Eet Reference Manual

Generated by Doxygen 1.5.1

Wed Mar 28 00:01:04 2007

Contents

1 Eet Library Documentation 1
1.1 Whatis Eet? e 1
1.2 A simple example on using Eet oL 1
1.3 What does an Eet file look like? 2

2 Eet File Index 5
2.1 Eet File List o e e e e e 5

3 Eet Page Index 7
3.1 Eet Related Pages L

4 Eet File Documentation 9
4.1 eet.c File Reference e 9

5 Eet Page Documentation 31

5.1 Todo List 31

Chapter 1

Eet Library Documentation

Version:

Q@

Author:

Carsten Haitzler <raster@rasterman.com>

Date:
2000-2004

1.1 What is Eet?

It is a tiny library designed to write an arbitary set of chunks of data to a file and optionally
compress each chunk (very much like a zip file) and allow fast random-access reading of the file
later on. It does not do zip as a zip itself has more complexity than is needed, and it was much
simpler to impliment this once here.

Eet is extremely fast, small and simple. Eet files can be very small and highly compressed, making
them very optimal for just sending across the internet without having to archive, compress or
decompress and install them. They allow for lightning-fast random-acess reads once created,
making them perfect for storing data that is written once (or rarely) and read many times, but
the program does not want to have to read it all in at once.

It also can encode and decode data structures in memory, as well as image data for saving to
Eet files or sending across the network to other machines, or just writing to arbitary files on the
system. All data is encoded in a platform independant way and can be written and read by any
architecture.

1.2 A simple example on using Eet

Here is a simple example on how to use Eet to save a series of strings to a file and load them
again. The advantage of using Eet over just fprintf() and fscanf() is that not only can these entries

mailto:raster@rasterman.com

2 Eet Library Documentation

be strings, they need no special parsing to handle delimiter characters or escaping, they can be
binary data, image data, data structures containing integers, strings, other data structures, linked
lists and much more, without the programmer having to worry about parsing, and best of all, Eet
is very fast.

#include <Eet.h>

int
main(int argc, char **argv)
{
Eet_File *ef;
int i;
char buf [32] ;
char *ret;
int size;
char **entries =
{
"Entry 1",

"Big text string here compared to others",
"Eet is cool"

};
eet_init();

// blindly open an file for output and write strings with their NUL char
ef = eet_open("test.eet", EET_FILE_MODE_WRITE);

eet_write(ef, "Entry 1", entries[0], strlen(entries[0]) + 1, 0);
eet_write(ef, "Entry 2", entries[1], strlen(entries[1]) + 1, 1);
eet_write(ef, "Entry 3", entries[2], strlen(entries[2]) + 1, 0);
eet_close(ef);

// open the file again and blindly get the entries we wrote
ef = eet_open("test.eet", EET_FILE_MODE_READ);

ret = eet_read(ef, "Entry 1", &size);

printf("%s\n", ret);

ret = eet_read(ef, "Entry 2", &size);

printf("%s\n", ret);

ret = eet_read(ef, "Entry 3", &size);

printf("%s\n", ret);

eet_close(ef);

eet_shutdown();

1.3 What does an Eet file look like?

The file format is very simple. There is a directory block at the start of the file listing entries and
offsets into the file where they are stored, their sizes, compression flags etc. followed by all the
entry data strung one element after the other.

All Eet files start with t a 4 byte magic number. It is written using network byte-order (big endian,
or from most significant byte first to least significant byte last) and is 0x1ee7ff00 (or byte by byte
0:1e 1:e7 2:Af 3:00). The next 4 bytes are an integer (in big endian notation) indicating how many
entries are stored in the Eet file. 0 indicates it is empty. This is a signed integer and thus values
less than 0 are invalid, limiting the number of entries in an Eet file to Ox7{HIIf entries at most.
The next 4 bytes is the size of the directory table, in bytes, encoded in big-endian format. This is
a signed integer and cannot be less than 0.

The directory table for the file follows immediately, with a continuous list of all entries in the Eet

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

1.3 What does an Eet file look like? 3

file, their offset in the file etc. The order of these entries is not important, but convention would
have them be from first to last entry in the file. Each directory entry consiste of 5 integers, one
after the other, each stored as a signed, big endian integer. The first is the offset in the file that the
data for this entry is stored at (based from the very start of the file, not relative to the end of the
directory block). The second integer holds flags for the entry. currently only the least significant
bit (bit 0) holds any useful information, and it is set to 1 if the entry is compressed using zlib
compression calls, or 0 if it is not compressed. The next integer is the size of the entry in bytes
stored in the file. The next integer is the size of the data when decompressed (if it was compressed)
in bytes. This may be the same as the previous integer if the entry was not compressed. The
final integer is the number of bytes used by the string identifier for the entry, without the NUL
byte terminator, which is not stored. The next series of bytes is the string name of the entry,
with the number of bytes being the same as specified in the last integer above. This list of entries
continues until there are no more entries left to list. To read an entry from an Eet file, simply find
the appropriate entry in the directory table, find it’s offset and size, and read it into memory. If
it is compressed, decompress it using zlib and then use that data.

Here is a data map of an Eet file. All integers are encoded using big-endian notation (most
significant byte first) and are signed. There is no alignment of data, so all data types follow
immediately on, one after the other. All compressed data is compressed using the zlib compress2()
function, and decompressed using the zlib uncompress() function. Please see zlib documentation
for more information as to the encoding of compressed data.

