
Building Interfaces with Edje

The Edje Developers Guide

Ben Rockwood

Building Interfaces with Edje: The Edje Developers Guide
Ben Rockwood

A complete guide to designing interfaces using Edje and utilizing them effectively in your EVAS applic-
ations. Includes a complete overview of Edje Data Collections (EDC) and the Edje API, including
sample code and reference material. Utilizing Edje effectively can simplify and streamline application
development and make nearly any application completely skinable by even non-programmers.

Table of Contents
1. Edje Overview .. 1

Introduction ... 1
Edje Data Collections (EDC) ... 1

2. A quick tour of Edje EDC ... 2
Writting your first EDC .. 2

3. Parts: Interface componants ... 8
4. Edje Layout, Fills and Positioning ... 9
5. Programs: Bring your interface to life .. 14
6. The Edje API: Putting your interface to work .. 15

Signals and Callbacks .. 16
7. Edje Programmers Guidelines .. 18

Edje Spec Files ... 18
Source Layout .. 20
Theme Distribution ... 20

8. The Edje Preview Program .. 21
A. EDC Reference ... 23

iv

List of Figures
4.1. Positioning Model ... 9
4.2. Placing a rectangle .. 9
4.3. Placing a row of buttons ... 11
4.4. Resizable row of buttons ... 12
7.1. Example of README.edje ... 18

v

List of Tables
8.1. Edje Tool Event Facilities ... 21
A.1. EDC Keyword Reference ... 23

vi

List of Examples
2.1. A Simple Edje EDC ... 2

vii

viii

Chapter 1. Edje Overview
Introduction

Edje is a componant of the Enlightenment Foundation Libraries which abstracts interface design and
functionality from the application code itself. An application using Edje is comprised of two compon-
ants, the code in the EVAS application which interacts with the interface, and a created EET which con-
tains all the elements of the interface itself. These EET's are generated from an Edje EDC file in which
diffrent parts of the interface are described and laid out, and how those parts interact with your applica-
tion. This allows for the interface to be completely changed simply by creating a new EDC and generat-
ing the EET for your application to use. In more popular terms, Edje makes every application that uses it
"skinable". Raster describes Edje as "an attempt to find a middleground between themeing and program-
ming without turning the theme itself into just yet another program".

Edje Data Collections (EDC)
The Edje EDC contains every detail about your interface. An EDC is a simple text file that uses C like
syntax. The file is broken into three distinct sections: images, data, and collections. The image section
contains a list of all the images your interface will use. When you compile/generate your EDC into an
EET all the images specified will be loaded into the EET itself allowing you to distribute your interface
(or skin if you prefer) as a single file. When specifying your images you can even specify the ammount
you want the images to be compressed when adding them into the EET to keep your EETs small and
portable. The collections section actually describes the interface, how it's laid out and how it will inter-
act with your application code. Optionally, a third section, data, can contain arbitrary data in key-value
pairs to provide data to your application.

The collections in an EDC are comprised of one or more groups. Each group contains parts and pro-
grams. A part is a single element of your interface, such as a text element, or a rectangle, or an image.
Each part is throughly described for one or more states. For instance, an image part might actually have
two images in it, each in a different state, one for a normal state and one for a clicked (mouse down)
state. A part may have as many states defined as you like.

These parts are then referenced in the programs. Programs are descriptions about how the interface
should respond to both the user and the application code itself. A program can accept interface events
(such as mouse button 1 down), and then change the state of a part described earlier (change to state
clicked) to create an effect. Programs can also emit signals to your application. In your application code
you would define a callback for that event. Each program is concise and distinct. For example, to create
an animated button, you would create 3 programs, one to change the image state from normal to clicked
on a mouse down event, one to emit a signal to your application on the mouse down event, and yet an-
other to change state back to normal on a mouse up event.

Because of the abstraction Edje provides, your applcation only needs to know the name of the EET to
use, what signals it will receive from the interface so that callbacks can be defined when that event is re-
ceived, and what text parts in the interface can be modified. This allows maximum flexability in inter-
face design, including the ability to offload the interface to graphic designers and themers freeing the ap-
plication coders, allowing users of the application to modify the interface without hacking or forking
your project, and a much quicker prototyping and design tool than modifying your C application dir-
ectly.

1

Chapter 2. A quick tour of Edje EDC
Whenever you design a graphical application you need to first determine what the application needs to
do, and then you consider how it should look. When developing with Edje these two tasks are the separ-
ate activities they should be. When determining how to design your interface, it's common to use GIMP
as a layout tool, this is particularly helpful for designing your interface with Edje as you can see exactly
how each element is going to be positioned and relate to other parts of your interface, which is espe-
cially helpful when learning Edje. Next, it's time to actually build your real interface. This starts by cre-
ating a file typically labeled with a .edc extension. Once you've created your EDC, you will generate the
EET that will be used by your application. This is done using edje_cc, the Edje Collection Compiler.
Edje_cc will pack your EDC plus all of the images your interface will need into one tight compact EET,
and will even compress images if you specified compression in your EDC. This generated EET will be
the file that your application code, using the Edje API, will access and interact with. This allows you to
share or transfer themes by moving just that one file, the EET, and not your entire image structure, or a
tarball/zip like nearly every other themeing platform on the planet. EET's can be previewed using the
edje command as a way to debug and sample interfaces.

Before starting off with Edje on your own, you should look at the examples in the Edje source tree. In
the edje/data directory you will find a script named e_logo.sh. Run that script and an EET will
be generated. The script simply runs edje_cc with the appropriate options to generate a valid EET. You
can then preview the interface with the Edje command, edje e_logo.eet test. You can look at
the EDC in the edje/data/src/ directory, where you will also find another EDC named
test.edc. The test.edc is a wonderful reference, as its constantly updated to reflect all avalible
options for EDCs.

Writting your first EDC
Lets look at a small and simple EDC so we can explore its layout and options.

