

? {m_k = [0, 0,0,-a*b;

0, 0,b, 0;

0,-a,0, 0;

1, 0,0, 0];}

? mt = [matid(4), m_i, m_j, m_k];

? A = alginit(nf,mt,'x);

? M = algrelmultable(A);

? M[2] == m_i

%8 = 1

? M[3] == m_j

%9 = 1

? M[4] == m_k

%10 = 1

The library syntax is GEN algrelmultable(GEN al).

3.9.49 algsimpledec(al ; fflag = 0g). al being the output of algtableinit representing a semisim-
ple algebra, returns a t_VEC [al1; al2; : : : ; aln] such that al is isomorphic to the direct sum of the
simple algebras al i. When 
ag = 1, each component is instead a t_VEC [al i; proj i; lift i] where proj i
and lift i are matrices respectively representing the projection map on the i-th factor and a section
of it. The factors are sorted by increasing dimension, then increasing dimension of the center. This
ensures that the ordering of the isomorphism classes of the factors is deterministic over �nite �elds,
but not necessarily over Q.

Warning. The images of the lift i are not guaranteed to form a direct sum.

The library syntax is GEN algsimpledec(GEN al, long flag).

3.9.50 algsplittingdata(al). Given a central simple algebra al output by alginit de�ned by a
multiplication table over its center K (a number �eld), returns data stored to compute a splitting
of al over an extension. This data is a t_VEC [t,Lbas,Lbasinv] with 3 components:

� an element t of al such that L = K(t) is a maximal sub�eld of al ;

� a matrix Lbas expressing a L-basis of al (given an L-vector space structure by multiplication
on the right) on the integral basis of al ;

� a matrix Lbasinv expressing the integral basis of al on the previous L-basis.

? nf = nfinit(y^3-5); a = y; b = y^2;

? {m_i = [0,a,0,0;
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1,0,0,0;

0,0,0,a;

0,0,1,0];}

? {m_j = [0, 0,b, 0;

0, 0,0,-b;

1, 0,0, 0;

0,-1,0, 0];}

? {m_k = [0, 0,0,-a*b;

0, 0,b, 0;

0,-a,0, 0;

1, 0,0, 0];}

? mt = [matid(4), m_i, m_j, m_k];

? A = alginit(nf,mt,'x);

? [t,Lb,Lbi] = algsplittingdata(A);

? t

%8 = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]~;

? matsize(Lb)

%9 = [12, 2]

? matsize(Lbi)

%10 = [2, 12]

The library syntax is GEN algsplittingdata(GEN al).

3.9.51 algsplitting�eld(al). Given a central simple algebra al output by alginit, returns an
rnf structure: the splitting �eld of al that is stored in al , as a relative extension of the center.

nf = nfinit(y^3-5);

a = y; b = y^2;

{m_i = [0,a,0,0;

1,0,0,0;

0,0,0,a;

0,0,1,0];}

{m_j = [0, 0,b, 0;

0, 0,0,-b;

1, 0,0, 0;

0,-1,0, 0];}

{m_k = [0, 0,0,-a*b;

0, 0,b, 0;

0,-a,0, 0;

1, 0,0, 0];}

mt = [matid(4), m_i, m_j, m_k];

A = alginit(nf,mt,'x);

algsplittingfield(A).pol

%8 = x^2 - y

The library syntax is GEN algsplittingfield(GEN al).

306



3.9.52 algsplittingmatrix(al ; x). A central simple algebra al output by alginit contains data
describing an isomorphism � : A
K L!Md(L), where d is the degree of the algebra and L is an
extension of L with [L : K] = d. Returns the matrix �(x).

? A = alginit(nfinit(y), [-1,-1]);

? algsplittingmatrix(A,[0,0,0,2]~)

%2 =

[Mod(x + 1, x^2 + 1) Mod(Mod(1, y)*x + Mod(-1, y), x^2 + 1)]

[Mod(x + 1, x^2 + 1) Mod(-x + 1, x^2 + 1)]

Also accepts matrices with coe�cients in al .

The library syntax is GEN algsplittingmatrix(GEN al, GEN x).

3.9.53 algsqr(al ; x). Given an element x in al , computes its square x2 in the algebra al .

? A = alginit(nfinit(y), [-1,-1]);

? algsqr(A,[1,0,2,0]~)

%2 = [-3, 0, 4, 0]~

Also accepts a square matrix with coe�cients in al .

The library syntax is GEN algsqr(GEN al, GEN x).

3.9.54 algsub(al ; x; y). Given two elements x and y in al , computes their di�erence x� y in the
algebra al .

? A = alginit(nfinit(y), [-1,-1]);

? algsub(A,[1,1,0,0]~,[1,0,1,0]~)

%2 = [0, 1, -1, 0]~

Also accepts matrices with coe�cients in al .

The library syntax is GEN algsub(GEN al, GEN x, GEN y).

3.9.55 algsubalg(al ; B). al being a table algebra output by algtableinit and B being a basis
of a subalgebra of al represented by a matrix, returns an algebra isomorphic to B .

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];

? A = algtableinit(mt,2);

? B = algsubalg(A,[1,0; 0,0; 0,1]);

? algdim(A)

%4 = 3

? algdim(B)

%5 = 2

The library syntax is GEN algsubalg(GEN al, GEN B).
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3.9.56 algtableinit(mt ; fp = 0g). Initialize the associative algebra over K = Q (p omitted)
or Fp de�ned by the multiplication table mt . As a K-vector space, the algebra is generated
by a basis (e1 = 1; e2; : : : ; en); the table is given as a t_VEC of n matrices in Mn(K), giving
the left multiplication by the basis elements ei, in the given basis. Assumes that e1 = 1, that
Ke1 � : : : � Ken] describes an associative algebra over K, and in the case K = Q that the
multiplication table is integral. If the algebra is already known to be central and simple, then the
case K = Fp is useless, and one should use alginit directly.

The point of this function is to input a �nite dimensional K-algebra, so as to later compute
its radical, then to split the quotient algebra as a product of simple algebras over K.

The pari object representing such an algebra A is a t_VEC with the following data:

� The characteristic of A, accessed with algchar.

� The multiplication table of A, accessed with algmultable.

� The traces of the elements of the basis.
A simple example: the 2� 2 upper triangular matrices over Q, generated by I2, a = [0; 1; 0; 0]

and b = [0; 0; 0; 1], such that a2 = 0, ab = a, ba = 0, b2 = b:

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];

? A = algtableinit(mt);

? algradical(A) \\ = (a)

%6 =

[0]

[1]

[0]

? algcenter(A) \\ = (I_2)

%7 =

[1]

[0]

[0]

The library syntax is GEN algtableinit(GEN mt, GEN p = NULL).

3.9.57 algtensor(al1 ; al2 ; fmaxord = 1g). Given two algebras al1 and al2 , computes their tensor
product. For table algebras output by algtableinit, the 
ag maxord is ignored. For central simple
algebras output by alginit, computes a maximal order by default. Prevent this computation by
setting maxord = 0.

Currently only implemented for cyclic algebras of coprime degree over the same center K, and
the tensor product is over K.

The library syntax is GEN algtensor(GEN al1, GEN al2, long maxord).
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3.9.58 algtrace(al ; x). Given an element x in al , computes its trace. If al is a table algebra
output by algtableinit, returns the absolute trace of x , which is an element of Fp or Q; if al is
the output of alginit, returns the reduced trace of x , which is an element of the center of al .

? A = alginit(nfinit(y), [-1,-1]);

? algtrace(A,[5,0,0,1]~)

%2 = 11

Also accepts a square matrix with coe�cients in al .

The library syntax is GEN algtrace(GEN al, GEN x).

3.9.59 algtype(al). Given an algebra al output by alginit or by algtableinit, returns an
integer indicating the type of algebra:

� 0: not a valid algebra.

� 1: table algebra output by algtableinit.

� 2: central simple algebra output by alginit and represented by a multiplication table over
its center.

� 3: central simple algebra output by alginit and represented by a cyclic algebra.

? algtype([])

%1 = 0

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];

? A = algtableinit(mt,2);

? algtype(A)

%4 = 1

? nf = nfinit(y^3-5);

? a = y; b = y^2;

? {m_i = [0,a,0,0;

1,0,0,0;

0,0,0,a;

0,0,1,0];}

? {m_j = [0, 0,b, 0;

0, 0,0,-b;

1, 0,0, 0;

0,-1,0, 0];}

? {m_k = [0, 0,0,-a*b;

0, 0,b, 0;

0,-a,0, 0;

1, 0,0, 0];}

? mt = [matid(4), m_i, m_j, m_k];

? A = alginit(nf,mt,'x);

? algtype(A)

%12 = 2

? A = alginit(nfinit(y), [-1,-1]);

? algtype(A)

%14 = 3

The library syntax is long algtype(GEN al).
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3.10 Polynomials and power series.

We group here all functions which are speci�c to polynomials or power series. Many other
functions which can be applied on these objects are described in the other sections. Also, some of
the functions described here can be applied to other types.

3.10.1 O(p^e). If p is an integer greater than 2, returns a p-adic 0 of precision e. In all other cases,
returns a power series zero with precision given by ev, where v is the X-adic valuation of p with
respect to its main variable.

The library syntax is GEN ggrando(). GEN zeropadic(GEN p, long e) for a p-adic and GEN

zeroser(long v, long e) for a power series zero in variable v.

3.10.2 bezoutres(A;B; fvg). Deprecated alias for polresultantext

The library syntax is GEN polresultantext0(GEN A, GEN B, long v = -1) where v is a
variable number.

3.10.3 deriv(x; fvg). Derivative of x with respect to the main variable if v is omitted, and with
respect to v otherwise. The derivative of a scalar type is zero, and the derivative of a vector or
matrix is done componentwise. One can use x0 as a shortcut if the derivative is with respect to the
main variable of x.

By de�nition, the main variable of a t_POLMOD is the main variable among the coe�cients from
its two polynomial components (representative and modulus); in other words, assuming a polmod
represents an element of R[X]=(T (X)), the variable X is a mute variable and the derivative is taken
with respect to the main variable used in the base ring R.

The library syntax is GEN deriv(GEN x, long v = -1) where v is a variable number.

3.10.4 di�op(x; v; d; fn = 1g). Let v be a vector of variables, and d a vector of the same length,
return the image of x by the n-power (1 if n is not given) of the di�erential operator D that
assumes the value d[i] on the variable v[i]. The value of D on a scalar type is zero, and D
applies componentwise to a vector or matrix. When applied to a t_POLMOD, if no value is provided
for the variable of the modulus, such value is derived using the implicit function theorem.

Some examples: This function can be used to di�erentiate formal expressions: If E = exp(X2)
then we have E0 = 2 �X � E. We can derivate X � exp(X2) as follow:

? diffop(E*X,[X,E],[1,2*X*E])

%1 = (2*X^2 + 1)*E

Let Sin and Cos be two function such that Sin2 + Cos2 = 1 and Cos0 = �Sin. We can
di�erentiate Sin=Cos as follow, PARI inferring the value of Sin0 from the equation:

? diffop(Mod('Sin/'Cos,'Sin^2+'Cos^2-1),['Cos],[-'Sin])

%1 = Mod(1/Cos^2, Sin^2 + (Cos^2 - 1))

Compute the Bell polynomials (both complete and partial) via the Faa di Bruno formula:

Bell(k,n=-1)=

{

my(var(i)=eval(Str("X",i)));

my(x,v,dv);
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v=vector(k,i,if(i==1,'E,var(i-1)));

dv=vector(k,i,if(i==1,'X*var(1)*'E,var(i)));

x=diffop('E,v,dv,k)/'E;

if(n<0,subst(x,'X,1),polcoeff(x,n,'X))

}

The library syntax is GEN diffop0(GEN x, GEN v, GEN d, long n).

For n = 1, the function GEN diffop(GEN x, GEN v, GEN d) is also available.

3.10.5 eval(x). Replaces in x the formal variables by the values that have been assigned to them
after the creation of x. This is mainly useful in GP, and not in library mode. Do not confuse this
with substitution (see subst).

If x is a character string, eval(x) executes x as a GP command, as if directly input from the
keyboard, and returns its output.

? x1 = "one"; x2 = "two";

? n = 1; eval(Str("x", n))

%2 = "one"

? f = "exp"; v = 1;

? eval(Str(f, "(", v, ")"))

%4 = 2.7182818284590452353602874713526624978

Note that the �rst construct could be implemented in a simpler way by using a vector x =

["one","two"]; x[n], and the second by using a closure f = exp; f(v). The �nal example
is more interesting:

? genmat(u,v) = matrix(u,v,i,j, eval( Str("x",i,j) ));

? genmat(2,3) \\ generic 2 x 3 matrix

%2 =

[x11 x12 x13]

[x21 x22 x23]

A syntax error in the evaluation expression raises an e SYNTAX exception, which can be trapped
as usual:

? 1a

*** syntax error, unexpected variable name, expecting $end or ';': 1a

*** ^-

? E(expr) =

{

iferr(eval(expr),

e, print("syntax error"),

errname(e) == "e_SYNTAX");

}

? E("1+1")

%1 = 2

? E("1a")

syntax error

The library syntax is geval(GEN x).
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3.10.6 factorpadic(pol ; p; r). p-adic factorization of the polynomial pol to precision r, the re-
sult being a two-column matrix as in factor. Note that this is not the same as a factorization
over Z=prZ (polynomials over that ring do not form a unique factorization domain, anyway), but
approximations in Q=prZ of the true factorization in Qp[X].

? factorpadic(x^2 + 9, 3,5)

%1 =

[(1 + O(3^5))*x^2 + O(3^5)*x + (3^2 + O(3^5)) 1]

? factorpadic(x^2 + 1, 5,3)

%2 =

[ (1 + O(5^3))*x + (2 + 5 + 2*5^2 + O(5^3)) 1]

[(1 + O(5^3))*x + (3 + 3*5 + 2*5^2 + O(5^3)) 1]

The factors are normalized so that their leading coe�cient is a power of p. The method used is a
modi�ed version of the round 4 algorithm of Zassenhaus.

If pol has inexact t_PADIC coe�cients, this is not always well-de�ned; in this case, the poly-
nomial is �rst made integral by dividing out the p-adic content, then lifted to Z using truncate

coe�cientwise. Hence we actually factor exactly a polynomial which is only p-adically close to the
input. To avoid pitfalls, we advise to only factor polynomials with exact rational coe�cients.

The library syntax is factorpadic(GEN f,GEN p, long r) . The function factorpadic0 is
deprecated, provided for backward compatibility.

3.10.7 intformal(x; fvg). formal integration of x with respect to the variable v (wrt. the main
variable if v is omitted). Since PARI cannot represent logarithmic or arctangent terms, any such
term in the result will yield an error:

? intformal(x^2)

%1 = 1/3*x^3

? intformal(x^2, y)

%2 = y*x^2

? intformal(1/x)

*** at top-level: intformal(1/x)

*** ^--------------

*** intformal: domain error in intformal: residue(series, pole) != 0

The argument x can be of any type. When x is a rational function, we assume that the base
ring is an integral domain of characteristic zero.

By de�nition, the main variable of a t_POLMOD is the main variable among the coe�cients
from its two polynomial components (representative and modulus); in other words, assuming a
polmod represents an element of R[X]=(T (X)), the variable X is a mute variable and the integral
is taken with respect to the main variable used in the base ring R. In particular, it is meaningless
to integrate with respect to the main variable of x.mod:

? intformal(Mod(1,x^2+1), 'x)

*** intformal: incorrect priority in intformal: variable x = x

The library syntax is GEN integ(GEN x, long v = -1) where v is a variable number.
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3.10.8 padicappr(pol ; a). Vector of p-adic roots of the polynomial pol congruent to the p-adic
number a modulo p, and with the same p-adic precision as a. The number a can be an ordinary p-
adic number (type t_PADIC, i.e. an element of Zp) or can be an integral element of a �nite extension
of Qp, given as a t_POLMOD at least one of whose coe�cients is a t_PADIC. In this case, the result
is the vector of roots belonging to the same extension of Qp as a.

The library syntax is GEN padicappr(GEN pol, GEN a). Also available is GEN Zp_appr(GEN

f, GEN a) when a is a t_PADIC.

3.10.9 padic�elds(p;N; fflag = 0g). Returns a vector of polynomials generating all the extensions
of degree N of the �eld Qp of p-adic rational numbers; N is allowed to be a 2-component vector
[n; d], in which case we return the extensions of degree n and discriminant pd.

The list is minimal in the sense that two di�erent polynomials generate non-isomorphic ex-
tensions; in particular, the number of polynomials is the number of classes of non-isomorphic
extensions. If P is a polynomial in this list, � is any root of P and K = Qp(�), then � is the sum
of a uniformizer and a (lift of a) generator of the residue �eld of K; in particular, the powers of �
generate the ring of p-adic integers of K.

If flag = 1, replace each polynomial P by a vector [P; e; f; d; c] where e is the rami�cation
index, f the residual degree, d the valuation of the discriminant, and c the number of conjugate
�elds. If flag = 2, only return the number of extensions in a �xed algebraic closure (Krasner's
formula), which is much faster.

The library syntax is GEN padicfields0(GEN p, GEN N, long flag). Also available is GEN
padicfields(GEN p, long n, long d, long flag), which computes extensions of Qp of degree
n and discriminant pd.

3.10.10 polchebyshev(n; fflag = 1g; fa =0 xg). Returns the nth Chebyshev polynomial of the
�rst kind Tn (flag = 1) or the second kind Un (flag = 2), evaluated at a ('x by default). Both
series of polynomials satisfy the 3-term relation

Pn+1 = 2xPn � Pn�1;

and are determined by the initial conditions U0 = T0 = 1, T1 = x, U1 = 2x. In fact T 0n = nUn�1
and, for all complex numbers z, we have Tn(cos z) = cos(nz) and Un�1(cos z) = sin(nz)= sin z. If
n � 0, then these polynomials have degree n. For n < 0, Tn is equal to T�n and Un is equal to
�U�2�n. In particular, U�1 = 0.

The library syntax is GEN polchebyshev_eval(long n, long flag, GEN a = NULL). Also
available are GEN polchebyshev(long n, long flag, long v), GEN polchebyshev1(long n,

long v) and GEN polchebyshev2(long n, long v) for Tn and Un respectively.

3.10.11 polclass(D; finv = 0g; fx =0 xg). Return a polynomial in Z[x] generating the Hilbert
class �eld for the imaginary quadratic discriminant D. If inv is 0 (the default), use the modular j-
function and return the classical Hilbert polynomial, otherwise use a class invariant. The following
invariants correspond to the di�erent values of inv, where f denotes Weber's function weber, and

wp;q the double eta quotient given by wp;q =
�(x=p)�(x=q)
�(x)�(x=pq)

The invariants wp;q are not allowed unless they satisfy the following technical conditions en-
suring they do generate the Hilbert class �eld and not a strict sub�eld:
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� if p 6= q, we need them both non-inert, prime to the conductor of Z[
p
D]. Let P;Q be prime

ideals above p and q; if both are unrami�ed, we further require that P�1Q�1 be all distinct in the
class group of Z[

p
D]; if both are rami�ed, we require that PQ 6= 1 in the class group.

� if p = q, we want it split and prime to the conductor and the prime ideal above it must have
order 6= 1; 2; 4 in the class group.

Invariants are allowed under the additional conditions on D listed below.

� 0 : j
� 1 : f , D = 1mod 8 and D = 1; 2mod 3;

� 2 : f2, D = 1mod 8 and D = 1; 2mod 3;

� 3 : f3, D = 1mod 8;

� 4 : f4, D = 1mod 8 and D = 1; 2mod 3;

� 5 : 
2 = j1=3, D = 1; 2mod 3;

� 6 : w2;3, D = 1mod 8 and D = 1; 2mod 3;

� 8 : f8, D = 1mod 8 and D = 1; 2mod 3;

� 9 : w3;3, D = 1mod 2 and D = 1; 2mod 3;

� 10: w2;5, D 6= 60mod 80 and D = 1; 2mod 3;

� 14: w2;7, D = 1mod 8;

� 15: w3;5, D = 1; 2mod 3;

� 21: w3;7, D = 1mod 2 and 21 does not divide D

� 23: w2
2;3, D = 1; 2mod 3;

� 24: w2
2;5, D = 1; 2mod 3;

� 26: w2;13, D 6= 156mod 208;

� 27: w2
2;7, D 6= 28mod 112;

� 28: w2
3;3, D = 1; 2mod 3;

� 35: w5;7, D = 1; 2mod 3;

� 39: w3;13, D = 1mod 2 and D = 1; 2mod 3;

The algorithm for computing the polynomial does not use the 
oating point approach, which
would evaluate a precise modular function in a precise complex argument. Instead, it relies on a
faster Chinese remainder based approach modulo small primes, in which the class invariant is only
de�ned algebraically by the modular polynomial relating the modular function to j. So in fact,
any of the several roots of the modular polynomial may actually be the class invariant, and more
precise assertions cannot be made.

For instance, while polclass(D) returns the minimal polynomial of j(�) with � (any) quadratic
integer for the discriminant D, the polynomial returned by polclass(D, 5) can be the minimal
polynomial of any of 
2(�), �3
2(�) or �

2
3
2(�), the three roots of the modular polynomial j = 
32 ,

in which j has been specialised to j(�).

The modular polynomial is given by j = (f24�16)3

f24 for Weber's function f .
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For the double eta quotients of level N = pq, all functions are covered such that the modular
curve X+

0 (N), the function �eld of which is generated by the functions invariant under �0(N) and
the Fricke{Atkin{Lehner involution, is of genus 0 with function �eld generated by (a power of) the
double eta quotient w. This ensures that the full Hilbert class �eld (and not a proper sub�eld) is
generated by class invariants from these double eta quotients. Then the modular polynomial is of
degree 2 in j, and of degree  (N) = (p+ 1)(q + 1) in w.

? polclass(-163)

%1 = x + 262537412640768000

? polclass(-51, , 'z)

%2 = z^2 + 5541101568*z + 6262062317568

? polclass(-151,1)

x^7 - x^6 + x^5 + 3*x^3 - x^2 + 3*x + 1

The library syntax is GEN polclass(GEN D, long inv, long x = -1) where x is a variable
number.

3.10.12 polcoe�(x; n; fvg). Coe�cient of degree n of the polynomial x, with respect to the main
variable if v is omitted, with respect to v otherwise. If n is greater than the degree, the result is
zero.

Naturally applies to scalars (polynomial of degree 0), as well as to rational functions whose
denominator is a monomial. It also applies to power series: if n is less than the valuation, the result
is zero. If it is greater than the largest signi�cant degree, then an error message is issued.

For greater 
exibility, x can be a vector or matrix type and the function then returns compo-
nent(x,n).

The library syntax is GEN polcoeff0(GEN x, long n, long v = -1) where v is a variable
number.

3.10.13 polcyclo(n; fa =0 xg). n-th cyclotomic polynomial, evaluated at a ('x by default). The
integer n must be positive.

Algorithm used: reduce to the case where n is squarefree; to compute the cyclotomic polyno-
mial, use �np(x) = �n(x

p)=�(x); to compute it evaluated, use �n(x) =
Q

djn(x
d � 1)�(n=d). In the

evaluated case, the algorithm assumes that ad � 1 is either 0 or invertible, for all d j n. If this is
not the case (the base ring has zero divisors), use subst(polcyclo(n),x,a).

The library syntax is GEN polcyclo_eval(long n, GEN a = NULL). The variant GEN polcy-

clo(long n, long v) returns the n-th cyclotomic polynomial in variable v.

3.10.14 polcyclofactors(f). Returns a vector of polynomials, whose product is the product of
distinct cyclotomic polynomials dividing f .

? f = x^10+5*x^8-x^7+8*x^6-4*x^5+8*x^4-3*x^3+7*x^2+3;

? v = polcyclofactors(f)

%2 = [x^2 + 1, x^2 + x + 1, x^4 - x^3 + x^2 - x + 1]

? apply(poliscycloprod, v)

%3 = [1, 1, 1]

? apply(poliscyclo, v)

%4 = [4, 3, 10]
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In general, the polynomials are products of cyclotomic polynomials and not themselves irreducible:

? g = x^8+2*x^7+6*x^6+9*x^5+12*x^4+11*x^3+10*x^2+6*x+3;

? polcyclofactors(g)

%2 = [x^6 + 2*x^5 + 3*x^4 + 3*x^3 + 3*x^2 + 2*x + 1]

? factor(%[1])

%3 =

[ x^2 + x + 1 1]

[x^4 + x^3 + x^2 + x + 1 1]

The library syntax is GEN polcyclofactors(GEN f).

3.10.15 poldegree(x; fvg). Degree of the polynomial x in the main variable if v is omitted, in the
variable v otherwise.

The degree of 0 is -oo. The degree of a non-zero scalar is 0. Finally, when x is a non-zero
polynomial or rational function, returns the ordinary degree of x. Raise an error otherwise.

The library syntax is GEN gppoldegree(GEN x, long v = -1) where v is a variable number.
Also available is long poldegree(GEN x, long v), which returns -LONG_MAX if x = 0 and the
degree as a long integer.

3.10.16 poldisc(pol ; fvg). Discriminant of the polynomial pol in the main variable if v is omitted,
in v otherwise. Uses a modular algorithm over Z or Q, and the subresultant algorithm otherwise.

? T = x^4 + 2*x+1;

? poldisc(T)

%2 = -176

? poldisc(T^2)

%3 = 0

For convenience, the function also applies to types t_QUAD and t_QFI/t_QFR:

? z = 3*quadgen(8) + 4;

? poldisc(z)

%2 = 8

? q = Qfb(1,2,3);

? poldisc(q)

%4 = -8

The library syntax is GEN poldisc0(GEN pol, long v = -1) where v is a variable number.

3.10.17 poldiscreduced(f). Reduced discriminant vector of the (integral, monic) polynomial f .
This is the vector of elementary divisors of Z[�]=f 0(�)Z[�], where � is a root of the polynomial f .
The components of the result are all positive, and their product is equal to the absolute value of
the discriminant of f .

The library syntax is GEN reduceddiscsmith(GEN f).

3.10.18 polgrae�e(f). Returns the Graeffe transform g of f , such that g(x2) = f(x)f(�x).
The library syntax is GEN polgraeffe(GEN f).
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3.10.19 polhensellift(A;B; p; e). Given a prime p, an integral polynomial A whose leading co-
e�cient is a p-unit, a vector B of integral polynomials that are monic and pairwise relatively
prime modulo p, and whose product is congruent to A=lc(A) modulo p, lift the elements of B to
polynomials whose product is congruent to A modulo pe.

More generally, if T is an integral polynomial irreducible mod p, and B is a factorization of
A over the �nite �eld Fp[t]=(T ), you can lift it to Zp[t]=(T; p

e) by replacing the p argument with
[p; T ]:

? { T = t^3 - 2; p = 7; A = x^2 + t + 1;

B = [x + (3*t^2 + t + 1), x + (4*t^2 + 6*t + 6)];

r = polhensellift(A, B, [p, T], 6) }

%1 = [x + (20191*t^2 + 50604*t + 75783), x + (97458*t^2 + 67045*t + 41866)]

? liftall( r[1] * r[2] * Mod(Mod(1,p^6),T) )

%2 = x^2 + (t + 1)

The library syntax is GEN polhensellift(GEN A, GEN B, GEN p, long e).

3.10.20 polhermite(n; fa =0 xg). nth Hermite polynomial Hn evaluated at a ('x by default), i.e.

Hn(x) = (�1)nex2 d
n

dxn
e�x

2

:

The library syntax is GEN polhermite_eval(long n, GEN a = NULL). The variant GEN pol-

hermite(long n, long v) returns the n-th Hermite polynomial in variable v.

3.10.21 polinterpolate(X; fY g; ft =0 xg; f&eg). Given the data vectors X and Y of the same
length n (X containing the x-coordinates, and Y the corresponding y-coordinates), this function
�nds the interpolating polynomial P of minimal degree passing through these points and evaluates
it at t. If Y is omitted, the polynomial P interpolates the (i;X[i]). If present, e will contain an
error estimate on the returned value.

The library syntax is GEN polint(GEN X, GEN Y = NULL, GEN t = NULL, GEN *e = NULL)

.

3.10.22 poliscyclo(f). Returns 0 if f is not a cyclotomic polynomial, and n > 0 if f = �n, the
n-th cyclotomic polynomial.

? poliscyclo(x^4-x^2+1)

%1 = 12

? polcyclo(12)

%2 = x^4 - x^2 + 1

? poliscyclo(x^4-x^2-1)

%3 = 0

The library syntax is long poliscyclo(GEN f).
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3.10.23 poliscycloprod(f). Returns 1 if f is a product of cyclotomic polynomial, and 0 otherwise.

? f = x^6+x^5-x^3+x+1;

? poliscycloprod(f)

%2 = 1

? factor(f)

%3 =

[ x^2 + x + 1 1]

[x^4 - x^2 + 1 1]

? [ poliscyclo(T) | T <- %[,1] ]

%4 = [3, 12]

? polcyclo(3) * polcyclo(12)

%5 = x^6 + x^5 - x^3 + x + 1

The library syntax is long poliscycloprod(GEN f).

3.10.24 polisirreducible(pol). pol being a polynomial (univariate in the present version 2.9.1),
returns 1 if pol is non-constant and irreducible, 0 otherwise. Irreducibility is checked over the
smallest base �eld over which pol seems to be de�ned.

The library syntax is long isirreducible(GEN pol).

3.10.25 pollead(x; fvg). Leading coe�cient of the polynomial or power series x. This is computed
with respect to the main variable of x if v is omitted, with respect to the variable v otherwise.

The library syntax is GEN pollead(GEN x, long v = -1) where v is a variable number.

3.10.26 pollegendre(n; fa =0 xg). nth Legendre polynomial evaluated at a ('x by default).

The library syntax is GEN pollegendre_eval(long n, GEN a = NULL). To obtain the n-th
Legendre polynomial in variable v, use GEN pollegendre(long n, long v).

3.10.27 polmodular(L; finv = 0g; fx =0 xg; fy =0 yg; fderivs = 0g). Return the modular poly-
nomial of prime level L in variables x and y for the modular function speci�ed by inv. If inv is 0
(the default), use the modular j function, if inv is 1 use the Weber-f function, and if inv is 5 use

2 =

p
[3]j. See polclass for the full list of invariants. If x is given as Mod(j, p) or an element

j of a �nite �eld (as a t_FFELT), then return the modular polynomial of level L evaluated at j. If
j is from a �nite �eld and derivs is non-zero, then return a triple where the last two elements are
the �rst and second derivatives of the modular polynomial evaluated at j.

? polmodular(3)

%1 = x^4 + (-y^3 + 2232*y^2 - 1069956*y + 36864000)*x^3 + ...

? polmodular(7, 1, , 'J)

%2 = x^8 - J^7*x^7 + 7*J^4*x^4 - 8*J*x + J^8

? polmodular(7, 5, 7*ffgen(19)^0, 'j)

%3 = j^8 + 4*j^7 + 4*j^6 + 8*j^5 + j^4 + 12*j^2 + 18*j + 18

? polmodular(7, 5, Mod(7,19), 'j)

%4 = Mod(1, 19)*j^8 + Mod(4, 19)*j^7 + Mod(4, 19)*j^6 + ...

? u = ffgen(5)^0; T = polmodular(3,0,,'j)*u;

? polmodular(3, 0, u,'j,1)

%6 = [j^4 + 3*j^2 + 4*j + 1, 3*j^2 + 2*j + 4, 3*j^3 + 4*j^2 + 4*j + 2]
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? subst(T,x,u)

%7 = j^4 + 3*j^2 + 4*j + 1

? subst(T',x,u)

%8 = 3*j^2 + 2*j + 4

? subst(T'',x,u)

%9 = 3*j^3 + 4*j^2 + 4*j + 2

The library syntax is GEN polmodular(long L, long inv, GEN x = NULL, long y = -1,

long derivs) where y is a variable number.

3.10.28 polrecip(pol). Reciprocal polynomial of pol , i.e. the coe�cients are in reverse order. pol
must be a polynomial.

The library syntax is GEN polrecip(GEN pol).

3.10.29 polresultant(x; y; fvg; fflag = 0g). Resultant of the two polynomials x and y with exact
entries, with respect to the main variables of x and y if v is omitted, with respect to the variable
v otherwise. The algorithm assumes the base ring is a domain. If you also need the u and v such
that x � u+ y � v = Res(x; y), use the polresultantext function.

If flag = 0 (default), uses the algorithm best suited to the inputs, either the subresultant
algorithm (Lazard/Ducos variant, generic case), a modular algorithm (inputs inQ[X]) or Sylvester's
matrix (inexact inputs).

If flag = 1, uses the determinant of Sylvester's matrix instead; this should always be slower
than the default.

The library syntax is GEN polresultant0(GEN x, GEN y, long v = -1, long flag) where
v is a variable number.

3.10.30 polresultantext(A;B; fvg). Finds polynomials U and V such that A � U + B � V = R,
where R is the resultant of U and V with respect to the main variables of A and B if v is omitted, and
with respect to v otherwise. Returns the row vector [U; V;R]. The algorithm used (subresultant)
assumes that the base ring is a domain.

? A = x*y; B = (x+y)^2;

? [U,V,R] = polresultantext(A, B)

%2 = [-y*x - 2*y^2, y^2, y^4]

? A*U + B*V

%3 = y^4

? [U,V,R] = polresultantext(A, B, y)

%4 = [-2*x^2 - y*x, x^2, x^4]

? A*U+B*V

%5 = x^4

The library syntax is GEN polresultantext0(GEN A, GEN B, long v = -1) where v is a
variable number. Also available is GEN polresultantext(GEN x, GEN y).
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3.10.31 polroots(x). Complex roots of the polynomial x , given as a column vector where each
root is repeated according to its multiplicity. The precision is given as for transcendental functions:
in GP it is kept in the variable realprecision and is transparent to the user, but it must be
explicitly given as a second argument in library mode.

The algorithm used is a modi�cation of A. Sch�onhage's root-�nding algorithm, due to and
originally implemented by X. Gourdon. Barring bugs, it is guaranteed to converge and to give the
roots to the required accuracy.

The library syntax is GEN roots(GEN x, long prec).

3.10.32 polrootsmod(pol ; p; fflag = 0g). Row vector of roots modulo p of the polynomial pol .
Multiple roots are not repeated.

? polrootsmod(x^2-1,2)

%1 = [Mod(1, 2)]~

If p is very small, you may set flag = 1, which uses a naive search.

The library syntax is GEN rootmod0(GEN pol, GEN p, long flag).

3.10.33 polrootspadic(x; p; r). Vector of p-adic roots of the polynomial pol , given to p-adic
precision r p is assumed to be a prime. Multiple roots are not repeated. Note that this is not the
same as the roots in Z=prZ, rather it gives approximations in Z=prZ of the true roots living in Qp.

? polrootspadic(x^3 - x^2 + 64, 2, 5)

%1 = [2^3 + O(2^5), 2^3 + 2^4 + O(2^5), 1 + O(2^5)]~

If pol has inexact t_PADIC coe�cients, this is not always well-de�ned; in this case, the poly-
nomial is �rst made integral by dividing out the p-adic content, then lifted to Z using truncate

coe�cientwise. Hence the roots given are approximations of the roots of an exact polynomial which
is p-adically close to the input. To avoid pitfalls, we advise to only factor polynomials with eact
rational coe�cients.

The library syntax is GEN rootpadic(GEN x, GEN p, long r).

3.10.34 polrootsreal(T; fabg). Real roots of the polynomial T with rational coe�cients, multiple
roots being included according to their multiplicity. The roots are given to a relative accuracy of
realprecision. If argument ab is present, it must be a vector [a; b] with two components (of type
t_INT, t_FRAC or t_INFINITY) and we restrict to roots belonging to that closed interval.

? \p9

? polrootsreal(x^2-2)

%1 = [-1.41421356, 1.41421356]~
? polrootsreal(x^2-2, [1,+oo])

%2 = [1.41421356]~
? polrootsreal(x^2-2, [2,3])

%3 = []~
? polrootsreal((x-1)*(x-2), [2,3])

%4 = [2.00000000]~

The algorithm used is a modi�cation of Uspensky's method (relying on Descartes's rule of
sign), following Rouillier and Zimmerman's article \E�cient isolation of a polynomial real roots"
(http://hal.inria.fr/inria-00072518/). Barring bugs, it is guaranteed to converge and to give
the roots to the required accuracy.
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Remark. If the polynomial T is of the form Q(xh) for some h � 2 and ab is omitted, the routine
will apply the algorithm to Q (restricting to non-negative roots when h is even), then take h-th
roots. On the other hand, if you want to specify ab, you should apply the routine to Q yourself
and a suitable interval [a0; b0] using approximate h-th roots adapted to your problem: the function
will not perform this change of variables if ab is present.