HEADER:

[INT] Magic number (Oxlee7ff00)

[INT] Number of entries in the directory table
[INT] The size of the directory table, in bytes

DIRECTORY TABLE ENTRIES (as many as specified in the header):
[INT] Offest from file start at which entry is stored (in bytes)
[INT] Entry flags (1 = compressed, 0 = not compressed)
[INT] Size of data chunk in file (in bytes)
[INT] Size of the data chunk once decompressed (or the same as above, if not)
[INT] The length of the string itendifier, in bytes, without NUL terminator
[STR] Series of bytes for the string identifier, no NUL terminator
. more directory entries

DATA STORED, ONE AFTER ANOTHER:
[DAT] DATA ENTRY 1...
[DAT] DATA ENTRY 2...
[DAT] DATA ENTRY 3...
. more data chunks

The contents of each entry in an Eet file has no defined format as such. It is an opaque chunk
of data, that is up to the application to deocde, unless it is an image, ecoded by Eet, or a data
structure encoded by Eet. The data itself for these entries can be encoded and decoded by Eet with
extra helper functions in Eet. eet data image read() and eet data_image write() are used to
handle reading and writing image data from a known Eet file entry name. eet data read() and
eet_data_write() are used to decode and encode program data structures from an Eet file, making
the loading and saving of program information stored in data structures a simple 1 function call
process.

Please see src/lib/eet_data.c for information on the format of these specially encoded data entries
in an Eet file (for now).

Todo
Add hash table, fixed and variable array encode/decode support.

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

4 Eet Library Documentation

Todo

Document data format for images and data structures.

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

Chapter 2

Eet File Index

2.1 Eet File List

Here is a list of all documented files with brief descriptions:

eet.c (Eet Data Handling Library Public API Calls)

Eet File Index

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

Chapter 3

Eet Page Index

3.1 Eet Related Pages

Here is a list of all related documentation pages:

Todo List e e

Eet Page Index

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

Chapter 4

Eet File Documentation

4.1 eet.c File Reference

Eet Data Handling Library Public API Calls.

Defines

o #define EET T UNKNOW 0
Unknown data encding type.

o Hdefine EET T CHAR1
Data type: char.

o +#define EET T SHORT 2
Data type: short.

o #define EET T INT 3
Data type: int.

o +#define EET T LONG_ LONG 4
Data type: long long.

o #define EET T FLOAT 5
Data type: float.

e #define EET T DOUBLE 6
Data type: double.

o Hdefine EET T UCHAR 7
Data type: unsigned char.

o Hdefine EET T USHORT 8

Eet File Documentation

Data type: unsigned short.

#define EET T UINT 9
Data type: unsigned int.

#define EET T ULONG _LONG 10
Data type: unsigned long long.

#define EET T STRING 11
Data type: char *.

#define EET T LAST 12
Last data type.

#define EET G_UNKNOWN 100

Unknown group data encoding type.

#define EET _G_ARRAY 101

Fized size array group type.

#define EET _G_VAR_ARRAY 102

Variable size array group type.

#define EET G _LIST 103
Linked list group type.

#define EET G_HASH 104
Hash table group type.

#define EET G _LAST 105
Last group type.

#define EET DATA DESCRIPTOR_ADD BASIC(edd, struct type, name, member,
type)

Add a basic data element to a data descriptor.

#define EET DATA DESCRIPTOR_ADD SUB(edd, struct_type, name, member, sub-
type)
Add a sub-element type to a data descriptor.

#define EET _DATA DESCRIPTOR_ADD LIST(edd, struct type, name, member, sub-
type)
Add a linked list type to a data descriptor.

#define EET _DATA DESCRIPTOR_ADD HASH(edd, struct type, name, member,
subtype)

Add a hash type to a data descriptor.

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

4.1 eet.c File Reference 11

Functions

e EAPI int eet init (void)
Initialize the EET library.

e EAPI int eet shutdown (void)
Shut down the EET library.

e EAPI void eet_ clearcache (void)

Clear eet cache.

e EAPI Eet_File % eet_open (const char «file, Eet File Mode mode)

Open an eet file on disk, and returns a handle to it.

e EAPI Eet File Mode eet _mode get (Eet_File xef)
Get the mode an Fet_File was opened with.

e EAPI Eet Error eet_close (Eet _File xef)
Close an eet file handle and flush and writes pending.

e EAPI void * eet_read (Eet_File xef, const char *xname, int *size ret)

Read a specified entry from an eet file and return data.

e EAPI void * eet _read direct (Eet File xef, const char *name, int *size ret)

Read a specified entry from an eet file and return data.

e EAPI int eet write (Eet_ File xef, const char sname, const void *data, int size, int com-
press)

Write a specified entry to an eet file handle.

e EAPI int eet delete (Eet File xef, const char *name)

Delete a specified entry from an Eet file being written or re-written.

e EAPI char *x eet_list (Eet_File sef, const char xglob, int xcount ret)
List all entries in eet file matching shell glob.

e EAPI int eet num _entries (Eet_File xef)

Return the number of entries in the specified eet file.

e EAPT int eet data image header read (Eet_ File xef, const char *name, unsigned int w,
unsigned int xh, int *alpha, int xcompress, int xquality, int *lossy)

Read just the header data for an image and dont decode the pizels.

e EAPT void * eet data_ image read (Eet_ File xef, const char *name, unsigned int sw,
unsigned int xh, int *alpha, int xcompress, int xquality, int *lossy)

Read image data from the named key in the eet file.

e EAPI int eet data image write (Eet File xef, const char sname, const void *data, un-
signed int w, unsigned int h, int alpha, int compress, int quality, int lossy)

Write image data to the named key in an eet file.

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

12

Eet File Documentation

EAPI int eet data image header decode (const void xdata, int size, unsigned int sw,
unsigned int xh, int *alpha, int *compress, int xquality, int *lossy)

Decode Image data header only to get information.

EAPI void * eet_data_image decode (const void xdata, int size, unsigned int *w, unsigned
int *h, int *alpha, int *compress, int *quality, int xlossy)

Decode Image data into pizel data.

EAPI void * eet data image encode (const void *data, int xsize ret, unsigned int w,
unsigned int h, int alpha, int compress, int quality, int lossy)

Encode image data for storage or transmission.