Example 2.1. A Simple Edje EDC

// Sample EDC
images {

image, "background.png" LOSSY 95;
}

collections {
group {

name, "test";
min, 32 32;
max, 1024 768;

parts {
part {

name, "background";
type, IMAGE;
mouse_events, 0;

description {
state, "default" 0.0;

rel1 {
relative, 0.0 0.0;
offset, 0 0;

}

2

rel2 {
relative, 1.0 1.0;
offset, -1 -1;

}
image {

normal, "background.png";
}

}
}

part {
name, "button";
type, RECT;
mouse_events, 1;

description {
state, "default" 0.0;
min, 100 50;
max, 100 50;
align, 0.5 0.5;

color, 211 168 234 255;

rel1 {
relative, 0.0 0.0;
offset, 0 0;

}
rel2 {

relative, 1.0 1.0;
offset, -1 -1;

}
}
description {

state, "clicked" 0.0;
min, 100 50;
max, 100 50;
align, 0.5 0.5;

color, 170 89 214 255;

rel1 {
relative, 0.0 0.0;
offset, 0 0;

}
rel2 {

relative, 1.0 1.0;
offset, -1 -1;

}
}

}
part {

name, "text";
type, TEXT;
mouse_events, 0;

description {
state, "default" 0.0;

rel1 {

relative, 0.0 0.0;
offset, 0 0;
to, "button";

}

A quick tour of Edje EDC

3

rel2 {
relative, 1.0 1.0;
offset, -1 -1;
to, "button";

}
text {

text, "Press Me";
font, "redensek";
size, 14;
align, 0.5 0.5;

}
}

}
} /* Close Parts */

programs {

program {
name, "button_click";
signal, "mouse,down,1";
source, "button";
action, STATE_SET "clicked" 0.0;
target, "button";
after, "do_me";

}

program {
name, "button_unclick";
signal, "mouse,up,1";
source, "button";
action, STATE_SET "default" 0.0;
target, "button";
after, "stop_doing_me";

}

program {
name, "do_me";
signal, "*";
source, "button_click";
action, SIGNAL_EMIT "PANTS ON" "button";
in, 1.0 0.0;
after, "do_me";

}

program {
name, "stop_doing_me";
signal, "*";
source, "button_unclick";
action, ACTION_STOP;
target, "do_me";

}

} /* Close Prog */
} /* Close Group */
} /* Close Coll */

The first thing to notice is that the syntax is very C like. The second is that EDCs have two major sec-
tions: images and collections. And lastly, that every directive is in the form: keyword, arg1 arg2 ...;.
Now lets talk through this EDC section by section.

The images section is the first section to examine. It simply contains a list of images that we wish to in-

A quick tour of Edje EDC

4

clude in our interface. Each image will have a line describing how to store it, in the form: image, "file-
name" STORAGE_METHOD;. The storage method is a description of how Edje should store the file in
the generated EET. Valid storage methods are COMP, RAW, and LOSSY. RAW stores the image in
raw format, note that this doesn't mean unmodified format, a RAW stored PNG will be uncompressed
and stored as the raw image, thus your tidy 1K PNG may be stode as an 8K raw image. The COMP
method will use lossless compression on your image. And the LOSSY method will use a lossy compres-
sion on your image. The LOSSY method is followed by an integer between 0 and 100, defining the qual-
ity level.

The next section is collections. This section contains one or more groups. Each group contains a com-
plete interface. In this way, you could create two groups in your EDC each having a complete interfaces,
for either diffrent parts of your applications interface or diffrent looks for your one interface, all in one
EET for easy distribution. Each group is given a name, in this case "test". Any time you reference your
EET you will specify both the EET file name, and the group to use so choose your name descriptively.
The next two lines are the min and max size of our interface in pixels. The arguments to min and max
are the horizontal size then the verital size. So our interface has a minimum size of 32x32 and maximum
of 1024x768.

Groups contain parts and programs. Each part is a particular piece of your interface, such as a text label,
or a rectangle, or an image. Each part has an individual name for reference by other parts of your EDC,
again choose this name as descriptively as you can. Following the name we can define our part as one of
the following types, IMAGE, RECT or TEXT. Looking at our EDC example you can see that our first
part is an image named "background". The keyword "mouse_events" is a boolean value defining wheth-
er or not this part accepts mouse events (such as clicks, mouse overs, etc), 0 for no and 1 for yes. More
options than just these 3 can be used, please refer to the reference for other avalible options.

A part will contain one or more description sections. Each description is a diffrent state of our part. The
descriptions define how our part should look, what images or text the part uses, where it should be posi-
tioned, how it should be tiled, etc. In this case our background only needs one state, which we call de-
fault, using the state keyword. The number following the state name defines an index value which is cur-
rently unused, simply use 0.0. Next we see two sections defining the positioning of our part, rel1 and
rel2. Each rel section will contain the keywords relative and offset, and optionally to. If the to keyword
is omited then the position is relative to the full size of the interface as described by min and max in the
group section. rel1 is the positioning of the top left corner of the part and rel2 is the positioning of the
bottom right corner of the part. The relative keyword is followed by two doubles ranging from 0.0 to
1.0. As with min and max, the first value is the horizontal and the second is the vertical. The offset spe-
cifies the pixel deviation from the relative point. In the case of our background, the top left (rel1) of our
part (image) is relative to the top left corner of the interface, with no offset. The bottom right (rel2) of
our part is relative to the bottom right of the interface, offset by 1 pixel left and 1 pixel up. Therefore,
this part fills the entire interface. More information about positioning can be found later in this guide.
The last section in this parts description is the image section. This section describes which images to
use. One or more images can be specified, the image that is first seen is denoted by the keyword normal.
More images can be added using the keyword "tween" to form animations, but we will discuss that in a
later section.

While parts may seem confusing and complicated at first, hopefully you now can look at the part we just
reviewed and simply say that it's an image part named background that doesn't accept mouse events, and
fills the interface completely using the image background.png.

Our next part is a rectangle named button and it does accept mouse events. This part has two descrip-
tions, one for the default state and one for the clicked state. The default state will define the normal look
and positioning of the rectangle we will use as a button, or in otherwords, the unclicked state of our but-
ton. The second state is the clicked state. You'll notice that the default and clicked states look almost
identical, the only change is the color and name. This means that when we change from state default to
state clicked, the only thing that changes is the color of the rectangle. States are changed using pro-
grams, which we will discuss later. You'll notice that the descriptions contain min and max keywords,
these are used to define the size of the part. If they are omited, like in the background part, the part will
fill the maximum amount of avalible space (ie: the whole interface, as limited by rel1 and rel2). The

A quick tour of Edje EDC

5

alignment keyword specifies alignment of our part within its available space (container). Values for
align are again horizontal alignment followed by verital alignment, using doubles. So in this case the
rectangle will be an absolute 100x50 pixels, with a container the size of the whole interface (as defined
by rel1/rel2), and is positioned in the middle of that container. No matter how big or small the interface
is the 100x50 pixel rectangle will always stay in exactly the middle of the screen and never resize. The
color keyword is applicable only to rectangles and text, and describes the color of the rectangle in the
form: color, red green blue alpha.

The last part is a text part, named text. It does not accept mouse events. It has only one state, default.
Notice that the rel1 and rel2 sections use the to keyword, this modifies the meaning of the relativity.
This means that the top left corner (rel1) of the part is relative to the top left corner (0.0 0.0) of the part
named button (to, "button";). Likewise, the bottom right corner (rel2) of the part is relative to the bottom
right corner (1.0 1.0) of the part named button, but moving the bottom right corner of the part by 1 pixel
to the left and upwards from that point. The text section describes the text itself. The text keyword de-
scribes the text to display ("Press Me"), the font to use ("redensek"), the size of that font (14), and the
alignment of the text within the container as defined by rel1/rel2. The font specified to be used must be
added to the EVAS font path in your application, and the font name is the filename minus it's extention
(ie: .ttf).