The library syntax is GEN realroots(GEN T, GEN ab = NULL, long prec).

3.10.35 polsturm(T; fabg). Number of real roots of the real squarefree polynomial T . If the
argument ab is present, it must be a vector [a; b] with two real components (of type t_INT, t_REAL,
t_FRAC or t_INFINITY) and we count roots belonging to that closed interval.

If possible, you should stick to exact inputs, that is avoid t_REALs in T and the bounds a; b: the
result is then guaranteed and we use a fast algorithm (Uspensky's method, relying on Descartes's
rule of sign, see polrootsreal); otherwise, we use Sturm's algorithm and the result may be wrong
due to round-o� errors.

? T = (x-1)*(x-2)*(x-3);

? polsturm(T)

%2 = 3

? polsturm(T, [-oo,2])

%3 = 2

? polsturm(T, [1/2,+oo])

%4 = 3

? polsturm(T, [1, Pi]) \\ Pi inexact: not recommended !

%5 = 3

? polsturm(T*1., [0, 4]) \\ T*1. inexact: not recommended !

%6 = 3

? polsturm(T^2, [0, 4]) \\ not squarefree

*** at top-level: polsturm(T^2,[0,4])

*** ^-------------------

*** polsturm: domain error in polsturm: issquarefree(pol) = 0

? polsturm((T*1.)^2, [0, 4]) \\ not squarefree AND inexact

*** at top-level: polsturm((T*1.)^2,[0

*** ^--------------------

*** polsturm: precision too low in polsturm.

In the last example, the input polynomial is not squarefree but there is no way to ascertain it from
the given 
oating point approximation: we get a precision error in this case.

The library syntax is long RgX_sturmpart(GEN T, GEN ab) or long sturm(GEN T) (for the
case ab = NULL). The function long sturmpart(GEN T, GEN a, GEN b) is obsolete and deprecated.

3.10.36 polsubcyclo(n; d; fv =0 xg). Gives polynomials (in variable v) de�ning the sub-Abelian
extensions of degree d of the cyclotomic �eld Q(�n), where d j �(n).

If there is exactly one such extension the output is a polynomial, else it is a vector of polyno-
mials, possibly empty. To get a vector in all cases, use concat([], polsubcyclo(n,d)).

The function galoissubcyclo allows to specify exactly which sub-Abelian extension should
be computed.

The library syntax is GEN polsubcyclo(long n, long d, long v = -1) where v is a variable
number.
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3.10.37 polsylvestermatrix(x; y). Forms the Sylvester matrix corresponding to the two poly-
nomials x and y, where the coe�cients of the polynomials are put in the columns of the matrix
(which is the natural direction for solving equations afterwards). The use of this matrix can be
essential when dealing with polynomials with inexact entries, since polynomial Euclidean division
doesn't make much sense in this case.

The library syntax is GEN sylvestermatrix(GEN x, GEN y).

3.10.38 polsym(x; n). Creates the column vector of the symmetric powers of the roots of the
polynomial x up to power n, using Newton's formula.

The library syntax is GEN polsym(GEN x, long n).

3.10.39 poltchebi(n; fv =0 xg). Deprecated alias for polchebyshev

The library syntax is GEN polchebyshev1(long n, long v = -1) where v is a variable
number.

3.10.40 polzagier(n;m). Creates Zagier's polynomial P
(m)
n used in the functions sumalt and

sumpos (with flag = 1), see \Convergence acceleration of alternating series", Cohen et al., Experi-
ment. Math., vol. 9, 2000, pp. 3{12.

If m < 0 or m � n, P
(m)
n = 0. We have Pn := P

(0)
n is Tn(2x � 1), where Tn is the Legendre

polynomial of the second kind. For n > m > 0, P
(m)
n is the m-th di�erence with step 2 of the

sequence nm+1Pn; in this case, it satis�es

2P (m)
n (sin2t) =

dm+1

dtm+1
(sin(2t)m sin(2(n�m)t)):

The library syntax is GEN polzag(long n, long m).

3.10.41 serconvol(x; y). Convolution (or Hadamard product) of the two power series x and y; in
other words if x =

P
ak �Xk and y =

P
bk �Xk then serconvol(x; y) =

P
ak � bk �Xk.

The library syntax is GEN convol(GEN x, GEN y).

3.10.42 serlaplace(x). x must be a power series with non-negative exponents or a polynomial. If
x =

P
(ak=k!) �Xk then the result is

P
ak �Xk.

The library syntax is GEN laplace(GEN x).

3.10.43 serreverse(s). Reverse power series of s, i.e. the series t such that t(s) = x; s must be a
power series whose valuation is exactly equal to one.

? \ps 8

? t = serreverse(tan(x))

%2 = x - 1/3*x^3 + 1/5*x^5 - 1/7*x^7 + O(x^8)

? tan(t)

%3 = x + O(x^8)

The library syntax is GEN serreverse(GEN s).
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3.10.44 subst(x; y; z). Replace the simple variable y by the argument z in the \polynomial"
expression x. Every type is allowed for x, but if it is not a genuine polynomial (or power series, or
rational function), the substitution will be done as if the scalar components were polynomials of
degree zero. In particular, beware that:

? subst(1, x, [1,2; 3,4])

%1 =

[1 0]

[0 1]

? subst(1, x, Mat([0,1]))

*** at top-level: subst(1,x,Mat([0,1])

*** ^--------------------

*** subst: forbidden substitution by a non square matrix.

If x is a power series, z must be either a polynomial, a power series, or a rational function. Finally,
if x is a vector, matrix or list, the substitution is applied to each individual entry.

Use the function substvec to replace several variables at once, or the function substpol to
replace a polynomial expression.

The library syntax is GEN gsubst(GEN x, long y, GEN z) where y is a variable number.

3.10.45 substpol(x; y; z). Replace the \variable" y by the argument z in the \polynomial" ex-
pression x. Every type is allowed for x, but the same behavior as subst above apply.

The di�erence with subst is that y is allowed to be any polynomial here. The substitution is
done moding out all components of x (recursively) by y� t, where t is a new free variable of lowest
priority. Then substituting t by z in the resulting expression. For instance

? substpol(x^4 + x^2 + 1, x^2, y)

%1 = y^2 + y + 1

? substpol(x^4 + x^2 + 1, x^3, y)

%2 = x^2 + y*x + 1

? substpol(x^4 + x^2 + 1, (x+1)^2, y)

%3 = (-4*y - 6)*x + (y^2 + 3*y - 3)

The library syntax is GEN gsubstpol(GEN x, GEN y, GEN z). Further, GEN gdeflate(GEN

T, long v, long d) attempts to write T (x) in the form t(xd), where x =pol x(v), and returns
NULL if the substitution fails (for instance in the example %2 above).

3.10.46 substvec(x; v; w). v being a vector of monomials of degree 1 (variables), w a vector
of expressions of the same length, replace in the expression x all occurrences of vi by wi. The
substitutions are done simultaneously; more precisely, the vi are �rst replaced by new variables in
x, then these are replaced by the wi:

? substvec([x,y], [x,y], [y,x])

%1 = [y, x]

? substvec([x,y], [x,y], [y,x+y])

%2 = [y, x + y] \\ not [y, 2*y]

The library syntax is GEN gsubstvec(GEN x, GEN v, GEN w).
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3.10.47 sumformal(f; fvg). formal sum of the polynomial expression f with respect to the main
variable if v is omitted, with respect to the variable v otherwise; it is assumed that the base ring
has characteristic zero. In other words, considering f as a polynomial function in the variable v,
returns F , a polynomial in v vanishing at 0, such that F (b)� F (a) = sumb

v=a+1f(v):

? sumformal(n) \\ 1 + ... + n

%1 = 1/2*n^2 + 1/2*n

? f(n) = n^3+n^2+1;

? F = sumformal(f(n)) \\ f(1) + ... + f(n)

%3 = 1/4*n^4 + 5/6*n^3 + 3/4*n^2 + 7/6*n

? sum(n = 1, 2000, f(n)) == subst(F, n, 2000)

%4 = 1

? sum(n = 1001, 2000, f(n)) == subst(F, n, 2000) - subst(F, n, 1000)

%5 = 1

? sumformal(x^2 + x*y + y^2, y)

%6 = y*x^2 + (1/2*y^2 + 1/2*y)*x + (1/3*y^3 + 1/2*y^2 + 1/6*y)

? x^2 * y + x * sumformal(y) + sumformal(y^2) == %

%7 = 1

The library syntax is GEN sumformal(GEN f, long v = -1) where v is a variable number.

3.10.48 taylor(x; t; fd = seriesprecisiong). Taylor expansion around 0 of x with respect to the
simple variable t. x can be of any reasonable type, for example a rational function. Contrary to
Ser, which takes the valuation into account, this function adds O(td) to all components of x.

? taylor(x/(1+y), y, 5)

%1 = (y^4 - y^3 + y^2 - y + 1)*x + O(y^5)

? Ser(x/(1+y), y, 5)

*** at top-level: Ser(x/(1+y),y,5)

*** ^----------------

*** Ser: main variable must have higher priority in gtoser.

The library syntax is GEN tayl(GEN x, long t, long precdl) where t is a variable number.

3.10.49 thue(tnf ; a; fsolg). Returns all solutions of the equation P (x; y) = a in integers x and y,
where tnf was created with thueinit(P ). If present, sol must contain the solutions of Norm(x) = a
modulo units of positive norm in the number �eld de�ned by P (as computed by bnfisintnorm).
If there are in�nitely many solutions, an error is issued.

It is allowed to input directly the polynomial P instead of a tnf , in which case, the function
�rst performs thueinit(P,0). This is very wasteful if more than one value of a is required.

If tnf was computed without assuming GRH (
ag 1 in thueinit), then the result is uncondi-
tional. Otherwise, it depends in principle of the truth of the GRH, but may still be unconditionally
correct in some favorable cases. The result is conditional on the GRH if a 6= �1 and, P has a single
irreducible rational factor, whose attached tentative class number h and regulator R (as computed
assuming the GRH) satisfy

� h > 1,

� R=0:2 > 1:5.

Here's how to solve the Thue equation x13 � 5y13 = �4:

324



? tnf = thueinit(x^13 - 5);

? thue(tnf, -4)

%1 = [[1, 1]]

In this case, one checks that bnfinit(x^13 -5).no is 1. Hence, the only solution is (x; y) = (1; 1),
and the result is unconditional. On the other hand:

? P = x^3-2*x^2+3*x-17; tnf = thueinit(P);

? thue(tnf, -15)

%2 = [[1, 1]] \\ a priori conditional on the GRH.

? K = bnfinit(P); K.no

%3 = 3

? K.reg

%4 = 2.8682185139262873674706034475498755834

This time the result is conditional. All results computed using this particular tnf are likewise
conditional, except for a right-hand side of �1. The above result is in fact correct, so we did not
just disprove the GRH:

? tnf = thueinit(x^3-2*x^2+3*x-17, 1 /*unconditional*/);

? thue(tnf, -15)

%4 = [[1, 1]]

Note that reducible or non-monic polynomials are allowed:

? tnf = thueinit((2*x+1)^5 * (4*x^3-2*x^2+3*x-17), 1);

? thue(tnf, 128)

%2 = [[-1, 0], [1, 0]]

Reducible polynomials are in fact much easier to handle.

The library syntax is GEN thue(GEN tnf, GEN a, GEN sol = NULL).

3.10.50 thueinit(P; fflag = 0g). Initializes the tnf corresponding to P , a non-constant univariate
polynomial with integer coe�cients. The result is meant to be used in conjunction with thue to
solve Thue equations P (X=Y )Y degP = a, where a is an integer. Accordingly, P must either have
at least two distinct irreducible factors over Q, or have one irreducible factor T with degree > 2 or
two conjugate complex roots: under these (necessary and su�cient) conditions, the equation has
�nitely many integer solutions.

? S = thueinit(t^2+1);

? thue(S, 5)

%2 = [[-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1]]

? S = thueinit(t+1);

*** at top-level: thueinit(t+1)

*** ^-------------

*** thueinit: domain error in thueinit: P = t + 1

The hardest case is when degP > 2 and P is irreducible with at least one real root. The routine
then uses Bilu-Hanrot's algorithm.

If flag is non-zero, certify results unconditionally. Otherwise, assume GRH, this being much
faster of course. In the latter case, the result may still be unconditionally correct, see thue. For
instance in most cases where P is reducible (not a pure power of an irreducible), or conditional
computed class groups are trivial or the right hand side is �1, then results are unconditional.
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Note. The general philosophy is to disprove the existence of large solutions then to enumerate
bounded solutions naively. The implementation will over
ow when there exist huge solutions and
the equation has degree > 2 (the quadratic imaginary case is special, since we can use bnfisint-
norm):

? thue(t^3+2, 10^30)

*** at top-level: L=thue(t^3+2,10^30)

*** ^-----------------

*** thue: overflow in thue (SmallSols): y <= 80665203789619036028928.

? thue(x^2+2, 10^30) \\ quadratic case much easier

%1 = [[-1000000000000000, 0], [1000000000000000, 0]]

Note. It is sometimes possible to circumvent the above, and in any case obtain an important speed-
up, if you can write P = Q(xd) for some d > 1 and Q still satisfying the thueinit hypotheses.
You can then solve the equation attached to Q then eliminate all solutions (x; y) such that either
x or y is not a d-th power.

? thue(x^4+1, 10^40); \\ stopped after 10 hours

? filter(L,d) =

my(x,y); [[x,y] | v<-L, ispower(v[1],d,&x)&&ispower(v[2],d,&y)];

? L = thue(x^2+1, 10^40);

? filter(L, 2)

%4 = [[0, 10000000000], [10000000000, 0]]

The last 2 commands use less than 20ms.

The library syntax is GEN thueinit(GEN P, long flag, long prec).

3.11 Vectors, matrices, linear algebra and sets.

Note that most linear algebra functions operating on subspaces de�ned by generating sets
(such as mathnf, qflll, etc.) take matrices as arguments. As usual, the generating vectors are
taken to be the columns of the given matrix.

Since PARI does not have a strong typing system, scalars live in unspeci�ed commutative
base rings. It is very di�cult to write robust linear algebra routines in such a general setting. We
thus assume that the base ring is a domain and work over its �eld of fractions. If the base ring is
not a domain, one gets an error as soon as a non-zero pivot turns out to be non-invertible. Some
functions, e.g. mathnf or mathnfmod, speci�cally assume that the base ring is Z.

3.11.1 algdep(z; k; fflag = 0g). z being real/complex, or p-adic, �nds a polynomial (in the vari-
able 'x) of degree at most k, with integer coe�cients, having z as approximate root. Note that the
polynomial which is obtained is not necessarily the \correct" one. In fact it is not even guaranteed
to be irreducible. One can check the closeness either by a polynomial evaluation (use subst), or
by computing the roots of the polynomial given by algdep (use polroots or polrootspadic).

Internally, lindep([1; z; : : : ; zk]; flag) is used. A non-zero value of flag may improve on the
default behavior if the input number is known to a huge accuracy, and you suspect the last bits
are incorrect: if flag > 0 the computation is done with an accuracy of flag decimal digits; to get
meaningful results, the parameter flag should be smaller than the number of correct decimal digits
in the input. But default values are usually su�cient, so try without flag �rst:
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? \p200

? z = 2^(1/6)+3^(1/5);

? algdep(z, 30); \\ right in 280ms

? algdep(z, 30, 100); \\ wrong in 169ms

? algdep(z, 30, 170); \\ right in 288ms

? algdep(z, 30, 200); \\ wrong in 320ms

? \p250

? z = 2^(1/6)+3^(1/5); \\ recompute to new, higher, accuracy !

? algdep(z, 30); \\ right in 329ms

? algdep(z, 30, 200); \\ right in 324ms

? \p500

? algdep(2^(1/6)+3^(1/5), 30); \\ right in 677ms

? \p1000

? algdep(2^(1/6)+3^(1/5), 30); \\ right in 1.5s

The changes in realprecision only a�ect the quality of the initial approximation to 21=6 + 31=5,
algdep itself uses exact operations. The size of its operands depend on the accuracy of the input
of course: more accurate input means slower operations.

Proceeding by increments of 5 digits of accuracy, algdep with default 
ag produces its �rst
correct result at 195 digits, and from then on a steady stream of correct results:

\\ assume T contains the correct result, for comparison

forstep(d=100, 250, 5, localprec(d);\

print(d, " ", algdep(2^(1/6)+3^(1/5),30) == T))

The above example is the test case studied in a 2000 paper by Borwein and Lisonek: Appli-
cations of integer relation algorithms, Discrete Math., 217, p. 65{82. The version of PARI tested
there was 1.39, which succeeded reliably from precision 265 on, in about 200 as much time as the
current version.

The library syntax is GEN algdep0(GEN z, long k, long flag). Also available is GEN

algdep(GEN z, long k) (flag = 0).

3.11.2 charpoly(A; fv =0 xg; fflag = 5g). characteristic polynomial of A with respect to the
variable v, i.e. determinant of v � I �A if A is a square matrix.

? charpoly([1,2;3,4]);

%1 = x^2 - 5*x - 2

? charpoly([1,2;3,4],, 't)

%2 = t^2 - 5*t - 2

If A is not a square matrix, the function returns the characteristic polynomial of the map \multi-
plication by A" if A is a scalar:

? charpoly(Mod(x+2, x^3-2))

%1 = x^3 - 6*x^2 + 12*x - 10

? charpoly(I)

%2 = x^2 + 1

? charpoly(quadgen(5))

%3 = x^2 - x - 1

? charpoly(ffgen(ffinit(2,4)))

%4 = Mod(1, 2)*x^4 + Mod(1, 2)*x^3 + Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2)
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The value of flag is only signi�cant for matrices, and we advise to stick to the default value.
Let n be the dimension of A.

If flag = 0, same method (Le Verrier's) as for computing the adjoint matrix, i.e. using the
traces of the powers of A. Assumes that n! is invertible; uses O(n4) scalar operations.

If flag = 1, uses Lagrange interpolation which is usually the slowest method. Assumes that n!
is invertible; uses O(n4) scalar operations.

If flag = 2, uses the Hessenberg form. Assumes that the base ring is a �eld. Uses O(n3) scalar
operations, but su�ers from coe�cient explosion unless the base �eld is �nite or R.

If flag = 3, uses Berkowitz's division free algorithm, valid over any ring (commutative, with
unit). Uses O(n4) scalar operations.

If flag = 4, x must be integral. Uses a modular algorithm: Hessenberg form for various small
primes, then Chinese remainders.

If flag = 5 (default), uses the \best" method given x. This means we use Berkowitz unless the
base ring is Z (use flag = 4) or a �eld where coe�cient explosion does not occur, e.g. a �nite �eld
or the reals (use flag = 2).

The library syntax is GEN charpoly0(GEN A, long v = -1, long flag) where v is a variable
number. Also available are GEN charpoly(GEN x, long v) (flag = 5), GEN caract(GEN A, long

v) (flag = 1), GEN carhess(GEN A, long v) (flag = 2), GEN carberkowitz(GEN A, long v)

(flag = 3) and GEN caradj(GEN A, long v, GEN *pt). In this last case, if pt is not NULL, *pt
receives the address of the adjoint matrix of A (see matadjoint), so both can be obtained at once.

3.11.3 concat(x; fyg). Concatenation of x and y. If x or y is not a vector or matrix, it is considered
as a one-dimensional vector. All types are allowed for x and y, but the sizes must be compatible.
Note that matrices are concatenated horizontally, i.e. the number of rows stays the same. Using
transpositions, one can concatenate them vertically, but it is often simpler to use matconcat.

? x = matid(2); y = 2*matid(2);

? concat(x,y)

%2 =

[1 0 2 0]

[0 1 0 2]

? concat(x~,y~)~
%3 =

[1 0]

[0 1]

[2 0]

[0 2]

? matconcat([x;y])

%4 =

[1 0]

[0 1]

[2 0]

[0 2]
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To concatenate vectors sideways (i.e. to obtain a two-row or two-column matrix), use Mat instead,
or matconcat:

? x = [1,2];

? y = [3,4];

? concat(x,y)

%3 = [1, 2, 3, 4]

? Mat([x,y]~)

%4 =

[1 2]

[3 4]

? matconcat([x;y])

%5 =

[1 2]

[3 4]

Concatenating a row vector to a matrix having the same number of columns will add the row
to the matrix (top row if the vector is x, i.e. comes �rst, and bottom row otherwise).

The empty matrix [;] is considered to have a number of rows compatible with any operation,
in particular concatenation. (Note that this is not the case for empty vectors [ ] or [ ]~.)

If y is omitted, x has to be a row vector or a list, in which case its elements are concatenated,
from left to right, using the above rules.

? concat([1,2], [3,4])

%1 = [1, 2, 3, 4]

? a = [[1,2]~, [3,4]~]; concat(a)

%2 =

[1 3]

[2 4]

? concat([1,2; 3,4], [5,6]~)

%3 =

[1 2 5]

[3 4 6]

? concat([%, [7,8]~, [1,2,3,4]])

%5 =

[1 2 5 7]

[3 4 6 8]

[1 2 3 4]

The library syntax is GEN gconcat(GEN x, GEN y = NULL). GEN gconcat1(GEN x) is a short-
cut for gconcat(x,NULL).
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3.11.4 forqfvec(v; q; b; expr). q being a square and symmetric integral matrix representing a
positive de�nite quadratic form, evaluate expr for all vector v such that q(v) � b. The formal
variable v runs through all such vectors in turn.

? forqfvec(v, [3,2;2,3], 3, print(v))

[0, 1]~
[1, 0]~
[-1, 1]~

The library syntax is void forqfvec0(GEN v, GEN q = NULL, GEN b). The following function
is also available: void forqfvec(void *E, long (*fun)(void *, GEN, GEN, double), GEN

q, GEN b): Evaluate fun(E,w,v,m) on all v such that q(v) < b, where v is a t_VECSMALL and
m = q(v) is a C double. The function fun must return 0, unless forqfvec should stop, in which
case, it should return 1.

3.11.5 lindep(v; fflag = 0g). �nds a small non-trivial integral linear combination between
components of v. If none can be found return an empty vector.

If v is a vector with real/complex entries we use a 
oating point (variable precision) LLL
algorithm. If flag = 0 the accuracy is chosen internally using a crude heuristic. If flag > 0 the
computation is done with an accuracy of flag decimal digits. To get meaningful results in the latter
case, the parameter flag should be smaller than the number of correct decimal digits in the input.

? lindep([sqrt(2), sqrt(3), sqrt(2)+sqrt(3)])

%1 = [-1, -1, 1]~

If v is p-adic, flag is ignored and the algorithm LLL-reduces a suitable (dual) lattice.

? lindep([1, 2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)])

%2 = [1, -2]~

If v is a matrix (or a vector of column vectors, or a vector of row vectors), flag is ignored and
the function returns a non trivial kernel vector if one exists, else an empty vector.

? lindep([1,2,3;4,5,6;7,8,9])

%3 = [1, -2, 1]~
? lindep([[1,0], [2,0]])

%4 = [2, -1]~
? lindep([[1,0], [0,1]])

%5 = []~

If v contains polynomials or power series over some base �eld, �nds a linear relation with
coe�cients in the �eld.

? lindep([x*y, x^2 + y, x^2*y + x*y^2, 1])

%4 = [y, y, -1, -y^2]~

For better control, it is preferable to use t_POL rather than t_SER in the input, otherwise one gets
a linear combination which is t-adically small, but not necessarily 0. Indeed, power series are �rst
converted to the minimal absolute accuracy occurring among the entries of v (which can cause
some coe�cients to be ignored), then truncated to polynomials:

? v = [t^2+O(t^4), 1+O(t^2)]; L=lindep(v)

%1 = [1, 0]~
? v*L
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%2 = t^2+O(t^4) \\ small but not 0

The library syntax is GEN lindep0(GEN v, long flag). Also available are GEN lindep(GEN

v) (real/complex entries, flag = 0), GEN lindep2(GEN v, long flag) (real/complex entries)
GEN padic_lindep(GEN v) (p-adic entries) and GEN Xadic_lindep(GEN v) (polynomial entries).
Finally GEN deplin(GEN v) returns a non-zero kernel vector for a t_MAT input.

3.11.6 matadjoint(M; fflag = 0g). adjoint matrix of M , i.e. a matrix N of cofactors of M ,
satisfying M � N = det(M) � Id. M must be a (non-necessarily invertible) square matrix of
dimension n. If flag is 0 or omitted, we try to use Leverrier-Faddeev's algorithm, which assumes
that n! invertible. If it fails or flag = 1, compute T = charpoly(M) independently �rst and return
(�1)n�1(T (x)� T (0))=x evaluated at M .

? a = [1,2,3;3,4,5;6,7,8] * Mod(1,4);

%2 =

[Mod(1, 4) Mod(2, 4) Mod(3, 4)]

[Mod(3, 4) Mod(0, 4) Mod(1, 4)]

[Mod(2, 4) Mod(3, 4) Mod(0, 4)]

Both algorithms use O(n4) operations in the base ring, and are usually slower than computing the
characteristic polynomial or the inverse of M directly.

The library syntax is GEN matadjoint0(GEN M, long flag). Also available are GEN adj(GEN

x) (flag=0) and GEN adjsafe(GEN x) (flag=1).

3.11.7 matcompanion(x). The left companion matrix to the non-zero polynomial x.

The library syntax is GEN matcompanion(GEN x).

3.11.8 matconcat(v). Returns a t_MAT built from the entries of v, which may be a t_VEC (con-
catenate horizontally), a t_COL (concatenate vertically), or a t_MAT (concatenate vertically each
column, and concatenate vertically the resulting matrices). The entries of v are always considered
as matrices: they can themselves be t_VEC (seen as a row matrix), a t_COL seen as a column
matrix), a t_MAT, or a scalar (seen as an 1� 1 matrix).

? A=[1,2;3,4]; B=[5,6]~; C=[7,8]; D=9;

? matconcat([A, B]) \\ horizontal

%1 =

[1 2 5]

[3 4 6]

? matconcat([A, C]~) \\ vertical

%2 =

[1 2]

[3 4]

[7 8]

? matconcat([A, B; C, D]) \\ block matrix

%3 =

[1 2 5]

[3 4 6]

[7 8 9]
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If the dimensions of the entries to concatenate do not match up, the above rules are extended as
follows:

� each entry vi;j of v has a natural length and height: 1� 1 for a scalar, 1� n for a t_VEC of
length n, n� 1 for a t_COL, m� n for an m� n t_MAT

� let Hi be the maximum over j of the lengths of the vi;j , let Lj be the maximum over i of the
heights of the vi;j . The dimensions of the (i; j)-th block in the concatenated matrix are Hi � Lj .

� a scalar s = vi;j is considered as s times an identity matrix of the block dimension min(Hi; Lj)

� blocks are extended by 0 columns on the right and 0 rows at the bottom, as needed.

? matconcat([1, [2,3]~, [4,5,6]~]) \\ horizontal

%4 =

[1 2 4]

[0 3 5]

[0 0 6]

? matconcat([1, [2,3], [4,5,6]]~) \\ vertical

%5 =

[1 0 0]

[2 3 0]

[4 5 6]

? matconcat([B, C; A, D]) \\ block matrix

%6 =

[5 0 7 8]

[6 0 0 0]

[1 2 9 0]

[3 4 0 9]

? U=[1,2;3,4]; V=[1,2,3;4,5,6;7,8,9];

? matconcat(matdiagonal([U, V])) \\ block diagonal

%7 =

[1 2 0 0 0]

[3 4 0 0 0]

[0 0 1 2 3]

[0 0 4 5 6]

[0 0 7 8 9]

The library syntax is GEN matconcat(GEN v).
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3.11.9 matdet(x; fflag = 0g). Determinant of the square matrix x.
If flag = 0, uses an appropriate algorithm depending on the coe�cients:

� integer entries: modular method due to Dixon, Pernet and Stein.

� real or p-adic entries: classical Gaussian elimination using maximal pivot.

� intmod entries: classical Gaussian elimination using �rst non-zero pivot.

� other cases: Gauss-Bareiss.
If flag = 1, uses classical Gaussian elimination with appropriate pivoting strategy (maximal

pivot for real or p-adic coe�cients). This is usually worse than the default.

The library syntax is GEN det0(GEN x, long flag). Also available are GEN det(GEN x)

(flag = 0), GEN det2(GEN x) (flag = 1) and GEN ZM_det(GEN x) for integer entries.

3.11.10 matdetint(B). Let B be an m� n matrix with integer coe�cients. The determinant D
of the lattice generated by the columns of B is the square root of det(BTB) if B has maximal rank
m, and 0 otherwise.

This function uses the Gauss-Bareiss algorithm to compute a positive multiple of D. When B
is square, the function actually returns D = j detBj.

This function is useful in conjunction with mathnfmod, which needs to know such a multiple.
If the rank is maximal and the matrix non-square, you can obtain D exactly using

matdet( mathnfmod(B, matdetint(B)) )

Note that as soon as one of the dimensions gets large (m or n is larger than 20, say), it will often
be much faster to use mathnf(B, 1) or mathnf(B, 4) directly.

The library syntax is GEN detint(GEN B).

3.11.11 matdiagonal(x). x being a vector, creates the diagonal matrix whose diagonal entries
are those of x.

? matdiagonal([1,2,3]);

%1 =

[1 0 0]

[0 2 0]

[0 0 3]

Block diagonal matrices are easily created using matconcat:

? U=[1,2;3,4]; V=[1,2,3;4,5,6;7,8,9];

? matconcat(matdiagonal([U, V]))

%1 =

[1 2 0 0 0]

[3 4 0 0 0]

[0 0 1 2 3]

[0 0 4 5 6]

[0 0 7 8 9]

The library syntax is GEN diagonal(GEN x).
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3.11.12 mateigen(x; fflag = 0g). Returns the (complex) eigenvectors of x as columns of a matrix.
If flag = 1, return [L;H], where L contains the eigenvalues and H the corresponding eigenvectors;
multiple eigenvalues are repeated according to the eigenspace dimension (which may be less than
the eigenvalue multiplicity in the characteristic polynomial).

This function �rst computes the characteristic polynomial of x and approximates its complex
roots (�i), then tries to compute the eigenspaces as kernels of the x � �i. This algorithm is ill-
conditioned and is likely to miss kernel vectors if some roots of the characteristic polynomial are
close, in particular if it has multiple roots.

? A = [13,2; 10,14]; mateigen(A)

%1 =

[-1/2 2/5]

[ 1 1]

? [L,H] = mateigen(A, 1);

? L

%3 = [9, 18]

? H

%4 =

[-1/2 2/5]

[ 1 1]

For symmetric matrices, use qfjacobi instead; for Hermitian matrices, compute

A = real(x);

B = imag(x);

y = matconcat([A, -B; B, A]);

and apply qfjacobi to y.

The library syntax is GEN mateigen(GEN x, long flag, long prec). Also available is GEN
eigen(GEN x, long prec) (flag = 0)

3.11.13 matfrobenius(M; fflagg; fv =0 xg). Returns the Frobenius form of the square matrix M.
If flag = 1, returns only the elementary divisors as a vector of polynomials in the variable v. If
flag = 2, returns a two-components vector [F,B] where F is the Frobenius form and B is the basis
change so that M = B�1FB.

The library syntax is GEN matfrobenius(GEN M, long flag, long v = -1) where v is a
variable number.

3.11.14 mathess(x). Returns a matrix similar to the square matrix x, which is in upper Hessenberg
form (zero entries below the �rst subdiagonal).

The library syntax is GEN hess(GEN x).

3.11.15 mathilbert(n). x being a long, creates the Hilbert matrixof order x, i.e. the matrix
whose coe�cient (i,j) is 1=(i+ j � 1).

The library syntax is GEN mathilbert(long n).
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3.11.16 mathnf(M; fflag = 0g). Let R be a Euclidean ring, equal to Z or to K[X] for some
�eld K. If M is a (not necessarily square) matrix with entries in R, this routine �nds the upper
triangular Hermite normal form of M . If the rank of M is equal to its number of rows, this is a
square matrix. In general, the columns of the result form a basis of the R-module spanned by the
columns of M .

The values 0; 1; 2; 3 of flag have a binary meaning, analogous to the one in matsnf; in this case,
binary digits of flag mean:

� 1 (complete output): if set, outputs [H;U ], where H is the Hermite normal form of M , and
U is a transformation matrix such that MU = [0jH]. The matrix U belongs to GL(R). When M
has a large kernel, the entries of U are in general huge.

� 2 (generic input): Deprecated . If set, assume that R = K[X] is a polynomial ring; otherwise,
assume that R = Z. This 
ag is now useless since the routine always checks whether the matrix
has integral entries.

For these 4 values, we use a naive algorithm, which behaves well in small dimension only. Larger
values correspond to di�erent algorithms, are restricted to integer matrices, and all output the
unimodular matrix U . From now on all matrices have integral entries.

� flag = 4, returns [H;U ] as in \complete output" above, using a variant of LLL reduction
along the way. The matrix U is provably small in the L2 sense, and in general close to optimal;
but the reduction is in general slow, although provably polynomial-time.

If flag = 5, uses Batut's algorithm and output [H;U; P ], such that H and U are as before
and P is a permutation of the rows such that P applied to MU gives H. This is in general faster
than flag = 4 but the matrix U is usually worse; it is heuristically smaller than with the default
algorithm.

When the matrix is dense and the dimension is large (bigger than 100, say), flag = 4 will be
fastest. When M has maximal rank, then

H = mathnfmod(M, matdetint(M))

will be even faster. You can then recover U as M�1H.

? M = matrix(3,4,i,j,random([-5,5]))

%1 =

[ 0 2 3 0]

[-5 3 -5 -5]

[ 4 3 -5 4]

? [H,U] = mathnf(M, 1);

? U

%3 =

[-1 0 -1 0]

[ 0 5 3 2]

[ 0 3 1 1]

[ 1 0 0 0]

? H

%5 =

[19 9 7]
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[ 0 9 1]

[ 0 0 1]

? M*U

%6 =

[0 19 9 7]

[0 0 9 1]

[0 0 0 1]

For convenience,M is allowed to be a t_VEC, which is then automatically converted to a t_MAT,
as per the Mat function. For instance to solve the generalized extended gcd problem, one may use

? v = [116085838, 181081878, 314252913,10346840];

? [H,U] = mathnf(v, 1);

? U

%2 =

[ 103 -603 15 -88]

[-146 13 -1208 352]

[ 58 220 678 -167]

[-362 -144 381 -101]

? v*U

%3 = [0, 0, 0, 1]

This also allows to input a matrix as a t_VEC of t_COLs of the same length (which Mat would
concatenate to the t_MAT having those columns):

? v = [[1,0,4]~, [3,3,4]~, [0,-4,-5]~]; mathnf(v)

%1 =

[47 32 12]

[ 0 1 0]

[ 0 0 1]

The library syntax is GEN mathnf0(GEN M, long flag). Also available are GEN hnf(GEN M)

(flag = 0) and GEN hnfall(GEN M) (flag = 1). To reduce huge relation matrices (sparse with small
entries, say dimension 400 or more), you can use the pair hnfspec / hnfadd. Since this is quite
technical and the calling interface may change, they are not documented yet. Look at the code in
basemath/hnf snf.c.

3.11.17 mathnfmod(x; d). If x is a (not necessarily square) matrix of maximal rank with integer
entries, and d is a multiple of the (non-zero) determinant of the lattice spanned by the columns of
x, �nds the upper triangular Hermite normal form of x.

If the rank of x is equal to its number of rows, the result is a square matrix. In general, the
columns of the result form a basis of the lattice spanned by the columns of x. Even when d is
known, this is in general slower than mathnf but uses much less memory.

The library syntax is GEN hnfmod(GEN x, GEN d).
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3.11.18 mathnfmodid(x; d). Outputs the (upper triangular) Hermite normal form of x concate-
nated with the diagonal matrix with diagonal d. Assumes that x has integer entries. Variant: if d
is an integer instead of a vector, concatenate d times the identity matrix.

? m=[0,7;-1,0;-1,-1]

%1 =

[ 0 7]

[-1 0]

[-1 -1]

? mathnfmodid(m, [6,2,2])

%2 =

[2 1 1]

[0 1 0]

[0 0 1]

? mathnfmodid(m, 10)

%3 =

[10 7 3]

[ 0 1 0]

[ 0 0 1]

The library syntax is GEN hnfmodid(GEN x, GEN d).

3.11.19 mathouseholder(Q; v). applies a sequence Q of Householder transforms, as returned by
matqr(M; 1) to the vector or matrix v.

The library syntax is GEN mathouseholder(GEN Q, GEN v).

3.11.20 matid(n). Creates the n� n identity matrix.

The library syntax is GEN matid(long n).

3.11.21 matimage(x; fflag = 0g). Gives a basis for the image of the matrix x as columns of a
matrix. A priori the matrix can have entries of any type. If flag = 0, use standard Gauss pivot. If
flag = 1, use matsupplement (much slower: keep the default 
ag!).