EAPI Eet _Data_ Descriptor * eet _data_descriptor _new (const char *name, int size, void
«(xfunc_list _next)(void «l), void *(xfunc_list append)(void 1, void xd), void *(xfunc_-
list_data)(void 1), void *(xfunc_list_free)(void xl), void(sfunc_hash_foreach)(void xh,
int(+func)(void *h, const char *k, void *dt, void *fdt), void xfdt), void *(xfunc hash -
add)(void #h, const char xk, void *d), void(+func_hash free)(void *h))

Create a new empty data structure descriptor.

EAPI void eet data_descriptor free (Eet Data_Descriptor xedd)

This function frees a data descriptor when it is not needed anymore.

EAPI void eet data_descriptor element add (Eet Data_Descriptor sedd, const char
xname, int type, int group type, int offset, int count, const char xcounter name, Eet -
Data_ Descriptor #subtype)

This function is an internal used by macros.

EAPI void * eet data read (Eet File xef, Eet Data Descriptor *edd, const char
kname)

Read a data structure from an eet file and decodes it.

EAPI int eet data_write (Eet File xef, Eet Data Descriptor xedd, const char xname,
const void xdata, int compress)

Write a data structure from memory and store in an eet file.

EAPI void * eet _data_descriptor _decode (Eet Data_Descriptor *edd, const void «data_ -
in, int size in)

Decode a data structure from an arbitary location in memory.

EAPI void * eet _data_ descriptor _encode (Eet Data_Descriptor *edd, const void «data_ -
in, int *size_ret)

Encode a dsata struct to memory and return that encoded data.

4.1.1 Detailed Description

Eet Data Handling Library Public API Calls.

These routines are used for Eet Library interaction

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

4.1 eet.c File Reference 13

4.1.2 Define Documentation

4.1.2.1 #define EET DATA DESCRIPTOR_ADD_ BASIC(edd, struct type,
name, member, type)

Value:

{\
struct_type
\
eet_data_descriptor_element_add(edd, name, type, EET_G_UNKNOWN, \
(char *)(&(___ett.member)) - (char *)(&(___ett)), \
0, NULL, NULL); \

ett; \

Add a basic data element to a data descriptor.

Parameters:

edd The data descriptor to add the type to.
struct type The type of the struct.

name The string name to use to encode/decode this member (must be a constant global and
never change).

member The struct member itself to be encoded.

type The type of the member to encode.

This macro is a convenience macro provided to add a member to the data descriptor edd. The
type of the structure is provided as the struct_type parameter (for example: struct my struct).
The name parameter defines a string that will be used to uniquely name that member of the
struct (it is suggested to use the struct member itself). The member parameter is the actual
struct member itself (for example: values), and type is the basic data type of the member which
must be one of: EET T CHAR, EET T SHORT, EET_ T INT, EET T LONG_ LONG,
EET T FLOAT,EET T DOUBLE,EET T UCHAR,EET T USHORT,EET T UINT,
EET T ULONG_LONG or EET T STRING.

4.1.2.2 #define EET DATA DESCRIPTOR ADD HASH(edd, struct type,

name, member, subtype)
Value:

{\
struct_type
\
eet_data_descriptor_element_add(edd, name, EET_T_UNKNOW, EET_G_HASH, \
(char *)(&(___ett.member)) - (char *)(&(___ett)), \
0, NULL, subtype); \

ett; \

Add a hash type to a data descriptor.

Parameters:

edd The data descriptor to add the type to.

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

14 Eet File Documentation

struct_type The type of the struct.

name The string name to use to encode/decode this member (must be a constant global and
never change).

member The struct member itself to be encoded.

subtype The type of hash member to add.

This macro lets you easily add a hash of other data types. All the parameters are the same as
for EET _DATA DESCRIPTOR_ADD_ BASIC(), with the subtype being the exception. This
must be the data descriptor of the element that is in each member of the hash to be stored.

4.1.2.3 +tdefine EET DATA DESCRIPTOR_ADD LIST(edd, struct_type,
name, member, subtype)

Value:

{\
struct_type
\
eet_data_descriptor_element_add(edd, name, EET_T_UNKNOW, EET_G_LIST, \
(char *)(&(___ett.member)) - (char *)(&(___ett)), \
0, NULL, subtype); \

_ett; \

Add a linked list type to a data descriptor.

Parameters:

edd The data descriptor to add the type to.
struct type The type of the struct.

name The string name to use to encode/decode this member (must be a constant global and
never change).

member The struct member itself to be encoded.

subtype The type of linked list member to add.

This macro lets you easily add a linked list of other data types. All the parameters are the same as
for EET DATA DESCRIPTOR_ADD_ BASIC(), with the subtype being the exception. This
must be the data descriptor of the element that is in each member of the linked list to be stored.

4.1.2.4 #tdefine EET DATA DESCRIPTOR ADD SUB(edd, struct type,

name, member, subtype)
Value:

{\
struct_type
\
eet_data_descriptor_element_add(edd, name, EET_T_UNKNOW, EET_G_UNKNOWN, \

(char *)(&(___ett.member)) - (char *)(&(___ett)), \
0, NULL, subtype); \

_ett; \

Add a sub-element type to a data descriptor.

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

4.1 eet.c File Reference 15

Parameters:

edd The data descriptor to add the type to.
struct type The type of the struct.

name The string name to use to encode/decode this member (must be a constant global and
never change).

member The struct member itself to be encoded.

subtype The type of sub-type struct to add.

This macro lets you easily add a sub-type (a struct that’s pointed to by this one). All the
parameters are the same as for EET DATA DESCRIPTOR_ADD BASIC(), with the subtype
being the exception. This must be the data descriptor of the struct that is pointed to by this
element.

4.1.3 Function Documentation

4.1.3.1 EAPI void eet_clearcache (void)

Clear eet cache.

Eet didn’t free items by default. If you are under memory presure, just call this function to recall
all memory that are not yet referenced anymore. The cache take care of modification on disk.