A word about layering. There is no specific keyword for layering in EDCs on a part-by-part basis. Each
new part is layered on top of the previous part. Therefore in our sample EDC the text is rendered on top
of the button, which sits atop the background. If we had defined the button before the background it
would not have been visable. While this is common sense for the mostpart, it can be a common cause of
confusion when modifying a large EDC if you aren't careful. Whenever you modify or add parts to your
EDCs check whats above and below it.

The final section in our EDC is the programs section. Programs breath life into the static parts that make
up our interface. Programs are largely based on the reception of signals. Signals can be generated by
user interfaction, Edje itself, or an external force (usually your window manager). For instance, a user
generated signal would be mouse in (when the user moves their pointer over a part), or mouse down
(user depresses a mouse button over a part). An Edje generated signal would include a "load" signal
(Edje loads the EET), or "program,start" (when some other program starts running). An externally gen-
erated signal would effect the entire Edje interface, generally from a window manager, such as "move"
(your interface window is moved) or "show" (your interface is displayed).

The first program in our example is to change the state of our button part when it is clicked. The pro-
gram name is "button_click". The program is run when it receives the signal "mouse,down,1", meaning
when the left mouse button is depressed over your part that accepts mouse events the program activates.
Signals are globable, meaning if we wanted the program to run when any mouse button is depressed on
our part we could use the signal "mouse,down,*", in fact we could use the signal "*" meaning that ANY
signal effecting the part would run the program. The next keyword is source, which defines the part (or
program) from which the signal will be received, in this case button. Sources are also globable. The next
keyword is action, this what the program actually does. Actions can change part states, stop the action of
other programs, or emit signals. In this case the action STATE_SET still change state to "clicked". The
following double (0.0) is currently unused and should simply be set to 0.0. The target argument that fol-
lows is the part or program on which the action acts. The final keyword, after, optionally defines another
program to be run after the current program completes. When a signal is received all the programs which
accept the incoming signal and match the source will be run, and in this way very often the keyword
"after" is not required, however it can still be used for some crafty purposes which we'll explore later.
After's can also be used as a looping mechanism, by specifying the current program to re-run after it
completes, however it should be noted that any signal specified for the program must be met on every
run of that program, even if it loops back to itself.

Looking at the first program again, we can now clearly see that the program "button_click" will be run
when the left mouse button is depressed on our "button" rectangle. It will change the state of the target
"button" to "clicked" (which will change the color as noted earlier), and once it completes will run the
"do_me" program. Thus, looking at the next program "button_unclick" we can see that it will change the
state of target "button" to the "default" state (back to its original color) when the left mouse button is re-

A quick tour of Edje EDC

6

leased over the source part "button". Hence we have an animated button! Typically images would be
used instead of simple rectangles, which would simply omit the color keyword and add an image section
to both states, one image for the default state and one for the clicked state. Lastly we see that the after
keyword is used to run the program "stop_doing_me" after "button_unclick" completes running. It
should be noted that all program and part names are completely arbitrary, there is no restrictions on pro-
gram or part state descriptions with the exception of the default state, which should always be named as
such. Programs must always contain at least the keywords name, source, signal and action, even if
source and signal are globbed to match anything ("*").

The third program as referenced by the "button_click" program. This program will accept any signal (as
denoted by a * for the signal). The source is defined as a program in this case, rather than a part, so the
program will run when any signal is accepted from the "button_click" program. The action defined is
SIGNAL_EMIT, which will send the specified signal, here "PANTS ON", which is typically used by
your application code. The third argument of the action for SIGNAL_EMIT is the source from which
the signal came. In your application code this signal would be received by a callback handler, which
would call a specified function based on the recipt of a specified signal from a specific source. We'll
learn more about these signals when we discuse the Edje API later. The keyword "in" accepts two argu-
ments, both doubles. The "in" keyword specifies a delay on running your program, the first argument is
the number of seconds to wait before running the program, and the second argument specifies the max-
imum random delay which is added to the first argument. This is useful when you want the program to
wait for a random amount of time that is at least a half a second but no more than 3 seconds, which
would be described as "in, 0.5 3.0;". Delays always occur before the action specified by the program is
preformed. Our final keyword is after, which will run the program "do_me" after the current program
completes, which in this case is a loop. Note that there is no target specified in this program, because the
action isn't performed on any other program or part. Because this is a loop we can say that this program
will be run after the "button_click" program completes, and will emit the signal "PANTS ON" from the
source "button" every one second.

The final program is named "stop_doing_me", which is run after the program "button_unclick" com-
pletes and accepts any signal. The action "ACTION_STOP" is used to break a loop or other running pro-
gram, as specified by the target, in this case "do_me".

You should now take the sample EDC above, and use Edje_CC to build an eet. You can get the back-
ground image here: BACKGROUNDIMG. Using the edje_cc build your EET like this: "edje_cc -v -id .
sample.edc sample.eet", putting the image in the same directory with the EDC. You should put the font
"redensek.ttf" in a directory named "fonts/" where your EET will be view with edje (the viewer). You
can then preview that EET with Edje, specifying the EET filename and the group name: "edje
sample.eet test". Play with the EDC a little until you think you are familar with the syntax, layout and
basic functionality of Edje EDCs.

A quick tour of Edje EDC

7

Chapter 3. Parts: Interface componants
Parts come in four varieties: RECT, IMAGE, TEXT and NONE.

8

Chapter 4. Edje Layout, Fills and
Positioning

The Edje positioning model is based heavily on relativity, and is difficult for many new users to adjust
to. Simply put, every part defined is relative to something else and is positioned relative to that thing. If
you do not explicitly define what a part is relative to it is relative to the entire interface. The sections
rel1 and rel2 are present in every part description and define the positioning. Each part should be
thought of as a container, and the contents of the part may not necessarily fill the entire container. Thus
we can think of the interface itself as a container, which simply contains other containers. rel1 defines
the positioning of the top left corner of the part container, and rel2 defines the positioning of the bottom
right corner of the part container. Doubles are used with the keyword relative ranging from 0.0 to 1.0
representing a percentage of left-to-right and top-to-bottom. For instance, on a container the top left
corner is 0.0 0.0, where the first double is the horizontal position and the second is the vertical. Whenev-
er positioning is done in Edje you will always specify both horizontal and veritical parameters, and al-
ways horizontal first followed by veritcal. Thus the bottom right corner is 1.0 1.0. Everything starts from
the top left corner. So the position 0.5 0.5 (relative to the whole interface) would be the middle of the in-
terface, half way across the interface to the right and half way down the interface moving south.