The library syntax is GEN matimage0(GEN x, long flag). Also available is GEN image(GEN

x) (flag = 0).

3.11.22 matimagecompl(x). Gives the vector of the column indices which are not extracted
by the function matimage, as a permutation (t_VECSMALL). Hence the number of components of
matimagecompl(x) plus the number of columns of matimage(x) is equal to the number of columns
of the matrix x.

The library syntax is GEN imagecompl(GEN x).

3.11.23 matindexrank(x). x being a matrix of rank r, returns a vector with two t_VECSMALL

components y and z of length r giving a list of rows and columns respectively (starting from 1) such
that the extracted matrix obtained from these two vectors using vecextract(x; y; z) is invertible.

The library syntax is GEN indexrank(GEN x).
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3.11.24 matintersect(x; y). x and y being two matrices with the same number of rows each of
whose columns are independent, �nds a basis of the Q-vector space equal to the intersection of the
spaces spanned by the columns of x and y respectively. The faster function idealintersect can
be used to intersect fractional ideals (projective ZK modules of rank 1); the slower but much more
general function nfhnf can be used to intersect general ZK-modules.

The library syntax is GEN intersect(GEN x, GEN y).

3.11.25 matinverseimage(x; y). Given a matrix x and a column vector or matrix y, returns a
preimage z of y by x if one exists (i.e such that xz = y), an empty vector or matrix otherwise. The
complete inverse image is z +Kerx, where a basis of the kernel of x may be obtained by matker.

? M = [1,2;2,4];

? matinverseimage(M, [1,2]~)

%2 = [1, 0]~
? matinverseimage(M, [3,4]~)

%3 = []~ \\ no solution
? matinverseimage(M, [1,3,6;2,6,12])

%4 =

[1 3 6]

[0 0 0]

? matinverseimage(M, [1,2;3,4])

%5 = [;] \\ no solution
? K = matker(M)

%6 =

[-2]

[1]

The library syntax is GEN inverseimage(GEN x, GEN y).

3.11.26 matisdiagonal(x). Returns true (1) if x is a diagonal matrix, false (0) if not.

The library syntax is GEN isdiagonal(GEN x).

3.11.27 matker(x; fflag = 0g). Gives a basis for the kernel of the matrix x as columns of a matrix.
The matrix can have entries of any type, provided they are compatible with the generic arithmetic
operations (+, � and =).

If x is known to have integral entries, set flag = 1.

The library syntax is GEN matker0(GEN x, long flag). Also available are GEN ker(GEN x)

(flag = 0), GEN keri(GEN x) (flag = 1).

3.11.28 matkerint(x; fflag = 0g). Gives an LLL-reduced Z-basis for the lattice equal to the kernel
of the matrix x with rational entries.
flag

is deprecated, kept for backward compatibility.

The library syntax is GEN matkerint0(GEN x, long flag). Use directly GEN kerint(GEN x)

if x is known to have integer entries, and Q_primpart �rst otherwise.
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3.11.29 matmuldiagonal(x; d). Product of the matrix x by the diagonal matrix whose diagonal
entries are those of the vector d. Equivalent to, but much faster than x � matdiagonal(d).

The library syntax is GEN matmuldiagonal(GEN x, GEN d).

3.11.30 matmultodiagonal(x; y). Product of the matrices x and y assuming that the result is a
diagonal matrix. Much faster than x�y in that case. The result is unde�ned if x�y is not diagonal.

The library syntax is GEN matmultodiagonal(GEN x, GEN y).

3.11.31 matpascal(n; fqg). Creates as a matrix the lower triangular Pascal triangle of order x+1
(i.e. with binomial coe�cients up to x). If q is given, compute the q-Pascal triangle (i.e. using
q-binomial coe�cients).

The library syntax is GEN matqpascal(long n, GEN q = NULL). Also available is GEN mat-

pascal(GEN x).

3.11.32 matqr(M; fflag = 0g). Returns [Q;R], the QR-decomposition of the square invertible
matrix M with real entries: Q is orthogonal and R upper triangular. If flag = 1, the orthogonal
matrix is returned as a sequence of Householder transforms: applying such a sequence is stabler
and faster than multiplication by the corresponding Q matrix. More precisely, if

[Q,R] = matqr(M);

[q,r] = matqr(M, 1);

then r = R and mathouseholder(q;M) is (close to) R; furthermore

mathouseholder(q, matid(#M)) == Q~

the inverse of Q. This function raises an error if the precision is too low or x is singular.

The library syntax is GEN matqr(GEN M, long flag, long prec).

3.11.33 matrank(x). Rank of the matrix x.

The library syntax is long rank(GEN x).

3.11.34 matrix(m;n; fXg; fY g; fexpr = 0g). Creation of the m � n matrix whose coe�cients
are given by the expression expr . There are two formal parameters in expr , the �rst one (X)
corresponding to the rows, the second (Y ) to the columns, and X goes from 1 to m, Y goes from
1 to n. If one of the last 3 parameters is omitted, �ll the matrix with zeroes.
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3.11.35 matrixqz(A; fp = 0g). A being an m � n matrix in Mm;n(Q), let ImQA (resp. ImZA)
the Q-vector space (resp. the Z-module) spanned by the columns of A. This function has varying
behavior depending on the sign of p:

If p � 0, A is assumed to have maximal rank n � m. The function returns a matrix B 2
Mm;n(Z), with ImQB = ImQA, such that the GCD of all its n � n minors is coprime to p; in
particular, if p = 0 (default), this GCD is 1.

? minors(x) = vector(#x[,1], i, matdet(x[^i,]));

? A = [3,1/7; 5,3/7; 7,5/7]; minors(A)

%1 = [4/7, 8/7, 4/7] \\ determinants of all 2x2 minors

? B = matrixqz(A)

%2 =

[3 1]

[5 2]

[7 3]

? minors(%)

%3 = [1, 2, 1] \\ B integral with coprime minors

If p = �1, returns the HNF basis of the lattice Zn \ ImZA.
If p = �2, returns the HNF basis of the lattice Zn \ ImQA.

? matrixqz(A,-1)

%4 =

[8 5]

[4 3]

[0 1]

? matrixqz(A,-2)

%5 =

[2 -1]

[1 0]

[0 1]

The library syntax is GEN matrixqz0(GEN A, GEN p = NULL).

3.11.36 matsize(x). x being a vector or matrix, returns a row vector with two components, the
�rst being the number of rows (1 for a row vector), the second the number of columns (1 for a
column vector).

The library syntax is GEN matsize(GEN x).
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3.11.37 matsnf(X; fflag = 0g). If X is a (singular or non-singular) matrix outputs the vector
of elementary divisors of X, i.e. the diagonal of the Smith normal form of X, normalized so that
dn j dn�1 j : : : j d1.

The binary digits of flag mean:

1 (complete output): if set, outputs [U; V;D], where U and V are two unimodular matrices
such that UXV is the diagonal matrix D. Otherwise output only the diagonal of D. If X is not a
square matrix, then D will be a square diagonal matrix padded with zeros on the left or the top.

2 (generic input): if set, allows polynomial entries, in which case the input matrix must be
square. Otherwise, assume that X has integer coe�cients with arbitrary shape.

4 (cleanup): if set, cleans up the output. This means that elementary divisors equal to 1 will be
deleted, i.e. outputs a shortened vector D0 instead of D. If complete output was required, returns
[U 0; V 0; D0] so that U 0XV 0 = D0 holds. If this 
ag is set, X is allowed to be of the form `vector of
elementary divisors' or [U; V;D] as would normally be output with the cleanup 
ag unset.

The library syntax is GEN matsnf0(GEN X, long flag).

3.11.38 matsolve(M;B). M being an invertible matrix and B a column vector, �nds the solution
X ofMX = B, using Dixon p-adic lifting method ifM and B are integral and Gaussian elimination
otherwise. This has the same e�ect as, but is faster, than M�1 �B.

The library syntax is GEN gauss(GEN M, GEN B). For integral input, the function GEN

ZM_gauss(GEN M, GEN B) is also available.

3.11.39 matsolvemod(M;D;B; fflag = 0g). M being any integral matrix, D a column vector of
non-negative integer moduli, and B an integral column vector, gives a small integer solution to the
system of congruences

P
imi;jxj � bi (mod di) if one exists, otherwise returns zero. Shorthand

notation: B (resp. D) can be given as a single integer, in which case all the bi (resp. di) above are
taken to be equal to B (resp. D).

? M = [1,2;3,4];

? matsolvemod(M, [3,4]~, [1,2]~)

%2 = [-2, 0]~
? matsolvemod(M, 3, 1) \\ M X = [1,1]~ over F_3

%3 = [-1, 1]~
? matsolvemod(M, [3,0]~, [1,2]~) \\ x + 2y = 1 (mod 3), 3x + 4y = 2 (in Z)

%4 = [6, -4]~

If flag = 1, all solutions are returned in the form of a two-component row vector [x; u], where
x is a small integer solution to the system of congruences and u is a matrix whose columns give a
basis of the homogeneous system (so that all solutions can be obtained by adding x to any linear
combination of columns of u). If no solution exists, returns zero.

The library syntax is GEN matsolvemod0(GEN M, GEN D, GEN B, long flag). Also available
are GEN gaussmodulo(GEN M, GEN D, GEN B) (flag = 0) and GEN gaussmodulo2(GEN M, GEN D,

GEN B) (flag = 1).
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3.11.40 matsupplement(x). Assuming that the columns of the matrix x are linearly independent
(if they are not, an error message is issued), �nds a square invertible matrix whose �rst columns
are the columns of x, i.e. supplement the columns of x to a basis of the whole space.

? matsupplement([1;2])

%1 =

[1 0]

[2 1]

Raises an error if x has 0 columns, since (due to a long standing design bug), the dimension
of the ambient space (the number of rows) is unknown in this case:

? matsupplement(matrix(2,0))

*** at top-level: matsupplement(matrix

*** ^--------------------

*** matsupplement: sorry, suppl [empty matrix] is not yet implemented.

The library syntax is GEN suppl(GEN x).

3.11.41 mattranspose(x). Transpose of x (also x~). This has an e�ect only on vectors and
matrices.

The library syntax is GEN gtrans(GEN x).

3.11.42 minpoly(A; fv =0 xg). minimal polynomial of A with respect to the variable v., i.e. the
monic polynomial P of minimal degree (in the variable v) such that P (A) = 0.

The library syntax is GEN minpoly(GEN A, long v = -1) where v is a variable number.

3.11.43 norml2(x). Square of the L2-norm of x. More precisely, if x is a scalar, norml2(x)
is de�ned to be the square of the complex modulus of x (real t_QUADs are not supported). If
x is a polynomial, a (row or column) vector or a matrix, norml2(x) is de�ned recursively asP

i norml2(xi), where (xi) run through the components of x. In particular, this yields the usualP jxij2 (resp. P jxi;j j2) if x is a polynomial or vector (resp. matrix) with complex components.

? norml2( [ 1, 2, 3 ] ) \\ vector

%1 = 14

? norml2( [ 1, 2; 3, 4] ) \\ matrix

%2 = 30

? norml2( 2*I + x )

%3 = 5

? norml2( [ [1,2], [3,4], 5, 6 ] ) \\ recursively defined

%4 = 91

The library syntax is GEN gnorml2(GEN x).
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3.11.44 normlp(x; fp = oog). Lp-norm of x; sup norm if p is omitted or +oo. More precisely, if x
is a scalar, normlp(x; p) is de�ned to be abs(x). If x is a polynomial, a (row or column) vector or
a matrix:

� if p is omitted or +oo, then normlp(x) is de�ned recursively as maxi normlp(xi)), where (xi)
run through the components of x. In particular, this yields the usual sup norm if x is a polynomial
or vector with complex components.

� otherwise, normlp(x, p) is de�ned recursively as (
P

i normlp
p(xi; p))

1=p. In particular, this
yields the usual (

P jxijp)1=p if x is a polynomial or vector with complex components.

? v = [1,-2,3]; normlp(v) \\ vector

%1 = 3

? normlp(v, +oo) \\ same, more explicit

%2 = 3

? M = [1,-2;-3,4]; normlp(M) \\ matrix

%3 = 4

? T = (1+I) + I*x^2; normlp(T)

%4 = 1.4142135623730950488016887242096980786

? normlp([[1,2], [3,4], 5, 6]) \\ recursively defined

%5 = 6

? normlp(v, 1)

%6 = 6

? normlp(M, 1)

%7 = 10

? normlp(T, 1)

%8 = 2.4142135623730950488016887242096980786

The library syntax is GEN gnormlp(GEN x, GEN p = NULL, long prec).

3.11.45 qfauto(G; f
g). G being a square and symmetric matrix with integer entries representing
a positive de�nite quadratic form, outputs the automorphism group of the associate lattice. Since
this requires computing the minimal vectors, the computations can become very lengthy as the
dimension grows. G can also be given by an qfisominit structure. See qfisominit for the
meaning of 
 .

The output is a two-components vector [o; g] where o is the group order and g is the list of
generators (as a vector). For each generator H, the equality G = tHGH holds.

The interface of this function is experimental and will likely change in the future.

This function implements an algorithm of Plesken and Souvignier, following Souvignier's im-
plementation.

The library syntax is GEN qfauto0(GEN G, GEN fl = NULL). The function GEN qfauto(GEN

G, GEN fl) is also available where G is a vector of zm matrices.
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3.11.46 qfautoexport(qfa; fflagg). qfa being an automorphism group as output by qfauto,
export the underlying matrix group as a string suitable for (no 
ags or flag = 0) GAP or (flag = 1)
Magma. The following example computes the size of the matrix group using GAP:

? G = qfauto([2,1;1,2])

%1 = [12, [[-1, 0; 0, -1], [0, -1; 1, 1], [1, 1; 0, -1]]]

? s = qfautoexport(G)

%2 = "Group([[-1, 0], [0, -1]], [[0, -1], [1, 1]], [[1, 1], [0, -1]])"

? extern("echo \"Order("s");\" | gap -q")

%3 = 12

The library syntax is GEN qfautoexport(GEN qfa, long flag).

3.11.47 qfbil(x; y; fqg). This function is obsolete, use qfeval.

The library syntax is GEN qfbil(GEN x, GEN y, GEN q = NULL).

3.11.48 qfeval(fqg; x; fyg). Evaluate the binary quadratic form q (given by a symmetric matrix)
at the vector x; if y is present, evaluate the polar form at (x; y); if q omitted, use the standard
Euclidean scalar product, corresponding to the identity matrix.

Roughly equivalent to x~* q * y, but a little faster and more convenient (does not distinguish
between column and row vectors):

? x = [1,2,3]~; y = [-1,3,1]~; q = [1,2,3;2,2,-1;3,-1,9];

? qfeval(q,x,y)

%2 = 23

? for(i=1,10^6, qfeval(q,x,y))

time = 661ms

? for(i=1,10^6, x~*q*y)

time = 697ms

The speedup is noticeable for the quadratic form, compared to x~* q * x, since we save almost
half the operations:

? for(i=1,10^6, qfeval(q,x))

time = 487ms

The special case q = Id is handled faster if we omit q altogether:

? qfeval(,x,y)

%1 = 2

? q = matid(#x);

? for(i=1,10^6, qfeval(q,x,y))

time = 529 ms.

? for(i=1,10^6, qfeval(,x,y))

time = 228 ms.

? for(i=1,10^6, x~*y)

time = 274 ms.

We also allow t_MATs of compatible dimensions for x, and return x~* q * x in this case as
well:

? M = [1,2,3;4,5,6;7,8,9]; qfeval(,M) \\ Gram matrix
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%5 =

[66 78 90]

[78 93 108]

[90 108 126]

? q = [1,2,3;2,2,-1;3,-1,9];

? for(i=1,10^6, qfeval(q,M))

time = 2,008 ms.

? for(i=1,10^6, M~*q*M)

time = 2,368 ms.

? for(i=1,10^6, qfeval(,M))

time = 1,053 ms.

? for(i=1,10^6, M~*M)

time = 1,171 ms.

If q is a t_QFI or t_QFR, it is implicitly converted to the attached symmetric t_MAT. This is
done more e�ciently than by direct conversion, since we avoid introducing a denominator 2 and
rational arithmetic:

? q = Qfb(2,3,4); x = [2,3];

? qfeval(q, x)

%2 = 62

? Q = Mat(q)

%3 =

[ 2 3/2]

[3/2 4]

? qfeval(Q, x)

%4 = 62

? for (i=1, 10^6, qfeval(q,x))

time = 758 ms.

? for (i=1, 10^6, qfeval(Q,x))

time = 1,110 ms.

Finally, when x is a t_MAT with integral coe�cients, we allow a t_QFI or t_QFR for q and
return the binary quadratic form q �M . Again, the conversion to t_MAT is less e�cient in this case:

? q = Qfb(2,3,4); Q = Mat(q); x = [1,2;3,4];

? qfeval(q, x)

%2 = Qfb(47, 134, 96)

? qfeval(Q,x)

%3 =

[47 67]

[67 96]

? for (i=1, 10^6, qfeval(q,x))

time = 701 ms.

? for (i=1, 10^6, qfeval(Q,x))

time = 1,639 ms.

The library syntax is GEN qfeval0(GEN q = NULL, GEN x, GEN y = NULL).

345



3.11.49 qfgaussred(q). decomposition into squares of the quadratic form represented by the
symmetric matrix q. The result is a matrix whose diagonal entries are the coe�cients of the
squares, and the o�-diagonal entries on each line represent the bilinear forms. More precisely, if
(aij) denotes the output, one has

q(x) =
X
i

aii(xi +
X
j 6=i

aijxj)
2

? qfgaussred([0,1;1,0])

%1 =

[1/2 1]

[-1 -1/2]

This means that 2xy = (1=2)(x + y)2 � (1=2)(x � y)2. Singular matrices are supported, in which
case some diagonal coe�cients will vanish:

? qfgaussred([1,1;1,1])

%1 =

[1 1]

[1 0]

This means that x2 + 2xy + y2 = (x+ y)2.

The library syntax is GEN qfgaussred(GEN q). GEN qfgaussred_positive(GEN q) assumes
that q is positive de�nite and is a little faster; returns NULL if a vector with negative norm occurs
(non positive matrix or too many rounding errors).

3.11.50 q�som(G;H; f
g). G, H being square and symmetric matrices with integer entries repre-
senting positive de�nite quadratic forms, return an invertible matrix S such that G = tSHS. This
de�nes a isomorphism between the corresponding lattices. Since this requires computing the mini-
mal vectors, the computations can become very lengthy as the dimension grows. See qfisominit
for the meaning of 
 .

G can also be given by an qfisominit structure which is preferable if several forms H need
to be compared to G.

This function implements an algorithm of Plesken and Souvignier, following Souvignier's im-
plementation.

The library syntax is GEN qfisom0(GEN G, GEN H, GEN fl = NULL). Also available is GEN
qfisom(GEN G, GEN H, GEN fl) where G is a vector of zm, and H is a zm.
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3.11.51 q�sominit(G; f
g; fmg). G being a square and symmetric matrix with integer entries
representing a positive de�nite quadratic form, return an isom structure allowing to compute
isomorphisms between G and other quadratic forms faster.

The interface of this function is experimental and will likely change in future release.

If present, the optional parameter 
 must be a t_VEC with two components. It allows to
specify the invariants used, which can make the computation faster or slower. The components are

� fl[1] Depth of scalar product combination to use.

� fl[2] Maximum level of Bacher polynomials to use.

If present, m must be the set of vectors of norm up to the maximal of the diagonal entry of G,
either as a matrix or as given by qfminim. Otherwise this function computes the minimal vectors
so it become very lengthy as the dimension of G grows.

The library syntax is GEN qfisominit0(GEN G, GEN fl = NULL, GEN m = NULL). Also
available is GEN qfisominit(GEN F, GEN fl) where F is a vector of zm.

3.11.52 qfjacobi(A). Apply Jacobi's eigenvalue algorithm to the real symmetric matrix A. This
returns [L; V ], where

� L is the vector of (real) eigenvalues of A, sorted in increasing order,

� V is the corresponding orthogonal matrix of eigenvectors of A.

? \p19

? A = [1,2;2,1]; mateigen(A)

%1 =

[-1 1]

[ 1 1]

? [L, H] = qfjacobi(A);

? L

%3 = [-1.000000000000000000, 3.000000000000000000]~
? H

%4 =

[ 0.7071067811865475245 0.7071067811865475244]

[-0.7071067811865475244 0.7071067811865475245]

? norml2( (A-L[1])*H[,1] ) \\ approximate eigenvector

%5 = 9.403954806578300064 E-38

? norml2(H*H~ - 1)

%6 = 2.350988701644575016 E-38 \\ close to orthogonal

The library syntax is GEN jacobi(GEN A, long prec).
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3.11.53 q
ll(x; fflag = 0g). LLL algorithm applied to the columns of the matrix x. The columns
of x may be linearly dependent. The result is a unimodular transformation matrix T such that
x � T is an LLL-reduced basis of the lattice generated by the column vectors of x. Note that if x is
not of maximal rank T will not be square. The LLL parameters are (0:51; 0:99), meaning that the
Gram-Schmidt coe�cients for the �nal basis satisfy �i;j � j0:51j, and the Lov�asz's constant is 0:99.

If flag = 0 (default), assume that x has either exact (integral or rational) or real 
oating point
entries. The matrix is rescaled, converted to integers and the behavior is then as in flag = 1.

If flag = 1, assume that x is integral. Computations involving Gram-Schmidt vectors are
approximate, with precision varying as needed (Lehmer's trick, as generalized by Schnorr). Adapted
from Nguyen and Stehl�e's algorithm and Stehl�e's code (fplll-1.3).

If flag = 2, x should be an integer matrix whose columns are linearly independent. Returns
a partially reduced basis for x, using an unpublished algorithm by Peter Montgomery: a basis is
said to be partially reduced if jvi � vj j � jvij for any two distinct basis vectors vi; vj .

This is faster than flag = 1, esp. when one row is huge compared to the other rows (knapsack-
style), and should quickly produce relatively short vectors. The resulting basis is not LLL-reduced
in general. If LLL reduction is eventually desired, avoid this partial reduction: applying LLL to
the partially reduced matrix is signi�cantly slower than starting from a knapsack-type lattice.

If flag = 4, as flag = 1, returning a vector [K;T ] of matrices: the columns of K represent a
basis of the integer kernel of x (not LLL-reduced in general) and T is the transformation matrix
such that x � T is an LLL-reduced Z-basis of the image of the matrix x.

If flag = 5, case as case 4, but x may have polynomial coe�cients.

If flag = 8, same as case 0, but x may have polynomial coe�cients.

The library syntax is GEN qflll0(GEN x, long flag). Also available are GEN lll(GEN x)

(flag = 0), GEN lllint(GEN x) (flag = 1), and GEN lllkerim(GEN x) (flag = 4).

3.11.54 q
llgram(G; fflag = 0g). Same as qflll, except that the matrix G = x~ � x is the Gram
matrix of some lattice vectors x, and not the coordinates of the vectors themselves. In particular,
G must now be a square symmetric real matrix, corresponding to a positive quadratic form (not
necessarily de�nite: x needs not have maximal rank). The result is a unimodular transformation
matrix T such that x � T is an LLL-reduced basis of the lattice generated by the column vectors of
x. See qflll for further details about the LLL implementation.

If flag = 0 (default), assume that G has either exact (integral or rational) or real 
oating point
entries. The matrix is rescaled, converted to integers and the behavior is then as in flag = 1.

If flag = 1, assume that G is integral. Computations involving Gram-Schmidt vectors are
approximate, with precision varying as needed (Lehmer's trick, as generalized by Schnorr). Adapted
from Nguyen and Stehl�e's algorithm and Stehl�e's code (fplll-1.3).

flag = 4: G has integer entries, gives the kernel and reduced image of x.

flag = 5: same as 4, but G may have polynomial coe�cients.

The library syntax is GEN qflllgram0(GEN G, long flag). Also available are GEN lll-

gram(GEN G) (flag = 0), GEN lllgramint(GEN G) (flag = 1), and GEN lllgramkerim(GEN G)

(flag = 4).
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3.11.55 qfminim(x; fbg; fmg; fflag = 0g). x being a square and symmetric matrix representing a
positive de�nite quadratic form, this function deals with the vectors of x whose norm is less than or
equal to b, enumerated using the Fincke-Pohst algorithm, storing at most m vectors (no limit if m
is omitted). The function searches for the minimal non-zero vectors if b is omitted. The behavior
is unde�ned if x is not positive de�nite (a \precision too low" error is most likely, although more
precise error messages are possible). The precise behavior depends on flag .

If flag = 0 (default), returns at most 2m vectors. The result is a three-component vector,
the �rst component being the number of vectors enumerated (which may be larger than 2m), the
second being the maximum norm found, and the last vector is a matrix whose columns are found
vectors, only one being given for each pair �v (at most m such pairs, unless m was omitted). The
vectors are returned in no particular order.

If flag = 1, ignores m and returns [N; v], where v is a non-zero vector of length N � b, or []
if no non-zero vector has length � b. If no explicit b is provided, return a vector of smallish norm
(smallest vector in an LLL-reduced basis).

In these two cases, x must have integral entries. The implementation uses low precision 
oating
point computations for maximal speed, which gives incorrect result when x has large entries. (The
condition is checked in the code and the routine raises an error if large rounding errors occur.) A
more robust, but much slower, implementation is chosen if the following 
ag is used:

If flag = 2, x can have non integral real entries. In this case, if b is omitted, the \minimal"
vectors only have approximately the same norm. If b is omitted,m is an upper bound for the number
of vectors that will be stored and returned, but all minimal vectors are nevertheless enumerated.
If m is omitted, all vectors found are stored and returned; note that this may be a huge vector!

? x = matid(2);

? qfminim(x) \\ 4 minimal vectors of norm 1: �[0; 1], �[1; 0]
%2 = [4, 1, [0, 1; 1, 0]]

? { x =

[4, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1, 0,-1, 0, 0, 0,-2;

2, 4,-2,-2, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1, 0, 1,-1,-1;

0,-2, 4, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 0, 1,-1,-1, 0, 0;

0,-2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1,-1, 0, 1,-1, 1, 0;

0, 0,-2, 0, 4, 0, 0, 0, 1,-1, 0, 0, 1, 0, 0, 0,-2, 0, 0,-1, 1, 1, 0, 0;

-2, -2,0, 0, 0, 4,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,-1, 1, 1;

0, 0, 0, 0, 0,-2, 4,-2, 0, 0, 0, 0, 0, 1, 0, 0, 0,-1, 0, 0, 0, 1,-1, 0;

0, 0, 0, 0, 0, 0,-2, 4, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1,-1,-1, 0, 1, 0;

0, 0, 0, 0, 1,-1, 0, 0, 4, 0,-2, 0, 1, 1, 0,-1, 0, 1, 0, 0, 0, 0, 0, 0;

0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 0, 0, 1, 1,-1, 1, 0, 0, 0, 1, 0, 0, 1, 0;

0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 4,-2, 0,-1, 0, 0, 0,-1, 0,-1, 0, 0, 0, 0;

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 4,-1, 1, 0, 0,-1, 1, 0, 1, 1, 1,-1, 0;

1, 0,-1, 1, 1, 0, 0,-1, 1, 1, 0,-1, 4, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1,-1;

-1,-1, 1,-1, 0, 0, 1, 0, 1, 1,-1, 1, 0, 4, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1;

0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0;

0, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 1, 0, 4, 0, 0, 0, 0, 1, 1, 0, 0;

0, 0, 1, 0,-2, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 1, 1, 1, 0, 0, 1, 1;

1, 0, 0, 1, 0, 0,-1, 0, 1, 0,-1, 1, 1, 0, 0, 0, 1, 4, 0, 1, 1, 0, 1, 0;

0, 0, 0,-1, 0, 1, 0,-1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 4, 0, 1, 1, 0, 1;

-1, -1,1, 0,-1, 1, 0,-1, 0, 1,-1, 1, 0, 1, 0, 0, 1, 1, 0, 4, 0, 0, 1, 1;
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0, 0,-1, 1, 1, 0, 0,-1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 4, 1, 0, 1;

0, 1,-1,-1, 1,-1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 4, 0, 1;

0,-1, 0, 1, 0, 1,-1, 1, 0, 1, 0,-1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 4, 1;

-2,-1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 4]; }

? qfminim(x,,0) \\ the Leech lattice has 196560 minimal vectors of norm 4

time = 648 ms.

%4 = [196560, 4, [;]]

? qfminim(x,,0,2); \\ safe algorithm. Slower and unnecessary here.

time = 18,161 ms.

%5 = [196560, 4.000061035156250000, [;]]

In the last example, we store 0 vectors to limit memory use. All minimal vectors are nevertheless
enumerated. Provided parisize is about 50MB, qfminim(x) succeeds in 2.5 seconds.

The library syntax is GEN qfminim0(GEN x, GEN b = NULL, GEN m = NULL, long flag,

long prec). Also available are GEN minim(GEN x, GEN b = NULL, GEN m = NULL) (flag = 0),
GEN minim2(GEN x, GEN b = NULL, GEN m = NULL) (flag = 1). GEN minim_raw(GEN x, GEN b

= NULL, GEN m = NULL) (do not perform LLL reduction on x and return NULL on accuracy error).

3.11.56 qfnorm(x; fqg). This function is obsolete, use qfeval.

The library syntax is GEN qfnorm(GEN x, GEN q = NULL).

3.11.57 qforbits(G;V ). Return the orbits of V under the action of the group of linear transfor-
mation generated by the set G. It is assumed that G contains minus identity, and only one vector
in fv;�vg should be given. If G does not stabilize V , the function return 0.

In the example below, we compute representatives and lengths of the orbits of the vectors of
norm � 3 under the automorphisms of the lattice A6

1.

? Q=matid(6); G=qfauto(Q); V=qfminim(Q,3);

? apply(x->[x[1],#x],qforbits(G,V))

%2 = [[[0,0,0,0,0,1]~,6],[[0,0,0,0,1,-1]~,30],[[0,0,0,1,-1,-1]~,80]]

The library syntax is GEN qforbits(GEN G, GEN V).

3.11.58 qfparam(G; sol ; fflag = 0g). Coe�cients of binary quadratic forms that parametrize the
solutions of the ternary quadratic form G, using the particular solution sol . flag is optional and can
be 1, 2, or 3, in which case the flag-th form is reduced. The default is flag=0 (no reduction).

? G = [1,0,0;0,1,0;0,0,-34];

? M = qfparam(G, qfsolve(G))

%2 =

[ 3 -10 -3]

[-5 -6 5]

[ 1 0 1]

Indeed, the solutions can be parametrized as

(3x2 � 10xy � 3y2)2 + (�5x2 � 6xy + 5y2)2 � 34(x2 + y2)2 = 0:

? v = y^2 * M*[1,x/y,(x/y)^2]~
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%3 = [3*x^2 - 10*y*x - 3*y^2, -5*x^2 - 6*y*x + 5*y^2, -x^2 - y^2]~
? v~*G*v

%4 = 0

The library syntax is GEN qfparam(GEN G, GEN sol, long flag).

3.11.59 qfperfection(G). G being a square and symmetric matrix with integer entries representing
a positive de�nite quadratic form, outputs the perfection rank of the form. That is, gives the rank
of the family of the s symmetric matrices viv

t
i , where s is half the number of minimal vectors and

the vi (1 � i � s) are the minimal vectors.
Since this requires computing the minimal vectors, the computations can become very lengthy

as the dimension of x grows.

The library syntax is GEN perf(GEN G).

3.11.60 qfrep(q;B; fflag = 0g). q being a square and symmetric matrix with integer entries
representing a positive de�nite quadratic form, count the vectors representing successive integers.

� If flag = 0, count all vectors. Outputs the vector whose i-th entry, 1 � i � B is half the
number of vectors v such that q(v) = i.

� If flag = 1, count vectors of even norm. Outputs the vector whose i-th entry, 1 � i � B is
half the number of vectors such that q(v) = 2i.

? q = [2, 1; 1, 3];

? qfrep(q, 5)

%2 = Vecsmall([0, 1, 2, 0, 0]) \\ 1 vector of norm 2, 2 of norm 3, etc.

? qfrep(q, 5, 1)

%3 = Vecsmall([1, 0, 0, 1, 0]) \\ 1 vector of norm 2, 0 of norm 4, etc.

This routine uses a naive algorithm based on qfminim, and will fail if any entry becomes larger
than 231 (or 263).

The library syntax is GEN qfrep0(GEN q, GEN B, long flag).

3.11.61 qfsign(x). Returns [p;m] the signature of the quadratic form represented by the symmetric
matrix x. Namely, p (resp. m) is the number of positive (resp. negative) eigenvalues of x. The
result is computed using Gaussian reduction.

The library syntax is GEN qfsign(GEN x).

3.11.62 qfsolve(G). Given a square symmetric matrix G of dimension n � 1, solve over Q
the quadratic equation XtGX = 0. The matrix G must have rational coe�cients. The solution
might be a single non-zero vector (vectorv) or a matrix (whose columns generate a totally isotropic
subspace).

If no solution exists, returns an integer, that can be a prime p such that there is no local
solution at p, or �1 if there is no real solution, or �2 if n = 2 and �detG is positive but not a
square (which implies there is a real solution, but no local solution at some p dividing detG).

? G = [1,0,0;0,1,0;0,0,-34];

? qfsolve(G)

%1 = [-3, -5, 1]~
? qfsolve([1,0; 0,2])
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%2 = -1 \\ no real solution

? qfsolve([1,0,0;0,3,0; 0,0,-2])

%3 = 3 \\ no solution in Q_3

? qfsolve([1,0; 0,-2])

%4 = -2 \\ no solution, n = 2

The library syntax is GEN qfsolve(GEN G).

3.11.63 seralgdep(s; p; r). �nds a linear relation between powers (1; s; : : : ; sp) of the series s,
with polynomial coe�cients of degree � r. In case no relation is found, return 0.

? s = 1 + 10*y - 46*y^2 + 460*y^3 - 5658*y^4 + 77740*y^5 + O(y^6);

? seralgdep(s, 2, 2)

%2 = -x^2 + (8*y^2 + 20*y + 1)

? subst(%, x, s)

%3 = O(y^6)

? seralgdep(s, 1, 3)

%4 = (-77*y^2 - 20*y - 1)*x + (310*y^3 + 231*y^2 + 30*y + 1)

? seralgdep(s, 1, 2)

%5 = 0

The series main variable must not be x, so as to be able to express the result as a polynomial in x.

The library syntax is GEN seralgdep(GEN s, long p, long r).

3.11.64 setbinop(f;X; fY g). The set whose elements are the f(x,y), where x,y run through X,Y.
respectively. If Y is omitted, assume that X = Y and that f is symmetric: f(x; y) = f(y; x) for all
x; y in X.

? X = [1,2,3]; Y = [2,3,4];

? setbinop((x,y)->x+y, X,Y) \\ set X + Y

%2 = [3, 4, 5, 6, 7]

? setbinop((x,y)->x-y, X,Y) \\ set X - Y

%3 = [-3, -2, -1, 0, 1]

? setbinop((x,y)->x+y, X) \\ set 2X = X + X

%2 = [2, 3, 4, 5, 6]

The library syntax is GEN setbinop(GEN f, GEN X, GEN Y = NULL).

3.11.65 setintersect(x; y). Intersection of the two sets x and y (see setisset). If x or y is not a
set, the result is unde�ned.

The library syntax is GEN setintersect(GEN x, GEN y).

3.11.66 setisset(x). Returns true (1) if x is a set, false (0) if not. In PARI, a set is a row vector
whose entries are strictly increasing with respect to a (somewhat arbitrary) universal comparison
function. To convert any object into a set (this is most useful for vectors, of course), use the
function Set.

? a = [3, 1, 1, 2];

? setisset(a)

%2 = 0

? Set(a)

%3 = [1, 2, 3]

The library syntax is long setisset(GEN x).
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3.11.67 setminus(x; y). Di�erence of the two sets x and y (see setisset), i.e. set of elements of
x which do not belong to y. If x or y is not a set, the result is unde�ned.

The library syntax is GEN setminus(GEN x, GEN y).

3.11.68 setsearch(S; x; fflag = 0g). Determines whether x belongs to the set S (see setisset).

We �rst describe the default behaviour, when flag is zero or omitted. If x belongs to the set
S, returns the index j such that S[j] = x, otherwise returns 0.

? T = [7,2,3,5]; S = Set(T);

? setsearch(S, 2)

%2 = 1

? setsearch(S, 4) \\ not found

%3 = 0

? setsearch(T, 7) \\ search in a randomly sorted vector

%4 = 0 \\ WRONG !

If S is not a set, we also allow sorted lists with respect to the cmp sorting function, without repeated
entries, as per listsort(L; 1); otherwise the result is unde�ned.