4.1.3.2 EAPI Eet Error eet close (Eet_File * ef)
Close an eet file handle and flush and writes pending.

Parameters:
ef A valid eet file handle.
This function will flush any pending writes to disk if the eet file was opened for write, and free all

data associated with the file handle and file, and close the file.

If the eet file handle is not valid nothing will be done.

4.1.3.3 EAPI voidx eet data descriptor decode (Eet Data Descriptor * edd,
const void * data_in, int size in)

Decode a data structure from an arbitary location in memory.

Parameters:

edd The data descriptor to use when decoding.
data_ in The pointer to the data to decode into a struct.

size_in The size of the data pointed to in bytes.

Returns:

NULL on failure, or a valid decoded struct pointer on success.

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

16 Eet File Documentation

This function will decode a data structure that has been encoded using
eet_data_descriptor _encode(), and return a data structure with all its elements filled out,
if successful, or NULL on failure.

The data to be decoded is stored at the memory pointed to by data_in, and is described by the
descriptor pointed to by edd. The data size is passed in as the value to size_in, ande must be
greater than 0 to succeed.

This function is useful for decoding data structures delivered to the application by means other
than an eet file, such as an IPC or socket connection, raw files, shared memory etc.

Please see eet data_read() for more information.

4.1.3.4 EAPI void eet data descriptor element add (Eet Data Descriptor *
edd, const char x name, int type, int group type, int offset, int count, const
char * counter name, Eet Data Descriptor * subtype)

This function is an internal used by macros.

This function is used by macros EET DATA DESCRIPTOR_ADD BASIC(),
EET DATA DESCRIPTOR_ADD SUB() and EET DATA DESCRIPTOR_ADD LIST().
It is complex to use by hand and should be left to be used by the macros, and thus is not
documented.

4.1.3.5 EAPI voidx eet data descriptor encode (Eet Data Descriptor * edd,
const void * data_in, int * size ret)

Encode a dsata struct to memory and return that encoded data.

Parameters:

edd The data descriptor to use when encoding.
data_ in The pointer to the struct to encode into data.

size_ret A pointer to the an int to be filled with the decoded size.

Returns:

NULL on failure, or a valid encoded data chunk on success.

This function takes a data structutre in memory and encodes it into a serialised chunk of data
that can be decoded again by eet data_descriptor decode(). This is useful for being able to
transmit data structures across sockets, pipes, IPC or shared file mechanisms, without having to
worry about memory space, machine type, endianess etc.

The parameter edd must point to a valid data descriptor, and data_in must point to the right
data structure to encode. If not, the encoding may fail.

On success a non NULL valid pointer is returned and what size_ret points to is set to the size
of this decoded data, in bytes. When the encoded data is no longer needed, call free() on it. On
failure NULL is returned and what size_ret points to is set to 0.

Please see eet data_write() for more information.

4.1.3.6 EAPI void eet data descriptor free (Eet Data Descriptor x edd)

This function frees a data descriptor when it is not needed anymore.

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

4.1 eet.c File Reference 17

Parameters:

edd The data descriptor to free.

This function takes a data descriptor handle as a parameter and frees all data allocated for the
data descriptor and the handle itself. After this call the descriptor is no longer valid.

4.1.3.7 EAPI Eet Data Descriptor+ eet data descriptor new (const char x*
name, int size, void x(x)(void *l) func list next, void x(x)(void 1, void *d)
func_list append, void x(x)(void 1) func list data, void x(x)(void xl)
func_list _free, void(x)(void xh, int(+func)(void xh, const char xk, void xdt,
void xfdt), void *fdt) func_hash_foreach, void x(x)(void xh, const char xk,
void *d) func_ hash_ add, void(*)(void xh) func_hash_ free)

Create a new empty data structure descriptor.

Parameters:

name The string name of this data structure (most be a global constant and never change).
stze The size of the struct (in bytes).

func_list next The function to get the next list node.

func_list append The function to append a member to a list.

func_list data The function to get the data from a list node.

func_list _free The function to free an entire linked list.

func_hash_foreach The function to iterate through all hash table entries.

func _hash_add The function to add a member to a hash table.

func_hash_free The function to free an entire hash table.

Returns:

A new empty data descriptor.

This function creates a new data descriptore and returns a handle to the new data descriptor. On
creation it will be empty, containing no contents describing anything other than the shell of the
data structure.

You add structure members to the data descriptor using the macros
EET DATA DESCRIPTOR_ADD BASIC(), EET DATA DESCRIPTOR_ADD SUB()
and EET DATA DESCRIPTOR_ADD_ LIST(), depending on what type of member you are
adding to the description.

Once you have described all the members of a struct you want loaded, or saved eet can load
and save those members for you, encode them into endian-independant serialised data chunks for
transmission across a a network or more.

Example:

#include <Eet.h>
#include <Evas.h>

typedef struct _blah2
{
char *string;
}
Blah2;

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

18

Eet File Documentation

typedef struct _blah3
char *string;

}

Blah3;

typedef struct _blah

{
char character;
short sixteen;
int integer;
long long lots;
float floating;
double floating_lots;
char *string;
Blah2 *blah2;
Evas_List *blah3;
}
Blah;
int
main(int argc, char **xargv)
{

Blah blah;

Blah2 blah2;

Blah3 blah3;

Eet_Data_Descriptor *edd, *edd2, *edd3;
void *data;

int size;

FILE *f;