Figure 4.1. Positioning Model

In the figure we can see two containers, the large one representing the whole interface and the smaller in
the middle representing a part. On top I have provided an Edje compass which is a helpful tool to visual-
ize positioning. Looking at the compass, notice that the left and northern directions approach 0.0 moving
negatively, and that the right and southern directions approach 1.0 moving in the positive direction.
Again, this is because everything starts from the top left corner of the parent container, regardless if that
parent container is the entire interface or just another part. So the part in the middle of our figure would
be positioned starting at roughtly 0.4 0.4, not 0.5 0.5. A position of 0.5 0.5 would place the top left
corner of the part exactly in the middle of the interface, not center entire part. To better illistrate this lets
look at some examples as you would see them in an EDC.

Figure 4.2. Placing a rectangle

9

part {
name, "background";
type, RECT;
description {

state, "default" 0.0;
color, 255 255 255 255;

rel1 {
relative, 0.0 0.0;
offset, 0 0;

}

rel2 {
relative, 1.0 1.0;
offset, 0 0;

}
}

}

part {
name, "black_rect";
type, RECT;
description {

state, "default" 0.0;
color, 0 0 0 255;

rel1 {
relative, 0.0 0.0;
offset, 10 10;

}

rel2 {
relative, 1.0 1.0;
offset, -10 -10;

}
}

}

In the example above we define two parts, both simple rectangles. The rel1 and rel2 sections are defin-
ing the position of these rectangles. The first part named "background" positions the rectangles top left
corner (rel1) to 0.0 (left) 0.0 (top) of the interface since no "to" keyword is present. The bottom right
corner (rel2) is positioned at 1.0 (far right) 1.0 (far bottom). No offset is specified for either position so
the rectangle will stretch from the top left corner of the interface to the bottom right corner of the inter-
face, which is the entire interface. An EVAS has no default background, and by extension, neither does
an Edje interface, therefore you will always need to do something similiar to this whether you use an im-
age or a rectangle to fill in the background.

The second part in the example above is very similar to the "background" part, it is not relative to any-
thing, and therefore is relative to the whole interface. However, notice that an offset is specified for both
rel1 and rel2. These values are position modifiers specified in pixels. These offsets are based on the pos-
itioning defined by the relative keyword. Again, the two arguments specify horizontal positioning fol-
lowed by vertical. So by using an offset in rel1 of 10 10, we're moving the top left corner of the part
(rel1) by 10 pixels to the right and 10 pixels south of the position specified by relative. In the same way,
rel2 is placed at the bottom right corner of the interface, and offset by 10 pixels to the left (-10) and 10
pixels north (-10). Remember that these values are negative because all positioning originates from the
top left corner of the container, so in this case we move backward thus making the values negative.

Edje Layout, Fills and Positioning

10

So putting these two parts together we are left with an effect of a black interface with a 10 pixel white
border. Or if you look at it another way, a white interface with a giant rectangle that is inset by 10 pixels.
In Edje there are always several ways to look at placement to simulate effects. One variation that could
have been used in the example would have been to place the "black_rect" part relative to the "back-
ground" part, rather than positioning both relative to the entire interface. In this example we could have
added to the definition "to, "background";" to both rel1 and rel2 of "black_rect"s default state and
achieved the same result with the added bonus that if we for some reason changed the positioning of the
background the "black_rect" would be positioned accordingly.

To create a line of buttons in Edje we are presented with some positioning decisions to make. Each but-
ton could be positioned absolutely to the corners of the interface, or instead the first button would be po-
sitioned absolutely and each following button positioned relative to the first. Which method is right for
your interface is an important decision as it will effect the amount of effort needed to modify the inter-
face later or if you move those parts using a program. If you position each button relative to the first you
only need to move the first buttons position to move them all as opposed to moving each button indi-
vidually. In this way we can group parts together to make them act in a unified positioning manner.

Figure 4.3. Placing a row of buttons

part {
name, "button1";
type, RECT;
description {

state, "default" 0.0;
color, 0 0 0 255;

rel1 {
relative, 0.0 0.0;
offset, 10 10;

}

rel2 {
relative, 0.0 0.0;
offset, 30 20;

}
}

}

part {
name, "button2";
type, RECT;
description {

state, "default" 0.0;
color, 0 0 0 255;

rel1 {
relative, 1.0 0.0;
offset, 10 0;
to, "button1";

}

rel2 {
relative, 1.0 1.0;
offset, 30 0;
to, "button1";

}
}

Edje Layout, Fills and Positioning

11

}

In this example we have two buttons. Looking at "button1" we see it's top left corner (rel1) is positioned
at the top left corner of the interface (relative) and then offset 10 pixels to the right and 10 pixels south
(offset). Its bottom right corner (rel2) is relative to the top left corner of the interface as well, but then
offset 30 pixels to the right and 20 pixels south. We position both corners from the top left corner in-
stead of from both the top left and bottom right corner of the interface. This is a result of using static off-
sets, we want to ensure the button stays in the same place even if the interface is resized. Notice we are
not specifying the min and max size of either buttons, all sizing is happening based on the position of the
corners of that part. The result of the positioning scheme used for "button1" is a container that stretches
from the top left corner and is 20 pixels wide and 10 pixels high. If we had specified a min and max size
for the part of 10 pixels the rectangle would only fill half of the container, and unless an "align"
keyword was used that rectangle would start from the top left corner of the container like everything
else, thus the left side of the container would be filled with rect and the other half of the container
empty.

Button2 in our example uses the "to" keyword in both rel1 and rel2. The top left corner of "button2" is
positioned at the right top corner of "button1", because rel1 is relative to "button1" and the relative
keyword specifies that the top left corner of this part is relative to 1.0 0.0 of "button1". An offset is also
used, which moves the "button2" container to the right by 10 pixels horizontally, which is going to act as
the button spacing. The bottom right corner (rel2) is again positioned relative to "button1" but this time
relative to "button1"s bottom right corner. An offset of 30 pixels is used which provides 10 pixels for
our button spacing, and then another 20 pixels for the containers width. In the end this gives us two but-
tons spaced 10 pixels apart that are 20 by 10 pixels in size. If we wanted to add another button we'd
make it relative to "button2" so that each button is relative to the next all of which are positioned ulti-
mately by the first button.

Suppose we wanted to create a button bar, but rather than using static buttons like in the last example we
simply wanted them to fill the width of the interface completely reguardless of how large or small it was
resized. In this case we could use something like the following example.