? L = List([1,4,2,3,2]); setsearch(L, 4)

%1 = 0 \\ WRONG !

? listsort(L, 1); L \\ sort L first

%2 = List([1, 2, 3, 4])

? setsearch(L, 4)

%3 = 4 \\ now correct

If flag is non-zero, this function returns the index j where x should be inserted, and 0 if it already
belongs to S. This is meant to be used for dynamically growing (sorted) lists, in conjunction with
listinsert.

? L = List([1,5,2,3,2]); listsort(L,1); L

%1 = List([1,2,3,5])

? j = setsearch(L, 4, 1) \\ 4 should have been inserted at index j

%2 = 4

? listinsert(L, 4, j); L

%3 = List([1, 2, 3, 4, 5])

The library syntax is long setsearch(GEN S, GEN x, long flag).

3.11.69 setunion(x; y). Union of the two sets x and y (see setisset). If x or y is not a set, the
result is unde�ned.

The library syntax is GEN setunion(GEN x, GEN y).

3.11.70 trace(x). This applies to quite general x. If x is not a matrix, it is equal to the sum of x
and its conjugate, except for polmods where it is the trace as an algebraic number.

For x a square matrix, it is the ordinary trace. If x is a non-square matrix (but not a vector),
an error occurs.

The library syntax is GEN gtrace(GEN x).
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3.11.71 vecextract(x; y; fzg). Extraction of components of the vector or matrix x according to
y. In case x is a matrix, its components are the columns of x. The parameter y is a component
speci�er, which is either an integer, a string describing a range, or a vector.

If y is an integer, it is considered as a mask: the binary bits of y are read from right to left,
but correspond to taking the components from left to right. For example, if y = 13 = (1101)2 then
the components 1,3 and 4 are extracted.

If y is a vector (t_VEC, t_COL or t_VECSMALL), which must have integer entries, these entries
correspond to the component numbers to be extracted, in the order speci�ed.

If y is a string, it can be

� a single (non-zero) index giving a component number (a negative index means we start
counting from the end).

� a range of the form "a..b", where a and b are indexes as above. Any of a and b can be
omitted; in this case, we take as default values a = 1 and b = �1, i.e. the �rst and last components
respectively. We then extract all components in the interval [a; b], in reverse order if b < a.

In addition, if the �rst character in the string is ^, the complement of the given set of indices
is taken.

If z is not omitted, x must be a matrix. y is then the row speci�er, and z the column speci�er,
where the component speci�er is as explained above.

? v = [a, b, c, d, e];

? vecextract(v, 5) \\ mask
%1 = [a, c]

? vecextract(v, [4, 2, 1]) \\ component list
%2 = [d, b, a]

? vecextract(v, "2..4") \\ interval
%3 = [b, c, d]

? vecextract(v, "-1..-3") \\ interval + reverse order
%4 = [e, d, c]

? vecextract(v, "^2") \\ complement
%5 = [a, c, d, e]

? vecextract(matid(3), "2..", "..")

%6 =

[0 1 0]

[0 0 1]

The range notations v[i..j] and v[^i] (for t_VEC or t_COL) and M[i..j, k..l] and friends
(for t_MAT) implement a subset of the above, in a simpler and faster way, hence should be preferred
in most common situations. The following features are not implemented in the range notation:

� reverse order,
� omitting either a or b in a..b.
The library syntax is GEN extract0(GEN x, GEN y, GEN z = NULL).
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3.11.72 vecsearch(v; x; fcmpf g). Determines whether x belongs to the sorted vector or list v:
return the (positive) index where x was found, or 0 if it does not belong to v.

If the comparison function cmpf is omitted, we assume that v is sorted in increasing order,
according to the standard comparison function lex, thereby restricting the possible types for x and
the elements of v (integers, fractions, reals, and vectors of such).

If cmpf is present, it is understood as a comparison function and we assume that v is sorted
according to it, see vecsort for how to encode comparison functions.

? v = [1,3,4,5,7];

? vecsearch(v, 3)

%2 = 2

? vecsearch(v, 6)

%3 = 0 \\ not in the list

? vecsearch([7,6,5], 5) \\ unsorted vector: result undefined

%4 = 0

By abuse of notation, x is also allowed to be a matrix, seen as a vector of its columns; again by
abuse of notation, a t_VEC is considered as part of the matrix, if its transpose is one of the matrix
columns.

? v = vecsort([3,0,2; 1,0,2]) \\ sort matrix columns according to lex order

%1 =

[0 2 3]

[0 2 1]

? vecsearch(v, [3,1]~)

%2 = 3

? vecsearch(v, [3,1]) \\ can search for x or x~
%3 = 3

? vecsearch(v, [1,2])

%4 = 0 \\ not in the list

The library syntax is long vecsearch(GEN v, GEN x, GEN cmpf = NULL).

3.11.73 vecsort(x; fcmpf g; fflag = 0g). Sorts the vector x in ascending order, using a mergesort
method. x must be a list, vector or matrix (seen as a vector of its columns). Note that mergesort
is stable, hence the initial ordering of \equal" entries (with respect to the sorting criterion) is not
changed.

If cmpf is omitted, we use the standard comparison function lex, thereby restricting the
possible types for the elements of x (integers, fractions or reals and vectors of those). If cmpf
is present, it is understood as a comparison function and we sort according to it. The following
possibilities exist:

� an integer k: sort according to the value of the k-th subcomponents of the components of x.

� a vector: sort lexicographically according to the components listed in the vector. For example,
if cmpf = [2; 1; 3], sort with respect to the second component, and when these are equal, with respect
to the �rst, and when these are equal, with respect to the third.

� a comparison function (t_CLOSURE), with two arguments x and y, and returning an integer
which is < 0, > 0 or = 0 if x < y, x > y or x = y respectively. The sign function is very useful in
this context:
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? vecsort([3,0,2; 1,0,2]) \\ sort columns according to lex order

%1 =

[0 2 3]

[0 2 1]

? vecsort(v, (x,y)->sign(y-x)) \\ reverse sort

? vecsort(v, (x,y)->sign(abs(x)-abs(y))) \\ sort by increasing absolute value

? cmpf(x,y) = my(dx = poldisc(x), dy = poldisc(y)); sign(abs(dx) - abs(dy))

? vecsort([x^2+1, x^3-2, x^4+5*x+1], cmpf)

The last example used the named cmpf instead of an anonymous function, and sorts polynomials
with respect to the absolute value of their discriminant. A more e�cient approach would use
precomputations to ensure a given discriminant is computed only once:

? DISC = vector(#v, i, abs(poldisc(v[i])));

? perm = vecsort(vector(#v,i,i), (x,y)->sign(DISC[x]-DISC[y]))

? vecextract(v, perm)

Similar ideas apply whenever we sort according to the values of a function which is expensive to
compute.

The binary digits of flag mean:

� 1: indirect sorting of the vector x, i.e. if x is an n-component vector, returns a permutation
of [1; 2; : : : ; n] which applied to the components of x sorts x in increasing order. For example,
vecextract(x, vecsort(x,,1)) is equivalent to vecsort(x).

� 4: use descending instead of ascending order.

� 8: remove \duplicate" entries with respect to the sorting function (keep the �rst occurring
entry). For example:

? vecsort([Pi,Mod(1,2),z], (x,y)->0, 8) \\ make everything compare equal

%1 = [3.141592653589793238462643383]

? vecsort([[2,3],[0,1],[0,3]], 2, 8)

%2 = [[0, 1], [2, 3]]

The library syntax is GEN vecsort0(GEN x, GEN cmpf = NULL, long flag).

3.11.74 vecsum(v). Return the sum of the components of the vector v. Return 0 on an empty
vector.

? vecsum([1,2,3])

%1 = 6

? vecsum([])

%2 = 0

The library syntax is GEN vecsum(GEN v).
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3.11.75 vector(n; fXg; fexpr = 0g). Creates a row vector (type t_VEC) with n components whose
components are the expression expr evaluated at the integer points between 1 and n. If one of the
last two arguments is omitted, �ll the vector with zeroes.

? vector(3,i, 5*i)

%1 = [5, 10, 15]

? vector(3)

%2 = [0, 0, 0]

The variable X is lexically scoped to each evaluation of expr . Any change to X within expr
does not a�ect subsequent evaluations, it still runs 1 to n. A local change allows for example
di�erent indexing:

vector(10, i, i=i-1; f(i)) \\ i = 0, ..., 9

vector(10, i, i=2*i; f(i)) \\ i = 2, 4, ..., 20

This per-element scope for X di�ers from for loop evaluations, as the following example shows:

n = 3

v = vector(n); vector(n, i, i++) ----> [2, 3, 4]

v = vector(n); for (i = 1, n, v[i] = i++) ----> [2, 0, 4]

3.11.76 vectorsmall(n; fXg; fexpr = 0g). Creates a row vector of small integers (type
t_VECSMALL) with n components whose components are the expression expr evaluated at the in-
teger points between 1 and n. If one of the last two arguments is omitted, �ll the vector with
zeroes.

3.11.77 vectorv(n; fXg; fexpr = 0g). As vector, but returns a column vector (type t_COL).

3.12 Sums, products, integrals and similar functions.

Although the gp calculator is programmable, it is useful to have a number of preprogrammed
loops, including sums, products, and a certain number of recursions. Also, a number of functions
from numerical analysis like numerical integration and summation of series will be described here.

One of the parameters in these loops must be the control variable, hence a simple variable name.
In the descriptions, the letter X will always denote any simple variable name, and represents the
formal parameter used in the function. The expression to be summed, integrated, etc. is any legal
PARI expression, including of course expressions using loops.

Library mode. Since it is easier to program directly the loops in library mode, these functions
are mainly useful for GP programming. On the other hand, numerical routines code a function (to
be integrated, summed, etc.) with two parameters named

GEN (*eval)(void*,GEN)

void *E; \\ context: eval(E, x) must evaluate your function at x.

see the Libpari manual for details.
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Numerical integration. Starting with version 2.2.9 the \double exponential" univariate integra-
tion method is implemented in intnum and its variants. Romberg integration is still available under
the name intnumromb, but superseded. It is possible to compute numerically integrals to thousands
of decimal places in reasonable time, as long as the integrand is regular. It is also reasonable to
compute numerically integrals in several variables, although more than two becomes lengthy. The
integration domain may be non-compact, and the integrand may have reasonable singularities at
endpoints. To use intnum, you must split the integral into a sum of subintegrals where the function
has no singularities except at the endpoints. Polynomials in logarithms are not considered singular,
and neglecting these logs, singularities are assumed to be algebraic (asymptotic to C(x� a)�� for
some � > �1 when x is close to a), or to correspond to simple discontinuities of some (higher)
derivative of the function. For instance, the point 0 is a singularity of abs(x).

See also the discrete summation methods below, sharing the pre�x sum.

3.12.1 asympnum(expr ; fk = 20g; falpha = 1g). Asymptotic expansion of expr , corresponding
to a sequence u(n), assuming it has the shape

u(n) �
X
i�0

ain
�i�

with rational coe�cients ai with reasonable height; the algorithm is heuristic and performs repeated
calls to limitnum, with k and alpha are as in limitnum

? f(n) = n! / (n^n*exp(-n)*sqrt(n));

? asympnum(f)

%2 = [] \\ failure !

? l = limitnum(f)

%3 = 2.5066282746310005024157652848110452530

? asympnum(n->f(n)/l) \\ normalize

%4 = [1, 1/12, 1/288, -139/51840]

and we indeed get a few terms of Stirling's expansion. Note that it helps to normalize with a limit
computed to higher accuracy:

? \p100

? L = limitnum(f)

? \p38

? asympnum(n->f(n)/L) \\ we get more terms!

%6 = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880,\

5246819/75246796800, -534703531/902961561600]

If alpha is not an integer, loss of accuracy is expected, so it should be precomputed to double
accuracy, say:

? \p38

? asympnum(n->-log(1-1/n^Pi),,Pi)

%1 = [0, 1, 1/2, 1/3]

? asympnum(n->-log(1-1/sqrt(n)),,1/2)

%2 = [0, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12, \

1/13, 1/14, 1/15, 1/16, 1/17, 1/18, 1/19, 1/20, 1/21, 1/22]

? localprec(100); a = Pi;

? asympnum(n->-log(1-1/n^a),,a) \\ better !
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%4 = [0, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12]

The library syntax is asympnum(void *E, GEN (*u)(void *,GEN,long), long muli,

GEN alpha, long prec), where u(E, n, prec) must return u(n) in precision prec. Also available
is GEN asympnum0(GEN u, long muli, GEN alpha, long prec), where u must be a vector of
su�cient length as above.

3.12.2 contfraceval(CF ; t; flim = �1g). Given a continued fraction CF output by contfracinit,
evaluate the �rst lim terms of the continued fraction at t (all terms if lim is negative or omitted;
if positive, lim must be less than or equal to the length of CF.

The library syntax is GEN contfraceval(GEN CF, GEN t, long lim).

3.12.3 contfracinit(M; flim = �1g). Given M representing the power series S =
P

n�0M [n +
1]zn, transform it into a continued fraction; restrict to n � lim if latter is non-negative. M can be
a vector, a power series, a polynomial, or a rational function. The result is a 2-component vector
[A;B] such that S = M [1]=(1 + A[1]z + B[1]z2=(1 + A[2]z + B[2]z2=(1 + :::1=(1 + A[lim=2]z)))).
Does not work if any coe�cient ofM vanishes, nor for series for which certain partial denominators
vanish.

The library syntax is GEN contfracinit(GEN M, long lim).

3.12.4 derivnum(X = a; expr). Numerical derivation of expr with respect to X at X = a.

? derivnum(x=0,sin(exp(x))) - cos(1)

%1 = -1.262177448 E-29

A clumsier approach, which would not work in library mode, is

? f(x) = sin(exp(x))

? f'(0) - cos(1)

%1 = -1.262177448 E-29

When a is a power series, compute derivnum(t=a,f) as f 0(a) = (f(a))0=a0.

The library syntax is derivnum(void *E, GEN (*eval)(void*,GEN), GEN a, long prec).
Also available is GEN derivfun(void *E, GEN (*eval)(void *, GEN), GEN a, long prec)

, which also allows power series for a.

3.12.5 intcirc(X = a;R; expr ; ftabg). Numerical integration of (2i�)�1expr with respect to X on
the circle jX � aj = R. In other words, when expr is a meromorphic function, sum of the residues
in the corresponding disk; tab is as in intnum, except that if computed with intnuminit it should
be with the endpoints [-1, 1].

? \p105

? intcirc(s=1, 0.5, zeta(s)) - 1

time = 496 ms.

%1 = 1.2883911040127271720 E-101 + 0.E-118*I

The library syntax is intcirc(void *E, GEN (*eval)(void*,GEN), GEN a,GEN R,GEN tab,

long prec).
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3.12.6 intfuncinit(t = a; b; f; fm = 0g). Initialize tables for use with integral transforms such
Fourier, Laplace or Mellin transforms, in order to computeZ b

a

f(t)k(t; z) dt

for some kernel k(t; z). The endpoints a and b are coded as in intnum, f is the function to which
the integral transform is to be applied and the non-negative integer m is as in intnum: multiply
the number of sampling points roughly by 2m, hopefully increasing the accuracy. This function is
particularly useful when the function f is hard to compute, such as a gamma product.

Limitation. the endpoints a and b must be at in�nity, with the same asymptotic behaviour.
Oscillating types are not supported. This is easily overcome by integrating vectors of functions, see
example below.

Examples.

� numerical Fourier transform

F (z) =

Z +1

�1

f(t)e�2i�zt dt:

First the easy case, assume that f decrease exponentially:

f(t) = exp(-t^2);

A = [-oo,1];

B = [+oo,1];

\p200

T = intfuncinit(t = A,B , f(t));

F(z) =

{ my(a = -2*I*Pi*z);

intnum(t = A,B, exp(a*t), T);

}

? F(1) - sqrt(Pi)*exp(-Pi^2)

%1 = -1.3... E-212

Now the harder case, f decrease slowly: we must specify the oscillating behaviour. Thus, we cannot
precompute usefully since everything depends on the point we evaluate at:

f(t) = 1 / (1+ abs(t));

\p200

\\ Fourier cosine transform

FC(z) =

{ my(a = 2*Pi*z);

intnum(t = [-oo, a*I], [+oo, a*I], cos(a*t)*f(t));

}

FC(1)

� Fourier coe�cients: we must integrate over a period, but intfuncinit does not support
�nite endpoints. The solution is to integrate a vector of functions !

FourierSin(f, T, k) = \\ first k sine Fourier coeffs

{
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my (w = 2*Pi/T);

my (v = vector(k+1));

intnum(t = -T/2, T/2,

my (z = exp(I*w*t));

v[1] = z;

for (j = 2, k, v[j] = v[j-1]*z);

f(t) * imag(v)) * 2/T;

}

FourierSin(t->sin(2*t), 2*Pi, 10)

The same technique can be used instead of intfuncinit to integrate f(t)k(t; z) whenever the list
of z-values is known beforehand.

Note that the above code includes an unrelated optimization: the sin(jwt) are computed as
imaginary parts of exp(ijwt) and the latter by successive multiplications.

� numerical Mellin inversion

F (z) = (2i�)�1
Z c+i1

c�i1

f(s)z�s ds = (2�)�1
Z +1

�1

f(c+ it)e� log z(c+it) dt:

We take c = 2 in the program below:

f(s) = gamma(s)^3; \\ f(c+it) decrease as exp(-3Pi|t|/2)

c = 2; \\ arbitrary

A = [-oo,3*Pi/2];

B = [+oo,3*Pi/2];

T = intfuncinit(t=A,B, f(c + I*t));

F(z) =

{ my (a = -log(z));

intnum(t=A,B, exp(a*I*t), T)*exp(a*c) / (2*Pi);

}

The library syntax is intfuncinit(void *E, GEN (*eval)(void*,GEN), GEN a,GEN b,long

m, long prec).

3.12.7 intnum(X = a; b; expr ; ftabg). Numerical integration of expr on ]a; b[ with respect to X,
using the double-exponential method, and thus O(D logD) evaluation of the integrand in precision
D. The integrand may have values belonging to a vector space over the real numbers; in particular,
it can be complex-valued or vector-valued. But it is assumed that the function is regular on ]a; b[.
If the endpoints a and b are �nite and the function is regular there, the situation is simple:

? intnum(x = 0,1, x^2)

%1 = 0.3333333333333333333333333333

? intnum(x = 0,Pi/2, [cos(x), sin(x)])

%2 = [1.000000000000000000000000000, 1.000000000000000000000000000]

An endpoint equal to �1 is coded as +oo or -oo, as expected:

? intnum(x = 1,+oo, 1/x^2)

%3 = 1.000000000000000000000000000

In basic usage, it is assumed that the function does not decrease exponentially fast at in�nity:
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? intnum(x=0,+oo, exp(-x))

*** at top-level: intnum(x=0,+oo,exp(-

*** ^--------------------

*** exp: overflow in expo().

We shall see in a moment how to avoid that last problem, after describing the last optional argument
tab.

The tab argument. The routine uses weights wi, which are mostly independent of the function
being integrated, evaluated at many sampling points xi and approximates the integral by

P
wif(xi).

If tab is

� a non-negative integer m, we multiply the number of sampling points by 2m, hopefully
increasing accuracy. Note that the running time increases roughly by a factor 2m. One may try
consecutive values of m until they give the same value up to an accepted error.

� a set of integration tables containing precomputed xi and wi as output by intnuminit. This
is useful if several integrations of the same type are performed (on the same kind of interval and
functions, for a given accuracy): we skip a precomputation of O(D logD) elementary functions in
accuracyD, whose running time has the same order of magnitude as the evaluation of the integrand.
This is in particular usefule for multivariate integrals.

Specifying the behavior at endpoints. This is done as follows. An endpoint a is either given
as such (a scalar, real or complex, oo or -oo for �1), or as a two component vector [a; �], to
indicate the behavior of the integrand in a neighborhood of a.

If a is �nite, the code [a; �] means the function has a singularity of the form (x � a)�, up to
logarithms. (If � � 0, we only assume the function is regular, which is the default assumption.) If
a wrong singularity exponent is used, the result will lose a catastrophic number of decimals:

? intnum(x=0, 1, x^(-1/2)) \\ assume x�1=2 is regular at 0
%1 = 1.9999999999999999999999999999827931660

? intnum(x=[0,-1/2], 1, x^(-1/2)) \\ no, it's not
%2 = 2.0000000000000000000000000000000000000

? intnum(x=[0,-1/10], 1, x^(-1/2)) \\ using a wrong exponent is bad
%3 = 1.9999999999999999999999999999999901912

If a is �1, which is coded as +oo or -oo, the situation is more complicated, and [�oo; �]
means:

� � = 0 (or no � at all, i.e. simply �oo) assumes that the integrand tends to zero moderately
quickly, at least as O(x�2) but not exponentially fast.

� � > 0 assumes that the function tends to zero exponentially fast approximately as exp(��x).
This includes oscillating but quickly decreasing functions such as exp(�x) sin(x).

? intnum(x=0, +oo, exp(-2*x))

*** at top-level: intnum(x=0,+oo,exp(-

*** ^--------------------

*** exp: exponent (expo) overflow

? intnum(x=0, [+oo, 2], exp(-2*x)) \\ OK!
%1 = 0.50000000000000000000000000000000000000

? intnum(x=0, [+oo, 3], exp(-2*x)) \\ imprecise exponent, still OK !
%2 = 0.50000000000000000000000000000000000000
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? intnum(x=0, [+oo, 10], exp(-2*x)) \\ wrong exponent ) disaster

%3 = 0.49999999999952372962457451698256707393

As the last exemple shows, the exponential decrease rate must be indicated to avoid over
ow, but
the method is robust enough for a rough guess to be acceptable.

� � < �1 assumes that the function tends to 0 slowly, like x�. Here the algorithm is less robust
and it is essential to give a sharp �, unless � � �2 in which case we use the default algorithm as
if � were missing (or equal to 0).

? intnum(x=1, +oo, x^(-3/2)) \\ default

%1 = 1.9999999999999999999999999999646391207

? intnum(x=1, [+oo,-3/2], x^(-3/2)) \\ precise decrease rate

%2 = 2.0000000000000000000000000000000000000

? intnum(x=1, [+oo,-11/10], x^(-3/2)) \\ worse than default

%3 = 2.0000000000000000000000000089298011973

The last two codes are reserved for oscillating functions. Let k > 0 real, and g(x) a non-
oscillating function tending slowly to 0 (e.g. like a negative power of x), then

� � = k � I assumes that the function behaves like cos(kx)g(x).

� � = �k � I assumes that the function behaves like sin(kx)g(x).

Here it is critical to give the exact value of k. If the oscillating part is not a pure sine or cosine, one
must expand it into a Fourier series, use the above codings, and sum the resulting contributions.
Otherwise you will get nonsense. Note that cos(kx), and similarly sin(kx), means that very function,
and not a translated version such as cos(kx+ a).

Note. If f(x) = cos(kx)g(x) where g(x) tends to zero exponentially fast as exp(��x), it is up to the
user to choose between [�oo; �] and [�oo; k � I], but a good rule of thumb is that if the oscillations
are weaker than the exponential decrease, choose [�oo; �], otherwise choose [�oo; k � I], although
the latter can reasonably be used in all cases, while the former cannot. To take a speci�c example,
in the inverse Mellin transform, the integrand is almost always a product of an exponentially
decreasing and an oscillating factor. If we choose the oscillating type of integral we perhaps obtain
the best results, at the expense of having to recompute our functions for a di�erent value of the
variable z giving the transform, preventing us to use a function such as intfuncinit. On the other
hand using the exponential type of integral, we obtain less accurate results, but we skip expensive
recomputations. See intfuncinit for more explanations.

We shall now see many examples to get a feeling for what the various parameters achieve. All
examples below assume precision is set to 115 decimal digits. We �rst type

? \p 115
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Apparent singularities. In many cases, apparent singularities can be ignored. For instance, if
f(x) = 1=(exp(x)� 1)� exp(�x)=x, then R1

0
f(x) dx = 
, Euler's constant Euler. But

? f(x) = 1/(exp(x)-1) - exp(-x)/x

? intnum(x = 0, [oo,1], f(x)) - Euler

%1 = 0.E-115

But close to 0 the function f is computed with an enormous loss of accuracy, and we are in fact
lucky that it get multiplied by weights which are su�ciently close to 0 to hide this:

? f(1e-200)

%2 = -3.885337784451458142 E84

A more robust solution is to de�ne the function di�erently near special points, e.g. by a Taylor
expansion

? F = truncate( f(t + O(t^10)) ); \\ expansion around t = 0
? poldegree(F)

%4 = 7

? g(x) = if (x > 1e-18, f(x), subst(F,t,x)); \\ note that 7 � 18 > 105
? intnum(x = 0, [oo,1], g(x)) - Euler

%2 = 0.E-115

It is up to the user to determine constants such as the 10�18 and 10 used above.

True singularities. With true singularities the result is worse. For instance

? intnum(x = 0, 1, x^(-1/2)) - 2

%1 = -3.5... E-68 \\ only 68 correct decimals

? intnum(x = [0,-1/2], 1, x^(-1/2)) - 2

%2 = 0.E-114 \\ better

Oscillating functions.

? intnum(x = 0, oo, sin(x) / x) - Pi/2

%1 = 16.19.. \\ nonsense
? intnum(x = 0, [oo,1], sin(x)/x) - Pi/2

%2 = -0.006.. \\ bad
? intnum(x = 0, [oo,-I], sin(x)/x) - Pi/2

%3 = 0.E-115 \\ perfect
? intnum(x = 0, [oo,-I], sin(2*x)/x) - Pi/2 \\ oops, wrong k
%4 = 0.06...

? intnum(x = 0, [oo,-2*I], sin(2*x)/x) - Pi/2

%5 = 0.E-115 \\ perfect

? intnum(x = 0, [oo,-I], sin(x)^3/x) - Pi/4

%6 = -0.0008... \\ bad
? sin(x)^3 - (3*sin(x)-sin(3*x))/4

%7 = O(x^17)

We may use the above linearization and compute two oscillating integrals with endpoints [oo, -I]

and [oo, -3*I] respectively, or notice the obvious change of variable, and reduce to the single
integral 1

2

R1
0

sin(x)=x dx. We �nish with some more complicated examples:

? intnum(x = 0, [oo,-I], (1-cos(x))/x^2) - Pi/2
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%1 = -0.0003... \\ bad
? intnum(x = 0, 1, (1-cos(x))/x^2) \

+ intnum(x = 1, oo, 1/x^2) - intnum(x = 1, [oo,I], cos(x)/x^2) - Pi/2

%2 = 0.E-115 \\ perfect

? intnum(x = 0, [oo, 1], sin(x)^3*exp(-x)) - 0.3

%3 = -7.34... E-55 \\ bad
? intnum(x = 0, [oo,-I], sin(x)^3*exp(-x)) - 0.3

%4 = 8.9... E-103 \\ better. Try higher m
? tab = intnuminit(0,[oo,-I], 1); \\ double number of sampling points
? intnum(x = 0, oo, sin(x)^3*exp(-x), tab) - 0.3

%6 = 0.E-115 \\ perfect

Warning. Like sumalt, intnum often assigns a reasonable value to diverging integrals. Use these
values at your own risk! For example:

? intnum(x = 0, [oo, -I], x^2*sin(x))

%1 = -2.0000000000...

Note the formula Z 1

0

sin(x)=xs dx = cos(�s=2)�(1� s) ;

a priori valid only for 0 < <(s) < 2, but the right hand side provides an analytic continuation
which may be evaluated at s = �2: : :

Multivariate integration. Using successive univariate integration with respect to di�erent formal
parameters, it is immediate to do naive multivariate integration. But it is important to use a suitable
intnuminit to precompute data for the internal integrations at least!

For example, to compute the double integral on the unit disc x2 + y2 � 1 of the function
x2 + y2, we can write

? tab = intnuminit(-1,1);

? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab),tab) - Pi/2

%2 = -7.1... E-115 \\ OK

The �rst tab is essential, the second optional. Compare:

? tab = intnuminit(-1,1);

time = 4 ms.

? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2));

time = 3,092 ms. \\ slow
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab), tab);

time = 252 ms. \\ faster
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab));

time = 261 ms. \\ the internal integral matters most

The library syntax is intnum(void *E, GEN (*eval)(void*,GEN), GEN a,GEN b,GEN tab,

long prec), where an omitted tab is coded as NULL.
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3.12.8 intnumgauss(X = a; b; expr ; ftabg). Numerical integration of expr on the compact in-
terval [a; b] with respect to X using Gauss-Legendre quadrature; tab is either omitted or precom-
puted with intnumgaussinit. As a convenience, it can be an integer n in which case we call
intnumgaussinit(n) and use n-point quadrature.

? test(n, b = 1) = T=intnumgaussinit(n);\

intnumgauss(x=-b,b, 1/(1+x^2),T) - 2*atan(b);

? test(0) \\ default

%1 = -9.490148553624725335 E-22

? test(40)

%2 = -6.186629001816965717 E-31

? test(50)

%3 = -1.1754943508222875080 E-38

? test(50, 2) \\ double interval length

%4 = -4.891779568527713636 E-21

? test(90, 2) \\ n must almost be doubled as well!

%5 = -9.403954806578300064 E-38

On the other hand, we recommend to split the integral and change variables rather than increasing
n too much:

? f(x) = 1/(1+x^2);

? b = 100;

? intnumgauss(x=0,1, f(x)) + intnumgauss(x=1,1/b, f(1/x)*(-1/x^2)) - atan(b)

%3 = -1.0579449157400587572 E-37

The library syntax is GEN intnumgauss0(GEN X, GEN b, GEN expr, GEN tab = NULL, long

prec).

3.12.9 intnumgaussinit(fng). Initialize tables for n-point Gauss-Legendre integration of a
smooth function f lon a compact interval [a; b] at current realprecision. If n is omitted, make a
default choice n � realprecision, suitable for analytic functions on [�1; 1]. The error is bounded
by

(b� a)2n+1(n!)4
(2n+ 1)[(2n)!]3

f (2n)(�); a < � < b

so, if the interval length increases, n should be increased as well.

? T = intnumgaussinit();

? intnumgauss(t=-1,1,exp(t), T) - exp(1)+exp(-1)

%1 = -5.877471754111437540 E-39

? intnumgauss(t=-10,10,exp(t), T) - exp(10)+exp(-10)

%2 = -8.358367809712546836 E-35

? intnumgauss(t=-1,1,1/(1+t^2), T) - Pi/2

%3 = -9.490148553624725335 E-22

? T = intnumgaussinit(50);

? intnumgauss(t=-1,1,1/(1+t^2), T) - Pi/2

%5 = -1.1754943508222875080 E-38

? intnumgauss(t=-5,5,1/(1+t^2), T) - 2*atan(5)

%6 = -1.2[...]E-8
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On the other hand, we recommend to split the integral and change variables rather than
increasing n too much, see intnumgauss.

The library syntax is GEN intnumgaussinit(long n, long prec).

3.12.10 intnuminit(a; b; fm = 0g). Initialize tables for integration from a to b, where a and b
are coded as in intnum. Only the compactness, the possible existence of singularities, the speed
of decrease or the oscillations at in�nity are taken into account, and not the values. For instance
intnuminit(-1,1) is equivalent to intnuminit(0,Pi), and intnuminit([0,-1/2],oo) is equiva-
lent to intnuminit([-1,-1/2], -oo); on the other hand, the order matters and intnuminit([0,-

1/2], [1,-1/3]) is not equivalent to intnuminit([0,-1/3], [1,-1/2]) !

If m is present, it must be non-negative and we multiply the default number of sampling points
by 2m (increasing the running time by a similar factor).

The result is technical and liable to change in the future, but we document it here for com-
pleteness. Let x = �(t), t 2]�1;1[ be an internally chosen change of variable, achieving double
exponential decrease of the integrand at in�nity. The integrator intnum will compute

h
X
jnj<N

�0(nh)F (�(nh))

for some integration step h and truncation parameter N . In basic use, let

[h, x0, w0, xp, wp, xm, wm] = intnuminit(a,b);

� h is the integration step

� x0 = �(0) and w0 = �0(0),

� xp contains the �(nh), 0 < n < N ,

� xm contains the �(nh), 0 < �n < N , or is empty.

� wp contains the �0(nh), 0 < n < N ,

� wm contains the �0(nh), 0 < �n < N , or is empty.

The arrays xm and wm are left empty when � is an odd function. In complicated situations
when non-default behaviour is speci�ed at end points, intnuminit may return up to 3 such arrays,
corresponding to a splitting of up to 3 integrals of basic type.

If the functions to be integrated later are of the form F = f(t)k(t; z) for some kernel k (e.g.
Fourier, Laplace, Mellin, : : : ), it is useful to also precompute the values of f(�(nh)), which is
accomplished by intfuncinit. The hard part is to determine the behaviour of F at endpoints,
depending on z.

The library syntax is GEN intnuminit(GEN a, GEN b, long m, long prec).
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3.12.11 intnumromb(X = a; b; expr ; fflag = 0g). Numerical integration of expr (smooth in ]a; b[),
with respect to X. Suitable for low accuracy; if expr is very regular (e.g. analytic in a large region)
and high accuracy is desired, try intnum �rst.

Set flag = 0 (or omit it altogether) when a and b are not too large, the function is smooth,
and can be evaluated exactly everywhere on the interval [a; b].

If flag = 1, uses a general driver routine for doing numerical integration, making no particular
assumption (slow).

flag = 2 is tailored for being used when a or b are in�nite using the change of variable t = 1=X.
One must have ab > 0, and in fact if for example b = +1, then it is preferable to have a as large
as possible, at least a � 1.

If flag = 3, the function is allowed to be unde�ned at a (but right continuous) or b (left
continuous), for example the function sin(x)=x between x = 0 and 1.

The user should not require too much accuracy: realprecision about 30 decimal digits
(realbitprecision about 100 bits) is OK, but not much more. In addition, analytical cleanup
of the integral must have been done: there must be no singularities in the interval or at the
boundaries. In practice this can be accomplished with a change of variable. Furthermore, for
improper integrals, where one or both of the limits of integration are plus or minus in�nity, the
function must decrease su�ciently rapidly at in�nity, which can often be accomplished through
integration by parts. Finally, the function to be integrated should not be very small (compared to
the current precision) on the entire interval. This can of course be accomplished by just multiplying
by an appropriate constant.

Note that infinity can be represented with essentially no loss of accuracy by an appropriate
huge number. However beware of real under
ow when dealing with rapidly decreasing functions.
For example, in order to compute the

R1
0
e�x

2

dx to 28 decimal digits, then one can set in�nity
equal to 10 for example, and certainly not to 1e1000.

The library syntax is intnumromb_bitprec(void *E, GEN (*eval)(void*,GEN), GEN a,

GEN b, long flag, long bitprec), where eval(x;E) returns the value of the function at x. You
may store any additional information required by eval in E, or set it to NULL. The historical variant
The library syntax is intnumromb(: : : , long prec), where prec is expressed in words, not bits,
is obsolete and should no longer be used.

3.12.12 limitnum(expr ; fk = 20g; falpha = 1g). Lagrange-Zagier numerical extrapolation of
expr , corresponding to a sequence un, either given by a closure n->u(n) or by a vector of values
I.e., assuming that un tends to a �nite limit `, try to determine `. This routine is purely numerical
and heuristic, thus may or may not work on your examples; k is ignored if u is given by a vector,
and otherwise is a multiplier such that we extrapolate from u(kn).

Assume that un has an asymptotic expansion in n�� :

un = `+
X
i�1

ain
�i�

for some ai.

? limitnum(n -> n*sin(1/n))

%1 = 1.0000000000000000000000000000000000000

? limitnum(n -> (1+1/n)^n) - exp(1)
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%2 = 0.E-37

? limitnum(n -> 2^(4*n+1)*(n!)^4 / (2*n)! /(2*n+1)! )

%3 = 3.1415926535897932384626433832795028842

? Pi

%4 = 3.1415926535897932384626433832795028842

If un is given by a vector, it must be long enough for the extrapolation to make sense: at least
k times the current realprecision. The preferred format is thus a closure, although it becomes
inconvenient when un cannot be directly computed in time polynomial in log n, for instance if it
is de�ned as a sum or by induction. In that case, passing a vector of values is the best option. It
usually pays o� to interpolate u(kn) for some k > 1:

? limitnum(vector(10,n,(1+1/n)^n))

*** ^--------------------

*** limitnum: non-existent component in limitnum: index < 20

\\ at this accuracy, we must have at least 20 values

? limitnum(vector(20,n,(1+1/n)^n)) - exp(1)

%5 = -2.05... E-20

? limitnum(vector(20,n, m=10*n;(1+1/m)^m)) - exp(1) \\ better accuracy

%6 = 0.E-37

? v = vector(20); s = 0;

? for(i=1,#v, s += 1/i; v[i]= s - log(i));

? limitnum(v) - Euler

%9 = -1.6... E-19

? V = vector(200); s = 0;

? for(i=1,#V, s += 1/i; V[i]= s);

? v = vector(#V \ 10, i, V[10*i] - log(10*i));

? limitnum(v) - Euler

%13 = 6.43... E-29

The library syntax is limitnum(void *E, GEN (*u)(void *,GEN,long), long muli, GEN

alpha, long prec), where u(E, n, prec) must return u(n) in precision prec. Also available is
GEN limitnum0(GEN u, long muli, GEN alpha, long prec), where u must be a vector of
su�cient length as above.