Blah *blah_in;

edd3 = eet_data_descriptor_new("blah3", sizeof(Blah3),

evas_list_next,

evas_list_append,

evas_list_data,

evas_list_free,

evas_hash_foreach,

evas_hash_add,

evas_hash_free);
EET_DATA_DESCRIPTOR_ADD_BASIC(edd3, Blah3, "string3", string, EET_T_STRING);

edd2 = eet_data_descriptor_new("blah2", sizeof(Blah2),

evas_list_next,

evas_list_append,

evas_list_data,

evas_list_free,

evas_hash_foreach,

evas_hash_add,

evas_hash_free);
EET_DATA_DESCRIPTOR_ADD_BASIC(edd2, Blah2, "string2", string, EET_T_STRING);

edd = eet_data_descriptor_new("blah", sizeof(Blah),

evas_list_next,
evas_list_append,
evas_list_data,
evas_list_free,
evas_hash_foreach,
evas_hash_add,
evas_hash_free);

EET_DATA_DESCRIPTOR_ADD_BASIC(edd, Blah,
EET_DATA_DESCRIPTOR_ADD_BASIC(edd, Blah,
EET_DATA_DESCRIPTOR_ADD_BASIC(edd, Blah,
EET_DATA_DESCRIPTOR_ADD_BASIC(edd, Blah,
EET_DATA_DESCRIPTOR_ADD_BASIC(edd, Blah,
EET_DATA_DESCRIPTOR_ADD_BASIC(edd, Blah,

"character", character, EET_T_CHAR);
"sixteen", sixteen, EET_T_SHORT);

"integer", integer, EET_T_INT);

"lots", lots, EET_T_LONG_LONG);

"floating", floating, EET_T_FLOAT);
"floating_lots", floating_lots, EET_T_DOUBLE);

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

4.1 eet.c File Reference

EET_DATA_DESCRIPTOR_ADD_BASIC(edd, Blah, "string", string, EET_T_STRING);
EET_DATA_DESCRIPTOR_ADD_SUB(edd, Blah, "blah2", blah2, edd2);
EET_DATA_DESCRIPTOR_ADD_LIST(edd, Blah, "blah3", blah3, edd3);

blah3.string="PANTS";
blah2.string="subtype string here!";

blah.character=’77;

blah.sixteen=0x7777;

blah.integer=0xc0def00d;
blah.lots=0xdeadbeef31337777;
blah.floating=3.141592654;
blah.floating_lots=0.777777777777777;
blah.string="bite me like a turnip";

blah.blah2 = &blah2;

blah.blah3 = evas_list_append(NULL, &blah3);
blah.blah3 = evas_list_append(blah.blah3, &blah3);
blah.blah3 = evas_list_append(blah.blah3, &blah3);
blah.blah3 = evas_list_append(blah.blah3, &blah3);
blah.blah3 = evas_list_append(blah.blah3, &blah3);
blah.blah3 = evas_list_append(blah.blah3, &blah3);
blah.blah3 = evas_list_append(blah.blah3, &blah3);

data = eet_data_descriptor_encode(edd, &blah, &size);
f = fopen("out", "w");
if (f)
{
furite(data, size, 1, f);
fclose(f);
}
printf("----- DECODING\n") ;
blah_in = eet_data_descriptor_decode(edd, data, size);

printf("----- DECODED!\n") ;

printf("%c\n", blah_in->character);
printf("%x\n", (int)blah_in->sixteen);
printf("%x\n", blah_in->integer);
printf("%1lx\n", blah_in->lots);

printf("%f\n", (double)blah_in->floating);
printf("%f\n", (double)blah_in->floating_lots);
printf("%s\n", blah_in->string);

printf("%p\n", blah_in->blah2);

printf(" %s\n", blah_in->blah2->string);

{
Evas_List *1;
for (1 = blah_in->blah3; 1; 1 = 1l->next)
{
Blah3 *blah3_in;
blah3_in = l->data;
printf("%p\n", blah3_in);
printf(" %s\n", blah3_in->string);
}
}

eet_data_descriptor_free(edd);
eet_data_descriptor_free(edd2);
eet_data_descriptor_free(edd3);

return 0;

}

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

20 Eet File Documentation

4.1.3.8 EAPI void+ eet data image decode (const void * data, int size, unsigned
int * w, unsigned int * h, int * alpha, int x compress, int * quality, int *
lossy)

Decode Image data into pixel data.

Parameters:

data The encoded pixel data.

size The size, in bytes, of the encoded pixel data.

w A pointer to the unsigned int to hold the width in pixels.

h A pointer to the unsigned int to hold the height in pixels.
alpha A pointer to the int to hold the alpha flag.

compress A pointer to the int to hold the compression amount.
quality A pointer to the int to hold the quality amount.

lossy A pointer to the int to hold the lossiness flag.

Returns:

The image pixel data decoded

This function takes encoded pixel data and decodes it into raw RGBA pixels on success.

The other parameters of the image (width, height etc.) are placed into the values pointed to (they
must be supplied). The pixel data is a linear array of pixels starting from the top-left of the image
scanning row by row from left to right. Each pixel is a 32bit value, with the high byte being the
alpha channel, the next being red, then green, and the low byte being blue. The width and height
are measured in pixels and will be greater than 0 when returned. The alpha flag is either 0 or 1.
0 denotes that the alpha channel is not used. 1 denotes that it is significant. Compress is filled
with the compression value/amount the image was stored with. The quality value is filled with
the quality encoding of the image file (0 - 100). The lossy flags is either 0 or 1 as to if the image
was encoded lossily or not.

On success the function returns a pointer to the image data decoded. The calling application
is responsible for calling free() on the image data when it is done with it. On failure NULL is
returned and the parameter values may not contain any sensible data.

4.1.3.9 EAPI void+ eet data image encode (const void * data, int * size ret,
unsigned int w, unsigned int h, int alpha, int compress, int quality, int lossy)

Encode image data for storage or transmission.

Parameters:

data A pointer to the image pixel data.

size_ret A pointer to an int to hold the size of the returned data.
w The width of the image in pixels.

h The height of the image in pixels.

alpha The alpha channel flag.

compress The compression amount.

quality The quality encoding amount.

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

4.1 eet.c File Reference 21

lossy The lossiness flag.