Figure 4.4. Resizable row of buttons

part {
name, "button1";
type, RECT;
description {

state, "default" 0.0;
color, 255 0 0 255;

rel1 {
relative, 0.0 0.0;
offset, 0 0;

}

rel2 {
relative, 0.5 0.0;
offset, 0 30;

}
}

}

part {
name, "button2";
type, RECT;

Edje Layout, Fills and Positioning

12

description {
state, "default" 0.0;
color, 0 255 0 255;

rel1 {
relative, 0.5 0.0;
offset, 0 0;

}

rel2 {
relative, 1.0 0.0;
offset, 0 30;

}
}

}

In this example we are creating two buttons and positioning them relative to the interface. The first but-
ton defines its container from the top left corner of the interface (rel1) over to the middle of the inter-
face, and 30 pixels south of the middle top (rel2). The second buttons container starts half way across
the top of the interface (rel1) and extends the rest of the way across the interface and south by 30 pixels
(rel2). So we have two buttons that fill the entire width of the interface and are 30 pixels in height. No
matter how thin or wide we resize the interface the button bar will look exactly as it should.

If we wanted to modify the example to place the button bar on the bottom of the interface we would
change the veritcal parameter of the relative keywords from 0.0 to 1.0 placing everything relative to the
bottom of the interface, leaving the horizontal parameters alone and then changing our offsets from a
posative 30 pixels to a negative 30 pixels in order to push them upward rather than down.

Edje Layout, Fills and Positioning

13

Chapter 5. Programs: Bring your
interface to life

Programs define how your interface reacts to events. These events can come from Edje, user interaction,
or an external force like your window manager. All these events come to Edje as signals. Signals from
user interaction would include mouse clicks, key presses and mouse movement. Signals from an external
source would include window moves, window resizes, or window raises and lowers. Signals from Edje
internally would include programs starting or stopping, or the loading of an EET. Each signal must come
from some place, whether it is a part or another program or in the case of a window manager move any-
where. The place from which a signal come is known as the source. If a user left clicks on an image part
named "button", a "mouse,clicked,1" signal is generated from the source part "button".

14

Chapter 6. The Edje API: Putting your
interface to work

The API for Edje is simple and easy to use. It should be noted from the outset that the API is designed to
be restrictive. If you can not accomplish something in code that you want to do it will almost always
mean that you should have done it in the EDC. This design ensures that even a lazy programmer doesn't
deminish the power of an independant interface as designed by Edje.

The Edje API includes an initialization function, time related functions, external object functions, and
object functions for manipulating and interfacing with your EET as created using EDC. Most commonly
used will be the object functions, which provide the ability to add Edje interfaces as an EVAS object and
modify animation cycles, resize, get or set values from text parts, define color classes, define and delete
callbacks based on signals from your EET, and even emit signals that get sent back to your EET to trig-
ger events. Lets look at a simple example of using Edje in your application, using Ecore and EVAS:

/* gcc `edje-config --cflags --libs` `ecore-config --cflags --libs` example.c -o example */
/* A sample EDC can be had here: http://www.cuddletech.com/edje/edc/crossfade.edc */
#include <Ecore_Evas.h>
#include <Ecore.h>
#include <Edje.h>

int app_signal_exit(void *data, int type, void *event);

/* GLOBALS */
Ecore_Evas * ee;
Evas * evas;
Evas_Object * edje;

double edje_w, edje_h;

int main(int argv, char *argc[]){

ecore_init();
ecore_event_handler_add(ECORE_EVENT_SIGNAL_EXIT, app_signal_exit, NULL);

ecore_evas_init();
ee = ecore_evas_software_x11_new(NULL, 0, 0, 0, 0, 0);

ecore_evas_title_set(ee, "TITLE");
ecore_evas_borderless_set(ee, 0);
ecore_evas_shaped_set(ee, 0);
ecore_evas_show(ee);

evas = ecore_evas_get(ee);
evas_font_path_append(evas, "/usr/local/share/edje/data/test/fonts/");

edje_init();
edje = edje_object_add(evas);

edje_object_file_set(edje, "crossfade.eet", "test");
evas_object_move(edje, 0, 0);
edje_object_size_min_get(edje, &edje_w, &edje_h);
evas_object_resize(edje, edje_w, edje_h);
evas_object_show(edje);

ecore_evas_resize(ee, (int)edje_w, (int)edje_h);
ecore_evas_show(ee);

ecore_main_loop_begin();

15

return 0;
}

int app_signal_exit(void *data, int type, void *event){

printf("DEBUG: Exit called, shutting down\n");
ecore_main_loop_quit();
return 1;

}

In this example we see Edje being initialized with edje_init(), then the edje being added to the evas
similiar to any other object being added to an evas. The edje_object_file_set() function defines the EET
to be used and the group name we wish to use as defined in our EDC. Using evas_object_move() we en-
sure that the Edje is placed in the top left corner of the evas. Next, using edje_object_size_min_get() we
return the values of the minimum width and height of the group so we can use evas_object_resize() to
resize the evas to snuggly fit our edje interface. And finally using evas_object_show() is the usual way
we render the edje to the evas. Following this we also resize the entire evas and re-show it to make
things tidy. Notice that the evas was created having no width or height only because we later resized it
using values from the EET group.

Signals and Callbacks
Signals provide the communication between your interface and your application code. When an Edje
program emits a signal your application needs to catch that signal and then do something with it, this
functionality is provided by Edje signal callbacks. The Edje API provides you with two calls, one to add
and one to delete signal callbacks: edje_object_signal_callback_add() and ed-
je_object_signal_callback_del(). Both functions take 4 arguments: the Evas_Object (your edje), the sig-
nal thats emited, the source of that emission, and the function that should be called when the signal is re-
ceived. These functions will not allow you to pass NULL arguments, and therefore if you want to create
callbacks for several sources that emit the same signal you will need to add a seperate callback for each
of the sources. The add function allows one more argument, a void pointer to any data you want passed
to the callback function.

edje_object_signal_callback_add(st_session->edje, "PLAY_PREVIOUS", "previous_button", prev_file, st_session);

...

void prev_file(void *user_data, Evas_Object *obj, const char *em, const char *src){
player_session *data;

printf("DEBUG: Previous File Called\n"); /* Report what we're doing for debugging purposes */

data = user_data;
ecore_idler_del(data->play_idler); /* Stop the current playing stream */

data->play_list = evas_list_prev(data->play_list); /* Get the previous list item */

if(file_is_ogg(evas_list_data(data->play_list))){ /* Make sure that the new item is really ogg */
setup_ao(); /* If so, seutp the audio out path */
get_vorbis(evas_list_data(data->play_list), data); /* Setup the intrface with comments, etc */
ao_open(); /* Open the outbound audio path */
data->play_idler = ecore_idler_add(play_loop, data); /* Start the play loop */

} else {
printf("File %s is not an OggVorbis file\n", evas_list_data(data->play_list)); /* Or, report an error */

}
}

The Edje API: Putting your interface to work

16

This is a pretty shitty example.......