3.12.13 prod(X = a; b; expr ; fx = 1g). Product of expression expr , initialized at x, the formal
parameter X going from a to b. As for sum, the main purpose of the initialization parameter x is
to force the type of the operations being performed. For example if it is set equal to the integer 1,
operations will start being done exactly. If it is set equal to the real 1:, they will be done using real
numbers having the default precision. If it is set equal to the power series 1 +O(Xk) for a certain
k, they will be done using power series of precision at most k. These are the three most common
initializations.

As an extreme example, compare

? prod(i=1, 100, 1 - X^i); \\ this has degree 5050 !!
time = 128 ms.

? prod(i=1, 100, 1 - X^i, 1 + O(X^101))

time = 8 ms.

%2 = 1 - X - X^2 + X^5 + X^7 - X^12 - X^15 + X^22 + X^26 - X^35 - X^40 + \
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X^51 + X^57 - X^70 - X^77 + X^92 + X^100 + O(X^101)

Of course, in this speci�c case, it is faster to use eta, which is computed using Euler's formula.

? prod(i=1, 1000, 1 - X^i, 1 + O(X^1001));

time = 589 ms.

? \ps1000

seriesprecision = 1000 significant terms

? eta(X) - %

time = 8ms.

%4 = O(X^1001)

The library syntax is produit(GEN a, GEN b, char *expr, GEN x).

3.12.14 prodeuler(X = a; b; expr). Product of expression expr , initialized at 1. (i.e. to a real
number equal to 1 to the current realprecision), the formal parameter X ranging over the prime
numbers between a and b.

The library syntax is prodeuler(void *E, GEN (*eval)(void*,GEN), GEN a,GEN b, long

prec).

3.12.15 prodinf(X = a; expr ; fflag = 0g). in�nite product of expression expr , the formal param-
eter X starting at a. The evaluation stops when the relative error of the expression minus 1 is
less than the default precision. In particular, non-convergent products result in in�nite loops. The
expressions must always evaluate to an element of C.

If flag = 1, do the product of the (1 + expr) instead.

The library syntax is prodinf(void *E, GEN (*eval)(void*,GEN), GEN a, long prec)
(flag = 0), or prodinf1 with the same arguments (flag = 1).

3.12.16 solve(X = a; b; expr). Find a real root of expression expr between a and b, under the con-
dition expr(X = a) � expr(X = b) � 0. (You will get an error message roots must be bracketed

in solve if this does not hold.) This routine uses Brent's method and can fail miserably if expr is
not de�ned in the whole of [a; b] (try solve(x=1, 2, tan(x))).

The library syntax is zbrent(void *E,GEN (*eval)(void*,GEN),GEN a,GEN b,long prec).

3.12.17 solvestep(X = a; b; step; expr ; fflag = 0g). Find zeros of a continuous function in the real
interval [a; b] by naive interval splitting. This function is heuristic and may or may not �nd the
intended zeros. Binary digits of flag mean

� 1: return as soon as one zero is found, otherwise return all zeros found;

� 2: re�ne the splitting until at least one zero is found (may loop inde�nitely if there are no
zeros);

� 4: do a multiplicative search (we must have a > 0 and step > 1), otherwise an additive
search; step is the multiplicative or additive step.

� 8: re�ne the splitting until at least one zero is very close to an integer.

? solvestep(X=0,10,1,sin(X^2),1)

%1 = 1.7724538509055160272981674833411451828

? solvestep(X=1,12,2,besselj(4,X),4)
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%2 = [7.588342434..., 11.064709488...]

The library syntax is solvestep(void *E, GEN (*eval)(void*,GEN), GEN a,GEN b, GEN

step,long flag,long prec).

3.12.18 sum(X = a; b; expr ; fx = 0g). Sum of expression expr , initialized at x, the formal
parameter going from a to b. As for prod, the initialization parameter x may be given to force the
type of the operations being performed.

As an extreme example, compare

? sum(i=1, 10^4, 1/i); \\ rational number: denominator has 4345 digits.
time = 236 ms.

? sum(i=1, 5000, 1/i, 0.)

time = 8 ms.

%2 = 9.787606036044382264178477904

The library syntax is somme(GEN a, GEN b, char *expr, GEN x).

3.12.19 sumalt(X = a; expr ; fflag = 0g). Numerical summation of the series expr , which should
be an alternating series (�1)kak, the formal variable X starting at a. Use an algorithm of Cohen,
Villegas and Zagier (Experiment. Math. 9 (2000), no. 1, 3{12).

If flag = 0, assuming that the ak are the moments of a positive measure on [0; 1], the
relative error is O(3 +

p
8)�n after using ak for k � n. If realprecision is p, we thus set

n = log(10)p= log(3+
p
8) � 1:3p; besides the time needed to compute the ak, k � n, the algorithm

overhead is negligible: time O(p2) and space O(p).

If flag = 1, use a variant with more complicated polynomials, see polzagier. If the ak are
the moments of w(x)dx where w (or only xw(x2)) is a smooth function extending analytically
to the whole complex plane, convergence is in O(14:4�n). If xw(x2) extends analytically to a
smaller region, we still have exponential convergence, with worse constants. Usually faster when the
computation of ak is expensive. If realprecision is p, we thus set n = log(10)p= log(14:4) � 0:86p;
besides the time needed to compute the ak, k � n, the algorithm overhead is not negligible: time
O(p3) and space O(p2). Thus, even if the analytic conditions for rigorous use are met, this variant
is only worthwile if the ak are hard to compute, at least O(p2) individually on average: otherwise
we gain a small constant factor (1.5, say) in the number of needed ak at the expense of a large
overhead.

The conditions for rigorous use are hard to check but the routine is best used heuristically:
even divergent alternating series can sometimes be summed by this method, as well as series which
are not exactly alternating (see for example Section 2.7). It should be used to try and guess the
value of an in�nite sum. (However, see the example at the end of Section 2.7.1.)

If the series already converges geometrically, suminf is often a better choice:

? \p28

? sumalt(i = 1, -(-1)^i / i) - log(2)

time = 0 ms.

%1 = -2.524354897 E-29

? suminf(i = 1, -(-1)^i / i) \\ Had to hit C-C
*** at top-level: suminf(i=1,-(-1)^i/i)

*** ^------
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*** suminf: user interrupt after 10min, 20,100 ms.

? \p1000

? sumalt(i = 1, -(-1)^i / i) - log(2)

time = 90 ms.

%2 = 4.459597722 E-1002

? sumalt(i = 0, (-1)^i / i!) - exp(-1)

time = 670 ms.

%3 = -4.03698781490633483156497361352190615794353338591897830587 E-944

? suminf(i = 0, (-1)^i / i!) - exp(-1)

time = 110 ms.

%4 = -8.39147638 E-1000 \\ faster and more accurate

The library syntax is sumalt(void *E, GEN (*eval)(void*,GEN),GEN a,long prec). Also
available is sumalt2 with the same arguments (flag = 1).

3.12.20 sumdiv(n;X; expr). Sum of expression expr over the positive divisors of n. This function
is a trivial wrapper essentially equivalent to

D = divisors(n);

for (i = 1, #D, X = D[i]; eval(expr))

(except that X is lexically scoped to the sumdiv loop). If expr is a multiplicative function, use
sumdivmult.

3.12.21 sumdivmult(n; d; expr). Sum of multiplicative expression expr over the positive divisors d
of n. Assume that expr evaluates to f(d) where f is multiplicative: f(1) = 1 and f(ab) = f(a)f(b)
for coprime a and b.

3.12.22 suminf(X = a; expr). infinite sum of expression expr , the formal parameter X starting at
a. The evaluation stops when the relative error of the expression is less than the default precision
for 3 consecutive evaluations. The expressions must always evaluate to a complex number.

If the series converges slowly, make sure realprecision is low (even 28 digits may be too
much). In this case, if the series is alternating or the terms have a constant sign, sumalt and
sumpos should be used instead.

? \p28

? suminf(i = 1, -(-1)^i / i) \\ Had to hit C-C

*** at top-level: suminf(i=1,-(-1)^i/i)

*** ^------

*** suminf: user interrupt after 10min, 20,100 ms.

? sumalt(i = 1, -(-1)^i / i) - log(2)

time = 0 ms.

%1 = -2.524354897 E-29

The library syntax is suminf(void *E, GEN (*eval)(void*,GEN), GEN a, long prec).
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3.12.23 sumnum(n = a; f; ftabg). Numerical summation of f(n) at high accuracy using Euler-
MacLaurin, the variable n taking values from a to +1, where f is assumed to have positive values
and is a C1 function; a must be an integer and tab, if given, is the output of sumnuminit. The
latter precomputes abcissas and weights, speeding up the computation; it also allows to specify the
behaviour at in�nity via sumnuminit([+oo, asymp]).

? \p500

? z3 = zeta(3);

? sumpos(n = 1, n^-3) - z3

time = 2,332 ms.

%2 = 2.438468843 E-501

? sumnum(n = 1, n^-3) - z3 \\ here slower than sumpos

time = 2,752 ms.

%3 = 0.E-500

Complexity. The function f will be evaluated at O(D logD) real arguments, where D �
realprecision � log(10). The routine is geared towards slowly decreasing functions: if f decreases
exponentially fast, then one of suminf or sumpos should be preferred. If f satis�es the stronger hy-
potheses required for Monien summation, i.e. if f(1=z) is holomorphic in a complex neighbourhood
of [0; 1], then sumnummonien will be faster since it only requires O(D= logD) evaluations:

? sumnummonien(n = 1, 1/n^3) - z3

time = 1,985 ms.

%3 = 0.E-500

The tab argument precomputes technical data not depending on the expression being summed and
valid for a given accuracy, speeding up immensely later calls:

? tab = sumnuminit();

time = 2,709 ms.

? sumnum(n = 1, 1/n^3, tab) - z3 \\ now much faster than sumpos

time = 40 ms.

%5 = 0.E-500

? tabmon = sumnummonieninit(); \\ Monien summation allows precomputations too

time = 1,781 ms.

? sumnummonien(n = 1, 1/n^3, tabmon) - z3

time = 2 ms.

%7 = 0.E-500

The speedup due to precomputations becomes less impressive when the function f is expensive to
evaluate, though:

? sumnum(n = 1, lngamma(1+1/n)/n, tab);

time = 14,180 ms.

? sumnummonien(n = 1, lngamma(1+1/n)/n, tabmon); \\ fewer evaluations

time = 717 ms.
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Behaviour at in�nity. By default, sumnum assumes that expr decreases slowly at in�nity, but
at least like O(n�2). If the function decreases like n� for some �2 < � < �1, then it must be
indicated via

tab = sumnuminit([+oo, alpha]); /* alpha < 0 slow decrease */

otherwise loss of accuracy is expected. If the functions decreases quickly, like exp(��n) for some
� > 0, then it must be indicated via

tab = sumnuminit([+oo, alpha]); /* alpha > 0 exponential decrease */

otherwise exponent over
ow will occur.

? sumnum(n=1,2^-n)

*** at top-level: sumnum(n=1,2^-n)

*** ^----

*** _^_: overflow in expo().

? tab = sumnuminit([+oo,log(2)]); sumnum(n=1,2^-n, tab)

%1 = 1.000[...]

As a shortcut, one can also input

sumnum(n = [a, asymp], f)

instead of

tab = sumnuminit(asymp);

sumnum(n = a, f, tab)

Further examples.

? \p200

? sumnum(n = 1, n^(-2)) - zeta(2) \\ accurate, fast

time = 200 ms.

%1 = -2.376364457868949779 E-212

? sumpos(n = 1, n^(-2)) - zeta(2) \\ even faster

time = 96 ms.

%2 = 0.E-211

? sumpos(n=1,n^(-4/3)) - zeta(4/3) \\ now much slower

time = 13,045 ms.

%3 = -9.980730723049589073 E-210

? sumnum(n=1,n^(-4/3)) - zeta(4/3) \\ fast but inaccurate

time = 365 ms.

%4 = -9.85[...]E-85

? sumnum(n=[1,-4/3],n^(-4/3)) - zeta(4/3) \\ with decrease rate, now accurate

time = 416 ms.

%5 = -4.134874156691972616 E-210

? tab = sumnuminit([+oo,-4/3]);

time = 196 ms.

? sumnum(n=1, n^(-4/3), tab) - zeta(4/3) \\ faster with precomputations

time = 216 ms.

%5 = -4.134874156691972616 E-210

? sumnum(n=1,-log(n)*n^(-4/3), tab) - zeta'(4/3)

time = 321 ms.
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%7 = 7.224147951921607329 E-210

Note that in the case of slow decrease (� < 0), the exact decrease rate must be indicated,
while in the case of exponential decrease, a rough value will do. In fact, for exponentially decreasing
functions, sumnum is given for completeness and comparison purposes only: one of suminf or sumpos
should always be preferred.

? sumnum(n=[1, 1], 2^-n) \\ pretend we decrease as exp(-n)

time = 240 ms.

%8 = 1.000[...] \\ perfect

? sumpos(n=1, 2^-n)

%9 = 1.000[...] \\ perfect and instantaneous

The library syntax is sumnum((void *E, GEN (*eval)(void*, GEN), GEN a, GEN tab,

long prec)) where an omitted tab is coded as NULL.

3.12.24 sumnuminit(fasympg). Initialize tables for Euler{MacLaurin delta summation of a series
with positive terms. If given, asymp is of the form [+oo; �], as in intnum and indicates the decrease
rate at in�nity of functions to be summed. A positive � > 0 encodes an exponential decrease of
type exp(��n) and a negative �2 < � < �1 encodes a slow polynomial decrease of type n�.

? \p200

? sumnum(n=1, n^-2);

time = 200 ms.

? tab = sumnuminit();

time = 188 ms.

? sumnum(n=1, n^-2, tab); \\ faster

time = 8 ms.

? tab = sumnuminit([+oo, log(2)]); \\ decrease like 2^-n

time = 200 ms.

? sumnum(n=1, 2^-n, tab)

time = 44 ms.

? tab = sumnuminit([+oo, -4/3]); \\ decrease like n^(-4/3)

time = 200 ms.

? sumnum(n=1, n^(-4/3), tab);

time = 221 ms.

The library syntax is GEN sumnuminit(GEN asymp = NULL, long prec).

3.12.25 sumnummonien(n = a; f; ftabg). Numerical summation
P

n�a f(n) at high accuracy,
the variable n taking values from the integer a to +1 using Monien summation, which assumes
that f(1=z) has a complex analytic continuation in a (complex) neighbourhood of the segment
[0; 1].

The function f is evaluated atO(D= logD) real arguments, whereD � realprecision�log(10).
By default, assume that f(n) = O(n�2) and has a non-zero asymptotic expansion

f(n) =
X
i�2

ain
�i

at in�nity. To handle more complicated behaviours and allow time-saving precomputations (for a
given realprecision), see sumnummonieninit.

The library syntax is GEN sumnummonien0(GEN n, GEN f, GEN tab = NULL, long prec)

.
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3.12.26 sumnummonieninit(fasympg; fwg; fn0 = 1g). Initialize tables for Monien summation
of a series

P
n�n0

f(n) where f(1=z) has a complex analytic continuation in a (complex) neigh-
bourhood of the segment [0; 1].

By default, assume that f(n) = O(n�2) and has a non-zero asymptotic expansion

f(n) =
X
i�2

ai=n
i

at in�nity. Note that the sum starts at i = 2! The argument asymp allows to specify di�erent
expansions:

� a real number � > 1 means
f(n) =

X
i�1

ai=n
�i

(Now the summation starts at 1.)

� a vector [�; �] of reals, where we must have � > 0 and � + � > 1 to ensure convergence,
means that

f(n) =
X
i�1

ai=n
�i+�

Note that asymp = [�; �] is equivalent to asymp = �.

? \p38

? s = sumnum(n = 1, sin(1/sqrt(n)) / n)

%1 = 2.3979771206715998375659850036324914714

? sumnummonien(n = 1, sin(1/sqrt(n)) / n) - s

%2 = -0.001[...] \\ completely wrong !

? t = sumnummonieninit([1/2,1]); \\ f(n) = sum_i 1 / n^(i/2+1)

? sumnummonien(n = 1, sin(1/sqrt(n)) / n, t) - s

%3 = 0.E-37 \\ now correct

The argument w is used to sum expressions of the formX
n�n0

f(n)w(n);

for varying f as above, and �xed weight function w, where we further assume that the auxiliary
sums

gw(m) =
X
n�n0

w(n)=n�m+�

converge for all m � 1. Note that for non-negative integers k, and weight w(n) = (log n)k, the
function gw(m) = �(k)(�m+ �) has a simple expression; for general weights, gw is computed using
sumnum. The following variants are available

� an integer k � 0, to code w(n) = (log n)k; only the cases k = 0; 1 are presently implemented;
due to a poor implementation of � derivatives, it is not currently worth it to exploit the special
shape of gw when k > 0;

� a t_CLOSURE computing the values w(n), where we assume that w(n) = O(n�) for all � > 0;
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� a vector [w; fast], where w is a closure as above and fast is a scalar; we assume that
w(n) = O(nfast+�); note that w = [w; 0] is equivalent to w = w.

� a vector [w; oo], where w is a closure as above; we assume that w(n) decreases exponentially.
Note that in this case, sumnummonien is provided for completeness and comparison purposes only:
one of suminf or sumpos should be preferred in practice.

The cases where w is a closure or w(n) = log n are the only ones where n0 is taken into account
and stored in the result. The subsequent call to sumnummonien must use the same value.

? \p300

? sumnummonien(n = 1, n^-2*log(n)) + zeta'(2)

time = 536 ms.

%1 = -1.323[...]E-6 \\ completely wrong, f does not satisfy hypotheses !

? tab = sumnummonieninit(, 1); \\ codes w(n) = log(n)

time = 18,316 ms.

? sumnummonien(n = 1, n^-2, tab) + zeta'(2)

time = 44 ms.

%3 = -5.562684646268003458 E-309 \\ now perfect

? tab = sumnummonieninit(, n->log(n)); \\ generic, about as fast

time = 18,693 ms.

? sumnummonien(n = 1, n^-2, tab) + zeta'(2)

time = 40 ms.

%5 = -5.562684646268003458 E-309 \\ identical result

The library syntax is GEN sumnummonieninit(GEN asymp = NULL, GEN w = NULL, GEN n0

= NULL, long prec).

3.12.27 sumpos(X = a; expr ; fflag = 0g). Numerical summation of the series expr , which must
be a series of terms having the same sign, the formal variable X starting at a. The algorithm used
is Van Wijngaarden's trick for converting such a series into an alternating one, then we use sumalt.
For regular functions, the function sumnum is in general much faster once the initializations have
been made using sumnuminit.

The routine is heuristic and assumes that expr is more or less a decreasing function of X. In
particular, the result will be completely wrong if expr is 0 too often. We do not check either that
all terms have the same sign. As sumalt, this function should be used to try and guess the value
of an in�nite sum.

If flag = 1, use sumalt(; 1) instead of sumalt(; 0), see Section 3.12.19. Requiring more stringent
analytic properties for rigorous use, but allowing to compute fewer series terms.

To reach accuracy 10�p, both algorithms require O(p2) space; furthermore, assuming the terms
decrease polynomially (in O(n�C)), both need to compute O(p2) terms. The sumpos(; 1) variant
has a smaller implied constant (roughly 1.5 times smaller). Since the sumalt(; 1) overhead is now
small compared to the time needed to compute series terms, this last variant should be about
1.5 faster. On the other hand, the achieved accuracy may be much worse: as for sumalt, since
conditions for rigorous use are hard to check, the routine is best used heuristically.

The library syntax is sumpos(void *E, GEN (*eval)(void*,GEN),GEN a,long prec). Also
available is sumpos2 with the same arguments (flag = 1).
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3.13 Plotting functions.

Although plotting is not even a side purpose of PARI, a number of plotting functions are
provided. Moreover, a lot of people suggested ideas or submitted patches for this section of the
code. There are three types of graphic functions.

3.13.1 High-level plotting functions. (all the functions starting with ploth) in which the user
has little to do but explain what type of plot he wants, and whose syntax is similar to the one used
in the preceding section.

3.13.2 Low-level plotting functions. (called rectplot functions, sharing the pre�x plot), where
every drawing primitive (point, line, box, etc.) is speci�ed by the user. These low-level functions
work as follows. You have at your disposal 16 virtual windows which are �lled independently, and
can then be physically ORed on a single window at user-de�ned positions. These windows are
numbered from 0 to 15, and must be initialized before being used by the function plotinit, which
speci�es the height and width of the virtual window (called a rectwindow in the sequel). At all
times, a virtual cursor (initialized at [0; 0]) is attached to the window, and its current value can be
obtained using the function plotcursor.

A number of primitive graphic objects (called rect objects) can then be drawn in these windows,
using a default color attached to that window (which can be changed using the plotcolor function)
and only the part of the object which is inside the window will be drawn, with the exception of
polygons and strings which are drawn entirely. The ones sharing the pre�x plotr draw relatively
to the current position of the virtual cursor, the others use absolute coordinates. Those having the
pre�x plotrecth put in the rectwindow a large batch of rect objects corresponding to the output
of the related ploth function.

Finally, the actual physical drawing is done using plotdraw. The rectwindows are preserved
so that further drawings using the same windows at di�erent positions or di�erent windows can be
done without extra work. To erase a window, use plotkill. It is not possible to partially erase a
window: erase it completely, initialize it again, then �ll it with the graphic objects that you want
to keep.

In addition to initializing the window, you may use a scaled window to avoid unnecessary
conversions. For this, use plotscale. As long as this function is not called, the scaling is simply
the number of pixels, the origin being at the upper left and the y-coordinates going downwards.

Plotting functions are platform independent, but a number of graphical drivers are available
for screen output: X11-windows (hence also for GUI's based on X11 such as Openwindows and
Motif), and the Qt and FLTK graphical libraries. The physical window opened by plotdraw or
any of the ploth* functions is completely separated from gp (technically, a fork is done, and
the non-graphical memory is immediately freed in the child process), which means you can go on
working in the current gp session, without having to kill the window �rst. This window can be
closed, enlarged or reduced using the standard window manager functions. No zooming procedure
is implemented though (yet).
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3.13.3 Functions for PostScript output. in the same way that printtex allows you to have
a TEX output corresponding to printed results, the functions starting with ps allow you to have
PostScript output of the plots. This will not be identical with the screen output, but su�ciently
close. Note that you can use PostScript output even if you do not have the plotting routines
enabled. The PostScript output is written in a �le whose name is derived from the psfile default
(./pari.ps if you did not tamper with it). Each time a new PostScript output is asked for, the
PostScript output is appended to that �le. Hence you probably want to remove this �le, or change
the value of psfile, in between plots. On the other hand, in this manner, as many plots as desired
can be kept in a single �le.

3.13.4 Library mode. None of the graphic functions are available within the PARI library, you
must be under gp to use them. The reason for that is that you really should not use PARI for
heavy-duty graphical work, there are better specialized alternatives around. This whole set of
routines was only meant as a convenient, but simple-minded, visual aid. If you really insist on
using these in your program (we warned you), the source (plot*.c) should be readable enough for
you to achieve something.

3.13.5 plot(X = a; b; expr ; fYming; fYmaxg). Crude ASCII plot of the function represented by
expression expr from a to b, with Y ranging from Ymin to Ymax . If Ymin (resp. Ymax ) is not
given, the minimum (resp. the maximum) of the computed values of the expression is used instead.

The library syntax is void pariplot(GEN X, GEN b, GEN expr, GEN Ymin = NULL, GEN

Ymax = NULL, long prec).

3.13.6 plotbox(w; x2 ; y2 ). Let (x1; y1) be the current position of the virtual cursor. Draw in the
rectwindow w the outline of the rectangle which is such that the points (x1; y1) and (x2; y2) are
opposite corners. Only the part of the rectangle which is in w is drawn. The virtual cursor does
not move.

3.13.7 plotclip(w). `clips' the content of rectwindow w, i.e remove all parts of the drawing that
would not be visible on the screen. Together with plotcopy this function enables you to draw on
a scratchpad before committing the part you're interested in to the �nal picture.

3.13.8 plotcolor(w; c). Set default color to c in rectwindow w. This is only implemented for the
X-windows, 
tk and Qt graphing engines. Possible values for c are given by the graphcolormap

default, factory setting are

1=black, 2=blue, 3=violetred, 4=red, 5=green, 6=grey, 7=gainsborough.

but this can be considerably extended.

3.13.9 plotcopy(sourcew ; destw ; dx ; dy ; fflag = 0g). Copy the contents of rectwindow sourcew to
rectwindow destw with o�set (dx,dy). If 
ag's bit 1 is set, dx and dy express fractions of the size
of the current output device, otherwise dx and dy are in pixels. dx and dy are relative positions of
northwest corners if other bits of 
ag vanish, otherwise of: 2: southwest, 4: southeast, 6: northeast
corners

3.13.10 plotcursor(w). Give as a 2-component vector the current (scaled) position of the virtual
cursor corresponding to the rectwindow w.
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3.13.11 plotdraw(list ; fflag = 0g). Physically draw the rectwindows given in list which must
be a vector whose number of components is divisible by 3. If list = [w1; x1; y1; w2; x2; y2; : : :],
the windows w1, w2, etc. are physically placed with their upper left corner at physical position
(x1; y1), (x2; y2),: : : respectively, and are then drawn together. Overlapping regions will thus be
drawn twice, and the windows are considered transparent. Then display the whole drawing in a
special window on your screen. If flag 6= 0, x1, y1 etc. express fractions of the size of the current
output device

3.13.12 ploth(X = a; b; expr ; f
ags = 0g; fn = 0g). High precision plot of the function y = f(x)
represented by the expression expr , x going from a to b. This opens a speci�c window (which is
killed whenever you click on it), and returns a four-component vector giving the coordinates of the
bounding box in the form [xmin; xmax ; ymin; ymax ].

Important note. ploth may evaluate expr thousands of times; given the relatively low resolution
of plotting devices, few signi�cant digits of the result will be meaningful. Hence you should keep
the current precision to a minimum (e.g. 9) before calling this function.

n speci�es the number of reference point on the graph, where a value of 0 means we use the
hardwired default values (1000 for general plot, 1500 for parametric plot, and 8 for recursive plot).

If no flag is given, expr is either a scalar expression f(X), in which case the plane curve
y = f(X) will be drawn, or a vector [f1(X); : : : ; fk(X)], and then all the curves y = fi(X) will be
drawn in the same window.

The binary digits of flag mean:

� 1 = Parametric: parametric plot. Here expr must be a vector with an even number of
components. Successive pairs are then understood as the parametric coordinates of a plane curve.
Each of these are then drawn.

For instance:

ploth(X=0,2*Pi,[sin(X),cos(X)], "Parametric")

ploth(X=0,2*Pi,[sin(X),cos(X)])

ploth(X=0,2*Pi,[X,X,sin(X),cos(X)], "Parametric")

draw successively a circle, two entwined sinusoidal curves and a circle cut by the line y = x.

� 2 = Recursive: recursive plot. If this 
ag is set, only one curve can be drawn at a time,
i.e. expr must be either a two-component vector (for a single parametric curve, and the parametric

ag has to be set), or a scalar function. The idea is to choose pairs of successive reference points,
and if their middle point is not too far away from the segment joining them, draw this as a local
approximation to the curve. Otherwise, add the middle point to the reference points. This is fast,
and usually more precise than usual plot. Compare the results of

ploth(X=-1,1, sin(1/X), "Recursive")

ploth(X=-1,1, sin(1/X))

for instance. But beware that if you are extremely unlucky, or choose too few reference points,
you may draw some nice polygon bearing little resemblance to the original curve. For instance you
should never plot recursively an odd function in a symmetric interval around 0. Try

ploth(x = -20, 20, sin(x), "Recursive")

to see why. Hence, it's usually a good idea to try and plot the same curve with slightly di�erent
parameters.
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The other values toggle various display options:

� 4 = no Rescale: do not rescale plot according to the computed extrema. This is used in
conjunction with plotscale when graphing multiple functions on a rectwindow (as a plotrecth

call):

s = plothsizes();

plotinit(0, s[2]-1, s[2]-1);

plotscale(0, -1,1, -1,1);

plotrecth(0, t=0,2*Pi, [cos(t),sin(t)], "Parametric|no_Rescale")

plotdraw([0, -1,1]);

This way we get a proper circle instead of the distorted ellipse produced by

ploth(t=0,2*Pi, [cos(t),sin(t)], "Parametric")

� 8 = no X axis: do not print the x-axis.

� 16 = no Y axis: do not print the y-axis.

� 32 = no Frame: do not print frame.

� 64 = no Lines: only plot reference points, do not join them.

� 128 = Points too: plot both lines and points.

� 256 = Splines: use splines to interpolate the points.

� 512 = no X ticks: plot no x-ticks.

� 1024 = no Y ticks: plot no y-ticks.

� 2048 = Same ticks: plot all ticks with the same length.

� 4096 = Complex: is a parametric plot but where each member of expr is considered a complex
number encoding the two coordinates of a point. For instance:

ploth(X=0,2*Pi,exp(I*X), "Complex")

ploth(X=0,2*Pi,[(1+I)*X,exp(I*X)], "Complex")

will draw respectively a circle and a circle cut by the line y = x.

3.13.13 plothraw(listx ; listy ; fflag = 0g). Given listx and listy two vectors of equal length, plots
(in high precision) the points whose (x; y)-coordinates are given in listx and listy . Automatic
positioning and scaling is done, but with the same scaling factor on x and y. If flag is 1, join
points, other non-0 
ags toggle display options and should be combinations of bits 2k, k � 3 as in
ploth.

3.13.14 plothsizes(fflag = 0g). Return data corresponding to the output window in the form of
a 6-component vector: window width and height, sizes for ticks in horizontal and vertical directions
(this is intended for the gnuplot interface and is currently not signi�cant), width and height of
characters.

If flag = 0, sizes of ticks and characters are in pixels, otherwise are fractions of the screen size
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3.13.15 plotinit(w; fxg; fyg; fflag = 0g). Initialize the rectwindow w, destroying any rect objects
you may have already drawn in w. The virtual cursor is set to (0; 0). The rectwindow size is set
to width x and height y; omitting either x or y means we use the full size of the device in that
direction. If flag = 0, x and y represent pixel units. Otherwise, x and y are understood as fractions
of the size of the current output device (hence must be between 0 and 1) and internally converted
to pixels.

The plotting device imposes an upper bound for x and y, for instance the number of pixels
for screen output. These bounds are available through the plothsizes function. The following
sequence initializes in a portable way (i.e independent of the output device) a window of maximal
size, accessed through coordinates in the [0; 1000]� [0; 1000] range:

s = plothsizes();

plotinit(0, s[1]-1, s[2]-1);

plotscale(0, 0,1000, 0,1000);

3.13.16 plotkill(w). Erase rectwindow w and free the corresponding memory. Note that if you
want to use the rectwindow w again, you have to use plotinit �rst to specify the new size. So
it's better in this case to use plotinit directly as this throws away any previous work in the given
rectwindow.

3.13.17 plotlines(w;X; Y; fflag = 0g). Draw on the rectwindow w the polygon such that the
(x,y)-coordinates of the vertices are in the vectors of equal length X and Y . For simplicity, the
whole polygon is drawn, not only the part of the polygon which is inside the rectwindow. If flag is
non-zero, close the polygon. In any case, the virtual cursor does not move.

X and Y are allowed to be scalars (in this case, both have to). There, a single segment will be
drawn, between the virtual cursor current position and the point (X;Y ). And only the part thereof
which actually lies within the boundary of w. Then move the virtual cursor to (X;Y ), even if it
is outside the window. If you want to draw a line from (x1; y1) to (x2; y2) where (x1; y1) is not
necessarily the position of the virtual cursor, use plotmove(w,x1,y1) before using this function.

3.13.18 plotlinetype(w; type). This function is obsolete and currently a no-op.

Change the type of lines subsequently plotted in rectwindow w. type �2 corresponds to frames,
�1 to axes, larger values may correspond to something else. w = �1 changes highlevel plotting.

3.13.19 plotmove(w; x; y). Move the virtual cursor of the rectwindow w to position (x; y).

3.13.20 plotpoints(w;X; Y ). Draw on the rectwindow w the points whose (x; y)-coordinates are
in the vectors of equal length X and Y and which are inside w. The virtual cursor does not move.
This is basically the same function as plothraw, but either with no scaling factor or with a scale
chosen using the function plotscale.

As was the case with the plotlines function, X and Y are allowed to be (simultaneously)
scalar. In this case, draw the single point (X;Y ) on the rectwindow w (if it is actually inside w),
and in any case move the virtual cursor to position (x; y).

3.13.21 plotpointsize(w; size). This function is obsolete. It is currently a no-op.

Changes the \size" of following points in rectwindow w. If w = �1, change it in all rectwindows.
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3.13.22 plotpointtype(w; type). This function is obsolete and currently a no-op.

change the type of points subsequently plotted in rectwindow w. type = �1 corresponds to a
dot, larger values may correspond to something else. w = �1 changes highlevel plotting.

3.13.23 plotrbox(w; dx ; dy). Draw in the rectwindow w the outline of the rectangle which is such
that the points (x1; y1) and (x1 + dx; y1 + dy) are opposite corners, where (x1; y1) is the current
position of the cursor. Only the part of the rectangle which is in w is drawn. The virtual cursor
does not move.

3.13.24 plotrecth(w;X = a; b; expr ; fflag = 0g; fn = 0g). Writes to rectwindow w the curve
output of ploth(w;X = a; b; expr ; flag ; n). Returns a vector for the bounding box.

3.13.25 plotrecthraw(w; data; f
ags = 0g). Plot graph(s) for data in rectwindow w. flag has the
same signi�cance here as in ploth, though recursive plot is no more signi�cant.
data

is a vector of vectors, each corresponding to a list a coordinates. If parametric plot is set, there
must be an even number of vectors, each successive pair corresponding to a curve. Otherwise, the
�rst one contains the x coordinates, and the other ones contain the y-coordinates of curves to plot.

3.13.26 plotrline(w; dx ; dy). Draw in the rectwindow w the part of the segment (x1; y1)� (x1 +
dx; y1+dy) which is inside w, where (x1; y1) is the current position of the virtual cursor, and move
the virtual cursor to (x1 + dx; y1 + dy) (even if it is outside the window).

3.13.27 plotrmove(w; dx ; dy). Move the virtual cursor of the rectwindow w to position (x1 +
dx; y1 + dy), where (x1; y1) is the initial position of the cursor (i.e. to position (dx; dy) relative to
the initial cursor).

3.13.28 plotrpoint(w; dx ; dy). Draw the point (x1 + dx; y1 + dy) on the rectwindow w (if it is
inside w), where (x1; y1) is the current position of the cursor, and in any case move the virtual
cursor to position (x1 + dx; y1 + dy).

3.13.29 plotscale(w; x1 ; x2 ; y1 ; y2 ). Scale the local coordinates of the rectwindow w so that x
goes from x1 to x2 and y goes from y1 to y2 (x2 < x1 and y2 < y1 being allowed). Initially, after
the initialization of the rectwindow w using the function plotinit, the default scaling is the graphic
pixel count, and in particular the y axis is oriented downwards since the origin is at the upper left.
The function plotscale allows to change all these defaults and should be used whenever functions
are graphed.

3.13.30 plotstring(w; x; f
ags = 0g). Draw on the rectwindow w the String x (see Section 2.9),
at the current position of the cursor.
flag

is used for justi�cation: bits 1 and 2 regulate horizontal alignment: left if 0, right if 2, center
if 1. Bits 4 and 8 regulate vertical alignment: bottom if 0, top if 8, v-center if 4. Can insert
additional small gap between point and string: horizontal if bit 16 is set, vertical if bit 32 is set
(see the tutorial for an example).
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3.13.31 psdraw(list ; fflag = 0g). Same as plotdraw, except that the output is a PostScript
program appended to the psfile, and 
ag!=0 scales the plot from size of the current output device
to the standard PostScript plotting size

3.13.32 psploth(X = a; b; expr ; f
ags = 0g; fn = 0g). Same as ploth, except that the output is
a PostScript program appended to the psfile.