Returns:

The encoded image data.

This function stakes image pixel data and encodes it with compression and possible loss of quality
(as a trade off for size) for storage or transmission to another system.

The data expected is the same format as returned by eet data image read. If this is not the
case weird things may happen. Width and height must be between 1 and 8000 pixels. The alpha
flags can be 0 or 1 (0 meaning the alpha values are not useful and 1 meaning they are). Compress
can be from 0 to 9 (0 meaning no compression, 9 meaning full compression). This is only used if
the image is not lossily encoded. Quality is used on lossy compression and should be a value from
0 to 100. The lossy flag can be 0 or 1. 0 means encode losslessly and 1 means to encode with
image quality loss (but then have a much smaller encoding).

On success this function returns a pointer to the encoded data that you can free with free() when
no longer needed.

4.1.3.10 EAPI int eet data image header decode (const void * data, int size,
unsigned int * w, unsigned int * h, int * alpha, int x compress, int * quality,
int * lossy)

Decode Image data header only to get information.

Parameters:

data The encoded pixel data.

stze The size, in bytes, of the encoded pixel data.

w A pointer to the unsigned int to hold the width in pixels.

h A pointer to the unsigned int to hold the height in pixels.
alpha A pointer to the int to hold the alpha flag.

compress A pointer to the int to hold the compression amount.
quality A pointer to the int to hold the quality amount.

lossy A pointer to the int to hold the lossiness flag.

Returns:

1 on success, 0 on failure.

This function takes encoded pixel data and decodes it into raw RGBA pixels on success.

The other parameters of the image (width, height etc.) are placed into the values pointed to (they
must be supplied). The pixel data is a linear array of pixels starting from the top-left of the image
scanning row by row from left to right. Each pixel is a 32bit value, with the high byte being the
alpha channel, the next being red, then green, and the low byte being blue. The width and height
are measured in pixels and will be greater than 0 when returned. The alpha flag is either 0 or 1.
0 denotes that the alpha channel is not used. 1 denotes that it is significant. Compress is filled
with the compression value/amount the image was stored with. The quality value is filled with
the quality encoding of the image file (0 - 100). The lossy flags is either 0 or 1 as to if the image
was encoded lossily or not.

On success the function returns 1 indicating the header was read and decoded properly, or 0 on
failure.

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

22 Eet File Documentation

4.1.3.11 EAPI int eet data image header read (Eet File * ef, const char *
name, unsigned int * w, unsigned int x h, int % alpha, int x compress, int *
quality, int * lossy)

Read just the header data for an image and dont decode the pixels.

Parameters:

ef A valid eet file handle opened for reading.

name Name of the entry. eg: "/base/file i want".

w A pointer to the unsigned int to hold the width in pixels.

h A pointer to the unsigned int to hold the height in pixels.
alpha A pointer to the int to hold the alpha flag.

compress A pointer to the int to hold the compression amount.
quality A pointer to the int to hold the quality amount.

lossy A pointer to the int to hold the lossiness flag.

Returns:

1 on successfull decode, 0 otherwise

This function reads an image from an eet file stored under the named key in the eet file and return
a pointer to the decompressed pixel data.

The other parameters of the image (width, height etc.) are placed into the values pointed to (they
must be supplied). The pixel data is a linear array of pixels starting from the top-left of the image
scanning row by row from left to right. Each pile is a 32bit value, with the high byte being the
alpha channel, the next being red, then green, and the low byte being blue. The width and height
are measured in pixels and will be greater than 0 when returned. The alpha flag is either 0 or 1.
0 denotes that the alpha channel is not used. 1 denotes that it is significant. Compress is filled
with the compression value/amount the image was stored with. The quality value is filled with
the quality encoding of the image file (0 - 100). The lossy flags is either 0 or 1 as to if the image
was encoded lossily or not.

On success the function returns 1 indicating the header was read and decoded properly, or 0 on
failure.

4.1.3.12 EAPI void+ eet data image read (Eet File x ef, const char * name,
unsigned int * w, unsigned int * h, int * alpha, int * compress, int * quality,
int * lossy)

Read image data from the named key in the eet file.

Parameters:

ef A valid eet file handle opened for reading.

name Name of the entry. eg: "/base/file_i_ want".

w A pointer to the unsigned int to hold the width in pixels.
h A pointer to the unsigned int to hold the height in pixels.
alpha A pointer to the int to hold the alpha flag.

compress A pointer to the int to hold the compression amount.

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

4.1 eet.c File Reference 23

quality A pointer to the int to hold the quality amount.
lossy A pointer to the int to hold the lossiness flag.

Returns:

The image pixel data decoded

This function reads an image from an eet file stored under the named key in the eet file and return
a pointer to the decompressed pixel data.

The other parameters of the image (width, height etc.) are placed into the values pointed to (they
must be supplied). The pixel data is a linear array of pixels starting from the top-left of the image
scanning row by row from left to right. Each pile is a 32bit value, with the high byte being the
alpha channel, the next being red, then green, and the low byte being blue. The width and height
are measured in pixels and will be greater than 0 when returned. The alpha flag is either 0 or 1.
0 denotes that the alpha channel is not used. 1 denotes that it is significant. Compress is filled
with the compression value/amount the image was stored with. The quality value is filled with
the quality encoding of the image file (0 - 100). The lossy flags is either 0 or 1 as to if the image
was encoded lossily or not.

On success the function returns a pointer to the image data decoded. The calling application
is responsible for calling free() on the image data when it is done with it. On failure NULL is
returned and the parameter values may not contain any sensible data.

4.1.3.13 EAPI int eet data image write (Eet File x ef, const char * name, const
void * data, unsigned int w, unsigned int h, int alpha, int compress, int
quality, int lossy)

Write image data to the named key in an eet file.