The Edje API: Putting your interface to work

17

Chapter 7. Edje Programmers
Guidelines

The purpose of Edje is to abstract as completely as possible the design of the interface from the applica-
tion code. Always keep this in mind when using Edje. While at times Edje's API seems inadequate or
frustrating in its lack of customization, it is this way for a reason: to keep you as a coder from taking
power away from the themer. If at any point the API seems like a restriction realize that what you want
to do is possible, but should be done in the EDC not in the application code.

The following recommendations are just that, recommendations. However observing them will make
your application easier to work on and contribute to for all involved.

Edje Spec Files
Once you have created your application and a default EDC you will want to make it as easy as possible
for other developers and themers to create new interfaces for you application. While developers can read
your code and figure out what does what, many of the themers can not, therefore a standardized method
of describing what the application requires and provides should be utilized. This is done by creating a
flat text file named README.edje. Below is an example of the format that should be used in your
README.edje:

Figure 7.1. Example of README.edje

--
EDJE Specfication
--

Application: ePlayer
Author: Ben Rockwood [benr@cuddletech.com]
Last Update: 9/29/03
Desciption: An OggVorbis audio player

Signals accepted by application:

Signal: PLAY_PREVIOUS
Source: previous_button
Desc: Signal starts playing the previous track in the playlist

and updates track information text parts.

Signal: PLAY_NEXT
Source: next_button
Desc: Signal starts playing the next track in the playlist

and updates track information text parts.

Signal: PLAY
Source: play_button
Desc: Signal to start playing the current track from current position,

negates pause signal

Signal: PAUSE
Source: pause_button
Desc: Signal to pause the current playing track

18

Signal: SEEK_FORWARD
Source: forward_button
Desc: Signal to seek forward in track by 5 seconds

Signal: SEEK_BACK
Source: back_button
Desc: Signal to seek backwards in track by 5 seconds

Signals sent by application:

Signal: BLINK_ALL
Source: button
Desc: Signal signifying an error state

[See "Signals accepted" above, application also sends these signals]

Text parts set by application:

Part: title
Desc: Window title in border (ie: eVorbisPlayer v0.0)

Part: artist_name
Desc: Artist name from Ogg comments field

Part: album_name
Desc: Album name from Ogg comments field

Part: song_name
Desc: Song name from Ogg comments field

Part: time_text
Desc: Current position in track, displayed as negative

value to end of track (ie: -01:02)

Part: vol_display_text
Desc: Current PCM volume level, 2 digit int. Values

range from 00 to 99

Swallowed areas used by application:

None.

Data fields used by application:

None.

--
Features and Notes
--

- Play list support currently only allows for a command line
supplied list.

- At a bare minimum it is requested that all alternate
pants provide Artist and Track name, Play, Next and
Previous track. Everything else is up to you.

- A K-Jofol look-alike interface would be kool!

--

Edje Programmers Guidelines

19

Changelog:
--
9/20/03: App now will set text part "vol_display_text" to a 2 digit int

representing PCM mixer volume level.
9/7/03: App now accepts signal PAUSE
9/5/03: Added new functions for the signals SEEK_FORWARD and SEEK_BACK
9/1/03: Initial creation.

This scheme allows the themer to have an understanding of what functionality is available and what
parts will be accessed by the application code and therefore must exist, even if hidden. A changelog
should be present to list the changes in the application that could effect themes past and present. A "Fea-
tures and Notes" section is optional but allows a place to outline various functionality of the application
as well as notes from the coder to the themer as to how the app is intended to be used, their wishes, etc.
This file should be present in the top level directory of your codebase.

Source Layout
Themes are typically stored in the data/ directory in the toplevel directory of your codebase. The struc-
ture of that directory is entirely of your own choosing. While it is acceptable to include only a pre-
compiled EET with your code, it is highly recommended that you also include the EDC and image
sources as well. This allows users with porting issues to rebuild the EETs themselves rather than submit
needless bug reports, and for other themers to learn from your EDC or improve upon it. This allows
themers to be more effectively leveraged to provide an even better app.

Theme Distribution
An important consideration for themeing was how to deal with distribution of themes. Due to the ugly
nature of using renamed tarballs for data distribution Edb and then EET came to life. EET provides a
simplistic manner of distributing complete themes and interfaces in a convenient single file package. Be-
cause EET will compress your images there is no need to re-compress an EET, though it is the distrib-
uters discretion to do so. When hosting themes pre-compiled EETs should be provided. The images and
source EDC does not need to be provided, but it is recommended that you make it avalible on request or
in the same place as the EET using a simple and clear file convension such as: theme.eet and theme-
src.tgz. Providing the source gives back to the community not only a nice theme but also a valuable
learning tool for others. Themes should not be distributed in tarballs as it defeats the purpose of a single
file, one step distribution.

Edje Programmers Guidelines

20

Chapter 8. The Edje Preview Program
The edje program provides an easy to use tool for previewing, testing and debugging EDCs. The tool
accepts two arguments, the first is the name of the EET to use, the second is an optional argument spe-
cifying the Edje group to use within the EDC. If no group name is supplied you will be presented with a
list of all the groups within the specified EET, you may click on one of the groups to preview it.

Within the edje source there are several printf() statements, which by default are commented out. Un-
commenting these statements will cause the tool to print to STDOUT all events, signals and program
starts and stops which is useful in debugging. If you choose to use edje for debugging purposes it is
highly recommended you enable this output. You can find the source for the edje program in edje/
src/bin/edje_main.c.

It should be noted that the edje tool does not automatically resize to fit your interface as defined by min
and max size for the group. The default window size is 240x320. In order to see your interface at the
proper default size you should resize the preview window (the window inside your window managers
window) larger and then resize it down till it stops on the minimum size of the interface. [NOTE: Hope-
fully this will be fixed in time.]

Because certain elements of Edje need to be specified in code, edje provides you with some code side
elements you can draw on for design and debugging purposes. It defines the EVAS font path to two loc-
ations: (data_dir)/data/test/fonts (typical /usr/local/share/) and ./fonts/.
Therefore when using edje for debugging you should include all your custom fonts in a fonts/ direct-
ory relative to where you preview it from. Several key events are accepted for testing purposes. ed-
je_object_play_set(edje, 1) is executed when the RETURN key is pressed, and ed-
je_object_play_set(edje, 0) is executed when ESC is pressed. edje_object_animation_set(edje, 1) is ex-
ecuted when key A is pressed, and edje_object_animation_set(edje, 0) when key S is pressed. Using the
directional keys UP, LEFT and RIGHT will change the text string of a text part named "text" to "String
1" for LEFT, "Buttox" for UP, and "You presed (KEY).." for RIGHT. Further, four color classes are
defined, each with the color class name "bg", using the F1, F2, F3 and F4 keys.

