
1

ModSecurity Audit Log Analysis

There are 2 types of audit log formats
The Serial audit log type logs all data to one file (is the depreciated
format)
The new Concurrent log type creates individual files for each request
data

It is highly recommended that the Concurrent log type be used for the
following reasons

Increased performance of logging
Data be sent to the ModSecurity Console for analysis

If you must use the Serial format, you will undoubtedly find that
conducting audit log analysis and searches are cumbersome due to
the fact that the records are multiline
This makes it difficult to extract out the entire record of interest with
standard Unix tools such as grep and egrep (egrep –C 5 string)
There had to be a better way to search and extract out records…

ModSecurity currently supports 2 logging formats – Serial and Concurrent with the later being the
most currently and preferred method. The data provided by the ModSecurity audit_log file is
invaluable when conducting incident response for web attacks. The data represents the entire client
request including the client headers and data payloads. While the value of this data is undeniable,
there are some practical issues to deal with if this data is to be used in an efficient manner. For those
of you who have been using ModSecurity for some time, you have almost certainly run into this issue
that I am about to discuss.

While using grep/egrep searches does show more data from the log entry, it does not perform well in
bulk searches as there are never a consistent number of client headers being sent, so the accuracy
of the returned data is a bit off. What I needed was a script that functioned similarly to egrep;
however, it would be able to understand the ModSecurity audit_log format and be able to extract out
the multi-line record.

2

Sgrep.pl Script for Log Analysis

Perl to the rescue!
A script was created called “sgrep.pl”

It is able to search the audit_log for the specified search string
It uses the Perl line separator function to identify the
“============“ record separator that ModSecurity uses for the
Serial format

This script is tremendously useful for parsing and
extracting data from the standard ModSecurity audit_log
file
Execute sgrep.pl with the “-h” flag for help syntax

This lead to the creation of a script called sgrep.pl. Sgrep is a PERL script that accomplishes the
tasks that we need to successfully parse and extract entire audit_log records that contain the desired
search text string.

3

Sgrep.pl Help Menu

./sgrep.pl –h
This program does...
usage: $0 [-hf:s:v:]

if a file is compressed then it will be uncompressed on the
fly

default : display usage
-f file : file to search through
-s string : string to match on - enclosed in quotes if it

contains spaces
-v level : verbose output
-h : this (help) message

example:
$0
$0 -f
$0 -s
$0 -v level Verbose/Debug messages, where level = 0..9

Here is the help menu for the sgrep.pl script.

4

Sgrep.pl Usage Example

/tools/sgrep.pl -f audit_log -s "200.189.60.251"
==

Request: 200.189.60.251 - - [18/May/2005:23:58:17 --0400] "GET /awstats/awstats

.pl?configdir=|echo%20;echo%20;id;echo%20;echo| HTTP/1.0" 403 743

Handler: cgi-script

--

GET /awstats/awstats.pl?configdir=|echo%20;echo%20;id;echo%20;echo| HTTP/1.0

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.ms-
powerpoint, application/vnd.ms-excel, application/msword, */*

Accept-Language: en-us

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0b; Windows NT 5.0)

Host: www.companyx.com

Via: 1.0 lilith.persistelecom.com.br:3128 (squid/2.5.STABLE8)

X-Forwarded-For: 10.1.1.9

Cache-Control: max-age=259200

Connection: keep-alive

ModSecurity-message: Access denied with code 403. Pattern match "\;id" at THE_REQUEST

ModSecurity-action: 403

HTTP/1.0 403 Forbidden

Connection: close

As you can see, sgrep.pl was able to extract out the entire record for this awstats command injection
attempt from the specified IP address 200.189.60.251.

5

Pipelining Sgrep Commands

./sgrep.pl -f audit_log -s "ccbill" | ./sgrep.pl -f - -s 68.16.164.147
==
Request: 68.16.164.147 - - [Thu Mar 11 15:29:49 2004] "GET

http://www.access.ccbill.com/jettis/add-passwd-old.cgi HTTP/1.0" 500 454
Handler: proxy-server
Error: The proxy server could not handle the request <A

HREF="http://www.access.ccbill.com/jettis/add-passwd-
old.cgi">GET http://www.access.ccbill.com/jettis/add-passwd-
old.cgi.<P>

Reason: Host not found
--
GET http://www.access.ccbill.com/jettis/add-passwd-old.cgi HTTP/1.0
Cache-Control: no-cache
Connection: close
Host: www.access.ccbill.com
Pragma: no-cache
Proxy-Connection: keep-alive
Referer: http://www.access.ccbill.com/jettis/add-passwd-old.cg

Sometimes, the search string used with Sgrep produces too many results. In order to narrow down
the results and/or make a more complex search, you can used multiple sgrep.pl searches together.
It is possible to take the output of one sgrep.pl search and use it as the input to another search. This
is accomplished by using the Unix pipe character “|” to join 2 separate sgrep.pl commands together.
On the second sgrep.pl command, you must specify a dash “-” character to the “-f” file flag. This tells
Perl to use standard input instead of reading an actual file.