3.13.33 psplothraw(listx ; listy ; fflag = 0g). Same as plothraw, except that the output is a
PostScript program appended to the psfile.

3.14 Programming in GP: control statements.

A number of control statements are available in GP. They are simpler and have a syntax
slightly di�erent from their C counterparts, but are quite powerful enough to write any kind of
program. Some of them are speci�c to GP, since they are made for number theorists. As usual,
X will denote any simple variable name, and seq will always denote a sequence of expressions,
including the empty sequence.

Caveat. In constructs like

for (X = a,b, seq)

the variable X is lexically scoped to the loop, leading to possibly unexpected behavior:

n = 5;

for (n = 1, 10,

if (something_nice(), break);

);

\\ at this point n is 5 !

If the sequence seq modi�es the loop index, then the loop is modi�ed accordingly:

? for (n = 1, 10, n += 2; print(n))

3

6

9

12

3.14.1 break(fn = 1g). Interrupts execution of current seq , and immediately exits from the n
innermost enclosing loops, within the current function call (or the top level loop); the integer n
must be positive. If n is greater than the number of enclosing loops, all enclosing loops are exited.
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3.14.2 breakpoint(). Interrupt the program and enter the breakloop. The program continues
when the breakloop is exited.

? f(N,x)=my(z=x^2+1);breakpoint();gcd(N,z^2+1-z);

? f(221,3)

*** at top-level: f(221,3)

*** ^--------

*** in function f: my(z=x^2+1);breakpoint();gcd(N,z

*** ^--------------------

*** Break loop: type <Return> to continue; 'break' to go back to GP

break> z

10

break>

%2 = 13

3.14.3 dbg down(fn = 1g). (In the break loop) go down n frames. This allows to cancel a
previous call to dbg up.

3.14.4 dbg err(). In the break loop, return the error data of the current error, if any. See iferr
for details about error data. Compare:

? iferr(1/(Mod(2,12019)^(6!)-1),E,Vec(E))

%1 = ["e_INV", "Fp_inv", Mod(119, 12019)]

? 1/(Mod(2,12019)^(6!)-1)

*** at top-level: 1/(Mod(2,12019)^(6!)-

*** ^--------------------

*** _/_: impossible inverse in Fp_inv: Mod(119, 12019).

*** Break loop: type 'break' to go back to GP prompt

break> Vec(dbg_err())

["e_INV", "Fp_inv", Mod(119, 12019)]

3.14.5 dbg up(fn = 1g). (In the break loop) go up n frames. This allows to inspect data of the
parent function. To cancel a dbg_up call, use dbg_down

3.14.6 dbg x(Af; ng). Print the inner structure of A, complete if n is omitted, up to level n
otherwise. This is useful for debugging. This is similar to \x but does not require A to be an
history entry. In particular, it can be used in the break loop.

3.14.7 for(X = a; b; seq). Evaluates seq , where the formal variable X goes from a to b. Nothing
is done if a > b. a and b must be in R. If b is set to +oo, the loop will not stop; it is expected that
the caller will break out of the loop itself at some point, using break or return.
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3.14.8 forcomposite(n = a; fbg; seq). Evaluates seq , where the formal variable n ranges over the
composite numbers between the non-negative real numbers a to b, including a and b if they are
composite. Nothing is done if a > b.

? forcomposite(n = 0, 10, print(n))

4

6

8

9

10

Omitting b means we will run through all composites � a, starting an in�nite loop; it is expected
that the user will break out of the loop himself at some point, using break or return.

Note that the value of n cannot be modi�ed within seq :

? forcomposite(n = 2, 10, n = [])

*** at top-level: forcomposite(n=2,10,n=[])

*** ^---

*** index read-only: was changed to [].

3.14.9 fordiv(n;X; seq). Evaluates seq , where the formal variable X ranges through the divisors of
n (see divisors, which is used as a subroutine). It is assumed that factor can handle n, without
negative exponents. Instead of n, it is possible to input a factorization matrix, i.e. the output of
factor(n).

This routine uses divisors as a subroutine, then loops over the divisors. In particular, if n is
an integer, divisors are sorted by increasing size.

To avoid storing all divisors, possibly using a lot of memory, the following (much slower) routine
loops over the divisors using essentially constant space:

FORDIV(N)=

{ my(P, E);

P = factor(N); E = P[,2]; P = P[,1];

forvec( v = vector(#E, i, [0,E[i]]),

X = factorback(P, v)

\\ ...

);

}

? for(i=1,10^5, FORDIV(i))

time = 3,445 ms.

? for(i=1,10^5, fordiv(i, d, ))

time = 490 ms.
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3.14.10 forell(E; a; b; seq ; fflag = 0g). Evaluates seq , where the formal variable E = [name;M;G]
ranges through all elliptic curves of conductors from a to b. In this notation name is the curve
name in Cremona's elliptic curve database, M is the minimal model, G is a Z-basis of the free part
of the Mordell-Weil group E(Q). If 
ag is non-zero, select only the �rst curve in each isogeny class.

? forell(E, 1, 500, my([name,M,G] = E); \

if (#G > 1, print(name)))

389a1

433a1

446d1

? c = 0; forell(E, 1, 500, c++); c \\ number of curves

%2 = 2214

? c = 0; forell(E, 1, 500, c++, 1); c \\ number of isogeny classes

%3 = 971

The elldata database must be installed and contain data for the speci�ed conductors.

The library syntax is forell(void *data, long (*call)(void*,GEN), long a, long b,

long flag).

3.14.11 forpart(X = k; seq ; fa = kg; fn = kg). Evaluate seq over the partitions X = [x1; : : : xn]
of the integer k, i.e. increasing sequences x1 � x2 : : : � xn of sum x1+ : : :+xn = k. By convention,
0 admits only the empty partition and negative numbers have no partitions. A partition is given
by a t_VECSMALL, where parts are sorted in nondecreasing order:

? forpart(X=3, print(X))

Vecsmall([3])

Vecsmall([1, 2])

Vecsmall([1, 1, 1])

Optional parameters n and a are as follows:

� n = nmax (resp. n = [nmin;nmax ]) restricts partitions to length less than nmax (resp.
length between nmin and nmax), where the length is the number of nonzero entries.

� a = amax (resp. a = [amin; amax ]) restricts the parts to integers less than amax (resp.
between amin and amax ).

By default, parts are positive and we remove zero entries unless amin � 0, in which case X is
of constant length nmax .

\\ at most 3 non-zero parts, all <= 4

? forpart(v=5,print(Vec(v)),4,3)

[1, 4]

[2, 3]

[1, 1, 3]

[1, 2, 2]

\\ between 2 and 4 parts less than 5, fill with zeros

? forpart(v=5,print(Vec(v)),[0,5],[2,4])

[0, 0, 1, 4]

[0, 0, 2, 3]

[0, 1, 1, 3]

[0, 1, 2, 2]
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[1, 1, 1, 2]

The behavior is unspeci�ed if X is modi�ed inside the loop.

The library syntax is forpart(void *data, long (*call)(void*,GEN), long k, GEN a,

GEN n).

3.14.12 forprime(p = a; fbg; seq). Evaluates seq , where the formal variable p ranges over the prime
numbers between the real numbers a to b, including a and b if they are prime. More precisely, the
value of p is incremented to nextprime(p + 1), the smallest prime strictly larger than p, at the
end of each iteration. Nothing is done if a > b.

? forprime(p = 4, 10, print(p))

5

7

Setting b to +oo means we will run through all primes � a, starting an in�nite loop; it is expected
that the caller will break out of the loop itself at some point, using break or return.

Note that the value of p cannot be modi�ed within seq :

? forprime(p = 2, 10, p = [])

*** at top-level: forprime(p=2,10,p=[])

*** ^---

*** prime index read-only: was changed to [].

3.14.13 forstep(X = a; b; s; seq). Evaluates seq , where the formal variable X goes from a to b,
in increments of s. Nothing is done if s > 0 and a > b or if s < 0 and a < b. s must be in R�

or a vector of steps [s1; : : : ; sn]. In the latter case, the successive steps are used in the order they
appear in s.

? forstep(x=5, 20, [2,4], print(x))

5

7

11

13

17

19

Setting b to +oo will start an in�nite loop; it is expected that the caller will break out of the loop
itself at some point, using break or return.

3.14.14 forsubgroup(H = G; fboundg; seq). Evaluates seq for each subgroup H of the abelian
group G (given in SNF form or as a vector of elementary divisors).

If bound is present, and is a positive integer, restrict the output to subgroups of index less than
bound . If bound is a vector containing a single positive integer B, then only subgroups of index
exactly equal to B are computed

The subgroups are not ordered in any obvious way, unless G is a p-group in which case
Birkho�'s algorithm produces them by decreasing index. A subgroup is given as a matrix whose
columns give its generators on the implicit generators of G. For example, the following prints all
subgroups of index less than 2 in G = Z=2Zg1 � Z=2Zg2:

? G = [2,2]; forsubgroup(H=G, 2, print(H))
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[1; 1]

[1; 2]

[2; 1]

[1, 0; 1, 1]

The last one, for instance is generated by (g1; g1 + g2). This routine is intended to treat huge
groups, when subgrouplist is not an option due to the sheer size of the output.

For maximal speed the subgroups have been left as produced by the algorithm. To print them
in canonical form (as left divisors of G in HNF form), one can for instance use

? G = matdiagonal([2,2]); forsubgroup(H=G, 2, print(mathnf(concat(G,H))))

[2, 1; 0, 1]

[1, 0; 0, 2]

[2, 0; 0, 1]

[1, 0; 0, 1]

Note that in this last representation, the index [G : H] is given by the determinant. See galois-

subcyclo and galoisfixedfield for applications to Galois theory.

The library syntax is forsubgroup(void *data, long (*call)(void*,GEN), GEN G, GEN

bound).

3.14.15 forvec(X = v; seq ; fflag = 0g). Let v be an n-component vector (where n is arbitrary) of
two-component vectors [ai; bi] for 1 � i � n, where all entries ai, bi are real numbers. This routine
lets X vary over the n-dimensional hyperrectangle given by v, that is, X is an n-dimensional vector
taking successively its entries X[i] in the range [ai; bi] with lexicographic ordering. (The component
with the highest index moves the fastest.) The type of X is the same as the type of v: t_VEC or
t_COL.

The expression seq is evaluated with the successive values of X.

If flag = 1, generate only nondecreasing vectors X, and if flag = 2, generate only strictly
increasing vectors X.

? forvec (X=[[0,1],[-1,1]], print(X));

[0, -1]

[0, 0]

[0, 1]

[1, -1]

[1, 0]

[1, 1]

? forvec (X=[[0,1],[-1,1]], print(X), 1);

[0, 0]

[0, 1]

[1, 1]

? forvec (X=[[0,1],[-1,1]], print(X), 2)

[0, 1]
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3.14.16 if(a; fseq1g; fseq2g). Evaluates the expression sequence seq1 if a is non-zero, otherwise
the expression seq2 . Of course, seq1 or seq2 may be empty:

if (a,seq) evaluates seq if a is not equal to zero (you don't have to write the second comma),
and does nothing otherwise,

if (a,,seq) evaluates seq if a is equal to zero, and does nothing otherwise. You could get the
same result using the ! (not) operator: if (!a,seq).

The value of an if statement is the value of the branch that gets evaluated: for instance

x = if(n % 4 == 1, y, z);

sets x to y if n is 1 modulo 4, and to z otherwise.

Successive 'else' blocks can be abbreviated in a single compound if as follows:

if (test1, seq1,

test2, seq2,

...

testn, seqn,

seqdefault);

is equivalent to

if (test1, seq1

, if (test2, seq2

, ...

if (testn, seqn, seqdefault)...));

For instance, this allows to write traditional switch / case constructions:

if (x == 0, do0(),

x == 1, do1(),

x == 2, do2(),

dodefault());

Remark. The boolean operators && and || are evaluated according to operator precedence as
explained in Section 2.4, but, contrary to other operators, the evaluation of the arguments is
stopped as soon as the �nal truth value has been determined. For instance

if (x != 0 && f(1/x), ...)

is a perfectly safe statement.
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Remark. Functions such as break and next operate on loops, such as forxxx, while, until.
The if statement is not a loop. (Obviously!)

3.14.17 iferr(seq1 ; E; seq2f; predg). Evaluates the expression sequence seq1 . If an error occurs,
set the formal parameter E set to the error data. If pred is not present or evaluates to true,
catch the error and evaluate seq2 . Both pred and seq2 can reference E . The error type is given
by errname(E), and other data can be accessed using the component function. The code seq2
should check whether the error is the one expected. In the negative the error can be rethrown
using error(E) (and possibly caught by an higher iferr instance). The following uses iferr to
implement Lenstra's ECM factoring method

? ecm(N, B = 1000!, nb = 100)=

{

for(a = 1, nb,

iferr(ellmul(ellinit([a,1]*Mod(1,N)), [0,1]*Mod(1,N), B),

E, return(gcd(lift(component(E,2)),N)),

errname(E)=="e_INV" && type(component(E,2)) == "t_INTMOD"))

}

? ecm(2^101-1)

%2 = 7432339208719

The return value of iferr itself is the value of seq2 if an error occurs, and the value of seq1
otherwise. We now describe the list of valid error types, and the attached error data E ; in each
case, we list in order the components of E , accessed via component(E,1), component(E,2), etc.

Internal errors, \system" errors.

� "e ARCH". A requested feature s is not available on this architecture or operating system. E
has one component (t_STR): the missing feature name s.

� "e BUG". A bug in the PARI library, in function s. E has one component (t_STR): the
function name s.

� "e FILE". Error while trying to open a �le. E has two components, 1 (t_STR): the �le type
(input, output, etc.), 2 (t_STR): the �le name.

� "e IMPL". A requested feature s is not implemented. E has one component, 1 (t_STR): the
feature name s.

� "e PACKAGE". Missing optional package s. E has one component, 1 (t_STR): the package
name s.
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Syntax errors, type errors.

� "e DIM". The dimensions of arguments x and y submitted to function s does not match up.
E.g., multiplying matrices of inconsistent dimension, adding vectors of di�erent lengths,: : :E has
three component, 1 (t_STR): the function name s, 2: the argument x, 3: the argument y.

� "e FLAG". A 
ag argument is out of bounds in function s. E has one component, 1 (t_STR):
the function name s.

� "e NOTFUNC". Generated by the PARI evaluator; tried to use a GEN x which is not a
t_CLOSURE in a function call syntax (as in f = 1; f(2);). E has one component, 1: the o�ending
GEN x.

� "e OP". Impossible operation between two objects than cannot be typecast to a sensible
common domain for deeper reasons than a type mismatch, usually for arithmetic reasons. As in
O(2) + O(3): it is valid to add two t_PADICs, provided the underlying prime is the same; so the
addition is not forbidden a priori for type reasons, it only becomes so when inspecting the objects
and trying to perform the operation. E has three components, 1 (t_STR): the operator name op,
2: �rst argument, 3: second argument.

� "e TYPE". An argument x of function s had an unexpected type. (As in factor("blah").)
E has two components, 1 (t_STR): the function name s, 2: the o�ending argument x.

� "e TYPE2". Forbidden operation between two objects than cannot be typecast to a sensible
common domain, because their types do not match up. (As in Mod(1,2) + Pi.) E has three
components, 1 (t_STR): the operator name op, 2: �rst argument, 3: second argument.

� "e PRIORITY". Object o in function s contains variables whose priority is incompatible
with the expected operation. E.g. Pol([x,1], 'y): this raises an error because it's not possible to
create a polynomial whose coe�cients involve variables with higher priority than the main variable.
E has four components: 1 (t_STR): the function name s, 2: the o�ending argument o, 3 (t_STR):
an operator op describing the priority error, 4 (t_POL): the variable v describing the priority error.
The argument satis�es variable(x) opvariable(v).

� "e VAR". The variables of arguments x and y submitted to function s does not match up.
E.g., considering the algebraic number Mod(t,t^2+1) in nfinit(x^2+1). E has three component,
1 (t_STR): the function name s, 2 (t_POL): the argument x, 3 (t_POL): the argument y.

Over
ows.

� "e COMPONENT". Trying to access an inexistent component in a vector/matrix/list in a
function: the index is less than 1 or greater than the allowed length. E has four components, 1
(t_STR): the function name 2 (t_STR): an operator op (< or >), 2 (t_GEN): a numerical limit l
bounding the allowed range, 3 (GEN): the index x. It satis�es x op l.

� "e DOMAIN". An argument is not in the function's domain. E has �ve components, 1 (t_STR):
the function name, 2 (t_STR): the mathematical name of the out-of-domain argument 3 (t_STR):
an operator op describing the domain error, 4 (t_GEN): the numerical limit l describing the domain
error, 5 (GEN): the out-of-domain argument x. The argument satis�es x op l, which prevents it
from belonging to the function's domain.

� "e MAXPRIME". A function using the precomputed list of prime numbers ran out of primes.
E has one component, 1 (t_INT): the requested prime bound, which over
owed primelimit or 0
(bound is unknown).
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� "e MEM". A call to pari_malloc or pari_realloc failed. E has no component.

� "e OVERFLOW". An object in function s becomes too large to be represented within PARI's
hardcoded limits. (As in 2^2^2^10 or exp(1e100), which over
ow in lg and expo.) E has one
component, 1 (t_STR): the function name s.

� "e PREC". Function s fails because input accuracy is too low. (As in floor(1e100) at
default accuracy.) E has one component, 1 (t_STR): the function name s.

� "e STACK". The PARI stack over
ows. E has no component.

Errors triggered intentionally.

� "e ALARM". A timeout, generated by the alarm function. E has one component (t_STR): the
error message to print.

� "e USER". A user error, as triggered by error(g1; : : : ; gn). E has one component, 1 (t_VEC):
the vector of n arguments given to error.

Mathematical errors.

� "e CONSTPOL". An argument of function s is a constant polynomial, which does not make
sense. (As in galoisinit(Pol(1)).) E has one component, 1 (t_STR): the function name s.

� "e COPRIME". Function s expected coprime arguments, and did receive x; y, which were not.
E has three component, 1 (t_STR): the function name s, 2: the argument x, 3: the argument y.

� "e INV". Tried to invert a non-invertible object x in function s. E has two components, 1
(t_STR): the function name s, 2: the non-invertible x. If x = Mod(a; b) is a t_INTMOD and a is not
0 mod b, this allows to factor the modulus, as gcd(a; b) is a non-trivial divisor of b.

� "e IRREDPOL". Function s expected an irreducible polynomial, and did receive T , which was
not. (As in nfinit(x^2-1).) E has two component, 1 (t_STR): the function name s, 2 (t_POL):
the polynomial x.

� "e MISC". Generic uncategorized error. E has one component (t_STR): the error message to
print.

� "e MODULUS". moduli x and y submitted to function s are inconsistent. As in

nfalgtobasis(nfinit(t^3-2), Mod(t,t^2+1)

E has three component, 1 (t_STR): the function s, 2: the argument x, 3: the argument x.

� "e PRIME". Function s expected a prime number, and did receive p, which was not. (As in
idealprimedec(nf, 4).) E has two component, 1 (t_STR): the function name s, 2: the argument
p.

� "e ROOTS0". An argument of function s is a zero polynomial, and we need to consider its
roots. (As in polroots(0).) E has one component, 1 (t_STR): the function name s.

� "e SQRTN". Trying to compute an n-th root of x, which does not exist, in function s. (As in
sqrt(Mod(-1,3)).) E has two components, 1 (t_STR): the function name s, 2: the argument x.
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3.14.18 next(fn = 1g). Interrupts execution of current seq, resume the next iteration of the
innermost enclosing loop, within the current function call (or top level loop). If n is speci�ed,
resume at the n-th enclosing loop. If n is bigger than the number of enclosing loops, all enclosing
loops are exited.

3.14.19 return(fx = 0g). Returns from current subroutine, with result x. If x is omitted, return
the (void) value (return no result, like print).

3.14.20 until(a; seq). Evaluates seq until a is not equal to 0 (i.e. until a is true). If a is initially
not equal to 0, seq is evaluated once (more generally, the condition on a is tested after execution
of the seq , not before as in while).

3.14.21 while(a; seq). While a is non-zero, evaluates the expression sequence seq . The test is
made before evaluating the seq, hence in particular if a is initially equal to zero the seq will not be
evaluated at all.

3.15 Programming in GP: other speci�c functions.

In addition to the general PARI functions, it is necessary to have some functions which will
be of use speci�cally for gp, though a few of these can be accessed under library mode. Before we
start describing these, we recall the di�erence between strings and keywords (see Section 2.9): the
latter don't get expanded at all, and you can type them without any enclosing quotes. The former
are dynamic objects, where everything outside quotes gets immediately expanded.

3.15.1 Strprintf(fmt ; fxg�). Returns a string built from the remaining arguments according to the
format fmt. The format consists of ordinary characters (not %), printed unchanged, and conversions
speci�cations. See printf.

3.15.2 addhelp(sym; str). Changes the help message for the symbol sym. The string str is
expanded on the spot and stored as the online help for sym. It is recommended to document global
variables and user functions in this way, although gp will not protest if you don't.

You can attach a help text to an alias, but it will never be shown: aliases are expanded by
the ? help operator and we get the help of the symbol the alias points to. Nothing prevents you
from modifying the help of built-in PARI functions. But if you do, we would like to hear why you
needed it!

Without addhelp, the standard help for user functions consists of its name and de�nition.

gp> f(x) = x^2;

gp> ?f

f =

(x)->x^2

Once addhelp is applied to f , the function code is no longer included. It can still be consulted by
typing the function name:

gp> addhelp(f, "Square")

gp> ?f

Square

gp> f

%2 = (x)->x^2

The library syntax is void addhelp(const char *sym, const char *str).
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3.15.3 alarm(fs = 0g; fcodeg). If code is omitted, trigger an e ALARM exception after s seconds,
cancelling any previously set alarm; stop a pending alarm if s = 0 or is omitted.

Otherwise, if s is positive, the function evaluates code, aborting after s seconds. The return
value is the value of code if it ran to completion before the alarm timeout, and a t_ERROR object
otherwise.

? p = nextprime(10^25); q = nextprime(10^26); N = p*q;

? E = alarm(1, factor(N));

? type(E)

%3 = "t_ERROR"

? print(E)

%4 = error("alarm interrupt after 964 ms.")

? alarm(10, factor(N)); \\ enough time

%5 =

[ 10000000000000000000000013 1]

[100000000000000000000000067 1]

Here is a more involved example: the function timefact(N,sec) below tries to factor N and gives
up after sec seconds, returning a partial factorisation.

\\ Time-bounded partial factorization

default(factor_add_primes,1);

timefact(N,sec)=

{

F = alarm(sec, factor(N));

if (type(F) == "t_ERROR", factor(N, 2^24), F);

}

We either return the factorization directly, or replace the t_ERROR result by a simple bounded
factorization factor(N, 2^24). Note the factor_add_primes trick: any prime larger than 224

discovered while attempting the initial factorization is stored and remembered. When the alarm
rings, the subsequent bounded factorization �nds it right away.

Caveat. It is not possible to set a new alarm within another alarm code: the new timer erases the
parent one.

The library syntax is GEN gp_alarm(long s, GEN code = NULL).

3.15.4 alias(newsym; sym). De�nes the symbol newsym as an alias for the symbol sym:

? alias("det", "matdet");

? det([1,2;3,4])

%1 = -2

You are not restricted to ordinary functions, as in the above example: to alias (from/to) member
functions, pre�x them with ` .'; to alias operators, use their internal name, obtained by writing
in lieu of the operators argument: for instance, ! and ! are the internal names of the factorial
and the logical negation, respectively.

? alias("mod", "_.mod");

? alias("add", "_+_");

? alias("_.sin", "sin");
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? mod(Mod(x,x^4+1))

%2 = x^4 + 1

? add(4,6)

%3 = 10

? Pi.sin

%4 = 0.E-37

Alias expansion is performed directly by the internal GP compiler. Note that since alias is
performed at compilation-time, it does not require any run-time processing, however it only a�ects
GP code compiled after the alias command is evaluated. A slower but more 
exible alternative is
to use variables. Compare

? fun = sin;

? g(a,b) = intnum(t=a,b,fun(t));

? g(0, Pi)

%3 = 2.0000000000000000000000000000000000000

? fun = cos;

? g(0, Pi)

%5 = 1.8830410776607851098 E-39

with

? alias(fun, sin);

? g(a,b) = intnum(t=a,b,fun(t));

? g(0,Pi)

%2 = 2.0000000000000000000000000000000000000

? alias(fun, cos); \\ Oops. Does not affect *previous* definition!

? g(0,Pi)

%3 = 2.0000000000000000000000000000000000000

? g(a,b) = intnum(t=a,b,fun(t)); \\ Redefine, taking new alias into account

? g(0,Pi)

%5 = 1.8830410776607851098 E-39

A sample alias �le misc/gpalias is provided with the standard distribution.

The library syntax is void alias0(const char *newsym, const char *sym).

3.15.5 allocatemem(fs = 0g). This special operation changes the stack size after initialization.
x must be a non-negative integer. If x > 0, a new stack of at least x bytes is allocated. We may
allocate more than x bytes if x is way too small, or for alignment reasons: the current formula is
max(16 � dx=16e ; 500032) bytes.

If x = 0, the size of the new stack is twice the size of the old one.

This command is much more useful if parisizemax is non-zero, and we describe this case �rst.
With parisizemax enabled, there are three sizes of interest:

� a virtual stack size, parisizemax, which is an absolute upper limit for the stack size; this is
set by default(parisizemax, ...).

� the desired typical stack size, parisize, that will grow as needed, up to parisizemax; this
is set by default(parisize, ...).
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� the current stack size, which is less that parisizemax, typically equal to parisize but
possibly larger and increasing dynamically as needed; allocatemem allows to change that one
explicitly.

The allocatemem command forces stack usage to increase temporarily (up to parisizemax of
course); for instance if you notice using \gm2 that we seem to collect garbage a lot, e.g.

? \gm2

debugmem = 2

? default(parisize,"32M")

*** Warning: new stack size = 32000000 (30.518 Mbytes).

? bnfinit('x^2+10^30-1)

*** bnfinit: collecting garbage in hnffinal, i = 1.

*** bnfinit: collecting garbage in hnffinal, i = 2.

*** bnfinit: collecting garbage in hnffinal, i = 3.

and so on for hundred of lines. Then, provided the breakloop default is set, you can interrupt the
computation, type allocatemem(100*10^6) at the break loop prompt, then let the computation
go on by typing <Enter>. Back at the gp prompt, the desired stack size of parisize is restored.
Note that changing either parisize or parisizemax at the break loop prompt would interrupt the
computation, contrary to the above.

In most cases, parisize will increase automatically (up to parisizemax) and there is no need
to perform the above maneuvers. But that the garbage collector is su�ciently e�cient that a given
computation can still run without increasing the stack size, albeit very slowly due to the frequent
garbage collections.

Deprecated: when parisizemax is unset. This is currently still the default behavior in order not
to break backward compatibility. The rest of this section documents the behavior of allocatemem
in that (deprecated) situation: it becomes a synonym for default(parisize,...). In that case,
there is no notion of a virtual stack, and the stack size is always equal to parisize. If more memory
is needed, the PARI stack over
ows, aborting the computation.

Thus, increasing parisize via allocatemem or default(parisize,...) before a big compu-
tation is important. Unfortunately, either must be typed at the gp prompt in interactive usage, or
left by itself at the start of batch �les. They cannot be used meaningfully in loop-like constructs,
or as part of a larger expression sequence, e.g

allocatemem(); x = 1; \\ This will not set x!

In fact, all loops are immediately exited, user functions terminated, and the rest of the sequence
following allocatemem() is silently discarded, as well as all pending sequences of instructions. We
just go on reading the next instruction sequence from the �le we are in (or from the user). In
particular, we have the following possibly unexpected behavior: in

read("file.gp"); x = 1

were file.gp contains an allocatemem statement, the x = 1 is never executed, since all pending
instructions in the current sequence are discarded.

The reason for these unfortunate side-e�ects is that, with parisizemax disabled, increasing the
stack size physically moves the stack, so temporary objects created during the current expression
evaluation are not correct anymore. (In particular byte-compiled expressions, which are allocated
on the stack.) To avoid accessing obsolete pointers to the old stack, this routine ends by a longjmp.

The library syntax is void gp_allocatemem(GEN s = NULL).
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3.15.6 apply(f;A). Apply the t_CLOSURE f to the entries of A. If A is a scalar, return f(A). If A is
a polynomial or power series, apply f on all coe�cients. If A is a vector or list, return the elements
f(x) where x runs through A. If A is a matrix, return the matrix whose entries are the f(A[i; j]).

? apply(x->x^2, [1,2,3,4])

%1 = [1, 4, 9, 16]

? apply(x->x^2, [1,2;3,4])

%2 =

[1 4]

[9 16]

? apply(x->x^2, 4*x^2 + 3*x+ 2)

%3 = 16*x^2 + 9*x + 4

Note that many functions already act componentwise on vectors or matrices, but they almost never
act on lists; in this case, apply is a good solution:

? L = List([Mod(1,3), Mod(2,4)]);

? lift(L)

*** at top-level: lift(L)

*** ^-------

*** lift: incorrect type in lift.

? apply(lift, L);

%2 = List([1, 2])

Remark. For v a t_VEC, t_COL, t_LIST or t_MAT, the alternative set-notations

[g(x) | x <- v, f(x)]

[x | x <- v, f(x)]

[g(x) | x <- v]

are available as shortcuts for

apply(g, select(f, Vec(v)))

select(f, Vec(v))

apply(g, Vec(v))

respectively:

? L = List([Mod(1,3), Mod(2,4)]);

? [ lift(x) | x<-L ]

%2 = [1, 2]

The library syntax is genapply(void *E, GEN (*fun)(void*,GEN), GEN a).
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3.15.7 call(f;A). A = [a1; : : : ; an] being a vector and f being a function, returns the evaluation
of f(a1; : : : ; an). f can also be the name of a built-in GP function. If #A = 1, call(f;A)
= apply(f;A)[1]. If f is variadic, the variadic arguments must grouped in a vector in the last
component of A.

This function is useful

� when writing a variadic function, to call another one:

fprintf(file,format,args[..]) = write(file,call(Strprintf,[format,args]))

� when dealing with function arguments with unspeci�ed arity

The function below implements a global memoization interface:

memo=Map();

memoize(f,A[..])=

{

my(res);

if(!mapisdefined(memo, [f,A], &res),

res = call(f,A);

mapput(memo,[f,A],res));

res;

}

for example:

? memoize(factor,2^128+1)

%3 = [59649589127497217,1;5704689200685129054721,1]

? ##

*** last result computed in 76 ms.

? memoize(factor,2^128+1)

%4 = [59649589127497217,1;5704689200685129054721,1]

? ##

*** last result computed in 0 ms.

? memoize(ffinit,3,3)

%5 = Mod(1,3)*x^3+Mod(1,3)*x^2+Mod(1,3)*x+Mod(2,3)

? fibo(n)=if(n==0,0,n==1,1,memoize(fibo,n-2)+memoize(fibo,n-1));

? fibo(100)

%7 = 354224848179261915075

� to call operators through their internal names without using alias

matnbelts(M) = call("_*_",matsize(M))

The library syntax is GEN call0(GEN f, GEN A).

3.15.8 default(fkeyg; fvalg). Returns the default corresponding to keyword key . If val is present,
sets the default to val �rst (which is subject to string expansion �rst). Typing default() (or \d)
yields the complete default list as well as their current values. See Section 2.12 for an introduction
to GP defaults, Section 3.17 for a list of available defaults, and Section 2.13 for some shortcut alter-
natives. Note that the shortcuts are meant for interactive use and usually display more information
than default.

The library syntax is GEN default0(const char *key = NULL, const char *val = NULL)

.
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3.15.9 errname(E). Returns the type of the error message E as a string.

The library syntax is GEN errname(GEN E).

3.15.10 error(fstrg�). Outputs its argument list (each of them interpreted as a string), then
interrupts the running gp program, returning to the input prompt. For instance

error("n = ", n, " is not squarefree!")

3.15.11 extern(str). The string str is the name of an external command (i.e. one you would type
from your UNIX shell prompt). This command is immediately run and its output fed into gp, just
as if read from a �le.

The library syntax is GEN gpextern(const char *str).

3.15.12 externstr(str). The string str is the name of an external command (i.e. one you would
type from your UNIX shell prompt). This command is immediately run and its output is returned
as a vector of GP strings, one component per output line.

The library syntax is GEN externstr(const char *str).

3.15.13 fold(f;A). Apply the t_CLOSURE f of arity 2 to the entries of A, in order to return
f(: : : f(f(A[1],A[2]),A[3]): : : ,A[#A]).

? fold((x,y)->x*y, [1,2,3,4])

%1 = 24

? fold((x,y)->[x,y], [1,2,3,4])

%2 = [[[1, 2], 3], 4]

? fold((x,f)->f(x), [2,sqr,sqr,sqr])

%3 = 256

? fold((x,y)->(x+y)/(1-x*y),[1..5])

%4 = -9/19

? bestappr(tan(sum(i=1,5,atan(i))))

%5 = -9/19

The library syntax is GEN fold0(GEN f, GEN A). Also available is GEN genfold(void *E,

GEN (*fun)(void*, GEN, GEN), GEN A).

3.15.14 getabstime(). Returns the CPU time (in milliseconds) elapsed since gp startup. This
provides a reentrant version of gettime:

my (t = getabstime());

...

print("Time: ", getabstime() - t);

For a version giving wall-clock time, see getwalltime.

The library syntax is long getabstime().

3.15.15 getenv(s). Return the value of the environment variable s if it is de�ned, otherwise return
0.

The library syntax is GEN gp_getenv(const char *s).
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3.15.16 getheap(). Returns a two-component row vector giving the number of objects on the
heap and the amount of memory they occupy in long words. Useful mainly for debugging purposes.

The library syntax is GEN getheap().

3.15.17 getrand(). Returns the current value of the seed used by the pseudo-random number
generator random. Useful mainly for debugging purposes, to reproduce a speci�c chain of compu-
tations. The returned value is technical (reproduces an internal state array), and can only be used
as an argument to setrand.

The library syntax is GEN getrand().

3.15.18 getstack(). Returns the current value of top� avma, i.e. the number of bytes used up to
now on the stack. Useful mainly for debugging purposes.

The library syntax is long getstack().

3.15.19 gettime(). Returns the CPU time (in milliseconds) used since either the last call to
gettime, or to the beginning of the containing GP instruction (if inside gp), whichever came last.

For a reentrant version, see getabstime.

For a version giving wall-clock time, see getwalltime.

The library syntax is long gettime().

3.15.20 getwalltime(). Returns the time (in milliseconds) elapsed since the UNIX Epoch (1970-
01-01 00:00:00 (UTC)).

my (t = getwalltime());

...

print("Time: ", getwalltime() - t);

The library syntax is GEN getwalltime().

3.15.21 global(listof variables). Obsolete. Scheduled for deletion.

3.15.22 inline(x; :::; z). (Experimental) declare x; : : : ; z as inline variables. Such variables behave
like lexically scoped variable (see my()) but with unlimited scope. It is however possible to exit
the scope by using uninline(). When used in a GP script, it is recommended to call uninline()
before the script's end to avoid inline variables leaking outside the script.

3.15.23 input(). Reads a string, interpreted as a GP expression, from the input �le, usually
standard input (i.e. the keyboard). If a sequence of expressions is given, the result is the result
of the last expression of the sequence. When using this instruction, it is useful to prompt for the
string by using the print1 function. Note that in the present version 2.19 of pari.el, when using
gp under GNU Emacs (see Section 2.16) one must prompt for the string, with a string which ends
with the same prompt as any of the previous ones (a "? " will do for instance).

The library syntax is GEN gp_input().
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3.15.24 install(name; code; fgpnameg; flibg). Loads from dynamic library lib the function name.
Assigns to it the name gpname in this gp session, with prototype code (see below). If gpname is
omitted, uses name. If lib is omitted, all symbols known to gp are available: this includes the whole
of libpari.so and possibly others (such as libc.so).

Most importantly, install gives you access to all non-static functions de�ned in the PARI
library. For instance, the function

GEN addii(GEN x, GEN y)

adds two PARI integers, and is not directly accessible under gp (it is eventually called by the +

operator of course):

? install("addii", "GG")

? addii(1, 2)

%1 = 3

It also allows to add external functions to the gp interpreter. For instance, it makes the function
system obsolete:

? install(system, vs, sys,/*omitted*/)

? sys("ls gp*")

gp.c gp.h gp_rl.c

This works because system is part of libc.so, which is linked to gp. It is also possible to compile
a shared library yourself and provide it to gp in this way: use gp2c, or do it manually (see the
modules build variable in pari.cfg for hints).

Re-installing a function will print a warning and update the prototype code if needed. However,
it will not reload a symbol from the library, even if the latter has been recompiled.