Table 8.1. Edje Tool Event Facilities

Key Press Edje Function Called

RETURN edje_object_play_set(edje, 1);

ESC edje_object_play_set(edje, 0);

a edje_object_animation_set(edje, 1);

s edje_object_animation_set(edje, 0);

LEFT_ARROW edje_object_part_text_set(edje, "text", "String 1");

UP_ARROW edje_object_part_text_set(edje, "text", "Buttox");

RIGHT_ARROW edje_object_part_text_set(edje, "text", "You
pressed \"U\". Nice one stenchie!");

F1 edje_object_color_class_set(edje, "bg", 255, 255,
255, 255, 0, 0, 0, 0, 0, 0, 0, 0);

F2 edje_object_color_class_set(edje, "bg", 255, 200,
120, 255, 0, 0, 0, 0, 0, 0, 0, 0);

F3 edje_object_color_class_set(edje, "bg", 120, 200,
255, 200, 0, 0, 0, 0, 0, 0, 0, 0);

F4 edje_object_color_class_set(edje, "bg", 255, 200,
50, 100, 0, 0, 0, 0, 0, 0, 0, 0);

21

Effective use of the edje tool can significantly ease debugging of your Edje interface.

The Edje Preview Program

22

Appendix A. EDC Reference
//EDC Form
images {

// Images
}

collections {
group {

// Group1 Params

parts {
part {

// Part Params

description {
// State Params

}

}
}

programs {
program {

// Program Params
}

}
}

group {
// Group2 Params
parts {
........
}
programs {
......
}

}
}

Table A.1. EDC Keyword Reference

Section Keyword Parameters Description

images image, "image" STOR-
AGE_METHOD;

Where storage method is
of the following: COMP
for lossless compressed,
RAW for lossless un-
compressed, or LOSSY
for lossy compressed
followed by the quality
level (0-100) ex: image,
"button.png" LOSSY 85;
ex: image, "back-
drop.jpg" RAW;

group name, "group_name"; Name used to access an
individual interface in an

23

Section Keyword Parameters Description

EET.

group min, 0 0; Integer values specifying
minimum horizontal
(arg1) and vertical (arg2)
size of interface in
pixels.

group max, 0 0; Integer values specifying
maximum horizontal
(arg1) and vertical (arg2)
size of interface in
pixels.

part name, "part_name"; Symbolic part name,
used for later reference
in EDC.

part type, TYPE; Where type is: IMAGE,
RECT, TEXT, SWAL-
LOW or NONE. De-
faults to IMAGE if no
type is specified.

part effect, FX_TYPE; Effect type applied to
text as rendered by the
part. Acceptable
FX_TYPEs are: NONE,
PLAIN, OUTLINE,
SOFT_OUTLINE,
SHADOW,
SOFT_SHADOW,
OUTLINE_SH ADOW,
OUT-
LINE_SOFT_SHADO
W. Default type is
NONE. ex: effect,
SOFT_OUTLINE;

part mouse_events, 0; Boolean value specify-
ing whether the part ac-
cepts mouse events or
not. No signals are gen-
erated from parts that do
not accept events.

part repeat_events, 0; Boolean value specify-
ing whether a part re-
peats an event to the part
below it. When repeat is
set to 0 (off, the default)
and two parts that accept
events are on top of each
other the top most object
will receive the event
and not the parts below
it, turning repeat to 1
(on) will continue to
send the event down to
the next part below it.

part clip_to, "part"; Clip to the size of the

EDC Reference

24

Section Keyword Parameters Description

specified part. Any
amount of the current
part that extends beyond
the size of the clipped to
part will be clipped off.
Clipped text parts al-
ways truncate the text
string to "...".

part color_class, "class"; Name of color class to
apply to the current part.
Color classes are defined
in application code.

part text_class, "class"; Name of text class to ap-
ply to the current part.
Text classes are defined
in application code.

description state, "name" INDEX; Descriptive name for the
individual state, the de-
fault state must always
be named "default". The
INDEX value is a
double between 0.0 and
1.0 which indicates
levels of completion, the
default is 0.0. Multiple
states can have the same
name yet with a different
index value. ex: state,
"default" 0.0;

description visible, 0; Boolean value specify-
ing whether part is vis-
able or not. Non-visable
parts do not generate
events.

description align, HOR_VAL VER_VAL; Specify alignment of the
part within its container
as specified by rel1/rel2.
Values are specified as
doubles from 0.0 (align
left/top) to 1.0 (align
right/bottom). ex: align,
0.5 0.5; (Aligns part in
center of container) ex:
align, 0.0 1.0; (Aligns
part to bottom left of
container)

description min, HOR_SIZE VER_SIZE; Integer values specifying
minimum horizontal
(arg1) and vertical (arg2)
size of part in pixels. ex:
min, 100 100;

description max, HOR_SIZE VER_SIZE; Integer values specifying
maximum horizontal
(arg1) and vertical (arg2)

EDC Reference

25

Section Keyword Parameters Description

size of part in pixels. ex:
max, 100 100;

description step, HOR_VAL
VERT_VAL;

Integer stepping values
in integer pixels for hori-
zontal (arg1) and vertical
(arg2) scaling. When
stepping is enabled the
width or/and height of
the image will always be
divisable by its stepping
value when scaled. De-
fault stepping values are
0 0 (ie: stepping dis-
abled). ex: step, 20 1
(Image width must al-
ways be multple of 20,
ie: 0, 20, 40, 60, etc.
Height can be any value)

description aspect, MIN MAX; Double min (arg1) and
max (arg2) aspect ratio
values. This controls the
aspect ratio (ratio of
width to height) of a
scaled part, typically im-
ages. The default ratio is
0.0. If both values are
the same the ratio is
fixed. ex: aspect, 1.0 5.0;
(Minimum aspect of 1:1,
maximum of 5:1 -
Width:Height);

description color, RED GREEN BLUE
ALPHA;

Integer values ranging
from 0 to 255 specifying
the color of a rectangle
or text part. ex: color, 0
0 0 255; (Part is colored
black)

description color2, RED GREEN BLUE
ALPHA;

Integer values ranging
from 0 to 255 specifying
the color of a text parts
shadow. ex: color2, 0 0
255 255; (Shadow is
blue)

description color3, RED GREEN BLUE
ALPHA;

Integer values ranging
from 0 to 255 specifying
the color of a text parts
outline. ex: color3, 255 0
0 255; (Outline is
colored red)

description inherit, "name" INDEX; Inherit the values of the
description identified by
"name" and INDEX. In-
herit can only be used
after a state is set on the
current description and

