
ClibPDF Library Refrence Manual 1

ClibPDF Library Reference Manual
Addendum

[Manual version 1.10-Addendum; 1999-06-07]
Copyright ©1999 FastIOTM Systems, All Rights Reserved.

ClibPDFTM is a library of C functions for generating PDF files directly.
This is a supplement/addendum to the ClibPDFTM manual version 1.10, until
the sections below are incorporated into the main manual.

New Functions in Version 1.10-7d

char *cpdf_rawTextBox(float xl, float yl, float width, float height,
float linespace, CPDFtboxAttr *tbattr, char *text);

char *cpdf_textBox(float xl, float yl, float width, float height,
float linespace, CPDFtboxAttr *tbattr, char *text);

These two functions finally implement one of the top requested features:
columnar formatting of text. The function allows simple text-to-pdf capability
with left-, right-, centering-, and justification. Four float arguments (xl, yl,
width, height) specify a text box into which text is formatted. (xl, yl) is the
bottom-left coordinate of the box and (width, height) are the size parameters of
the box. Linespace (given in points, 1/72 inches) spacifies the spacing between
lines (distance between baseline of one line to that of the next).

The next argument, tbattr, is a pointer to a textbox attribute structure, and has
the format shown below. You may pass a NULL as tbattr , in which case
defalut values are used. Note that hhis structure is likely to have additional
members in the future.

ClibPDF API Reference Manual

2 ClibPDF Library Reference Manual

typedef struct {
 int alignmode; /* one of the modes above (default= TBOX_LEFT) */
 int NLmode; /* if non-zero, NL is is a line break, if 0 reformatted (default= 0) */
 float paragraphSpacing; /* extra space between paragraphs (default= 0.0) */
} CPDFtboxAttr;

For passing as "alignmode" to cpdf_textBox() and cpdf_rawTextBox():
#define TBOX_LEFT 0
#define TBOX_CENTER 1
#define TBOX_RIGHT 2
#define TBOX_JUSTIFY 3

Alignmode should be one of the above defines (from cpdflib.h).
NLmode = 0 will reformat text into the columnar width ignoreing single
newline (’\n’) characters in the text. Consecutive newline chars of 2 or more
will be honored, and terminates a paragraph. In this mode, some non-zero
paragraphSpace would be useful to give some separation between paragraph
blocks.
NLmode = 1 will perform simple text-to-PDF formatting honoring newline
(’\n’) chars literally as line breaks. In this mode, paragraphSpacing probably
should be 0 because it simply adds to linespace (see above) given as a main
argument.

RETURN VALUE:
The return value is NULL if all the text fits into the text boxed defined. If the

text is too long to be contained in the textbox, a (char *) pointer to the
remainder of the text is returned. This points to somewhere in the middle of
the original text string. This return value may be used as the new text string for
another textbox to continue text placement into another column or to one on the
next page. (See the TextBox example in examples/textbox/textbox.c.)

BUGS/POTENTIAL PROBLEMS:

This function is not likely to work for CJK (Chinese, Japanese, and Korean)
language text, which may not contain any space character.

TABs don’t work. (This, we will probably add at some point.)

This function modifies the portion of the text data that have been used (have
already been put into a text box). If you need to retain the original text, make a
copy and use that with these functions.

I don’t think we will extend these text box functions much further. We know
things like underline, bold, italics, changing fonts, HTML support, RTF support,
etc. would be nice, but those will require a complete rewrite of cpdfTextBox.c.

ClibPDF API Reference Manual

ClibPDF Library Reference Manual 3

EXAMPLE:

char *textbuf = "Some very long text string\nfrom somewhere.....\n\n";
char *currtext;
CPDFtboxAttr tboxatr;
float linespace = 12.0;

 tboxatr.alignmode = TBOX_JUSTIFY;
 tboxatr.NLmode = 0; /* reformat */
 tboxatr.paragraphSpacing = 12.0;
 currtext = textbuf; /* point to head of text */
 cpdf_beginText(0);
 cpdf_setFont("Times-Roman", "MacRomanEncoding", 12.0);
 currtext = cpdf_rawTextBox(72.0, 72.0, 225.0, 648.0,

linespace, &tboxatr, currtext); /* left column */
 currtext = cpdf_rawTextBox(72.0, 315.0, 225.0, 648.0,

linespace, &tboxatr, currtext); /* right column */
 cpdf_endText();

char *cpdf_version(void)
This function return the version string defined in version.h.

char *cpdf_platform (void)
This function returns the platform string defined in config.h for each platform.

CPDFerrorHandler cpdf_setErrorHandler (CPDFerrorHandler handler)

This function installs a custom error hander of the form below. Without this
call, the default handling is as shown below. You may modify the behavior to
use GUI-based alert panels or you may prevent the program from exiting
entirely when level < 0.

 void myErrorHandler(int level, const char* module, const char* fmt, va_list ap)
 {
 if(module != NULL)
 fprintf(stderr, "%s: ", module);
 vfprintf(stderr, fmt, ap);
 fprintf(stderr, ".\n");
 if(level < 0)
 exit(level);
 }

ClibPDF API Reference Manual

4 ClibPDF Library Reference Manual

Notes on Added Example Programs

A. Text Box/TEXT2PDF [examples/textbox/textbox.c]
This program gives a simple example for the usage of cpdf_rawTextBox(). It
takes a text file and format into a 2-column justified PDF file. By setting
attributes, this example program may serve as a starting point for a very capable
TEXT2PDF program.

[end of doc/1999-06-07;]