Prototype. We only give a simpli�ed description here, covering most functions, but there are
many more possibilities. The full documentation is available in libpari.dvi, see

??prototype

� First character i, l, v : return type int / long / void. (Default: GEN)

� One letter for each mandatory argument, in the same order as they appear in the argument
list: G (GEN), & (GEN*), L (long), s (char *), n (variable).

� p to supply realprecision (usually long prec in the argument list), P to supply series-

precision (usually long precdl).

We also have special constructs for optional arguments and default values:

� DG (optional GEN, NULL if omitted),

� D& (optional GEN*, NULL if omitted),

� Dn (optional variable, �1 if omitted),
For instance the prototype corresponding to

long issquareall(GEN x, GEN *n = NULL)

is lGD&.
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Caution. This function may not work on all systems, especially when gp has been compiled
statically. In that case, the �rst use of an installed function will provoke a Segmentation Fault (this
should never happen with a dynamically linked executable). If you intend to use this function,
please check �rst on some harmless example such as the one above that it works properly on your
machine.

The library syntax is void gpinstall(const char *name, const char *code, const char

*gpname, const char *lib).

3.15.25 kill(sym). Restores the symbol sym to its \unde�ned" status, and deletes any help mes-
sages attached to sym using addhelp. Variable names remain known to the interpreter and keep
their former priority: you cannot make a variable \less important" by killing it!

? z = y = 1; y

%1 = 1

? kill(y)

? y \\ restored to ``undefined'' status

%2 = y

? variable()

%3 = [x, y, z] \\ but the variable name y is still known, with y > z !

For the same reason, killing a user function (which is an ordinary variable holding a t_CLOSURE)
does not remove its name from the list of variable names.

If the symbol is attached to a variable | user functions being an important special case |,
one may use the quote operator a = 'a to reset variables to their starting values. However, this
will not delete a help message attached to a, and is also slightly slower than kill(a).

? x = 1; addhelp(x, "foo"); x

%1 = 1

? x = 'x; x \\ same as 'kill', except we don't delete help.

%2 = x

? ?x

foo

On the other hand, kill is the only way to remove aliases and installed functions.

? alias(fun, sin);

? kill(fun);

? install(addii, GG);

? kill(addii);

The library syntax is void kill0(const char *sym).

3.15.26 listcreate(fng). This function is obsolete, use List.

Creates an empty list. This routine used to have a mandatory argument, which is now ignored
(for backward compatibility).

3.15.27 listinsert(L; x; n). Inserts the object x at position n in L (which must be of type t_LIST).
This has complexity O(#L�n+1): all the remaining elements of list (from position n+1 onwards)
are shifted to the right.

The library syntax is GEN listinsert(GEN L, GEN x, long n).
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3.15.28 listkill(L). Obsolete, retained for backward compatibility. Just use L = List() instead
of listkill(L). In most cases, you won't even need that, e.g. local variables are automatically
cleared when a user function returns.

The library syntax is void listkill(GEN L).

3.15.29 listpop(list ; fng). Removes the n-th element of the list list (which must be of type
t_LIST). If n is omitted, or greater than the list current length, removes the last element. If the
list is already empty, do nothing. This runs in time O(#L� n+ 1).

The library syntax is void listpop0(GEN list, long n).

3.15.30 listput(list ; x; fng). Sets the n-th element of the list list (which must be of type t_LIST)
equal to x. If n is omitted, or greater than the list length, appends x. The function returns the
inserted element.

? L = List();

? listput(L, 1)

%2 = 1

? listput(L, 2)

%3 = 2

? L

%4 = List([1, 2])

You may put an element into an occupied cell (not changing the list length), but it is easier
to use the standard list[n] = x construct.

? listput(L, 3, 1) \\ insert at position 1

%5 = 3

? L

%6 = List([3, 2])

? L[2] = 4 \\ simpler

%7 = List([3, 4])

? L[10] = 1 \\ can't insert beyond the end of the list

*** at top-level: L[10]=1

*** ^------

*** non-existent component: index > 2

? listput(L, 1, 10) \\ but listput can

%8 = 1

? L

%9 = List([3, 2, 1])

This function runs in time O(#L) in the worst case (when the list must be reallocated), but in
time O(1) on average: any number of successive listputs run in time O(#L), where #L denotes
the list �nal length.

The library syntax is GEN listput0(GEN list, GEN x, long n).

404



3.15.31 listsort(L; fflag = 0g). Sorts the t_LIST list in place, with respect to the (somewhat
arbitrary) universal comparison function cmp. In particular, the ordering is the same as for sets
and setsearch can be used on a sorted list.

? L = List([1,2,4,1,3,-1]); listsort(L); L

%1 = List([-1, 1, 1, 2, 3, 4])

? setsearch(L, 4)

%2 = 6

? setsearch(L, -2)

%3 = 0

This is faster than the vecsort command since the list is sorted in place: no copy is made. No
value returned.

If flag is non-zero, suppresses all repeated coe�cients.

The library syntax is void listsort(GEN L, long flag).

3.15.32 localbitprec(p). Set the real precision to p bits in the dynamic scope. All computations
are performed as if realbitprecision was p: transcendental constants (e.g. Pi) and conversions
from exact to 
oating point inexact data use p bits, as well as iterative routines implicitly using a

oating point accuracy as a termination criterion (e.g. solve or intnum). But realbitprecision
itself is una�ected and is \unmasked" when we exit the dynamic (not lexical) scope. In e�ect, this
is similar to

my(bit = default(realbitprecision));

default(realbitprecision,p);

...

default(realbitprecision, bit);

but is both less cumbersome, cleaner (no need to manipulate a global variable, which in fact never
changes and is only temporarily masked) and more robust: if the above computation is interrupted
or an exception occurs, realbitprecision will not be restored as intended.

Such localbitprec statements can be nested, the innermost one taking precedence as ex-
pected. Beware that localbitprec follows the semantic of local, not my: a subroutine called
from localbitprec scope uses the local accuracy:

? f()=bitprecision(1.0);

? f()

%2 = 128

? localbitprec(1000); f()

%3 = 1024

Note that the bit precision of data (1.0 in the above example) increases by steps of 64 (32 on a
32-bit machine) so we get 1024 instead of the expected 1000; localbitprec bounds the relative
error exactly as speci�ed in functions that support that granularity (e.g. lfun), and rounded to the
next multiple of 64 (resp. 32) everywhere else.
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Warning. Changing realbitprecision or realprecision in programs is deprecated in favor of
localbitprec and localprec. Think about the realprecision and realbitprecision defaults
as interactive commands for the gp interpreter, best left out of GP programs. Indeed, the above
rules imply that mixing both constructs yields surprising results:

? \p38

? localprec(19); default(realprecision,1000); Pi

%1 = 3.141592653589793239

? \p

realprecision = 1001 significant digits (1000 digits displayed)

Indeed, realprecision itself is ignored within localprec scope, so Pi is computed to a low
accuracy. And when we leave the localprec scope, realprecision only regains precedence, it is
not \restored" to the original value.

3.15.33 localprec(p). Set the real precision to p in the dynamic scope. All computations are
performed as if realprecision was p: transcendental constants (e.g. Pi) and conversions from
exact to 
oating point inexact data use p decimal digits, as well as iterative routines implicitly using
a 
oating point accuracy as a termination criterion (e.g. solve or intnum). But realprecision
itself is una�ected and is \unmasked" when we exit the dynamic (not lexical) scope. In e�ect, this
is similar to

my(prec = default(realprecision));

default(realprecision,p);

...

default(realprecision, prec);

but is both less cumbersome, cleaner (no need to manipulate a global variable, which in fact never
changes and is only temporarily masked) and more robust: if the above computation is interrupted
or an exception occurs, realprecision will not be restored as intended.

Such localprec statements can be nested, the innermost one taking precedence as expected.
Beware that localprec follows the semantic of local, not my: a subroutine called from localprec

scope uses the local accuracy:

? f()=precision(1.);

? f()

%2 = 38

? localprec(19); f()

%3 = 19
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Warning. Changing realprecision itself in programs is now deprecated in favor of localprec.
Think about the realprecision default as an interactive command for the gp interpreter, best left
out of GP programs. Indeed, the above rules imply that mixing both constructs yields surprising
results:

? \p38

? localprec(19); default(realprecision,100); Pi

%1 = 3.141592653589793239

? \p

realprecision = 115 significant digits (100 digits displayed)

Indeed, realprecision itself is ignored within localprec scope, so Pi is computed to a low
accuracy. And when we leave localprec scope, realprecision only regains precedence, it is not
\restored" to the original value.

3.15.34 mapdelete(M;x). Removes x from the domain of the map M .

? M = Map(["a",1; "b",3; "c",7]);

? mapdelete(M,"b");

? Mat(M)

["a" 1]

["c" 7]

The library syntax is void mapdelete(GEN M, GEN x).

3.15.35 mapget(M;x). Returns the image of x by the map M .

? M=Map(["a",23;"b",43]);

? mapget(M,"a")

%2 = 23

? mapget(M,"b")

%3 = 43

Raises an exception when the key x is not present in M .

? mapget(M,"c")

*** at top-level: mapget(M,"c")

*** ^-------------

*** mapget: non-existent component in mapget: index not in map

The library syntax is GEN mapget(GEN M, GEN x).

407



3.15.36 mapisde�ned(M;x; f&zg). Returns true (1) if x has an image by the map M , false (0)
otherwise. If z is present, set z to the image of x, if it exists.

? M1 = Map([1, 10; 2, 20]);

? mapisdefined(M1,3)

%1 = 0

? mapisdefined(M1, 1, &z)

%2 = 1

? z

%3 = 10

? M2 = Map(); N = 19;

? for (a=0, N-1, mapput(M2, a^3%N, a));

? {for (a=0, N-1,

if (mapisdefined(M2, a, &b),

printf("%d is the cube of %d mod %d\n",a,b,N)));}

0 is the cube of 0 mod 19

1 is the cube of 11 mod 19

7 is the cube of 9 mod 19

8 is the cube of 14 mod 19

11 is the cube of 17 mod 19

12 is the cube of 15 mod 19

18 is the cube of 18 mod 19

The library syntax is GEN mapisdefined(GEN M, GEN x, GEN *z = NULL).

3.15.37 mapput(M;x; y). Associates x to y in the map M . The value y can be retrieved with
mapget.

? M = Map();

? mapput(M, "foo", 23);

? mapput(M, 7718, "bill");

? mapget(M, "foo")

%4 = 23

? mapget(M, 7718)

%5 = "bill"

? Vec(M) \\ keys

%6 = [7718, "foo"]

? Mat(M)

%7 =

[ 7718 "bill"]

["foo" 23]

The library syntax is void mapput(GEN M, GEN x, GEN y).

3.15.38 print(fstrg�). Outputs its (string) arguments in raw format, ending with a newline.

3.15.39 print1(fstrg�). Outputs its (string) arguments in raw format, without ending with a
newline. Note that you can still embed newlines within your strings, using the \n notation !
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3.15.40 printf(fmt ; fxg�). This function is based on the C library command of the same name.
It prints its arguments according to the format fmt , which speci�es how subsequent arguments are
converted for output. The format is a character string composed of zero or more directives:

� ordinary characters (not %), printed unchanged,

� conversions speci�cations (% followed by some characters) which fetch one argument from
the list and prints it according to the speci�cation.

More precisely, a conversion speci�cation consists in a %, one or more optional 
ags (among #,
0, -, +, ` '), an optional decimal digit string specifying a minimal �eld width, an optional precision
in the form of a period (`.') followed by a decimal digit string, and the conversion speci�er (among
d,i, o, u, x,X, p, e,E, f, g,G, s).

The 
ag characters. The character % is followed by zero or more of the following 
ags:

� #: the value is converted to an \alternate form". For o conversion (octal), a 0 is pre�xed
to the string. For x and X conversions (hexa), respectively 0x and 0X are prepended. For other
conversions, the 
ag is ignored.

� 0: the value should be zero padded. For d, i, o, u, x, X e, E, f, F, g, and G conversions, the
value is padded on the left with zeros rather than blanks. (If the 0 and - 
ags both appear, the 0

ag is ignored.)

� -: the value is left adjusted on the �eld boundary. (The default is right justi�cation.) The
value is padded on the right with blanks, rather than on the left with blanks or zeros. A - overrides
a 0 if both are given.

� ` ' (a space): a blank is left before a positive number produced by a signed conversion.

� +: a sign (+ or -) is placed before a number produced by a signed conversion. A + overrides
a space if both are used.

The �eld width. An optional decimal digit string (whose �rst digit is non-zero) specifying a
minimum �eld width. If the value has fewer characters than the �eld width, it is padded with
spaces on the left (or right, if the left-adjustment 
ag has been given). In no case does a small �eld
width cause truncation of a �eld; if the value is wider than the �eld width, the �eld is expanded
to contain the conversion result. Instead of a decimal digit string, one may write * to specify that
the �eld width is given in the next argument.

The precision. An optional precision in the form of a period (`.') followed by a decimal digit
string. This gives the number of digits to appear after the radix character for e, E, f, and F

conversions, the maximum number of signi�cant digits for g and G conversions, and the maximum
number of characters to be printed from an s conversion. Instead of a decimal digit string, one
may write * to specify that the �eld width is given in the next argument.

The length modi�er. This is ignored under gp, but necessary for libpari programming. De-
scription given here for completeness:

� l: argument is a long integer.

� P: argument is a GEN.
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The conversion speci�er. A character that speci�es the type of conversion to be applied.

� d, i: a signed integer.

� o, u, x, X: an unsigned integer, converted to unsigned octal (o), decimal (u) or hexadecimal
(x or X) notation. The letters abcdef are used for x conversions; the letters ABCDEF are used for X
conversions.

� e, E: the (real) argument is converted in the style [ -]d.ddd e[ -]dd, where there is one
digit before the decimal point, and the number of digits after it is equal to the precision; if the
precision is missing, use the current realprecision for the total number of printed digits. If the
precision is explicitly 0, no decimal-point character appears. An E conversion uses the letter E

rather than e to introduce the exponent.

� f, F: the (real) argument is converted in the style [ -]ddd.ddd, where the number of digits
after the decimal point is equal to the precision; if the precision is missing, use the current real-
precision for the total number of printed digits. If the precision is explicitly 0, no decimal-point
character appears. If a decimal point appears, at least one digit appears before it.

� g, G: the (real) argument is converted in style e or f (or E or F for G conversions) [ -]ddd.ddd,
where the total number of digits printed is equal to the precision; if the precision is missing, use
the current realprecision. If the precision is explicitly 0, it is treated as 1. Style e is used when
the decimal exponent is < �4, to print 0., or when the integer part cannot be decided given the
known signi�cant digits, and the f format otherwise.

� c: the integer argument is converted to an unsigned char, and the resulting character is
written.

� s: convert to a character string. If a precision is given, no more than the speci�ed number
of characters are written.

� p: print the address of the argument in hexadecimal (as if by %#x).

� %: a % is written. No argument is converted. The complete conversion speci�cation is %%.

Examples:

? printf("floor: %d, field width 3: %3d, with sign: %+3d\n", Pi, 1, 2);

floor: 3, field width 3: 1, with sign: +2

? printf("%.5g %.5g %.5g\n",123,123/456,123456789);

123.00 0.26974 1.2346 e8

? printf("%-2.5s:%2.5s:%2.5s\n", "P", "PARI", "PARIGP");

P :PARI:PARIG

\\ min field width and precision given by arguments

? x = 23; y=-1/x; printf("x=%+06.2f y=%+0*.*f\n", x, 6, 2, y);

x=+23.00 y=-00.04

\\ minimum fields width 5, pad left with zeroes

? for (i = 2, 5, printf("%05d\n", 10^i))

00100

01000

10000

100000 \\ don't truncate �elds whose length is larger than the minimum width
? printf("%.2f |%06.2f|", Pi,Pi)
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3.14 | 3.14|

All numerical conversions apply recursively to the entries of vectors and matrices:

? printf("%4d", [1,2,3]);

[ 1, 2, 3]

? printf("%5.2f", mathilbert(3));

[ 1.00 0.50 0.33]

[ 0.50 0.33 0.25]

[ 0.33 0.25 0.20]

Technical note. Our implementation of printf deviates from the C89 and C99 standards in a
few places:

� whenever a precision is missing, the current realprecision is used to determine the number
of printed digits (C89: use 6 decimals after the radix character).

� in conversion style e, we do not impose that the exponent has at least two digits; we never
write a + sign in the exponent; 0 is printed in a special way, always as 0.Eexp.

� in conversion style f, we switch to style e if the exponent is greater or equal to the precision.

� in conversion g and G, we do not remove trailing zeros from the fractional part of the result;
nor a trailing decimal point; 0 is printed in a special way, always as 0.Eexp.

3.15.41 printsep(sep; fstrg�). Outputs its (string) arguments in raw format, ending with a new-
line. Successive entries are separated by sep:

? printsep(":", 1,2,3,4)

1:2:3:4

3.15.42 printsep1(sep; fstrg�). Outputs its (string) arguments in raw format, without ending
with a newline. Successive entries are separated by sep:

? printsep1(":", 1,2,3,4);print("|")

1:2:3:4

3.15.43 printtex(fstrg�). Outputs its (string) arguments in TEX format. This output can then
be used in a TEX manuscript. The printing is done on the standard output. If you want to print
it to a �le you should use writetex (see there).

Another possibility is to enable the log default (see Section 2.12). You could for instance do:

default(logfile, "new.tex");

default(log, 1);

printtex(result);

3.15.44 quit(fstatus = 0g). Exits gp and return to the system with exit status status, a small
integer. A non-zero exit status normally indicates abnormal termination. (Note: the system
actually sees only status mod 256, see your man pages for exit(3) or wait(2)).
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3.15.45 read(f�lenameg). Reads in the �le �lename (subject to string expansion). If �lename
is omitted, re-reads the last �le that was fed into gp. The return value is the result of the last
expression evaluated.

If a GP binary file is read using this command (see Section 3.15.60), the �le is loaded and
the last object in the �le is returned.

In case the �le you read in contains an allocatemem statement (to be generally avoided), you
should leave read instructions by themselves, and not part of larger instruction sequences.

The library syntax is GEN gp_read_file(const char *filename).

3.15.46 readstr(f�lenameg). Reads in the �le �lename and return a vector of GP strings, each
component containing one line from the �le. If �lename is omitted, re-reads the last �le that was
fed into gp.

The library syntax is GEN readstr(const char *filename).

3.15.47 readvec(f�lenameg). Reads in the �le �lename (subject to string expansion). If �lename
is omitted, re-reads the last �le that was fed into gp. The return value is a vector whose components
are the evaluation of all sequences of instructions contained in the �le. For instance, if �le contains

1

2

3

then we will get:

? \r a

%1 = 1

%2 = 2

%3 = 3

? read(a)

%4 = 3

? readvec(a)

%5 = [1, 2, 3]

In general a sequence is just a single line, but as usual braces and \ may be used to enter
multiline sequences.

The library syntax is GEN gp_readvec_file(const char *filename). The underlying li-
brary function GEN gp_readvec_stream(FILE *f) is usually more 
exible.

3.15.48 select(f;A; fflag = 0g). We �rst describe the default behavior, when flag is 0 or omitted.
Given a vector or list A and a t_CLOSURE f, select returns the elements x of A such that f(x) is
non-zero. In other words, f is seen as a selection function returning a boolean value.

? select(x->isprime(x), vector(50,i,i^2+1))

%1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]

? select(x->(x<100), %)

%2 = [2, 5, 17, 37]

returns the primes of the form i2 + 1 for some i � 50, then the elements less than 100 in the
preceding result. The select function also applies to a matrix A, seen as a vector of columns, i.e.
it selects columns instead of entries, and returns the matrix whose columns are the selected ones.
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Remark. For v a t_VEC, t_COL, t_LIST or t_MAT, the alternative set-notations

[g(x) | x <- v, f(x)]

[x | x <- v, f(x)]

[g(x) | x <- v]

are available as shortcuts for

apply(g, select(f, Vec(v)))

select(f, Vec(v))

apply(g, Vec(v))

respectively:

? [ x | x <- vector(50,i,i^2+1), isprime(x) ]

%1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]

If flag = 1, this function returns instead the indices of the selected elements, and not the elements
themselves (indirect selection):

? V = vector(50,i,i^2+1);

? select(x->isprime(x), V, 1)

%2 = Vecsmall([1, 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40])

? vecextract(V, %)

%3 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]

The following function lists the elements in (Z=NZ)�:

? invertibles(N) = select(x->gcd(x,N) == 1, [1..N])

Finally

? select(x->x, M)

selects the non-0 entries in M. If the latter is a t_MAT, we extract the matrix of non-0 columns. Note
that removing entries instead of selecting them just involves replacing the selection function f with
its negation:

? select(x->!isprime(x), vector(50,i,i^2+1))

The library syntax is genselect(void *E, long (*fun)(void*,GEN), GEN a). Also avail-
able is GEN genindexselect(void *E, long (*fun)(void*, GEN), GEN a), corresponding to
flag = 1.

3.15.49 self(). Return the calling function or closure as a t_CLOSURE object. This is useful for
de�ning anonymous recursive functions.

? (n->if(n==0,1,n*self()(n-1)))(5)

%1 = 120

The library syntax is GEN pari_self().

3.15.50 setrand(n). Reseeds the random number generator using the seed n. No value is returned.
The seed is either a technical array output by getrand, or a small positive integer, used to generate
deterministically a suitable state array. For instance, running a randomized computation starting
by setrand(1) twice will generate the exact same output.

The library syntax is void setrand(GEN n).
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3.15.51 system(str). str is a string representing a system command. This command is executed,
its output written to the standard output (this won't get into your log�le), and control returns to
the PARI system. This simply calls the C system command.

The library syntax is void gpsystem(const char *str).

3.15.52 trap(feg; frecg; seq). This function is obsolete, use iferr, which has a nicer and much
more powerful interface. For compatibility's sake we now describe the obsolete function trap.

This function tries to evaluate seq , trapping runtime error e, that is e�ectively preventing it
from aborting computations in the usual way; the recovery sequence rec is executed if the error
occurs and the evaluation of rec becomes the result of the command. If e is omitted, all exceptions
are trapped. See Section 2.10.2 for an introduction to error recovery under gp.

? \\ trap division by 0
? inv(x) = trap (e_INV, INFINITY, 1/x)

? inv(2)

%1 = 1/2

? inv(0)

%2 = INFINITY

Note that seq is e�ectively evaluated up to the point that produced the error, and the recovery
sequence is evaluated starting from that same context, it does not "undo" whatever happened in
the other branch (restore the evaluation context):

? x = 1; trap (, /* recover: */ x, /* try: */ x = 0; 1/x)

%1 = 0

Note. The interface is currently not adequate for trapping individual exceptions. In the current
version 2.9.1, the following keywords are recognized, but the name list will be expanded and changed
in the future (all library mode errors can be trapped: it's a matter of de�ning the keywords to gp):

e ALARM: alarm time-out

e ARCH: not available on this architecture or operating system

e STACK: the PARI stack over
ows

e INV: impossible inverse

e IMPL: not yet implemented

e OVERFLOW: all forms of arithmetic over
ow, including length or exponent over
ow (when a
larger value is supplied than the implementation can handle).

e SYNTAX: syntax error

e MISC: miscellaneous error

e TYPE: wrong type

e USER: user error (from the error function)

The library syntax is GEN trap0(const char *e = NULL, GEN rec = NULL, GEN seq =

NULL).
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3.15.53 type(x). This is useful only under gp. Returns the internal type name of the PARI object
x as a string. Check out existing type names with the metacommand \t. For example type(1)

will return "t_INT".

The library syntax is GEN type0(GEN x). The macro typ is usually simpler to use since it
returns a long that can easily be matched with the symbols t_*. The name type was avoided since
it is a reserved identi�er for some compilers.

3.15.54 uninline(). (Experimental) Exit the scope of all current inline variables.

3.15.55 version(). Returns the current version number as a t_VEC with three integer compo-
nents (major version number, minor version number and patchlevel); if your sources were obtained
through our version control system, this will be followed by further more precise arguments, in-
cluding e.g. a git commit hash.

This function is present in all versions of PARI following releases 2.3.4 (stable) and 2.4.3
(testing).

Unless you are working with multiple development versions, you probably only care about the
3 �rst numeric components. In any case, the lex function o�ers a clever way to check against
a particular version number, since it will compare each successive vector entry, numerically or as
strings, and will not mind if the vectors it compares have di�erent lengths:

if (lex(version(), [2,3,5]) >= 0,

\\ code to be executed if we are running 2.3.5 or more recent.

,

\\ compatibility code

);

On a number of di�erent machines, version() could return either of

%1 = [2, 3, 4] \\ released version, stable branch

%1 = [2, 4, 3] \\ released version, testing branch

%1 = [2, 6, 1, 15174, ""505ab9b"] \\ development

In particular, if you are only working with released versions, the �rst line of the gp introductory
message can be emulated by

[M,m,p] = version();

printf("GP/PARI CALCULATOR Version %s.%s.%s", M,m,p);

If you are working with many development versions of PARI/GP, the 4th and/or 5th components
can be pro�tably included in the name of your log�les, for instance.
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Technical note. For development versions obtained via git, the 4th and 5th components are
liable to change eventually, but we document their current meaning for completeness. The 4th
component counts the number of reachable commits in the branch (analogous to svn's revision
number), and the 5th is the git commit hash. In particular, lex comparison still orders correctly
development versions with respect to each others or to released versions (provided we stay within
a given branch, e.g. master)!

The library syntax is GEN pari_version().

3.15.56 warning(fstrg�). Outputs the message \user warning" and the argument list (each of
them interpreted as a string). If colors are enabled, this warning will be in a di�erent color, making
it easy to distinguish.

warning(n, " is very large, this might take a while.")

3.15.57 whatnow(key). If keyword key is the name of a function that was present in GP version
1.39.15, outputs the new function name and syntax, if it changed at all. Functions that where
introduced since then, then modi�ed are also recognized.

? whatnow("mu")

New syntax: mu(n) ===> moebius(n)

moebius(x): Moebius function of x.

? whatnow("sin")

This function did not change

When a function was removed and the underlying functionality is not available under a com-
patible interface, no equivalent is mentioned:

? whatnow("buchfu")

This function no longer exists

(The closest equivalent would be to set K = bnfinit(T) then access K.fu.)

3.15.58 write(�lename; fstrg�). Writes (appends) to �lename the remaining arguments, and
appends a newline (same output as print).

3.15.59 write1(�lename; fstrg�). Writes (appends) to �lename the remaining arguments without
a trailing newline (same output as print1).

3.15.60 writebin(�lename; fxg). Writes (appends) to �lename the object x in binary format.
This format is not human readable, but contains the exact internal structure of x, and is much
faster to save/load than a string expression, as would be produced by write. The binary �le format
includes a magic number, so that such a �le can be recognized and correctly input by the regular
read or \r function. If saved objects refer to polynomial variables that are not de�ned in the new
session, they will be displayed as tn for some integer n (the attached variable number). Installed
functions and history objects can not be saved via this function.

If x is omitted, saves all user variables from the session, together with their names. Reading
such a \named object" back in a gp session will set the corresponding user variable to the saved
value. E.g after

x = 1; writebin("log")
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reading log into a clean session will set x to 1. The relative variables priorities (see Section 2.5.3)
of new variables set in this way remain the same (preset variables retain their former priority, but
are set to the new value). In particular, reading such a session log into a clean session will restore
all variables exactly as they were in the original one.

Just as a regular input �le, a binary �le can be compressed using gzip, provided the �le name
has the standard .gz extension.

In the present implementation, the binary �les are architecture dependent and compatibility
with future versions of gp is not guaranteed. Hence binary �les should not be used for long term
storage (also, they are larger and harder to compress than text �les).

The library syntax is void gpwritebin(const char *filename, GEN x = NULL).

3.15.61 writetex(�lename; fstrg�). As write, in TEX format.

3.16 Parallel programming.

These function are only available if PARI was con�gured using Configure --mt=: : : . Two
multithread interfaces are supported:

� POSIX threads

� Message passing interface (MPI)

As a rule, POSIX threads are well-suited for single systems, while MPI is used by most clusters.
However the parallel GP interface does not depend on the chosen multithread interface: a properly
written GP program will work identically with both.

3.16.1 parapply(f; x). Parallel evaluation of f on the elements of x. The function f must not
access global variables or variables declared with local(), and must be free of side e�ects.

parapply(factor,[2^256 + 1, 2^193 - 1])

factors 2256 + 1 and 2193 � 1 in parallel.

{

my(E = ellinit([1,3]), V = vector(12,i,randomprime(2^200)));

parapply(p->ellcard(E,p), V)

}

computes the order of E(Fp) for 12 random primes of 200 bits.

The library syntax is GEN parapply(GEN f, GEN x).

3.16.2 pareval(x). Parallel evaluation of the elements of x, where x is a vector of closures. The
closures must be of arity 0, must not access global variables or variables declared with local and
must be free of side e�ects.

The library syntax is GEN pareval(GEN x).

417



3.16.3 parfor(i = a; fbg; expr1 ; frg; fexpr2g). Evaluates in parallel the expression expr1 in the
formal argument i running from a to b. If b is set to +oo, the loop runs inde�nitely. If r and
expr2 are present, the expression expr2 in the formal variables r and i is evaluated with r running
through all the di�erent results obtained for expr1 and i takes the corresponding argument.

The computations of expr1 are started in increasing order of i; otherwise said, the computation
for i = c is started after those for i = 1; : : : ; c�1 have been started, but before the computation for
i = c+ 1 is started. Notice that the order of completion, that is, the order in which the di�erent r
become available, may be di�erent; expr2 is evaluated sequentially on each r as it appears.

The following example computes the sum of the squares of the integers from 1 to 10 by
computing the squares in parallel and is equivalent to parsum (i=1, 10, i^2):

? s=0;

? parfor (i=1, 10, i^2, r, s=s+r)

? s

%3 = 385

More precisely, apart from a potentially di�erent order of evaluation due to the parallelism,
the line containing parfor is equivalent to

? my (r); for (i=1, 10, r=i^2; s=s+r)

The sequentiality of the evaluation of expr2 ensures that the variable s is not modi�ed con-
currently by two di�erent additions, although the order in which the terms are added is non-
deterministic.

It is allowed for expr2 to exit the loop using break/next/return. If that happens for i = c,
then the evaluation of expr1 and expr2 is continued for all values i < c, and the return value is
the one obtained for the smallest i causing an interruption in expr2 (it may be unde�ned if this
is a break/next). In that case, using side-e�ects in expr2 may lead to unde�ned behavior, as the
exact number of values of i for which it is executed is non-deterministic. The following example
computes nextprime(1000) in parallel:

? parfor (i=1000, , isprime (i), r, if (r, return (i)))

%1 = 1009

3.16.4 parforprime(p = a; fbg; expr1 ; frg; fexpr2g). Behaves exactly as parfor, but loops only
over prime values p. Precisely, the functions evaluates in parallel the expression expr1 in the formal
argument p running through the primes from a to b. If b is set to +oo, the loop runs inde�nitely.
If r and expr2 are present, the expression expr2 in the formal variables r and p is evaluated
with r running through all the di�erent results obtained for expr1 and p takes the corresponding
argument.

It is allowed fo expr2 to exit the loop using break/next/return; see the remarks in the
documentation of parfor for details.

3.16.5 parforvec(X = v; expr1 ; fjg; fexpr2g; fflagg). Evaluates the sequence expr2 (dependent
on X and j) for X as generated by forvec, in random order, computed in parallel. Substitute for
j the value of expr1 (dependent on X).

It is allowed fo expr2 to exit the loop using break/next/return, however in that case, expr2
will still be evaluated for all remaining value of p less than the current one, unless a subsequent
break/next/return happens.
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3.16.6 parselect(f;A; fflag = 0g). Selects elements of A according to the selection function f ,
done in parallel. If flag is 1, return the indices of those elements (indirect selection) The function f

must not access global variables or variables declared with local(), and must be free of side e�ects.

The library syntax is GEN parselect(GEN f, GEN A, long flag).

3.16.7 parsum(i = a; b; expr ; fxg). Sum of expression expr , initialized at x, the formal parameter
going from a to b, evaluated in parallel in random order. The expression expr must not access
global variables or variables declared with local(), and must be free of side e�ects.

parsum(i=1,1000,ispseudoprime(2^prime(i)-1))

returns the numbers of prime numbers among the �rst 1000 Mersenne numbers.

3.16.8 parvector(N; i; expr). As vector(N,i,expr) but the evaluations of expr are done in
parallel. The expression expr must not access global variables or variables declared with local(),
and must be free of side e�ects.

parvector(10,i,quadclassunit(2^(100+i)+1).no)

computes the class numbers in parallel.

3.17 GP defaults.

This section documents the GP defaults, be sure to check out parisize and parisizemax !

3.17.1 TeXstyle. The bits of this default allow gp to use less rigid TeX formatting commands in
the log�le. This default is only taken into account when log = 3. The bits of TeXstyle have the
following meaning

2: insert \right / \left pairs where appropriate.

4: insert discretionary breaks in polynomials, to enhance the probability of a good line break.

The default value is 0.

3.17.2 breakloop. If true, enables the \break loop" debugging mode, see Section 2.10.3.

The default value is 1 if we are running an interactive gp session, and 0 otherwise.

3.17.3 colors. This default is only usable if gp is running within certain color-capable terminals.
For instance rxvt, color xterm and modern versions of xterm under X Windows, or standard
Linux/DOS text consoles. It causes gp to use a small palette of colors for its output. With xterms,
the colormap used corresponds to the resources Xterm*colorn where n ranges from 0 to 15 (see
the �le misc/color.dft for an example). Accepted values for this default are strings "a1,: : : ,ak"
where k � 7 and each ai is either

� the keyword no (use the default color, usually black on transparent background)

� an integer between 0 and 15 corresponding to the aforementioned colormap

� a triple [c0; c1; c2] where c0 stands for foreground color, c1 for background color, and c2 for
attributes (0 is default, 1 is bold, 4 is underline).
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The output objects thus a�ected are respectively error messages, history numbers, prompt,
input line, output, help messages, timer (that's seven of them). If k < 7, the remaining ai are
assumed to be no. For instance

default(colors, "9, 5, no, no, 4")

typesets error messages in color 9, history numbers in color 5, output in color 4, and does not a�ect
the rest.

A set of default colors for dark (reverse video or PC console) and light backgrounds respectively
is activated when colors is set to darkbg, resp. lightbg (or any proper pre�x: d is recognized as
an abbreviation for darkbg). A bold variant of darkbg, called boldfg, is provided if you �nd the
former too pale.

EMACS: In the present version, this default is incompatible with PariEmacs. Changing it will just fail silently
(the alternative would be to display escape sequences as is, since Emacs will refuse to interpret
them). You must customize color highlighting from the PariEmacs side, see its documentation.

The default value is "" (no colors).

3.17.4 compatible. Obsolete. This default is now a no-op.

3.17.5 datadir. The name of directory containing the optional data �les. For now, this includes
the elldata, galdata, galpol, seadata packages.

The default value is /usr/local/share/pari, or the override speci�ed via Configure --

datadir=.

3.17.6 debug. Debugging level. If it is non-zero, some extra messages may be printed, according
to what is going on (see \g).

The default value is 0 (no debugging messages).

3.17.7 debug�les. File usage debugging level. If it is non-zero, gp will print information on �le
descriptors in use, from PARI's point of view (see \gf).

The default value is 0 (no debugging messages).

3.17.8 debugmem. Memory debugging level. If it is non-zero, gp will regularly print information
on memory usage. If it's greater than 2, it will indicate any important garbage collecting and the
function it is taking place in (see \gm).

Important Note: As it noticeably slows down the performance, the �rst functionality (memory
usage) is disabled if you're not running a version compiled for debugging (see Appendix A).

The default value is 0 (no debugging messages).

3.17.9 echo. This toggle is either 1 (on) or 0 (o�). When echo mode is on, each command
is reprinted before being executed. This can be useful when reading a �le with the \r or read

commands. For example, it is turned on at the beginning of the test �les used to check whether gp
has been built correctly (see \e).

The default value is 0 (no echo).
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3.17.10 factor add primes. This toggle is either 1 (on) or 0 (o�). If on, the integer factorization
machinery calls addprimes on prime factors that were di�cult to �nd (larger than 224), so they
are automatically tried �rst in other factorizations. If a routine is performing (or has performed)
a factorization and is interrupted by an error or via Control-C, this lets you recover the prime
factors already found. The downside is that a huge addprimes table unrelated to the current
computations will slow down arithmetic functions relying on integer factorization; one should then
empty the table using removeprimes.

The default value is 0.