Parameters:

ef A valid eet file handle opened for writing.

name Name of the entry. eg: "/base/file_i_ want".
data A pointer to the image pixel data.

w The width of the image in pixels.

h The height of the image in pixels.

alpha The alpha channel flag.

compress The compression amount.

quality The quality encoding amount.

lossy The lossiness flag.

Returns:

Success if the data was encoded and written or not.

This function takes image pixel data and encodes it in an eet file stored under the supplied name
key, and returns how many bytes were actually written to encode the image data.

The data expected is the same format as returned by eet data image read. If this is not the
case weird things may happen. Width and height must be between 1 and 8000 pixels. The alpha
flags can be 0 or 1 (0 meaning the alpha values are not useful and 1 meaning they are). Compress
can be from 0 to 9 (0 meaning no compression, 9 meaning full compression). This is only used if

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

24 Eet File Documentation

the image is not lossily encoded. Quality is used on lossy compression and should be a value from
0 to 100. The lossy flag can be 0 or 1. 0 means encode losslessly and 1 means to encode with
image quality loss (but then have a much smaller encoding).

On success this function returns the number of bytes that were required to encode the image data,
or on failure it returns 0.

4.1.3.14 EAPI voidx eet data read (Eet File x ef, Eet Data Descriptor * edd,
const char * name)

Read a data structure from an eet file and decodes it.

Parameters:
ef The eet file handle to read from.
edd The data descriptor handle to use when decoding.

name The key the data is stored under in the eet file.

Returns:

A pointer to the decoded data structure.

This function decodes a data structure stored in an eet file, returning a pointer to it if it decoded
successfully, or NULL on failure. This can save a programmer dozens of hours of work in writing
configuration file parsing and writing code, as eet does all that work for the program and presents
a program-friendly data structure, just as the programmer likes. Eet can handle members being
added or deleted from the data in storage and safely zero-fills unfilled members if they were not
found in the data. It checks sizes and headers whenever it reads data, allowing the programmer
to not worry about corrupt data.

Once a data structure has been described by the programmer with the fields they wish to save
or load, storing or retrieving a data structure from an eet file, or from a chunk of memory is as
simple as a single function call.

4.1.3.15 EAPI int eet data write (Eet File x ef, Eet Data Descriptor * edd,
const char * name, const void * data, int compress)

Write a data structure from memory and store in an eet file.

Parameters:

ef The eet file handle to write to.

edd The data descriptor to use when encoding.

name The key to store the data under in the eet file.
data A pointer to the data structure to ssave and encode.

compress Compression flags for storage.

Returns:

1 on successful write, 0 on failure.

This function is the reverse of eet data_read(), saving a data structure to an eet file.

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

4.1 eet.c File Reference 25

4.1.3.16 EAPI int eet delete (Eet File * ef, const char x name)
Delete a specified entry from an Eet file being written or re-written.

Parameters:

ef A valid eet file handle opened for writing.

name Name of the entry. eg: "/base/file i want".

Returns:

Success or failure of the delete.

This function will delete the specified chunk of data from the eet file and return greater than 0 on
success. 0 will be returned on failure.

The eet file handle must be a valid file handle for an eet file opened for writing. If it is not, 0 will
be returned and no action will be performed.

Name, must not be NULL, otherwise 0 will be returned.

4.1.3.17 EAPI int eet init (void)
Initialize the EET library.

Returns:

The new init count.

4.1.3.18 EAPI charxx eet list (Eet File x ef, const char x glob, int * count ret)
List all entries in eet file matching shell glob.

Parameters:

ef A valid eet file handle.
glob A shell glob to match against.

count et Number of entries found to match.

Returns:

Pointer to an array of strings.

This function will list all entries in the eet file matching the supplied shell glob and return an
allocated list of their names, if there are any, and if no memory errors occur.

The eet file handle must be valid and glob must not be NULL, or NULL will be returned and
count ret will be filled with 0.

The calling program must call free() on the array returned, but NOT on the string pointers in the
array. They are taken as read-only internals from the eet file handle. They are only valid as long
as the file handle is not closed. When it is closed those pointers in the array are now not valid
and should not be used.

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

26 Eet File Documentation

On success the array returned will have a list of string pointers that are the names of the entries
that matched, and count_ret will have the number of entries in this array placed in it.

Hint: an easy way to list all entries in an eet file is to use a glob value of "x".

4.1.3.19 EAPI Eet File Mode eet mode get (Eet File x ef)

Get the mode an Eet_File was opened with.

Parameters:

ef A valid eet file handle.

Returns:

The mode ef was opened with.

4.1.3.20 EAPI int eet num entries (Eet_File * ef)

Return the number of entries in the specified eet file.

Parameters:

ef A valid eet file handle.

Returns:

Number of entries in ef or -1 if the number of entries cannot be read due to open mode
restrictions.

4.1.3.21 EAPI Eet_Filex eet open (const char x file, Eet File Mode mode)

Open an eet file on disk, and returns a handle to it.

Parameters:

file The file path to the eet file. eg: "/tmp/file.eet".
mode The mode for opening. Either EET FILE MODE READ or EET FILE MODE -

WRITE, but not both.
Returns:
An opened eet file handle.
This function will open an exiting eet file for reading, and build the directory table in memory

and return a handle to the file, if it exists and can be read, and no memory errors occur on the
way, otherwise NULL will be returned.

It will also open an eet file for writing. This will, if successful, delete the original file and replace
it with a new empty file, till the eet file handle is closed or flushed. If it cannot be opened for
writing or a memory error occurs, NULL is returned.