EDC Reference

26

Section Keyword Parameters Description

can not be used for the
default state.

rel1/rel2 relative, HOR_VAL
VERT_VAL;

Doubles representing the
horizontal (arg1) and
vertical (arg2) position-
ing of top left corner (for
rel1) or bottom right
corner (for rel2) as relat-
ive to the part specified
by the "to" keyword. If
no "to" keyword is
present, the values are
relative to the corners of
the interface. ex: relat-
ive, 0.0 1.0; (For rel1
with no "to": top left
corner of part is posi-
tioned at the left (0.0),
bottom (1.0) corner of
the interface.)

rel1/rel2 offset, HORZ_OFF
VERT_OFF;

Integers specifying devi-
ation in pixels from the
position as defined by
the relative keyword,
both horizontally (arg1)
and vertically (arg2). ex:
offset, 5 10; (Position 5
px to the right and 10 px
down from the position
as stated by the relative
keyword)

rel1/rel2 to, "part_name"; Specify another part as
the reference to be used
for the positioning of the
current part. ex: to,
"some_part";

rel1/rel2 to_x, "part_name"; Specify another part as
the reference to be used
for the positioning of the
current part. Same as
"to", but relativity ap-
plies only on the X axis.

rel1/rel2 to_y, "part_name"; Specify another part as
the reference to be used
for the positioning of the
current part. Same as
"to", but relativity ap-
plies only on the Y axis.

image normal, "image_name"; Name of image to be
used. In an animation,
this is the first and last
image displayed.

image tween, "image_name"; Name of an image to be
used in an animation

EDC Reference

27

Section Keyword Parameters Description

loop. Images are dispay
in the order they are lis-
ted. There is no limit to
the number of tweens
that can be specified.

image border, LEFT RIGHT TOP
BOTTOM;

Border scaling values for
an image part as spe-
cified in integer pixel
widths, for each four
sides of an image. This
will stop Edje from scal-
ing the outside edge of
an image when scaling
an image part. ex: bor-
der, 10 10 10 10; (Scale
the edge of the image
part 10 pixels on all
sides)

fill smooth, 0; Boolean value determin-
ing whether scaled im-
ages will be smoothed, 0
for no, 1 for yes.

fill { origin relative, HOR_VAL
VERT_VAL;

Doubles representing the
horizontal (arg1) and
vertical (arg2) position
from which a fill (tile)
should start within it's
container as defined by
rel1/rel2. Tiling then oc-
curs in all directions
from that point of origin.
This is similar in use to
relativity by rel1 except
that it is relative to the
parts container rather
than the whole interface.
ex: relative, 0.5 0.5;
(part starts tiling from
the middle of it's con-
tainer)

fill { origin offset HOR_VAL
VERT_VAL;

Integers specifying a
pixel offset horizontally
(arg1) and vertically
(arg2) from the relative
position specified by ori-
gin{relative,}. This is
similar in use to offset
used in rel1.

fill { size relative, HOR_VAL
VERT_VAL;

Doubles representing the
horizontal (arg1) and
vertical (arg2) position
of the bottom right
corner of a fill (tile).
This is similar in use to
relativity by rel2 except

EDC Reference

28

Section Keyword Parameters Description

that it is relative to the
parts container rather
than the whole interface.
ex: relative, 1.0 1.0;
(Tile fills entire space)

fill { size offset, HOR_VAL
VERT_VAL;

Integers specifying a
pixel offset horizontally
(arg1) and vertically
(arg2) from the relative
position specified by
size{relative,}. This is
similar in use to offset
used in rel2.

text text, "some string"; Text string to be
rendered.

text font, "font_name"; Font used for text, where
"font_name" is the name
of the font file minus its
extension. The path to
the font is determined by
your applications evas
font path. ex: font, "Im-
pact"; (Font used is Im-
pact.ttf found in the evas
font path)

text size 12; Font size in points.

text fit, HOR_VAL
VERT_VAL;

Boolean values specify-
ing whether to scale text
to fill its container hori-
zontally (arg1) and/or
vertically (arg2). Default
is 0 0;

text min, HOR_VAL
VERT_VAL;

Boolean values specify-
ing whether the current
text string should define
the minimum size of the
part, such that all future
changes to the text string
can be no smaller both
horizontally (arg1) and
vertically (arg2).

text align, 0.5 0.5; Alignment of text within
its containers is defined
by rel1/rel2, horizontally
(arg1) and vertically
(arg2).

program name, "prog_name"; Symbolic name of pro-
gram as a unique identi-
fier.

program signal, SIGNAL; Specifies signal(s) that
should cause the pro-
gram to run. The signal
received must match the

EDC Reference

29

Section Keyword Parameters Description

specified source to run.
Signals may be globbed,
but only one signal
keyword per program
may be used. ex: signal,
"mouse,clicked,*";
(clicking any mouse but-
ton that matches source
starts program)

program source, "signal-source"; Source of accepted sig-
nal. Sources may be
globbed, but only one
source keyword per pro-
gram may be used. ex:
source, "button-*";
(Signals from any part or
program named "button-
*" are accepted)

program action, ACTION (param1)
(param2);

Action to be performed
by the program. Valid
actions are:
STATE_SET, AC-
TION_STOP and SIG-
NAL_EMIT. Only one
action can be specified
per program.

program transition, TYPE LENGTH; Defines how transistions
occur using
STATE_SET action.
Where type is the style
of the transistion and
length is a double spe-
cifying the number of
seconds in which to pre-
form the transistion.
Valid types are: LIN-
EAR, SINUSOIDAL,
ACCELERATE, and
DECELERATE

program target, "action-target"; Program or part on
which the specified ac-
tion acts. Multiple target
keywords may be spe-
cified, one per target.
SIGNAL_EMITs do not
have targets.

program after, "next-program"; Specifies a program to
run after the current pro-
gram completes. The
source and signal para-
meters of a program run
as an "after" are ignored.
Multiple "after" state-
ments can be specified
per program.

EDC Reference

30

	Building Interfaces with Edje
	Table of Contents
	Chapter 1. Edje Overview
	Introduction
	Edje Data Collections (EDC)

	Chapter 2. A quick tour of Edje EDC
	Writting your first EDC

	Chapter 3. Parts: Interface componants
	Chapter 4. Edje Layout, Fills and Positioning
	Chapter 5. Programs: Bring your interface to life
	Chapter 6. The Edje API: Putting your interface to work
	Signals and Callbacks

	Chapter 7. Edje Programmers Guidelines
	Edje Spec Files
	Source Layout
	Theme Distribution

	Chapter 8. The Edje Preview Program
	Appendix A. EDC Reference