3.17.11 factor proven. This toggle is either 1 (on) or 0 (o�). By default, the factors output by
the integer factorization machinery are only pseudo-primes, not proven primes. If this toggle is set,
a primality proof is done for each factor and all results depending on integer factorization are fully
proven. This 
ag does not a�ect partial factorization when it is explicitly requested. It also does
not a�ect the private table managed by addprimes: its entries are included as is in factorizations,
without being tested for primality.

The default value is 0.

3.17.12 format. Of the form x:n, where x (conversion style) is a letter in fe; f; gg, and n (precision)
is an integer; this a�ects the way real numbers are printed:

� If the conversion style is e, real numbers are printed in scientific format, always with an
explicit exponent, e.g. 3.3 E-5.

� In style f, real numbers are generally printed in fixed floating point format without exponent,
e.g. 0.000033. A large real number, whose integer part is not well de�ned (not enough signi�cant
digits), is printed in style e. For instance 10.^100 known to ten signi�cant digits is always printed
in style e.

� In style g, non-zero real numbers are printed in f format, except when their decimal exponent
is < �4, in which case they are printed in e format. Real zeroes (of arbitrary exponent) are printed
in e format.

The precision n is the number of signi�cant digits printed for real numbers, except if n < 0
where all the signi�cant digits will be printed (initial default 28, or 38 for 64-bit machines). For
more powerful formatting possibilities, see printf and Strprintf.

The default value is "g.28" and "g.38" on 32-bit and 64-bit machines, respectively.

3.17.13 graphcolormap. A vector of colors, to be used by hi-res graphing routines. Its length
is arbitrary, but it must contain at least 3 entries: the �rst 3 colors are used for background,
frame/ticks and axes respectively. All colors in the colormap may be freely used in plotcolor

calls.

A color is either given as in the default by character strings or by an RGB code. For valid
character strings, see the standard rgb.txt �le in X11 distributions, where we restrict to lowercase
letters and remove all whitespace from color names. An RGB code is a vector with 3 integer entries
between 0 and 255. For instance [250, 235, 215] and "antiquewhite" represent the same color.
RGB codes are cryptic but often easier to generate.

The default value is ["white", "black", "blue", "violetred", "red", "green", "grey",
"gainsboro"].
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3.17.14 graphcolors. Entries in the graphcolormap that will be used to plot multi-curves. The
successive curves are drawn in colors

graphcolormap[graphcolors[1]], graphcolormap[graphcolors[2]], : : :

cycling when the graphcolors list is exhausted.

The default value is [4,5].

3.17.15 help. Name of the external help program to use from within gp when extended help
is invoked, usually through a ?? or ??? request (see Section 2.13.1), or M-H under readline (see
Section 2.15).

The default value is the path to the gphelp script we install.

3.17.16 hist�le. Name of a �le where gp will keep a history of all input commands (results are
omitted). If this �le exists when the value of histfile changes, it is read in and becomes part
of the session history. Thus, setting this default in your gprc saves your readline history between
sessions. Setting this default to the empty string "" changes it to <undefined>

The default value is <undefined> (no history �le).

3.17.17 histsize. gp keeps a history of the last histsize results computed so far, which you can
recover using the % notation (see Section 2.13.4). When this number is exceeded, the oldest values
are erased. Tampering with this default is the only way to get rid of the ones you do not need
anymore.

The default value is 5000.

3.17.18 lines. If set to a positive value, gp prints at most that many lines from each result,
terminating the last line shown with [+++] if further material has been suppressed. The various
print commands (see Section 3.15) are una�ected, so you can always type print(%) or \a to view
the full result. If the actual screen width cannot be determined, a \line" is assumed to be 80
characters long.

The default value is 0.

3.17.19 linewrap. If set to a positive value, gp wraps every single line after printing that many
characters.

The default value is 0 (unset).

3.17.20 log. This can be either 0 (o�) or 1, 2, 3 (on, see below for the various modes). When
logging mode is turned on, gp opens a log �le, whose exact name is determined by the logfile

default. Subsequently, all the commands and results will be written to that �le (see \l). In case a
�le with this precise name already existed, it will not be erased: your data will be appended at the
end.

The speci�c positive values of log have the following meaning

1: plain log�le

2: emit color codes to the log�le (if colors is set).

3: write LaTeX output to the log�le (can be further customized using TeXstyle).

The default value is 0.
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3.17.21 log�le. Name of the log �le to be used when the log toggle is on. Environment and time
expansion are performed.

The default value is "pari.log".

3.17.22 nbthreads. Number of threads to use for parallel computing. The exact meaning an
default depend on the mt engine used:

� single: not used (always one thread).

� pthread: number of threads (unlimited, default: number of core)
� mpi: number of MPI process to use (limited to the number allocated by mpirun, default: use

all allocated process).

3.17.23 new galois format. This toggle is either 1 (on) or 0 (o�). If on, the polgalois command
will use a di�erent, more consistent, naming scheme for Galois groups. This default is provided to
ensure that scripts can control this behavior and do not break unexpectedly.

The default value is 0. This value will change to 1 (set) in the next major version.

3.17.24 output. There are three possible values: 0 (= raw), 1 (= prettymatrix ), or 3 (= external
prettyprint). This means that, independently of the default format for reals which we explained
above, you can print results in three ways:

� raw format, i.e. a format which is equivalent to what you input, including explicit multiplica-
tion signs, and everything typed on a line instead of two dimensional boxes. This can have several
advantages, for instance it allows you to pick the result with a mouse or an editor, and to paste it
somewhere else.

� prettymatrix format: this is identical to raw format, except that matrices are printed as
boxes instead of horizontally. This is prettier, but takes more space and cannot be used for input.
Column vectors are still printed horizontally.

� external prettyprint: pipes all gp output in TeX format to an external prettyprinter, according
to the value of prettyprinter. The default script (tex2mail) converts its input to readable two-
dimensional text.

Independently of the setting of this default, an object can be printed in any of the three formats
at any time using the commands \a and \m and \B respectively.

The default value is 1 (prettymatrix ).

3.17.25 parisize. gp, and in fact any program using the PARI library, needs a stack in which
to do its computations; parisize is the stack size, in bytes. It is recommended to increase this
default using a gprc, to the value you believe PARI should be happy with, given your typical
computation. We strongly recommend to also set parisizemax to a much larger value, about
what you believe your machine can stand: PARI will then try to �t its computations within about
parisize bytes, but will increase the stack size if needed (up to parisizemax). Once the memory
intensive computation is over, PARI will restore the stack size to the originally requested parisize.

The default value is 4M, resp. 8M on a 32-bit, resp. 64-bit machine.
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3.17.26 parisizemax. gp, and in fact any program using the PARI library, needs a stack in which
to do its computations. If non-zero, parisizemax is the maximum size the stack can grow to, in
bytes. If zero, the stack will not automatically grow, and will be limited to the value of parisize.

We strongly recommend to set parisizemax to a non-zero value, about what you believe your
machine can stand: PARI will then try to �t its computations within about parisize bytes, but
will increase the stack size if needed (up to parisizemax). Once the memory intensive computation
is over, PARI will restore the stack size to the originally requested parisize.

The default value is 0.

3.17.27 path. This is a list of directories, separated by colons ':' (semicolons ';' in the DOS world,
since colons are preempted for drive names). When asked to read a �le whose name is not given
by an absolute path (does not start with /, ./ or ../), gp will look for it in these directories, in
the order they were written in path. Here, as usual, . means the current directory, and .. its
immediate parent. Environment expansion is performed.

The default value is ".:~:~/gp" on UNIX systems, ".;C:\;C:\GP" on DOS, OS/2 and Win-
dows, and "." otherwise.

3.17.28 prettyprinter. The name of an external prettyprinter to use when output is 3 (alternate
prettyprinter). Note that the default tex2mail looks much nicer than the built-in \beauti�ed
format" (output = 2).

The default value is "tex2mail -TeX -noindent -ragged -by par".

3.17.29 primelimit. gp precomputes a list of all primes less than primelimit at initialization
time, and can build fast sieves on demand to quickly iterate over primes up to the square of
primelimit. These are used by many arithmetic functions, usually for trial division purposes. The
maximal value is 232�2049 (resp 264�2049) on a 32-bit (resp. 64-bit) machine, but values beyond
108, allowing to iterate over primes up to 1016, do not seem useful.

Since almost all arithmetic functions eventually require some table of prime numbers, PARI
guarantees that the �rst 6547 primes, up to and including 65557, are precomputed, even if prime-
limit is 1.

This default is only used on startup: changing it will not recompute a new table.

Deprecated feature. primelimit was used in some situations by algebraic number theory func-
tions using the nf_PARTIALFACT 
ag (nfbasis, nfdisc, nfinit, : : : ): this assumes that all primes
p > primelimit have a certain property (the equation order is p-maximal). This is never done by
default, and must be explicitly set by the user of such functions. Nevertheless, these functions now
provide a more 
exible interface, and their use of the global default primelimit is deprecated.
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Deprecated feature. factor(N, 0) was used to partially factor integers by removing all prime
factors � primelimit. Don't use this, supply an explicit bound: factor(N, bound), which avoids
relying on an unpredictable global variable.

The default value is 500k.

3.17.30 prompt. A string that will be printed as prompt. Note that most usual escape sequences
are available there: \e for Esc, \n for Newline, : : : , \\ for \. Time expansion is performed.

This string is sent through the library function strftime (on a Unix system, you can try man

strftime at your shell prompt). This means that % constructs have a special meaning, usually
related to the time and date. For instance, %H = hour (24-hour clock) and %M = minute [00,59] (use
%% to get a real %).

If you use readline, escape sequences in your prompt will result in display bugs. If you have
a relatively recent readline (see the comment at the end of Section 3.17.3), you can brace them
with special sequences (\[ and \]), and you will be safe. If these just result in extra spaces in
your prompt, then you'll have to get a more recent readline. See the �le misc/gprc.dft for an
example.

EMACS: Caution: PariEmacs needs to know about the prompt pattern to separate your input from previous
gp results, without ambiguity. It is not a trivial problem to adapt automatically this regular
expression to an arbitrary prompt (which can be self-modifying!). See PariEmacs's documentation.

The default value is "? ".

3.17.31 prompt cont. A string that will be printed to prompt for continuation lines (e.g. in
between braces, or after a line-terminating backslash). Everything that applies to prompt applies
to prompt cont as well.

The default value is "".

3.17.32 ps�le. Name of the default �le where gp is to dump its PostScript drawings (these are
appended, so that no previous data are lost). Environment and time expansion are performed.

The default value is "pari.ps".

3.17.33 readline. Switches readline line-editing facilities on and o�. This may be useful if you
are running gp in a Sun cmdtool, which interacts badly with readline. Of course, until readline is
switched on again, advanced editing features like automatic completion and editing history are not
available.

The default value is 1.
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3.17.34 realbitprecision. The number of signi�cant bits used to convert exact inputs given to
transcendental functions (see Section 3.3), or to create absolute 
oating point constants (input as
1.0 or Pi for instance). Unless you tamper with the format default, this is also the number of
signi�cant bits used to print a t_REAL number; format will override this latter behaviour, and allow
you to have a large internal precision while outputting few digits for instance.

Note that most PARI's functions currently handle precision on a word basis (by increments
of 32 or 64 bits), hence bit precision may be a little larger than the number of bits you expected.
For instance to get 10 bits of precision, you need one word of precision which, on a 64-bit machine,
correspond to 64 bits. To make things even more confusing, this internal bit accuracy is converted
to decimal digits when printing 
oating point numbers: now 64 bits correspond to 19 printed
decimal digits (19 < log10(2

64) < 20).

The value returned when typing default(realbitprecision) is the internal number of sig-
ni�cant bits, not the number of printed decimal digits:

? default(realbitprecision, 10)

? \pb

realbitprecision = 64 significant bits

? default(realbitprecision)

%1 = 64

? \p

realprecision = 3 significant digits

? default(realprecision)

%2 = 19

Note that realprecision and \p allow to view and manipulate the internal precision in decimal
digits.

The default value is 128, resp. 96, on a 64-bit, resp .32-bit, machine.

3.17.35 realprecision. The number of signi�cant digits used to convert exact inputs given to
transcendental functions (see Section 3.3), or to create absolute 
oating point constants (input as
1.0 or Pi for instance). Unless you tamper with the format default, this is also the number of
signi�cant digits used to print a t_REAL number; format will override this latter behaviour, and
allow you to have a large internal precision while outputting few digits for instance.

Note that PARI's internal precision works on a word basis (by increments of 32 or 64 bits),
hence may be a little larger than the number of decimal digits you expected. For instance to get
2 decimal digits you need one word of precision which, on a 64-bit machine, actually gives you 19
digits (19 < log10(2

64) < 20). The value returned when typing default(realprecision) is the
internal number of signi�cant digits, not the number of printed digits:

? default(realprecision, 2)

realprecision = 19 significant digits (2 digits displayed)

? default(realprecision)

%1 = 19

The default value is 38, resp. 28, on a 64-bit, resp. 32-bit, machine.

3.17.36 recover. This toggle is either 1 (on) or 0 (o�). If you change this to 0, any error becomes
fatal and causes the gp interpreter to exit immediately. Can be useful in batch job scripts.

The default value is 1.
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3.17.37 secure. This toggle is either 1 (on) or 0 (o�). If on, the system and extern command are
disabled. These two commands are potentially dangerous when you execute foreign scripts since
they let gp execute arbitrary UNIX commands. gp will ask for con�rmation before letting you (or
a script) unset this toggle.

The default value is 0.

3.17.38 seriesprecision. Number of signi�cant terms when converting a polynomial or rational
function to a power series (see \ps).

The default value is 16.

3.17.39 simplify. This toggle is either 1 (on) or 0 (o�). When the PARI library computes
something, the type of the result is not always the simplest possible. The only type conversions
which the PARI library does automatically are rational numbers to integers (when they are of type
t_FRAC and equal to integers), and similarly rational functions to polynomials (when they are of
type t_RFRAC and equal to polynomials). This feature is useful in many cases, and saves time,
but can be annoying at times. Hence you can disable this and, whenever you feel like it, use the
function simplify (see Chapter 3) which allows you to simplify objects to the simplest possible
types recursively (see \y).

The default value is 1.

3.17.40 sopath. This is a list of directories, separated by colons ':' (semicolons ';' in the DOS
world, since colons are preempted for drive names). When asked to install an external symbol
from a shared library whose name is not given by an absolute path (does not start with /, ./ or
../), gp will look for it in these directories, in the order they were written in sopath. Here, as
usual, . means the current directory, and .. its immediate parent. Environment expansion is
performed.

The default value is "", corresponding to an empty list of directories: install will use the
library name as input (and look in the current directory if the name is not an absolute path).

3.17.41 strictargs. This toggle is either 1 (on) or 0 (o�). If on, all arguments to new user functions
are mandatory unless the function supplies an explicit default value. Otherwise arguments have
the default value 0.

In this example,

fun(a,b=2)=a+b

a is mandatory, while b is optional. If strictargs is on:

? fun()

*** at top-level: fun()

*** ^-----

*** in function fun: a,b=2

*** ^-----

*** missing mandatory argument 'a' in user function.

This applies to functions de�ned while strictargs is on. Changing strictargs does not
a�ect the behavior of previously de�ned functions.

The default value is 0.
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3.17.42 strictmatch. Obsolete. This toggle is now a no-op.

3.17.43 threadsize. In parallel mode, each thread needs its own private stack in which to do its
computations, see parisize. This value determines the size in bytes of the stacks of each thread,
so the total memory allocated will be parisize+ nbthreads� threadsize.

If set to 0, the value used is the same as parisize.

The default value is 0.

3.17.44 threadsizemax. In parallel mode, each threads needs its own private stack in which to do
its computations, see parisize. This value determines the maximal size in bytes of the stacks of
each thread, so the total memory allocated will be between parisize+ nbthreads� threadsize.
and parisize+ nbthreads� threadsizemax.

If set to 0, the value used is the same as threadsize.

The default value is 0.

3.17.45 timer. This toggle is either 1 (on) or 0 (o�). Every instruction sequence in the gp
calculator (anything ended by a newline in your input) is timed, to some accuracy depending on
the hardware and operating system. When timer is on, each such timing is printed immediately
before the output as follows:

? factor(2^2^7+1)

time = 108 ms. \\ this line omitted if 'timer' is 0

%1 =

[ 59649589127497217 1]

[5704689200685129054721 1]

(See also # and ##.)

The time measured is the user CPU time, not including the time for printing the results. If
the time is negligible (< 1 ms.), nothing is printed: in particular, no timing should be printed when
de�ning a user function or an alias, or installing a symbol from the library.

The default value is 0 (o�).
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Appendix A:

Installation Guide for the UNIX Versions

1. Required tools.

Compiling PARI requires an ANSI C or a C++ compiler. If you do not have one, we suggest
that you obtain the gcc/g++ compiler. As for all GNU software mentioned afterwards, you can
�nd the most convenient site to fetch gcc at the address

http://www.gnu.org/order/ftp.html

(On Mac OS X, this is also provided in the Xcode tool suite; or the lightweight \Command-line
tools for Xcode".) You can certainly compile PARI with a di�erent compiler, but the PARI kernel
takes advantage of optimizations provided by gcc. This results in at least 20% speedup on most
architectures.

Optional libraries and programs. The following programs and libraries are useful in conjunction
with gp, but not mandatory. In any case, get them before proceeding if you want the functionalities
they provide. All of them are free. The download page on our website

http://pari.math.u-bordeaux.fr/download.html

contains pointers on how to get these.

� GNU MP library. This provides an alternative multiprecision kernel, which is faster than
PARI's native one, but unfortunately binary incompatible, so the resulting PARI library SONAME
is libpari-gmp.

� GNU readline library. This provides line editing under gp, an automatic context-dependent
completion, and an editable history of commands.

� GNU emacs and the PariEmacs package. The gp calculator can be run in an Emacs bu�er,
with all the obvious advantages if you are familiar with this editor. Note that readline is still
useful in this case since it provides a better automatic completion than is provided by Emacs's
GP-mode.

� GNU gzip/gunzip/gzcat package enables gp to read compressed data.

� perl provides extended online help (full text from the manual) about functions and concepts.
The script handling this online help can be used under gp or independently.
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2. Compiling the library and the gp calculator.

2.1. Basic con�guration. Type

./Configure

in the toplevel directory. This attempts to con�gure PARI/GP without outside help. Note that if
you want to install the end product in some nonstandard place, you can use the --prefix option,
as in

./Configure --prefix=/an/exotic/directory

(the default pre�x is /usr/local). For example, to build a package for a Linux distribution, you
may want to use

./Configure --prefix=/usr

This phase extracts some �les and creates a build directory , names Oosname-arch, where the
object �les and executables will be built. The osname and arch components depends on your
architecture and operating system, thus you can build PARI/GP for several di�erent machines
from the same source tree (the builds are independent and can be done simultaneously).

Decide whether you agree with what Configure printed on your screen, in particular the ar-
chitecture, compiler and optimization 
ags. Look for messages prepended by ###, which report
genuine problems. Look especially for the gmp, readline and X11 libraries, and the perl and gun-

zip (or zcat) binaries. If anything should have been found and was not, consider that Configure
failed and follow the instructions in section 3.

The Configure run creates a �le config.log in the build directory, which contains debugging
information | in particular, all messages from compilers | that may help diagnose problems. This
�le is erased and recreated from scratch each time Configure is run.

2.2. Advanced con�guration. Configure accepts many other 
ags, and you may use any
number of them to build quite a complicated con�guration command. See Configure --help for
a complete list. In particular, there are sets of 
ags related to GNU MP (--with-gmp*) and GNU
readline library (--with-readline*).

Here, we focus on the non-obvious ones:

--tune: �ne tunes the library for the host used for compilation. This adjusts thresholds by
running a large number of comparative tests and creates a �le tune.h in the build directory, that
will be used from now on, overriding the ones in src/kernel/none/ and src/kernel/gmp/. It will
take a while: about 30 minutes. Expect a small performance boost, perhaps a 10% speed increase
compared to default settings.

If you are using GMP, tune it �rst, then PARI. Make sure you tune PARI on the machine that
will actually run your computations. Do not use a heavily loaded machine for tunings.

You may speed up the compilation by using a parallel make:

env MAKE="make -j4" Configure --tune

--graphic=lib: enables a particular graphic library. The default is X11 on most platforms,
but PARI can use Qt, fltk, ps, or win32 (GDI).

--time=function: chooses a timing function. The default usually works �ne, however you can
use a di�erent one that better �ts your needs. PARI can use getrusage, clock gettime, times or
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ftime as timing functions. (Not all timing functions are available on all platforms.) The three �rst
functions give timings in terms of CPU usage of the current task, approximating the complexity of
the algorithm. The last one, ftime, gives timings in terms of absolute (wall-clock) time. Moreover,
the clock gettime function is more precise, but much slower (at the time of this writing), than
getrusage or times.

--with-runtime-perl=perl : absolute path to the runtime perl binary to be used by the
gphelp and tex2mail scripts. Defaults to the path found by Configure on the build host (usually
/usr/bin/perl). For cross-compiling builds, when the target and build hosts have mismatched
con�gurations; suggested values are

/usr/bin/env perl: the �rst perl executable found in user's PATH,

/usr/bin/perl: perl's standard location.

The remaining options are speci�c to parallel programming. We provide an Introduction to
parallel GP programming in the �le doc/parallel.dvi, and to multi-threaded libpari programs
in Appendix D. Beware that these options change the library ABI:

--mt=engine: specify the engine used for parallel computations. Supported value are

� single: (default) no parallellism.
� pthread: use POSIX threads. This is well-suited for multi-core systems. Setting this option

also set --enable-tls, see below. This option requires the pthread library. For benchmarking, it
is often useful to set --time=ftime so that GP report wall-clock instead of the sum of the time
spent by each thread.

� mpi: use the MPI interface to parallelism. This allows to take advantage of clusters using
MPI. This option requires a MPI library. It is usually necessary to set the environment variable CC
to mpicc.

--enable-tls: build the thread-safe version of the library. Implied by --mt=pthread. This
tends to slow down the shared library libpari.so by about 15%, so you probably want to use the
static library libpari.a instead.

2.3. Compilation. To compile the gp binary and build the documentation, type

make all

To only compile the gp binary, type

make gp

in the toplevel directory. If your make program supports parallel make, you can speed up the
process by going to the build directory that Configure created and doing a parallel make here, for
instance make -j4 with GNU make. It should even work from the toplevel directory.

431



2.4. Basic tests.

To test the binary, type make bench. This runs a quick series of tests, for a few seconds on
modern machines.

In many cases, this will also build a di�erent binary (named gp-sta or gp-dyn) linked in a
slightly di�erent way and run the tests with both. (In exotic con�gurations, one may pass all the
tests while the other fails and we want to check for this.) To test only the default binary, use make
dobench which starts the bench immediately.

If a [BUG] message shows up, something went wrong. The testing utility directs you to �les
containing the di�erences between the test output and the expected results. Have a look and decide
for yourself if something is amiss. If it looks like a bug in the Pari system, we would appreciate a
report, see the last section.

2.5. Cross-compiling.

When cross-compiling, you can set the environment variable RUNTEST to a program that is able
to run the target binaries, e.g. an emulator. It will be used for both the Configure tests and make

bench.

3. Troubleshooting and �ne tuning.

In case the default Configure run fails miserably, try

./Configure -a

(interactive mode) and answer all the questions: there are about 30 of them, and default answers
are provided. If you accept all default answers, Configure will fail just the same, so be wary. In
any case, we would appreciate a bug report (see the last section).

3.1. Installation directories. The precise default destinations are as follows: the gp binary,
the scripts gphelp and tex2mail go to $prefix/bin. The pari library goes to $prefix/lib and
include �les to $prefix/include/pari. Other system-dependent data go to $prefix/lib/pari.

Architecture independent �les go to various subdirectories of $share prefix, which defaults
to $prefix/share, and can be speci�ed via the --share-prefix argument. Man pages go into
$share prefix/man, and other system-independent data under $share prefix/pari: documenta-
tion, sample GP scripts and C code, extra packages like elldata or galdata.

You can also set directly --bindir (executables), --libdir (library), --includedir (include
�les), --mandir (manual pages), --datadir (other architecture-independent data), and �nally
--sysdatadir (other architecture-dependent data).
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3.2. Environment variables. Configure lets the following environment variable override the
defaults if set:

CC: C compiler.

DLLD: Dynamic library linker.

LD: Static linker.

For instance, Configure may avoid /bin/cc on some architectures due to various problems which
may have been �xed in your version of the compiler. You can try

env CC=cc Configure

and compare the benches. Also, if you insist on using a C++ compiler and run into trouble with a
fussy g++, try to use g++ -fpermissive.

The contents of the following variables are appended to the values computed by Configure:

CFLAGS: Flags for CC.

CPPFLAGS: Flags for CC (preprocessor).

LDFLAGS: Flags for LD.

The contents of the following variables are prepended to the values computed by Configure:

C INCLUDE PATH is prepended to the list of directories searched for include �les. Note that
adding -I 
ags to CFLAGS is not enough since Configure sometimes relies on �nding the include
�les and parsing them, and it does not parse CFLAGS at this time.

LIBRARY PATH is prepended to the list of directories searched for libraries.

You may disable inlining by adding -DDISABLE INLINE to CFLAGS, and prevent the use of the
volatile keyword with -DDISABLE VOLATILE.

3.3. Debugging/pro�ling.: If you also want to debug the PARI library,

Configure -g

creates a directory Oxxx.dbg containing a special Makefile ensuring that the gp and PARI library
built there is suitable for debugging. If you want to pro�le gp or the library, using gprof for
instance,

Configure -pg

will create an Oxxx.prf directory where a suitable version of PARI can be built.

The gp binary built above with make all or make gp is optimized. If you have run Configure

-g or -pg and want to build a special purpose binary, you can cd to the .dbg or .prf directory and
type make gp there. You can also invoke make gp.dbg or make gp.prf directly from the toplevel.
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3.4. Multiprecision kernel. The kernel can be speci�ed via the

--kernel=fully quali�ed kernel name

switch. The PARI kernel consists of two levels: Level 0 (operation on words) and Level 1 (operation
on multi-precision integers and reals), which can take the following values.

Level 0: auto (as detected), none (portable C) or one of the assembler micro-kernels

alpha

hppa hppa64

ia64

ix86 x86_64

m68k

ppc ppc64

sparcv7 sparcv8_micro sparcv8_super

Level 1: auto (as detected), none (native code only), or gmp

� A fully quali�ed kernel name is of the form Level0-Level1 , the default value being auto-auto.

� A name not containing a dash '-' is an alias for a fully quali�ed kernel name. An alias stands for
name-none, but gmp stands for auto-gmp.

3.5. Problems related to readline. Configure does not try very hard to �nd the readline

library and include �les. If they are not in a standard place, it will not �nd them. You can invoke
Configure with one of the following arguments:

--with-readline[=pre�x to lib/libreadline.xx and include/readline.h]

--with-readline-lib=path to libreadline.xx

--with-readline-include=path to readline.h

Known problems.

� on Linux: Linux distributions have separate readline and readline-devel packages. You
need both of them installed to compile gp with readline support. If only readline is installed,
Configure will complain. Configure may also complain about a missing libncurses.so, in which
case, you have to install the ncurses-devel package (some distributions let you install readline-
devel without ncurses-devel, which is a bug in their package dependency handling).

� on OS X.4 or higher: these systems comes equipped with a fake readline, which is not
su�cient for our purpose. As a result, gp is built without readline support. Since readline is not
trivial to install in this environment, a step by step solution can be found in the PARI FAQ, see

http://pari.math.u-bordeaux.fr/:
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3.6. Testing.

3.6.1. Known problems. if BUG shows up in make bench

� If when running gp-dyn, you get a message of the form

ld.so: warning: libpari.so.xxx has older revision than expected xxx

(possibly followed by more errors), you already have a dynamic PARI library installed and a broken
local con�guration. Either remove the old library or unset the LD LIBRARY PATH environment
variable. Try to disable this variable in any case if anything very wrong occurs with the gp-dyn

binary, like an Illegal Instruction on startup. It does not a�ect gp-sta.

� Some implementations of the diff utility (on HPUX for instance) output No differences

encountered or some similar message instead of the expected empty input, thus producing a
spurious [BUG] message.

3.6.2. Some more testing. [Optional]

You can test gp in compatibility mode with make test-compat. If you want to test the graphic
routines, use make test-ploth. You will have to click on the mouse button after seeing each image.
There will be eight of them, probably shown twice (try to resize at least one of them as a further
test).

The make bench, make test-compat and make test-ploth runs all produce a Postscript �le
pari.ps in Oxxx which you can send to a Postscript printer. The output should bear some similarity
to the screen images.

3.6.3. Heavy-duty testing. [Optional] There are a few extra tests which should be useful only
for developers.

make test-kernel checks whether the low-level kernel seems to work, and provides simple
diagnostics if it does not. Only useful if make bench fails horribly, e.g. things like 1+1 do not work.

make test-all runs all available test suites. Thorough, but slow. Some of the tests require
extra packages (elldata, galdata, etc.) to be available. If you want to test such an extra package
before make install (which would install it to its �nal location, where gp expects to �nd it), run

env GP_DATA_DIR=$PWD/data make test-all

from the PARI toplevel directory, otherwise the test will fail.

make test-io tests writing to and reading from �les. It requires a working system() command
(fails on Windows + MingW).

make test-time tests absolute and relative timers. This test has a tendency to fail when the
machine is heavily loaded or if the granularity of the chosen system timer is bigger than 2ms. Try
it a few times before reporting a problem.

make test-install tests the GP function install. This may not be available on your plat-
form, triggering an error message (\not yet available for this architecture"). The implementation
may be broken on your platform triggering an error or a crash when an install'ed function is used.
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4. Installation.

When everything looks �ne, type

make install

You may have to do this with superuser privileges, depending on the target directories. (Tip for
MacOS X beginners: use sudo make install.) In this case, it is advised to type make all �rst
to avoid running unnecessary commands as root.

Caveat. Install directories are created honouring your umask settings: if your umask is too re-
strictive, e.g. 077, the installed �les will not be world-readable. (Beware that running sudo may
change your user umask.)

This installs in the directories chosen at Configure time the default gp executable (probably
gp-dyn) under the name gp, the default PARI library (probably libpari.so), the necessary include
�les, the manual pages, the documentation and help scripts.

To save on disk space, you can manually gzip some of the documentation �les if you wish:
usersch*.tex and all dvi �les (assuming your xdvi knows how to deal with compressed �les); the
online-help system can handle it.

4.1. Static binaries and libraries. By default, if a dynamic library libpari.so can be built,
the gp binary we install is gp-dyn, pointing to libpari.so. On the other hand, we can build a gp

binary into which the libpari is statically linked (the library code is copied into the binary); that
binary is not independent of the machine it was compiled on, and may still refer to other dynamic
libraries than libpari.

You may want to compile your own programs in the same way, using the static libpari.a

instead of libpari.so. By default this static library libpari.a is not created. If you want it as
well, use the target make install-lib-sta. You can install a statically linked gp with the target
make install-bin-sta. As a rule, programs linked statically (with libpari.a) may be slightly
faster (about 5% gain, possibly up to 20% when using pthreads), but use more disk space and
take more time to compile. They are also harder to upgrade: you will have to recompile them all
instead of just installing the new dynamic library. On the other hand, there is no risk of breaking
them by installing a new pari library.

4.2. Extra packages. The following optional packages endow PARI with some extra capabilities:

� elldata: This package contains the elliptic curves in John Cremona's database. It is needed
by the functions ellidentify, ellsearch, forell and can be used by ellinit to initialize a curve
given by its standard code.

� galdata: The default polgalois function can only compute Galois groups of polynomials
of degree less or equal to 7. Install this package if you want to handle polynomials of degree bigger
than 7 (and less than 11).

� seadata: This package contains the database of modular polynomials extracted from the
ECHIDNA databases and computed by David R. Kohel. It is used to speed up the functions ellap,
ellcard and ellgroup for primes larger than 1020.

� galpol: This package contains the GALPOL database of polynomials de�ning Galois exten-
sions of the rationals, accessed by galoisgetpol.
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To install package pack , you need to fetch the separate archive: pack.tgz which you can
download from the pari server. Copy the archive in the PARI toplevel directory, then extract its
contents; these will go to data/pack/. Typing make install installs all such packages.

4.3. The GPRC �le. Copy the �le misc/gprc.dft (or gprc.dos if you are using GP.EXE) to
$HOME/.gprc. Modify it to your liking. For instance, if you are not using an ANSI terminal,
remove control characters from the prompt variable. You can also enable colors.

If desired, read $datadir/misc/gpalias from the gprc �le, which provides some common
shortcuts to lengthy names; �x the path in gprc �rst. (Unless you tampered with this via Con�gure,
datadir is $prefix/share/pari.) If you have superuser privileges and want to provide system-
wide defaults, copy your customized .gprc �le to /etc/gprc.

In older versions, gphelp was hidden in pari lib directory and was not meant to be used from
the shell prompt, but not anymore. If gp complains it cannot �nd gphelp, check whether your
.gprc (or the system-wide gprc) does contain explicit paths. If so, correct them according to the
current misc/gprc.dft.

5. Getting Started.

5.1. Printable Documentation. Building gp with make all also builds its documentation. You
can also type directly make doc. In any case, you need a working (plain) TEX installation.

After that, the doc directory contains various dvi �les: libpari.dvi (manual for the PARI
library), users.dvi (manual for the gp calculator), tutorial.dvi (a tutorial), and refcard.dvi

(a reference card for GP). You can send these �les to your favorite printer in the usual way, probably
via dvips. The reference card is also provided as a PostScript document, which may be easier to
print than its dvi equivalent (it is in Landscape orientation and assumes A4 paper size).

If pdftex is part of your TEX setup, you can produce these documents in PDF format, which may
be more convenient for online browsing (the manual is complete with hyperlinks); type

make docpdf

All these documents are available online from PARI home page (see the last section).

5.2. C programming. Once all libraries and include �les are installed, you can link your C
programs to the PARI library. A sample make�le examples/Makefile is provided to illustrate the
use of the various libraries. Type make all in the examples directory to see how they perform on
the extgcd.c program, which is commented in the manual.

This should produce a statically linked binary extgcd-sta (standalone), a dynamically linked
binary extgcd-dyn (loads libpari at runtime) and a shared library libextgcd, which can be used
from gp to install your new extgcd command.

The standalone binary should be bulletproof, but the other two may fail for various reasons. If
when running extgcd-dyn, you get a message of the form \DLL not found", then stick to statically
linked binaries or look at your system documentation to see how to indicate at linking time where
the required DLLs may be found! (E.g. on Windows, you will need to move libpari.dll somewhere
in your PATH.)
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5.3. GP scripts. Several complete sample GP programs are also given in the examples directory,
for example Shanks's SQUFOF factoring method, the Pollard rho factoring method, the Lucas-
Lehmer primality test for Mersenne numbers and a simple general class group and fundamental
unit algorithm. See the �le examples/EXPLAIN for some explanations.

5.4. The PARI Community. PARI's home page at the address

http://pari.math.u-bordeaux.fr/

maintains an archive of mailing lists dedicated to PARI, documentation (including Frequently
Asked Questions), a download area and our Bug Tracking System (BTS). Bug reports should be
submitted online to the BTS, which may be accessed from the navigation bar on the home page or
directly at

http://pari.math.u-bordeaux.fr/Bugs/

Further information can be found at that address but, to report a con�guration problem, make
sure to include the relevant *.dif �les in the Oxxx directory and the �le pari.cfg.

There are a number of mailing lists devoted to PARI/GP, and most feedback should be directed
there. Instructions and archives can be consulted at

http://pari.math.u-bordeaux1.fr/lists-index.html

The most important are:

� pari-announce (read-only): to announce major version changes. You cannot write to this
one, but you should probably subscribe.

� pari-dev: for everything related to the development of PARI, including suggestions, tech-
nical questions or patch submissions. Bug reports can be discussed here, but as a rule it is better
to submit them directly to the BTS.

� pari-users: for everything else.
You may send an email to the last two without being subscribed. To subscribe, send an message
respectively to

pari-announce-request@pari.math.u-bordeaux.fr

pari-users-request@pari.math.u-bordeaux.fr

pari-dev-request@pari.math.u-bordeaux.fr

with the word subscribe in the Subject:. You can also write to us at the address

pari@math.u-bordeaux.fr

but we cannot promise you will get an individual answer.

If you have used PARI in the preparation of a paper, please cite it in the following form
(BibTeX format):

@preamble{\usepackage{url}}

@manual{PARI2,

organization = "{The PARI~Group}",

title = "{PARI/GP version 2.9.1}",

year = 2016,
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address = "Bordeaux",

note = "available from \url{http://pari.math.u-bordeaux.fr/}"

}

In any case, if you like this software, we would be indebted if you could send us an email message
giving us some information about yourself and what you use PARI for.

Good luck and enjoy!
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