Example:

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

4.1 eet.c File Reference 27

#include <Eet.h>
#include <stdio.h>

int

main(int argc, char **xargv)

{
Eet_File xef;
char buf[1024], *ret, **list;
int size, num, i;

strcpy(buf, "Here is a string of data to save!");

ef = eet_open("/tmp/my_file.eet", EET_FILE_MODE_WRITE);

if ('ef) return -1;

if (leet_write(ef, "/key/to_store/at", buf, 1024, 1))
fprintf(stderr, "Error writing data!\n");

eet_close(ef);

ef = eet_open("/tmp/my_file.eet", EET_FILE_MODE_READ);
if ('ef) return -1;
list = eet_list(ef, "*", &num);
if (list)
{
for (i = 0; i < num; i++)
printf("Key stored: %s\n", list[i]);
free(list);
¥
ret = eet_read(ef, "/key/to_store/at", &size);
if (ret)
{
printf("Data read (%i bytes):\n%s\n", size, ret);
free(ret);

}

eet_close(ef);

return 0;

4.1.3.22 EAPI voidx eet _read (Eet File x ef, const char * name, int * size ret)

Read a specified entry from an eet file and return data.

Parameters:
ef A valid eet file handle opened for reading.
name Name of the entry. eg: "/base/file_i_ want".

size_ret Number of bytes read from entry and returned.

Returns:

The data stored in that entry in the eet file.

This function finds an entry in the eet file that is stored under the name specified, and returns
that data, decompressed, if successful. NULL is returned if the lookup fails or if memory errors
are encountered. It is the job of the calling program to call free() on the returned data. The
number of bytes in the returned data chunk are placed in size ret.

If the eet file handle is not valid NULL is returned and size ret is filled with 0.

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

28 Eet File Documentation

4.1.3.23 EAPI voidx eet read direct (Eet File * ef, const char x name, int *
size__ret)

Read a specified entry from an eet file and return data.

Parameters:
ef A valid eet file handle opened for reading.
name Name of the entry. eg: "/base/file i want".

size_ret Number of bytes read from entry and returned.

Returns:

The data stored in that entry in the eet file.

This function finds an entry in the eet file that is stored under the name specified, and returns
that data if not compressed and successful. NULL is returned if the lookup fails or if memory
errors are encountered or if the data is comrpessed. The calling program must never call free() on
the returned data. The number of bytes in the returned data chunk are placed in size ret.

If the eet file handle is not valid NULL is returned and size ret is filled with 0.

4.1.3.24 EAPI int eet shutdown (void)

Shut down the EET library.

Returns:

The new init count.

4.1.3.25 EAPI int eet write (Eet File * ef, const char * name, const void * data,
int size, int compress)

Write a specified entry to an eet file handle.

Parameters:
ef A valid eet file handle opened for writing.
name Name of the entry. eg: "/base/file i want".
data Pointer to the data to be stored.
stze Length in bytes in the data to be stored.

compress Compression flags (1 == compress, 0 = don’t compress).

Returns:

Success or failure of the write.

This function will write the specified chunk of data to the eet file and return greater than 0 on
success. 0 will be returned on failure.

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

4.1 eet.c File Reference 29

The eet file handle must be a valid file handle for an eet file opened for writing. If it is not, 0 will
be returned and no action will be performed.

Name, and data must not be NULL, and size must be > 0. If these conditions are not met, 0 will
be returned.

The data will be copied (and optionally compressed) in ram, pending a flush to disk (it will stay
in ram till the eet file handle is closed though).

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

30

Eet File Documentation

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

Chapter 5

Eet Page Documentation

5.1 Todo List

page Eet Library Documentation Add hash table, fixed and variable array encode/decode
support.

page Eet Library Documentation Document data format for images and data structures.

Index

eet.c, 9
eet clearcache, 15
eet close, 15
EET DATA DESCRIPTOR_ADD -
BASIC, 13
EET DATA DESCRIPTOR ADD -
HASH, 13
EET DATA DESCRIPTOR ADD -
LIST, 14
EET DATA DESCRIPTOR_ADD -
SUB, 14
eet data_descriptor decode, 15
eet data descriptor element add, 16
eet data_descriptor encode, 16
eet data_descriptor free, 16
eet data_descriptor new, 17
eet data_image decode, 19
eet data_image encode, 20
eet data_image header decode, 21
eet data_image header read, 21
eet data_image read, 22
eet data image write, 23
eet data_read, 24
eet data_write, 24
eet_delete, 24
eet_init, 25
eet list, 25
eet _mode get, 26
eet _num _entries, 26
eet _open, 26
eet read, 27
eet read direct, 27
eet shutdown, 28
eet write, 28
eet clearcache
eet.c, 15
eet close
eet.c, 15
EET DATA DESCRIPTOR_ ADD_ BASIC
eet.c, 13
EET DATA DESCRIPTOR _ADD HASH
eet.c, 13
EET DATA DESCRIPTOR_ ADD LIST
eet.c, 14
EET DATA DESCRIPTOR ADD SUB

eet.c, 14

eet data_descriptor decode
eet.c, 15

eet data_descriptor element add
eet.c, 16

eet data_descriptor _encode
eet.c, 16

eet _data_descriptor_free
eet.c, 16

eet data_descriptor new
eet.c, 17

eet data_image decode
eet.c, 19

eet data_image encode
eet.c, 20

eet data image header decode
eet.c, 21

eet data image header read
eet.c, 21

eet data_image read
eet.c, 22

eet data_image write
eet.c, 23

eet data_ read
eet.c, 24

eet data_write
eet.c, 24

eet delete
eet.c, 24

eet init
eet.c, 25

eet list
eet.c, 25

eet _mode get
eet.c, 26

eet_num _entries
eet.c, 26

eet open
eet.c, 26

eet read
eet.c, 27

eet read direct
eet.c, 27

eet shutdown
eet.c, 28

INDEX

33

eet_ write
eet.c, 28

Generated on Wed Mar 28 00:01:04 2007 for Eet by Doxygen

	Eet Library Documentation
	What is Eet?
	A simple example on using Eet
	What does an Eet file look like?

	Eet File Index
	Eet File List

	Eet Page Index
	Eet Related Pages

	Eet File Documentation
	eet.c File Reference

	Eet Page Documentation
	Todo List

